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Preface 

Logic appears in a 'sacred' and in a 'profane' form; the sacred form is domi- 
nant in proof theory, the profane form in model theory. The phenomenon is 
not unfamiliar, one observes this dichotomy also in other areas, e.g. set the- 
ory and recursion theory. Some early catastrophies, such as the discovery of 
the set theoretical paradoxes (Cantor, Russell), or the definability paradoxes 
(Richard, Berry), make us treat a subject for some time with the utmost 
awe and diffidence. Sooner or later, however, people start to treat the mat- 
ter in a more free and easy way. Being raised in the 'sacred' tradition, my 
first encounter with the profane tradition was something like a culture shock. 
Hartley Rogers introduced me to a more relaxed world of logic by his ex- 
ample of teaching recursion theory to mathematicians as if it were just an 
ordinary course in, say, linear algebra or algebraic topology. In the course 
of time I have come to accept this viewpoint as the didactically sound one: 
before going into esoteric niceties one should develop a certain feeling for the 
subject and obtain a reasonable amount of plain working knowledge. For this 
reason this introductory text sets out in the profane vein and tends towards 
the sacred only at the end. 

The present book has developed out of courses given at the mathematics 
department of Utrecht University. The experience drawn from these courses 
and the reaction of the participants suggested strongly that one should not 
practice and teach logic in isolation. As soon as possible examples from ev- 
eryday mathematics should be introduced; indeed, first-order logic finds a 
rich field of applications in the study of groups, rings, partially ordered sets, 
etc. 

The role of logic in mathematics and computer science is two-fold - a 
tool for applications in both areas, and a technique for laying the foundations. 
The latter role will be neglected here, we will concentrate on the daily matters 
of formalised (or formalisable) science. Indeed, I have opted for a practical 
approach, - I will cover the basics of proof techniques and semantics, and 
then go on to topics that are less abstract. Experience has taught us that the 
natural deduction technique of Gentzen lends itself best to an introduction, 
it is close enough to actual informal reasoning to enable students to devise 
proofs by themselves. Hardly any artificial tricks are involved and at the end 
there is the pleasing discovery that the system has striking structural prop- 
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erties. in particular it perfectly suits the constructive interpretation of logic Table of Contents 
and it allows normal forms . The latter topic has been added to this edition 
in view of its importance in theoretical computer science . In chapter 3 we 
already have enough technical power to obtain some of the traditional and 
(even today) surprising model theoretic results . 

The book is written for beginners without knowledge of more advanced 
topics. no esoteric set theory or recursion theory is required . The basic in- 
gredients are natural deduction and semantics. the latter is presented in con- 
structive and classical form . 

In chapter 5 intuitionistic logic is treated on the basis of natural deduction 
without the rule of Reductio ad absurdum. and of Kripke semantics . Intu- 
itionistic logic has gradually freed itself from the image of eccentricity and 
now it is recognised for its usefulness in e.g.. topos theory and type theory. 
hence its inclusion in a introductory text is fully justified . The final chap- 
ter. on normalisation. has been added for the same reasons; normalisation 
plays an important role in certain parts of computer science; traditionally 
normalisation (and cut elimination) belong to  proof theory. but gradually 
applications in other areas have been introduced . In chapter 6 we consider 
only weak normalisation. a number of easy applications is given . 

Various people have contributed to the shaping of the text at  one time 
or another; Dana Scott. Jane Bridge and Henk Barendregt have been most 
helpful for the preparation of the first edition . Since then many colleagues 
and students have spotted mistakes and suggested improvements; this edi- 
tion benefitted from the remarks of Eleanor McDonnell. A . Scedrov and Karst 
Koymans . To all of these critics and advisers I am grateful . 

Progress has dictated that the traditional typewriter should be replaced 
by more modern devices; this book has been redone in J&T#by Addie Dekker 
and my wife Doke . Addie led the way with the first three sections of chapter 
one and Doke finished the rest of the manuscript; I am indebted to both 
of them. especially to Doke who found time and courage to master the se- 
crets of the BT~Xtrade . Thanks go to Leen Kievit for putting together the 
derivations and for adding the finer touches required for a J&T~xmanuscript . 
Paul Taylor's macro for proof trees has been used for the natural deduction 
derivations . 

De Meern. June 1994 Dirk van Dalen 
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0. Introduction 

Without adopting one of the various views advocated in the foundations of 
mathematics, we may agree that mathematicians need and use a language, 
if only for the communication of their results and their problems. While 
mathematicians have been claiming the greatest possible exactness for their 
methods, they have been less be sensitive as to their means of communication. 
I t  is well known that Leibniz proposed to put the practice of mathematical 
communication and mathematical reasoning on a firm base; it was, however, 
not before the nineteenth century that those enterprises were (more) suc- 
cessfully undertaken by G. Frege and G. Peano. No matter how ingeniously 
and rigorously Frege, Russell, Hilbert, Bernays and others developed math- 
ematical logic, it was only in the second half of this century that logic and 
its language showed any features of interest to the general mathematician. 
The sophisticated results of Godel were of course immediately appreciated, 
but they remained for a long time technical highlights without practical use . 
Even Tarski's result on the decidability of elementary algebra and geometry 
had to bide its time before any applications turned up. 

Nowadays the application of logic to algebra, analysis, topology, etc. are 
numerous and well-recognised. It seems strange that quite a number of simple 
facts, within the grasp of any student, were overlooked for such a long time. 
It  is not possible to give proper credit to all those who opened up this new 
territory, any list would inevitably show the preferences of the author, and 
neglect some fields and persons. 

Let us note that mathematics has a fairly regular, canonical way of formu- 
lating its material, partly by its nature, partly under the influence of strong 
schools, like the one of Bourbaki. Furthermore the crisis at the beginning of 
this century has forced mathematicians to pay attention to the finer details 
of their language and to their assumptions concerning the nature and the 
extent of the mathematical universe. This attention started to pay off when 
it was discovered that there was in some cases a close connection between 
classes of mathematical structures and their syntactical description. Here is 
an example: 

It is well known that a subset of a group G which is closed under multi- 
plication and inverse, is a group; however, a subset of an aigebraically closed 
field F which is closed under sum, product, minus and inverse, is in general 
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not an algebraically closed field. This phenomenon is an instance of some- 
thing quite general: an axiomatizable class of structures is axiomatised by a 
set of universal sentences (of the form Vxl,. . . , x,cp, with cp quantifier free) 
iff it is closed under substructures. If we check the axioms of group theory 
we see that indeed all axioms are universal, while not all the axioms of the 
theory of algebraically closed fields are universal. The latter fact could of 
course be accidental, it could be the case that we were not clever enough to 
discover a universal axiomatization of the class of algebraically closed fields. 
The above theorem of Tarski and Los tells us, however, that it is impossible 
to find such an axiomatization! 

The point of interest is that for some properties of a class of structures 
we have simple syntactic criteria. We can, so to speak, read the behaviour 
of the real mathematical world (in some simple cases) off from its syntactic 
description. 

There are numerous examples of the same kind, e.g. Lyndon's Theorem: 
an axiomatisable class of structures is closed under homomorphisms iff it can 
be axiomatised by a set of positive sentences (i.e. sentences which, in prenex 
normal form with the open part in disjunctive normal form, do not contain 
negations). 

The most basic and at the same time monumental example of such a 
connection between syntactical notions and the mathematical universe is of 
course Godel's completeness theorem, which tells us that provability in the 
familiar formal systems is extensionally identical with tmth in all structures. 
That is to say, although provability and truth are totally different notions, 
(the first is combinatorial in nature, the latter set theoretical), they determine 
the same class of sentences: cp is provable iff cp is true in all structures. 

Given the fact that the study of logic involves a great deal of syntactical 
toil, we will set out by presenting an efficient machinery for dealing with 
syntax. We use the technique of inductive definitions and as a consequence 
we are rather inclined to see trees wherever possible, in particular we prefer 
natural deduction in the tree form to the linear versions that are here and 
there in use. 

One of the amazing phenomena in the development of the foundations 
of mathematics is the discovery that the language of mathematics itself can 
be studied by mathematical means. This is far from a futile play: Godel's 
incompleteness theorems, for instance, lean heavily on a mathematical anal- 
ysis of the language of arithmetic, and the work of Godel and Cohen in the 
field of the independence proofs in set theory requires a thorough knowledge 
of the mathematics of mathematical language. These topics are not with in 
the scope of the present book, so we can confine ourselves to the simpler 
parts of the syntax. Nonetheless we will aim at  a thorough treatment, in the 
hope that the reader will realise that all these things which he suspects to be 
trivial, but cannot see why, are perfectly amenable to proof. It may help the 
reader to think of himself as a computer with great mechanical capabilities, 

but with no creative insight, in those cases where he is puzzled because 'why 
should we prove something so utterly evident'! On the other hand the reader 
should keep in mind that he is not a computer and that, certainly when he 
gets to chapter 3, certain details should be recognised as trivial. 

For the actual practice of mathematics predicate logic is doubtlessly the 
perfect tool, since it allows us to handle individuals. All the same we start 
this book with an exposition of propositional logic. There are various reasons 
for this choice. 

In the first place propositional logic offers in miniature the problems that 
we meet in predicate logic, but there the additional difficulties obscure some 
of the relevant features e.g. the completeness theorem for propositional logic 
already uses the concept of 'maximal consistent set', but without the com- 
plications of the Henkin axioms. 

In the second place there are a number of truly propositional matters that 
would be difficult to  treat in a chapter on predicate logic without creating a 
impression of discontinuity that borders on chaos. Finally it seems a matter 
of sound pedagogy to let propositional logic precede predicate logic. The 
beginner can in a simple context get used to the proof theoretical, algebraic 
and model theoretic skills that would be overbearing in a first encounter with 
predicate logic. 

All that has been said about the role of logic in mathematics can be re- 
peated for computer science; the importance of syntactical aspects is even 
more pronounced than in mathematics, but it does not stop there. The lit- 
erature of theoretical computer science abounds with logical systems, com- 
pleteness proofs and the like. In the context of type theory (typed lambda 
calculus) intuitionistic logic has gained an important role, whereas the tech- 
nique of normalisation has become a staple diet for computer scientists. 



1. Propositional Logic 

1.1 Propositions and Connectives 

Traditionally, logic is said to be the art (or study) of reasoning; so in order 
to describe logic in this tradition, we have to know what 'reasoning' is. Ac- 
cording to some traditional views reasoning consists of the building of chains 
of linguistic entities by means of a certain relation '... follows from ...', a 
view which is good enough for our present purpose. The linguistic entities 
occurring in this kind of reasoning are taken to be sentences, i.e. entities 
that express a complete thought, or state of affairs. We call those sentences 
declarative. This means that,  from the point of view of natural language our 
class of acceptable linguistic objects is rather restricted. 

Fortunately this class is wide enough when viewed from the mathemati- 
cian's point of view. So far logic has been able to get along pretty well under 
this restriction. True, one cannot deal with questions, or imperative state- 
ments, but the role of these entities is negligible in pure mathematics. I must 
make an exception for performative statements, which play an important role 
in programming; think of instructions as 'goto, if ... then, else ...', etc. For 
reasons given below, we will, however, leave them out of consideration. 

The sentences we have in mind are of the kind '27 is a square number', 
'every positive integer is the sum of four squares', 'there is only one empty 
set'. A common feature of all those declarative sentences is the possibility 
of assigning them a truth value, true or false. We do not require the ac- 
tual determination of the truth value in concrete cases, such as for instance 
Goldbach's conjecture or Riemann's hypothesis. It  suffices that we can 'in 
principle' assign a truth value. 

Our so-called two-valued logic is based on the assumption that every sen- 
tence is either true or false, it is the cornerstone of the practice of truth 
tables-! 

SO& sentences are minimal in the sense that there is no proper part 
which is also a sentence. e.g. 5 E {0,1,2,5,7), or 2 + 2 = 5; others can be 
taken apart into smaller parts, e.g. 'c is rational or c is irrational' (where c is 
some constant). Conversely, we can build larger sentences from smaller ones 
by using connectives. We know many connectives in natural language; the 
following list is by no means meant to be exhaustive: and, or, not, if ... then 
..., but, since, as, for, although, neither ... nor ... . In ordinary discourse, and 
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also in informal mathematics, one uses these connectives incessantly; how- 
ever, in formal mathematics we will economise somewhat on the connectives 
we admit. This is mainly for reason of exactness. Compare, for example, the 
following two sentences: "n is irrational, but it is not algebraic", "Max is a 
Marxist, but he is not humourless". In the second statement we may dis- 
cover a suggestion of some contrast, as if we should be surprised that Max 
is not humourless. In the first case such a surprise cannot be so easily imag- 
ined (unless, e.g. one has just read that almost all irrationals are algebraic); 
without changing the meaning one can transform this statement into "n is 
irrational and .rr is not algebraic". So why use (in a formal text) a formulation 
that carries vague, emotional undertones? For these and other reasons (e.g. 
of economy) we stick in logic to  a limited number of connectives, in partic- 
ular those that have shown themselves to  be useful in the daily routine of 
formulating and proving. 

Note, however, that even here ambiguities loom. Each of the connectives 
has already one or more meanings in natural language. We will give some 
examples: 

1. John drove on and hit a pedestrian. 
2. John hit a pedestrian and drove on. 
3. If I open the window then we'll have fresh air. 
4. If I open the window then 1 + 3 = 4. 
5. If 1 + 2 = 4, then we'll have fresh air. 
6. John is working or he is a t  home. 
7. Euclid was a Greek or a mathematician. 

From 1 and 2 we conclude that 'and' may have an ordering function in time. 
Not so in mathematics; "n is irrational and 5 is positive" simply means that 
both parts are the case. Time just does not play a role in formal mathematics. 
We could not very well say ".rr was neither algebraic nor transcendent before 
1882". What we would want to  say is "before 1882 it was unknown whether 
n was algebraic or transcendent". 

In the examples 3-5 we consider the implication. Example 3 will be gen- 
erally accepted, it displays a feature that we have come to accept as inherent 
to implication: there is a relation between the premise and conclusion. This 
feature is lacking in the examples 4 and 5. Nonetheless we will allow cases 
such as 4 and 5 in mathematics. There are various reasons to  do so. One is the 
consideration that meaning should be left out of syntactical considerations. 
Otherwise syntax would become unwieldy and we would run into an esoteric 
practice of exceptional cases. This general implication, in use in mathemat- 
ics, is called material implication. Some other implications have been studied 
under the names of strict implication, relevant implication, etc. 

Finally 6 and 7 demonstrate the use of 'or'. We tend to accept 6 and to  
reject 7. One mostly thinks of 'or' as something exclusive. In 6 we more or 
less expect John not to  work at home, while 7 is unusual in the sense that we 
as a rule do not use 'or' when we could actually use 'and'. Also, we normally 

hesitate to  use a disjunction if we already know which of the two parts is the 
case, e.g. "32 is a prime or 32 is not a prime" will be considered artificial (to 
say the least) by most of us, since we already know that 32 is not a prime. Yet 
mathematics freely uses such superfluous disjunctions, for example "2 2 2" 
(which stands for "2 > 2 or 2 = 2"). 

In order to provide mathematics with a precise language we will create an 
artificial, formal language, which will lend itself to mathematical treatment. 
First we will define a language for propositional logic, i.e. the logic which 
deals only with propositions (sentences, statements). Later we will extend 
our treatment to a logic which also takes properties of individuals into ac- 
count. 

The process of formalisation of propositional logic consists of two stages: 
(1) present a formal language, (2) specify a procedure for obtaining valid or 
true propositions. 

We will first describe the language, using the technique of inductive def- 
initions. The procedure is quite simple: First give the smallest propositions, 
which are not decomposable into smaller propositions; next describe how 
composite propositions are constructed out of already given propositions. 

Definition 1.1.1. The language of propositional logic has an alphabet con- 
sisting of 

(i) proposition symbols : po, pl ,  p2, . . . , 
(ii) connectives : A , V , -' , 7 , * , I , 
(iii) auxiliary symbols : ( , ). 

The connectives carry traditional names: 
A - and - conjunction 
v - or - disjunction 
+ - if ..., then ... - implication 
7 - not - negation 
H - iff - equivalence, bi-implication 
I - falsity - falsum, absurdum 

The proposition symbols and I stand for the indecomposable proposi- 
tions, which we call atoms, or atomic propositions. 

Definition 1.1.2. The set PROP of propositions is the smallest set X with 
the properties 

(2) pi E X ( i  E N), IE X, 
(24 cp ,$EX*  ( c p A $ ) , ( c p V ~ ) , ( c p + ~ ) , ( c p ~ $ ) ~ X ,  
(iii) cp E X + (79)  E X.  

The clauses describe exactly the possible ways of building propositions. In 
order to simplify clause (ii) we write cp, $ E X =+ (cp $) E X, where 0 is 
one of the connectives A, V, 4, ++. 
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A warning to the reader is in order here. We have used Greek letters cp, $ 
in the definition; are they propositions? Clearly we did not intend them to be 
so, as we want only those strings of symbols obtained by combining symbols 
of the alphabet in a correct way. Evidently no Greek letters come in at all! 
The explanation is that cp and 11 are used as variables for propositions. Since 
we want to study logic, we must use a language to discuss it in. As a rule 
this language is plain, everyday English. We call the language used to discuss 
logic our meta-language and cp and $ are meta-variables for propositions. We 
could do without meta-variables by handling (ii) and (iii) verbally: if two 
propositions are given, then a new proposition is obtained by placing the 
connective between them and by adding brackets in front and at the end, 
etc. This verbal version should suffice to convince the reader of the advantage 
of the mathematical machinery. 

Note that we have added a rather unusual connective, I .  Unusual, in 
the sense that it does not connect anything. Logical constant would be a 
better name. For uniformity we stick to our present usage. I is added for 
convenience, one could very well do without it, but it has certain advantages. 
One may note that there is something lacking, namely a symbol for the true 
proposition; we will indeed add another symbol, T, as an abbreviation for 
the "true" proposition. 

Examples. 

( ~ 7  +PO) ,  ((1 Vp32) A ( -7~2))  E PROP. 
PI * p7, 1, ((4 A @ PROP 

I t  is easy to show that something belongs to PROP (just carry out the 
construction according to 1.1.2); it is somewhat harder to show that some- 
thing does not belong to PROP. We will do one example: 

11 I# PROP. 

Suppose 11 IE X and X satisfies (i), (ii), (iii) of Definition 1.1.2. We 
claim that Y = X - (11 I) also satisfies (i), (ii) and (iii). Since I , p i  E X ,  
also I , p i  E Y. If cp,$ E Y, then p,$ E X .  Since X satisfies (ii) (cpO$) E X .  
From the form of the expressions it is clear that (cp $) # 71 I (look at 
the brackets), so ( p  $) E X - (-7 I) = Y. Likewise one shows that Y 
satisfies (iii). Hence X is not the smallest set satisfying (i), (ii) and (iii), so 
11 I cannot belong to PROP. 

Properties of propositions are established by an inductive procedure anal- 
ogous to definition 1.1.2: first deal with the atoms, and then go from the parts 
to the composite propositions. This is made precise in 

Theorem 1.1.3 (Induct ion Principle).  Let A be a property, then A(cp) 
holds for all cp E PROP if 

(i) A(pi), for all i,and A ( I ) ,  

(4 A(cp), A($) =+ 4 (cp 11)h 
( i 4  A(cp) =+ A( ( 1 ~ ) ) .  

Proof. Let X = {cp E PROP ( A(cp)), then X satisfies (i), (ii) and (iii) of 
definition 1.1.2. So PROP C X ,  i.e. for all cp E PROP A(cp) holds. 0 

We call an application of theorem 1.1.3 a proof by induction on cp. The 
reader will note an obvious similarity between the above theorem and the 
principle of complete induction in arithmetic. 

The above procedure for obtaining all propositions, and for proving 
properties of propositions is elegant and perspicuous; there is another ap- 
proach, however, which has its own advantages (in particular for coding): 
consider propositions as the result of a linear step-by-step construction. E.g. 
( ( 7 p o )  + I )  is constructed by assembling it from its basic parts by using 
previously constructed parts: po . . . I . . . (7po) . . . ( ( ipo)  + I ) .  This is for- 
malised as follows: 

Definition 1.1.4. (a) A sequence 9 0 , .  . . , cpn is called a formation sequence 
of cp if cp, = p and for all i < n pi is atomic, or 

cpi = (cpj 0 cpk) for certain j , k < i ,  or 
cpi = ( y j )  for certain j < i. 

(b) cp is a subformula(cf. Exercise 7 ) of $ if p = 11, or 
$ = q2) and cp is a subformula of $1 or of $2, or 
$ = ( ~ $ 1 )  and cp is a subformula of $1. 

Observe that in this definition we are considering strings cp of symbols 
from the given alphabet; this mildly abuses our notational convention. 

Examples. (a) I, p2, p3, (1 V P ~ ) ,  (-(-I- V P ~ ) ) ,  ( -7~3)  and ~ 3 ,  ( -7~3)  are both 
formation sequences of ( 1 ~ ~ ) .  Note that formation sequences may contain 
'garbage'. 

(b) p, is a subformula of ((p7 V ( 1 ~ 2 ) )  --t pl) .  (pl +I) is a subformula of 
( ( ( ~ 2  V (PI A Po)) - (PI + I ) ) .  

We now give some trivial examples of proof by induction. In practice we 
actually only verify the clauses of the proof by induction and leave the con- 
clusion to the reader. 

1. Each proposition has an even number of brackets. 

Proof. (i) Each atom has 0 brackets and 0 is even. 
(ii) Suppose cp and $ have 2n, resp. 2m brackets, then (P 0 $) has 

2(n + m + 1) brackets. 
(iii) Suppose cp has 2n brackets, then (-.cp) has 2(n + 1) brackets. 
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2. Each proposition has a formation sequence. We now formulate' the general principle of 

Proof. (i) If cp is an atom, then the sequence consisting of just cp is a formation 
sequence of cp. 

(ii) Let cpo, . . . , vn and $0,. . . , $m be formation sequences of cp and $, 
then one easily sees that cpo, . .  . , cp,, $0,. . . , $m, (pn 0 $m) is a formation 
sequence of (cp 0 $I). 

(iii) Left to  the reader. 0 

We can improve on 2: 

Theorem 1.1.5. PROP is the set of all expressions having formation se- 
quences. 

Proof. Let F be the set of all expressions (i.e. strings of symbols) having 
formation sequences. We have shown above that PROP c F. 

Let cp have a formation sequence PO,. . . , cp,, we show cp E PROP by 
induction on n .  

n = 0 : cp = cpo and by definition cp is atomic, so cp E PROP. 
Suppose that all expressions with formation sequences of length m < n 

are in PROP. By definition cp, = (pi cpj) for i, j < n, or cp, = (19%)  for 
i < n, or cp, is atomic. In the first case cpi and cpj have formation sequences 
of length i ,  j < n, SO by induction hypothesis cpi,cpj E PROP. As PROP 
satisfies the clauses of definition 1.1.2, also (cpiOcpj) E PROP. Treat negation 
likewise. The atomic case is trivial. Conclusion F C_ PROP. 0 

Theorem 1.1.5 is in a sense a justification of the definition of formation 
sequence. It  also enables us to establish properties of propositions by ordinary 
induction on the length of formation sequences. 

In arithmetic one often defines functions by recursion, e.g. exponentiation 
is defined by xO = 1 and xYf = xY . x, or the factorial function by O! = 1 
and ( x +  l ) !  = x!.  (x+ 1). 
The jusitification is rather immediate: each value is obtained by using the 
preceding values (for positive arguments). There is an analogous principle in 
our syntax. 

Example. The number b(cp), of brackets of cp, can be defined as follows: 

The value of b(cp) can be computed by successively computing b($) for its 
subformulae $. 

Theorem 1.1.6 (Definition by Recursion). Let mappings Ho : A2 -+ A 
and H,  : A -+ A be given and let Hat be a mapping from the set of atoms 
into A, then there exists exactly one mapping F : PROP -+ A such that 

In concrete applications it is usually rather easily seen to be a correct princi- 
ple. However, in general one has to prove the existence of a unique function 
satisfying the above equations. The proof is left as an exercise, cf. Exercise 
12. 

We give some examples of definition by recursion: 

1. The (parsing) tree of a proposition cp is defined by 

A simpler way to ,exhibit the trees consists of listing the atoms at the 
bottom, and indicating the connectives at the nodes. 
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Exercises 

2. Show that ((452 P R O P .  

3. Let cp be a subformula of $. Show that cp occurs in each formation se- 
quence of $. 

2. The rank r(cp) of a proposition cp is defined by 

= 0 for atomic cp, 

.((cp 11,)) = max(r(cp), r ( $ ) )  + 1, 
r((-cp)) = r(cp) + 1. i '(" 

In order to  simplify our notation we will economise on brackets. We will 
always discard the outermost brackets and we will discard brackets in the 
case of negations. Furthermore we will use the convention that A and V bind 
more strongly than + and H (cf. . and + in arithmetic), and that 7 binds 
more strongly than the other connectives. 

Examples. l c p  V cp stands for ((lcp) V cp), 
~ ( 7 l l c p A  I )  stands for ( l ( ( l ( ~ ( 1 c p ) ) ) A  I)), 
c p V $ + c p  stands for ((cp V $) 4 cp), 
cp -+ cp V ($ + X )  stands for (cp + (cp V ($ X I ) ) .  

Warning. Note that those abbreviations are, properly speaking, not propo- 
sitions. 

In the proposition (pl 4 pl) only one atom is used to define it, it is how- 
ever used twice and it occurs at two places. For some purpose it is convenient 
to  distinguish between formulas and formula occurrences. Now the definition . 
of subformula does not tell us what an occurrence of cp in 11, is, we have to  add 
some information. One way to  indicate an occurrence of cp is to give its place 
in the tree of $, e.g. an occurrence of a formula in a given formula 11, is a pair 
(cp, k), where k is a node in the tree of $. One might even code k as a sequence 
of 0's and l's, where we associate to  each node the following sequence: ( ) 
(the empty sequence) to the top node, (so,. . . , sn-1, 0) to  the left immediate 
descendant of the node with sequence (so,. . . , sn-1) and (so,. . . , s,-1,l) to 
the second immediate descendant of it (if there is one). We will not be overly 
formal in handling occurrences of formulas (or symbols, for that matter), but 
it is important that it can be done. 

4. If cp occurs in a shortest formation sequence of $ then cp is a subformula 
of $. 

5. Let r be the rank function. 
(a) Show that r (p )  lnumber of occurrences of connectives of cp, 
(b) Give examples of cp such that < or = holds in (a), 
(c) Find the rank of the propositions in exercise 1. 

6. (a) Determine the trees of the propositions in exercise 1 , 
(G Determine the propositions with the following trees. 

A+ 

7. Recast definition 1.1.4(b) in the form of a definition by recursion of the 
function sub : P R O P  + P ( P R 0 P )  which assigns to each proposition cp 
the set sub(cp) of its subformulas. 

8. Let #(T(cp)) be the number of nodes of T(cp). By the "number of con- 
nectives in cp" we mean the number of occurrences of connectives in cp. 
(In general #(A) stands for the number of elements of a (finite) set A) . 
(a) If cp does not contain I, show: number of connectives of cp+ number 

of atoms of cp < #(T(cp)). 
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(b) #(sub(cp)) 5 #(T(cp)). 
(c) A branch of a tree is a maximal linearly ordered set. 

The length of a branch is the number of its nodes minus one. Show 
that r(cp) is the length of a longest branch in T(cp). 

(d) Let cp not contain I. Show: the number of connectives in cp + the 
number of atoms of cp 5 2'('+')+' - 1. 

Show that a proposition with n connectives has at most 2n + 1 subfor- 
mulas. 

Show that the relation "is a subformula of" is transitive. 

Show that for PROP we have a unique decomposition theorem: for each 
non-atomic proposition u either there are two propostions cp and 11, such 
that a = cp $I, or there is a proposition cp such that a = lcp. 

(a) Give an inductive definition of the function F ,  defined by recursion 
on PROP from the functions Hat, Hn H,, as a set F* of pairs. 

(b) Formulate and prove for F* the induction principle. 
(c) Prove that F* is indeed a function on PROP. 
(d) Prove that it is the unique function on PROP satisfying the recur- 

sion equations. 

1.2 Semantics 

The task of interpreting propositional logic is simplified by the fact that the 
entities considered have a simple structure. The propositions are built up 
from rough blocks by adding connectives. 
The simplest parts (atoms) are of the form "grass is green", "Mary likes 
Goethe","G - 3 = 2", which are simply true or false. We extend this assign- 
ment of truth values to composite propositions, by reflection on the meaning 
of the logical connectives. 

Let us agree to use 1 and 0 instead of 'true' and 'false'. The problem we 
are faced with is how to interprete cp 11,, 79, given the truth values of cp 
and $I. 

We will illustrate the solution by considering the in-out-table for Messrs. 
Smith and Jones. 

Conjunction. A visitor who wants to see both Smith and Jones wants the 
table to be in the position shown here, i.e. 

"Smith is in" A "Jones is in" is true iff 
"Smith is in" is true and "Jones is in" is true. 

Jones 

We write u(cp) = 1 (resp. 0) for "cp is true" (resp. false). Then the above 
consideration can be stated as v(cp A$) = 1 iff u(p) = ~(11,) = 1, or v(cp~11,) = 

min(v(cp), u($)). 
One can also write it in the form of a tmth table: 

One reads the truth table as follows: the first argument is taken from the 
leftmost column and the second argument is taken from the top row. 

Disjunction. If a visitor wants to see one of the partners, no matter which 
one, he wants the table to be in one of the positions 

I I in I out I I in I out I I I in I out I 

( Jones I x 1 
In the last case he can make a choice, but that is no problem, he wants 

to see at  least one of the gentlemen, no matter which one. 
In our notation, the interpretation of V is given by 

v(cpV11,) = 1 iff u(cp) = 1 or 

Shorter: v(cp v 11,) = max(u(cp), ~(11,)). 

In truth table form: 0 0 1 Rzl  
Negation. The visitor who is solely interested in 
"Smith is not in" if the table is in the position: 

SO "Smith is not in" is true if "Smith is in" 
v(1cp) = 1 iff v(cp) = 0, or v(-cp) = 1 - ~(cp).  

our Smith will state that 

is false. We write this as 
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In truth table form: Rl 
Implication. Our legendary visitor has been informed that "Jones is in if 
Smith is in". Now he can a t  least predict the following positions of the table 

Smith Smith - --- 

I Jones I x 1 
I I 1 I I Jones I X 

I in 1 out I 
If the table is in the position 

then he knows that the information was false. 1 ,  cannot be dealt with in The remaining case, Smith 
Jones 

such a simple way. There evidently is no reason'to consider the information 
false, rather 'not very helpful', or 'irrelevant'. However, we have committed 
ourselves to  the position that each statement is true or false, so we decide to 
call "If Smith is in, then Jones is in" true also in this particular case. The 
reader should realise that we have made a deliberate choice here; a choice that 
will prove a happy one in view of the elegance of the system that results. There 
is no compelling reason, however, to stick to the notion of implication that 
we just introduced. Various other notions have been studied in the literature, 
for mathematical purpose our notion (also called 'material implication') is 
however ~erfect lv suitable. 

Note that there is just one case in which an implication is false (see ' 

the truth table below), one should keep this observation in mind for future 
application - it helps to  cut down calculations. 
In our notation the interpretation of implication is given by v(cp 4 $) = 0 
iff v(p) = 1 and v($) = 0. 

Its truth table is: 
0 1 

Equivalence. If our visitor knows that "Smith is in if and only if Jones is in", 
then he knows that they are either both in, or both out. Hence v(cp o $) = 1 
iff v(cp) = v(+). 

The truth table of - is: 

Falsum. An absurdity, such as "0 # O n ,  "some odd numbers are even", "I 
am not myself', cannot be true. So we put v ( l )  = 0. 

Strictly speaking we should add one more truth table, i.e. the table for 
T, the opposite of falsum. 

Verum. This symbol stands for manifestly true propostion such as 1 = 1; 
we put v(T) = 1 for all v. 

We collect the foregoing in 

If a valuation is only given for atoms then it is, by virtue of the definition 
by recursion, possible to extend it to  all propositions, hence we get: 

Theorem 1.2.2. If v is a mapping from the atoms into {O,l), satisfying 
v ( l )  = 0, then there exists a unique valuation I[.],, such that [cp], = v(p) for 
atomic cp. 

It 'has become common practice to denote valuations as defined above 
by [cp], so will adopt this notation. Since 1.1 is completely determined by 
its values on the atoms, [cp] is often denoted by [cp],. Whenever there is no 
confusion we will delete the index v. 

Theorem 1.2.2 tells us that each of the mappings v and I[.], determines 
the other one uniquely, therefore we call v also a valuation (or an atomic 
valuation, if necessary). From this theorem it appears that there are many 
valuations (cf. Exercise 4). 

It  is also obvious that the value [cp], of cp under v only depends on the 
values of v on its atomic subformulae: 

Lemma 1.2.3. If v(pi) = vf(pi) for all pi occurring in cp, then [cp], = [cp],~. 

Proof. An easy induction on cp. 0 

An important subset of PROP is that of all propositions cp which are 
always true, i.e. true under all valuations. 
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Definition 1.2.4. (i) cp is a tautology if [[cp], = 1 for all valuations v, 
(ii) + cp stands for 'cp is a tautology', 
(iii) Let r be a set of propositions, then r t= cp iff for all v: ([$Iv = 1 for all 

11, E r )  [cpllv = 1. 

In words: r cp holds iff cp is true under all valuations that make all $ in 
r true. We say that cp is semantical consequence of r .  We write r cp if 
r k cp is not the case. 

Convention. cp l ,  . . . , cp, k 11, stands for {cpl, . . . , cp,) k cp. 
Note that "Ucp], = 1 for all v" is another way of saying "up] = 1 for all 

valuations". 

Examples. (i) k cp --, cp; k 7 - p  4 cp; k cp V $ * $ V cp, 
( i i)cp,$kcpA$; c p , c p + $ i = $ ;  c p - + $ J 7 7 $ t = 7 c p .  

One often has to substitute propositions for subformulae; it turns out to  

be sufficient to define substitution for atoms only. 
We write cp[$/pi] for the proposition obtained by replacing all occurrences 

of pi in cp by $. As a matter of fact, substitution of $ for pi defines a mapping 
of P R O P  into P R O P ,  which can be given by recursion (on cp). 

The following theorem spells out the basic property of the substitution of 
equivalent propositions. 

Theorem 1.2.6 (Subst i tut ion Theorem).  If + cpl * 9 2 ,  then 
$[cpl/p] * 11,[cp2/p], where p is an atom and distinct from I .  

The proof of the second part essentially uses the fact that k cp -+ 11, iff 
[&, 5 ([$Iv for all v(cf. Exercise 6). 0 

The proof of the substitution theorem now immediately follows . 0 

The substitution theorem says in plain english that parts may be replaced 
by equivalent parts. 

There are various techniques for testing tautologies. One such (rather 
slow) technique uses truth tables. We give one example: 

cp $ l c p  -4 c p + $  - 4 4 7 ~  (cp-+11,)*(+-+7cp) 
0 0  1 1  1 1 1 
0 1  1 0  1 1 1 
1 0  0  1 0  0  1 
1 1  0 0  1 1  1 

The last column consists of 1's only. Since, by lemma 1.2.3 only the values 
of cp and $ are relevant, we had to check 22 cases. If there are n (atomic) 
parts we need 2, lines. 

One can compress the above table a bit, by writing it in the following 
form: 

0 1 1  1 0  1 1  
1 0 0  1 1  0 0  
1 1 1  1 0  1 0  

Let us make one more remark about the role of the two 0-ary connectives, 
I and T. Clearly, + T -141, so we can define T from I .  On the other 
hand, we cannot define I from T and 4; we note that from T we can never 
get anything but a proposition equivalent to T by using A, V, -+, but from I 
we can generate I and T by means of applying A,  V,  -+. 

The substitution theorem is actually a consequence of a slightly stronger 
Exercises 

Proof. Induction on 11,. We only have to consider [cpl * cp2]lv = 1 (why?). 

1. Check by the truth table method which of the following propositions are 
tautologies 

(a) ( 7 9  V $1 * ($ -+ cp) 
(b) cp -+ (($ -+ 0) + ((cp -+ $1 -+ (cp -+ 0))) 
(c) (cp -+ -cp) * l c p  
( 4  ~ ( c p  + -9) 
(e) (cp --+ ($ -+ 0))  ++ ((cp A $1 -+ 0 )  
(f) cp V l c p  (principle of the excluded third) 
(g) I* (cp A 7 9 )  
(h) I+ cp (ex falso sequitur quodlibet) 
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4. Show that there are 2N0 valuations. 

1.3 Some Properties of Propositional Logic 

On the basis of the previous sections we can already prove a lot of theorems 
about propositional logic. One of the earliest discoveries in modern proposi- 
tional logic was its similarity with algebras. 
Following Boole, an extensive study of the algebraic properties was made 
by a number of logicians. The purely algebraic aspects have since then been 
studied in the so-called Boolean Algebra. 

We will just mention a few of those algebraic laws. 

Theorem 1.3.1. The following propositions are tautologies 

In order to  apply the previous theorem in "logical calculations" we need 
a few more equivalences. This is demonstrated in the simple equivalence 

(P A ((P V $) ++ cp (exercise for the reader). For, by the distributive law 

k ( P ~ ( c p V ~ )  (cpAcp)V(cpA$) and I= (cpAcp)V(cpA$) ++cpV(cpA$), by 
idempotency and the substitution theorem. So + cp A (cp V $) o cp V (cp A $). 
Another application of the distributive law will bring us back to  start, so just 
applying the above laws will not eliminate $! 
We list therefore a few more convenient properties. 

Lemma 1.3.2. If + cp + $, then + cp A $ ct cp and 
~ P V $ + + $  

Ptvof. Left to  the reader. 0 

The following theorem establishes some equivalences involving various 
connectives. It  tells us that we can "define" up to logical equivalence all 
connectives in terms of {v, T), or {+, l), or {A, 11, or {+, I). 
That is, we can find e.g. a proposition involving only V and 1, which is 
equivalent to cp ct $, etc. 

l l c p  +-+ cp 
double negation law 
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Proof. Compute the truth values of the left-hand and right-hand sides. 

We now have enough material to handle logic as if it were algebra. For 
convenience we write cp = 11, for cp - 11,. 
Lemma 1.3.5. NN is an equivalence relation on PROP,i.e. 

cp = cp (reflexitivity), 
cp = + + + = cp (symmetv), 
cp = lj, and 11, NN a + cp = a (transitivity). 

Proof. Use + cp - 11, iff [[& = [$IV for "11 v. 0 

We give some examples of algebraic computations, which establish a chain 
of equivalences. 

1. 1. k [cp + (11, + a) ]  - [cp A 11, --, 4, 
cp + ( + a) c p  V (11, 4 u), (1.3.4(b)) 

c p  V ( + u) = -cp V (-II, V a), ( 1.3.4(b) and subst. thm.) 
-cp V (-11, V a )  = (lcp V -11,) V a ,  (ass.) 
(-9 V +) V a = -(cp A 11,) V a, (De Morgan and subst. thm.) 

-(cp A 11,) V a = ((cp A 11,) -+ a, ( 1.3.4(b)) 
So cp + (lj, + a )  = (PA$) + a .  

We now leave out the references to the facts used, and make one long 
string. We just calculate till we reach a tautology. 

2. 2. k (cp + 11,) - (-lj, + lcp), 
7 1 1 , - ) - c p " l l 1 1 , v - c p = 1 1 , v 7 c p ~ ~ c p v ~ ~ c p ~ l j ,  

3. 3. k c p +  (11, --+cp), 
(cp+(++cp) = " P v ( - + v v )  =(-cpvcp)v-11,. 

We have seen that v and A are associative, therefore we adopt the convention, 
also used in algebra, to delete brackets in iterated disjunctions and conjunc- 
tions; i.e. we write cpl V cp2 V cp3 V cp4, etc. This is alright, since no matter 
how we restore (syntactically correctly) the brackets, the resulting formula is 
determined uniquely up to equivalence. 

Have we introduced all connectives so far? Obviously not. We can always 
invent new ones. Here is a famous one, introduced by Sheffer; cp I $ stands 
for "not both cp and 11,". More precise: (cp I 1C, is given by the following truth 
table 

~he f fe r  stroke 

Let us say that an n-ary logical connective $ is defined by its truth table, 
or by its valuation function, if [[$(PI,. . . ,p,)] = f ([pl], . . . , [[p,]) for some 
function f .  
Although we can apparently introduce many new connectives in this way, 
there are no surprises in stock for us, as all of those connectives are definable 
in terms of V and 1: 

Theorem 1.3.6. For each n-ary connective $ defined by its valuation func- 
tion, there is a proposition T ,  containing only pl,  . . . ,p,, V and 1 ,  such that 

7- H $(p1,. . . ,Pn). 

Proof. Induction on n. For n = 1 there are 4 possible connectives with truth 
tables 

One easily checks that the propositions -(p V i p ) ,  pV -p, p and -p will meet 
the requirements. 

Suppose that for all n-ary connectives propositions have been found. 

Consider $(pl, . . . , p,, P,+~) with truth table: 

where ik < 1. 
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We consider two auxiliary connectives $1 and $2 defined by 

$ 1 ( ~ 2 , .  . . pn+l) = $ ( I ,  ~ 2 , .  . . , pn+i) and 
$2(p2,. . . ,pn+l) = $(T,p2,. . . ,pn+l),  where T = 7 I 

(as given by the upper and lower half of the above table). 
By the induction hypothesis there are propositions al and 02, containing 

onlyp2 ,..., pn+l, V and 7 SO that +$i(p2 , . . .  ,pn+l)  - a i .  
From those two propositions we can construct the proposition r :  
r := (pl --+ 02) A (7pl -+ 01). 

We consider two auxiliary connectives $1 and $2 defined by 

$1(~2,  . . .  rpn+l) = $ ( L , P ~ ,  . . .  ipn+l) and 
$ 2 ( ~ 2 , .  . . ,pn+l) = $(TI ~ 2 , .  . . ,pn+i),  where T = 7 I 

(as given by the upper and lower half of the above table). 
By the induction hypothesis there are propositions a1 and 0 2 ,  containing 

only pa, . . . , pn+l, V and 7 so that + $i(p2, . . . , pn+l) ++ ai.  From those two 
propositions we can construct the proposition r :  
r := (PI -) 0 2 )  A (7pl + 01). 
Claim + $(PI,.  . . ,p,+l) * T. 

If UP ID^ = 0, then [[PI + azlV = 1, SO b l v  =  PI + allv = [allv = 

U$1(~21.. . i~n+ l ) ]u  = U$(PI,P~, . . .  i~n+l) ]v i  using  PI]^ = 0 = [ 11,. 
The case [pl], = 1 is similar. 

Now expressing -4 and r\ in terms of V and 7 (1.3.4), we have [r'l = 

[$(pl,. . . ,P,+~)] for all valuations (another use of lemLa 1.2.3), where T' z T 

and T' contains only the connectives V and 7.  0 

For another solution see Exercise 7 

The above theorem and theorem 1.3.4 are pragmatic justifications for our 
choice of the truth table for -+: we get an extremely elegant and useful theory. 
Theorem 1.3.6 is usually expressed by saying that v and 1 form a function- 
ally complete set of connectives. Likewise A, 1 and +, 7 and I, + form 
functionally complete sets. 

In analogy to the C and n from algebra we introduce finite disjunctions 

and conjunctions: 

Definition 1.3.7. 

Definition 1.3.8. If cp' = flC\ W V i j l  where p,j is atomic or the negation 
i<n  j<m, 

of an atom, then cp is a conjunctive normal form. If cp = W flC\ pij,  where 
isn jlm, 

pij is atomic or the negation of an atom, then cp is a disjunctive normal form. 

The normal forms are analogous to the well-known normal forms in alge- 
bra: ax2 + byx is "normal", whereas x(ax + by) is not. One can obtain normal 
forms by simply "multiplying", i.e. repeated application of distributive laws. 
In algebra there is only one "normal form"; in logic there is a certain duality 
between A and V ,  so that we have two normal form theorems. 

Theorem 1.3.9. For each cp there are conjunctive normal forms cpA and 
disjunctive normal forms cpV, such that cp o cpA and + cp o cpV. 

Proof. First eliminate all connectives other than I, A,  V and 1. Then prove 
the theorem by induction on the resulting proposition in the restricted lan- 
guage of I ,  A,  V and 1. In fact, I plays no role in this setting; it could just 
as well be ignored. 

(a) cp is atomic. Then cpA = cpV = cp. 

(b) cp = $ A a .  Then cpA = $A A a". In order to obtain a disjunctive 
normal form we consider $" = v gi, a" = v aj, where the $ i l ~  and aj 's 
are conjunctions of atoms and negations of atoms. 

NOW c p = $ ~ a ~ $ "  A"" N W ( $ ~ A C T ~ ) .  
i,j 

The last proposition is in normal form, so we equate cpV to it. 

(c) cp = $ V a. Similar to (b) .  

(d) cp = 7$. By induction hypothesis $ has normal forms $' and @'. 
7~ M M 7 v A z A v 7$iJ M /m v $ij, where $ij = ~ $ i ,  if 
hj is atomic, and $ij = 7$ij if $ij is the negation of an atom. (Observe 
lT,bij M $ij). Clearly w $ij is a conjunctive normal form for cp. The 
disjunctive normal form is left to the reader. 

,For another proof of the normal form theorems see Exercise 7. 0 

When looking at the algebra of logic in theorem 1.3.1, we saw that V 
and A behaved in a very similar way, to the extent that the same laws hold 
for both. We will make this 'duality' precise. For this purpose we consider a 
language with only the connectives V ,  A and 7. 

Definition 1.3.10. Define an auxiliary mapping * : PROP -+ PROP re- 
cursivelyby p* = 7 c p  if cp is atomic, 

(PA+)*  = cp*V$*,  
( c p ~ $ ) *  = c p * A + * ,  

(-cp)* = 7cp*. 
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Example. ((PO A -PI) V P2)* = (Po A -pi)* A p; = (p; V ( ~ p l ) * )  A lP2 = 
( T o  V 7 ~ ; )  A lP2 = (-Po V --PI) A -P2 (7po V pl)  A lp2. 

Note that the effect of the *-translation boils down to taking the negation 
and applying De Morgan's laws. 

Lemma 1.3.11. [cp*] = [ i c p ]  

Proof Induction on cp. For atomic cp [p*] = [ y ] .  
U(P A $)*I = I[V* v vn = I[-cp v -m = I[+ A +)I). 
[ (p  v $)*I and [(-cp)*] are left to the reader. 

Corollary 1.3.12. + cp* H -9. 

Proof. Immediate from Lemma 1.3.11. 0 

So far this is not the proper duality we have been looking for. We really 
just want to interchange A and V. So we introduce a new translation. 

Definition 1.3.13. The duality mapping : PROP -+ PROP is recursively 
defined by cpd = cp for cpatomic, 

(cp A $Id = cpd v qdl 
(cp v $)d = cpd 

(1cp)d = 7cpd. 

Theorem 1.3.14 (Duality Theorem). k cp H $ @ k cpd H qd .  

Proof. We use the * -translation as an intermediate step. Let us introduce 
the notion of simultaneous substitution to simplify the proof: 
u[rO,.  . . , rn /pOI .  . . ,pn] is obtained by substituting ri for pi for all i 5 n simul- 
taneously (see Exercise 15). Observe that cp* = cpd [7po, . . . , ipn/po,  . . . , p,], 
SO v * [ ~ P o ~ .  - .  1 7 ~ n / ~ ~ , .  . . , Pn] = v ~ [ ~ ~ P o , .  . . 1  l l ~ n / ~ ~ l . .  ., Pn], where the 
atoms of cp occur among the PO,. . . , p,. 

By the Substitution Theorem t= cpd - cp* [-PO, . . . , lpn/po,  . . . , p,]. The 
same equivalence holds for $. 

By Corollary 1.3.12 k cp* * l c p ,  k $* * +. Since + cp ++ $, also I= 
-p ++ -$. Hence k cp* ++ $* , and therefore + cp* [-PO, . . . , -pn /po , . . . , p,] ++ 

$*[~PO,...,~P~/PO,...,P~]. 
Using the above relation between cpd and cp* we now obtain + cpd ct qd .  

The converse follows immediately, as cpdd = cp. 0 

The duality Theorem gives us one identity for free for each identity we 
establish. 

Exercises 

1. Show by 'algebraic' means 
( -+ ) * ( + ) Contraposition, 
(cp -+ $) A ($ + a )  + (cp + a ) ,  transitivity of +, 

t= (cp + ($ A -$I) + l c p ,  
k ( 9  -+ l c p )  -+ l c p 7  

I= -(cp A l c p )  I 
I= cp+($-+cpAdJ), 

((cp + $) -+ cp) + cp. Peirce's Law. 

3. Show that { 1 ) is not a functionally complete set of connectives. Idem 
for (4, V) (hint: show that each formula cp with only + and v there is 
a valuation v such that [cp] = 1 ). 

4. Show that the Sheffer stroke, 1 ,  forms a functionally complete set (hint: 
t="P * cp I cp). 

5. Show that the connective 1, with valuation function [cp 1 $1 = 1 iff 
[p] = [$] = 0, forms a functionally complete set ( neither cp, nor $). 

6. Show that I and 1 are the only binary connectives $ such that ($1 is 
functionally complete. 

7. The functional completeness of {v, 7) can be shown in an alternative way. 
Let $ be an n-ary connective with valuation function [$(pi, . . . , p,)] = 

f (b l ] , .  . . , [[p,]). We want a proposition T (in V, 1 )  such that [T] = 

f (bl]] - .  . 7  bnl) .  
Suppose f ([pl], . . . , [p,]) = 1 at least once. Consider all tuples 

(bl], . . . , up,]) with f ( h l ] ,  . . . , I I P n ] )  = 1 and form corresponding con- 
junctions pl A p2 A . . . A pn such that pi = pi if hi] = 1, pi = l p i  if 
bin = O .  Thenshow + ( p i ~ p i ~  . . . A ~ ~ ) v . . . v ( ~ ~ A ~ ~ A . . . A ~ ~ )  H 

$(PI,. . . , p,), where the disjunction is taken over all n-tuples such that 
f(l[Pl],.. [ ~ n ] )  = 1. 

Alternatively, we can consider the tuples for which f (l[pl],. . . , h,]) = 
0. Carry out the details. Note that this proof of the functional complete- 
ness a t  the same time proves the Normal Form Theorems. 
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8. Let the ternary connective $ be defined by [$(cpl, p2, (P3)] = 1 H 

['PI] + [cpz] + 8 ~ 3 1  L 2 (the majority connective). Express $ in terms 
of V and 7 .  

9. Let the binary connective # be defined by 

Express # in terms of V and 7 .  

10. Determine conjunctive and disjunctive normal forms for -(cp - $), 
( ( 9  --, $) --, $) --, $ 7  (cp (9 A ~ $ 1 )  A (+ + ($ A 7))). 

11. Give a criterion for a conjunctive normal form to be a tautology. 

12. Prove flC\ cpi V $J = flC\ (pi V $j) and 
i<n  j<m i 5 n 

13. The set of all valuations, thought of as the set of all 0 - 1-sequences, 
forms a topological space, the so-called Cantor space C. The basic open 
sets are finite unions of sets of the form {v I [[pilnv = . . . = [[pznnv = 1 
and [[p,,], = . . .=  bj,], =O) , ik  # jpfor k 5 n ; p I m .  

Define a function [ ] : P R O P  --, P(C) (subsets of Cantor space) by: 

ucpn = {v I ucpnv = 1). 
(a) Show that [Ip] is a basic open set (which is also closed), 
(b) ucp v $1 = ucpn U !$I; ucp A $1 = IIcpI n !$I; u 4  = Ucpl ", 
(c) I= cp * [cpl = C; ULB = 0; i= cp -+ $ * UP] G U$1. 

Extend the mapping to sets of propositions r by 
= {V I [[cp], = 1 for all cp E T). Note that [r] is closed. 
(4 r I= cp H urll c ucp1. 

14. We can view the relation + cp --, $ as a kind of ordering. Put  cp c $ := 

kcp-)$and F $ + c p .  
(i) for each cp, $ such that cp c $, find a with cp c a c $, 
(ii) find cpl,cpz, 93 , .  . . such that cpl c 9 2  c cp3 c 9 4  c . . ., 
(iii) show that for each cp, $ with cp and $ incomparable, there is a least 
a with cp, $ c a. 

1.4 Natural Deduction 

In the preceding sections we have adopted the view that propositional logic 
is based on truth tables, i.e. we have looked at logic from a semantical point 
of view. This, however, is not the only possible point of view. If one thinks 
of logic as a codification of (exact) reasoning, then it should stay close to the 
practice of inference making, instead of basing itself on the notion of truth. 
We will now explore the non-semantic approach, by setting up a system for 
deriving conclusions from premises. Although this approach is of a formal na- 
ture, i.e. it abstains from interpreting the statements and rules, it is advisable 
to keep some interpretation in mind. We are going to introduce a number of 
derivation rules, which are, in a way, the atomic steps in a derivation. These 
derivations rules are designed (by Gentzen), to  render the intuitive meaning 
of the connectives as faithfully as possible. 

There is one minor problem, which at  the same time is a major advantage, 
namely: our rules express the constructive meaning of the connectives. This 
advantage will not be exploited now, but it is good to keep it in mind when 
dealing with logic (it is exploited in intuitionistic logic). 

One small example: the principle of the excluded third tells us that cpv 
yep, i.e., assuming that cp is a definite mathematical statement, either it or its 
negation must be true. Now consider some unsolved problem, e.g. Riemann's 
Hypothesis, call it R. Then either R is true, or 7 R  is true. However, we do 
not know which of the two is true, so the constructive content of R V 1 R  
is nil. Constructively, one would require a method to find out which of the 
alternatives holds. 

The propositional connective which has a strikingly different meaning in a 
constructive and in a non-constructive approach is the disjunction. Therefore 
we restrict our language for the moment to the connectives A,  --, and I. This 
is no real restriction as (4, I) is a functionally complete set. 

Our derivations consist of very simple steps, such as "from cp and cp -+ $ 
conclude qY1, written as: 

The propositions above the line are premises , and the one below the line 
is the conclusion . The above example eliminated the connective 4. We can 
also introduce connectives. The derivation rules for A and + are separated 
into 

15. Give a recursive definition of the simultaneous substitution 
p[$, . . . , $ n / p ~ , .  . . ,pn] and formulate and prove the appropriate ana- 
logue of the Substitution Theorem (theorem l .2.6). 
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INTRODUCTION RULES ELIMINATION RULES 

We have two rules for I, both of which eliminate I, but introduce a for- 
mula. 

I 
- RAA 
cp 

As usual ' l c p '  is used here as an abbreviation for 'cp +I' 

The rules for A are evident: if we have cp and $ we may conclude cp A $, 
and if we have cp A $ we may conclude cp (or $). The introduction rule for 
implication has a different form. It  states that, if we can derive $ from cp 
(as a hypothesis), then we may conclude cp -+ 11, (without the hypothesis 
cp). This agrees with the intuitive meaning of implication: cp + $ means "11, 
follows from cp". We have written the rule (-+ I) in the above form to suggest 
a derivation. The notation will become clearer after we have defined deriva- 
tions. For the time being we will write the premises of a rule in the order 
that suits us best, later we will become more fastidious 

The rule (+ E )  is also evident on the meaning of implication. If cp is 
given and we know that $ follows from cp, then we have also $. The falsum 
rule, ( I ) ,  expresses that from an absurdity we can derive everything (ex falso 
sequitur quodlibet), and the reductio ad absurdum rule , (RAA), is a formu- 
lation of the principle of proof by contradiction : if one derives a contradiction 
from the hypothesis l c p ,  then one has a derivation of cp (without the hypoth- 
esis -cp, of course). In both (+ I) and (RAA) hypotheses disappear, this is 
indicated by the striking out of the hypothesis. We say that such a hypothesis 
is cancelled. Let us digress for a moment on the cancellation of hypotheses. 
We first consider implication introduction. There is a well-known theorem in 

plane geometry which states that ' if a triangle is isosceles, then the angles 
opposite the equal sides are equal to one another" (Euclid's Elements, Book 
I, proposition 5). This is shown as follows: we suppose that we have an isosce- 
les triangle and then, in a number of steps, we deduce that the angles at  the 
base are equal. Thence we conclude that the angles at the base are equal if 
the triangle is isosceles. 

Query 1: do we still need the hypothesis that the triangle is isosceles? Of 
course not! We have, so to speak, incorporated this condition in the s t a t e  
ment itself. It  is precisely the role of conditional statements, such as "if it 
rains I will use my umbrella", to get rid of the obligation to require (or verify) 
the condition. In abstracto: if we can deduce 11, using the hypothesis cp, then 

-+ II, is the case without the hypothesis cp (there may be other hypotheses, 
of course). 

Query 2: is it forbidden to maintain the hypothesis? Answer: no, but it 
clearly is superfluous. As a matter of fact we usually experience superfluous 
conditions as confusing or even misleading, but that is rather a matter of the 
psychology of problem solving than of formal logic. Usually we want the best 
possible result, and it is intuitively clear that the more hypotheses we state 
for a theorem, the weaker our result is. Therefore we will as a rule cancel as 
many hypotheses as possible. 

In the case of reductio ad absurdum we also deal with cancellation of 
hypotheses. Again, let us consider an example. 

In analysis we introduce the notion of a convergent sequence (a,) and 
subsequently the notion "a is a limit of (n)". The next step is to prove that 
for each convergent sequence there is a unique limit; we are interested in the 
part of the proof that shows that there is at  most one limit. Such a proof may 
run as follows: we suppose that there are two distinct limits a and a', and 
from this hypothesis, a # a', we derive a contradiction. Conclusion: a = a'. 
In this case we of course drop the hypothesis a # a', this time it is not a 
case of being superfluous, but of being in conflict! So, both in the case ( 4  I )  
and of (RAA), it is sound practice to cancel all occurrences of the hypothesis 
concerned. 

In order to master the technique of Natural Deduction, and to get familiar 
with the technique of cancellation, one cannot do better than to look at  a few 
concrete cases. So before we go on to the notion of derivation we consider a 
few examples. 
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[Y A dl' AE 
[cp A dl1 AE 67 [67 + (d-+ff)12 -+ 

[Y A dl' AE 

If we use the customary abbreviation ' - p '  for 'cp +I,, we can bring some 
derivations into a more convenient form. (Recall that i c p  and cp -+I, as given 
in 1.2, are semantically equivalent). We rewrite derivation I1 using the ab- 
breviation: 

In the following example we use the negation sign and also the bi-implication; 
cp d for ( 9  -+ d )  A ( d  -+ 9) .  

The examples show us that derivations have the form of trees. We show 
the trees below: 

One can just as well present derivations as (linear) strings of propositions: we 
will stick, however, to the tree form, the idea being that what comes naturally 
in tree form should not be put in a linear straight-jacket. 

We now shave to define the notion of derivation in general. We will use 
an inductive definition to produce trees. 
Notation 

v V' 
v v V' 

if are derivations with conclusions cp, cp', then cp , cp cp' 
cP ' cp' --  

11 d 
are derivations obtained by applying a derivation rule to cp (and cp and 9'). 

d 
The cancellation of a hypothesis is indicated as follows: if V is a derivation 

cp 

[@I 
with hypothesis $, then is a derivation with y5 cancelled. 

'P 
(7 

With respect to the cancellation of hypotheses, we note that one does 
not necessarily cancel all occurrences of such a proposition $. This clearly 
is justified, as one feels that adding hypotheses does not make a proposition 
underivable (irrelevant information may always be added). It  is a matter of 
prudence, however, to cancel as much as possible. Why carry more hypotheses 
than necessary? 

Furthermore one may apply (-+ I) if there is no hypothesis available for 
, - 
Y 

cancellation e.g. - -+ I is a correct derivation, using just (+ I ) .  To sum 
$ 4 ~  

it UP: given a derivation tree of 11 , we obtain a derivation tree of cp -+ 11, (or 
'P) at  the bottom of the tree and striking out some (or all) occurrences, if 

of cp (or -y) on top of a tree. 
A few words on the practical use of natural deduction: if you want to give a 

derivation fof a proposition it is advisable to devise some kind of strategy, just 



34 1. Propositional Logic 1.4 Natural Deduction 35 

like in a game. Suppose that you want to show [cp A $ 4  a] -+ [cp 4 ($ + a) ]  
(Example III), then (since the proposition is an implicational formula) the 
rule (-+ I) suggests itself. SO try to derive cp -+ ($ -t a )  from cp A $ -+ a .  

Now we know where to start and where to go to. To make use of cpA$ + 0 

we want cpA$ (for (-+ E)), and to get cp -t ($ -+ a )  we want to derive $ -t a 
from cp. So we may add cp as a hypothesis and look for a derivation of $ -+ a .  
Again, this asks for a derivation of a from $, so add $ as a hypothesis and 
look for a derivation of a .  By now we have the following hypotheses available: 
cp A $ -+ a, cp and $. Keeping in mind that we want to eliminate cp A $ it is 
evident what we should do. The derivation I11 shows in detail how to carry 
out the derivation. After making a number of derivations one gets the practi- 
cal conviction that one should first take propositions apart from the bottom 
upwards, and then construct the required propositions by putting together 
the parts in a suitable way. This practical conviction is confirmed by the 
Normalization Theorem, to which we will return later. There is a particular 
point which tends to confuse novices: 

and ' 

look very much alike. Are they not both cases of Reductio ad absurdum? 
As a matter of fact the leftmost derivation tells us (informally) that the as- 
sumption of cp leads to a contradiction, so cp cannot be the case. This is in 
our terminology the meaning of "not ". The rightmost derivation tells us 
that the assumption of l c p  leads to a $ ntradiction, hence (by the same rea- 
soning) 7 c p  cannot be the case. So, on account of the meaning of negation, 
we only would get 7 - p .  It  is by no means clear that l l c p  is equivalent to cp 
(indeed, this is denied by the intuitionists), so it is an extra property of our 
logic. (This is confirmed in a technical sense: i y c p  -+ cp is not derivable in 
the system without RAA. 

We now return to our theoretical notions. 

Definition 1.4.1. The set of derivations is the smallest set X such that 
(1) The one element tree cp belongs to X for all cp €PROP. 

ID 
If E X ,  then cpA$,cpAy E X .  

c p A $  -- 
cp 11, 

v 
(21) If I E X, then - I E X 

-cp V 
If v E X ,  then E X  

The bottom formula of a derivation is called its conclusion. Since the class 
of derivations is inductively defined, we can mimic the results of section 1.1. 

E.g. we have a principle of induction on  27: let A be a property. If A(D) 
for one element derivations and A is preserved under the clauses ( 2 ~ ) ~  (2 +) 
and (2 I), then A(D) holds for all derivations. Likewise we can define map- 
p i n s  on the set of derivations by recursion (cf. Exercises 6 ,8). 

Definition 1.4.2. The relation r t cp between sets of propositions and 
~ropositions is defined by: there is a derivation with conclusion cp and with 
"11 (uncancelled) hypotheses in r. 

We say that cp is derivable from r. Note that by definition r may contain 
many superfluous "hypotheses1'. The symbol k is called turnstile . 

If r = 0, we write t cp, and we say that cp is a theorem. 
We could have avoided the notion of 'derivation' and taken instead the 

notion of 'derivabilityl as fundamental, see Exercise 9. The two notions, how- 
ever, are closely related. 
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Proof. Immediate from the definition of derivation. 

We now list some theorems. 1 and ct are used as abbreviations. 

So now we have (cp - $) -- (-11, -+ 1cp)  (+ -- 79) -- (cp --+ $1 
(cp -- $) * ('$ -+ "P) 

5. We already proved cp -- -1cp as an example. Conversely: 

Proof. 

The result now follows. The numbers 6 and 7 are left to  the reader. O 

The system, outlined in this section, is called the "calculus of natural 
deduction" for a good reason. That is: its manner of making inferences corre- 
sponds to the reasoning we intuitively use. The rules present means to take 
formulas apart, or to put them together. A derivation then consists of a skil- 
ful manipulation of the rules, the use of which is usually suggested by the 
form of the formula we want to prove. 

We will discuss one example in order to illustrate the general strategy of 
building derivations. Let us consider the converse of our previous example 
111. 

To prove (cp A $ +. a )  -+ [cp + ($ 4 a)] there is just one initial step: 
a=%me cp A $  +. o and try to derive cp + ($ --+ a). Now we can either look at  
the assumption or at  the desired result. Let us consider the latter one first: 
to  show cp -+ ($ -+ g), we should assume cp and derive $ -- a,  but for the 
latter we should assume $ and derive a. 

So, altogether we may assume cp A $  -- a and cp and $. Now the procedure 
itself: derive cp A $ from cp and $, and a from cp A $ and cp A $ -+ a. 

Put together, we get the following derivation: 

4. For one direction, substitute I for a in 3, then k (cp -+ $) + (T$ --t -9). 
Conversely: 
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Had we considered cp A $ -+ a first, then the only way to proceed is to 
add cp A $ and apply -+ E. Now cp A $ either remains an assumption, or it is 
obtained from something else. It  immediately occurs to the reader to derive 
cp A $ from cp and $. But now he will build up the derivation we obtained 
above. 

Simple as this example seems, there are complications. In particular the 
rule of reductio ad absurdum is not nearly as natural as the other ones. Its 
use must be learned by practice; also a sense for the distinction between 
constructive and non-constructive will be helpful when trying to decide on 
when to use it. 

Finally, we recall that T is an abbreviation for TI (i.e. I -+ I ) .  

Exercises 

6 .  Analogous to the substitution operator for propositions we define a sub- 
stitution operator for derivations. V[cp/p] is obtained by replacing each 
occurrence of p in each proposition in V by cp. Give a recursive defini- 
tion of V[cp/p]. Show that V[cp/p] is a derivation if V is one, and that 
r I- a a r[cp/p] t- a[cp/p]. Remark: for several purposes finer notions of 
substitution are required, but this one will do for us. 

7. (Substitution Theorem)  I- (91 ++ 9 2 )  -+ ($[cpl/p] ++ $[cpz/p]). 
Hint: use induction on $; the theorem will also follow from the Sub- 
stitution Theorem for +, once we have established the Completeness 
Theorem. 

8. The size, s(V), of a derivation is the number of proposition occurrences 
in 2). Give an inductive definition of s(V). Show that one can prove prop- 
erties of derivations by it induction on the size. 

9. Give an inductive definition of the relation I- (use the list of Lemma 1.4.3), 
show that this relation coincides with the derived relation of Defini- 
tion 1.4.2. Conclude that each r with r t- cp contains a finite A , such 
that also A k cp 

1.5 Completeness 

In the present section we will show that "truth" and "derivability" coincide, 
to be precise: the relations "k " and "t-" coincide. The easy part of the 
claim is: "derivabilityn implies "truth"; for derivability is established by the 
existence of a derivation. The latter motion is inductively defined, so we can 
Prove the implication by induction on the derivation. 

Lemma 1.5.1 (Soundness). r t- cp * I- p .  

'roof. Since, by definition 1.4.2, r t- cp iff there is a derivation V with all its 
h ~ o t h e s e s  in r, it suffices to show: for each derivation V with conclusion cp 
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and hypotheses in r we have r + cp. We now use induction on V. 

(basis) If V has one element, then evidently cp E r .  The reader easily sees 
that r + cp. 

( A  1) Induction hypothesis: and are derivations and for each r, 
cp cp' 

r' containing the hypotheses of V, V', r + cp, r1 + cp' 
V V ' 

Now let r" contain the hypotheses of cp CP' 
cp A cp' 

Choosing r and r' to  be precisely the set of hypotheses of D, V', we 

see that r" 2 r U TI. 
So I'" cp and I'" cp'. Let I[$], = 1 for a11 $ E r", then [cp], = 

[[cp'], = 1, hence [cp A p'], = 1. This shows r" t;. cp A cp'. 

( A  E) Induction hypothesis: For any T containing the hypotheses of 
v 

c p A $  
V 

we have r cp A $. Consider a r containing all hypotheses of cp A $ 
cp 

v 
and cp A $ . It  is left to the reader to show r + cp and r + $. 

$ 
cp 

(+ I) Induction hypothesis: for any r containing all hypotheses of V , 
$ 

lcpl 

I' + $. Let r' contain all hypotheses of . Now r' u {cp} con- 
li, 

cp 
tains all hyptheses of 2) , so if [cp] = 1 and [XI = 1 for all x in r, then 

11 
[[$I = 1. Therefore the truth table of 4 tells us that [[cp 4 $1 = 1 if all 
propositions in r' have value 1. Hence r' + cp + $. 

(4 E) An exercise for the reader. 

( I )  Induction hypothesis: For each r containing all hypotheses of 
2, 

I ' 
r + I .  Since [I] = 0 for all valuations, there is no valuation such that 

'D 
[[$I = 1 for all 11, E r .  Let r' contain all hypotheses of - I and suppose 

cp 

that r' cp, then I[$] = 1 for all $ E r' and [cp] = 0 for some valu- 
ation. Since r' contains all hypotheses of the first derivation we have a 
contradiction. 

(RAA). Induction hypothesis: for each F containing all hypotheses of 

l c p  
2) , we have r + I .  Let r' contain all hypotheses of and 

I 
I 

cp 
suppose r' cp, then there exists a valuation such that I[$] = 1 for all 
?I, E r' and [p] = 0, i.e. [[y] = 1. But TI1 = r' u {y} contains all 
hypotheses of the first derivation and [[$I = 1 for all $ E TI'. This is 
impossible since r'' +I. Hence r' + cp. 0 

This lemma may not seem very impressive, but it enables us to show that 
some propositions are not theorems, simply by showing that they are not 
tautologies. Without this lemma that would have been a very awkward task. 
We would have to show that there is no derivation (without hypotheses) of 
the given proposition. In general this requires insight in the nature of deriva- 
tions, something which is beyond us at the moment. 

Examples . Y PO, Y (cp + $1 4 'PA $. 
In the first example take the constant 0 valuation. [po] = 0, so po 

and hence y po. In the second example we are faced with a meta proposition 
(a schema); strictly speaking it cannot be derivable (only real propositions 
can be). By t- (cp 4 $) -+ cp A $ we mean that all propositions of that 
form (obtained by substituting real propositions for cp and $, if you like) are 
derivable. To refute it we need only one instance which is not derivable. Take 

cP = $ = PO. In order to  prove the converse of Lemma 1.5.1 we need a 
few new notions. The first one has an impressive history; it is the notion of 
fmedom from contradiction or consistency. It was made the cornerstone of 
the foundations of mathematics by Hilbert. 

Definition 1.5.2. A set r of propositions is consistent if r Y l .  

In words: one cannot derive a contradiction from r. The consistency of 
r can be expressed in various other forms: 

Lemma 1.5.3. The following three conditions are equivalent: 
(i) r 2s consistent, 
(ii) F o r  no cp, r t cp and r t- ~ c p ,  
(iii) Them is at least one cp such that r Y p 

'roof. Let us call r inconsistent if r tl, then we can just as well prove the 
of 
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(iv) r is inconsistent, 
(v) There is a cp such that r k cp and r k 7cp, 
(vi) r F cp for all cp. 

(iv) * (vi) Let I' E l ,  i.e. there is a derivation D with conclusion I and 
hypotheses in r .  By ( I )  we can add one inference, 1 F cp, to  D, so that 
r F cp. This holds for all cp. 

(vi) + (v) Trivial. 

(v) +(iv) Let r k cp and r t- ~ c p .  From the two associated derivations 
one obtains a derivation for r t - I  by (-+ E). 

Clause (vi) tells us why inconsistent sets (theories) are devoid of mathe- 
matical interest. For, if everything is derivable, we cannot distinguish between 
"good" and "bad" propositions. Mathematics tries to find distinctions, not 
to blur them. 

In mathematical practice one tries to establish consistency by exhibiting 
a model (think of the consistency of the negation of Euclid's fifth postulate 
and the non-euclidean geometries). In the context of propositional logic this 
means looking for a suitable valuation. 

Lemma 1.5.4. If there i s  a valuation such t h a t [ $ ] ,  = 1 for all 11, E F ,  then 
r is  consistent. 

Proof. Suppose r F I ,  then by Lemma 1.5.1 r +I, so for any valuation v 
[($)Iv = 1 for all $ + r + [ l I v  = 1. Since [l], = 0 for a11 valuations, 
there is no valuation with [$], = 1 for all $ E T.  Contradiction. Hence r is 
consistent. 

0 
Examples. 

1. {PO, l p l , p l  + ~ 2 )  is consistent. A suitable valuation is one satisfying 
[POI = 1, upl] = 0. 

2. {po,pl,. . .) is consistent. Choose the constant 1 valuation. 

Clause (v) of Lemma 1.5.3 tells us that F U {cp, ~ c p )  is inconsistent. Now, 
how could r U { l i p )  be inconsistent? It  seems plausible to blame this on the 
derivability of cp. The following confirms this. 

Lemma 1.5.5. (a) r U {y) is  inconsistent =+ r k cp, 
(b) r U {cp) is  inconsistent + r E lcp. 

Proof. The assumptions of (a) and (b) yield the two derivations below: with 
conclusion I. By applying (RAA), and (+ I), we obtain derivations with 
hypotheses in r ,  of cp, resp. 1 9 .  

I I 
- RAA -+ I 
cp ' cp 

Definition 1.5.6. A set r is maximally consistent iff 
(a) r is consistent, 

(b) r T' and r consistent + r = r'. 
Remark. One could replace (b) by (b'): if r is a proper subset of TI, then 
r' is inconsistent. Le., by just throwing in one extra proposition, the set be- 
comes inconsistent. 

Maximally consistent sets play an important role in logic. We will show 
that there are lots of them. 

Here is one example: r = {cpl[cp] = 1) for a fixed valuation. By 
Lemma 1.5.4 r is consistent. Consider a consistent set r' such that r & r ' .  
Now let @ E r' and suppose [[$I = 0, then [l$] = 1, and so 711, E r .  

But since I' c r' this implies that I" is inconsistent. Contradiction. 
Therefore [@I = 1 for all $ E r', so by definition r = r ' .  From the proof 
of Lemma 1.5.11 it follows moreover, that this basically is the only kind of 
maximally consistent set we may expect. 

The following fundamental lemma is proved directly. The reader may 
recognise in it an analogue of the Maximal Ideal Existence Lemma from ring 
theory (or the Boolean Prime Ideal Theorem), which is usually proved by an 
application of Zorn's Lemma. 

Lemma 1.5.7. Each consistent set r is  contained in a maximally consistent 
9 r*. 
Proof. There are countably many propositions, so suppose we have a list 
'Po, Pi, P2, ..... of all propositions (cf. Exercise 5). We define a non-decreasing 
sequence of sets ri such that the union is maximally consistent. 

rn+l = rn U {cpn)if r, U {cpn)is consistent, rn else. 
r*- = U{rn 1 n > 0). 

(a) rn is consistent for all n. 
Immediate, by induction on n. 

(b) r* is consistent. 
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Suppose r* tI then, by the definition of I there is derivation V of I 
with hypotheses in r*; D has finitely many hypotheses $0,. . . , &. Since 
r* = U{rnln 2 0), we have for each i < k qi E r n ,  for some ni. Let n 
be max{nili < k) , then $0,. . . , $k E rn and hence r,, k I .  But rn is 
consistent. Contradiction. 

(c) r* is maximally consistent. Let r* c A and A consistent. If $ E A, then 
$ = cp, for some m. Since r, C r' L A and A is consistent, r, U {cp,) 
is consistent. Therefore rm+l = r, U {cp,), i.e. cp, E rm+l C r * .  This 
S ~ O W S  r* = A. 

Lemma 1.5.8. If r is maximally consistent, then r is closed under deriv- 
ability (2.e. r t cp + cp E r ) .  

Proof. Let r t cp and suppose cp # r .  Then r U {cp) must be inconsistent. 
Hence r I- i c p ,  so r is inconsistent. Contradiction. 0 

Lemma 1.5.9. Let r be maximally consistent; then 
(a) for all cp either cp E r, or l c p  E r ,  
(b) for allcp,$ c p + $   re ( c p ~ r + $ ~  r ) .  

Proof. (a) We know that not both cp and 7 c p  can belong to r .  Consider 
r' = r U {cp). If r' is inconsistent, then, by 1.5.5, 1.5.8, l c p  E F .  If r' is 
consistent, then cp g r by the maximality of r .  

(b) Let c p - - i $ ~  r a n d c p ~ r .  To show: $ E T .  Sincecp,cp+ $ E  r a n d  
since r is closed under derivability (Lemma 1.5.8), we get $ E r by + E. 

Conversely: let cp E r + $ E r .  If cp E r then obviously r k $, so 
r F cp -+ $. If II, @ r, then l c p  E r ,  and hence r k -y. Therefore r t cp + $. 

0 

Note that we automatically get the following: 

Corollary 1.5.10. If r is maximally consistent, then cp E r @ l c p  $ r ,  
and l c p  E T H  cp # r .  

Lemma 1.5.11. If r is consistent, then there exists a valuation such that 
[[$I = 1 for all $ E r .  

Proof.(a) By 1.5.7 r is contained in a maximally consistent r* 

{ 
1 if p, E r* 

(b) Define v(p,) = and extend v to the valuation [ 1, 
0 else 

Claim: [p] = 1 H p E r * .  Use induction on cp. 

1. For atomic cp the claim holds by definition. 

2. p = $ A a .  [cp], = 1 e I[$], = [a] = 1 @ (induction hypothesis) 
$ , a  E r* and so cp E r * .  Conversely $ A'O E r* @ $,a E r* (1.5.8). 
The rest follows from the induction hypothesis. 

3. (P = y!~ -' a I[($ -+ a], = 0 e I[$],, = 1 and [a], = 0 e (induction 
hypothesis) $ E r* and LT @ r* @ $ -t c # r* (by 1.5.9). 
(c) Since r c r* we have [$nu = 1 for a11 $ E r .  0 

Corollary 1.5.12. I' Y cp * there is a valuation such that [$I = 1 for all 
11, E r and [p] = 0. 

Proof. r Y cp e r U  { l c p )  consistent @ there is a valuation such that [$I] = 1 
for all 11, E r U { i c p ) ,  or [$] = 1 for a11 $ E r and [cp] = 0. 0 

Theorem 1.5.13 (Completeness Theorem).  r t cp e r + cp. 

Proof. r y cp + r cp by 1.5.12. The converse holds by 1.5.1. 0 

In particular we have k p @ t= cp, so the set of theorems is exactly the 
set to tautologies. 

The Completeness Theorem tells us that the tedious task of making 
derivations can be replaced by the (equally tedious, but automatic) task 
of checking tautologies. This simplifies the search for theorems considerably; 
for derivations one has to be (moderately) clever, for truth tables one has to 
possess perseverance. 

For logical theories one sometimes considers another notion of complete- 
ness: a set r is called complete if for each cp, either r t cp, or r 7 9 .  This 
notion is closely related to "maximally consistent". From Exercise 6 it fol- 
lows that Cons( r )  = {~lr k a) (the set of consequences of I') is maximally 
consistent if I' is a complete set. The converse also holds (cf. Exercise 10). 
Propositional logic itself (i.e. the case r = 0) is not complete in this sense, 
e.g. y PO and y 7po. 

There is another important notion which is traditionally considered in 
logic: that of decidability. Propositional logic is decidable in the following 
sense: there is an effective procedure to check the derivability of propositions 
$0. Put otherwise: there is an algorithm that for each cp tests if t cp. 
The algorithm is simple: write down the complete truth table for cp and check 
if the last column contains only 1's. If so, then + cp and, by the Complete- 
ness Theorem, t cp. 1f not, then t& cp and hence Y cp. This is certainly not the 
best possible algorithm, one can find more economical ones. There are also 
algorithms that give more information, e.g. they not only test t- p ,  but also 
yield a derivation, if one exists. Such algorithms require, however, a deeper 

of derivations. This falls outside the scope of the present book. 
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There is one aspect of the Completeness Theorem that we want to discuss 
now. It does not come as a surprise that truth follows from derivability. After 
all we start with a combinatorial notion, defined inductively, and we end up 
with 'being true for all valuations'. A simple inductive proof does the trick. 

For the converse the situation is totally different. By definition r cp 
means that [cp], = 1 for a11 valuations v that make all propositions of r 
true. So we know something about the behaviour of all valuations with re- 
spect to r and cp. Can we hope to extract from such infinitely many set 
theoretical facts the finite, concrete information needed to build a deriva- 
tion for r t cp? Evidently the available facts do not give us much to go 
on. Let us therefore simplify matters a bit by cutting down the r; after 
all we use only finitely many formulas of r in a derivation, so let us sup- 
pose that those formulas . . , $, are given. Now we can hope for more 
success, since only finitely many atoms are involved, and hence we can con- 
sider a finite "part" of the infinitely many valuations that play a role. That 
is to say only the restrictions of the valuations to the set of atoms occur- 
ring in $1,. . . , $,, cp are relevant. Let us simplify the problem one more 
step. We know that $1,. . . , $, k cp ($1,. . . , $, + (P) can be replaced by 
F A . . . A $, + cp(+ A . .  . A $, + cp), on the ground of the derivation 
rules (the definition of valuation). So we ask ourselves: given the truth table 
for a tautology a ,  can we effectively find a derivation for a ?  
This question is not answered by the Completeness Theorem, since our proof 
of it is not effective (at least not prima facie so). It has been answered posi- 
tively, e.g. by Post, Bernays and Kalmar (cf.Kleene IV, 529) and it is easily 
treated by means of Gentzen techniques, or semantic tableaux. We will just 
sketch a method of proof: we can effectively find a conjunctive normal form 
a* for a such that I- a * a*. It is easily shown that a* is a tautology iff each 
conjunct contains an atom and its negation, or 1 I, and glue it all together 
to obtain a derivation of a*,  which immediately yields a derivation of a .  

4. A set r is independent if for each cp E r r - {(P) Y cp. 
(a) Show that each finite set r has an independent subset A such that 

A t  cp for all cp E r. 
(b) Let r = {cpo, (PI, ( ~ 2 , .  . .). Find an equivalent set r' = ($0, . .) 

(i.e. I' t $i and r' I- cp, for all i) such that k -+ $,, but 
y + $ n + l  Note that r' may be finite. 

(c) Consider an infinite r' as in (b). Define a 0  = $0, a,+l =. $, + $,+l. 
Show that A = {ao, a l ,  a 2 ,  . . .) is independent and equivalent to r'. 

(d) Show that each set I' is equivalent to an independent set A. 
(e) Show that A need not be a subset of r (consider {po,po A pl ,  

Po A Pl A ~ 2 , .  . .)I. 

5. Find an effective way of enumerating all propositions (hint: consider sets 
r, of all propositions of rank 5 n with atoms from PO,. . . , p,). 

6. Show that a consistent set r is maximally consistent if either cp E r or 
7 c p  E r for all cp. 

7. Show that {po, pi ,  p2, . . . , p,, . . .) is complete. 

8. (Compactness Theorem). Show : there is a v such that I[$], = 1 for all 
$J E r e for each finite subset A & I' there is a v such that [a], = 1 for 
all a E A. 
Formulated in terms of Exercise 13 of 1.3: [r] f 0 if [A] # 0 for all finite 
A G r. 

9. Consider an infinite set {cpl, d 2 ,  ( ~ 3 ,  . . .). If for each valuation there is an 
n such that [[cp,] = 1, then there is an m such that t cpl V .  . . V (P,. (Hint: 
consider the negations -cpl,-p2 . . . and apply Exercise 8) . 

10. Show: Cons(r)  = {air t a) is maximally consistent H r is complete. 
Exercises 

1. Check which of the following sets are consistent. 
(a) { T P ~  A ~2 + P o I P ~  + (-PI + P ~ ) , P O  Y P ~ ) ,  
(b) {PO 4 PI,PI + ~ 2 ~ ~ 2  + ~ 3 ~ ~ 3  + -PO), 
(c) { P O + P ~ , P O ~ P ~ - ' P ~  ~ P ~ , P O ~ P ~ ~ P ~ - - + ~ I  Ap3 Apg, ...). 

2. Show that the following are equivalent: 
(a) {cpl,  . . ., cp,) is consistent. 
(b) Y - ( ~ i  A ( ~ 2  A . .  . ~ n ) .  
(c) Y cpi A cp2 A . .  . A vn-l --t 1%.  

3. cp is independent from r if r Y cp and r Y ~ c p .  Show that: PI -+ pz is 
independent from {pl * po A 7p2, p2 + pa). 

11. Show : r is maximally consistent e there is a unique valuation such 
that [$] = 1 for all $ E r,  where r is a theory, i.e. T is closed under t 
( r t ~ + a ~ r ) .  

12. Let cp be a proposition containing the atom p. For convenience we write 
~ ( a )  for  alp]. As before we abbreviate 1 I by T .  

Show: (i) cp(T) t p(T)  * T and 
cp(T) t cp((P(T)). 

(ii) -cp(T) cpU) -1, 
cp(P), -(Pm t P H I ,  
cp(P),lcp(T) t- cp(cp(T)). 

(iii) V(P) t dcp(T)) .  
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14. Let t cp + $. We call a an interpolant if t cp + a and t a -+ $, and more- 
over a contains only atoms common to cp and $. Consider cp(p, r ) ,  $(r, q )  
with all atoms displayed. Show that cp(cp(T,r), r )  is an interpolant (use 
Exercise 12, 13). 

15. Prove the general Interpolation Theorem (Craig): For any cp,$ with t 
cp + $ there exists an interpolant (iterate the procedure of Exercise 13). 

1.6 The Missing Connectives 

The language of section 1.4 contained only the connectives A,-+ and I. 
We already know that,  from the semantical point of view, this language is 
sufficiently rich, i.e. the missing connectives can be defined. As a matter of 
fact we have already used the negation as a defined notion in the preceding 
sections. 

It  is a matter of sound mathematical practice to introduce new notions if 
their use simplifies our labour, and if they codify informal existing practice. 
This, clearly, is a reason for introducing 1 ,  * and V. 

Now there are two ways to proceed: one can introduce the new connectives 
as abbreviations (of complicated propositions), or one can enrich the language 
by actually adding the connectives to the alphabet, and providing rules of 
derivation. 

The first procedure was adopted above; it is completely harmless, e.g. 
each time one reads cp * $, one has to replace it by (cp + $) A ($ + cp). 
So it is nothing but a shorthand, introduced for convenience. The second 
procedure is of a more theoretical nature. The language is enriched and the 
set of derivations is enlarged. As a consequence one has to review the theo- 
retical results (such as the Completeness Theorem) obtained for the simpler 
language. 

We will adopt the first procedure and also outline the second approach. 

N.B. This means that the above expressions are not part of the language, but 
abbreviations for certain propositions. 

proof. The only non-trivial part is (ii). We exhibit a derivation of a from r 
and V $ (i.e. ~ ( l c p  A l $ ) ) ,  given derivations Dl and D2 of r, cp t a and 
r,$ t- 0. 

The remaining cases are left to the reader. 0 

Note that (i) and (ii) read as introduction and elimination rules for V, 
(iii) and (iv) as ditto for 7, (vi) and (v) as ditto for -. 

They legalise the following shortcuts in derivations: 

[cpl 1101 

The properties of V, 1 and H are given in the following: 
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Consider for example an application of V E  

This is a mere shorthand for 

[PI [+I 
Dl v2 

The reader is urged to use the above shortcuts in actual derivations, when- 
ever convenient. As a rule, only V I  and v E  are of importance, the reader has 
of course recognised the rules for 7 and H as slightly eccentric applications 
of familiar rules. 

Examples. t- (p A +) V H (cp V u) A (+ V  a). 

Conversely 

1.6 The Missing Connectives 51 

[v12 [*I1 

Combining (1) and (2) we get one derivation: 
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know ip V + (we even know exactly which disjunct). The (vE)-rule captures 
the idea of "proof by cases": if we know cp V $ and in each of both cases 
we ca~ l  conclude a, then we may outright conclude a .  Disjunction intuitively 
ca& for a decision: which of the two disjuncts is given or may be assumed? 
This constructive streak of V is crudely but conveniently blotted out by the 
identification of cp V $ and ' ( l c p  A 7 7 ) ) .  The latter only tells us that cp and 
+ cannot both be wrong, but not which one is right. For more information 
on this matter of constructiveness, which plays a role in demarcating the 
borderline between two-valued classical logic and effective intuitionistic logic, 
the reader is referred to Chapter 5. 

Note that with V as a primitive connective some theorems become harder 
to prove. E.g. k l ( 1 - v  A ~ c p )  is trivial, but k p V -cp is not. The following 
rule of the thumb may be useful: going from non-effective (or no) premises 
to an effective conclusion calls for an application of RAA. 

We now give a sketch of the second approach. We add v , ~  and ++ to 
the language, and extend the set of propositions correspondingly. Next we 
add the rules for V, 1 and ++ listed above to our stock of derivation rules. To 
be precise we should now also introduce a new derivability sign, we will how- 
ever stick to the trusted t- in the expectation that the reader will remember 
that now we are making derivations in a larger system. The following holds: 

Proof. Observe that by Lemma 1.6.2 the defined and the primitive (real) con- 
nectives obey exactly the same derivability relations (derivation rules, if you 
wish). This leads immediately to the desired result. Let us give one example. 

p t '("P A -+) and $ I- '(lcp A l$) (1.6.2 (i)), so by V E  we get 
cp V $ k ~ ( l p  A -$) . . . (1) 

Conversely cp t cp V $ (by vI ) ,  hence by 1.6.2 (ii) 
-(-cp A '+) t- p V $ .  . . (2) 

Apply ++ I, to (1) and (2), then t cp V $ ++ ' ( l p  +). The rest is left to 
the reader. 0 

For more results the reader is directed to the exercises. 

The rules for V,  ++, and 7 capture indeed the intuitive meaning of those 
connectives. Let us consider disjunction: (vI) : If we know cp then we certainly 

Exercises 

Consider the full language L with the connectives A, +, I, * V and the 
restricted language C' with connectives A,  +, 1. Using the appropriate 
derivation rules we get the derivability notions t- and t'. We define an 
obvious translation from L into L': \ 

cp+ := cp for atomic cp 
( 'PO$)+ := cp+U $+ for = A,+, 
( 9  V $)+ := l ( l c p +  A lcp+),wherel is an abbreviation, 

(cpH+)+ := (cp++$+)A($++cp+), 
(lip)+ := cp+ +I. 

Show (i) k cp ++ p+,  
(ii) t cp e t' p+ ,  
(iii) cpf = cp forcp E 13'. 
(iv) Show that the full logic, is conservative over the restricted 

logic, i.e. forcp E L' I- cp @ I-' cp. 

Show that the Completeness Theorem holds for the full logic. Hint: use 
Exercise 2. 
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2. Predicate Logic 

6. Show (a) r is complete H (r t cp v $ H r k cp or r t $, for all cp, $), 
(b) r is maximally consistent w r is a consistent theory and for 

allcp,$ ( c p V $ ~ r w c p ~ r o r  $ ~ r ) .  

2.1 Quantifiers 

In propositional logic we used large chunks of mathematical language, namely 
those parts that can have a truth value. Unfortunately this use of language 
is patently insufficient for mathematical practice. A simple argument, such 
as "all squares are positive, 9 is a square, therefore 9 is positive" cannot be 
dealt with. From the propositional point of view the above sentence is of the 
form cp A $ + a,  and there is no reason why this sentence should be true, 
although we obviously accept it as true. The moral is that we have to  extend 
the language, in such a way as to  be able to  discuss objects and relations. In 
particular we wish to introduce means to talk about all objects of the domain 
of discourse, e.g. we want to  allow statements of the form "all even numbers 
are a sum of two odd primes". Dually, we want a m e a m  expressing 'there 
exists an ob'ect such that . . . ", e.g. in "there exists a real number whose 
square is 2". 3 

Experience has taught us that the basic mathematical statements are of 
the form "a has the property P" or "a and b are in the relation R", etc. Exam- 
ples are: "n is even", " f is differentiable", "3 = 5", "7 < 12", "B is between 
A and C". Therefore we build our language from symbols for properties, re- 
l a t h s  and objects. Furthermore we add variables to range over objects (so 
called individual variables), and the usual logical connectives now including 
the quantifiers Q and 3 (for "for all" and "there exists"). 

We f i s t  give a few informal examples. 
3 ~ p ( x )  - there is an x with propertyp, 
v~ p(Y) - for all y P holds (all y have the 

property P )  , 
VX~Y(X = 2y) - for all x there is a y such that x is 

two times y, 
ve(e > 0 -+ 3 n ( i  < 5)) - for all positive E there is an n such 

that < E ,  " Y -+ 3.42 < z A z < y) - if x < y, then there is a z such that 
x < z and z < y, 

V X ~ Y ( X . ~  = 1) - for each x there exists an inverse y. 
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We know from elementary set theory that functions are a special kind 
of relations. It  would, however, be in flagrant conflict with mathematical 
practice to avoid functions (or mappings). Moreover, it would be extremely 
cumbersome. So we will incorporate functions in our language. 

Roughly speaking the language deals with two categories of syntactical 
entities: one for objects - the terns, one for statements - the formulas. Ex- 
amples of terms are: 17, x, (2 + 5) - 7, x3y+l. 

What is the subject of predicate logic with a given language? Or, to put it 
differently, what are terms and formulas about? The answer is: formulas can 
express properties concerning a given set of relations and functions on a fixed 
domain of discourse. We have already met such situations in mathematics; 
we talked about structures, e.g. groups, rings, modules, ordered sets (see any 
algebra text). We will make structures our point of departure and we will get 
to the logic later. 

In our logic we will speak about "all numbers" or "all elements", but 
not about "all ideals" or "all subsets", etc. Loosely speaking, our variables 
will vary over elements of a given universe (e.g. the n x n matrices over the 
reals), but not over properties or relations, or properties of properties, etc. 
For this reason the predicate logic of this book is called first-order logic, or 
also elementary logic. In everyday mathematics, e.g. analysis, one uses higher 
order logic. In a way it is a surprise that first-order logic can do so much for 
mathematics, as we will see. A short introduction to seiCond-order logic will 
be presented in chapter 4. 

2.2 Structures 

A group is a (non-empty) set equipped with two operations , a binary one and 
a unary one, and with a neutral element (satisfying certain laws). A partially 
ordered set is a set, equipped with a binary relation (satisfying certain laws). 

We generalise this as follows: 

Definition 2.2.1. A structure is an ordered sequence 
(A, R1,. . . , R,, F l ,  . . . , F,, {cili E I ) ) ,  where A is a non-empty set. R1,.  . . , Rn 
are relations on A, Fl ,  . . . , F, are functions on A, the c, ( i  E I) are elements 
of A (constants). 

Warning. The functions Fi are total, i.e. defined for all arguments; this calls 
sometimes for tricks, as with 0-I (cf. p. 85). 

Examples. (R, +, .,-I , O , l )  - the field of real numbers, 
(N, <) - the ordered set of natural numbers. 

We denote structures by Gothic capitals: Z, 23, C, 9,. . .. The script letters 
are shown on page 102. 

~f we overlook for a moment the special properties of the relations and 
(e.g. commutativity of addition on the reals), then what remains 

is the type of a structure, which is given by the number of relations, functions 
(or operations), and their respective arguments, plus the number (cardinal- 
ity) of constants. 

Definition 2.2.2. The similarity type of a structure U = (A, R1, . . . , R,, Fl, 
... , Frn, {cili E I ) )  is a sequence, (TI, . . . , r,; a l ,  . . . , a,; r ; ) ,  where Ri G AT., 
F~ : Aaj -+ A, K = I{ci li E I)/ (cardinality of I ) .  

The two structures in our example have (similarity) type (-; 2,2,1; 2) and 
(1; -;O). The absence of relations, functions is indicated by -. There is no 
objection to extending the notion of structure to contain arbitrarily many 

or functions, but the most common structures have finite types 
(including finitely many constants). 

It  would, of course, have been better to use similar notations for our 
structures, i.e. (A; R1, . . . , R,; Fl, . . . , F,; c,li E I), but that would be too 
pedantic. 

If R c A, then we call R a property (or unary relation), if RX A2, then 
we call R a binary relation, if R An, then we call R an n-ary relation. 

The set A is called universe of U. Notation. A = I%\. U is called (in)finite 
if its universe is (in)finite. We will mostly commit a slight abuse of language 
by writing down the constants instead of the set of constants, in the example 
of the field of real numbers we should have written: (R, +, .,-I , (0, I)) ,  but 
(R, +, -,-I ,0 ,1)  is more traditional. Among the relations one finds in struc- 
tures, there is a very special one: the identity (or equality) relation. 

Since mathematical structures, as a rule, are equipped with the identity 
relation, we do not list the relation separately. It  does, therefore, not occur in 
the similarity type. We henceforth assume all structures to possess an iden- 
tity relation and we will explicitly mention any exceptions. For purely logical 
investigations it makes, of course, perfect sense to consider a logic without 
identity, but the present book caters for readers from the mathematics or 
computer science community. 

One also considers the "limiting cases" of relations and functions, i.e. 0-ary 
relations and functions. An 0-ary relation is a subset of A@. Since A@ = (0) 
there are two such relations: 0 and (0) (considered as ordinals: 0 and 1). 0-ary 
relations can thus be seen as truth values, which makes them play the role 
of the interpretations of propositions. In practice 0-ary relations do not crop 
up, e.g; they have no role to play in ordinary algebra. Most of the time the 
reader can joyfully forget about them, nonetheless we will allow them in our 
definition because they simplify certain considerations. A 0-ary function is a 
mapping from A@ into A, i.e. a mapping from (0) into A. Since the mapping 
has a singleton as domain, we can identify it with its range. 
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In this way 0-ary functions can play the role of constants. The advantage 
of the procedure is, however, negligible in the present context, so we will keep 
our constants. 

Exercises 

1. Write down the similarity type for the following structures: 
( 9  (Q, <,O) 
(ii) (N, +, ., S ,  0,1,2,3, 4, .  . . , n, . . .),whereS(x) = x + 1, 

(iii) (P(N) ,  c, U, n," ,8), 
(iv) (Z/(5), +, ., -,-I , 0 , l ,  2,3,4),  
(v) ((0, I ) ,  A,  V, +, 1 , 0 , 1 )  , where A, V ,  +, 7 operate according to 

the ordinary truth tables, 
( 4  (R, I ) ,  
(vii) (R), 
(viii) (R, N, <, T, 2,  ( 1 ,  -) , where T(a,  b, c )  is the relation'b is between 

a and  is the square function, and I I the absolute value. 

2. Give structures with type (1,l; -; 3), (4; -; 0). 

2.3 The Language of a Similarity Type 

The considerations of this section are generalizations of those in section 1.1'.4. 
Since the arguments are rather similar, we will leave a number of details 
to the reader. For convenience we fix the similarity type in this section: 
( r l l . .  . ,r,; a l , .  . . , am;  K ) ,  where we assume ri > O,aj > 0. 

The alphabet consists of the following symbols: 

1. Predicate symbols: P I , .  . . , P,, = 
2. Function symbols: f i ,  . . . , fm 

3. Constant symbols: Ei for i E I 
4. Variables: xo, XI, 22, . . .(countably many) 
5. Connectives: V, A,  -+, 1, H, 1 V, 3 
6. Auxiliary symbols: (, ), . 

'd and 3 are called the universal and existential quantifier. The curiously look- 
ing equality symbol has been chosen to avoid possible confusion, there are in 
fact a number of equality symbols in use: one to indicate the identity in the 
models, one to indicate the equality in the meta language and the syntactic 
one introduced above. We will, however, practice the usual abuse of language, 
and use these distinctions only if it is really necessary . As a rule the reader 
will have no difficulty in recognising the kind of identity involved. 

Next we define the two syntactical categories. 

Definition 2.3.1. TERM is the smallest set X with the properties 
(i) zi E X ( i  E I )  and xi E X ( i  E N), 
(ii) t i  ,..., t,, E X  + fi(t1, . . . ,  t,,) E X ,  for 15 i 5 m 

TERM is our set of terms. 

Definition 2.3.2. FORM is the smallest set X with the properties: 
(i) I E  X ;  Pi E X if ri = 0; t l , .  . . , t r i  E TERM + 

Pi(t1,. . . , t r , )  E X ;  t i l t 2  E TERM =+ t l  = t2 E X ,  
(ii) cp, $ E X + (cp $) E X ,  where 0 E {A, V,  +, H), 
(iii) cp E X + (-9) E X ,  
(iv) cp E X + ( ( v x i ) ~ ) ,  ( ( 3 x i ) ~ )  E X .  

FORM is our set of fornulas. We have introduced t l  = t2 separately, but 
we could have subsumed it under the first clause. If convenient, we will not 
treat equality separately. The formulas introduced in (i) are called atoms. We 
point out that(i) includes the case of 0-ary predicate symbols, conveniently 
called proposition symbols. 

A proposition+symbol is interpreted as a 0-ary relation, i.e. as 0 or 1 
(cf. 2.2.2). This is in accordance with the practice of propositional logic to 
interpret propositions as true or false. For our present purpose propositions 
are a luxury. In dealing with concrete mathematical situations (e.g. groups 
or posets) one has no reason to introduce propositions (things with a fixed 
truth value). However, propositions are convenient (and even important) in 
the context of Boolean-valued logic or Heyting-valued logic, and in syntactical 
considerations. 

We will, however, allow a special proposition: I, the symbol for the false 
Proposition (cf. 1.2). 

The logical connectives have, what one could call 'a domain of action', 
e-g. in cp -4 II, the connective -t yields the new formula cp -+ $ from formulas 
'P and $, and so + bears on cp, $ and all their parts. For propositional 
connectives this is not terribly interesting, but for quantifiers (and variable- 
binding operators in general) it is. The notion goes by the name of scope . 
So in ( ( V X ) ~ )  and ((3x)cp), cp is the scope of the quantifier. By locating the 
matching brackets one can easily effectively find the scope of a quantifier. If 
a variable, term or formula occurs in cp, we say that it is in the scope of the 
quantifier in Vxcp or 3xp. 

J ~ s t . a s  in the case of PROP, we have induction principles for TERM and 
FORM. 
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Lemma 2.3.3. Let A(t) be a property of terms. If A(t) holds for t a vari- 
able or a constant, and if A(tl),  A(t2), . . . , A(t,) + A(f ( t l ,  . . . , t,)), for all 
function symbols f ,  then A(t) holds for all t E TERM. 

Proof. cf. 1.1.3. 0 

Lemma 2.3.4. Let A((o) be a property of formulas. If 
(i) A(cp) for atomic (o, 

(ii) A((o), A($) + A(v $I), 
(iii) 4 9 )  + 4-(o) ) ,  
(iv) A(cp) + A((Vxi)(o), A(3xi)p) for all i ,  then A(y) holds for all 

cp E FORM. 

Proof. cf. 1.1.3. 0 

We will straight away introduce a number of abbreviations. In the first 
place we adopt the bracket conventions of propositional logic. Furthermore 
we delete the outer brackets and the brackets round Vx and 32, whenever 
possible. We agree that quantifiers bind more strongly than binary connec- 
tives. Furthermore we join strings of quantifiers, e.g. Vxlx23x3x4(o stands 
for Vx1Vx23x33x4(o. For better readability we will sometimes separate the 
quantifier and the formula by a dot: Vx . 9 .  We will also assume that ri i: 
f ( t l ,  . . . , t,), P ( t l ,  . . . , t,) always indicates the correct number of arguments. 
A word of warning: the use of = might confuse a careless reader. The sym- 

bol '=' is used in the language L, where it is a proper syntactic object, It 
occurs in formulas such as xo = x7, but it also occurs in the meta-language, 
e.g. in the form x = y, which must be read "x and y are one and the same 
variable". However, the identity symbol in x = y can just as well be the 
legitimate symbol from the alphabet, i.e. x = y is a meta-atom, which can be 
converted into a proper atom by substituting genuine variable symbols for x 
and y. Some authors use - for "syntactically identical", as in "x and y are 
the same variable". We will opt for "=" for the equality in structures (sets) 
and "A" for the identity predicate symbol in the language. We will use a 
few times, but we prefer to stick to a simple " = " trusting the alertness of 
the reader. 

Example 2.3.5. Example of a language of type (2; 2 , l ;  1). 
predicate symbols: L, = 
function symbols: p, i 
constant symbol: e 

Some terms: t l  := xo; t2 := p(x1,x2); tg := ~ ( E , E ) ;  t4  := i(x7); t5 := 

P ( ~ ( P ( X Z > ~ ) ) ,  i(x1)). 

(We have chosen a suggestive notation; think of the language of ordered 
groups: L for "less than", p, i for "product" and "inverse"). Note that the 
order in which the various symbols are listed is important. In our example p 
has 2 arguments and i has 1. 

In mathematics there are a number of variable binding operations, such 
as summation,integration, abstraction: consider, for example, integration, in 
J; sinzdx the variable plays an unusual role for a variable. For x cannot 
'bary"; we cannot (without writing nonsense) substitute any number we like 
for x. In the integral the variable x is reduced to a tag. We say that the 
variable x is bound by the integration symbol. Analogously we distinguish in 
logic between free and bound variables. 

In defining various syntactical notions we again freely use the principle 
of definition by recursion (cf. 1.1.6). The justification is immediate: the value 
of a term (formula) is uniquely determined by the values of its parts. This 
allows us to  find the value of H( t )  in finitely many steps. 

Definition by Recursion on T E R M :  Let HO : Var U Const 4 A (i.e.Ha 
is defined on variables and constants), Hi : Aa+ A, then there is a unique 
mapping H : T E R M  --+ A such that 

Definition by Recursion on F O R M :  
Let Hat : At -+ A (i.e.Hat is defined on atoms), 

Ho : A2 --,A, (0 E {v,A,+,-)) 
H,:A- ,A,  
H V : A x N + A ,  
H 3 : A x N - - , A .  

then there is a unique mapping H : FORM + A such that 
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Definition 2.3.6. The set FV(t )  of free variables of t is defined by 
(2) FV(xi) := 1x2) 1 

FV(Zi) := 0 
(ii) V f  ( 1 ,  . . t ) )  := FV( t l )  U . . . u FV(t,). 

Remark. To avoid messy notation we will usually drop the indices and 
tacitly assume that the number of arguments is correct. The reader can eas- 
ily provide the correct details, should he wish to do so. 

Definition 2.3.7. The set FV(cp) of free variables of cp is defined by 
(2) F V ( P ( t l l . .  tp)) := FV(t l )  u . . . u FV(t,), 

FV(t1 = t2) := FV(t l )  U FV(t2) ,  
F V ( I )  = F V ( P )  := 0 for P a proposition symbol, 

(4 F V ( p  $) := FV(V) u FV($), 
FV(-V) := FV(p) ,  

(iii) FV(Vxicp) := FV(3xicp) := FV(cp) - {x,). 

Definition 2.3.8. t or cp is called closed if FV(t)  = 0, resp. FV(p)  = 0. 
A closed formula is also called a sentence. A formula without quantifiers is 
called open. TERM, denotes the set of closed terms; SENT denotes the set 
of sentences. 

It  is left to the reader to define the set BV(cp) of bound variables of cp. 

Continuation of Example 2.3.5. 

FV(t2) = {x1,x2); FV(t3) = 0; FV(cp2) = FV(t3) U FV(t4) = (27);  f 
FV(cp7) = 0; BV(cp4) = 0; BV(cp6) = 1x0, XI). p5, pel 9 7  are sentences. 

Warning. FV(cp) n BV(cp) need not be empty, in other words, the same vari- 
able may occur free and bound. To handle such situations one can consider 
free (resp. bound) occurrences of variables. When necessary we will make in- 
formally use of occurrences of variables. 

Example. Vxl(xl = x2) --+ P(x l )  contains x l  both free and bound, for the 
occurrence of x l  in P (x l )  is not within the scope of the quantifier 

In predicate calculus we have substitution operators for terms and for 
formulas. 

Definition 2.3.9. Let s and t be terms, then s[t/x] is defined by: 

c[tlx1 
.- . c 

(ii) f ( t l ,  . . . , t,)[tlx] := f ( t ~ [ t / x ] ,  . . . , tp[t/x]). 

Note that in the clause (i) y = x means "x and y are the same variables". 

Substitution of formulas is defined as in the case of propositions, for con- 
venience we use '$' as a symbol for the propositional symbol (0-ary predicate 
symbol) that acts as a 'place holder'. 

Definition 2.3.11. a[cp/$] is defined by: 

:= ( a if ' $ for atomic a ,  cpifu = $  

Continuation of Example 2.3.5. 

We will sometimes make simultaneous substitutions, the definition is a 
slight modification of definitions 2.3.9, 2.3.10 and 2.3.11. The reader is asked 
to write down the formal definitions. We denote the result of a simultaneous 
substitution of t l ,  . . . , t, for yl , .  . . , y, in t by t[tl ,  . . . , t,/yl,. . . , y,] (simi- 
larly for cp). 
Note that a simultaneous substitution is not the same as its corresponding 
repeated substitution. 

The quantifier clause in definition 2.3.10 forbids substitution for bound 
variables. There is, however, one more case we want to forbid: a substitution, 
in which some variable after the substitution becomes bound. We will give 
&n example of such a substitution; the reason why we forbid it is that it can 
change the truth value in an absurd way. At this moment we do not have a 
truth definition, so the argument is purely heuristic. 
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Example. 3x(y < x)[x/y] = 32 (x < x). 

Note that the right-hand side is false in an ordered structure, whereas 
3x(y < x) may very well be true. We make our restriction precise: 

Definition 2.3.12. t is free for x in cp if 
(i) cp is atomic, 
(ii) cp := cpl cp2 (or cp := -y l )  and t is free for x in cpl and cp2 (resp.cpl) , 
(iii) cp := 3y$, or cp := Vy$, and y @ FV(t )  and t is free for x in $, 

where x f y. 

Examples. 

1. x2 is free for xo in 3xgP(xo, x3), 
2. f (xo, xl)  is not free for xo in 3x1 P(xo, x3), 
3. x5 is free for x l  in P (x I ,  23) + 3xlQ(x1, ~ 2 ) .  

For all practical purposes the use of "t is free for x in cp" consists of the fact 
that the (free) variables o f t  are not going to be bound after substitution in cp. 

L e m m a  2.3.13. t is free for x in cp H the variables oft in cp[t/x] are not i; 
the scope of a quantifier. 

Proof. Induction on cp. 

- For atomic cp the lemma is evident. ; 
- cp = cpl 0 cp2. t is free for x in cp dg' t is free for x in cpl and t is free tor 

x in cp2 3 the variables of t in cpl[t/z] are not in the scope of a quantifier 
and the variables of t in cp:![t/x] are not in the scope of a quantifier H the 
variables of t in (cpl cpz)[t/x] are not in the scope of a quantifier. 

- cp = ~ c p l ,  similar. 

- cp = Vy$. t is free for x in ip dg' y @ FV(t )  and t is free for x in $ % the 
variables o f t  are not in the scope of Vy and the variables o f t  in $[t/x] are 
not in the scope of (another) quantifier H the variables of t in cp[t/x] are 
not in the scope of a quantifier. 0 

There is an analogous definition and lemma for the substitution of for- 

mulas. 

Definition 2.3.14. cp is free for $ in u if: 
(i) u is atomic, 
(ii) u := a1 0 a 2  (or ~ u l )  and a is free for $ in a1 and in a:! (or in u l ) ,  
(iii) a := 3y7 (or 'v'yr) and y $! FV(cp) and cp is free for $ in 7. 

Lemma 2.3.15. cp is free for $ in u @ the free variables of cp are in u[cp/$] 
not in the scope of a quantifier. 

Proof. As for Lemma 2.3.13. 0 

\ 
From now on we tacitly suppose that all our substitutions are "free for". 

For convenience we introduce an informal notation that simplifies reading 
and writing. Notation. In order to simplify the substitution notation and to  

conform to  an ancient suggestive tradition we will write down (meta-) expres- 
sions like cp(x, y, z ) ,  $(x, x) ,  etc. This neither means that the listed variables 
occur free nor that no other ones occur free. It  is merely a convenient way 
to handle substitution informally: cp(t) is the result of replacing x by t in 
cp (x ) ;  p(t)  is called a substitution instance of cp(x). 

We use the languages introduced above to describe structures, or classes 
of structures of a given type. The predicate symbols, function symbols and 
constant symbols act as names for various relations, operations and constants. 
In describing a structure it is a great help to  be able to refer to  all elements 
of IUI individually, i.e. to have names for all elements (if only as an auxiliary 
device). Therefore we introduce: 

Definition 2.3.16. The extended language, L(U), of U is obtained from the 
language L, of the type of U, by adding constant symbols for all elements of 
8. We denote the constant symbol, belonging to a E (U(, by Zi;. 

Example. Consider the language L of groups; then L(U), for U the additive - - -  --- 
group of integers, has (extra) constant symbols 0, 1, 2, . . ., -1, -2, -3, . . . .. 
Observe that in this way 0 gets two names: the old one and one of the new 
ones. This is no problem, why should not something have more than one 
name? 

Exercises 

1. Write down an alphabet for the languages of the types given in Exercise 
1 of section 2.2 

2. Write down five terms of the language belonging to Exercise 1, (iii), (viii), 
Write down two atomic formulas of the language belonging to  Exercise 1, 
(vii) and two closed atoms for Exercise 1, (iii), (vi). 

3. Write down an alphabet for languages of types (3; 1,1,2; O), (-; 2; 0) and 
(1; -; 3). 
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4. Check which terms are free in the following cases, and carry out the 
substitution: 

(a) x for x in x = x, ( f )  x + w for z in Vw(x + z = n ) ,  
(b) y f o r x i n x = x ,  (g )  x + y for z in Vw(x + z = 0) A 

(c) x + y for y in z = 0, ~ Y ( Z  = x), 
(d) n + y f o r y i n 3 x ( y = x ) ,  (h) x + y f o r  z i n V u ( u = v )  -+ 

(e) x + y for z in Vz(z = 9). 
3w(w + x = b), 

2.4 Semantics 

The art of interpreting (mathematical) statements presupposes a strict sepa- 
ration between "language" and the mathematical "universe" of entities. The 
objects of language are symbols, or strings of symbols, the entities of math- 
ematics are numbers, sets, functions, triangles, etc. It is a matter for the 
philosophy of mathematics to reflect on the universe of mathematics; here 
we will simply accept it as given to us. Our requirements concerning the 
mathematical universe are, a t  present, fairly modest. For example, ordinary 
set theory will do very well for us. Likewise our desiderata with respect 'to 
language are modest. We just suppose that there is an unlimited supply of 
symbols. 

The idea behind the semantics of predicate logic is very simple. Following 
Tarski, we assume that a statement a is true in a structure, if it is actu$lly 
the case that a applies (the sentence "Snow is white" is true if snow actually 
is white). A mathematical example: "2 + 2 = $' is true in the structure of 
natural numbers (with addition) if 2 + 2 = 4 (i.e. if addition of the numbers 
2 and 2 yields the number 4). Interpretation is the art of relating syntactic 
objects (strings of symbols) and states of affairs "in reality". 

We will start by giving an example of an interpretation in a simple case. 
We consider the structure U = (Z, <, +, -, 0), i.e. the ordered group of inte- 
gers. 

The language has in its alphabet: 
predicatesymbols : =, L 
functionsymbols : P, M 
constantsymbol : n 

L(U) has, in addition to  all that, constant symbols m for all m E Z. We first 
interpret the closed terms of L(U); the interpretation t" of a term t is an 
element of Z. 

Roughly speaking, we interpret m as "its number", P as plus, M as minus. 
Note that we interpret only closed terms. This stands to  reason, how should 
one assign a definite integer to x? 

Next we interpret sentences of L(U) by assigning one of the truth values 
0 or 1. As far as the propositional connectives are concerned, we follow the 
semantics for propositional logic. 

4 1 )  = 0, 

v(t = s) 
0 else, 

A few remarks are in order. 

1. In fact we have defined a function v by recursion on cp. 
2. The valuation of a universally quantified formula is obtained by taking 

the minimum of all valuations of the individual instances, i.e. the value 
is 1 (true) iff all instances have the value 1. In this respect 'd is a gener- 
alisation of A. Likewise 3 is a generalisation of V. 

3. v is uniquely determined by U, hence v' would be a more appropriate 
notation. For convenience we will, however, stick to  just v. 

4. As in the semantics of propositional logic, we will write [cp]' for ~'(cp), 
and when no confusion arises we will drop the subscript U. 

5. It would be tempting to make our notation really uniform by writing 
it]' for t'. We will, however, keep both notations and use whichever 
is the most readable. The superscript notation has the drawback that it 
requires more brackets, but the I[ ]-notation does not improve readability. 

Examples. 

1. ( P ( P ( 2 , 3 ) , ~ ( 7 ) ) ) '  = ~ ( 3 , 3 ) ' +  ~ ( 7 ) '  = (2% +3') + (-7') = 2 + 3 + 
(-7) = -2, 

2. p=-I] = 0, since 2 # -1, 
-- 3. @ A i -+ L(%,m)] = 1, since [o = ill = 0 and [L(25, lo)] = 0; by the 

interpretation of the implication the value is 1, 
4. [Qx3y(L(x, y))] = min,(maxm[L(E,E))] 

[(fi,m)] = 1 for m > n, so for fixed n, maxm[L(n,m)] = 1, and hence 
min, mmaxm[L(5i,E)] = 1. 
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Let US now present a definition of interpretation for the general case. 
Consider U = (A, R1, . . . , Rn, F1 , .  . . , F,, {cili E I)) of a given similarity 
type (TI , .  . . , rn ;  a l ,  . .  . ,arn;  111). - 

The corresponding - language has predicate symbols x l ,  . . . , Rn, function 
symbols F 1 , .  . . , F ,  and constant symbols zi. L(U), moreover, has constant 
symbols a for all a E IUI. 

Definition 2.4.1. An interpretation of the closed terms of L(U) in U, is a 
mapping (.)" : T E R M ,  + \%I satisfying: 

(2) cp - - c, 
a" - - a ,  

(ii) F i ( t l ,  . . . , t,))" = F,(ty, . . . , t:), where p = ai. 

Definition 2.4.2. An interpretation of the sentences cp of L(U) in U, is a 
mapping l[.] a : S E N T  -+ {0,1), satisfying: 

In predicate logic there is a popular and convenient alternative for the 
valuation-notation: 
Notation. U + cp stands for = I. We say tha tup  is true, valid, in U" if 
U b cp. The relation + is called the satisfaction relation. 

So far we have only defined truth for sentences of L(U). In order to  extend 
k to arbitrary formulas we introduce a new notation. 
Of course, the same notation is available in propositional logic - there the 
role of U is taken by the valuation, so one could very well write v + cp for 
uvnv = 1 

Definition 2.4.3. Let FV(cp) = (21,. . . , zk) ,  then Cl(cp) := Vzl.. .zkp is 
the universal closure of cp (we assume the order of variables zi to be fixed in 
some way). 

Definition 2.4.4. (i) U + cp iff U k Cl(cp), 
(ii) + cp iff U + cp for all U (of the appropriate type), 
(iii) U + r iff U + + for all 11, E r, 
(iv) r + cp iff (U r * U p) ,  where r U {cp) consists of sentences. 

If U k a, we call U a model of a. In general: if U + r , we call U a 
?nodel of r. We say that cp is true if + p, cp is a semantic consequence of r if 
r cp i.e. cp holds in each model of r. Note that this is all a straight-forward 
generalisation of 1.2.4. 

If cp is a formula with free variables, say FV(cp) = {zl, .  . . , zk), then we 
say that cp is satisfied by a l l . .  . ,ak E /%I if U k cp[al,. . . ,Ek/zl , .  . . ,zk],cp 
is called satisfiable in 2l if there are a l ,  . . . , ak such that cp is satisfied by 
al, . . . , ak and cp is called satisfiable if it is satisfiable in some U. Note that cp 
is satisfiable in U iff U + 3z1 . . . zkcp. 

The properties of the satisfaction relation are in understandable and con- 
venient correspondence with the intuitive meaning of the connectives. 

Proof. Immediate from Definition 2.4.2. We will do two cases. 

(iv) U k cp + + @ [Icp --+ +In = m a 4 1  - [Icp]n,[I$l~~) = 1. SupposeU k cp, 
i.e. [Icp]" = 1, then clearly [+]" = 1, or U +. 
Conversely, let U cp + U I= +, and suppose U cp + 111, then 
[cp + $1" = max(1 - [[cp]%, [I+]") = 0. Hence [+]a = 0 and = 1. 
Contradiction. 

(vii) U + 3xcp(x) @ max{([[cp(~)]Ula E (%I) = 1 H there is an a E IUI such 
that [[cp(a]lU = 1 H there is an a E IUJ such that U + cp(E). 0 

Lemma 2.4.5 tells us that the interpretation of sentences in U runs parallel 
to the construction of the sentences by means of the connectives. In other 
Words, we replace the connectives by their analogues in the meta-language 
and interpret the atoms by checking the relations in the structure. 

Eg . ,  take our example of the ordered additive group of integers. U 
-Vx3y(x A P(y,  y)) H It is not the case that for each number n there exists 
an m such that n = 2m @ not every number can be halved in U. This clearly 
is correct, take for instance n = 1. 
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Let us reflect for a moment on the valuation of symbols; an 
0-ary relation is a subset of A@ = {@), i.e. it is 0 or (0) and these are, 
considered as ordinals, 0 or 1. So [[PIn = P, and p is a truth value. This makes 
our definition perfectly reasonable. Indeed, without aiming for a systematic 
treatment, we may observe that formules correspond to subsets of Ak, where 
k is the number of free variables. E.g. let FV(cp) = {zl, .  . . , zk), then we 
could stretch the meaning of [cp]n a bit by putting [cp]% = {(a l , . .  . , ak)IU k 

- - 
cp(Zl,. . . , ak)} = {(a l l .  . . , a,)I[cp(iZl,. . . , ak)]% = 1) It is immediately clear 
that applying quantifiers to cp reduces the "dimension", e.g. [3xP(x, y)]a = 

{alU + P ( ~ , z )  for some b), which is the projection of [P(x, y)] onto the 
y-axis. 

Exercises 

Let T = (N,  +, ., S, O ) ,  and L a language of type (-; 2,2,1; 1).  

(i) Give two distinct terms t in L such that tn = 5, 
(ii) Show that for each natural number n E N there is a term t such 

that tn = n, 
(iii) Show that for each n E N there are infinitely many terms t SUCH 

that tn = n. 

Let U be the structure of exercise 1 (v) of section 2.2. Evaluate ((7 + - 
0) ++ (i 4 7(7G v i ) )%.  (, 

- 
Let U be the structure of exercise 1 (viii). Evaluate ( ~ ( f i ) ~  -31)', (i- 

- ( - W ) ?  

Which cases of Lemma 2.4.5 remain correct if we consider formulas in 
general? 

For sentences a we have U + a or U + Ta. Show that this does not hold 
for cp with FV(cp) # 0. Show that not even for sentences + a or + 70 

holds. 

Show for closed terms t and formulas cp (in L(U)): 
k t = r n , ,  

U p( t )  ++ cp([[tBa) (We will also obtain this as a corollary to the 
Substitution Theorem, (2.5.11). 

Show that U cp + U + + for all U, implies cp + + $, but not vice 
versa. 

2.5 Simple Properties of Predicate Logic 

Our definition of validity (truth) was a straightforward extension of the 
valuation-definition of propositional logic. As a consequence formulas which 
are instances of tautologies are true in all structures U (exercise 1). So we 
can copy many results from sections 1.2 and 1.3. We will use these results 

a simple reference to propositional logic. 

The specific properties concerning quantifiers will be treated in this sec- 
tion. First we consider the generalisations of De Morgan's laws . 

Theorem 2.5.1. (i) k ~Vxcp ++ 3xlcp 
(ii) + 73xcp ++ Vx-y 
(iii) + Vxcp ++ 7 3 x - p  
(iv) 3xcp ++ + x y  

Proof. If there are no free variables involved, then the above equivalences are 
almost trivial. We will do one general case. 

(i) Let FV(Vxcp) = {zl, . . . , zk), then we must show 
U Vzl . . . zk(7Vxcp(x, z1,. . . , zk) ++ 3x7cp(x, zl,  . . . , zk)), for all U. 

- 
So we have to show U + lVxcp(x, El, . . . , Sik) ++ 3x7cp(xl Sill . . . , ak) 
for arbitrary a l ,  . . . , ak E IUJ. We apply the properties of+ as listed 
in Lemma 2.4.5: 

- U - W ~ c p ( ~ , a ~ ,  . . . , ak) e U Vxcp(x,Zl,. . . , Zk) e not for all 
b E IUI U k cp(b,Sil,.. . , a k )  e there is a b E IUI such that U k 

- 
~ ~ ( b ,  a l , .  . . , arc) H % k 3x7cp(x1 Zl, .. . ,Sin). 

(ii) is similarly dealt with, 
(iii) can be obtained from (i), (ii), 
(iv) can be obtained from (i), (ii). 0 

The order of quantifiers of the same sort is irrelevant, and quantification 
over a variable that does not occur can be deleted. 

Theorem 2.5.2. (i) k VxVycp ++ VyVxcp, 
(ii) + 3 x 3 ~ ~  ++ 3y3xcp1 
(iii) + Vxcp ++ cp if x g' FV(p) ,  
(iv) 3x9 ++ cp if x 6 FV(cp). 

Proof. Left to the reader 
0 

We have already observed that V and 3 are , in a way, generalisations of 
A and V. Therefore it is not surprising that V (resp. 3) distributes over A 
(resp.v). V (and 3) distributes over V (resp. A)  only if a certain condition is 
met. 
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Theorem 2.5.3. (i) + Vx(cp A $) * Vxcp A Vx$, 
(ii) + 3x(p  v $) * 3xcp v 3x$, 
(iii) + Vx(cp(x) V $) * Vxcp(x) v $ if x $ FV($), 
(iv) + 3x(cp(x) A $) ++ 3 x 4 2 )  A $ if x $! FV($). 

Proof. (i) and (ii) are immediate. 

(iii) Let FV(Vx(cp(x) V $)) = (21,. . . , zk). We must show that 
U /= Vzl . . . zk [Vx(cp(x) V $) * Vxcp(x) V $1 for all 2, so we show, us- 
ing Lemma 2.4.5, that '21 + Vx[cp(x,El,. . . ,Ek)) V $(El,. . . ,Zk)] @ % + 
Vxcp(x, El, . . . , Zk) V +(El, . . . , Ek) for all and all a l l .  . . , ak E IUl. 

Note that in the course of the argument a l ,  . . . , ak remain fixed, SO in 
the future we will no longer write them down. 

+ : % + Vxcp(x,-)V+(-) e % k Vxcp(x,-) or U $(-) H 
2.l + cp(b, -) for all b or U + $(-). 
If 9 + $ (-) , then also 2l + cp (z, -) V $ (-) for all b, and so 

+ Vxy(x,-) V $(-). If for all b % k cp(5,-) then 
a k cp(b,-) v $(- ) for all b, so U + 'v'x(cp(x,-) v $(-)). 
In both cases we get the desired result. 

+ : We know that for each b E I%( U cp(6, -) V $(-). * 
If U + $(-), then also 2 + Vxcp(x,-) V $(-), so we are done. 
If % $(-) then necessarily U + cp(b,-) for all b, so 
U + Vxcp(x, -) and hence U + Vxcp(x,-) V $(-). 

(iv) is similar. 0 

In the proof above we have demonstrated a technique for dealing wi tc the  
extra free variables zl ,  . . . , zk, that do not phy  an actual role. One chooses 
an arbitrary string of elements a l l . .  . , ak to substitute for the z,'s and keeps 
them fixed during the proof. So in future we will mostly ignore the extra 
variables. 

WARNING. Vx(cp(x) V $(x)) -+ Vxcp(x) V Vx$(x), and 
3x(p(x) A 3x$(x) + 3x(cp(x) A $(x)) are not true. 

One of the Cinderella tasks in logic is the bookkeeping of substitution, 
keeping track of things in iterated substitution, etc. We will provide a number 
of useful lemmas, none of them is difficult - it is a mere matter of clerical 
labour. 
A word of advice to  the reader: none of these syntactical facts are hard to 
prove, nor is there a great deal to be learned from the proofs (unless one is 
after very specific goals, such as complexity of certain predicates); the best 
procedure is to give the proofs directly and only to look at the proofs in the 
book in case of emergency. 

Lemma 2.5.4. (i) Let x and y be distinct variables such that x @ F V ( r ) ,  
then (t[s/xl) [rlyl = ( t [ r / ~ l ) [ s [ r / ~ l / x l ~  
(ii) let x and y be distinct variables such that x 6 FV(s)  and let t and s be 

free for x and Y in cp, then (cp[tlxl)[slYl = (cp[s l~ l ) [ t [ s l~ l lx l ,  
(iii) let $ be free for $ in cp, and let t be free for x in cp and $, then 

(cp[~l$l)[tlxl = ( c p ~ t l ~ l ) [ ~ [ t l ~ l l $ l l  
(iv) Let cp, $ be free for $1, $2 in o,let $ be free for $2 in cp, and let not 

occur in $7 then (~[cpI$ll)[$I$21 = (~[+I$2l)[cp[$I$2l/$ll. 

Proof. (i) Induction on t .  

(ii) Induction on cp. Left to the reader. 
(iii) Induction on cp. 
- cp =I or P distinct from $. Trivial. 
- cp = $. Then ($[$/$])[t/x] = $[t/x] and ($[t/x])[$[t/x]/$] = 

$[$[tlxll$l = $[tlxl. 
- cp = (PI 0 pa, -pl. Trivial. 
- cp = VYcp1. Then (VY . cpl [$l$l)[tlxl = (VY . cpl[$l$l)[tl~I = 

VY . ((PI [$l$l)[tlxl) i$=h. VY((cp1 [tIxl)[$[tlxl/$l) = 
((VYcpl) [tlxl) [$[tlxll$l. 
cp = 3 y p 1  Idem. 

(jv) Induction on a.  Left to the reader. 

We immediately get 

Corollary 2.5.5. (i) I f z # F V ( t ) , t h e n t [ E / x ]  =(t[z/x])[E/z], 
(ii) If z $ FV((p) and2 free forxin cp, then 

cp[Elxl = (cp[zlxl) IElzl. 
It  is possible to pull out quantifiers from formula. The trick is well- 

known in analysis: the bound variable in an integral may be changed. E.g. 
Jxdx + Jsin ydy = Jxdx + Jsinxdx = J(x + sinx)dx. In predicate logic we 
have a similar phenomenon. 

5.h.' indicates the use of the induction hypothesis 
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Proof. It suffices to consider cp with FV(cp) C (2). We have to show 
U k 3xcp[x/z] @ U 3ycp[y/z] for any '21. 

U + 3xcp[x/z] w U + (cp[x/z])[Z/z] for some a 
-+ U + cp[Z/z] for some a @ U k (cp[y/z]) [?i/z] for some a * U 3ycp[y/z]. 

The universal quantifier is handled completely similarly. 0 

The upshot of this theorem is that one can always replace a bound vari- 
able by a "fresh" one, i.e. one that did not occur in the formule. From this 
one easily concludes 

Corollary 2.5.7. Every formula is equivalent to one in which no variable 
occurs both free and bound. 

We now can pull out quantifiers: Vxcp(x) V Vx$(x) - Vxcp(x) V Vy$(y) 
and Vxcp(x) V Vy$(y) H Vxy(cp(x) V $(y)), for a suitable y. 

In order to handle predicate logic in an algebraic way we need the tech- 
nique of substituting equivalents for equivalents. 

Theorem 2.5.8 (Substitution Theorem). 
(i) t l  = t2 4 s[tl/x] = s [ t ~ / x ]  
(ii) t l  = t2 cp[tllx] * cp[talx]) 
(iii) I= (cp ++ $) --) (ff[cpl$l * ff[$/$l) 

Proof. It is no restriction to assume that the terms and formulas are closed. 
We tacitly assume that the substitutions satisfy the "free for" conditions. 

(i) Let U t l  = t2, i.e. ty = t t .  Now use induction on s.  
- s is a constant or a variable. Trivial. - 
- s = F(s l ,  . . . , s k )  Then s[ti/x] = F(sl[ti/x],  . . .) and (s[ti/x])" = 

F((s l  [ti])"/x, . . .). Induction hypothesis: (s j  [ t l l ~ ] ) ~  = (s j  [t2/x])", 
1 5 j 5 k. So (~ [ t l l x ] ) "  = ~( ( s l [ t l / x ] ) " ,  . . .) = 

F ( ( S ~ [ ~ ~ / X ] ) " ,  . . .) = (s[t,/x])". Hence 2l I= s[tl/x] = s[tz/x]. 
(ii) Let U t l  = t2, so trf' = t t .  We show U cp[tl/x] % U cp[t2/~] by 

induction on cp. 
- cp is atomic. The case of a propositional symbol (including I) is 

trivial. So consider cp = P ( s l , .  . . , sk ) .  u + P(s1, .  . . , sk)[ t l /x]  * 
k P(s l [ t l /x] ,  . . .) e ((sl[tl/x])", . . . , (sk[tl/x])" E P. BY (i) 

(sj[tl/x])" = ((s [t2/x])", j = 1, . . . , k. 
So we get ((s l  [tllx])", . . .) 
€ P @ . . . -3 U P(s1 , .  . .)[tz/x]. 

- cp = P i  V cp2, 91 A 92, cp1 -+ cp2, ~ c p 1 .  We consider the disjunction: 

9 I= (cplVcp2)[tll~I u 2 I= cpl[ t l l~I  o r 2  i= cpz[t1/x] 2. U cpl[t2/~] 
or k cp2[t2/xl '3 U k ((PI V cp2)[t2/xl. 
The remaining connectives are treated similarly. 

- cp = 3 ~ $ ,  cp = VY$. 
We consider the existential quantifier. U k (3y+) [tl 1x1 e 
2 b ~ Y ( $ [ ~ I / x ] )  * U k + [ t ~ / x ] [ ~ / y ]  for some a. 
BY 2.5.6 I= $ [ t l l ~ l [ Z l ~ l  @ U I= ( $ [ ~ l ~ l ) [ t l [ ~ l ~ l / ~ l .  Apply the 
induction hypothesis to $ [ ~ / y ]  and the terms t l  [z/ y], t2 [ ~ / y ] .  Observe 
that tl  and t2 are closed, so tl[Z/y] = tlandt2 = t2[Z/y]. We get 
U + $[ t2 /x] [~/y] ,  and hence U b 3y$[t2/x]. The other implication is 
similar, so is the case of the universal quantifier. 

(iii) Let U + cp u U k $. We show U k a[cp/$] e U + a[$/$] by induction 
on a. 
- a is atomic. Both cases a = $ and a # $ are trivial. 
- a = a1 0 a 2  (or l a l ) .  Left to the reader. 
- a = Vx . T. Observe that cp and $ are closed, but even if they were not 

then x could not occur free in cp, +. 
I= (Vx . T)[(P/$] @ I= VX(T[(P/$]). Pick an a E IUI, then U 

(7-[cpl~l)[Z/xl 2&" t= ( ~ [ ~ l ~ l ) [ c p [ ~ / ~ l / $ l  * a t= (WxI)[cp/$l Q 
t= 7-[ZlxI[$l$l * b 7-~~/xl[+[Z/xI/$l @ k (7-1$l$l)[~/xI. 

Hence U 21 a[cp/$] @ U + a[+/$]. 
The existential quantifier is treated similarly. 0 

Observe that in the above proof we have applied induction to "a[cp/$] for 
all cp", because the substitution formula changed during the quantifier case. 

Note that also the o changed, so properly we are applying induction to 
the rank (or we have to formulate the induction principle 2.3.4 a bit more 
liberal). 

Corollary 2.5.9. (i) [s[t/x]] = [s[l[tD/x]] 
( 4  Ucp[tlxlI = IIcp[ntB/xlI 

h o f  We apply the Substitution Theorem. Consider an arbitrary U. Note 
that = [t]] (by definition), so U + It] = t. Now (i) and (ii) follow 
immediately. 0 

In a more relaxed notation, we can write (i) and (ii)as 
b(t)l = Us(nt]l)kor a k s(t) = and Ucp(t)ll = IIcp(Ktll)Bl or 
3 I= 4 t )  - cp(!tll). 

Observe that ([t](= I[t]%) is just another way to write t". 

Proofs involving detailed analysis of substitution are rather dreary but, 
unfortunately, unavoidable. The reader may simplify the above and other 
Proofs by supposing the formulas involved to be closed. There is no real loss 
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in generality, since we only introduce a number of constants from L(%) and 
check that the result is valid for all choices of constants. 

We now really can manipulate formulae in an algebraic way. Again, write 
cp eq $ for k cp ++ $. 
Examples. 

1. Vxcp(x) -+ $ eq -+xcp(x) V $ eq 32(7cp(x)) V II, eq 3x(lcp(x) V $) eq 
3x(cp(x) -+ $), where x @ F V ( $ ) .  

2. Vxcp(x) -+ 3xcp(x) eq ~Vxp(x )~3xcp(x )  eq ~ x ( - ~ ( x ) v ~ ( x ) ) .  The formula 
in the scope of the quantifier is true (already by propositional logic), SO 

the formula itself is true. 

Definition 2.5.10. A formula cp is in prenex (normal) form if cp consists of 
a (possibly empty) string of quantifiers followed by an open (i.e. quantifier 
free) formula. We also say that cp is a prenex formula. 

Examples. 3xVy3z3v(x = z V y = z -+ v < y), VxVy3z(P(x, y) AQ(Y,  x) -+ 

P(z ,  2)). 
By pulling out quantifiers we can reduce each formula to a formula in 

prenex form. 

Theorem 2.5.11. For each cp there is a prenex formula $ such that 

kcp++$. 
Proof. First eliminate -+ and ++. Use induction on the resulting formula cp'. 

For atomic cp' the theorem is trivial. If cp' = cpl V 9 2  and cpi,cpa 
are equivale?t to prenex $1, q2 then = (Ql yl) . . . (Q, Yn)$l. $2 = 
( Q ~ Z I )  . . . (Q,z,)$~, where Q ~ ,  Q; are quantifiers and $I ,  q2 open. By The- 
orem 2.5.6 we can choose all bound variables distinct, taking care that no 
variable is both free and bound. Applying Theorem 2.5.3 we find 9' H 
( Q I Y ~ ) .  . . (Qnyn)(Qizl). . . (~Lzrn ) ($ l  V q 2 ) ,  SO we are done. 

The remaining cases are left to the reader. 0 

In ordinary mathematics it is usually taken for granted that the benev- 
olent reader can guess the intentions of the author, not only the explicit 
ones, but also the ones that are tacitly handed down generations of math- 
ematicians. Take for example the definition of convergence of a sequence: 
VE > 03nVm((an - an+,( < E ) .  In order to make sense out of this expression 
one has to add: the variables n , m  range over natural numbers. Unfortu- 
nately our syntax does not allow for variables of different sorts. So how do 
we incorporate expressions of the above kind? The answer is simple: we add 
predicates of the desired sort and indicate inside the formula the "nature" of 
the variable. 

Example. Let 2l = (R, Q, <) be the structure of the reals with the set of 
numbers singled out, provided with the natural order. The sentence 

0 := Vxy (x < y -+ 3z(Q(z) A X  < z A z < y)) can be interpreted in U : U a, 
and it tells us that the rationals are dense in the reals (in the natural order- 
ing). We find this mode of expression, however, rather cumbersome. There- 
fore we introduce the notion of relativised quantifiers. Since it does not matter 
whether we express informally " x is rational" by x E Q or Q(x), we will suit 
ourselves and any time choose the notation which is most convenient. We use 
(32 E Q) and (Vx E Q) as informal notation for "there exists an x in Q" and 
"for all x in Q". Now we can write a as Vxy(x < y -+ 3.2 E Q(x < zAz < y)). 
Note that we do not write (Vxy E R)(-), since: (1) there is no relation R 
in Q, (2) variables automatically range over IUI = R. 

Let us now define the relativisation of a quantifier properly: 

Definition 2.5.12. If P is a unary predicate symbol, then (Vx E P)cp := 
Vx(P(x) 4 cp), (3 s  E P)cp := (3x)(P(x) A cp). 

This notation has the intended meaning, as appears from 
2 (Vx E P)cp w for all a E P" U k cp[?i/x], U k (32 E P)cp H there 
exists an a E Pa such that U )= (P[E/x]. The proof is immediate. We will 
often use informal notations, such as (Vx > 0) or (3y # l ) ,  which can be cast 
into the above form. The meaning of such notations will always be evident. 
One can restrict all quantifiers to the same set (predicate), this amounts to 
passing to a restricted universe (cf. Exercise 11). 

It  is a common observation that by strengthening a part of a conjunction 
(disjunction) the whole formula is strengthened, but that by strengthening 
cp in -p the whole formula is weakened. This phenomenon has a syntactic 
origin, and we will introduce a bit of terminology to handle it smoothly. We 
inductively define that a subformula occurrence cp is positive (negative) in a :  

Definition 2.5.13. The notion "occurs positive (negative) in", cp <+ a 
(p <- a ) ,  is given by: 

(9  cp <+ cp 
(ii) T = c p ~ $ , $ v c p , c p ~ $ , $ ~ c p , $ - - t c p a n d r < + a + c p < + a  

(iii) T = ~ v $  , . . . ,  $ - + c p a n d r < - a + c p < - a  
(iv) T = V - - i $ a n d r < - a + c p < + a  
(v) r = c p + $ a n d r < + a + c p < - a  

(vi) r = ~ c p a n d r < - a = + c p < + a  
(vii) ~ = 7 c p a n d ~ < + a = + c p < - a  

(viii) T = 3x9, Vxcp and T <+ u + cp <+ u 
(ix) ~ = 3 x ( p , V x c p a n d ~ < - u * c p < - a  

We could have restricted ourselves to A,  -+ and V, but it does not cost 
much extra space to handle the other connectives . Moreover, in intuitionistic 
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logic the connectives are not interdefinable, so there we have to consider the 
full language. 

The following theorem makes the basic intuition clear: if a positive part of 
a formula increases in truth value then the formula increases in truth value 
(better: does not decrease in truth value). We express this role of positive 
and negative subformules as follows: 

Proof. Induction on a .  0 

Exercises 

1. Show that all propositional tautologies are true in all structures (of the 
right similarity type). 

3. Show that the condition on FV($) in exercise 2 is necessary. 

4. Show Vx3ycp +-+ 3yVxcp. 

5. Show t= cp + k Vxcp and 3x9. 

6. Show i+ 3xcp --+ Vxcp. 

7. Show 3xcp A 3x$ + 3x(p A $). 

8. Show that the condition on x, y in Theorem 2.5.6 is necessary. 

10. Show that the converses of exercise 9(i) - (iii) and (v) do not hold. 

11. Let L have a unary predicate P .  Define the relativisation aP of a by 
u p  := aforatomiccp, 

( c p ~ $ ) ~  := c p P ~ $ P ,  
('cp)P := 'cpP, 

( V X ~ ) ~  := Vx(P(x) -+ cp), 
( ~ X V ) ~  := 3x(P(x) A cp). 

Let U be a structure without functions and constants. Consider the struc- 
ture B with universe P" and relations which are restrictions of the rela- 
tions of 2, where P" # 8. Show U k aP ++ 93 k a for sentences a .  Why 
are only relations allowed in U? 

12. Let S be a binary predicate symbol. Show k +IyVx(S(y, x) ct l S ( x ,  x)) .  
(Think of "y shaves x" and recall Russell's barber's paradox). 

13. (i) Show that the condition "free for" cannot be dropped from 2.5.8. 
(ii) Show + t = s cp[t/x] * cp[s/x] . 
(iii) Show t= cp * $ ++ a[cp/$] *a[$/$] . 

15. Show + 3x(cp(x) + Vycp(y)). (It is instructive to think of p(x) as 'x 
drinks'). 

2.6 Identity 

We have limited ourselves in this book to the consideration of structures with 
identity, and hence of languages with identity . Therefore we classified '=' 
as a logical symbol, rather than a mathematical one. We can, however, not 
treat = as just some binary predicate, since identity satisfies a number of 
characteristic axioms, listed below. 

I1 Vx(x = x), 
I2 Vxy(x = y -, y = x), 
13 V x y z ( x = y A y = z - + x = z ) ,  

1 4  V X ~  . . . x , Y ~ .  . . yn(IX\ xi = Y i  --+ t(x1,. . . ,xn)  = t(y1,. . . ,yn)) ,  
z<n 

VXI ., . . XnY1 . . . Xi = Y i  --+  XI,. . . ,  xn) + (~ (91 , .  . . , yn))). 
i<n 
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One simply checks that Il, 12, I3 are true, in all structures U. For 1 4 ,  

observe that we can suppose the formulas to be closed. Otherwise we add 
quantifiers for the remaining variables and add dummy identities, e.g. 

Vn . . - t.axi . . . xnyi . . . yn(lX\ X. = y, A flC\ zk = t.x -+ t (x l , .  . . , xn) = 
z l n  z s k  

t(y1,. . . , y n ) )  Now (t(Si1, . . . ,a,))" defines a function t" on JUJn,  obtained 
from the given functions of U by - various substitutions, hence ai = bi(i 5 
n) =+ (t(Si1,. . . ,?in))" = t(b1,. . . , bn))? This establishes the first part of 1 4 .  

The second part is proved by induction on cp (using the first part): e.g. 
consider the universal quantifier case and let ai = bi for all i 5 n. 

i.h. 
U + Vucp(u, a l , .  - . . ,Sin) @ U k cp(E,El,. . . ,En) for - all c Q 

U cp@, bl, . . . , b,) for all c Q U k VU(P(U, bl, . . . , b,). 
- 

SO o k ( A  zi = Ti) =. u + v ~ c p ( ~ , a ~ ,  . . . ,a,) - V U ~ ( U , T ~ ,  . . . b,)) Q 

i l n  

for all a l ,  . . ., a,, bl, . . ., b,, hence U k VXI,. . . r,yl.  . . Yn(/& xi = Yi  -+ 

i s n  
(VUV(U,XI,. . . , xn )  -+ VUP(U,YI>. . . , ~ n ) ) .  

Note that (P (respectively t ) ,  in I4 can be any formula (respectively term), 
so I4 stands for infinitely many axioms. We call such an "instant axiom" an 
axiom schema . 

The first three axioms state that identity is an equivalence relation. I 4  

states that identity is a congruence with respect to  all (definable) relations. 
It is important to  realise that from the axioms alone, we cannot deter- 

mine the precise nature of the interpreting relation. We explicitly adopt the 
convention that "=" will always be interpreted by real equality. 

Exercises 

1. Show +Vx3y(x = y). 

2. Show k Vx(cp(x) o 3y(x = y A cp(y))) and 
k Vx(cp(x) t-) Vy(x = y 4 ~ ( y ) ) ) ,  where y does not occur in p(x).  

3. Show that cp(t) t-) Vx(x = t -+ cp(x)) if x @ FV(t ) .  

4. Show that the conditions in exercises 2 and 3 are necessary. 

5. Consider a1 = Vx(x x) ,  0 2  = Vxy(x N y 4 y - x),  03 = Vxyz(x 
yA y - t. --f x I: 2 ) .  Show that i f 2  k 01 Aa2Aa3,  where% = ( A , R ) ,  
then R is an equivalence relation. N.B. x N y is a suggestive notation for 
the atom z ( x ,  y). 

.", 
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7. Consider the schema ~5 : x - y -t (cp[x/z] --f cp[y/z]). Show that 
a l , a 5  + 0 2  A a3. N.B. if a is a schema, then A U {a) + cp stands 
for A u E /= p, where C consists of all instances of a .  

8. Derive the term-version of I4 from the formula version. 

2.7 Examples 

We will consider languages for some familiar kinds of structures. Since all 
languages are built in the same way, we shall not list the logical symbols. All 
structures are supposed to satisfy the identity axioms Il - 14. 
For a refinement see 1 2.10.2 . 
1. The language of identity. Type: (-; -; 0). 

Alphabet. 
Predicate symbol : = 

The structures of this type are of the form U = ( A ) ,  and satisfy 11, 12, 13. (In 
this language I4 follows from 11, 12, 13, cf. 2.10 Exercise 5). 

In an identity structure there is so little "structure", that all one can vir- 
tually do is look for the number of elements (cardinality). There are sentences 
A, and p, saying that there are at least (or at most) n elements (Exercise 3, 
section 3.1) 

An : = 3 ~ l . . . ~ n n ( \ ~ i  # y j , ( n >  I),  
i#j 

pn := Vyo.. . y , W  yi = pil (n > 0). 
i#j 

So 2 A, A pn iff JUI has exactly n elements. Since universes are not empty 
b 3x(x = x) always holds. 

We can also formulate "there exists a unique x such that . . . ". 

Definition 2.7.1. 3!xcp(x) := 3x(cp(x) A Vy(cp(y) -+ a: = Y)), where does 
not occur in cp(x). 

Note that 3!x(p(x) is an (informal) abbreviation. 

6. Let a 4  = Vxyz(x -- y A x N z -+ y I: z). Show that al, 0 4  0 2  A 03 
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2. The language of partial order. Type: (2; -; 0). 

Alphabet. 
Predicate symbols : =, 5 . 

Abbreviations x # y := TX = Y1 x < y : = x < y A x # y ,  
x > y : = y < x ,  x 2 y : = y < x ,  
x < y < z : = x 5 y A y < z .  

Definition 2.7.2. U is a partially ordered set(poset) if U is a model of 

Vxyz(x 5 y 5 z -+ x 5 z), 
b'xy(x 5 y < x ++x = y). 

The notation may be misleading, since one usually introduces the relation 
5 (e.g. on the reals) as a disjunction: x < y or x = y. In our alphabet 
the relation is primitive, another symbol might have been preferable, but we 
chose to observe the tradition. Note that the relation is reflexive: x 5 x. 

Partially ordered sets are very basic in mathematics, they appear in many 
guises. It  is often convenient to visualise posets by means of diagrams, where 
a 5 b is represented as equal or above (respectively to the right). One of 
the traditions in logic is to keep objects and their names apart. Thus we * 

speak of function symbols which are interpreted by functions, etc. However, 
in practice this is a bit cumbersome. We prefer to use the same notation 
for the syntactic objects and their interpretations, e.g if 3 = (R, 5 ) )  is the 
partially ordered set of reals, then 3 + Vx3y(x 5 y), whereas it should be 
something like V X ~ ~ ( X ~ ~ )  to distinguish the symbol from the relation. 

The '5' in 3 stands for the actual relation and the '5' in the sentence 
stands for the predicate symbol. The reader is urged to distinguish symbols 
in their various guises. 

We show some diagrams of posets. 

From the diagrams we can easily read off a number of properties. E.g. 
211 /= 3xVy(x 5 y)(Ui is the structure with the diagram of figure i), i.e. 21 
has a least element (a minimum). Uy + V x 4 y ( x  < 9). i.e. in Ug no element 
is strictly less than another element. 
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Definition 2.7.3. (i) U is a (lznearly or totally) ordered set if it is a poset 
and U /= Vxy(x _< y V y 5 x) (each two elements are comparable). 

(ii) U is densely ordered if U /= Vxy(x < y + 3z(x < z A z < y)) (between 
% any two elements there is a third one). 

% It  is a moderately amusing exercise to find sentences that distinguish be- 
i tween structures and vice versa. E.g. we can distinguish U3 and U4 (from 

the diagram above) as follows: in U4 there is precisely one element that is 
incomparable with all other elements, in Ug there are more such elements. 
Put  a (x )  :=Vy(y # x --+ i y  5 x A l x  5 y). Then 
!& /= Vxy(u(x) A a(y)  4 x = y), but Ug l'dxy(u(x) A a(y)  -+ x = y). 

3. The language of groups. Type: (-; 2, l ;  1). 

Alphabet. 
Predicate symbol: = 
Function symbols: .,-I 

Constant symbol: e 

Notation: In order to conform with practice we write t . s and t-' instead of 
.(t, s) and -'(t). 

Definition 2.7.4. 2l is a group if it is a model of 
Vxyz((x. y) . z = x . (y . z)), 
Vx(x. e = x A e , x  = x), 
Vx(x. x-' = e A x-' . x = e). 

When convenient, we will write t s  for t.s; we will adopt the bracket conven- 
tions from algebra. A group U is commutative or abelian if U Vxy(xy = yx). 

Commutative groups are often described in the language of additive 
groups, which have the following alphabet: 

Predicate symbol: = 
Function symbols: +, - 
Constant symbol: 0 

4. The language of plane projective geometry. Type: (2; -; 0) 

The structures one considers are projective planes, which are usually taken 
to consist of points and lines with an incidence relation. In this approach the 
type would be (1,1,2; -; 0). We can, however, use a more simple type, since 
a point can be defined as something that is incident with a line, and a line as 
something for which we can find a point which is incident with it. Of course 
this requires a non-symmetric incidence relation. 

We will now list the axioms, which deviate somewhat from the tradi- 
tional set. It  is a simple exercise to show that the system is equivalent to the 
standard sets. 

Alphabet. 
., Predicate symbols: I ,  =. 



84 2. Predicate Logic 2.7 Examples 85 

We introduce the following abbreviations: 
I I(x)  := 3y(xIy), A(y) := 3x(xIy). 

Definition 2.7.5. U is a projective plane if it satisfies 

yo : Vx(fl(x) '-3 4 x ) ) ,  
y1 : Vxy(fl(x) A n ( y )  4 3z(xIz A yIz) 
7 2  : Vuv(A(u) A A(v) -+ 3x(xIu A xIv)) , 
73 : ~ x y u v ( x I u  A yIu  A xIv A yIv 4 x = y V u = v), 
74 : ~ x ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ u ~ u ~ ( / X \  X , I U ~  A /X\ xi lu j  A T X ~ I U ~ ) .  

j=i- l(mod3) 3#t - l (mod3)  

i#j 

70 tells us that in a projective plane everything is either a point, or a line, yl 
and 72 tell us that "any two lines intersect in a point" and " any two points 
can be joined by a line", by 73 this point (or line) is unique if the given lines 
(or points) are distinct. Finally 7 4  makes projective planes non-trivial, in the 
sense that there are enough points and lines. 
n" = {a E IUI/U k IT($) and A" = {b  E IU1IU A($)) are the sets of 

points and lines of 2l; I" is the incidence relation on U. 
The above formalisation is rather awkward. One usually employs a two- 

sorted formalism, with P, Q,  R, . . . varying over points and !, m, n . . . varying 
over lines. The first axiom is then suppressed by convention. The remaining 
axioms become 

T; : VPQSC(PIC A QIe), 
7; : vem3P(PIe A P I m ) ,  
y; : VPQ!m(PI! A QIC A P I m  A QIm -+ P = Q V C = m),  

: ~ P ~ P ~ P ~ P ~ ! ~ C ~ J ? , ! ~ ( ~ X \  Pilli A /X\ Pilej A /X\ lP i Ie j ) .  
j=i- l(mod3) 3 f  z - l (mod3)  

i#j 
The translation from one language to the other presents no difficulty. The 
above axioms are different from the ones usually given in the course in pro- 
jective geometry. We have chosen these particular axioms because they are 
easy to  formulate and also because the so-called Duality principle follows im- 
mediately. (cf. 2.10, Exercise 6). The fourth axiom is an existence axiom, it 
merely says that certain things exist; it can be paraphrased diffently: there 
are four points no three of which are collinear (i.e. on a line). Such an ex- 
istence axiom is merely a precaution to make sure that trivial models are 
excluded. In this particular case, one would not do much geometry if there 
was only one triangle! 

5 .  The language of rings with unity. Type: (-; 2,2,1; 2) 

Alphabet. 
Predicate symbol: = 
Function symbols: +, ., - 
Constant symbols: 0, 1 

Definition 2.7.6. U is a ring (with unity) if it is a model of 

Vxyz((x+ y) + z  = x +  (y + z ) ) ,  
Vxy(x + y = y + x), 
VXY~( (XY)Z  = x ( Y ~ ) ) ,  
Vxyz(x(y + z) = xy + xz), 
Vx(x + 0 = x), 
Vx(x + (-5) = O), 
Vx(1. x = x A X .  1 = x), 
O # l  

A ring U is commutative if U 21 Vxy(xy = yx). 
A ring 2l is a division ring if U Vx(x # 0 -, 3y(xy = 1)). 
A commutative division ring is called a field . 

Actually it is more convenient to have an inverse-function symbol available 
in the language of fields, which therefore has type (-; 2,2,1,1; 2). 
Therefore we add to the above list the sentences 
Vx(x # 0 + x . x-' = 1 A X - '  . x = 1) and 0-I = 1. 

Note that we must somehow "fix the value of OV1", the reason will appear 
in 2.10, Exercise 2 . 
6. The language of arithmetic . Type (-; 2,2,1; 1).  

Alphabet. 
Predicate symbol: = 

Function symbols: +, ., S 
Constant symbol: 0 
( S  stands for the successor function n H n + 1). 

Historically, the language of arithmetic was introduced by Peano with the 
intention to describe the natural numbers with plus, times and successor up 
to an isomorphism. This in contrast to, e.g. the theory of groups, in which one 
tries to  capture a large class of non-isomorphic structures. It  has turned out, 
however, that Peano's axioms characterise a large class of structures, which 
we will call (lacking a current term) Peano structures. Whenever confusion 
threatens we will use the official notation for the zero-symbol: n, but mostly 
we will trust the good sense of the reader. 
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The last axiom schema is called the induction schema or the principle of from the point of view of the numerous applications of graphs it appears that 
mathematical induction. more liberal notions are required. 

- It  will prove handy to have some notation. We define: Examples. 
1 := S@), 2 := S(i), and in general n := S(n), 
x < y := 3 4 2  + S z  = y), 
x I y : = x < y V x = y .  

There is one Peano structure which is the intended model of arithmetic, 
namely the structure of the ordinary natural numbers, with the ordinary 
addition, multiplication and successor (e.g. the finite ordinals in set theory). 
We call this Peano structure the standard model %, and the ordinary natural 
numbers are called the standard numbers. 

One easily checks that ~ ' ) l  = n and 9l n < H n < m: by definition 

of interpretation we have 0')l = 0. Assume nfl = n , m g  = ( s (E) )~  = 

nq + 1 = n + 1. We now apply mathematical induction in the meta-language, 
and obtain ~ ' ) l  = n for all n. For the second claim see Exercise 13. In % 
we can define all kinds of sets, relations and numbers. To be precise we say 
that a k-ary relation R in T is defined by cp if (al ,  . . . , ak) E R * 9l 
c p ( ~ , .  . . , ak) .  An element a E I9ll is defined in 9l by cp if 9l cp@) % b = a ,  
or 9l Vz(cp(x) ++ x = a). 

Examples. h 

(a) The set of even numbers is defined by E(x)  := 3y(x = y + y). 
(b) The divisibility relation is defined by xly := 3z(xz = y). 
(c) The set of prime numbers is defined by P(x)  := Vyz(x = yz y = 1 V 

z = l ) A x # l .  

We can also consider graphs in which the edges are directed. A directed 
graph U = (A, R) satisfies only Vx7R(x, x). 

Examples. 

We can say that we have introduced predicates E, I and P by (explicit) 
definition. 

7. The language of graphs. 
We usually think of graphs as geometric figures consisting of vertices and 

edges connecting certain of the vertices. A suitable language for the theory 
of graphs is obtained by introducing a predicate R which expresses the fact 
that two vertices are connected by an edge. Hence, we don't need variables 
or constants for edges. If we drop the condition of irreflexivity then a "graph" is just a set with 

Alphabet. 
Predicate symbols: R,  = . 

a binary relation. We can generalise the notion even further, so that more 
edges may connect a pair of vertices. 

In order to treat those generalised graphs we consider a language with 

Definition 2.7.8. A graph is a structure U = (A, R) satisfying the following two unary predicates V, E and one ternary predicate C.  Think of V(x) as "x 

axioms: Vxy(R(x, y) -+ R(y, x)) is a vertex". E(x)  as "x is an edge", and C(x, z, y) as "z connects x and y" . 
VxyR(x, x) A directed multigraph is a structure = (A, V, E, C)  satisfying the following 

axioms: vx(V(x) k +(x)), 
This definition is in accordance with the geometric tradition. There are ele- VXY~(C(X,  z , ~ )  + V(X) A V(Y) A E(z)) .  
ments, called vertices, of which some are connected by edges. Note that two The edges can be seen as arrows. By adding the symmetry condition, 
vertices are connected by at most one edge. Furthermore there is no (need Vxyz(C(x, z, y) -+ C(Y, z, x)) one obtains plain multigraphs. 
for an) edge from a vertex to itself. This is geometrically inspired, however, 
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Examples. 

Remark: The nomenclature in graph theory is not very uniform. We have 
chosen our formal framework such that it lends itself to treatment in first- 
order logic. 

For the purpose of describing multigraphs a two-sorted language (cf. ge- 
ometry) is well-suited. The reformulation is left to the reader. 

7. Consider the language of groups. Define the properties: (a) x is idempo- 
tent; (b) x belongs to the centre. 

8. Let U be a ring, give a sentence a such that U + a e U is an integral 
domain (has no divisors of zero). 

9. Give a formula a (x)  in the language of rings such that U + a (a )  w the 
principal ideal (a) is prime (in U). 

10. Define in the language of arithmetic: (a) x and y are relatively prime; (b) 
x is the smallest prime greater than y; (c) x is the greatest number with 
22 < y. 

11. a := Vxl. .  .xn3y - 1 . .  . y,cp and T := 3yl .. . y,$ are sentences in a 
language without identity, function symbols and constants, where cp and 
$ are quantifier free. Show: + a e a holds in all structures with n 
elements. + T e T holds in all structures with 1 element. 

Exercises 

1. Consider the language of partial order. Define predicates for (a) x is the 
mmimum; (b) x is mmimal; (c) there is no element between x and y; 
(d) x is an immediate successor (respectively predecessor) of y; (e) z is . . 
the infimum of x and y. 

Give a sentence a such that Uz + a and U4 + 70 (for Ui associated to 
the diagrams of p.82). 

Let U1 = (N, 5 )  and U2 = (El <) be the ordered sets of natural, re- 
spectively integer, numbers. Give a sentence a such that U1 a and 
U2 + l a .  DO the same for U2 and 23 = ((Q, <) (the ordered set of ra- 
tionals). N.B. a is in the language of posets; in particular, you may not 
add extra constants, function symbols, etc., defined abbreviations are of 
course harmless. 

Let a = 3xVy(x 5 y V y 5 x). Find posets U and 23 such that U + a and 
23 + -0. 

Do the same for a = Vxy3z[(x < z A y 5 z) V (z < x A z < y)]. 

Using the language of identity structures give an (infinite) set r such t 

that U is a model of r iff U is infinite. 

12. Monadic predicate calculus has only unary predicate symbols (no iden- 
tity). Consider U = (A, R1,.  . . , &) where all Ri are sets. Define a - 
b := a E Ri w b E Ri for all i < n. Show that - is an equivalence 
relation and that - has a t  most 2, equivalence classes. The equivalence 
class of a is denoted by [a]. Define B = A/ - and [a] E Si H a E Ri, 23 = 

(B, S1,.  . . , S,). Show U + a 23 + a for all a in the corresponding 
language. For such a show + a w U + a for all U with a t  most 2, ele- 
ments. Using this fact, outline a decision procedure for truth in monadic 
predicate calculus. 

13. Let '9t be the standard model of arithmetic. Show '9t 5i < Ei @ n < m. 

14. Let U = (N, <) and 23 = (N, A),  where n A m iff (i) n < m and n,  m 
both even or both odd, or (ii) if n is even and m odd. Give a sentence a 
such that U + a and C + l a .  

15. If (A, R)  is a projective plane, then (A, R) is also a projective plane (the 
dual plane), where R is the converse of the relation R. Formulated in 
the two sorted language: if (Ap, AL, I) is a projective plane, then so is 
( 4 ,  AP, f)). 
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2.8 Natural Deduction 
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We extend the system of section 1.5 to predicate logic. For reasons similar 
to the ones mentioned in section 1.5 we consider a language with connectives 
A, -+, I and V. The existential quantifier is left out, but will be considered 
later. 

We adopt all the rules of propositional logic and we add 

where in V I  the variable x may not occur free in any hypothesis on which 
cp(x) depends, i.e. an uncancelled hypothesis in the derivation of ~ ( x ) .  In V E  
we, of course, require t to be free for x. 

V I  has the following intuive explanation: if an arbitrary object x has 
the property p ,  then every object has the property cp. The problem is that 
none of the objects we know in mathematics can be considered "arbitrary". 
So instead of looking for the "arbitrary object" in the real world (as far as 
mathematics is concerned), let us try to find a syntactic criteria. Consider 
a variable x (or a constant) in a derivation, are there reasonable grouns for 
calling x "arbitrary" ? Here is a plausible suggestion: in the context of the 
derivations we shall call x arbitrary if nothing has been assumed concerning 
x. In more technical terms, x is arbitrary at its particular occurrence in a 
derivation if the part of the derivation above it contains no hypotheses con- 
taining x free. 

We will demonstrate the necessity of the above restrictions, keeping in 
mind that the system at least has to be sound, i.e. that derivable statements 
should be true. 

Restriction on VI: 

The V introduction at  the first step was illegal. 

So t- 0 = 0 -+ Vx(x = O), but clearly 0 = 0 -+ Vx(x = 0) (take any 
structure containing more than just 0). 

Restriction on YE: 

The V elimination at  the first step was illegal. 

Note that y is not free for x in -Vy(x = y). The derived sentence is clearly 
not true in structures with at  least two elements. 

We now give some examples of derivations. We assume that the reader 
has by now enough experience in calcelling hypotheses, so that we will not 
longer indicate the cancellations by encircled numbers. 

Let x 6 FV(p)  

In the righthand derivation V I  is allowed, since x # FV(cp), and VE is 
applicable. 

Note that V I  in the bottom left derivation is allowed because x # FV(cp), 
for at  that stage cp is still (part of) a hypothesis. 

The reader will have grasped the technique behind the quantifier rules: 
reduce a Vxcp to cp and reintroduce V later, if necessary. Intuitively, one makes 
the following step: to show " for all x . . . x . . ." it suffices to show ". . . x . . . " 
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for an arbitrary Z. The latter statement is easier to handle. Without go- 
ing into fine philosophical distinctions, we note that the distinction '(for all 
x . . . x . . . "  - "for an arbitrary x . . . x . .  . "  is embodied in our system by 
means of the distinction." quantified statement" - " free variable statement". 

The reader will also have observed that under a reasonable derivation 
strategy, roughly speaking, elimination precedes introduction. There is a 
sound explanation for this phenomenon, its proper treatment belongs to proof 
theory, where normal derivations (derivations without superfluous steps) are 
considered. See Ch. 6. For the moment the reader may accept the above men- 
tioned fact as a convenient rule of thumb. 

We can formulate the derivability properties of the universal quantifier in 
terms of the relation k: 

r F cp(x) + T k Vxcp(x) if x @ FV($J) for all $J E r 
r F Vxcp(x) + r I- cp(t) if t is free for x in cp. 

The above implications follow directly from (VI) and (YE). 

Our next goal is the correctness of the system of natural deduction for 
predicate logic. We first extend the definition of +. 

Definition 2.8.1. Let I' be a set of formulae and let {xil, x iz , .  . .) = 

U{FV($) ($J  E ru{a ) ) .  If a is a sequence ( a l ,  az . . .)) of elements (repetitions 
allowed) of I%\, then r ( a )  is obtained from T by replacing simultaneously in 
all formulas of r the xz3 by ZJ( j  5 1) (for r = ($1 we write $(a)). We now 
define 

(i) U + r ( a )  if U + $J for all $J E r ( a )  
(ii) r a if U + r ( a )  + U a (a )  for all U, a. 

In case only sentences are involved, the definition can be simplified: 
r + u i f U + T + U k u f o r a l l U .  
If r = 0, we write /= u.  

We can paraphrase this definition as : r + a, if for all structures U and 
all choices of a ,  a ( a )  is true in U if all hypotheses of T(a)  are true in 2. 

Now we can formulate 

L e m m a  2.8.2 (Soundness).  I- k u + r k a 

Proof. By definition of r t- a is suffices to show that for each derivation 
with hypothesis set r and conclusion a T k a .  We use induction on D (cf. 
1.6.1 and exercise 2). 
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Since we have cast our definition of satisfaction in terms of valuations, 
which evidently contains the propositional logic as a special case, we can 
copy the cases of (1) the one element derivation, (2) the derivations with a 
ppos i t iona l  rule at last step, from Lemma 1.6.1 (please check this claim). 

So we have to treat derivations with (VI) or (YE) as the final step. 

P I )  27 V has its hypotheses in r and x is not free in T. 
cp(x) Induction hypothesis: T cp(x), i.e. U r ( a )  3 

Vxcp(x) U + (cp(x))(a) for all U and all a .  
It  is no restriction to suppose that x is the first of the free variables in- 

volved (why?). So we can substitute Zl for x in cp. Put a = (al ,  al).Now we 
have: 

for all a1 and a' = (az, . . .) U k r ( a l )  + U k cp(G)(a1), so 
for all a' U k r ( a ' )  + (U b (cp(Zl))(af) for all a1 , so 
for all a'U k r ( a l )  + U (Vxcp(x))(al). 

This shows r /= Vxcp(x). (Note that in this proof we have used Vx(a -+ 

~ ( x ) )  -+ ( a  -+ VXT(X)), where x @ FV(u) ,  in the metalanguage. Of course 
we may use sound principles on the metalevel). 

WE) D Induction hypothesis: T + Vxcp(x), 
Vxcp(x> i.e.U /= r ( a )  + 2.l /= (Vxcp(x))(a), 

~ ( t )  for all a and U. 
So let U r ( a ) ,  then U + cp(6)(a) for all b E IU(. In particular we may 

take t [ ~ / z ]  for 6, where we slightly abuse the notation; since there are finitely 
many variables zl ,  . . . , z,, we only need finitely many of the ai's, and we 
consider it therefore an ordinary simultaneous substitution. 
!2l + (cp[a/z])[t[a/z]/x], hence by Lemma 2.5.4, U b (cp[t/x])[a/z] or 

I= (cp(t))(a). 0 

Having established the soundness of our system, we can easily get non- 
derivability results. 

Examples. 

1. y Vx3ycp -, 3yvxcp. 
Take U = ((0, I), ((0, I ) ,  ( 1 , O ) ) )  (type (2; -; 0)) and consider 
p := P(x,  y), the predicate interpreted in U. 
U Vx3yP(x, y), since for 0 we have (0 , l )  E P and for 1 we have 
( L O )  E P. 
But, U 3yVxP(x, y), since for 0 we have (0,O) @ P and for 1 we have 
( L l )  @ p. 
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A 3 

Consider 93 = (R, P )  with P = {(a, b) ( la - bl 15 1). Show r F cp + rt kt cpt, where tt stands for "derivable without using 
, (VI) or (YE)" (does the converse hold?) 

Conclude the consistency of predicate logic. 
Although variables and constants are basically different, they share some Show that predicate logic is conservative over propositional logic (cf. 

properties. Both constants and free variables may be introduced in deriva- definition 3.1.5). 
tions through VE, but only free variables can be subjected to VI, - that is free 
variables can disappear in derivations by other than propositional means. It  - - - - 
follows that a variable can take the place of a constant in a derivation but in 
general not vice versa. We make this precise as follows. 

Theorem 2.8.3. Let x be a variable not occurring in r or p. 

(i) r k cp + r [x /c]  t- cp[x/c]. 
(ii) If c does not occur in I', then r k cp(c) + r t- Vxcp(x). 

Proof. (ii) follows immediately from (i) by VI. (i) Induction on the deriva- 
tion of r I- cp. Left to the reader. 0 

Observe that the result is rather obvious, changing c to x is just as harm- 
less as colouring c red - the derivation remains intact. 

Exercises 

1. Show: (i) k Vx(cp(x) -+ 11,(~)) -+ (Vxcp(x) -+ VX@(X)), 
(ii) k Vxcp(x) 4 -VXT(P(X), 

(iii) t Vxcp(x) 4 Vzcp(z)i f zdoesnotoccurincp(x) , 
(iv) k VxVycp(x, Y) -+ VyVxcp(x, Y), 
(v) VxVycp(x, Y )  -+ Vxcp(x1 x), 
(vi) k Vx(cp(x) A 11,(x)) ++ Vxcp(x) A Vx11,(~), 
(vii) k Vx(cp -+ 11,(x)) - ((P -+ VX+(X)). 

2. Extend the definition of derivation to the present system (cf. 1.5.1). 

3. Show (s(t) [ ~ l x ] ) "  = (s((t[~i/x])") [z~x])'. 

2.9 Adding the Existential Quantifier 

Let us introduce 3x9 as an abbreviation for - V x y  (Theorem 2.5.1 tells us 
that there is a good reason for doing so). We can prove the following: 

Lemma 2.9.1. (i) cp(t) k 3 x 4 ~ )  (t free for x in cp) 
( 4  r, cp(x) t- 11, + r,3xcp(x) t- 11, 

if x is not free in 11, or any formula of F. 

Proof. (i) 

(ii) 

I 
- RAA 

4. Show the inverse implications of 2.8.3. 11, 

5. Assign to each atom P(t1, .  . . , t,) a proposition symbol, denoted by P. 
Now define a translation t from the language of predicate logic into the 1 E~lanatzon.  The subderivation top left is the given one; its hypotheses are 
language of propositional logic by I in r U {cp(x)) (only cp(x) is shown). Since p(x) (that is, all occurrences of it) 

P( t l ,  . . . , t,))t := P and l t : = l  is cancelled and x does not occur free in F or $, we may apply VI. From the 

(cpO+)t := cpt O + t  . derivation we conclude that I', 3 x 4 s )  t- $. 
(,cp)t := -cpt 
(Vzcp)t := cpt We can compress the last derivation into an elimination rule for 3: 
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It  is time now to  state the rules for V and 3 with more precision. We want 
% to allow substitution of terms for some occurrences of the quantified variable 

in ( Y E )  and ( 3 E ) .  The following example motivates this. 

with the conditions: x is not free in $, or in a hypothesis of the subderivation 
of Q, other than cp(x). 

This is easily seen to be correct since we can always fill in the missing The result would not be derivable if we could only make substitutions for 

details,as shown in the preceding derivation. all occurrences at the same time. Yet, the result is evidently true. 
The proper formulation of the rules now is: 

cp(t) 
By (i) we also have an introduction rule: - 3I for t free for x in cp. 

3 x  P ( x )  
Examples of derivations. 

We will also sketch the alternative approach, that of enriching the language. 
I 

Theorem 2.9.2. Conszder predzcate logzc wzth the full language and rules 
for all connectzves, then t 3x(p(x)  ++ - V X ~ ( P ( X ) .  1 1 f Z 

with the appropriate restrictions. 

Exercises 

Proof. Compare 1.6.3. 
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2.10 Natural Deduction and Identity 

We will give rules, corresponding to the axioms II - I4 of section 2.6. 

where y l , .  . . , yn are free for XI , .  . . , xn  in (P. Note that we want to allow 
substitution of the variable yi(i 5 n) for some and not necessarily all oc- 
currences of the variable xi. We can express this by formulating R14 in the 
precise terms of the simultaneous substitution operator: 

Example. 
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The above are three legitimate applications of R14 having three different con- 
clusions. 

The rule RI1 has no hypotheses, which may seem surprising, but which 
certainly is not forbidden. 

The rules R14 have many hypotheses, as a consequence the derivation 
trees can look a bit more complicated. Of course one can get all the benefits 
from R14 by a restricted rule, allowing only one substitution at the time. 

Lemma 2.10.1. k Ii for i = 1,2,3,4.  

Proof Immediate. 0 

We can weaken the rules R14 slightly by considering only the simplest 
terms and formulae. 

Lemma 2.10.2. Let L be of type ( r l , .  . . , r n ; a l , .  . . ,a,; k).  If the rules 

and 

are given, then the rules R14 are derivable. 

Proof We consider a special case. Let L have one binary predicate symbol 
and one unary function symbol. 

(i) We show x = y t- t(x) = t(y) by induction on t. 
(a) t(x) is a variable or a constant. Immediate. 
(b) t(x) = f (s(x)). Induction hypothesis: x = y k s(x) = s(y) 
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(ii) We show Z = ij, cp(Z) t cp(y') 
(a) cp is atomic, then cp = P( t ,  s). t and s may (in this example) contain 
at most one variable each. So it suffices to consider 
51 = y1,22 = ~ z ~ P ( t ( x l , x 2 ) , ~ ( ~ 1 , x 2 ) )  t- ~( t (y l , y2 ) , s (Y l ,~2 ) )1  
(i.e.P(t [XI, x2/z1, zz], . . .). 

Now we get, by applying -+ E twice, from 

[xi = YI] [x2 = ~ 2 1  [p(51, x2)1 

and the following two instances of (i) 

X l  = y1 x2 = Y2 21 = y1 5 2  = 92 

V and V' , 

the required result, (P(sz ,  t,) = P(sy ,  ty)).  

SO x1 = y1,x2 = Y2 t- P(sx,tz) -' P(sy1ty) 
where s, = s(x1, xz), sy = s(y1, yz) 

tz = t(x1, x2), ty = t(y1, ~ 2 ) .  

(b) cp = a -+ T. 

Induction hypotheses: Z = 6 a($ t a(?) 
Z =  Y;T(.') I- T($ 

.'= y' b(y31 

ID 

a(Z) 4 T(Z) 42) 

(c) cp = f~ A T,  left to  the reader. 

Induction hypothesis: Z = ij, +(z, Z) t- +(z, f) 

So Z = y', Vz+(z, Z) t- Vz$(z, ij). 
This establishes, by induction, the general rule. 

Exercises 

1. Show that Vx(x = x), Vxyz(x = y A z = y -+ x = z) I- I 2  A I3 (using 
predicate logic only). 

2. Show t 3x(t = x) for any term t .  Explain why all functions in a structure 
are total (i.e. defined for all arguments), think of 0-l. 

5. Show that in the language of identity 11, I z ,  13 t- 14. 

6. Prove the following Duality Principle for projective geometry (cf. section 
2.7, definition 2.7.5): If r t cp then also r t ipd, where r is the set of 
axioms of projective geometry and cpd is obtained from cp by replacing 
each atom xIy by yIx. (Hint: check the effect of the translation d on the 
derivation of cp from r ) .  
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Gothic Alphabet 

3.1 The Completeness Theorem 

Just as in the case of propositional logic we shall show that 'derivability' and 
'semantical consequence' coincide. We will do quite a bit of work before we 
get to the theorem. Although the proof of the completeness theorem is not 
harder than, say, some proofs in analysis, we would advise the reader to read 
the statement of the theorem and to  skip the proof at the first reading and 
to return to it later. It  is more instructive to go to the applications and it 
will probably give the reader a better feeling for the subject. 

The main tool in this chapter is the 

Lemma 3.1.1 (Model Existence Lemma). If r is a consistent set of 
sentences, then r has a model. 

A sharper version is 

Lemma 3.1.2. Let L have cardinality K .  If r is  a consistent set of sentences, 
then r has a model of cardinality 5 K .  

From 3.1.1 we immediately deduce Godel's 

Theorem 3.1.3 (Completeness Theorem). r k cp w r cp. 

We will now go through all the steps of the proof of the completeness theo- 
rem. In this section we will consider sentences, unless we specifically mention 
non-closed formulas. Furthermore ' t-' will stand for 'derivability in predicate 
logic with identity'. 

Just as in the case of propositional logic we have to construct a model and 
the only thing we have is our consistent theory. This construction is a kind of 
Baron von Miinchhausen trick; we have to pull ourselves (or rather, a model) 
out of the quicksand of syntax and proof rules. The most plausible idea is to 
make a universe out of the closed terms and to define relations as the sets of 
(tuples of) terms in the atoms of the theory. There are basically two things 
we have to take care of: (i) if the theory tells us that 3xcp(x), then the model 
has to make 3xcp(x) true, and SO it has to exhibit an element (which is in this 
case a closed term t) such that cp(t) is true. This means that the theory has 
to  prove cp(t) for a suitable closed term t. This problem is solved in so-called 
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Henkin theories. (ii) A model has to decide sentences, i.e. it has to say a or 
70 for each sentence a .  As in propositional logic, this is handled by maximal 
consistent theories. 

Definition 3.1.4. (i) A theory 11 T is a collection of sentences with the 
property T t cp + cp E T (a theory is closed under derivability). 

(ii) A set T such that T = {cplr t- cp) is called an axiom set of the theory T .  
The elements of T are called axioms. 

(iii) T is called a Henkin theory if for each sentence 3xcp(x) there is a constant 
c such that 3 x 4 ~ )  4 cp(c) E T (such a c is called a witness for 3xcp(x). 

Note that T = {a(r  I- a) is a theory. For, if T t cp, then 01,. . . , a k  I- cp 
for certain ai with r t- a,. 

V1 D2 . . . Vk From the derivationsD1,. . . , Vk of T k a l l .  . . , 
n1 02 . . . a k  r t a k  and V of 01,. . . , f fk  t cp a derivation 

V of r t cp is obtained, as  indicated. 

Definition 3.1.5. Let T and TI be theories in the languages L and L'. 
(i) T' is an extension of T if T C TI, 
(ii) T' is a conservative extension of T if TI n L = T (i.e. all theorems of 

T' in the language L are already theorems of T).  

Example of a conservative extension: Consider propositional logic P in 
the language L with + , A , I , 
t, , 7 .  Then Exercise 2, section 1.6, tells us that P' is conservative over P. 

Our first task is the construction of Henkin extensions of a given theory 
T ,  that is to say: extensions of T which are Henkin theories. 

Definition 3.1.6. Let T be a theory with language L. The language L* 
is obtained from L by adding a constant c, for each sentence of the form 
3xcp(x), a constant c, . T* is the theory with axiom set 
T U {3xcp(x) 4 cp(c,)( 3xcp(x) closed, with witness c,}. 

Lemma 3.1.7. T* is conservative over T.  

Proof. (a) Let 3xp(x) + p(c) be one of the new axioms. Suppose r ,  3xcp(x) --t 
cp(c) t $, where $ does not contain c and where r is a set of sentences, none 
of which contains the constant c. We show r t- $ in a number of steps. 

1. r t ( 3 x 4 ~ )  4 cp(c)) --t $3 

2. r k (3xcp(x) 4 cp(y)) --+ +, where y is a variable that does not occur in 
the associated derivation. 2 follows from 1 by 2.8.4. 
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3. r t Vy[(3xcp(x) --+ cp(y)) + $1. This application of (VI) is correct, since 
c did not occur in r .  

4. r k 3y(3xcp(x) + cp(y)) -+ $, (cf. example of 2.9). 
5. r t ( 3 x 4 ~ )  4 3ycp(y)) --t $, (2.9 Exercise 2.9). 
6. I- 3xcp(x) gycp(~). 
7. r t $, (from 5,6). 

(b) Let T* I- $ for a $ E L. By the definition of derivability T U 

{al, . . . ,a,) k $, where the ai are the new axioms of the form 3xcp(x) -+ 

cp(c). We show T t $ by induction on n. For n = 0 we are done. Let 
T u {a l , .  . . , a,+l) F $. Put r' = T u {al , .  . . ,a,}, then T1,an+l t 11, 
and we may apply (a). Hence T U {al,. . . , a,) t $. Now by induction 
hypothesis T t- $. 

Although we have added a large number of witnesses to T I  there is no 
evidence that T* is a Henkin theory, since by enriching the language we also 
add new existential statements 3xr(x) which may not have witnesses. In or- 
der to overcome this difficulty we iterate the above process countably many 
times. 

Lemma 3.1.8. Define To := T;Tn+l := (Tn)*; T, := ~{T, ln  2 0). Then 
T, is a Henkin theory and it is conservative over T .  

Proof. Call the language of T, (resp. T,) L, (resp. L,). 

(i) T, is convervative over T.  Induction on n.  
(ii) T, is a theory. Suppose T, k a, then cpo,. . . , cpn  I- a for certain 

90 , .  . . ,pn E Tw For each i < n cpi E Tm, for some mi. Let m = 

max{mili 5 n). Since Tk Tk+l for all k, we have Tm, C T,(i 5 n). 
Therefore Tm k a .  Tm is (by definition) a theory, so a E Tm C T,. 

(iii) T, is a Henkin theory. Let 3xp(x) E L,, then lxcp(x) E L, for some n. 
By definition 3xcp(x) 4 cp(c) E T,+l for a certain c. So 3xcp(x) --+ cp(c) E 
rn 
1,. 

(iv) T, is conservative over T. Observe that T, t a if T, k a for some n 
and apply (i). 

As a corollary we get: T, is consistent if T is so. For suppose T, in- 
consistent, then T, FI. As T, is conservative over T (and IE L) T tl. 
Contradiction. 

Our next step is to extend T, as far as possible, just as we did in propo- 
sitional logic (1.5.7). We state a general principle: 

L e m m a  3.1.9 (Lindenbaum). Each consistent theory is contained in a 
m&mally consistent theory. 



106 3. Completeness and Applications 3.1 The Completeness Theorem 107 

Proof. We give a straightforward application of Zorn's Lemma. Let T be 
consistent. Consider the set A of all consistent extensions TI of T ,  partially 
ordered by inclusion. Claim: A has a maximal element. 

1. Each chain in A has an upper bound. Let {Tili E I) be a chain. Then 
T' = UTi is a consistent extension of T containing all Ti's (Exercise 2). 
So T' is an upper bound. 

2. Therefore A has a maximal element Tm (Zorn's lemma). 
3. Tm is a maximally consistent extension of T .  We only have to show: 

Tm & T' and T' E A, then Tm = T'. But this is trivial as Tm is maximal 
in the sense of C. Conclusion: T is contained in the maximally consistent 
theory Tm. 0 

Note that in general T has many maximally consistent extensions. The 
above existence is far from unique (as a matter of fact the proof of its existence 
essentially uses the axiom of choice). 

We now combine the construction of a Henkin extension with a maximally 
consistent extension. Fortunately the property of being a Henkin theory is 
preserved under taking a maximally consistent extension. For, the language 
remains fixed, so if for an existential statement 3xcp(x) there is a witness c 
such that 3xcp(x) -, cp(c) E T ,  then trivially, 3xcp(x) -+ cp(c) E Tm. Hence 

Lemma 3.1.10. An extension of a Henkin theory with the same language is 
again a Henkin theory. 

We now get to the proof of our main result. 

Lemma 3.1.11 (Model Existence Lemma). If r is consistent, then r  
has a model. 

Proof. Let T = {a(r t- a) be the theory given by r. Any model of T is, of 
course, a model of r. 

Let Tm be a maximally consistent Henkin extension of T (which exists by 
the preceding lemmas), with language L,. 

We will construct a model of Tm using T, itself. At this point the reader 
should realise that a language is, after all, a set, that is a set of strings of 
symbols. So, we will exploit this set to build the universe of a suitable model. 

1. A = {t E Lmlt is closed). 
2. For each function symbol 7 we define a function f̂  : Ak -+ A by 

f(t1 , . . . A )  :=f ( t1 , . . . , t ,& 
3. For each predicate symbol P we define a relation P AP by (tl ,  . . . , t,) E 

PHT, I- ~ ( t  l , . . . , t p ) .  
4. For each constant symbol c we define a constant t := c. 

Although it looks as if we have created the required model, we have to 
improve the result, because '=' is not interpreted as the real equality. We can 
only assert that 

(a) The relation t - s defined by Tm t t = s for t ,  s E A is an equivalence 
relation. By lemma 2.10.1 I l , I 2 ,  I3 are theorems of Tm, so Tm I- Vx(x = x), 
and hence (by QE) Tm t- t = t, or t t. Symmetry and transitivity follow in 
the same way. 

(b) ti - si(i  5 p) and ( t i ,  . . . :t,) E P + (SI, . . . , s,) E P .  
ti N si(i 5 k) + f^( t l , .  . . , tk )  - f ( ~ 1 , .  . . , sk)  for all symbols P and f .  

The proof is simple: use Tm t I4 (Lemma 2.10.1). 
Once we have an equivalence relation, which, moreover, is a congruence 

with respect to the basic relations and functions, it is natural to introduce 
the quotient structure. 

Denote the equivalence class o f t  under - by [t]. 
Define U := (A/ N,  PI, .  . . , P,, ?I,. . . , fm, {Eili E I)),where 

z = 1 . . , [tT.])!(tl,. . . , tTi) E pi) 

fj ([tl],  . . . ,  [ta,]) = [ f j ( t ~ ,  . . . ,  taj )I 
ci : = [ti]. 

One has to show that the relations and functions on A/ - are well-defined, 
but that is taken care of by (b) above. 

Closed terms lead a kind of double life. On the one hand they are syntacti- 
cal objects, on the other hand they are the stuff that elements of the universe 
are made from. The two things are related by t" = [t]. This is shown by 
induction on t. 

(i) t = c, then t" = 2:= [t] = [t], 
i.h. - 

(ii) t = f ( t l , .  . . , t k ) ,  then t" = j(tB1,. . . ,t"" = f([ t l ] ,  . . . , [tk]) 

= [f^(tl, . . . , tk)] = [f ( t l , . .  . , tk)l. 

Furthermore we have U + cp(t) H U cp(m), by the above and by Exercise 
6 section 2.4. 

Claim. U cp(t) for all sentences in the language Lm of T, which, by the 
way, is also L(U), since each element of A/ N has a name in L,. We prove 
the claim by induction on cp. 

(i) cp is atomic. U P ( t l , .  . . ,t,) * ( ty, .  . . ,t$) E f i  H ([tl],  . . . , [t,]) E 

@ ( t l ,  . . . , t,) E P H Tm t P(t1,.  . . , t,). The case cp =I is trivial. 
(ii) cp = a A T. Trivial. 
(iii) cp = a -+ T. We recall that, by lemma 1.6.9 Tm t- a -+ T @ (Tm t- 

o +- Tm t 7). Note that we can copy this result, since its proof only uses 
propositional logic, and hence remains correct in predicate logic. U 

~ - + T H ( % + u + U + T ) ' &  ( T ~ ~ - ~ = S T , ~ T ) W T ~ F ~ - + T .  
(iv) cp = vx+(x). t= Vx+(x) H U 3xl+(x)  H U l+(a), for all 

a E I%( H for all a 6 (U((U +(a)). Assuming U + Vx+(x), we get 
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in particular, 2 $(c) for the witness c belonging to ~xT$(x). By 
induction hypothesis: Tm F $(c). Tm I- 3x+(x) -+ -$(c), SO Tm I- 
$(c)  + -37$(x). Hence T, t Vxcp(x). 
Conversely: T, t- Vx$(x) + Tm t- $(t), so Tm I- $(t) for all closed t ,  
and therefore by induction hypothesis, U $(t) for all closed t.  Hence 

I= tJx$(x). 
Now we see that U is a model of T ,  as T 2 T,. 

The model constructed above goes by various names, it is sometimes called 
the canonical model or the (closed) t e rn  model. In logic programming the set 
of closed terms of any language is called the Herbrand universe or - domain 
and the canonical model is called the Herbrand model. 

In order to get an estimation of the cardinality of the model we have to 
compute the number of closed terms in L,. As we did not change the language 
going from T, to Tm, we can look a t  the language L,. We will indicate how to 
get the required cardinalities, given the alphabet of the original language L. 
We will use the axiom of choice freely, in particular in the form of absorption 
laws (i.e. K + X = K . X = m a x ( ~ ,  A) for infinite cardinals). Say L has type 

1. Define 
TERMo := {cili E I) U {xjlj E N)  
T E R M n + ~  := TERM, U {fj(tl , .  . . , t a 3 ) ( j  I m, 

tk E TERM, for k I aj).  

Then T E R M  = U{TERM,ln E N )  (Exercise 5 )  
ITERMoI = max(n,No) = p. 

Suppose (TERM,I = p. Then 
I{fj(tl,. . . , ta,)ltl , .  . . , tq  E TERMn)( = ITERMnJa3 = paj = p. SO 
1TERMn+1 1 = p + p f . . . + p (m f 1 times) = p. 
Finally ITERMI = C ITERMnI = No . p = p. 

n E N  
2. Define 

FORMo := {Pi(tl , .  . . , t ,  li < n,tk E TERM)  U {I) 
FORMn+, := FORMn U (9 $ 1  E {A, +), 9, $ E FORM,) 

u{Vxicp(i E N, cp E FORM,). 

Then F O R M  = U{FORM,ln E N )  (Exercise 5) 
As in 1. one shows I F O R M (  = p. 

3. The set of sentences of the form 3xcp(x) has cardinality p. It  trivially is 
I p. Consider A = (3s  (xo = ci)l E I). Clearly [A\ = K . No = p. Hence 
the cardinality of the existential statements is p. 

4. L1 has the constant symbols of L, plus the witnesses. By 3 the cardinality 
of the set of constant symbols is p. Using 1 and 2 we find Lo has p terms 
and p formulas. By induction on n each L, has p terms and p formulas. 
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Therefore L, has No. /I = /I terms and formulas. L, is also the language 
of T,. 

5 .  L, has at  most p closed terms. Since L1 has p witnesses, L, has at  least 
p ,  and hence exactly p closed terms. 

6. The set of closed terms has < p equivalence classes under SO llUll 5 p. 

All this adds up to the strengthened version of the Model Existence 
Lemma: 

Lemma 3.1.12. F is consistent * T has a model of cardinality at most the 
cardinality of the language. 

Note the following facts: 
-If L has finitely many constants, then L is countable. 
-If L has K 2 No constants, then ILI = K. 

The completeness theorem for predicate logic raises the same question 
as the completeness theorem for propositional logic: can we effectively find 
a derivation of cp is cp is true? The problem is that we don't have much to 
go on; cp is true in all structures (of the right similarity type). Even though 
(in the case of a countable language) we can restrict ourselves to countable 
structures, the fact that cp is true in all those structures does not give the 
combinatorial information, necessary to construct a derivation for cp. The 
matter is at  this stage beyond us. A treatment of the problem belongs to 
proof theory; Gentzen's sequent calculus or the tableau method are more 
suitable to search for derivations, than natural deduction. 

In the case of predicate logic there are certain improvements on the com- 
pleteness theorem. One can, for example, ask how complicated the model is 
that we constructed in the model existence lemma. The proper setting for 
those questions is found in recursion theory. We can, however, have a quick 
look at  a simple case. 

Let T be a decidable theory with a countable language, i.e. we have an 
effective method to test membership (or, what comes to the same, we can test 
r I- cp for a set of axioms of T).  Consider the Henkin theory T introduced 
in 3.1.6.; a E T, if a E T, for a certain n. This number n can be read off 
from a by inspection of the witnesses occurring in a. From the witnesses we 
can also determine which axioms of the form 3x(p(x) 4 cp(c) are involved. 
Let {TI,. . . ,T,) be the set of axioms required for the derivation of o, then 
TU {TI, . . . , 7,) I- a. By the rules of logic this reduces to T I- TI A. . . AT, -+ a.  
Since the constants ci are new with respect to TI this is equivalent to T I- 
VZI,. . . , zk(~A + a') for suitable variables 21,. . . , zk, where T;, . . . , T;, 0' are 
obtained by substitution. Thus we see that a E T, is decidable. The next 
step is the formation of a maximal extension T,. 

Let cpo, PI,  p 2 , .  . . be an enumeration of all sentences of T,. We add sen- 
tences to T, in steps. 
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T, U {cpo) if T U (90) is consistent, 
step 0 : To = 

T, U {-po) else. 
T, U {P,+~) if T, U {P,+~) is consistent, 

step n + 1 : Tn+l = 
Tn U { T n + l )  else. 

To = uT, (To is given by a suitable infinite path in the tree). It  is easily seen 
that To  is maximally consistent. Moreover, To  is decidable. To test cp, E To 
we have to test cp, E T,, or Tn-1 U (9,) k I  is decidable. So To is decidable. 

The model U constructed in 3.1.11 is therefore also decidable in the fol- 
lowing sense: the operations and relations of U are decidable, which means 
that ([tl], . . . , [t,]) E P and f([tl],  . . . , [tk]) = [t] are decidable. 

Summing up we say that a decidable consistent theory has a decidable 
model (this can be made more precise by replacing 'decidable' by 'recursive'). 

Exercises 

1. Consider the language of groups. T = (01% + a) , where U is a fixed 
non-trivial group. Show that T is not a Henkin theory. 

2. Let {Tili E I) be a set of theories, linearly ordered by inclusion. Show 
that T = u{Tili U I) is a theory which extends each Ti. If ,each Ti is 
consistent, then T is consistent. 

3. Show that A, F a & a holds in all models with at  least n elements. 
p, k a H a holds in all models with at most n elements. A,Ap, k a & u 
holds in all models with exactly n elements, {X,ln E N) k a H a holds 
in all infinite models, (for a definition of A,, p, cf. section 2.7). 

4. Show that T = { a J X 2  t- a)  U {cl # cn) in a language with = and two 
constant symbols cl,  c2, is a Henkin theory. 

5. Show T E R M  = U{TERM,ln E N), F O R M  = U{FORM,ln E N} (cf. 
1.1.5). 
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3.2 Compactness and Skolem-Lowenheim 

Unless specified otherwise, we consider sentences in this section. From the 
Model Existence Lemma we get the following: 

Theorem 3.2.1 (Compactness Theorem).  r has a model w each finite 
subset A of r has a model. 

An equivalent formulation is: 

r has no model e some finite A C r has no model. 

Proof. We consider the second version. 
+: Trivial. 
J: Suppose r has no model, then by the Model Existence Lemma r is incon- 
sistent, i.e. r FI. Therefore there are al, . . . ,a ,  E I' such that a l ,  . . . , a, FI. 
This shows that A = {al, . . . , a,) has no model. 

Let us introduce a bit of notation: Mod( r )  = {UIU a for all a E r ) .  
For convenience we will often write U r for U E Mod(r) .  We write 
Mod(cp1,. . . , cp2) instead of Mod{cpl,. . . , cp,)). 

In general Mod( r )  is not a set (in the technical sense of set theory: 
Mod( r )  is most of the time a proper class). We will not worry about that 
since the notation is only used as a abbreviation. 

Conversely, let K be a class of structures (we have fixed the similarity 
type), then Th(K) = {aJU a for all U E K). We call Th(K) the theo7-y of 
K. 

We adopt the convention (already used in section 2.7) not to include the 
identity axioms in a set r; these will always be satisfied. 

Examples. 
' 

1. Mod(Vxy(x 5 y~ I y I x ++ x = y),Vxyz(x 5 y A y < z + x I z)) is 
the class of posets. 

2. Let be the class of all groups. Th(G) is the theory of groups. 

We can consider the set of integers with the usual additive group struc- 
, ture, but also with the ring structure, so there are two structures U and 23, 

of which the first one is in a, sense a part of the second (category theory uses 
' a forgetful functor to express this). We say that U is a reduct of 23, or 23 is 

an expansion of U . 

! In general 

Definition 3.2.2. U is a reduct of % ( B  an expansion of U) if 121 = 1Bl and 
moreover all relations, functions and constants of U occur also as relations, 
functions and constants of B .  
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Notation. (U, 5'1,. . . , Sn, gl ,  . . . , g,, {aj I j E J)) is the expansion of U with 
the indicated extras. 

In the early days of logic (before "model theory" was introduced) Skolem 
(1920) and Lowenheim (1915) studied the possible cardinalities of models 
of consistent theories. The following generalisation follows immediately from 
the preceding results. 

Theorem 3.2.3 (Downward Skolem-Lowenheim Theorem). Let r be 
a set of sentences in a language of cardinality K ,  and let K. < A. If r has a 
model of cardinality A ,  then r has a model of cardinality rc', with rc 5 rc' < A. 

Proof. Add to the language L of r a set of fresh constants (not occurring in 
the alphabet of L) {cili E I) of cardinality rc, and consider r' = T U {ci # 
cjli, j E I , i  # j ) .  Claim: Mod(r l )  # 0. 

Consider a model U of r of cardinality A. We expand U to U' by adding 
rc distinct constants (this is possible: IUI contains a subset of cardinality 
K). U' E Mod( r )  (cf. Exercise 3) and U' + ci # c, (i # j ) .  Consequently 
Mod(T1) # 0. The cardinality of the language of r' is rc. By the Model 
Existence Lemma r' has a model 9.3' of cardinality 5 rc, but, by the axioms 
ci # cj, the cardinality if also 2 rc. Hence 93' has cardinality rc. Now take the 
reduct 9.3 of 9.3' in the language of r, then 9.3 E Mod(r ) )  (Exercise 3). 0 

Examples. 

1. The theory of real numbers, Th(R), in the language of fields, has a count- 
able model. 

2. Consider Zermelo-Fraenkel's set theory Z F .  If Mod(ZF) # 0, then Z F  
has a countable model. This fact was discovered by Skolem. Because 
of its baffling nature, it was called Skolem's paradox. One can prove in 
Z F  the existence of uncountable sets (e.g. the continuum), how can Z F  
then have a countable model? The answer is simple: countability as seen 
from outside and from inside the model is not the same. To establish 
countability one needs a bijection to the natural numbers. Apparently 
a model can be so poor that it misses some bijections which do exist 
outside the model. 

Theorem 3.2.4 (Upward Skolem-Lowenheim Theorem). Let r have 
a language L of cardinality rc, and U E Mod(T) with cardinality X > K .  

For each p > A r has a model of cardinality p. 

Proof. Add p fresh constants ci, i E I to L and consider r' = r U  {ci # cjli f 
j ,  i ,  j E I ) .  Claim: Mod(r l )  # 0. We apply the Compactness Theorem. 

Let A P be finite. Say A contains new axioms with constants 
ci,,,. . . , cikr  then A r U {tip # cirllp, q 5 k )  = To. Clearly each model 

of To is a model of A (Exercise l(i)).  
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Now take U and expand it to U' = (U, a l l . .  . , ak) ,  where the ai are dis- 
tinct. 

Then obviously a' E Mod(ro), so U' E Mod(A). By the Compactness 
Theorem there is a 9.3' E Mod(r l ) .  The reduct 9.3 of U' to the (type of the) 
language L is a model of r .  From the extra axioms in r' it follows that %I, 

and hence 9.3, has cardinality > p. 

We now apply the downward Skolem-Lowenheim Theorem and obtain the 
existence of a model of r of cardinality p. 0 

We now list a number of applications. 

Application I. Non-standard Models of PA. 

Corollary 3.2.5. Peano's arithmetic has non-standard models. 

Let P be the class of all Peano structures. Put PA = Th(P) .  By the Com- 
pleteness Theorem PA = {alC I- a) where C is the set of axioms listed 
in section 2.7, Example 6. PA has a model of cardinality No (the standard 
mode1 T ) ,  so by the upward Skolem-Lowenheim Theorem it has models of 
every k > No. These models are clearly not isomorphic to T .  For more see 
3.3. 

Application 11. Finite and Infinite Models. 

Lemma 3.2.6. If r has arbitrarily large finite models, then r has an infinite 
model. 

Proof. Put r' = ru{Anln > l), where An expresses the sentence "there are at  
least n distinct elements", cf. section 2.7, Example 1. Apply the Compactness 
Theorem. Let A & r' be finite, and let A, be the sentence A, in A with 
the largest index n. Verify that Mod(A) Mod(T U {p,)). Now r has 
arbitrarily large finite models, so r has a model U with at least m elements, 
i.e. U E Mod(rU{A,)). Now r has arbitrarily large finite models, so I' has a 
model U with at  least m elements, i.e. U E M o d ( r ~  {A,)). So Mod(A) # 8. 

By compactness Mod(r l )  # 0, but in virtue of the axioms A,, a model 
of r' is infinite. Hence r', and therefore r, has an infinite model. 0 

We get the following simple 

Corollary 3.2.7. Consider a class K of structures which has arbitrarily large 
finite models. Then, in the language of the class, there is no set E of sen- 
tences, such that U € Mod(C)  e U is finite and U E K. 

Proof. Immediate. 0 
We can paraphrase the result as follows: the class of finite structures in 

such a class K is not axiomatisable in first-order logic. 
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We all know that finiteness can be expressed in a language that contains 
variables for sets or functions (e.g. Dedekind7s definition), so the inability to 
characterise the notion of finite is a specific defect of first-order logic. We say 
that finiteness is not a first-order property. 

The corollary applies to numerous classes, e.g. groups, rings, fields, posets, 
sets (identity structures). 

Application 111. Axiomatisability and Finite Axiomatisability. 

Definition 3.2.8. A class K of structures is (finitely) miomatisable if there 
is a (finite) set r such that K = Mod(r) .  We say that r axiomatises K; the 
sentences of F are called it axioms (cf. 3.1.3). 

Examples for the classes of posets, ordered sets, groups, rings, Peano- 
structures axiom sets I' are listed in section 2.7. 

The following fact is very useful: 

Lemma 3.2.9. If K = Mod( r )  and K is finitely axiomatisable, then K is 
axiomatisable by a finite subset of r .  

Proof. Let K = Mod(A) for a finite A, then K = Mod(a), where a is the 
conjunction of all sentences of A (Exercise 4). Then a $ for all $ E I' and 
r a ,  hence also I' I- a .  Thus there are finitely many $1,. . . , $k E r such 
that . . ,Gk k a .  Claim K = Mod($l,.. . ,$k). 

(i) ($1, . . . , $k) c r so Mod(r )  G  mod($^, . . . , $k). 
(ii) From $1, . . . , $k I- a it follows that Mod(Gl,. . . , qk) C_ Mod(o). 

Using (i) a,nd (ii) we conclude Mod($l, . . . , $ k )  = IC. 0 

This lemma is instrumental in proving non-finite-axiomatisability results. 
We need one more fact. 

Lemma 3.2.10. K is finitely axiomatisable H K and its complement KC are 
both axiomatisable. 

Proof *. Let K = Mod(p1,. . . , p,), then K: = Mod(pl A . .  . A cpk). U E Kc 
(complement of K ) @ U cpl  A . .  . A cp, * U l(cpl A . . .cpn). So 
KC = Mod(~(cp1A..  .Acpn)). e. Let K = Mod(r) ,KC = Mod(A). K n K C  = 
M o d ( r  U A) = 0 (Exercise 1). 
By compactness, there are 91, .  . . , cp, E r and GI, .  . . , $, E A such that 
M o d ( ~ l , . .  . , ~ n , $ l ,  .. . , $ m )  = 0, or 

Mod(cp1,. . . ,cpn) n MOd($l,.. . , +,) = 0, (1) 
K = Mod( r )  2 Mod(pl , .  . . , p,), 
KC = Mod(A) C Mod($1,. . . ,+,), 

(2) 
(3) 

( I ) ,  (% (3) * K = Mod(p17. . . ,%). 0 
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We now get a number of corollaries. 

Corollary 3.2.11. The class of all infinite sets (identity structures) is m- 
iomatisable, but not finitely miomatisable. 

Pmof U is infinite @ 2l E Mod{A,Jn E N)). So the axiom set is {Anln E N). 
On the other hand the class of finite sets is not axiomatisable, so, by Lemma 
(b), the class of infinite sets is not finitely axiomatisable. 0 

Corollary 3.2.12. (i) The class of fields of characteristic p(> 0) is finitely 
axiomatisable. 

(ii) The class of fields of characteristic 0 is axiomatisable but not finitely 
axiomatisable. 

(iii) The class of fields of positive characteristic is not axiomatisable. 

Proof. (i) The theory of fields has a finite set A of axioms. A U { p  = 0) 
axiomatises the class FP of fields of characteristic p (where jj = 0) axiomatises 
the class 3, of fields of characteristic p (where p stands for l + l + .  . .+I ,  (px)).  

(ii) A U (9 # 0 , s  # 0, .  . . ,p # 0, .  . .) axiomatises the class F0 of fields of 
characteristic 0. Suppose To was finitely axiomatisable, then by Lemma 3.2.9 
Fo was axiomatisable by I' = A U {pl # 0,. . . ,pk  Z. 0), where pl ,  . . . ,pk are 
primes (not necessarily the first k ones). Let q be a prime greater than all pi 
(Euclid). Then Z/(q) (the integers modulo q) is a model of r, but Z/(q) is 
not a field of characteristic 0. Contradiction. 

(iii) follows immediately from (ii) and Lemma 3.2.10. 0 

Corollary 3.2.13. The class A, of all algebraically closed fields is axioma- 
tisable, but not finitely miomatisable. 

Proof. Let a, = 'dyl.. . yn3x(xn + ylxn-l + . . . + yn-lx + yn = 0). Then 
r = A U {an(n 2 l ) (A as in corollary 3.2.12) axiomatises A,. To show non- 
finite axiomatisability, apply Lemma 3.2.9 to T and find a field in which a 
certain polynomial does not factorise. 0 

Corollary 3.2.14. The class of all torsion-free abelian groups is axiomatis- 
able, but not finitely miomatisable. 

Proof. Exercise 3.2.14. 0 

Remark In Lemma 3.2.9 we used the Completeness Theorem and in Lemma 
3.2.10 the Compactness Theorem. The advantage of using only the Com- 
pactness Theorem is that one avoids the notion of provability altogether. 
The reader might object that this advantage is rather artificial since the 
Compactness Theorem is a corollary to the Completeness Theorem. This is 
true in our presentation; one can, however, derive the Compactness Theorem 
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by purely model theoretic means (using ultraproducts, cf. Chang-Keisler) , so 
there are situations where one has to use the Compactness Theorem. For the 
moment the choice between using the Completeness Theorem or the Com- 
pactness Theorem is largely a matter of taste or convenience. 

By way of illustration we will give an alternative proof of Lemma 3.2.9 
using the Compactness Theorem: 

Again we have Mod( r )  = Mod(a) (*) . Consider r' = r U { l a ) .  
U E Mod( r f )  H U E Mod(r)  and U + l a ,  

H U E M o d r  and IU 6 Mod(a). 
In view of (*) we have Mod(r l )  = 0. 
By the Compactness Theorem there is a finite subset A of rf with 

Mod(A) = 0. It  is no restriction to suppose that l a  E A, hence 
Mod(ql,  . . . , $ J ~ ,  10) = 0. It  now easily follows that Mod(Gl,. . . , &) = 
Mod(a) = Mod(F). 0 

Application IV. Ordering Sets. 
One easily shows that each finite set can be ordered, for infinite sets this 

is harder. A simple trick is presented below. 

Theorem 3.2.15. Each infinite set can be ordered. 

Proof. Let (XI = rc 2 No. Consider r, the set of axioms for linear order 
(section 2.7.3. r has a countable model, e.g. W. By the upward Skolem- 
Lowenheim Theorem r has a model U = ( A ,  <) of cardinality K .  Since X 
and A have the same cardinality there is a bijection f : X -+ A. Define 
x < x' := f (x) < f (x'). Evidently, < is a linear order. 0 

In the same way one gets: Each infinite set can be densely ordered. The 
same trick works for axiomatisable classes in general. 

Exercises 

1. Show: (i) r c A * Mod(A) Mod(r) ,  
(ii) KI 2 K:! * Th(K2) C Th(Kl), 
(iii) Mod( r  U A) = Mod(T) n Mod(A), 
(iv) Th(K1 U K2) = Th(lCl) n Th(K2), 
(v) K C M o d ( r )  H r g Th(K), 
(vi) M o d ( r  n A) 2 Mod(T) U Mod(A), 
(vii) Th(K1 fl K2) C Th(Kl) U Th(K2). 

Show that in (vi) and (vii) 2 cannot be replaced by =. 

2. (i) I' C Th(Mod(r)) ,  
(ii) K C Mod(Th(K)), 
(iii) Th(Mod(r ) )  is a theory with axiom set r. 
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1 3. If U with language L is a reduct of '23, then U t= a '23 + a for a E L. 

5. I' I= cp + A cp for a finite subset A C r. (Give one proof using 
completeness, another proof using compactness on T u (70)). 

6. Show that well-ordering is not a first-order notion. Suppose that r ax- 
iomatises the class of well-orderings. Add countably many constants ci 
and show that F U {ci+l < cili E N) has a model. 

g> 
, 7. If r has only finite models, then there is an n such that each model has 
f at  most n elements. 
i 4 
1' 8. Let L have the binary predicate symbol P .  a := VxlP(x,  x)AVxyz(P(x, y)/\ 
;I 

P(y,  t )  -, P(x ,  t)) A Vx3yP(x, y). Show that Mod(a) contains only infi- 
nite models. 

'' 9. Show that a V Qxy(x = y) has infinite models and a finite model, but no 
arbitrarily large finite models ( a  as in 8). 

10. Let L have one unary function symbol. 
(i) Write down a sentence p such that U I= cp f a  is a surjection. 
(ii) Idem for an injection. 
(iii) Idem for a bijection (permutation). 
(iv) Use (ii) to formulate a sentence a such that U + a o U is infinite 

(Dedekind) . 
(v) Show that each infinite set carries a permutation without fixed points 

(cf. the proof of 3.2.15). 

11. Show: a holds for fields of characteristic zero, + a holds for all fields of 
characteristic q > p for a certain p. 

12. Consider a sequence of theories Ti such that Ti # Ti+l and T, C_ Ti+l. 
Show that u{Tilz E N) is not finitely axiomatisable. 

13. If TI and T2 are theories such that Mod(Tl U T2) = 0 , then there is a o 
such that TI k a and T2 + -a. 

14. (i) A group can be ordered H each finitely generated suSgroup can be 
ordered. 
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(ii) An abelian group U can be ordered ++ 2 is torsion free. (Hint: look 
a t  all closed atoms of L(U) true in U.) 

15. Prove Corollary 3.2.14. 

16. Show that each countable, ordered set can be embedded in the rationals. 

17. Show that the class of trees cannot be axiomatised. Here we define a tree 
as a structure (T, <, t ) ,  where < is a partial order, such that for each a 
the predecessors form a finite chain a = a, < a,-1 < . . . < a1 < ao = t .  
t is called the top. 

18. A graph (with symmetric and irreflexive R) is called k-colourable if we 
can paint the vertices with k-different colours such that adjacent vertices 
have distinct colours. We formulate this by adding k unary predicates 
cl, . . . , ck, plus the following axioms 

flC\ VXY(C~(X) A Ci(y) + ~ R ( x ,  Y)). 
i 

Show that a graph is k-colourable if each finite subgraph is k-colourable 
(De Bruijn-Erdos). 

3.3 Some Model Theory 

In model theory one investigates the various properties of models (struc- 
tures), in particular in connection with the features of their language. One 
could say that algebra is a part of model theoryome parts of algebra indeed 
belong to  model theory, other parts only in the sense of the limiting case in 
which the role of language is negligible. It  is the interplay between language 
and models that makes model theory fascinating. Here we will only discuss 
the very beginnings of the topic. 

In algebra one does not distinguish structures which are isomorphic; the 
nature of the objects is purely accidental. In logic we have another criterion: 
we distinguish between two structures by exhibiting a sentence which holds 
in one but not in the other. So, if U a e 23 1 a for all a ,  then we cannot 
(logically) distinguish U and 23. 
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Definition 3.3.1. (i) f : IUI -+ 1231 is a homomorphism if ( a l , .  . . , ak )  E 

p," + (f (a l ) ,  . . . , f (ak)) E P," for all Pi, f (F:(al,. . . ,a,)) = 

(f (al) ,  . . . , f (ap)) for all Fj , and f (c?) = c" for all ci. 
(ii) f is an isomorphism if it is a homomorphism which is bijective and 

satisfies (a l ,  . . . ,a,) E P: e (f (al) ,  . . . , f (a,)) E P?, for all P i .  

We write f :  U -, 23 if f is a homomorphism from U to 23. U 2 23 stands 
for "U is isomorphic to B" ,  i.e. there is an isomorphism f : U + 23. 

Definition 3.3.2. U and 23 are elementarily equivalent if for all sentences a 
o f L , U + a @ %  230. 
Notation. U r 23. Note that U = 23 e Th(U) = Th(23). 

L e m m a  3.3.3. U r 23 23 U u 23 

Proof. Exercise 2. 0 

Definition 3.3.4. U is a substructure (submodel) of 23 (of the same type) 
if I%( C 1231; P? n JUIn = P:, F? f (%In = FfP and c? = c 3 w h e r e  n is the 
number of arguments). 

Notation. U 23. Note that it is not sufficient for U to be contained in 23 
"as a set"; the relations and functions of 23 have to be extensions of the cor- 
responding ones on U, in the specific way indicated above. 

Examples. The field of rationals is a substructure of the field of reals, but not 
of the ordered field of reals. Let U be the additive group of rationals, 23 the 
multiplicative group of non-zero rationals. Although 1231 C IUI, 23 is not a 
substructure of U. The well-known notions of subgroups, subrings, subspaces, 
all satisfy the above definition. 

The notion of elementary equivalence only requires that sentences (which 
do not refer to  specific elements, except for constants) are simultaneously 
true in two structures. We can sharpen the notion, by considering U C 23 
and by allowing reference to elements of I%(. 

Definition 3.3.5. is an elementary substructure of 23 (or 23 is an el- 
ementary extension of %) if U c 23 and for all cp(x1,. . . ,x,) in L and 

- 
~ I , . . . , u , €  ~ U \ , ~ ~ V ( Z ~ ,  . . . , ~ n ) e B + ~ ( ~ l , . . . , a n ) .  

Notation. U + 23. 

We say that U and 23 have the same true sentences with parameters in U. 
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Fac t  3.3.6. U 4 23 + U = 23. 

The converse does not hold (cf. Exercise 4). 
Since we will often join all elements of IUI to U as constants, it is conve- 

nient to  have a special notation for the enriched structure: 3 = ((U, (%I). 
If one wants to describe a certain structure a ,  one has to  specify all the 

basic relationships and functional relations. This can be done in the language 
L(U) belonging to U (which, incidentally, is the language of the type of U). 

Definition 3.3.7. The diagram, Diag(U), is the set of closed atoms and 
negations of closed atoms of L(U), which are true in U. The positive diagram, 
Diagf ( a ) ,  is the set of closed atoms y of L(U) such that U k cp. 

Example. 

1. U = (N).Diag(U) = {Ti = filn E W) U {Ti # mln # m; n , m  E N). - -  - -  
2. 23 = ({1,2,3), <). (natural order). Diag23 = {i = 1, 2 = 2, 3 = 3 = - 

, i f  2, Z # 3 ,  Z # i ,  3 #  i, 3#2 ,  i < 2 ,  T < 3 ,  Z < 3 ,  l Z < i , 1 3 <  - 
2, 13< i ,  li<i, 4 < 2 ,  13<3).  

Diagrams are useful for lots of purposes. We demonstrate one here: We 
say that (U is isomorphically embedded in 23 if there is an isomorphism f from 
U into a substructure of 23. 

L e m m a  3.3.8. U is isomorphically embedded in 23 H 63 is a model of 
Diag(2l). 

Proof. +. Let f be an isomor~hic embedding of U in 23, then U k - 
pi (;I, . . . ,an) o CB I = P , ( ~ ) ,  . . ,fin)) and U b t ( i1 , .  . . , b,) '= 

s(?il,. . . ,a,) H CB + t ( f(al) ,  . . .) = s(f(al) ,  . . .) (cf. Exercise 2.). By inter- 
preting h as f (a) in !% (i.e. @ = f (a)),  we immediately see !% k Diag(U). 
e=: Let $3 + Diag(U). Define a mapping f : (U( -+ 1231 by f ( a )  = ?dB). Then, 
clearly, f satisfies the conditions of definition 3.3.1 on relations and functions - - 

(since they are given by atoms and negations of atoms). Moreover if a1 # az 
then U b 1iZ1 = ?i2, so 23 k l i Z 1  = h2. 

Hence # a?, and thus f (al) # f (a2). This shows that f is an isomor- 
phism. 0 

We will often identify U with its image under an isomorphic embedding 
into 23, so that we may consider U as a substructure of 93 

We have a similar criterion for elementary extension. We say that 'U is 
elementarily embeddable in 23 if U S U' and U' 4 23 for some U'. Again, we 
often simplify matters by just writing U 4 23 when we mean "elementarily 
embeddable" . 

standardnumbers non-standardnumbers 
/ 

,. . -, . . . . ................................... .......................... 

Remark: it is important to  realise that (1) - (4) are not only true in the 
standard model, but even provable in PA.  This implies that they hold not 
only in elementary extensions of 3, but in all Peano structures. The price one 
has to pay is the actual proving of (1) - (4) in PA, which is more cumbersome 
than the mere establishing their validity in n .  However, anyone who can give 
an informal proof of these simple properties will find out that it is just one 
more (tedious, but not difficult) step to formalise the proof in our natural 
deduction system. Step-by-step proofs are outlined in the Exercises 25, 28. 

So, all elements of 19JII - 191, the non-standard numbers, come after the 
standard ones. Since is uncountable, there is a t  least one non-standard 
number a .  Note that n < a for all n, so M has a non-archimedean order 
(recall that n = 1 + 1 + ... + l ( n x ) ) .  
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L e m m a  3.3.9. U 4 23 23 !% + Th(&). 

N.B. U 4 23 holds "up to isomorphism". !b is supposed to be of a simi- 
larity type which admits a t  least constants for all constant symbols of L(U). 

Proof. +. Let c p ( q , .  . . ,G) E T ~ ( G ) ,  then U k cp&, . . .,a), and hence 
6 cp(q , . .  . ,En). So !% k Th(&). 
e. By 3.3.8, U C 23 (up to isomorphism). The reader can easily finish 

the proof now. 0 

We now give some applications. 

Application I. Non-standard Models  of Ari thmetic .  

Recall that 9l = (W, +, ., s ,  0) is the standard model of arithmetic. We 
know that it satisfies Peano's axioms (cf. example 6, section 2.7). We use the 
abbreviations introduced in section 2.7. 

Let us now construct a non-standard model. Consider T = T h ( 3 ) .  By 
the Skolem-Lowenheim Theorem T has an uncountable model 332. Since M + 
~ h ( $ ) ,  we have, by 3.3.9, 9l 4 M .  Observe that 3 M (why?). We will 
have a closer look at the way in which fl is embedded in M. 
We note that Cfl k Vxyz(x < y A y < z -+ x < t) (1) 

n + VXY.Z(X < y v x = y v y < X) (2) 
n (= VX(W X) (3) 
nk 1 3 ( z < x ~ x < m )  (4) 

Hence, 9l being an elementary substructure of IM, we have (1) and (2) for 
W, i.e. IM is linearly ordered. J?rom 3 4 IM and (3) we conclude that 0 is the 
first element of M. Furthermore, (4) with 9 < M tells us that there are no 
elements of M between the "standard natural numbers". 

As a result we see that n is an initial segment of M:  
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We see that the successor S(n)(= n+1) of a standard number is standard. 
Furthermore 'JI Vx(x # --t 3y(y + i = x)), so, since 'JI 4 M ,  also 
9X VX(X # 0 -+ 3y(y + T = x)),  i.e. in each number, distinct from 
zero, has a (unique) predecessor. Since a is non-standard it is distinct from 
zero, hence it has a predecessor, say a l .  Since successors of standard numbers 
are standard, a1 is non-standard. We can repeat this procedure indefinitely 
and obtain an infinite descending sequence a > a l  > a2 > as > . . . of non- 
standard numbers. Conclusion: M is not well-ordered. 

However, non-empty definable subsets of M do possess a least element. 
For, such a set is of the form {bJ9X I= cp(b)), where cp E L(%), and we know 

+ 3xp(x) + 3x(cp(x) ~ V y ( p ( y )  --, x < y)). This sentence also holds in 9X 
and it tells us that {blm cp(5)) has a least element if it is not empty. 

The above construction not merely gave a non-standard Peano structure 
(cf. 3.2.5), but also a non-standard model of true arithmetic, i.e. it is a model 
of all sentences true in the standard model. Moreover, it is an elementary 
extension. 

The non-standard models of P A  that are elementary extensions of f l  are 
the ones that can be handled most easily, since the facts from the standard 
model carry over. There are also quite a number of properties that have been 
established for non-standard models in general. We treat two of them here: 

Theorem 3.3.10. The set of standard numbers in a non-standard model is 
not definable. 

Proof. Suppose there is a cp(x) in the language of PA,  such that: M + 
p ( ~ )  H "a is a standard natural number", then -p (x )  defines the non- 
standard numbers. Since P A  proves the least number principle, we have 
M + 3x(-p(x) /\ Vy < xcp(y)), or there is a least non-standard number. 
However, a s  we have seen above, this is not the case. So there is no such 
definition. 0 

A simple consequence is the 

L e m m a  3.3.11 (Overspill Lemma). If p(E) holds in a non-standard model 
for infinitely many finite numbers n, then cp(a) holds for at least one infinite 
number a .  

Proof. Suppose that for no infinite a cp@) holds , then 3y(x < y r\ p(y)) 
defines the set of standard natural numbers in the model. This contradicts 
the preceding result. 0 

Our technique of constructing models yields various non-standard models 
of Peano's arithmetic. We have at this stage no means to decide if all models 
of PA are elementarily equivalent or not. The answer to this question is pro- 
vided by Godel's incompleteness theore, which states that there is a sentence 
y such that PA Y y and PA Y ~ y .  The incompleteness of PA has been 

re-established by quite different means by Paris-Kirby-Harrington, Kripke, 
and others. As a result we have now examples for y, which belong to 'normal 
mathematics', whereas Godel's y, although purely arithmetical, can be con- 
sidered as slightly artificial, cf. Barwise, Handbook of Mathematical Logic, 

I D8. P A  has a decidable (recursive) model, namely the standard model. That, 
however, is the only one. By the theorem of Tennenbaum all non-standard 
models of P A  are undecidable (not recursive). 

Application 11. Non-standard Rea l  Numbers.  

, Similarly to the above application, we can introduce non-standard models 
1 for the real number system. We use the language of the ordered field R of 

real numbers, and for convenience we use the function symbol, ( 1, for the ab- 
\ 1 solute value function. By the Skolem-Lowenheim Theorem there is a model 
[ * R  of T ~ R )  such that *R has greater cardinality than R. Applying 3.3.9, ' we see that R 4 *R, so *R is an ordered field, containing the standard real 

numbers. For cardinality reasons there is an element a E (*RI - IR(. For the 
- element a there are two possibilities: 

(i) la\ > Irl for all r E IRJ, 
(ii) there is an r E JRJ  such that la1 < r .  

In the second case {u E IRI I u < Jal) is a bounded, non-empty set, which 
therefore has a supremum s (in R).  Since la[ is non-standard number, there 
is no standard number between s and la1 By ordinary algebra, there is no 
standard number between 0 and I la1 - s I. Hence (la1 - 31-' is larger than all 
standard numbers. So in case (ii) there is also a non-standard number greater 
than all standard numbers. Elements satisfying the condition (i) above, are 
called infinzte and elements satisfying (ii) are called finite (note that the 
standard numbers are finite). 

We now list a number of facts, leaving the (fairly simple) proofs to the 
reader. 

1. * R has a non-archimedean order. 
2. There are numbers a such that for all positive standard r,  0 < la1 < r .  

We call such numbers, including 0, infinitesimals. 
3. a is infinitesimal % a-l is infinite. 
4. For each non-standard finite number a there is a unique standard number 

st(a) such that a - st(a) is infinitesimal. 
Infinitesimals can be used for elementary calculus in the Leibnizian 

tradition. We will give a few examples. Consider an expansion R' of R 
with a predicate for N and a function v. Let *R' be the corresponding 

, non-standard model such that R' 4 *R1. We are actually considering 
two extensions at the same time. N is contained in R', i.e. singled out 

I by a special predicate N. Hence N is extended, along with R' to *N.  
\ As is to be expected * N  is an elementary extension of N (cf. Exercise 

1 14).   here fore we may safely operate in the traditional manner with real 
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numbers and natural numbers. In particular we have in *R1 also infinite 
natural numbers available. We want v to be a sequence, i.e. we are only 
interested in the values of v for natural number arguments. The concepts 
of convergence , limit, etc. can be taken from analysis. 
We will use the notation of the calculus. The reader may try to give the 
correct formulation. 

Here is one example: 3mVn > m(lvn - vml < E) stands for 3x(N(x) A 

Vy(N(y) A y > x -+ Iv(y) - v(x) 1 < 6).  Properly speaking we should 
relativise quantifiers over natural numbers (cf. 2.5.9), but it is more con- 
venient to use variables of several sorts. 

5. The sequence v (or (v,)) converges in R' iff for all infinite natural num- 
bers n ,  m Iv, - urn[ is infinitesimal. 

Proof. (v,) converges in R' if R' + V t  > 03nVm > n((v, - urn\ < t). 

Assume that (v,) converges. Choose for 6 > 0 an n(t) E (R'J such that 
R' +'dm > n(lv, -v,( < E ) .  Then also *R' +Vm > n(lv, -urn(  < E ) .  

In particular, if m,  m' are infinite, then m, m' > n ( ~ )  for all E. Hence 
Ivm - urn, I < 2t for all E. This means that Ivm - urn\ is infinitesi- 
mal. Conversely, if Jv, - vmJ is infinitesimal for all infinite n ,  m, then 
*R + Vm > n(lv, - vrnl < E) where n is infinite and E standard, pos- 
itive. So * R' 3nVm > n((v, - vrnl < t), for each standard 6 > 0. 
Now, since R' 4 *R',R1 3nQm > n(lv, - vrnl < E) for 6 > 0, so 
R' V t  > O3nVm > n(lv, - vm 1 < E). Hence (v,) converges. 0 

6. lim v, = a & la - v,l is infinitesimal for infinite n. 
n-+m 

Proof. Similar to 5. 

We have only been able to touch the surface "non-standard analysis". For 
an extensive treatment, see e.g. Robinson, Stroyan-Luxemburg. 

We can now strengthen the Skolem-Lowenheim Theorems. 

Theorem 3.3.12 (Downward Skolem-Lowenheim). Let the language L 
of U have cardinality K ,  and suppose U has cardinality X > n.  Then there is 
a structure 23 of cardinality r; such that 23 4 U. 

Proof. See corollary 3.4.11. 0 

Theorem 3.3.13 (Upward Skolem-Lowenheim). Let the language L of 
U have cardinality n and suppose U has cardinality X 2 n.  Then for each 
p > X there is  a structure 23 of cardinality p,  such that U 4 23. 

Proof. Apply the old upward Skolem-Lowenheim Theorem to ~ h ( & ) .  
In the completeness proof we used maximally consistent theories. In model 

theory these are called complete theories. As a rule the notion is defined with 
respect to axiom sets. 

I 
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Definition 3.3.14. A theory with axioms r in the language L, is called 
complete if for each sentence a in L, either r I- a, or r t- -v. 

, A complete theory leave, so to speak, no questions open, but it does not 
' prima facie restrict the class of models. In the old days mathematicians tried 
, to find for such basic theories as arithmetic axioms that would determine up 
' to  isomorphism one model , i.e. to  give a set I' of axioms such that 
b a,% E Mod( r )  + U 3 23. The Skolem-Lowenheim Theorems have taught 

us that this is (barring the finite case) unattainable. There is, however, a 
significant notion: 

Definition 3.3.15. Let K be a cardinal. A theory is n-categorical if it has 
at least one model of cardinality K and if any two of its models of cardinality 
K are isomorphic. 

Categoricity in some cardinality is not as unusual as one might think. We 
l i t  some examples. 

1. The theory of infinite sets (zdentity structures) is n-categorical for all 
infinite K .  

Proof. Immediate, because here "isomorphic" means "of the same cardinal- 
ity'. 0 

2. The theory of densely ordered sets without end-poznts zs No-categorical. 

Proof. See any textbook on set-theory. The theorem was proved by Cantor 
using the so-called back-and-forth method. 0 

3. The theory of divisible torsion-free abelian groups is  K-categorical for 
rc > N o .  

Proof. Check that a divisible torsion-free abelian group is a vector space over 
the rationals. Use the fact that vector spaces of the same dimension (over the 
same field) are isomorphic. 0 

4. The theory of algebraically closed fields (of a fixed characteristic) is 
rc-categorical for K > N o .  

Proof. Use Steinitz' Theorem: two algebraically closed fields of the same char- 
acteristic and of the same uncountable transcedence degree are isomorphic. 

0 
The connection between categoricity and completeness, for countable lan- 

guages, is given by 
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Theorem 3.3.16 (Vaught's Theorem).  If T has no finite models and is 
K - categorical for some K not less than the cardinality of L, then T is complete. 

Proof. Suppose T is not complete. Then there is a a such that T Y a and 
T y l a .  By the Model Existence Lemma, there are U and 23 in Mod(T) 
such that a and 23 l a .  Since U and 23 are infinite we can apply 
the Skolem-Lowenheim Theorem (upwards or downwards), so as to obtain 2' 
and 23', of cardinality K, such that U - U', and 23 - 23'. But then U' " 23', 
and hence a' - 23', so U -  23. 

This contradicts U a and 23 l a .  0 

As a consequence we see that the following theories are complete: 

1. the theory of infinite sets; 
2. the theory of densely ordered sets without end-points; 
3. the theory of divisible torsion-free abelian groups; 
4. the theory of algebraically closed fields of fixed characteristic. 

A corollary of the last fact was known as Lefschetz' principle: i f  a sentence 
a, i n  the first-order language of fields, holds for the complex numbers, i t  holds 
for all algebraically closed fields of characteristic zero. 

This means that an "algebraic " theorem a concerning algebraically closed 
fields of characteristic 0 can be obtained by devising a proof by whatsoever 
means (analytical, topological, . . . ) for the special case of the complex num- 
bers. 

Decidability. 

We have seen in chapter I that there is an effective method to test whether a 
proposition is provable - by means of the truth table technique, since "truth 
= provability" . 

It  would be wonderful to have such a method for predicate logic. Church 
has shown, however, that there is no such method (if we identify "effective" 
with "recursive") for general predicate logic. But there might be, and in- 
deed there are, special theories which are decidable. A technical study of 
decidability belongs to  recursion theory. Here we will present a few informal 
considerations. 

If T, with language L, has a decidable set of axioms I', then there is an 
effective method for enumerating all theorems of T.  

One can obtain such a enumeration as follows: 

(a) Make an effective list al, a 2 ,  as ,  . . . of all axioms of T (this is possible 
because r is decidable), and a list p~,cpz, .  . . of all formulas of L. 

(b) 
(1) write down all derivations of size 1, using using al,cpl, with at most 

a1 uncancelled, 

(2) write down all derivations of size 2, using 01, a 2 ,  plcpz, with at  most 
a1,a2 uncancelled, 

(n) write down all derivations of size n, using al, . . . ,a,, cp, . . . , p,, with 
at most 01,. . . ,a, uncancelled, 

Each time we get only finitely many theorems and each theorem is even- 
tually derived. The process is clearly effective (although not efficient). 

We now observe 

Lemma 3.3.17. If  P and rc (complement of I') are effectively enumerable, 
then r is decidable. 

Proof. Generate the lists of r and rC simultaneously. In finitely many steps 
we will either find a in the list for I' or in the list for rC. So for each a we 
can decide in finitely many steps whether a E P or not. 0 

As a corollary we get the 

Theorem 3.3.18. If T i s  effectively axiomatisable and complete, then T is  
decidable. 

Proof. Since T is complete, we have I' k a or I' k -a for each a (where I' 
axiomatizes T ) .  So a E TC e r y a H I' t- l a .  
From the above sketch it follows that T and TC are effectively enumerable. 
By the lemma T is decidable. 0 

Application. The following theories are decidable: 

1. the theory of infinite sets; 
2. the theory of densely ordered sets without end-points; 
3. the theory of divisible, torsion-free abelian groups; 
4. the theory of algebraically closed fields of fixed characteristic. 

: Proof. See the consequences of Vaught's Theorem (3.3.16). The effective enu- 
merating is left to  the reader (the simplest case is, of course, that of a finitely 
axiomatisable theory, e.g. ( I ) ,  (2). 0 

We will finally present one more application of the non-standard approach, 
by giving a non-standard proof of 

: Lemma 3.3.19 (Konig's Lemma).  A n  infinite, finitary tree has an infi- 
nite path. 
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A finitary tree, or fan, has the property that each node has only finitely 
many immediate successors ('zero successors' is included). By contraposition 
one obtains from Konig's Lemma the so-called Fan Theorem (which was ac- 
tually discovered first): 

Theorem 3.3.20. If in a fan all paths are finite then the length of the paths 
is bounded. 

Note that if one considers the tree as a topological space, with its canonical 
topology (basic open set "are" nodes), then Konig's Lemma is the Bolzano- 
Weierstrasz Theorem and the Fan Theorem states the compactness. 

We will now provide a non-standard proof of Konig's Lemma. 
Let T be a fan, and let T* be a proper elementary extension (use 3.3.13). 

(1) the relation ".... is an immediate successor of ...." can be expressed in 
the language of partial order: 
~ < ~ y : = x < y ~ V z ( x ~ z 5 y - + x = z ~ y = z )  where,asusual, 
x < y stands for x < y A x f y. 

(2) If a is standard, then its immediate successors in T* are also standard. 
Since T is finitary, we can indicate a l l  .. . , a n  such that 

T Vx(x <i it +-+ W irk = x). By T + T*, we also have 
l < k < n  

T* VX(X <i ir * W irk = x) ,  so if b is an immediate successor of a 
l < k < n  

in T*, then b = ak for some Ic < n, i.e. b is standard. 
Note that a node without successors in T has no successors in T* either, 
for T Vx(x <i r  o x =8) T* k Vx(x < T i  o x = Z). 

(3) In T we have that a successor of a node is an immediate successor of 
that node or a successor of an immediate successor, i.e. 

This is the case since for nodes a and b with a < b, b must occur in the 
finite chain of all predecessors of a. So let a = a, < a,-I < . . . < a, = 
b < ai-1 < . . ., then a 5 ai+l <i b. 
Since the desired property is expressed by a first-order sentence (*), (3) 
also holds for T*. 

Let a* be a non-standard element of T*. We claim that 
P = {a E (Tlla* < a )  is an infinite path (i.e. a chain). 
(i) P is linearly ordered since T k Vxyz(x < y A x < z -+ y 5 z V z I: y) 
and hence for a n y p , q ~ P C  IT*l we h a v e p < q o r q < p .  
(ii) Suppose P is finite with last element b, then b has a successor and 
hence an immediate successor in T*,  which is a predecessor of a*. 

By (2) this immediate successor belongs to P. Contradiction. Hence P is 
infinite. 

This establishes that T has an infinite path. 0 

Quantifier Elimination 

Some theories have the pleasant property that they allow the reduction 
of formulas to a particularly simple form: one in which no quantifiers oc- 
cur. Without going into a general theory of quantifier elimination, we will 
demonstrate the procedure in a simple case: the theory DO of dense or- 
der without end points, cf. 2.7.3(ii); 'without end points' is formulated as 
"vx3yz(y < x A x < 2)". 

Let FV(cp) = {yl, . . . , y,), where all variables actually occur in cp. By 
standard methods we obtain a prenex normal form cp' of cp, such that 
V' := Q1x1Q2x2.. . Qmxm$(xl,. . . , x,, ~ 1 , .  . . ,yn), where each Qi is one of 
the quantifiers V, 3. We will eliminate the quantifiers starting with the inner- 
most one. 

Consider the case Q, = 3. We bring $ into disjunctive normal form 
'VI/ qj, where each $j is a conjunction of atoms and negations of atoms. First 
we observe that the negations of atoms can be eliminated in favor of atoms, 
since DO I- l z  = 2' * (z < z' V z' < z) and DO I- -z < z' H 

(z = z' V z' < z). So we may assume that the +j's contain only atoms. 
By plain predicate logic we can replace 32, w $J by the equivalent for- 

mula E ~ X , $ ~  
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Notation: for the rest of this example we will use $ cf, T as an abbreviation 
for DO F a ++ T. 

We have just seen that it suffices to consider only formulas of the form 
32, A up, where each a, is atomic. A systematic look at the conjuncts will 
show us what to do. 

(1) If x, does not occur in a,, we can delete the quantifier (cf. 2.5.2). 
(2) Otherwise, collect all atoms containing x, and regroup the atoms, such 

that we get A a, A A x, < U ~ A A  yj < X,AA wk = x,Ax, where 
x does not contain x,. Abbreviate this formula as T A X. By predicate 
logic we have ~x,(T A X) A ~ X , T  A x (cf. 2.5.3). Since we want to 
eliminate 3xm, it suffices to consider 3 2 , ~  only. 

Now the matter has been reduced to bookkeeping. Bearing in mind that 
we are dealing with a linear order, we will exploit the information given 
by T concerning the relative position of the ui, vj, wk7s with respect to 
Xm. 

(2a) T := A xm < ui A A vj < xm A A wk = x,. 
Then ~ X , T  A T', with T' := A wo < ui A A vj < wo A A wo = wk 
(where wo is the first variable among the wk's). The equivalence follows 
immediately by a model theoretic argument (i.e. DO + 3 2 , ~  ++ 7'). 

(2b) T := A xm < ui A A vj < x,. 
Now the properties of DO are essential. Observe that 3xm(A x, < Zi < 
A A zi < x,) holds in a densely ordered set if and only if all the ai's lie to 
the right of the bj9s. So we get (by completeness) 3xmr *fr A , vj < ui. 

2>3 

( 2 ~ )  T := A Xm < Ui  A A Wk = 2,. 
Then 3xmr A wo < ui A wk = wo. 

(2d) T := A vj < xm A A wk = x,. 
Cf. (2c). 

(2e) T := A x, < ui. 
Observe that 3 2 , ~  holds in all ordered sets without a left endpoint. So 
we have 3 2 , ~  T, since we work in DO. 

(2f) T := A vj < 2,. 
Cf. (2e). 

(2g) 7- : = A  Wk = x m .  
Then 3cm7 *fr wo = wk. 

Remarks. 

(i) The cases (2b), (2e) and (2f) make essential use of DO. 
(ii) It  is often possible to introduce shortcuts, e.g. when a variable (other 

than x,) occurs in two of the big conjuncts we have 3xmT Al. 
If the innermost quantifier is universal, we reduce it to an existential one 

by V X , ~  H 73xrn-p.  
Now it is clear how to eliminate the quantifiers one by one . 

Example. 
3xy(x < yA3z(x  < z Az < yAVu(u# r -+ u < y V u = x ) ) )  

A 3xyz1[x=yv . . .  V ~ < ~ V ( ~ < ~ A ~ < X ) V ( Y < Z A X < ~ )  
~ ( y < z A y < x ) V ( y < z A x < z ) V ( z < y A y < x )  
V ( z < y A x <  y ) V ( z < x A y < x ) V T ] .  

Cf, 3xyz( iT) .  

Cf, 1. 
Evidently the above quantifier elimination for the theory of dense order 

without endpoints provides an alternative proof of its decidability. For, if cp 
is a sentence, then cp is equivalent to an open sentence cp'. Given the language 
of DO it is obvious that cp' is equivalent to either T or I .  Hence, we have , 

an algorithm for deciding DO I- cp. Note that we have obtained more: DO is 
complete, since DO t cp HI or DO I- cp t, T ,  so DO I- i c p  or DO I- cp. 

In general we cannot expect that much from quantifier elimination: e.g. 
the theory of algebraically closed fields admits quantifier elimination, but it 
is not complete (because the characteristic has not been fixed in advance); 
the open sentences may contain unprovable and unrefutable atoms such as 
7 = 12, 23 = 0. 

We may conclude from the existence of a quantifier elimination a cer- 
tain model theoretic property, introduced by Abraham Robinson, which has 
turned out to be important for applications in algebra (cf. the Handbook of 
Mathematical Logic, A4). 

Definition 3.3.21. A theory T is model complete if for a,% E Mod(T) 
U~!l3+-!2l<B. 

We can now immediately obtain the following: 
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Theorem 3.3.22. If T admits quantifier elimination, then T is model com- 
plete. 

Proof. Let U and B be models of T, such that U C B .  We must show 
that U cp(al,. . . , a n )  e B 23 cp(al,. . . ,&) for all a l , .  . . , a n  E JUI, where 
F V ( q )  = {XI,  . . . r xn). 

Since T admits quantifier elimination, there is a quantifier free 
$(xl , .  . . , x,) such that r t- cp - $. 

- 
Hence it suffices to  show U t- $@I,.  . . , an )  e B k $@I,. . . , a n )  for a 

quantifier free $. A simple induction establishes this equivalence. 0 

Some theories T have a particular model that is, up to  isomorphism, 
contained in every model of T. We call such a model a prime model of T. 

Examples. 

(i) The rationals form a prime model for the theory of dense ordering without 
endpoints; 

(ii) The field of the rationals is the prime model of the theory of fields of 
characteristic zero; 

(iii) The standard model of arith- metic is the prime model of Peano's 
arithmetic. 

Theorem 3.3.23. A model complete theoy with a prime model is complete. 

Proof. Left to  the reader. 

Exercises 

1. Let U = ( A ,  I )  be a poset. Show that Diagf (U) U {a # b I a # b,a, b E 
IUI} U {Vxy(x < y V y I x)) has a model. (Hint: use compactness). 
Conclude that every poset can be linearly ordered by an extension of its 
ordering. 

2. I f f  :UZLBandFV(cp)={x l ,  . . . ,x~@ow 
- 

U t- cp[al,. . . , an /x l , .  . . , xn] 93 t- ~ [ f  (al) ,  . . . , f (an)/xl , .  . . , xnI. 
In particular, U - 23. 

3. Let U C B .  cp is called universal (existential) if cp is prenex with only 
universal (existential) quantifiers. 

(i) Show that for universal sentences cp B + cp cp U cp. 
(ii) Show that for existential sentences cp U cp cp B 23 cp. 

(Application: a substructure of a group is a group. This is one reason 
to use the similarity type (-; 2 , l ;  1) for groups, instead of (-; 2; O), or 
(-; 2; l ) ,  as some authors do). 
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4. Let U = (N, <),% = ( N  - {O), <). 
show: (i) u r %; 

(ii) U = 23; 
(iii) B c 2; 
(iv) not23 4 U. 

5. (Tarski). Let U B .  Show U 4 23 @ for all cp E L and a l , .  . . , a n  E 

IUI, B t- 3ycp(y,al,. . . , a n )  + there is an element a E IUJ such that 
B t- cp(a,al,. . . , an ) ,  where FV(cp(y,El,. . . , an )  = {y). Hint: for -e show 

(i) t ' ( ~ ~ ,  . . . , an )  = tB(al ,  . . . , an )  for t E L, 
(ii) 2l t cp(Sil,. . . ,?in) H 93 t- cp(Sil,. . . ,a,) for cp E L by induction on cp 

(use only V, 7 , 3 )  

6. Another construction of a non-standard model of arithmetic: Add to the 
language L of arithmetic a new constant c. Show r = ~ h ( % )  U {c > 
5i1n E IT[) has a model M. Show that M 3 .  Can M be countable? 

7. Consider the ring Z of integers. Show that there is an U such that Z 4 2 
and Z 2l (a  non-standard model of the integers). Show that U has an 
"infinite prime number", p,. 
Let (p,) be the principal ideal in U generated by p, . Show that U/(p,) 
is a field F .  (Hint: look at Vx("x not in (p,)" + 3yz(xy = 1 + zp,)), 
give a proper formulation and use elementary equivalence). What is the 
characteristic of F? (This yields a non-standard construction of the ra- 

I 

tionals from the integers: consider the prime field). 

8. Use the non-standard model of arithmetic to show that "well-ordering" 
is not a first-order concept 

Use from the non-standard model of the reals to  show that "archimedean 
ordered field" is not a first-order concept. 

Consider the language of identity with constants ci(i E N) 
r = {II, Iz, 13) U {ci # cjli, j E N , i  f j ) .  Show that the theory of r is 
k-categorical for k > No, but not No-categorical. 

Show that the condition "no finite models" in Vaughts's Theorem is nec- 
essary (look a t  the theory of identity). 

Let X (%I. Define Xo = X U C where C is the set of constants 
of U, Xn+l = Xn U {f (a l ,  . . . , am)J  f in U, a l ,  . . . , a m  E X,), X, = 

U{Xnln E NI .  
Show that % = (XU, R i n X 2 , .  . . , R 2 n X 2 ,  f l lXzl , .  . . , fmIXzm, {clli E 
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I)) is a substructure of U. We say that 23 is the substructure generated 
by X .  Show that 93 is the smallest substructure of U containing X ;  23 can 
also be characterized as the intersection of all substructures containing 
X .  

13. Let *R  be a non-standard model of Th(R). Show that s t  (cf. page 123) 
is a homomorphism from the ring of finite numbers onto R. What is the 
kernel? 

14. Consider '5%' = (R, N, <, +, ., -,-I ,0 ,  I ) ,  where N is the set of natural 
numbers. L(!Xf) has a predicate symbol N and, we can, restricting our- 
selves to + and ., recover arithmetic by relativizing our formulas to N 
(cf. 2.5.9). 
Let %I +* 9' = (*R,* N, . . .). Show that X = (N,  <, +, ., 0 , l )  4 
(*N, <, +, ., 0 , l )  =* X (Hint: consider for each cp E L(X) the relativized 
cpN E L(fS1)). 

15. Show that any Peano-structure contains X as a substructure. 

16. Let L be a language without identity and with at least one constant. 
Let a = 3x1 . . . zncp(sl,. . . , x,) and C, = (cp(t1,. . . , tn)( t i  closed in L), 
where cp is quantifier free. 

(i) a H each U is a model of at  least one sentence in Cu. (hint: for 
each U, look at  the substructure generated by 0). 

(ii) Consider C, as a set of propositions. Show that for each valuation 
v (in the sense of propositional logic) there is a model U such that 
[ ~ ( t l , .  . . , tn)], = [ ~ ( t l , .  . ., t n ) ] ~ ,  for all ~ ( t l , .  . . tn) E z u .  

(iii) Show that k a a!- V El cp(tf, . . . , tk) for a certain m (hint: use 
Exercise 9, section 1.5). 

17. Let U,23 E Mod(T) and U ZL 93. Show that Diag(U) U Diag(23) U T 
is consistent (use the Compactness Theorem). Conclude that there is a 
model of T in which both U and 93 can be isomorphically embedded. 

18. Consider the class K of all structures of type (1; -; 0) with a denumerable 
unary relation. Show that any U and 23 in K of the same cardinality 
K > NO are isomorphic. Show that T = Th(K) is not K-categorical for 
any K > No. 

19. Consider a theory T of identity with axioms An for all n E N .  In which 
cardinalities is T categorical? Show that T is complete and decidable. 
Compare the result with Exercise 10. 

Show that the theory of dense order without end-points is not categorical 
in the cardinality of the continuum. 

Consider the structure U = (R, <, f )  , where < is the natural order, and 
where f is a unary function. Let L be the corresponding language. Show 
that there is no sentence a in L such that U u a f ( r )  > 0 for all 
r E R. (hint: consider isomorphisms x H x + k). 

22. Let U = ( A ,  N), where N is an equivalence relation with denumerably 
many equivalence classes, all of which are infinite. Show that Th(U) is 
No-categorical. Axiomatize Th(U). Is there a finite axiomatisation? Is 
Th(U) K-categorical for K > No? 

23. Let L be a language with one unary function symbol f .  Find a sentence 
rn,  which says that "f has a loop of length n", i.e. U rn a there 
are a l , .  . . , a n  E (UI such that fa(ai) = ai+l(i < n) and fa(an)  = a l .  
Consider a theory T with axiom set { P ,  ~ 1 , l r 2 , ~ ~ 3 , .  . . , 
1rn, . . .)(n E w), where p expresses " f is bijective". 
Show that T is K-categorical for K > No. (hint: consider the partition 
{( f ")i(a)(i E w) in a model U). Is T Ho-categorical? 
Show that T is complete and decidable. Is T finitely axiomatisable? 

24. Put Tv = {a(T k a and a is universal). Show that Tv axiomatizes the 
theory of all substructures of models of T. Note that one part follows 
from Exercise 3. For the converse: let U be a model of Tv and consider 
Diag(U) U T.  Use compactness. 

25. We say that a theory is preserved under substructures if U C 23 and 
% E Mod(T) implies U E Mod(T). 
( Los-Tarski). Show that T is preserved under substructures iff T can be 
axiomatized by universal sentences (use Exercise 24). 

26. Let U = 23, show that there exists a C such that U + C , B  4 C (up 
to isomorphism). Hint: assume that the set of new constants of !% is 
disjoint with the set of new constants of !k. Show that ~ h ( ! k )  U ~ h ( ! % )  
has a model. 

27. Show that the ordening <, defined by x < y := 3u(y = x+Su) is provably 
transitive in Peano's Arithmetic, i.e. PA F Vxyz(x < y Ay < z 4 x < z). 
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28. Show (i) PA t Vz(0 < x) (use induction on x), 
(ii) PA t Vx(x = 0 V 3y(x = Sy)) (use induction on x),  
(iii) PA t- Vxy(x + y = y + x), 
(iv) PA t Vy(x < y -+ Sx  < y), (use induction on y), 
(v) PA t Vxy(x < y V x = y V y < x) (use induction on x ,  the 

case of x = 0 is simple, for the step from x to S x  use (iv)), 

(iv) PA I- V y 4 x ( y  < x A x  < Sy) (compare with (iv)). 

29. (i) Show that the theory L, of identity with "infinite universe" (cf. 
section 3.1, Exercise 3 or Exercise 19 above) admits quantifier elim- 
ination. 

(ii) Show that L, has a prime model. 

3.4 Skolem Functions or How to Enrich Your Language 

In mathematical arguments one often finds passages such as ".....there is an x 
such that cp(x) holds. Let a be such an element, then we see that ...". In terms 
of our logic, this amounts to the introduction of a constant whenever the ex- 
istence of some element satisfying a certain condition has been established. 
The problem is: does one thus strengthen the theory in an essential way? In 
a precise formulation: suppose T t 3xcp(x). Introduce a (new) constant a and 
replace T by T' = T U {cp(a)). Question: is T' conservative over T ,  i.e. does 
T' I- $ + T I- $ hold, for $ not containing a? We have dealt with a similar 
problem in the context of Henkin theories, (section 3.1), so we can use the 
experience obtained there. 

T h e o r e m  3.4.1. Let T be a theory with language L, such that T t 3xcp(x), 
where (FV((p) = {x), and let c be a constant not occurring in L. Then 
T U {cp(c)) is conservative over T .  

Proof. By Lemma 3.1.7, T' = T U {3xcp(x) + cp(c)) is conservative over T. If 
$ E L and T' U {cp(c)) k $, then T' U {3xq(x)) t $, or T' k 3xcp(x) --, $. 
Since T' is conservative over T we have T t 3 x 4 ~ )  -, $ Using T I- 3xcp(x), 
we get T t $. (For an alternative proof see Exercise 6). 0 

The above is but a special case of a very common piece of practice; if one, 
in the process of proving a theorem, establishes that "for each x there is a y 
such that cp(x, y)", then it is convenient to introduce an auxilliary function 
f that picks a y for each x, such that cp(x, f (x)) holds for each x. This tech- 
nique usually invokes the axiom of choice. We can put the same question in 
this case: if T I- Vx3ycp(x, y), introduce a function symbol f and replace T 
by T' = T U Vxcp(x, f (x)). Question: is T' conservative over T? The idea of 
enriching the language by the introduction of extra function symbols, which 
take the role of choice functions, goes back to Skolem. 
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1 
, Definition 3.4.2. Let cp be a formula of the language L with FV((p) = 

[ {xl,. . . , an, y). Associate with cp an n-ary function symbol f,, called the 
Ir Skolem functzon (symbol) of cp. The sentence 
! 

VXI. . . x ~ ( ~ Y v ( x ~ , . .  . , x ~ , Y )  -+  XI,. . . ,xn , fV(x1, . . . ,xn) ) )  
t 

is called the Skolem axzom for cp. 

1 Note that the witness of section 3.1 is a special case of a Skolem function 
(take n = 0) : f, is a constant. 

Definition 3.4.3. If T is a theory with language L, then T~~ = T U {ala is 
a Skolem axiom for some formula of L) is the Skolem extension of T and its 

' language L~~ extends L by including all Skolem functions for L. If U is of the 
type of L and USk an expansion of U of the type of L " ~ ,  such that ask + a 
for all Skolem axioms a of L and IUI = IUskI, then USk is called a Skolem 
expansion of U. 

The interpretation in USk of a Skolem function symbol is called a Skolem 
function. 

t Note that a Skolem expansion contains infinitely many functions, so it is 
a mild extension of our notion of structure. The analogue of 3.1.7 is 

Theorem 3.4.4. (i) TSk is conservative over T .  
(ii) each U E Mod(T) has a Skolem expansion USk E M O ~ ( T ' ~ )  

Proof. We first show (ii). We only consider the case of formulas with FV(cp) = 
(21,. . . , xn, y) for n > 1. The case n = 0 is similar, but simpler. It  requires 
the introduction of new constants in U (cf. Exercise 6). Let U E  mod(^) and 
cp E L with FV(cp) = {xl, . . . , xn,  y). We want to find a Skolem function for 
cp in U. 

Define Val,...an = {b E IUI I 2 + ~ ( Z I , .  . . , ~ n , ? ) ) .  
Apply AC to  the set {Val ,...,_ IVal ,..,an # 0): there is a choice function F 

such that F(Val ,...an ) E Val ,...an 

Define a Skolem function by 

Fv(a1,. . . , a n )  = 
{ F(Va1 ,... an) if Val ,... an # 0, 

e else, 
where e E IUI. 
Now it is a routine matter to  check that indeed 

ask t= VXI. .  .xn(3ycp(x17.. . ,xn ,y)  -+  XI,. .. , x n , f , ( x l , . . . , ~ n ) ) ) ,  where 
% = f:'&, and where BSk is the expansion of U with all Skolem functions 
F, (including the "Skolem constants", i.e. witnesses). (i) follows immediately 
from (ii): Let T y 1C, (with 1C, E L), then there is an B such that U y $. Since 
1C, E L, we also have ask y 1C, (cf. section 3.2, Exercise 3), hence T~~ Y $. 
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Remark. It is not necessary (for 3.4.4) to extend L with all Skolem function 
symbols. We may just add Skolem function symbols for some given set S of 
formulas of L. We then speak of the Skolem extension of T with respect to 
S (or with respect to cp if S = {cp)). 

The following corollary confirms that we can introduce Skolem functions 
in the course of a mathematical argument, without essentially strengthening 
the theory. 

Corollary 3.4.5. If T I- Vxl, . . . xn3ycp(xl,. . . ,z,, y), where FV(cp) = 

{xl , .  . . , x,, y), then T' = T U {Vxl . . . x,cp(xl,. . . , x,, f , (x~ ,  . . . , 2,))) is 
conservative over T .  

Proof Observe that T" = T U {Vxi . . . xn(3ycp(xi, . . . , X n ,  Y) 4. 

(P (x~ ,  . . . , xn), f ( ( ~ ( x 1 , .  . .7xn))) I- VXI n ( ~ ( x l , . . . ~ x n , f , ( x l , . . .  7%)). SO 
TI t $ + TI' t- $. Now apply 3.4.4. 0 

The introduction of a Skolem extension of a theory T results in the "elimi- 
nation" of the existential quantifier in prefixes of the form Vx, . . . , xn3y. The 
iteration of this process on prenex normal forms eventually results in the 
elimination of all existential quantifiers. 

The Skolem functions in an expanded model are by no means unique. If, 
however, U + Vxl . . . xn3! ycp(xl, . . . , x,, y), then the Skolem function for (F 

is uniquely determined; we even have ask Vx1. . . x,y(cp(xl,. . . , x,, y) - 
Y = f p ( ~ l ~ . . .  3%)). 

We say that cp defines the function F, in ask, and 
Vxl . . . xny(cp(xl,. . . , x,, y) - y = f,(xl,. . . , x,)) is called the definition of 
F, in a s k .  

We may reasonably expect that with respect to Skolem functions the 
V3!-combination yields better results than the V3-combination. The follow- 
ing theorem tells us that we get substantially more than just a conservative 
extension result. 

Theorem 3.4.6. Let T t Vxl . . . xn3! ycp(x1, . . . , x,, y), where FV((p) = 
{xl, . . . , x,, y) and let f be an n-ary symbol not occurring in T or cp. Then 
T+ = TU(Vx1.. . x,y(cp(xl,. . . ,x,, y) - y = f ( x l , . .  . ,x,))) is conservative 
over T. 
Moreover, there is a translation T TO from L f  = L U {f) to L, such that 

( 1 )  T+ t- T c-, To, 
(2) T+ t- T % T  t- To, 

(3) T = TO for T E L. 
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Proof. (i) We will show that f acts just like a Skolem function; in fact T+ is 
! equivalent to the theory T' of Corollary 3.4.5 (taking f for f,). 
/l 

1 (a) T+ 1 VXI. .  . x n ~ ( x l , .  . . , x n , f ( x l , . . .  ,xn)).  
1 For, T+ t- Vx1. ..xn3ycp(xl,. . . ,x,,y) and 

I 
T+ I- VXI.. .x,Y((P(xI,.. . , xn7y)  Y = f (x17 . .  . ,xn)) .  

L Now a simple exercise in natural deduction, involving R14, yields (a). 
1 Therefore T' c T+ (in the notation of 3.4.5). 

(ii) The idea, underlying the translation, is to replace occurrences of f (-) by 
a new variable and to eliminate f .  Let T E L* and let f (-) be a term in L* not 
containing f in any of its subterms. Then I- T(. . . , f (-), . . .) o 3y(y = f (-)A 
T(. . . , y , .  . .)), where y does not occur in T, and T+ I- T(. . . , f(-) ,  . . .) - 
3y((p(-, y) A T(. . . , y, . . .)). The right-hand side contains one occurrence of f 
less than T. Iteration of the procedure leads to the required f-free formula 
TO. The reader can provide the details of a precise inductive definition of TO; 

note that one need only consider atomic T (the translation extends trivially 
to all formulas). Hint: define something like " f-depth" of terms and atoms. 
From the above description of TO it immediately follows that T+ t- T o TO. 
Now (2) follows from (i) and (1). Finally (3) is evident. 0 

As a special case we get the explicit definition of a function. 

Corollary 3.4.7. Let FV(t )  = {XI,.  . . ,a,) and f $ L. Then T+ = T U 
{VXI . . . x,(t = f (xl,  . . . , x,)) is conservative over T .  

Proof. We have Vxl . . . xn3!y(y = t) ,  so the definition of f ,  as in 3.4.6, be- 
comes Vxl . . . x,y(y = t o y = f (x l , .  . . , x,)), which, by the predicate and 
identity rules, is equivalent to Vxl . . . xn(t = f (XI , .  . . , x,)). 0 

We call f (x l , .  . . x,) = t the explicit definition o f f .  One can also add new 
Predicate symbols to a language in order to replace formulas by atoms. 

Theorem 3.4.8. Let FV((p) = {XI,.  . . , x,) and let Q be a predicate symbol 
not in L. Then 

(i) T+ = T u {VXI . .  . xn(p  - Q(xl , .  . . , x,))) is conservative over T. 
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(ii) there is a translation T -+ r0  into L such that 
(1) T+ t- 7 - T O ,  

( 2 )  T+ F 7 H T  I- TO, 

(3) T = r0 for T E L. 

Proof. Similar to, but simpler than, the above. We indicate the steps; the 
details are left to  the reader. 

(a) Let U be of the type of L. Expand U to Uf by adding a relation Qf = 

{(a l l . . . l an) l% k ~ ( z l l . . . l G z ) } .  
(b) Show U + T w U+ + T+ and conclude (i). 
(c) Imitate the translation of 3.4.6. 0 

We call the extensions shown in 3.4.6, 3.4.7 and 3.4.8, extensions by defi- 
nition. The sentences 

Vx1. . . x n y ( ~  ++ Y = f (XI, .  . ., xn) ) ,  
Vxl . . . x,(f (51,. . . ,x,) = t) ,  
VXI . . . x n ( ~  ++ Q(x11...1xn))1 
are called the defining axioms for f and Q respectively. 

Extension by Definition belongs to the daily practice of mathematics (and 
science in general). If a certain notion, definable in a given language, plays 
an important role in our considerations, then it is convenient to have a short, 
handy notation for it. 

Think of "x is a prime number", "x is equal to y or less than y", "z is 
the maximum of x and y", etc. 

Examples. 

1. Characteristic functions 

Consider a theory T with (at least) two constants Q, cl, such that T k 
co # cl.  Let FV(cp) = {xl , .  . . , x,), then T F Vxl . . . xn3!y(cp A y = cl) V 
(-y A y = Q)). (Show this directly or use the Completeness Theorem). 

The defining axiom for the characteristic function K,, is 
Vxl . . . x,y[(cp A y = cl) V (-cp A y = ~ 2 ) )  t+ Y = K,(x~ ,  . . . , x,)). 

2. Definition by (primitive) Recursion. 

In arithmetic one often introduces functions by recursion, e.g. x!, xy. The 
study of these and similar functions belongs to recursion theory; here we 
only note that we can conservatively add symbols and axioms for them. Fact 
(Godel, Davis, Matijasevich): each recursive function is definable in P A ,  in 
the sense that there is a formula cp of P A  such that 

(i) P A  I- Vxl..  . xn3!ycp(xll.. . , x,, y) and - - 
(ii) for k l l . .  . , k,,m E N f ( k l , .  . . , k,) = m =+ P A  t cp(El,. . . , k,,m).  

For details see Smorynski, 1991; Davis, 1958. 
Before ending this chapter, let us briefly return to the topic of Skolem 

functions and Skolem expansions. As we remarked before, the introduction 
of Skolem functions allows us to dispense with certain existential quantifiers 
in formulas. We will exploit this idea to  rewrite formulas as universal formulas 
(in an extended language !). 

First we transform the formula cp into prenex normal form cp'. Let us 
suppose that cp' = Vxl . . . xn3yy5(xl,. . . , x,, y, z l l  . . . , zk), where 21,. . . , zk 
are all the free variables in cp. Now consider 

T* = T U { V X ~  . . . Xnzl . . . zk(3y'$(x1, . . . , Xn,  Y, Z1, . . . , Zk) 4 

$ ( ~ l ~ ~ ~ ~ , ~ n l f ( ~ 1 , . . r ~ n , ~ 1 i . . , ~ k ) i ~ l i ~ ~ ~ ~ z k ) ) } ~  

By Theorem 3.4.4 T* is conservative over T, and it is a simple exercise in 
logic to show that 

T* k V X ~ . .  . xn3yy5(-, y, -) ++ V X ~  . . . x,$(-, f (. . .), -). 
We now repeat the process and eliminate the next existential quantifier 

in the prefix of y5; in finitely many steps we obtain a formula cpS in prenex 
normal form without existential quantifiers, which, in a suitable conservative 
extension of T obtained by a series of Skolem expansions, is equivalent to cp. 

Warning:  the Skolem form cpS differs in kind from other normal forms, in 
the sense that it is not logically equivalent to cp. 

Theorem 3.4.4 shows that the adding of Skolem Axioms to a theory is 
conservative, so we can safely operate with Skolem forms. The Skolem form 
cpS has the property that is satisfiable if and only if cp is so (cf. Exercise 4). 
Therefore it is sometimes called the Skolem form for satisfiability. There is a 
dual Skolem form cp, (cf. Exercise 5), which is valid if and only if cp is so. cp, 
is called the Skolem form for validity. 

Example. Vx1313~2Vx23~3~~3Vx43~4 c p ( ~ 1 , ~ 2 , ~ 3 , ~ 4 , ~ 1 , ~ 2 , ~ 3 ~ ~ 4 , z 1 ,  ~ 2 ) .  
step 1. Eliminate yl: 

Q x ~ ~ Y ~ V X ~ ~ Y ~ V X ~ V X ~ ~ Y ~  c p ( ~ i l ~ 2 1 ~ 3 , ~ 4 , f ( ~ i l ~ i l z 2 ) , ~ 2 1 Y 3 1 ~ 4 1 ~ l ~ ~ ~ ~  

step 2. Eliminate y2: 
Vxlx23~3Vx3~43~4 (P(. . . , f ( x 1 1 ~ 1 , ~ 2 ) , ~ ( ~ 1 1 ~ 1 , ~ 2 ) 1  Y3i Y41 211 ~ 2 ) .  

step 3. Eliminate y3: 
V x 1 ~ 2 ~ 3 ~ 4 3 ~ 4  v(. . . , f  ( ~ 1 ,  21, z2)ig(xliZli z2)i h(xliX2i Zl,z2)iY4izlrz2) 

step 4. Eliminate y4: 
V x l x 2 ~ 3 ~ 4  Y(. . . 1 f ( ~ 1 ,  211 z2),9(511 21, 2211 h(x11 X2121,z2, 

k h ,  2 2 ,  23, ~ 4 , ~ 1 ,  z2), w 2 ) .  

In Skolem expansions we have functions available which pick elements for 
us. We can exploit this to  obtain elementary extensions. 

Theorem 3.4.9. Consider U and B of the same type. 
If BSk is a Skolem expansion of B and U* Bsk ,  where U* is some expansion 
of U, then U 4 B .  
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Proof. We use Exercise 5 of section 3.3. Let a l , .  . . ,a, E IUI, 
93 3ycp(y, El , .  . . , Z,) @ 93* + cp( f , ( ~ ~ ,  . . . , ~ i , ) ,  zl, . . . , z,), where f, is 
the Skolem function for cp. Since U* g Wk, fE* ( a l , .  . . ,a,) = 

~ ' ~ ' ( a ~ ,  . . . , a n )  and so b = (f,(al,. . . = (f,(Zl,. . . ,B))%* t PI. 
Hence 'BSk cp(b,7il,. . . ,a,). This shows U 4 93. 0 

Theorem 3.4.10. Let X C IQI. The Skolem Hull Bx of X is the substruc- 
ture of U which is the reduct of the structure generated by X in the Slcolem 
expansion USk of 2l (cf. Exercise 12, section 3.3). 

In other words Bx is the smallest substructure of a, containing X ,  which 
is closed under all Skolem functions (including the constants). 

Corollary 3.4.11. For all X C IUI Bx + U. 

We now immediately get the strengthening of the downward Skolem- 
Lowenheim Theorem formulated in Theorem 3.3.12, by observing that the 
cardinality of a substructure generated by X is the maximum of the cardi- 
nalities of X and of the language. This holds too in the present case, where 
infinitely many Skolem functions are added to the language). 

Exercises 

1. Consider the example concerning the characteristic function. 
(i) Show T+ t Vxl . . . x,(cp ++ K,(x~ ,  . . . , 2,) = cl). 
(ii) Translate K,(xl, . . . , x,) = K,(yl, . . . , y,). 
(iii) Show T+ t- Vxl . . . x,yl, . . . , yn(K,(xl, . . . , x,) = 

K V ( y l , . . . , Y n ) ) + + v ~ l . . . ~ n ~ ( ~ l , . . . , ~ n ) V  

vxl . . . xnlcp(xl,. . . , x,). 

2. Determine the Skolem forms of 
(a) Vy3x(2x2 + yx - 1 = O), 
(b) v&36(& > 0 + (6 > OA~/X(IX -a1 < 6 + If(X) - f@)l <&),  
(c) V53y(x = f (Y)), 
(d) Vxy(x < y -+ 3u(u < x) A 3v(y < v) A 3w(x < v A w < y)), 

2 (e) Vx3y(x = y2 v x = -y ). 

3. Let as be the Skolem form of a .  Consider only sentences. 
(i) Show that F U {aS) is conservative over F U {a) .  
(ii) Put  FS = {us Iu E F) .  Show that for finite F, FS is conservative over 

T? 
1 .  

(iii) Show that FS is conservative over r for arbitrary r. 
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I 
! 4. A formula cp with FV(cp) = {XI, .  . . ,x,) is called satzsfiable if there is 
1 an U and a l ,  . . . ,a ,  E IUI such that U cp(7i, . . . ,z,). Show that cp is 

satisfiable iff cpS is satisfiable. 

1 5. Let a be a sentence in prenex normal form. We define the dual Skolem 
form a, of a as follows: let a = (Q lx l ) .  . . (Q,x,)T, where T is quantifier 
free and Q1 are quantifiers. Consider a' = (Qlxl)  . . . (Q,x,)v, where - 
Q1 = V, 3 iff Q1 = 3,V. Suppose (a')' = ( G x , , ) .  . . ( G x , , ) ~ ;  then 
as = (Qz, 2 2 ,  ) . . . (QZk G k  17'. 
In words: eliminate from a the universal quantifiers and their variables 
just as the existential ones in the case of the Skolem form. We end up 
with an existential sentence. 
Example. (Vx3YVzcp(xYx))s = 3ycp(c, Y7 f ( ~ 1 ) .  

We suppose that L has at least one constant symbol. 
(a) Show that for all (prenex) sentences a, a iff + a,. (Hint: look a t  

Exercise 4). Hence the name: "Skolem form for validity". 
(b) Prove Herbrand's Theorem: 

for some m,  where a: is obtained from a, by deleting the quantifiers. 
The t J ( i  < m, j 5 n) are certain closed terms in the dual Skolem 
expansion of L. Hint: look at ~ ( 7 0 ) ' .  Use Exercise 16, section 3.3 

, 6. Let T t 3xcp(x), with FV(cp) = {x). Show that any model U of T can 
be expanded to a model U* of T with an extra constant c such that 
U* cp(c). Use this for an alternative proof of 3.4.1 

I 

' 7. Consider I, the theory of identity "with infinite universe" with axioms 
X,(n E N )  and I:, with extra constants c,(i E N )  and axioms c, # c, 
for i # j ,  i ,  j E N. Show that I:, is conservative over I,. 
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In first-order predicate logic the variables range over elements of a structure, 
in particular the quantifiers are interpreted in the familiar way as "for all 
elements a of I%[ . . . " and "there exists an element a of [%I . . .". We will now 
allow a second kind of variable ranging over subsets of the universe and its 
Cartesian products, i.e. relations over the universe. 

The introduction of these second-order variables is not the result of an 
unbridled pursuit of generality; one is often forced to take all subsets of 
a structure into consideration. Examples are "each bounded non-empty set 
of reals has a suppremum", "each non-empty set of natural numbers has a 
smallest element", "each ideal is contained in a maximal ideal". Already the 
introduction of the reals on the basis of the rationals requires quantification 
over sets of rationals, as we know from the theory of Dedekind cuts. 

Instead of allowing variables for (and quantification over) sets, one can also 
allow variables for functions. However, since we can reduce functions to sets 
(or relations), we will restrict ourselves here to second-order logic with set 
variables. 

When dealing with second-order arithmetic we can restrict our attention to 
variables ranging over subsets N, since there is a coding of finite sequences of 
numbers to numbers, e.g. via Godel's P-function, or via prime factorisation. 
In general we will, however, allow for variables for relations. 

The introduction of the syntax of second-order logic is so similar to that 
of first-order logic that we will leave most of the details to the reader. 

The alphabet consists of symbols for 

(i) individual variables: xo, X I ,  x2,. . ., 
(ii) individual constants: co, cl, c2,. . ., 

and for each n > 0, 

(iii) n-ary set (predicate) variables: X$ , XT, X;, . . . , (iv) n-ary set (pred- 
icate) constants: I, Pt, PT, PT, . . . , (v) connectives : A, +, V, 7 ,  H, 3, V. 
Finally we have the usual auxiliary symbols: ( , ) , , . 
Remark. There are denumerably many variables of each kind. The number of 
constants may be arbitrarily large. 
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Formulas are inductively defined by: 

(i) XP, P!, IE FORM,  
(ii) for n > 0 X n ( t l , .  . . ,t,) E FORM,  Pn( t l , .  . . ,t,) E FORM, 
(iii) F O R M  is closed under the propositional connectives, 
(iv) F O R M  is closed under first- and second-order quantification. 

Notation. We will often write (21,. . . , x,) E X n  for Xn(xl ,  . . . , x,) and 
we will usually drop the superscript in Xn .  

The semantics of second-order logic is defined in the same manner as in 
the case of first-order logic. 

Definition 4.1. A second-order structure is a sequence U = (A, A*, c*, R*), 
where A* = (A,Jn E N ) ,  c* = {qli E N) C A, 

R* = (Rali,n E N) ,  and A, c P ( A n ) , R y  E A,. 

In words: a second-order structure consists of a universe A of individuals 
and second-order universes of n-ary relations (n  2 0), individual constants 
and set (relation) constants, belonging to the various universes. 

In case each A, contains all n-ary relations (i.e. A, = P(An)), we call 2l 
full. 

Since we have listed I as a 0-ary predicate constant, we must accomodate 
it in the structure U. 

In accordance with the customary definitions of set theory, we write 
0 = 0 , l  = 0 and 2 = {0,1). Also we take A0 = 1, and hence A. G P(AO) = 
P(1) = 2. By convention we assign 0 to I. Since we also want a distinct 0-ary 
predicate (proposition)T := 1 I, we put 1 E Ao. So, in fact, A. = ?(A0) = 2. 

Now, in order to define validity in U, we mimic the procedure of first- 
order logic. Given a structure %, we introduce an extended language L(U) 
with names 3 for all elements S of A and A,(n E N).  The constants Ra are 
interpretations of the corresponding constant symbols P r .  

We define % cp, cp is true or valid in U, for closed cp. 

Definition 4.2. (i) % 3 if S = 1, 

(ii) U ?? (31, . . . , 3,)if(sl, . . . , s,) E Sn, 
(iii) the propositional connectives are interpreted as usual (cf. 1.2.1, 2.4.51, 
(iv) U + Vxcp(x)ifU cp(3)for alls E A, 

U + 3xcp(x)ifU + cp(3)for somes E A, 
(v) 2l + VXncp(Xn)ifU k cp(Sn)for allSn E A,, 

2l + 3Xncp(Xn)if% i= ( p ( r ) f o r  someSn E A,. 

If 2l cp we say that cp is true, or valid, in 2l. 
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As in first-order logic we have a natural deduction system, which con- 
, sists of the usual rules for first-order logic, plus extra rules for second-order 

quantifiers. 

where the conditions on V 2 1  and g2E are the usual ones, and cp* is obtained 
from cp by replacing each occurrence of Xn( t l , .  . . , t,) by a( t l ,  . . . ,t,) for a 
certain formula a ,  such that no free variables among the ti become bound 
after the substitution. 

Note that I2I gives us the traditional Comprehension Schema: 

where X n  may not occur free in cp. 

Proof. 

VXI.. . x n ( ( ~ ( x l , .  . . , xn )  ++ ~ ( x 1 ,  . . -  12,)) 
321 

3xnvx1 . .  . xn(p(xl , .  . . , x,) ++ Xn(x l , .  . . , x,)) 

Since the topline is derivable, we have a proof of the desired principle. 
Conversely, l2 1 follows from the comprehension principle, given the ordinary 
rules of logic. The proof is sketched here (Z and stand for sequences of 
variables or terms; assume that X n  does not occur in a ) .  

[VZ(a (Z) * X n  (Z))] 

3XnVZ(a(Z) ++ X n  (Z)) 3Xncp(. . . , x n ( T  ), . . .) 

In t a number of steps are involved, i.e. those necessary for the Substitu- 
tion Theorem. In * we have applied a harmless 3-introduction, in the sense 
that we went from a instance involving a variable to an existence statement, 
exactly as in first-order logic. This seems to beg the question, as we want to 
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justify 32-introduction. However, on the basis of the ordinary quantifier rules 
we have justified something much stronger than * on the assumption of the 
Comprehension Schema, namely the introduction of the existential quanti- 
fier, given a formula a and not merely a variable or a constant. 

Since we can define V2 from g2 a similar argument works for V2E. 

The extra strength of the second-order quantifier rules lies in V 2 1  and 
q2E.  We can make this precise by considering second-order logic as a special 
kind of first-order logic (i.e. "flattening" 2nd-order logic). The basic idea is to 
introduce special predicates to express the relation between a predicate and 
its arguments. 

So let us consider a first-order logic with a sequence of predicates Apol 
Apl, Ap2, Ap3,. . . , such that each Ap, is (n + 1)-ary. We think of 
Apn(x, ~ 1 1 . .  . 1  Yn) as ~ ~ ( ~ 1 1 . .  . r Yn). 

For n = 0 we get Apo(x) as a first-order version of XO,  but that is in 
accordance with our intentions. X0  is a proposition (i.e. something that can 
be assigned a truth value), and so is Apo(x). We now have a logic in which 
all variables are first-order, so we can apply all the results from the preceding 
chapters. 

For the sake of a natural simulation of second-order logic we add unary 
predicates V, Uo, U1, U2, . . . , to be thought of as "is an element", "is a o-ary 
predicate (i.e. proposition)" "is a 1-ary predicate", etc. 

We now have to indicate axioms of our first-order system that embody 
the characteristic properties of second-order logic. 

(i) Vxyz(Ui(x) AUj(y) AV(z) -+ x # yA y # z Az  # x) for all i # j .  
(i.e. the Uils are pairwise disjoint, and disjoint from V). 

(ii) Vxyi . . . yn(Apn(x1 pi,  . . . , yn) + Un(x) A A V(yi)) for n 2 1. 
(i.e. if x, yl, . . . , y, are in the relation Ap,, then think of x as a predicate, 
and the yils as elements). 

(iii) Uo(Co, V(C2i+1), for i 2 0, and Un(C3i.5n), for i , n  2 0. 
(i.e. certain constants are designated as "elements" and "predicates"). 

(iv) Vzl . .  . z r n 3 x [ U n ( ~ ) ~ V y l . .  V(yi) + (v* * A~n(x iYl i . .  .,Yn)))Ii 
where x @ FV(cp*), see below. (The first-order version of the comprehen- 
sion schema. We assume that FV(cp) C {zl, .  . . , z,, yl, . . . , y,). 

(v) lApo(Co). (so there is a 0-ary predicate for 'falsity'). 

We claim that the first-order theory given by the above axioms represents 
second-order logic in the following precise way: we can translate second-order 
logic in the language of the above theory such that derivability is faithfully 
preserved. 

The translation is obtained by assigning suitable symbols to the various 
symbols of the alphabet of second-order logic and defining an inductive pro- 
cedure for converting composite strings of symbols. We put 
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X2'+', 
czz+1, for i > 0, 
X ~ E . ~ T L  1 

~31,5n,for i > 0, n 2 0' 
Apo(x3=),for i > 0, 
Apo(cyt),for i > 0, 
Apo(co). 

cp* +* for binary connectives 0 and 
l c p *  and 
vxf(v(x:) + cp*(xf)) 
32; (V(xf ) A cp* (xf )) 
v(Xl )* (un (Xl )* )  + v*(xl)*))  
3 (Xl )* (un ( (Xl )* )  A P*((x%)*)) 

It is a tedious but routine job to show that k2 cp @kl cp*, where 2 and 1 refer 
to derivability in the respective second-order and first-order systems. 

Note that the above translation could be used as an excuse for not doing 
second-order logic at all, were it not for the fact that first-order version is not 
nearly so natural as the second-order one. Moreover, it obscures a number 
of interesting and fundamental features, e.g. validity in all principal models 
see below, makes sense for the second-order version, whereas it is rather an 
extraneous matter with the first-order version. 

Definition 4.3. A second-order structure U is called a model of second-order 
logic if the comprehension schema is valid in U. 

If U is full (i.e. A, = P(An)  for all n), then we call U a principal (or 
standard) model. 

From the notion of model we get two distinct notions of "second-order 
validity": (i) true in all models, (ii) true in all principal models. 

Recall that U + cp was defined for arbitrary second-order structures; we 
will use b cp for "true in all models". 

By the standard induction on derivations we get t 2  cp cp. 
Using the above translation into first-order logic we also get cp =+ t-2 cp. 

Combining these results we get 

Theorem 4.4 (Completeness Theorem) .  t-2 cp ~b cp 

Obviously, we also have cp + cp is true in all principal models. The 
converse, however, is not the case. We can make this plausible by the following 
argument: 
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(i) We can define the notion of a unary function in second-order logic, and 
hence the notions 'bijective' and 'surjective'. Using these notions we can 
formulate a sentence a, which states "the universe (of individuals) is 
finite" (any injection of the universe into itself is a surjection). 

(ii) Consider r = {a) U {Anln E N). r is consistent, because each finite 
subset {a, A,, , . . . , A,,) is consistent, since it has a second-order model, 
namely the principal model over a universe with n elements, where n = 

max(n1, . . . , nk). 

So, by the Completeness Theorem above r has a second-order model. Sup- 
pose now that r has a principal model 2l. Then I2lI is actually Dedekind 
finite, and (assuming the axiom of choice) finite. Say U has no elements, then 
2l An,+1. Contradiction. 

So r has no principal model. Hence the Completeness Theorem fails for 
validity w.r.t. principal models (and likewise compactness). To find a sentence 
that holds in all principal models, but fails in some model a more refined ar- 
gument is required. 

A peculiar feature of second-order logic is the definability of all the usual 
connectives in terms of V and 4. 

Theorem 4.5. (a) t 2 l -  VXO.XO, 
( b )  t 2  cp A $ VXO((cp -+ ($ -+ XO)) -+ XO),  
(c) k2 cp V $ H 'dxO((q 4 XO)  A ($ -+ xO) -+ X'), 

( d )  t2 3x9 * VXO(Vx(cp -+ XO)  -+ XO),  

(e )  t2 3Xncp H VXO(VXn((cp --t XO) 4 XO).  

Proof. (a) is obvious. 
(b) 

[cp A $1 
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Conversely, 

[PI MI 

(c) and (e) are left to  the reader. 0 

In second-order logic we also have natural means to define identity for 
I individuals. The underlying idea, going back to Leibniz, is that equals have 
t exactly the same properties. 

I Definition 4.6 (Leibniz-identity). x = y := VX(X(x) - X(y)) 

I This defined identity has the desired properties, i.e. it satisfies I1,.  . . , 14. 
L 
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Theorem 4.7. (2) k2 x = x 
(ii) t-2 x = y --+ y = 3: 

(iii) t2 x = y A y = z -+ x = z 
(iv) 1 2  x = Y --, (cp(x) -+ cp(y)) 

Proof. Obvious. 0 

In case the logic already has an identity relation for individuals, say =, 
we can show 

Theorem 4.8. I-2 x = y * x = y. 

Proof. -+ is obvious, by 14. + is obtained as follows: 

x-x x+ H x=y 

x-y 

In V 2 E  we have substituted z = x for X(z). 

We can also use second-order logic to extend Peano's Arithmetic to 
second-order arithmetic. 
We consider a second-order logic with (first-order) identity and one binary 

predicate constant S, which represents, intuitively, the successor relation. The 
following special axioms are added: 

1. 3!xVy7S(y1 x) 
2. Vx3!yS(x1 y) 
3. vxyz(S(x, z )  A S(y, z) -+ x = Y) 

For convenience we extend the language with numerals and the succes- 
sor function. This extension is conservative anyway, under the following 
axioms: 

( 9  V Y ~ S ( Y ~  Q l  

(ii) S(A, m), 
(iii) y = xf H S(x, y). 

We now write down the induction miom (N.B., not a schema, as in first- 
order arithmetic, but a proper axiom!). 

4. VX(X(0) A Vx(X(x) -+ X ( x f ) )  -+ VxX(x)) 

The extension from first-order to second-order arithmetic in not conser- 
vative. It  is, however, beyond our modest means to prove this fact. 

One can also use the idea behind the induction axiom to give an (induc- 
tive) definition of the class of natural numbers in a second-order logic with 

axioms ( I ) ,  (2), (3): N is the smallest class containing 0 and closed under the 
successor operation. 

Let u(x) := VX[(X(O) A Vy(X(y) -+ X(yf ) )  -+ X(x)]. 
Then, by the comprehension axiom 3YVx(v(x) - Y(x)). 

As yet we cannot assert the existence of a unique Y satisfying Vx(v(x) * 
Y(x)), since we have not yet introduced identity for second-order terms. 
Therefore, let us add identity relations for the various second-order terms, 
plus their obvious axioms. 

Now we can formulate the 

Axiom of Extensionality. 

So, finally, with the help of the axiom of extensionality, we can assert 

3!Wx(u(x) * Y(x)). Thus we can conservatively add a unary predicate 
constant N with axiom Vx(u(x) H N(x)). 

The axiom of extensionality is on the one hand rather basic - it allows 
definition by abstraction ("the set of all x, such that . . ."), on the other 
hand rather harmless - we can always turn a second-order model without 
extensionality into one with extensionality by taking a quotient with respect 
to the equivalence relation induced by =. 

Exercises 

1. Show that the restriction on X n  in the comprehension schema cannot be 
dropped (consider ~ X ( X ) ) .  

2. Show r l2 cp w r* tl cp* (where T* = {$*I$ E r ) ) .  
Hint: use induction on the derivation, with the comprehension schema 
and simplified V, 3-rules. For the quantifier rules it is convenient to con- 
sider an intermediate step consisting of a replacement of the free variable 
by a fresh constant of the proper kind. 

3. Prove (c) and (e) of Theorem 4.5. 

4. Prove Theorem 4.7. 

5. Give a formula (p(X2), which states that x2 is a function. 

6. Give a formula (p(X2) which states that X 2  is a linear order. 
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7. Give a sentence CJ which states that the individuals can be linearly ordered 
without having a last element (a  can serve as an infinity axiom). 

8. Given second-order arithmetic with the successor function, give axioms 
for addition as a ternary relation. 

9. Let a second-order logic with a binary predicate constant < be given with 
extra axioms that make < a dense linear ordering without end points. 
We write x < y for < (x, y). X is a Dedekind Cut if 3xX(x) A3xiX(x)  A 
Vx(X(x) A y < x 4 X(y)). Define a partial ordering on the Dedekind 
cuts by putting X 5 X' := Vx(X(x) -+ X1(x)). Show that this partial 
order is total. 

10. Consider the first-order version of second-order logic (involving the pred- 
icates Ap,, U,, V) with the axiom of extensionality. Any model U of this 
first-order theory can be "embedded" in the principal second-order model 
over La = { a €  IUIIU + V(E), as follows. 
Define for any r E U, f (r)  = {(a l , .  . . ,a,)IU A p n ( ~ , q , .  . . ,an)) 

Show that f establishes an "isomorphic" embedding of U into the cor- 
responding principal model. Hence principal models can be viewed as 
unique maximal models of second-order logic. 

11. Formulate the axiom of choice - for each number x there is a set X . . . - 
in second-order arithmetic. 

12. Show that in definition 4.6 a single implication suffices. 

5. Intuitionistic Logic 

5.1 Constructive Reasoning 

In the preceding chapters, we have been guided by the following, seemingly 
harmless extrapolation from our experience with finite sets: infinite universes 
can be surveyed in their totality. In particular can we in a global manner 
determine whether U 3x(p(x) holds, or not. To adapt Hermann Weyl's 
phrasing: we are used to think of infinite sets not merely as defined by a 
property, but as a set whose elements are so to speak spread out in front of 
us, so that we can run through them just as an officer in the police office 
goes through his file. This view of the mathematical universe is an attractive 
but rather unrealistic idealisation. If one takes our limitations in the face of 
infinite totalities seriously, then one has to read a statement like "there is a 
prime number greater than in a stricter way than "it is impossible 
that the set of primes is exhausted before For we cannot inspect the 
set of natural numbers in a glance and detect a prime. We have to exhibit a 
prime p greater than 

Similarly, one might be convinced that a certain problem (e.g. the deter- 
mination of the saddle point of a zero-sum game) has a solution on the basis 
of an abstract theorem (such as Brouwer's fixed point theorem). Nonethe- 
less one cannot always exhibit a solution. What one needs is a constructive 
method (proof) that determines the solution. 

One more example to illustrate the restrictions of abstract methods. Con- 
sider the problem "Are there two irrational numbers a and b such that ab  is 

JZ rational?" We apply the following smart reasoning: suppose fi is rational, - 
\/Z d2 

then we have solved the problem. Should be irrational then (aJi) 
\ / 

is rational. In both cases there is a solution, so the answer to the problem is: 
Yes. However, should somebody ask us to produce such a pair a ,  b, then we 
have to engage in some serious number theory in order to come up with the 
right choice between the numbers mentioned above. 

Evidently, statements can be read in an inconstructive way, as we did in 
the preceding chapters, and in a constructive way. We will in the present chap- 
ter briefly sketch the logic one uses in constructive reasoning. In mathematics 
the practice of constructive procedures and reasoning has been advocated by 
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a number of people, but the founding fathers of constructive mathematics 
clearly are L. Kronecker and L.E.J. Brouwer. The latter presented a com- 
plete program for the rebuilding of mathematics on a constructive basis. 
Brouwer's mathematics (and the accompaying logic) is called intuitionistic, 
and in this context the traditional nonconstructive mathematics (and logic) 
is called classical. 

There are a number of philosophical issues connected with intuitionism, 
for which we refer the reader to the literature, cf. Dummett, Troelstra-van 
Dalen. 

Since we can no longer base our interpretations of logic on the fiction 
that the mathematical universe is a predetermined totality which can be 
surveyed as a whole, we have to provide a heuristic interpretation of the 
logical connectives in intuitionistic logic. We will base our heuristics on the 
proof-interpretation put forward by A. Heyting. A similar semantics was 
proposed by A. Kolmogorov; the proof-interpretation is called the Brouwer- 
Heyting-Kolmogorov (BHK)-interpretation . 

The point of departure is that a statement cp is considered to be true 
(or to hold) if we have a proof for it. By a proof we mean a mathematicai 
construction that establishes cp, not a deduction in some formal system. For 
example, a proof of '2 + 3 = 5' consists of the successive constructions of 2 , 3  
and 5, followed by a construction that adds 2 and 3, followed by a construction 
that compares the outcome of this addition and 5. 

The primitive notion is here "a proves cp", where we understand by a 
proof a (for our purpose unspecified) construction. We will now indicate how 
proofs of composite statements depend on proofs of their parts. 

(A) a proves cp A $J := a is a pair (b,  c) such that b proves cp and c proves $. 

(v) a proves cp V $J := a is a pair (b, c) such that b is a natural number and 
if b = 0 then c proves cp, if b # 0 then c proves $J. 

(4) a proves cp --+ $ := a is a construction that converts any proof p of p 
into a proof a(p) of $. 

(I) no a proves I .  

In order to deal with the quantifiers we assume that some domain D of 
objects is given. 

(V) a proves Vxcp(x) := a is a construction such that for each b E D a(b) 
proves cp(b). 

(3) a proves 3xcp(x) := a is a pair (b ,  c) such that b E D and c proves cp(b). 

The above explanation of the connectives serves as a means of giving the 
reader a feeling for what is and what is not correct in intuitionistic logic. It 
is generally considered the intended intuitionistic meaning of the connectives. 

Examples. 

I. cp A $ --, cp is true, for let (a, b) be a proof of cp A $, then the construction 
c with c(a, b) = a converts a proof of cp A $ into a proof of cp. So c proves 
(cp A$J -+ cp). 

2. (cp A $J --, a )  + (cp + (cp -+ a ) ) .  Let a prove cp A II, + a ,  i.e. a converts 
each proof (b, c) of cp A 1C, into a proof a(b, c) of a .  Now the required proof 
p of cp -+ ($ - +  a )  is a construction that converts each proof b of cp into 
a p(b) of $ -+ a .  So p(b) is a construction that converts a proof c of cp 
into a proof (p(b)(c) of u.  Recall that we had a proof a(b, c) of a ,  so put 
(p(b)(c) = a(b, c); let q be given by q(c) = a(b,c), then p is defined by 
p(b) = q. Clearly, the above contains the description of a construction 
that converts a into a proof p of cp -+ ($ -+ a ) .  (For those familiar with 
the A-notation: p = Xb.Ac.a(b, c), so Aa.Ab.Ac.a(b, c) is the proof we are 
looking for). 

3. -3xcp(x) --, Vx-cp(x). 
We will now argue a bit more informal. Suppose we have a construction 
a that reduces a proof of 3xp(x) to a proof of I. We want a construction 
p that produces for each d E D a proof of cp(2) -+I, i.e. a construction 
that converts a proof of cp(d) into a proof of I. So let b be a proof of 
q@), then (d, b) is a proof of 3xcp(x), and a(d, b) is a proof of I .  Hence 
p with (p(d))(b) = a(d, b) is a proof of b'x-cp(x). This provides us with a 
construction that converts a into p. 

The reader may try to justify some statements for himself, but he should 
not worry if the details turn out to be too complicated. A convenient handling 
of these problems requires a bit more machinery than we have at  hand (e.g. 
A-notation). Note, by the way, that the whole procedure is not unproblematic 
since we assume a number of closure properties of the class of constructions. 

Now that we have given a rough heuristics of the meaning of the logical 
connectives in intuitionistic logic, let us move on to a formalisation. As it 
happens, the system of natural deduction is almost right. The only rule that 
lacks constructive content is that of Reduction ad Absurdum. As we have 
seen (p. 37), an application of RAA yields t- - 1 c p  -+ p, but for 1 - p  -+ cp to 
hold informally we need a construction that transforms a proof of l l c p  into a 
Proof of cp. Now a proves ~ ~ i p  if a transforms each proof b of ~ c p  into a proof 

, of I ,  i.e. there cannot be a proof b of lcp. b itself should be a construction 
that transforms each proof c of cp into a proof of I. So we know that there 
cannot be a construction that turns a proof of cp into a proof of I, but that 
is a long way from the required proof of cp! (cf. ex. 1) 
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5.2 Intuitionistic Propositional and Predicate Logic 

We adopt all the rules of natural deduction for the connectives V, A,  -+, 1 , 3 ,  V 
with the exception of the rule RAA. In order to cover both propositional and 
predicate logic in one sweep we allow in the alphabet (cf. 2.3.,p. 58) 0-ary 
predicate symbols, usually called proposition symbols. 

Strictly speaking we deal with a derivability notion different from the one 
introduced earlier (cf. p.35), since RAA is dropped; therefore we should use 
a distinct notation, e.g. Fi. However, we will continue to use k when no con- 
fusion arises. 

We can now adopt all results of the preceding parts that did not make 
use of RAA. 

The following list may be helpful: 

Lemma 5.2.1. (1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 
(10) 
(11) 
(12) 
(13) 
(15) 
(14) 
(16) 
(17) 
(18) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 
(26) 

(Observe that (19) and (20) are special cases of (26) and (25) 

All of those theorems can be proved by means of straight forward appli- 
cation of the rules. Some well-known theorems are conspicuously absent, and 
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in some cases there is only an implication one way; we will show later that 
these implications cannot, in general, be reversed. 

From a constructive point of view RAA is used to derive strong conclu- 
sions from weak premises. E.g. in ~ ( c p  A $) k l c p  V 'cp the premise is weak 
(something has no proof) and the conclusion is strong, it asks for an effective 
decision. One cannot expect to get such results in intuitionistic logic. Instead 
there is a collection of weak results, usually involving negations and double 
negations. 

r 
In order to abbreviate derivations we will use the notation = in a 

cp 
derivation when there is a derivation for r k $ ( r  has 0 , l  or 2 elements). 

Proof. (1) 'cp -+ "cp follows from Lemma 5.2.1 (7). For the converse we 
again use 5.2.1 (7) 

[cp A -$I2 
[vll cp-+"P cp Icp-+$l1 [cpA'$I2 

"cp ["'cpI2 11, l$ 

I 
- 1 I 

1 
' cp 

2 'cp -+ $ 
l l l c p  -+ 'cp 2 

(cp A l $ )  -+ '(cp -+ 111) 
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Prove (3) also by using (14) and (15) from 5.2.1 

(4) Apply the intuitionistic half of the contraposition (Lemma 5.2.1(14)) to 

For the converse we apply some facts from 5.2.1. 

(5) 4 :  Apply (3) to cpA@ + p and cpA11, -+ $. The derivation of the converse 
is given below. 

! 
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(6) t-3x-(p(x)-+~'dxp(x), 5.2.1(20) 
so ~ ~ V X ( P ( X )  -+ d x i p ( x ) ,  5.2.1(14) 
hence 17Vxp(x) 4 Vxl-p(x). 5.2.1(19) 

Most of the straightforward meta-theorems of propositional and predicate 
logic carry over to intuitionistic logic. The following theorems can be proved 
by a tedious but routine induction. 

t ' Theorem 5.2.3 (Substitution Theorem for Derivations). If D zs a derzva- 
tion and $ a proposztional atom, then D[cp/$] is a derivatzon i f  the free vari- 

1 ables of p do not occur bound i n  V. , 

Theorem 5.2.4 (Substitution Theorem for Derivability). If r t- a 
' and $ is a propositional atom, then r [p /$ ]  t- a[cp/$], where the free vari- 
- ables of cp do not occur bound i n  a or r. 

Theorem 5.2.5 (Substitution Theorem for Equivalence). r t- (p l  - 
( ~ 2 )  + (@bl/$I  ++ 111[~2/$1), 
r t cpl - p:! + r F $[(P~/$] ++ 11,[p2/$], where $ is an atomic proposition, 
the free variables of p l  and cp2 do not occur bound i n  r or 11, and the bound 
variables of 11, do not occur free i n  r. 

: The proofs of the above theorems are left to the reader. Theorems of this 
kind are always suffering from unaesthetic variable-conditions. In practical 

a applications one always renames bound variables or considers only closed 

, hypotheses, so that there is not much to worry. For precise formulations cf. 
i Ch. 6. 

5 The reader will have observed from the heuristics that V and 3 carry most 
of the burden of constructiveness. We will demonstrate this once more in an 
informal argument. 

There is an effective procedure to compute the decimal expansion of 
I ~(3,1415927. .  .). Let us consider the statement cp, := in the decimal ex- 
' pansion of .rr there is a sequence of n consecutive sevens. 

Clearly ploo -+ pgg holds, but there is no evidence whatsoever for 
-"Pl00 v cp99. 

The fact that A,  +,V, I do not ask for the kind of decisions that V and 
3 require, is more or less confirmed by the following 

Theorem 5.2.6. If cp does not contain V or 3 and all atoms but I i n  p are 
negated, then k cp H "(P 

Proof. Induction on cp. 
We leave the proof to the reader. (Hint: apply 5.2.2.) 
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By definition intuitionistic predicate (propositional) logic is a subsystem 
of the corresponding classical systems. Godel and Gentzen have shown, how- 
ever, that by interpreting the classical disjunction and existence quantifier in 
a weak sense, we can embed classical logic into intuitionistic logic. For this 
purpose we introduce a suitable translation: 

Definition 5.2.7. The mapping O : FORM -+ FORM is defined by 
(i) I0 := I and cpO := 1 - p  for atomic cp dinstinct from I . 
(ii) (PA$)' := cpOA$" 
(iii) (cp V $)O := 1(1cp0 A 79') 
(iv) (cp + $)" := cpO -+ $" 
(v) (Vxcp(x)" := VxcpO(x) 
(vi) (3xcp(x)" := , -'v'x-pO (x) 

The mapping O is called the Godel translation. 
We define r0 = {cpOlcp E r ) .  The relation between classical derivability ( t , )  
and intuitionistic derivability ( t i  is given by 

Theorem 5.2.8. r t, cp r0 t i  cpO. 

Proof. It  follows from the preceding chapters that t-, cp +-+ cpO, therefore + is 
an immediate consequence of r ti cp + r kc cp. 

For +, we use induction on the derivation 2) of cp from r .  

1. cp E r, then also cpO E r0 and hence To  ki cpO. 
2. The last rule of V is a propositional introduction or elimination rule. We 

consider two cases: 
+ I [CP] Induction hypothesis To,  cpO ki $". 

V By -+ I r0 ki cpO --, $", and so by definition 
r0 Fi (cp + $)O. 

$ 

c p 4 $  

V E  [PI [$I Induction hypothesis: r0 t i  (cp V $)O, 

2, Dl V2 rO, (PO ti aOrO,+O ki 
(where r contains all uncancelled 

VV$ a a hypotheses involved). 

a 
r0 kz i("pO A 7 q 0 ) ,  r0 ki cpO + a', r0 ki $O + a" .  

The result follows from the derivation below: 
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The remaining rules are left to  the reader. 
3. The last rule of V is the falsum rule. This case is obvious. 
4. The last rule of V is a quantifier introduction or elimination rule. Let us 

consider two cases. 

V I  V Induction hypothesis: r0 ti cp(x)O 
ByVI r0 ti Vxcp(x)",so To ki (Vxcp(x))". 

cp(x) 

[cp(x)] Induction hypothesis:ro ti (3x(p(x))", 
3 E :  

Dl 
r0 ki a". 
So To ti (~V7cp(x))" and 

~x(P(x)  a r0 ti Vx(cp(x)" -+ a"). 

a 

Vx(cp(x)" -+ a")  

[cp(x)"I1 cp(x)O --, a0 

We now get r0 Fi  a". 
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5. The last rule of D is RAA. 
[-PI Induction hypothesis rO, (79)' k , I  . 
V so r0 t i  - y " , a n d  hence by Lemma 2.5.8 r0 t i  cpO 
I 
cp 0 

Let us call formulas in which all atoms occur negated, and which contain 
only the connectives A, 4 ,  V, I, negative. 

The special role of V and 3 is underlined by 

Corollary 5.2.9. Classical predicate (propositional) logic is conservative 
over intuitionistic predicate (propositional) logic with respect to negative for- 
mulae, i. e. k, cp @ti cp for negative cp. 

Proof. cpO, for negative cp, is obtained by replacing each atom p by l ~ p .  Since 
all atoms occur negated we have t i  cpO t+ cp (apply 5.2.2(1) and 5.2.5). The 
result now follows from 5.2.8. 0 

In some particular theories (e.g. arithmetic) the atoms are decidable, i.e. 
I' k c p ~  ~ c p  for atomic cp. For such theories one may simplify the Godel trans- 
lation by putting cpO := cp for atomic cp. 

Observe that Corollary 5.2.9 tells us that intuitionistic logic is consistent 
iff classical logic is so (a not very surprising result!). 

For propositional logic we have a somewhat stronger result than 5.2.8. 

Theorem 5.2.10 (Glivenko's Theorem). kc cp H t i  l i p .  

Proof. Show by induction on cp that k i  cpO ++ ~ c p  (use 5.2.2), and apply 5.2.8. 
0 

5.3 Kripke Semantics 

There are a number of (more or less formalised) semantics for intuitionistic 
logic that allow for a completeness theorem. We will concentrate here on the 
semantics introduced by Kripke since it is convenient for applications and it 
is fairly simple. 

Heuristic motivation. Think of an idealised mathematician (in this context 
traditionally called the creative subject), who extends both his knowledge and 
his universe of objects in the course of time. At each moment k he has a stock 
Ck of sentences, which he, by some means, has recognised as true and a stock 
Ak of objects which he has constructed (or created). Since at every moment 

k the idealised mathematician has various choices for his future activities 
(he may even stop alltogether), the stages of his activity must be thought 
of as being partially ordered, and not necessarily linearly ordered. How will 
the idealised mathematician interpret the logical connectives? Evidently the 
interpretation of a composite statement must depend on the interpretation 
of its parts, e.g. the idealised mathematician has established cp or (and) 11, a t  
stage k if he has established cp at  stage k or (and) 11, at  stage k. The implica- 
tion is more cumbersome, since cp --, 11, may be known at stage k without cp or 
$ being known. Clearly, the idealised mathematician knows cp 4 $ at stage 
k if he knows that if at any future stage (including k) cp is established, also 1C, 
is established. Similarly 'dxcp(x) is established at stage k if at any future stage 
(including k) for all objects a that exist at that stage cp(Z) is established. 

Evidently we must in case of the universal quantifier take the future into 
account since for all elements means more than just "for all elements that 
we have constructed so far"! Existence, on the other hand, is not relegated 
to  the future. The idealised mathematician knows at stage k that 3xcp(x) if 
he has constructed an object a such that a t  stage k he has established cp(Z). 
Of course, there are many observations that could be made, for example that 
it is reasonable to add "in principle" to a number of clauses. This takes care 
of large numbers, choice sequences etc. Think of Vxy3z(z = xp), does the 
idealised mathematician really construct 10'' as a succession of units? For 
this and similar questions the reader is referred to the literature. 

We will now formalise the above sketched semantics. 

It  is for a first introduction convenient to consider a language without 
functions symbols. Later it will be simple to extend the language. 

We consider models for some language L. 

Definition 5.3.1. A Kripke model is a quadruple K = (K, C, C, D) ,  where 
K is a (non-empty) partially ordered set, C a function defined on the con- 
stants of L, D a set valued function on K ,  C a function on K such that 

- C(c) E D(k) for all k E K, 
- D(k) # 0 for all k E K ,  
- C(k)  C Atk for all k E K ,  

where Atk is the set of all atomic sentences of L with constants for the 
elements of D(k). D and C satisfy the following conditions: 

(i) k 5 1 + D(k) C D(1). 
(ii) I@ C(k),  for all k. 
(iii) k 5 1 + E(k)  E(1). 

D(k)  is called the domain of K a t  k, the elements of K are called nodes 
of K. Instead of "cp has auxilliary constants for elements of D(k)" we say for 
short "cp has parameters in D(k)" .  
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C assigns to each node the 'basic facts' that hold at  k, the conditions (i), 
(ii), (iii) merely state that the collection of available objects does not decrease 
in time, that a falsity is never established and that a basic fact that once has 
been established remains true in later stages. The constants are interpreted 
by the same elements in all domains (they are rigid designators). 

Note that D and C together determine at each node k a classical structure 
U(k) (in the sense of 2.2.1). The universe of U(k) is D(k) and the relations of 
U(k) are given by C(k) as the positive diagram: (z) E R % ( ~ )  iff R(;) E C(k). 
The conditions (i) and (iii) above tell us that the universes are increasing: 

k 5 1 * IU(k) C lU(1)J 

and that the relations are increasing: 
k 5 1 * ~ ' 2 ' ( k )  2 ~ ~ ( 1 ) .  
Furthermore c"(" = cc"(') for all k and 1. 
In C(k) there are also propositions, something we did not allow in classical 

predicate logic. Here it is convenient for treating propositional and predicate 
logic simultaneously. 

The function C tells us which atoms are "true" in k. We now extend C 
to all sentences. 

Lemma 5.3.2. C has a unique extension to a function on K (also denoted 
by C )  such that C(k) C Sentk, the set of all sentences with parameters in 
D(k), satisfying: 

(i) cp V + E C(k) H cp E C(k) or + E C(k) 
(ii) cp A II, E C(k) @ cp E C(k) and + E C(k) 
(iii) cp -+ + E C(k) H for all 1 > k (cp E C(1) a + E C(1)) 
(iv) 3xcp(x) E C(k) w there is an a E D(k) such that cp(6) E C(k) 
(v) Vxcp(x) E C(k) * for all 1 L k and for all a E D(1) cp(a) E C(1). 

Pmof. Immediate. We simply define cp E C(k) for all k E K simultaneously 
by induction on cp. 0 

Notation. We write k l t  cp for cp E C(k), pronounce 'k forces cp'. 

Exercise for the reader: reformulate (i) - (v) above in terms of forcing. 

Corollary 5.3.3. (i) k It l c p  for all 1 2 k 1 ly cp. 
(ii) k IF 1 - p  * for all 1 2 k there exists a p 2 1 such that (plt  cp). 

Proof. k l t  l c p  H k l t  cp - + I w f o r  al l1 2 k ( l l t  c p *  11 t1 )  w f o r a l l  
12 kllycp. 
k I t ~ ~ c p ~ f o r a l l 1 ~ k l l ~ ~ c p ~ f o r a l l 1 ~ k n o t  ( f o r a l l p > l p l y c p ) *  
for all 1 2 k there is a p 1 such that p l t  cp. 0 

, Lemma 5.3.4 (Monotonicity of It-). Ic 5 1, k ll- cp + 1 It cp 

, Proof. Induction on cp. 

I atomic cp : the lemma holds by definition 5.3.1. : c p = c p l A c p z  : let k l t  c p l A c p 2  and k 5 1, then k l t  cplAcp2 * k l t  cpl and 
k It cp2 a (ind. hyp.) 1 It cpl and 1 It cp2 e 1 It cpl A cp2. 

cp = cpl V 9 2  : mimic the conjunction case. 
' cp = cpi -+ cp2 Let klk cpi --+ cp2, 1 > k. Suppose p > 1 and p l t  cpl then, since 

p > k,plF 9% Hence 1IF cpl + cp2. 
cp = 3xcpl (x) " immediate. 
cp = Vxcpl (x) : let k It- Vxcpl (x) and 1 L k. Suppose p > 1 and a E D(p), then, 

since p L k ,p l t  cpl(6). Hence 1 I t  Vxcpl(x). 0 

We will now present some examples. It  suffices to indicate which atoms are 
forced at  each node. We will simplify the presentation by drawing the partially 
ordered set and indicate the atoms forced at each node. For propositional logic 
no domain function is required (equivalently, a constant one, say D(k) = {O)), 
so we simplify the presentation accordingly. 

(a) In the bottom node no atoms are known, in the second one only cp, to 
be precise ko y cp, kl It cp. By 5.3.3 kolt l - p ,  so koly l l c p  -+ cp. Note, 
however, that ko ly 79, since kl It cp. So ko ly cp V lcp. 

(b) ki ly cp A + (i = 0,1,2), so ko It l(cp A +). By definition, 50 It y c p  V l+ w 
ko I t- l c p  or ko l t l + .  The first is false, since kl It cp, and the latter is 
false, since k2 It +. Hence ko ly ~ ( c p  A +) -+ l c p  V + I .  

( c )  The bottom node forces II, -+ cp, but it does not force +J V cp (why?). So 
it does not force (+ --+ cp) --+ (+ V cp). 

(d) In the bottom node the following implications are forced: cp2 -+ cpl,cp3 --+ 

cp2, cp3 -+ cpl ,  but none of the converse implications is forced, hence ko ly 
('PI ++ cp2) V ($92 93) V (cp3 ++ (PI). 
We will analyse the last example a bit further. Consider a Kripke model 
with two nodes as in d, with some assignment C of atoms. We will show 
that for four arbitrary propositions 01, a2, as, a4 
koI l- W ai ++ a j ,  i.e. from any four propositions at  least two are 

1 < 1 < 3 < 4  

equivalent. 

The monotonicity of C for atoms is carried over to arbitrary formulas. 
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There are a number of cases. (1) At least two of o l ,  02,03, a 4  are forced 
in k o  Then we are done. (2) Just one ai is forced in kO. Then of the 
remaining propositions, either two are forced in kl, or two of them are not 
forced in kl. In both cases there are two o j ,  aj, such that ko It aj ++ aj, . 
(3) No ai is forced in ko. Then we may repeat the argument under (2). 

(e) 
(i) ko It cp 4 3xa(x), for the only node that forces cp is kl,  and indeed 

kilt a ( l ) ,  so kllk 3xa(x). Now suppose ko\F 3x(p  4 a(x)) ,  then 
- since D(ko = (0) - ko It cp -+ a(0). But kl l t cp and kl l y a(0).  
Contradiction. Hence ko ly (cp 4 3xo(x)) + 3x(p  -+ a(x) ) .  

Remark. (cp -t 3xa(x)) + 3x(q  -+ a(x))  is called the independence of 
premise principle. I t  is not surprising that it fails in some Kripke models. 
for cp --t 3xa(x) tells us that the required element a for a@) may depend 
on the proof of cp (in our heuristic interpretation); while in 3x(p  + a(x)) :  
the element a must be found independently of cp. So the right hand side 
is stronger. 

(ii) ko l k lVx$(x) e k, l y Vx$(x) (i = 0 , l ) .  kl l y $(i), so we have 
shown ko It lVx$(x), ko lk 3x+(2) e -$@). However, kl It $(b),  
so ko ly 3x+(x). Hence ko ly lVx$(x) -, 32-$(x). 

(iii) A similar argument shows ko ly (Vx$(z) -+ 7) 4 3x($(x) -+ r ) ,  
where r is not forced in kl. 

( f)  D(ki) = (0, .  . . , i), C(ki) = {cp(O), . . . , cp(i - I)) ,  ko It Vxl~cp(x)  e for 
all i ki Il- ~ l c p ( j ) ,  j 5 i. The latter is true since for all p > i k,lt cp(j),j 5 
i .  Now ko It 1-Vxcp(x) H for all i there is a j 2 i such that k3 It VX(P(X). 
But no k3 forces Vxcp(x) . So ko ly V x - y ( x )  -+ 77Vxcp(x). 

Remark.(l) Note that all formulas of (a) . . . (f) are classically true. 
(2) We have seen that -lVxcp(z) + Vx--cp(x) is derivable - and the reader 
may check that it holds in all Kripke models (or he may wait for the Sound- 
ness Theorem) - the converse fails, however, in some models. The schema 
Vxl-p(x)  - - ~ V s p ( z )  is called the double negation sh~f i  (DNS). 

The next thing to do is to show that Kripke semantics is sound for intuition- 
istic logic. 

We define a few more notions for sentences: 

(i) K It cp if kI t  cp for all k E K .  
(ii) It cp if K ll- cp for all K. 

For formulas containing free variables we have to be more careful. Let cp 
contain free variables, then we say that k l t cp iff k l t Cl(cp) (the universal 
closure). For a set r and a formula cp with free variables xi,,, xi*, xi2, . . . 
(which we will denote by z),  we define rlt cp by: for all K, k E K and for all 
(ZE D(k)) [k l t  $ (2 )  for all $ E r =+ k l t  &)I. ( Z E  D(k) is a convenient 
abuse of language). 

Before we proceed we introduce an extra abuse of language which will 
prove extremely useful: we will freely use quantifiers in our meta-language. 
It will have struck the reader that the clauses in the definition of the Kripke 
semantics abound with expressions like "for all 1 2 k"," for all a E D(k)" . 
It saves quite a bit of writing to use "V1 > k", "Va E D(k)" instead, and it 
increases systematic readability to  boot. By now the reader is well used to  
the routine phrases of our semantics, so he will have no difficulty to  avoid a 
confusion of quantifiers in the meta-language and the object-language. 

By way of example we will reformulate the preceding definition: 
 IF cp := ( v K ) ( v ~  E K)(V & D ( ~ ) ) [ v Q  E r ( k 1 t  + k ~ t  4 3 1 .  

There is a useful reformulation of this "semantic consequence" notion. 

L e m m a  5.3.5. Let r be finite, then TI t cp e I t C l (A  r 4 cp) (where 
C l ( X )  is the universal closure of X). 

Proof. Left to  the reader. 0 

Theorem 5.3.6 (Soundness Theorem).  r t- cp + r ll- cp. 
Proof. Use induction on the derivation V of cp from r .  We will abbreviate 
"k It $(Z) for all $ E r" by "k It P ( 2 ) " .  The model K is fixed in the proof. 

(1) V consists of just cp, then obviously kll- r ( 2 )  + k l t  cp(2) for all k and 

( 2 )  E D(k) .  
(2) V ends with an application of a derivation rule. 

( A I )  Induction hypothesis: VkV ZE D(k)(kl t r ( 2 )  + kl t cpi(;), for 
i = 1,2. Now choose a k E K and ;E D(k) such that k l t  r ( 2 ) ,  then 
kIF and klF ( ~ 2 ( 2 ) ,  SO kll- ((PI A cp2)(z). 

Note that the choice of 2 did not really play a role in this proof. To 
simplify the presentation we will suppress reference to 2 ,  when it does 
not play a role. 
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(AE))  Immediate. 
(vI )  Immediate. 
(vE) Induction hypothesis: Vk(k I t -  r + k l t  cp v $I), Vk(k ll- r ,  cp =+ k It a ) ,  

Vk(kIt r, $ + kIF a ) .  Now let k l t  r ,  then by i.h. kit- cp V $, so kIk cp or 
k ll- $. In the first case k It- r, cp, so k ll- a .  In the second case k It- r, $, so 
k ll- a. In both cases k ll- a, so we are done. 

(-+ I) Induction hypothesis: (Vk)(V ;E D(k))(kl t  r(;), cp(2) + 
k l t  $(;)). Now let kll- r ( z )  for some ;E D(k). We want to show 
klt- (cp + $)(;), so let 1 2 k and 1 It- cp(2). By monotonicity 1 It ~ ( 2 ) .  

and ZE D(1), so the ind. hyp. tells us that 1 It- $(;). Hence V1 2 k(1 It 
cp(2) + 1 ll- $(;)), so k It (cp -+ $)(;). 

(+ E) Immediate. 
(I) Induction hypothesis Vk(kll- I' + klt-1). Since, evidently, no k can 

force r, Vk(k1l- T + kll- cp) is correct. 
(VI) The free variables in r are ;, and z does not occur in the sequence 

-* 

x .  Induction hypothesis: (Vk)(V ;, b E D(k))(kll- ~ ( 2 )  + k l t  cp(2, b)). 
Now let k l t  r ( 2 )  for some ;E D(k), we must show kll- Vzcp(2,z). So 
let 1 > k and b E D(1). By monotonicity IIt- F(;) and ZE D(1), so by 
the ind. hyp. lit- cp(2, b). This shows (V1 2 k)(Vb E D(l))(Lll- cp((2, b), 
and hence k ll- ~ z c p ( 2 ,  z). 

(YE) Immediate. 
(31) Immediate. 
(3E) Induction hypothesis: (Vk)(V ;E D(k)(kll- r ( z )  + kll- 3zu(z ,  r ) )  

and (Vk)(V 2, b t D(k)(klt- cp(2, b), k l t  r(;) + kll- a(;)). Here the 
-+ 

variables in r and a are x ,  and z does not occur in the sequence ;. Now 
let klk r(;), for some ;E D(k), then klk 3zcp(b,z). So let kll- cp(;,b) 
for some b E D(k). By the induction hypothesis k l t  a(;). 0 

For the Completeness Theorem we need some notions and a few lemma's. 

Definition 5.3.7. A set of sentences r is a prime t h e o y  with respect to a 
language L if 

(i) r is closed under t- 
( i i ) c p v $ ~ r + c p ~ r o r $ t r  
(iii) 3xp(x) E r + cp(c) E r for some constant c in L. 

The following is analogue of the Henkin construction combined with a 
maximal consistent extension. 

Lemma 5.3.8. Let r and cp be closed, then if r Y cp, there is a prime t h e o y  
r' extending r such that r' y 9. 
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In general one has to extend the language L of r by a suitable set of 
'witnessing' constants. 
Proof. Extend the language L of r by a denumerable set of constants to a 
new language L'. The required theory r' is obtained by series of extensions 
ro & rl C r 2 . .  .. We put To := r .  

Let r k  be given such that r k  y cp and rk contains only finitely many new 
constants. We consider two cases. 

! 
k is even. Look for the first existential sentence 3x$(x) in L' that has not 

yet been treated, such that r k  t 3x$(x). Let c be the first new constant 
not in r k .  Now put r k + l  := rk U {$(c)). 

k is odd. Look for the first disjunctive sentence $1 V$2 with rk t- $1 Vqb2 that 
has not yet been treated. Note that not both rk, ql k cp and rk, $12 t cp 
for then by V3 r h  tcp. 

NOW we put: rk+1 := r k u { $ l )  r k  u ($2) otherwise. ifrk,lCll Y P  

Finally: r' := U r k .  
k20 

, There are a few things to be shown. 

, 1. r' y cp. We first show r, y cp by induction on i. For i = 0, To y cp holds 
by assumption. The induction step is obvious for i odd. For i even we 
suppose r,+l l- cp. Then Pa, $(c) t cp. Since r, l- 3x$(x), we get r, t cp 
by 3E, which contradicts the induction hypothesis. Hence T,+l y cp, and 

j therefore by complete induction r, y cp for all i. 
i 

i Now, if r' l- cp then Fa k cp for some i. Contradiction. 

6 2. r' is a prime theory. 
b 
i (a) Let $1 V$2 E r' and let k be the least number such that rk k ~ $ 2 .  
5 

i Clearly $1 V$2 has not been treated before stage k, and rh k ~ $ 2  

i for h 2 k. Eventually $1 V$2 has to be treated at  some stage h k, 
I SO then $1 E rh+l  or $2 E r h + l ,  and hence $1 E r' or $2 E r'. 
! (b) Let 3x$(x) E r', and let k be the least number such that rk k 

3x$(x). For some h L k 3x$(x) is treated, and hence $(c )  E rh+l 5 
r' for some c. 

(c) r' is closed under t . If r' t- $, then r' k $ V $, and hence by (a) 
1 ~ ,  E r r .  

Conclusion: r' is a prime theory containing I', such that r' y cp. 0 

Note that in the above construction of rn+l we can easily skip (in the 
even case) a few constants, so that the resulting r' does not necessarily con- 
tain all new constants. We will make of use this in the proof below. 
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The next step is to construct for closed r and cp with r Y cp, a Kripke 
model, with IC It r and k ly cp for some k E K. 

Lemma 5.3.9 (Model Existence Lemma). If r Y cp then there is a 
Knpke model IC with a bottom node ko such that koI t  r and ko llf cp. 

We first extend r to a suitable prime theory I" such that r' Y cp. r' has 
the language L' with set of constants C'. Consider a set of distinct constants 
{ckli > 0 , m  > 0) disjoint with C'. A denumerable family of denumerable 
sets of constants is given by Ci = {cklm 2 0). We will construct a Kripke 
model over the poset of all finite sequences of natural numbers, including the 
empty sequence () , with their natural ordering, "initial segment of'. 

Define C(( ) )  := C' and ~ ( z )  = C(() )  U C0 u . . . u ckpl for ?t of positive 
length k. L(;) is the extension of L by ~ ( z ) ,  with set of atoms At(;). Now 
put D(;) := ~ ( z ) .  We define Z ( z )  by induction on the length of z .  

C( ( ) )  := r' n At(()). Suppose Z ( z )  has already been defined. Consider + 

an enumeration (ao, TO), (01, rl), . . . of all pairs of sentences in r ( n )  such 
that r(;l*),ai y r t .  Apply Lemma 5.3.8 to r ( g )  U {ai) and ~ i  for each i. 
This yields a prime theory r ( z ,  i) and L(;, i) such that ci E r ( z ,  i) and 
r ( Z ,  i )  y T ~ .  

-+ 
Now put C((no , .  . . , nk-1)) := r ( n  i) n At(;, i). We observe that all 

conditions for a Kripke model are met. The model reflects (like the model of 
3.1.1) very much the nature of the prime theories involved. 

Claim: z It $ ~ ( z )  t $. 
We prove the claim by induction on $. 

- For atomic $ the equivalence holds by definition. 
- $ = $1 A - immediate 
- $ = $1 V$2. 

(a) 2 I!- $1 V $2 It $1 or 2 It $2 + (ind. hyp.) ~ ( z )  t- or 

r ( z )  t q2 + r(;) t. v lo2. 
(b) r ( z )  t $1 V $2 + r ( z )  k $1 or ~ ( z )  t 7+b2, since r ( z )  -+ is a prime 
theory (in the right language). So, by induction hypothesis, n It $1 or 
+ 
n It $2, and hence z It V qb2. 

- $ = $1 + $2. 

(a) z It $1 -) $2. Suppose r ( z )  Y $1 -+ $2, + then r ($ ,  Q1 Y Q2. BY A 

the definition of the model there is an extension m= (no,.  . . , nk-1, i )  of n 

such that r ( z )  U ($1) c r(;) and r ( z )  y $9. By induction hypothesis 
+ + ; It and by m 2 n  and z It Q1 4 $2, ;It $2. Applying the 

induction hypothesis once more we get r(;) t $2. Contradiction. Hence 

m $1 -+ $2. 

(b) The converse is simple, it is left to the reader. 
- $ = Mx$(x). 

-+ i 

(a) It Vxcp(x) H M m > n  Mc E c(;)(; It cp(c)). ~ s s u m e  r ( z )  YVxcp(x), 
then for a suitable i r ( z ,  i )  Y Vxcp(x) (take T for ai in the above construc- 
tion). Let c be a constant in ~ ( 2 ,  i )  not in r(;, i) ,  then r ( z ,  i )  y cp(c), 
and by induction hypothesis ( G ,  i )  ly cp(c). Contradiction. 

-+ -+ ( b ) r  t Mxcp(x). Suppose z I Y Vxcp(x), then I Y cp(c) for some m 2 n  
and for some c E L($), hence r($)  y cp(c) and therefore T ( z )  Y Vxcp(x). 
Contradiction. 

- $ = 3xp(x). 
The implication from left to right is obvious. For the converse we use the 
fact that r ( z )  is a prime theory. The details are left to the reader. 

We now can finish our proof. The bottom node forces r and cp is not 
forced. 0 

We can get some extra information from the proof of the Model Existence 
Lemma: (i) the underlying partially ordered set is a tree, (ii) all sets D(;) 
are denumerable. 

From the Model Existence Lemma we easily derive the following 

Theorem 5.3.10 (Completeness Theorem - Kripke). r t, cp H TI t 
cp (r and cp closed). 

Proof. We have already shown +. For the converse we assume r, Y cp and 
: apply 5.3.9, which yields a contradiction. 0 

Actually we have proved the following refinement: intuitionistic logic is 
complete for countable models over trees. 

I The above results are completely general (safe for the cardinality restric- 
j tion on L), so we may as well assume that r contains the identity axioms 

11,. . . , I4 (2.6). May we also assume that the identity predicate is interpreted 
by the real equality in each world? The answer is no, this assumption consti- 
tutes a real restriction, as the following theorem shows. 

Theorem 5.3.11. If for all k E K k l t  ?i = b * a = b for a ,  b E D(k) then 
K I t  Vxy(x = y v x # y). 

Proof. Let a,  b E D(k) and k l y a  = 6, then a # b, not only in D(k), but in all 
D(1) for 1 2 k ,  hence for all 1 1 k, 1 ly a = b, so k It E # 6. 0 

For a kind of converse, cf. Exercise 18. 
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The fact that the relation a -k b in %(k), given by k It- Si = 6, is not the iden- 
tity relation is definitely embarrassing for a language with function symbols. 
So let us see what we can do about it. We assume that a function symbol F 
is interpreted in each k by a function Fk. We require k 5 1 * F k  C Fl. F 

-++ - + + 

has to obey I4 : V x Y (x=Y-+ F(;) = F ( Y ) ) .  For more about functions 
see Exercise 34. 

Lemma 5.3.12. The relation -k is a congruence relation on U(k), for each 
k. 

Proof. Straightforward, by interpreting I1 - I4 13 

For convenience we usually drop the index k. 

We now may define new structures by taking equivalence classes: U*(k) := 
U(k)/ ~ k ,  i.e. the elements of (U*(k)l are equivalence classes a /  ~k of ele- 
ments a E D(k), and the relations are canonically determined by 

Ri(a /  -, . . .) @ Rk(a , .  . .), similarly for the functions F l ( a /  N , .  . .) = 
Fk(a,.  . .)/ -. 

The inclusion U(k) U(l), for k 5 1, is now replaced by a map fkl  : 

U*(k) -+ U* (E), where f k l  is defined by f k l  (a) = a"(1) for a E IU*(k) 1. To be 
precise: 

a/ --k- a /  -1, so we have to show a -k a' + a -1 a' to ensure the well- - 
definedness of fkl.  This, however, is obvious, since k lk h = 2 1 It- h = a'. 

Claim 5.3.13. f k l  is a homomorphism. 

Proof. Let us look at  a binary relation. R;(a/ -, b/ N )  (j Rk(a, b) @ klk 
R(a, b) + 1 It- R(a, b) @ Rl(a, b) H R:(a/ N, b/ N). 

The case of an operation is left to the reader. 0 

The upshot is that we can define a modified notion of Kripke model. 

Definition 5.3.14. A modified Kripke model for a language L is a triple IC = 
(K, U, f )  such that K is a partially ordered set, 2.l and f are mappings such 
that for k E K, U(k) is a structure for L and for k, 1 E K with k 5 1 f (k, I )  is 
a homomorphism from U(k) to U(1) and f (1,  m) o f (k, 1) = f (k, m), 
f (k, k) = id. 

Notation. We write fk l  for f (k, l), and klk* cp for U(k) + cp, for atomic 
cp, 

Now one may mimic the development presented for the original notion of 
Kripke semantics. 

In particular the connection between the two notions is given by 
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Lemma 5.3.15. Let K* be the modified Kripke model obtained from IC by 
dividing out -. Then klk cp(z) ++ klk* cp(2 / N) for all k E K .  

Proof. Left to  the reader. 0 

Corollary 5.3.16. Intuitionistic logic (with identity) is complete with re- 
spect to modified Kripke semantics. 

Proof. Apply 5.3.9 and 5.3.15. 0 

We will usually work with ordinary Kripke models, but for convenience we 
will often replace inclusions of structures U(k) L U(1) by inclusion mappings 
U(k) - U(1). 

5.4 Some Model Theory 

; We will give some simple applications of Kripke's semantics. The first ones 

1 
I 

concern the so-called disjunction and existence properties. 

1 Definition 5.4.1. A set of sentences r has the 

/ (i) disjunction property (DP)  if r t- cp V yi + r I- cp or T t $. 
(ii) existence property (EP) if r I- 3 x 4 ~ )  + r t- cp(t) for some closed term 

/ t (where cp V yi and 3xcp(x) are closed). 

In a sense LIP and EP reflect the constructive character of the theory 
F (in the frame of intuitionistic logic), since it makes explicit the clause 'if ' we have a proof of 3zp(x), then we have a proof of a particular instance', / similarly for disjunction. 

Classical logic does not have DP  or E P ,  for consider in propositional 
logic po V lpo. Clearly I-, po V lpo,  but neither t-, po nor t-, 7po! 

Theorem 5.4.2. Intuitionistic propositional and predicate logic without func- 
i tions symbols have D P .  
f 

I Proof. Let t p V $, and suppose Y p and Y yi, then there are Kripke models 
I K I  and Kz with bottom nodes kl and k2 such that kl ly cp and k2 ly yi. It  is 

no restriction to suppose that the partially ordered sets K I ,  K2 of K1 and K2 
are disjoint. 
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We define a new Kripke model with K = K1 U K2 U {kO) where ko # K1 U K2, 
see picture for the ordering. 

211(k) for k E K1 
We define U(k) = &(k) for k E K2 

I2lI for k = ko. 

where IUI consists of all the constants of L, if there are any, otherwise I2lI con- 
tains only one element a. The inclusion mapping for U(ko) - U(ki)(i = 1,2) 
is defined by c H ~ " ( ~ 1 )  if there are constants, if not we pick ai E 2l(ki) 
arbitrarily and define fol(a) = a l l  fo2(a) = a2. 2l satisfies the definition of a 
Kripke model. 
The models IC1 and K2 are 'submodels' of the new model in the sense that 
the forcing induced on Ki by that of K is exactly its old forcing, cf. Exercise 
13. By the Completeness Theorem ko t- cp V $, so ko Il- cp or ko It- $. If ko It p ,  
then kl It cp. Contradiction. If ko F $, then k2 t $. Contradiction. So Y p 
and y $ is not true, hence k- cp or t- $. 0 

Observe that this proof can be considerably simplified for propositional 
logic, all we have to do is place an extra node under kl and k2 in which no 
atom is forced (cf. Exercise 19). 

Theorem 5.4.3. Let the language of intuitionistic predicate logic contain at 
least one constant and no function symbols, then EP holds. 

Proof. Let t- 3xcp(x) and Y cp(c) for all constants c. Then for each c there is a 
Kripke model Kc with bottom node kc such that kc Y cp(c). Now mimic the 
argument of 5.4.2 above, by taking the disjoint union of the Kc's and adding 
a bottom node ko. Use the fact that ko It 3xp(x). 0 

The reader will have observed that we reason about our intuitionistic logic 
and model theory in a classical meta-theory, In particular we use the principle 
of the excluded third in our meta-language. This indeed detracts from the 

constructive nature of our considerations. For the present we will not bother 
to make our arguments constructive, it may suffice to remark that classical 
arguments can often be circumvented, cf. Ch. 6. 

In constructive mathematics one often needs stronger notions than the 
classical ones. A paradigm is the notion of inequality. E.g. in the case of the 
real numbers it does not suffice to know that a number is unequal (i.e. not 
equal) to 0 in order to invert it. The procedure that constructs the inverse 
for a given Cauchy sequence requires that there exists a number n such that 
the distance of the given number to zero is greater than 2Tn. Instead of a 
negative notion we need a positive one, this was introduced by Brouwer and 
formalised by Heyting. 

Definition 5.4.4. A binary relation # is called an apartness relation if 
(i) Vxy(x = y ++ l x#y)  
(4 VXY(X#Y - Y#X) 

(iii) Vxyz(x#y 4 x#z V y#z) 

Examples. 

1. For rational numbers the inequality is an apartness relation. 
2. If the equality relation on a set is decidable (i.e. Vxy(x = y V x # y)), 

then # is an apartness relation (Exercise 22). 
3. For real numbers the relation la - bl > 0 is an apartness relation (cf. 

Troelstra-van Dalen). 

We call the theory with axioms (i), (ii), (iii) of 5.4.4 AP, the theory of 
apartness (of course the obvious identity axiom x1 = x2 A y1 = y2 Axl#yl -+ 

x2#y2 is included). 

Theorem 5.4.5. AP l- Vxy(11x = y 4 x = y). 

Proof. Observe that l l x  = y - l l l x # y  t, l x # y  H x = y. 0 

We call an equality relation that satisfies the condition 'dxy(71x = y 4 

x = y) stable. Note that stable is essentially weaker than decidable (Exercise 
23). 

In the passage from intuitionistic theories to classical ones by adding the 
principle of the excluded third usually a lot of notions are collapsed, e.g. 
i i x  = y and x = y. Or conversely, when passing from classical theories to 
intuitionistic ones (by deleting the principle of the excluded third) there is 
a choice of the right notions. Usually (but not always) the strongest notions 
fare best. An example is the notion of linear order. 

The theory of linear order, LO, has the following axioms: 
(i) V X Y ~ ( X  < 9 A Y < z --+ x < Z) 
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(ii) Vxyz(x < y -+ z < y v x  < z) 
(iii) Vxyz(x = y +-+ TX < y A l y  < x). 

One might wonder why we did not choose the axiom Vxyz(x < y V x = y V y < 
x) instead of (ii), it certainly would be stronger! There is a simple reason: 
the axiom is too strong, it does not hold, e.g., for the reals. 

We will next investigate the relation between linear order and apartness. 

Theorem 5.4.6. The relation x < y V y < x is an apartness relation. 

Proof. An exercise in logic. 0 

Conversely, Smoryhski has shown how to introduce an order relation in 
a Kripke model of A P :  Let K ll- AP, then in each D(k) the following is an 
equivalence relation: k ly a#b. 

(a) kl t a = a - ~ a # a ,  since Icl t- a = a we get kl t ~ a # a  and hence 
k ly a#a. 

(b) k It a#b H b#a, so obviously k ly a#b k ly b#a. 

(c) let k ly a#b, kly b#c and suppose klt- a#c, then by axiom (iii) k l t  a#b 
or k IF c#b which contradicts the assumptions. So k If a#c. 

Observe that this equivalence relation contains the one induced by the iden- 
tity; k l t  a = b + kly a#b. The domains D(k) are thussplit up in equivalence 
classes, which can be linearly ordered in the classical sense. Since we want 
to end up with a Kripke model, we have to  be a bit careful. Observe that 
equivalence classes may be split by passing to a higher node, e.g. if k < 1 and 
k ly a#b then 1 It- a#b is very well possible, but 1 ly a#b + k ly a#b. We take 
an arbitrary ordering of the equivalence classes of the bottom node (using 
the axiom of choice in our meta-theory if necessary). Next we indicate how 
to  order the equivalence classes in an immediate successor 1 of k. 
The 'new' elements of D(1) are indicated by the shaded part. 

(i) Consider an equivalence class [ao],+ in D(k), and look at the corresponding 
set Bo := U{[aIlla E [aoIk}. 
This set splits in a number of classes; we order those linearly. Denote the 
equivalence classes of a. by aob (where b is a representative). Now the 
classes belonging to the b's are ordered, and we order all the classes on 
U Bolao E D(k)) lexicographically according to the representation aob. 

(ii) Finally we consider the new equivalence classes, i.e. of those that are not 
equivalent to any b in U{Bolao E D(k)). We order those classes and put 
them in that order behind the classes of case (i). 

Under this procedure we order all equivalence classes in all nodes. 
We now define a relation R,+ for each k: &(a, b)  := [aIk < [b]k ,  where < is the 
ordering defined above. By our definition k < 1 and Rk(a, b)  + Rl(a, b) .  We 
leave it to  the reader to show that I4 is valid, i.e. in particular Iclt- Vxyz(x = 
x' A x < y + x' < y),  where < is interpreted by Rk. 

I 

k 

Observe that in this model the following holds: 

(#) VXY(X#Y '+ x < Y V Y  < x), 
for in all nodes k ,k l ! -a#bo kll-a < bor  kll- b < a .  
Now we must check the axioms of linear order. 

(i) transitivity. ko Il- Vxyr(x < y A y < z - x < z) o for all k > ko, for 
all a ,b ,c  E D(k)kll- a < b A  b < c - a < c o for all k > ko, for all 
a , b , c ~ D ( k ) a n d f o r a l l E ~ k l l ~ a < b a n d l l ~ b < c + l I l - a < c .  
So we have to show Ri(a, b) and Ri(b, c) + Ri(a, c), but that is indeed 
the case by the linear ordering of the equivalence classes. 

(ii) (weak)linearity. We must show ko F Vxyt(x < y -+ z < y Vx < 2). Since 
in our model Vxy(x#y - x < y V y < x) holds the problem is reduced 
to pure logic: show: 
A P  + b'xyz(x < y A y < t - x < z) + Vxy(x#y - x < y v y < x) C 
Vxyz(x < y - z < y v x  < 2). 
We leave the proof to the reader. 

(iii) anti-symmetry. We must show ko ll- Vxy(x = y o TC < y A -y < x). 
As before the problem is reduced to logic. Show: 
A P + V x y ( x # y - x < y ~ y < x ) l - V x y ( x = ~ ' + ~ x < ~ ~ ~ ~ < x ) .  

Now we have finished the job - we have put a linear order on a model 
with an apartness relation. We can now draw some conclusions. 

Theorem 5.4.7. AP + LO + (#) zs conservative over LO. 

Proof. Immediate, by Theorem 5.4.6. 
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Theorem 5.4.8 (van Dalen-Statman). AP + LO + (#) is conservative 
over AP. 

Proof. Suppose AP Y cp, then by the Model Existence Lemma there is a tree 
model K of AP such that the bottom node ko does not force cp. 
We now carry out the construction of a linear order on K, the resulting model 
K* is a model of A P  + LO + (#), and, since cp does not contain <, ko l y cp. 
Hence AP + LO + (#) Y cp. This shows the conservative extension result: 

AP + LO + (#) t- cp + AP t- cp, for cp in the language of AP. 0 

There is a convenient tool for establishing elementary equivalence between 
Kripke models: 

Definition 5.4.9. (i) A bisimulation between two posets A and B is a rela- 
tion R c A x B such that for each a, a', b with a 5 a', aRb there is a b' with 
a'Rb' and for each a ,  b, b' with aRb, b 5 b' there is an a' such that a1Rb'. 
(ii) R is a bisimulation between propositional Kripke models A and B if it 
is a bisimulation between the underlying posets and if aRb + C(a) = C(b) 
(i.e. a and b force the same atoms). 

Bisimulations are useful to establish elementary equivalence node-wise. 

Lemma 5.4.10. Let R be a bisimulation between A and B then for all 
a ,  b, cp, aRb + (alt- cp e blk cp). 

Proof. Induction on cp. For atoms and conjunctions and disjunctions the 
result is obvious. 
Consider cp = cpl 4 92. 
Let aRb and alt- cpl  -t cpp Suppose bly cpl  4 pa, then for some b' > b b' l t  
cpl and b' ly cp2. By definition, there is an a' > a such that alRb'. By induction 
hypothesis a' ll- cpl and a' Iy cp2. Contradiction. 

The converse is completely similar. 0 

Corollary 5.4.11. If R is a total bisimulation between A and B, i.e. domR = 
A,ranR = B,  then A and I3 are elementarily equivalent (Alt- cp w BIF cp). 

We end this chapter by giving some examples of models with unexpected 
properties. 

f is the identity and g is the canonical ring homomorphism Z -+ Z/(2). 
K is a model of the ring axioms (p. 88). 
Note that ko I t  3 # O,koly 2 = 0,koly 2 # 0 and kolyVx(x # 0 4 

3y(xy = I)), but also koly 3x(x # 0 A Vy(xy # 1)). We se that K is a 
commutative ring in which not all non-zero elements are invertible, but 
in which it is impossible to exhibit a non-invertible, non-zero element. 

2. 

Again f and g are the canonical homomorphisms. K is an intuitionistic, 
commutative ring, as one easily verifies. 

K has no zero-divisors: kolF 4 x y ( x  # 0 A y # 0 A xy = 0) @ for all 
i kily3xy(x # O A  y # OAxy = 0). (1) 
For i = 1 , 2  this is obvious, so let us consider i = 0. hl l- 3xy(x # 
0 ~ ~ # O A x ~ = 0 ) @ k ~ I k m # O A n # O ~ m n = O f o r s o m e m , n . S o  
m # 0, n f 0, mn = 0. Contradiction. This proves (1). 
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The cardinality of the model is rather undetermined. We know ko 1 t 
3xy(x # y) - take 0 and 1, and kolt ~ 3 x 1 x 2 x 3  /X\ xi # xj .  But note 

1<i<j<4 

that kolY 3 ~ 1 x 2 ~ ~  /X\ XI  # ~ j , k ~ l y  V X ~ X ~ X ~ X ~  W X i  = x j  and 
l<i<j<3 1<i<j<4 

ko ly 1 3 ~ 1 ~ 2 x 3  /X\ XI  # xj. 
11i<j<3 

Observe that the equality relation in K is not stable: ko It 1-0 = 6, but 
ko ly 0 = 6. 

3. 

S, is the (classical) symmetric group on n elements. Choose n 2 3. ko 
forces the group axioms (p. 86). ko IF -Vxy(xy = yx), but ko If 3xy(xy + 
yx), and ko IY Vxy(xy = yx). So this group is not commutative, but one 
cannot indicate non-commuting elements. 

Define an apartness relation by kl It a#b H a # b in Z/(2), idem for k2. 
Then KI t  Vx(x#O --+ 3y(xy = 1)). 
This model is an intuitionistic field, but we cannot determine its char- 
acteristic. kl t Vx(x + x = 0), kz It Vx(x + x + x = 0). All we know is 
K It Vx(6.x = 0). 

In the short introduction to intuitionistic logic that we have presented we 
re only been able to scratch the surface. We have intentionally simplified 

the issues so that a reader can get a rough impression of the problems and 
methods without going into the finer foundational details. In particular we 
have treated intuitionistic logic in a classical meta-mathematics, e.g. we have 
freely applied proof by contradiction (cf. 5.3.10). Obviously this does not do 
justice to constructive mathematics as an alternative mathematics in its own 
right. For this and related issues the reader is referred to the literature. A 
more constructive appraoch is presented in the next chapter. 

Exercises 

1. (informal mathematics). Let cp(n) be a decidable property of natural 
numbers such that neither 3ncp(n), nor Vn-cp(n) has been established 
(e.g. "n is the largest number such that n and n + 2 are prime"). Define 
a real number a by the cauchy sequence: 

I i=l 
a, := 

k 

2-' if k < n and ~ ( k )  and -q(i)for i < k. 
i= 1 

Show that (a,) is a cauchy sequence and that "--a is rational", but 
there is no evidence for "a is rational". 

4. Define the double negation translation cp" of cp by placing 71 in front 
of each subformula. Show to cpO ++ p" and I-, cp e b i  cp". 

5. Show that for propositional logic t i  ~ c p  -kc lcp. 

6. Intuitionistic arithmetic HA (Heyting's arithmetic) is the first-order in- 
tuitionistic theory with the axioms of page 85 as mathematical axioms. 
Show HA 1 VXY(X = y V x # y) (use the principle of iilduction). Show 
that the Godel translation works for arithmetic, i.e. PA t cp e HA k p0 



5. Intuitionistic Logic 

(where PA is Peano's (classical) arithmetic). Note that we need not dou- 
bly negate the atoms. 

Show that PA is conservative over HA with respect to formula's not 
containing V and 3. 

Y W  lsi<j<n 
(pi  ++ cpj), for all n > 2. 

(b) Use the completeness theorem to establish the following theorems: 

Give the simplified definition of a Kripke model for (the language of) 
propositional logic by considering the special case of def. 5.3.1 with C(k) 
consisting of propositional atoms only, and D(k) = (0) for all k. 

11. Give an alternative definition of Kripke model based on the "structure- 
map" U(k) and show the equivalence with definition 5.3.1 (without propo- 
sitional atoms). 

12. Prove the soundness theorem using lemma 5.3.5. 

13. A subset K'  of a partially ordered set K is closed (under <) if k E K', 
k < 1 + 1 E K'. If K'  is a closed subset of the underlying partially 
ordered set K of a Kripke model IC, then K' determines a Kripke model 
IC' over K '  with D1(k) = D(k) and klt-' cp * klt- cp for k E K' and (F 

atomic. Show k l t '  cp kit- cp for all cp with parameters in D(k), for 
k E K '  (i.e. it is the future that matters, not the past). 

14. Give a modified proof of the model existence lemma by taking as nodes 
of the partially ordered set prime theories that extend r and that have 
a language with constants in some set C0 U C1 u . . . U Ck-l (cf. proof of 
5.3.8 ) (note that the resulting partially ordered set need not (and, as a 
matter of fact, is not) a tree, so we lose something). 
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Consider a propositional Kripke model K, where the C function assigns 
only subsets of a finite set r of the propositions, which is closed under 
subformulas. We may consider the sets of propositions forced at  a node 
instead of the node: define [k] = {cp E r l k  l t- cp). The set {[k]l k E K )  
is partially ordered by inclusion define Cr([k]) := C(k) n At, show that 
the conditions of a Kripke model are satisfied; call this model ICr, and 
denote the forcing by It-r. We say that K r  is obtained by filtration from 
K. 

(a) Show [k] Itr cp @ klt- cp, for cp E r. 
(b) Show that ICr has an underlying finite partially ordered set. 
(c) Show that t cp cp holds in all finite Kripke models. 
(d) Show that intuitionistic propositional logic is decidable (i.e. there is 

a decision method for t cp), apply 3.3.17. 

Each Kripke model with bottom node ko can be turned into a model 
over a tree as follows: Kt, consists of all finite increasing sequences 
(ko, kl,  . . . , k,), ki < ki+l(O < i < n), and UtT((kol.. . , k,)) := U(kn). 
Show (ko,. . . , k,), IFtT cp & k, It cp, where It,, is the forcing relation in 
the tree model. 

(a) Show that (cp -+ $) V (11, -+ cp) holds in all linearly ordered Kripke 
models for propositional logic. 

(b) Show that LC Y + there is a linear Kripke model of LC in 
which a fails, where LC is the propositional theory axiomatized by 

I 
the schema 

i (cp -+ $) V (11, -+ cp) (Hint: apply Exercise 15). Hence LC is complete 

1 for linear Kripke models (Dummett). 

I 18. Consider a Kripke model IC for decidable equality (i.e. Vxy(x = y V 

C x # y)). For each k the relation kl t = 6 is an equivalence relation. 
Define a new model IC' with the same partially ordered set as IC, and 

: D1(k) = {[aIr,la E D(k)), where [a] is the equivalence class of a. Replace 
the inclusion of D(k) in D(1), for k < 1, by the corresponding canonical 1 embedding [ajt c [a],. Define for atomic cp k l t-' p := k l t cp and show 

t k It-' cp * k It- cp for all cp. 

19. Prove D P  for propositional logic directly by simplifying the proof of 
5.4.2. 

20. Show that HA has DP and EP, the latter in the form: HA I- 3xcp(x)) + 
HA t cp(E) for some n E N. (Hint, show that the model, constructed in 
5.4.2 and in 5.4.3, is a model of HA). 
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21. Consider predicate logic in a language without function symbols and 
constants. Show l- 3xp(x) +t Vxcp(x). (Hint: add an auxilliary constant 
c, apply 5.4.3, and replace it by a suitable variable). 

22. Show Vxy(x = y V x # y) F A P ,  where A P  consists of the three 
axioms of the apartness relation, with x#y replaced by #. 

24. Show that k It- cp v l c p  for maximal nodes k of a Kripke model, so C(k) = 

Th(U(k)) (in the classical sense). That is, "the logic in maximal node is 
classical." 

25. Give an alternative proof or Glivenko's theorem, using 15 and 24. 

26. Consider a Kripke model with two nodes ko, kl, ko < kl and U(ko) = 

R ,  U(kl) = C. Show ko ly 7Vx(x2 + 1 # 0) 4 3x(x2 + 1 = 0). 

27. Let O = R[X]/X2 be the ring of dual numbers. 0 has a unique max- 
imal ideal, generated by X. Consider a Kripke model with two nodes 
ko, kl; ko < kl and U(ko) = O,U(kl) = R ,  with f : O -+ R the canonical 
map f (a + b X )  = a. Show that the model is an intuitionistic field, define 
the apartness relation. 

28. Show that Vx(9 V $(x)) -+ (cp V Vx$(x)) (x @ F V ( 9 ) )  holds in all Kripke 
models with constant domain function (i.e. Vkl(D(k) = D(1)). 

29. This exercise will establish the undefinability of propositional connectives 
in terms of other connectives. To be precise the connective 1 is not 
definable by 2,. . . , if there is no formula 9, containing only the 
connectives 1 , .  . . , , and the atoms po, pl,  such that I- po 1 p2 * q. 

(i) V is not definable by -+,A, I. Hint: suppose cp defines V,  apply the 
Godel translation. 

(ii) A is not definable in -+, V, I. Consider the Kripke model with three 
nodes kl, k2, kg and kl < k3, k2 < k3, k1 IF p, k2 IF q, k3 It- p, q. Show 
that all A-free formulas are either equivalent to I or are forced in ki 
or k2. 

(iii) -+ is not definable in A,  V, 1, I. Consider the Kripke model with 
three nodes kl, kz, k3 and Icl < kg, k2 < k3, kl I t  p, k2 I t  q, k3 IF p, g.  
Show for all -+ -free formulas k2 I t  cp + kl IF cp. 
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30. We consider now only propositions with a single atom p. Define a se- 
quence of formulas by (PO :=I, cpl := p, cp2 := ~ p ,  (Pzn+3 := cp2n+l ~ c p ~ ~ + ~ ~  
(~2n+4 := (~2n+2 -+ cpzn+l and an extra formula cp, := T. There is a spe- 
cific set of implications among the pi, indicated in the diagram on the 
left. 

n 

(i) Show that the following implications hold: 
(P2n+l + (P2n+31 (P2n+l (P2n+4, (P2n+2 (P2n+31 

FY'O -+ (Pn, F (Pn + P 
(ii) Show that the following 'identities' hold: 

t- ((P2n+l (~2n+2) (P2n+21 ((P2n+2 -' (P2n+4) (P2n+4, 
((P2nf3 -) ~ 2 n + l )  (P2n+41 t- ((P2n+4 (P2n+l) (P2n+61 

t- ((~2n+5 (~2n+l) (P2n+l1 )- ((P2n+6 (P2n+l) t+ (P2n+41 
)- (c~k + (P2n+l) (P2n+l for k 1 212 + 7,  
I- ( ' ~ k  -+ ~2n+2)  H (P2n+2 for k 2 2n + 3. 

Determine identities for the implications not covered above. 
(iii) Determine all possible identities for conjunctions and disjunctions 

of vi's (look at the diagram). 
(iv) Show that each formula in p is equivalent to some pi. 
(v) In order to show that there are no other implications than those 

indicated in the diagram (and the compositions of course) it suffices 
to show that no cpn is derivable. Why? 
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We will introduce a number of notions in order to facilitate the treatment. 

Definition 6.1.1. The formulas directly above the line in a derivation rule 
are called the premises, the formula directly below the line, the conclusion. 
In elimination rules the premise containing the connective is called the major 
premise, the other premises, if any, are called the minor premises. 

Convention The major premises will from now on appear on the left hand 
side. 

Definition 6.1.2. A formula occurrence y is a cut in a derivation when it is 
the conclusion of an introduction rule and the major premise of an elimination 
rule. y is called the cut formula of the cut. 

In the above example 11, + a is a cut formula. 

We will adopt a slightly changed VI-rule, this will help to streamline the 
system. 

V I  cp V I  
vx P[x/YI 

where y does not occur free in a hypotheses of the derivation of c p ,  and x 
is free for y in cp. 

The old version of V I  is clearly a special case of the new rule. We will use 
the familiar notations, e.g. 

Note that with the new rule we get a shorter derivation for 

namely 

'~YCP(Y) 

The adoption of the new rule is not necessary, but rather convenient. 

We will first look at  predicate calculus with A, -+, I, V. 

Derivations will systematically be converted into simpler ones by "elimi- 
nation of cuts"; here is an example: 

a V' 
+ I  converts to 

2) 

$ + o  $ a 
--t E 

a 
In general, when the tree under consideration is a subtree of a larger 

derivation the whole subtree ending with a is replaced by the second one. 
The rest of the derivation remains unaltered. This is one of the features of 
natural deduction derivations: for a formula a in the derivation only the part 
above a is relevant to a. Therefore we will only indicate conversions as far 
as required, but the reader will do well to keep in mind that we make the 
replacement inside a given bigger derivation. 

We list the possible conversions: 

Dl v2 

is converted to 
Di 

Pi 

Dl P is converted to $ 
+ I  v2 i i + c p - - t E  

P 
cp 

is converted to W / Y ~  
P[t/YI 

It  is not immediately clear that this conversion is a legitimate operation 
m derivations, e.g. consider the elimination of the lower cut which converts 
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The thoughtless substitution of v for z in V is questionable because v is 
not free for z in the third line and we see that in the resulting derivation V I  
violates the condition on the proper variable. 

In order to avoid confusion of the above kind, we have to look a bit 
closer at the way we handle our variables in derivations. There is, of course, 
the obvious distinction between free and bound variables, but even the free 
variables do not all play the same role. Some of them are "the variable" 
involved in a V I .  We call these occurrences proper variables and we extend 
the name to all occurrences that are "related" to them. The notion "related" 
is the transitive closure of the relation that two occurrences of the same 
variable have if one occurs in a conclusion and the other in a premise of a 
rule in "related" formula occurrences. It  is simplest to define "related" as the 
reflexive, symmetric, transitive closure of the "direct relative" relation which 

~ ( 5 )  A d(x,  Y) AE the top 
is given by checking all derivation rules, e.g. in 

d ( x ,  Y) 
occurrence and bottom occurrence of $(I, y) are directly related, and so are 
the corresponding occurrences of x and y . Similarly the cp a t  the top and the 
one a t  the bottom in 

[cpl 

The details are left to  the reader. 

Dangerous clashes of variables can always be avoided, it takes just a rou- 
tine renaming of variables. Since these syntactic matters present notorious 
pitfalls, we will exercise some care. Recall that we have shown earlier that 
bound variables may be renamed while retaining logical equivalence. We will 
use this expedient trick also in derivations. 

Lemma 6.1.3. In a derivation the bound variables can be renamed so that 
no variable occurs both free and bound. 

Proof. By induction on D. Actually it is better to do some 'induction loading', 
in particular to  prove that the bound variables can be chosen outside a given 
set of variables (including the free variables under consideration). The proof 
is simple, and hence left to the reader. 0 

Note that the formulation of the lemma is rather cryptic, we mean of 
course that the resulting configuration is again a derivation. It also expedient 
to rename some of the free variables in a derivation, in particular we want to 
keep the proper and the non-proper free variables separated. 

Lemma 6.1.4. In a derivation the free variables may be renamed, so that 
unrelated proper variables are distinct and each one is used exactly once i n  
its inference rule. Moreover, no variable occurs as a proper and a non-proper 
variable. 

Proof. Induction on 2). Choose always a fresh variable for a proper variable. 
Note that the renaming of the proper variables does not influence the hy- 
potheses and the conclusion. 0 

In practice it may be necessary to keep renaming variables in order to  
satisfy the results of the above lemmas. 

From now on we assume that our derivations satisfy the above condition, 
i.e. 

(i) bound and free variables are distinct, 
(ii) proper and non-proper variables are distinct and each proper variable is 

used in precisely one VI. 

Lemma 6.1.5. The conversions for -+, A , V  yield derivations. 

Proof. The only difficult case is the V-conversion. But according to  our 
variables-condition D [ t / u ]  is a derivation when D is one, for the variables 
in t do not act as proper variables in 2). 0 
Remark There is an alternative practice for formulating the rules of logic, 
which is handy indeed for proof theoretical purposes: make a typographical 
distinction between bound and free variables (a distinction in the alphabet). 
Free variables are called parameters in that notation. We have seen that 
the same effect can be obtained by the syntactical transformations described 
above. It is then necessary, of course, to formulate the V-introduction in the 
liberal form! 
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6.2 Normalisat ion for Classical Logic 

Definition 6.2.1. A string of conversions is called a reduction sequence. A 
derivation V is called irreducible derivation if there is no V' such that 
D > l  V'. 

Notation 2) >I  V' stands for "V is converted to  V'". V > V' stands for 
"there is a finite sequence of conversions V = Do > I  Dl > I  . . . > I  D,-1 = 2) 
and V > D' stands for 2) > D' or 2) = D'. (V reduces to D'). 

The basic question is of course 'does every sequence of conversions termi- 
nate in finitely many steps?', or equivalently 'is > well-founded?' The answer 
turns out to be 'yes', but we will first look a t  a simpler question: 'does every 
derivation reduce to  an irreducible derivation?' 

Definition 6.2.2. if there is no 2): such that Dl > 1  2); (i.e. if Dl does 
not contain cuts), then we call Dl a normal derivation, or we say that Dl 
is in normal form, and if V > V' where V' is normal, then we say that V 
normalises to V'. 

We say that > has the strong normalisation property if > is well-founded, 
i.e. there are no infinite reduction sequences, and the weak normalisation 
property if every derivation normalises. 

Popularly speaking strong normalisation tells you that no matter how 
you choose your conversions, you will ultimately find a normal form; weak 
normalisation tells you that if you choose your conversions in a particular 
way, you will find a normal form. 

Before getting down the normalisation proofs, we remark that the I-rule 
can be restricted to instances where the conclusion is atomic. This is achieved 
by lowering the rank of the conclusion step by step. 

Example. 

is replaced by 

is replaced by etc. 

(Note that in the right hand derivation some hypothesis may be cancelled, 
this is, however, not necessary; if we want to get a derivation from the same 
hypotheses, then it is wiser not to  cancel the cp at  that particular V I )  A sim- 
ilar fact holds for RAA: it suffices to apply RAA to atomic instances. The 
proof is again a matter of reducing the complexity of the relevant formula. 

2) 
is replaced by 

I 

I I 
- RAA - RAA 
cp $ 

A 1  
P A $  

I 
- RAA 

c p - $  

I 
- RAA 
cpb) 
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Some definitions are in order now: 

Definition 6.2.3. (i) a maximal cut formula is a cut formula with maximal 
rank. 
(ii) d = max{r(cp)lcp cut formula in D) (observe that max 0 = 0). 
n = number of maximal cutformulas and cr(D) = (d, n),  the cut rank of 2). 

If D has no cuts, put cr(D) = (0,O). We will systematically lower the cut 
rank of a derivation until all cuts have been eliminated. The ordering on cut 
ranks is lexicographic: 

(d, n )  < (d', n') := d < d' V (d = d' A n < n'). 

Fac t  6.2.4. < is a well-ordering (actually w + w) and hence has no infinite 
descending sequences. 

L e m m a  6.2.5. Let D be a derivation with a cut at the bottom, let this cut 
have rank n while all other cuts have rank < n,  then the conversion o fD  at 
this lowest cut yields a derivation with only cuts of rank < n. 

Proof. Consider all the possible cuts at the bottom and check the ranks of 
the cuts after the conversion. 

(i) +-cut 

?I, 
Observe that nothing happened in Dl and D2, so all the cuts in D' have 
rank < n. 

(ii) V-cut 

cp(t) 
The substitution of a term does not affect the cut-rank of a derivation, 
so in D' all cuts have rank < n. 

(iii) A-cut. Similar. 0 

Observe that  in the A, 4, I, V - language the reductions are fairly simple, i.e. 
parts of derivations are replaced by proper parts (forgetting for a moment 
about the terms) - things get smaller! 

L e m m a  6.2.6. If cr(D) > 0, then there is a D' with D > I  D' and 
cr(D1) < cr(D). 

Proof. Select a maximal cut formula in D such that all cuts above it have 
lower rank. Apply the appropriate reduction to  this maximal cut, then the 
part of the derivation 2) ending in the conclusion a  of the cut is replaced, 
by Lemma 6.2.5, by a (sub-) derivation in which all cut formula have lower 
rank. If the maximal cut formula was the only one, then d is lowered by 1, 
otherwise n is lowered by 1 and d remains unchanged. In both cases cr(D) 
gets smaller. Note that in the first case n may become much larger, but that 
does not matter in the lexicographic order. 

Observe that the elimination a cut ( here!) is a local affair, i.e. it only 
affects the part of the derivation tree above the conclusion of the cut. 

T h e o r e m  6.2.7. All denvatzons normalise. 

Proof. By Lemma 6.2.6 the cut rank can be lowered to (0,O) in a finite num- 
ber of steps, hence the last derivation in the reduction sequence has no more 

, cuts. 0 

Normal derivations have a number of convenient properties, which can be 
I 

read off from their structure. In order to  formulate these properties and the 

i structure, we introduce some more terminology. 

I Definition 6.2.8. A path in a derivation is a sequence of formulas cp,, . . . , p,, 
, such that cpo is a hypothesis, cp, is the conclusion and cp, is a premise imme  
I diately above cp,+1(0 5 i I n - 1). (ii) A track is an initial part of a path 

1 which stops a t  the first minor premise or at the conclusion. In other words, 
r a track can only pass through the major premises of elimination rules. 

1 Example. 
I 

i [cp A $1 
+ ( I cp [cp A $1 

$40 ?I, 
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The underlying tree is provided with number labels: 

and the tracks are (6,4,3,2, l), (9,7) and (8,5). 

Fact 6.2.9. In  a normal derivation no introduction rule (application) can 
precede an elimination rule (application) i n  a track. 

Proof. Suppose an introduction rule precedes an elimination rule in a track, 
then there is a last introduction rule that precedes the first elimination rule. 
Because the derivation is normal, one cannot immediately precede the other. 
So there has to be a rule in between, which must be the I-rule or the RAA, 
but that clearly is impossible, since I cannot be the conclusion of an intro- 
duction rule. 0 

Fact 6.2.10. A track i n  a normal derivation is divided into (at most) three 
parts: an elimination part, followed by a I-part ,  followed by an introduction 
part. Each of the parts may be empty. 

Proof. By Fact 6.2.9 we know that if the first rule is an elimination, then all 
eliminations come first. Look a t  the last elimination, it results in the conclu- 
sion of V, or it results in I, in which case the I-rule or RAA may be applied, 
or it is followed by an introduction. In the last case only introductions can 
follow. If we applied the I - or RAA - rule, then an atom appears, which 
can only be the premise of an introduction rule (or the conclusion of V). 

Fact 6.2.11. Let 'D be a normal derivation. Then 'D has at least one maximal 
track, ending in  the conclusion. 

The underlying tree of a normal derivation looks like 
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The picture suggests that the tracks are classified as to "how far" they 
are from the maximal track. We formalise this in the notion of order. 

Definition 6.2.12. Let 'D be a normal derivation. 
o(t,) = 0 for a maximal track t,. 
o ( t )  = o ( t l )  + 1 if the end formula of track t is a minor premise 

belonging to a major premise in t' 

The orders of the various tracks are indicated in the picture 

Fact 6.2.13 (Subformula Property). In a normal derivation V, which is  
, not the hypothesis of a RAA-application, each formula of r t cp i s  a subfor- 
1 mula of cp of a hypothesis i n  y. 

Proof. Consider a formula $ in V, if it occurs in the elimination part of its 
track t ,  then it evidently is a subformula of the hypothesis a t  the top of t .  
If not, then it is a subformula of the end formula of t .  Hence $1 is a 
subformula of a formula q2 of a track t l  with o(t1) < o( t ) .  Repeating the ar- 
gument we find that + is a subformula of a hypothesis or of the conclusion. 0 

Sofar we considered all hypotheses, but we can do better. If p is a sub- 
formula of a cancelled hypothesis, it must be a subformula of the resulting 
implicational formula in case of an -+ I application, or of the resulting for- 
mula in case of an RAA-application, or (and this is the only exception) it is 
the cancelled hypothesis of the RAA-application. 

One can draw some immediate corollaries from our results so far. 
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Corollary 6.2.14. Predicate logic is consistent. 
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Proof. Suppose F I ,  then there is a normal derivation ending in I with all 
hypotheses cancelled. There is a track through the conclusion; in this track 
there are no introduction rules, so the top (hypothesis) is not cancelled. Con- 
tradiction. 0 

Note that 6.2.14 does not come as a surprise, we already knew that pred- 
icate logic is consistent on the basis of the Soundness Theorem. The nice 
point of the above proof is, that it uses only syntactical arguments. 

Corollary 6.2.15. Predicate logic is conservative over propositional logic. 

Proof. Let V be a normal derivation of T F ip, where T and cp contain no 
quantifiers, then by the subformula property V contains only quantifier-free 
formulas, hence V is a derivation in propositional logic. 0 

6.3 Normalisation for Intuitionistic Logic 

When we consider the full language, including V and 3, some of the notions 
introduced above have to be reconsidered. We briefly mention them: 

ip(u) 

v 
- in the 3E u is called the proper variable. 

32 cp(x) 0 

u 
- the lemmas on bound variables, proper variables and free variables remain 

correct. 
- cuts and cut formulas are more complicated, they will be dealt with below. 

As before we assume that our derivations satisfy the conditions on free 
and bound variables and on proper variables. 

Intuitionistic logic adds certain complications to the technique developed 
above. We can still define all conversions: 

Vi 
V - conversion - Dl v2 

converts to 9% 
VI 

cp1 v P2 u 0 VE 
1 

d t )  3 - conversion - 
v1 

converts to cp(t) 

4 ~ )  
Lemma 6.3.1. For any derivation V1 with y not free in a and t free for 

u 

cp(t) 
y in cp(y), V1[t/y] is also a derivation. 

0 

Proof. Induction on V'. 0 

It becomes somewhat harder to define tracks; recall that tracks were 
introduced in order to formalise something like "essential successor". In 
'l ' ' we did not consider cp to be an "essential successor" of ip (the 

1L 
minor premise) since $J has nothing to do with cp. 

In V E  and 3E the cancelled hypotheses have something to do with the 
major premise, so we deviate from the geometric idea of going down in the 
tree and we make a track that ends in cp V $J continue both through (the 
cancelled) cp and $J, similarly a track that gets to 3xip(x) continues through 
(the cancelled) cp(y) . 

The old clauses are still observed, except that tracks are not allowed to 
start at hypotheses, cancelled by VE or 3E. Moreover, a track (naturally) 
ends in a major premise of VE or 3E if no hypotheses are cancelled in these 
rule application. 
Example. 

In tree form: 
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The derivation contains the following tracks: 
(2,4,9,7,5,3,  I), (2,4,10,8,6,3,1).  
There are still more problems to be faced in the intuitionistic case: 

(i) There may be superfluous applications of V E  and 3E in the sense that 
"nothing is cancelled. 

v v1 
1.e. in 3x(p(x) no hypotheses cp(y) are cancelled in Dl. 

ff 

We add extra conversions to get rid of those elimination rule applications: 

2) a v2 

converts to  
Di 

cpV11, ff 
ff 

0 

if cp and $ are not cancelled in resp. 'Dl, D2. 

3 ~ 4 ~ )  0 converts to  
ff 

ff 

if p(y) is not cancelled in Dl. 

(ii) An introduction may be followed by an elimination in a track without 
giving rise to  a conversion. 
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Example. 

In each track there is an A-introduction and two steps later an A- 
elimination, but we are not in a position to apply a reduction. 

We would still not be willing to accept this derivation as 'normal', if 
only because nothing is left of the subformula property: cp A cp is neither a 
subformula of its predecessor in the track, nor of its predecessor. The problem 
is caused by the repetitions that may occur because of VE and 3E,  e.g. one 
may get a string of occurrences of the same formula: 

Clearly the formulas that would have to  interact in a reduction may be 
too far apart. The solution is to change the order of the rule applications, we 
call this a permutation conversion. 

Our example is converted by 'pulling' the A E  upwards: 

Now we can apply the A-conversion: 
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In view of the extra complications we have to extend our notion of cut. 

Definition 6.3.2. A string of occurrences of a formula g in a track which 
starts with the result of an introduction and ends with an elimination is called 
a cut segment. A maximal cut segment is one with a cut formula of maximal 
rank. 

We have seen that the elimination a t  the bottom of the cut segment can 
be permuted upwards: 

Example. 
I*] 

u  u  

3x(pl(x) @ -+ ~7 converts to 3x(pl(x) * + 

~ Y P Z ( Y )  * + u  4 - 0  11, 

$ + a  .11, ~ Y V Z ( Y )  u  

u  u  

14 

and then to * - + u  * 

Now we can eliminate the cut formula + --, 9: 

So a cut segment may be eliminated by applying a series of permutation 
conversions followed by a "connective-conversion" . 

As in the smaller language, we can restrict our attention to applications 
of the I -rule for atomic instances. 
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We just have to consider the extra connectives: 

I 
I can be replaced by - 

'P 
' P v +  

' P v +  

We will show that in intuitionistic logic derivations can be normalised. 

Define the cut rank as before; but now for cut segments: 

Definition 6.3.3. ( i )  The rank of a cut segment is the rank of its formula. 
(ii) d = max{r(cp) lq cut formula in V ) ,  n = number of maximal cut segments, 
c r ( V )  = ( d ,  n )  with the same lexicographical ordering. 

Lemma 6.3.4. If V is a derivation ending with a cut segment of maximal 
rank such that all cut segments distinct from this segment, have a smaller 
rank, then a number of permutation conversions and a conversion reduce V 

1 to a derivation wzth smaller cut rank. 
' Proof. ( i )  Carry out the permutation conversions on the maximal segment, 
I so that an elimination immediately follows an introduction. E.g. 

'P Q cP + 
. . .  P A +  ' P A Q  

. . . (PA+  . . .  
> 'P 

. . . ' P A +  . . .  cP 

(PA+  . . . 'P 

cP cP 
Observe that the cut rank is not raised. We now apply the "connective" 

conversion to  the remaining cut. The result is a derivation with a lower d. 

Lemma 6.3.5. I f c r ( D )  > (O,O), then there is a V' such that V > V' and 
c r ( V 1 )  < c r ( V ) .  

I Proof. Let s be a maximal segment such that in the sub derivation v ending 
with s no other maximal segments occur. Apply the reduction steps indicated 
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in Lemma 6.3.4, then V is replaced by V' and either the d is not lowered, 
but n is lowered, or d is lowered. In both cases cr(V1) < cr(V). 0 

Theorem 6.3.6. Each intuitionistic derivation normalises. 

Proof. Apply Lemma 6.3.5. 0 

Observe that this time the derivation may grow in size during the reduc- 
tions, e.g. 

is reduced by a permutation conversion to 

In general, parts of derivations may be duplicated. 

The structure theorem for normal derivations holds for intuitionistic logic 
as well; note that we have to  use the extended notion of track and that seg- 
ments may occur. 

Fact 6.3.7. (i) In  a normal derivation, no application of an introduction 
rule can precede an application of an elimination rule. 
(ii) A track i n  a normal derivation is divided into (at most) three parts: 
an elimination part, followed by a I part, followed by an introduction part. 
These parts consist of segments, the last formula of which are resp. the major 
premise of an elimination rule, the falsum rule or (an introduction rule or 
the conclusion). 
(iii) In  a normal derivation the conclusion is  in  at least one m&mal track. 
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Fact 6.3.8. (i) In a normal derivation, no application of an introduction 
rule can precede an application of  an elimination rule. 
(ii) A track i n  a normal derivation is divided into (at most) three parts: 
an elimination part, followed by a I part, followed by an introduction part. 
These parts consist of segments, the last formula of which are resp. the major 
premise of an elimination rule, the falsum rule or (an introduction rule or 
the conclusion). 
(iii) In  a normal derivation the conclusion is in  at least one maximal track. 

Theorem 6.3.9 (Subformula Property). In  a normal derivation of r t 
cp, each formula is a subformula of a hypothesis in  r ,  or of p.  

Proof. Left to  the reader. 0 

Definition 6.3.10. The relation "p is a strictly positive subformula occur- 
rence of $" is inductively defined by: 

(1) p is a strictly positive subformula occurrence of cp, 
(2) 11, is a strictly positive subformula occurrence of cp A 11,, 11, A p, 

cpV$,$Vcp,cp+4, 
(3) $ is a strictly positive subformula occurrence of Vx+, 3x$. 

: Note that here we consider occurrences ; as a rule this will be tacitly un- 
j derstood. We will also say, for short, is strictly positive in 11,, or occurs 

strictly positive in $. The extension to connectives and terms is obvious, e.g. 

1 is strictly positive in 11,". 

B 

i Lemma 6.3.11. (i) The immediate successor of the major premise of an 
elzmination rule i s  strictly positive in  this premise (for 4 E ,  AE,VE this 
actually i s  the conclusion). (ii) A strictly positive part of a strictly positive 

/ part of cp is a strictly positive part of cp. 

I Proof. Immediate. 0 

I We now give some applications of the Normal Form Theorem. 

Theorem 6.3.12. Let r F cp V 11,, where r does not contain V i n  strictly 
positive subformulas, then r t cp or r t 11,. 

6 
1 Proof. Consider a normal derivation V of cp V 4 and a maximal track t .  If 
\ the first occurrence cp V + of its segment belongs to the elimination part of 
/ t ,  then cp V d) is a strictly positive part of the hypothesis in t ,  which has not 

been cancelled. Contradiction. 
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Hence cp V $ belongs to  the introduction part of t ,  and thus 2) contains a 
subderivation of cp or of $. 

V'  

V looks like 

The last k steps are 3E or VE.  If any of them were an V-elimination then 
the disjunction would be in the elimination part of a track and hence a V 
would occur strictly positive in some hypothesis of r .  Contradiction. 

Hence all the eliminations are 3E. Replace the derivation now by: 

In this derivation exactly the same hypothesis have been cancelled, so 
r t- cp.  

Consider a language without function symbols (i.e. all terms are variables 
or constants). 

Theorem 6.3.13. If F t- 3xcp(x), where r does not contain an existential 
formula as a strictly positive part, then r I- cp(tl) v . . . v cp(t,), where the 
terms t l ,  . . . , tn occur in the hypotheses or in the conclusion. 

Proof. Consider an end segment of a normal derivation D of 3xcp(x) from r .  
End segments run through minor premises of V E  and 3E. In this case an end 
segment cannot result b m  3E, since then some ~ u ( P ( u )  would occur strictly 
positive in r. Hence the segment runs through minor premises of VE's. 1.e. 
we get: 
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3xcp(z) at the beginning of an end segment results from an introduction 
(else it would occur strictly positive in r ) ,  say from cp(ti). It could also result 
from a I rule, but then we could conclude a suitable instance of cp(x). 

We now replace the parts of 2) yielding the tops of the end segments by 
parts yielding disjunctions: 

[all [Pll 

Dl v2 

d t l )  d t 2 )  

a1 V P1 cp(t1) V cp(t2) d t l )  V cp(t2) 

So r t- W ~ ( t , )  . Since the derivation was normal the various t,'s are 
subterms of r or 3xcp(x). 0 

1 Corollary 6.3.14. If in addition V does not occur strictly positive in r ,  then 

i r k cp(t) for a suitable t .  

Corollary 6.3.15. If the language does not contain constants, then we get 
/ r t V X ~ ( X ) .  

b 
I We have obtained here constructive proofs of the Disjunction and Exis- 
, tence Properties, which had already been proved by classical means in Ch. 
I 5 .  

Exercises 

1. Show that there is no formula cp with atoms p and q without V ,  I so that 
k cp H prq (hence v is not definable from the remaining connectives). 
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2. If cp does not contain + then yi cp. Use this to show that p 4 q is not 
definable by the remaining connectives. 

3. Let A not occur in cp, then cp t p and cp k q (where p and q are distinct 
atoms) + cp t-I. 

4. Eliminate the cut segment (a V 7) from 

5. Show that a prenex formula (Qlxl)  . . . (Qnxn)cp is derivable if and only 
if a suitable quantifier-free formula, obtained from cp, is derivable. 

Additional Remarks: 
Strong Normalization and Church-Rosser 

As we already mentioned, there is a stronger result for natural deduction: 
every reduction sequence terminates (i.e. <1 is well-founded). For proofs see 
Girard 1987 and Girard et al. 1989. Indeed, one can also show for > the so- 
called Church-Rosser property (or confluence property): if V > Dl, V > V2 
then there is a V3 such that Dl 2 V3 and V2 2 V3. As a consequence each 
V has a unique normal form. One easily shows, however, that a given cp may 
have more than one normal derivation. 
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