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PUBLISHERS' PREFACE. 

THE essays which comprise this volume appeared first in The 

Monist at different times during the years 1905 to 1916, and 

under different circumstances. Some of the diagrams were photo

graphed from the authors' drawings, others were set in type, and 

different authors have presented the results of their labors in 

different styles. In compiling all these in book form the original 

presentation has been largely preserved, and in this way uniformity 

has been sacrificed to some extent. Clarity of presentation was 

deemed the main thing, and so it happens that elegance of typo

graphical appearance has been considered of secondary importance. 

Since mathematical readers will care mainly for the thoughts pre

sented, we hope they will overlook the typographical shortcomings. 

The first edition contained only the first eight chapters, and these 

have now been carefully revised. The book has been doubled in 
volume through the interest aroused by the first edition in mathe

matical minds who have contributed their labors to the solution of 
problems along the same line. 

In conclusion we wish to call attention to the title vignette 
which is an ancient Tibetan magic square borne on the back of 
the cosmic tortoise. 





INTRODUCTION. 

THE peculiar interest of magic squares and all lusus numerorum 
in general lies in the fact that they possess the charm of mys

tery. They appear to betray some hidden intelligence which by a 

preconceived plan produces the impression of intentional design, a 

phenomenon which finds its close analogue in nature. 

Although magic squares have no immediate practical use, they 

have always exercised a great influence upon thinking people. It 

seems to me that they contain a lesson of great value in being a 

palpable instance of the symmetry of mathematics, throwing thereby 

a clear light upon the order that pervades the universe wherever 

we turn, in the infinitesimally small interrelations of atoms as well 

as in the immeasurable domain of the starry heavens, an order 

which, although of a different kind and still more intricate, is also 

traceable in the development of organized life, and even in the 
complex domain of human action. 

Pythagoras says that number is the origin of all things, and 
certainly the law of number is the key that unlocks the secrets of 

the universe. But the law of number possesses an immanent order, 

which is at first sight mystifying, but on a more intimate acquain
tance we easily understand it to be intrinsically necessary; and th;s 

law of number explains the wondrous consistency of the laws of 

nature. Magic squares are conspicuous instances of the intrinsic 

harmony of number, and so they will serve as an interpreter of the 

cosmic order that dominates all existence. Though they are a mere 
intellectual play they not only illustrate the nature of mathematics, 
but also, incidentally, the nature of existence dominated by mathe
matical regularity. 
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In arithmetic we create a universe of figures by the process of 

counting; in geometry we create another universe by drawing lines 

in the abstract field of imagination, laying down definite directions; 

in algebra we produce magnitudes of a still more abstract nature, ex

pressed by letters. In all these cases the first step producing the gen

eral conditions in which we move, lays down the rule to which all 

further steps are subject, and so every one of these universes is 

dominated by a consistency, producing a wonderful symmetry. 

There is no science that teaches the harmonies of nature more 

clearly than mathematics, and the magic squares are like a mirror 

which reflects the symmetry of the divine norm immanent in all 

things, in the immeasurable immensity of the cosmos and in the 

construction of the atom not less than in the mysterious depths of 

the human mind. 

PAUL CARUS. 
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CHAPTER I. 

MAGIC SQUARES. 

THE study of magic squares probably dates back to prehistoric 
times. Examples have been found in Chinese literature written 

about A. D. I I25* which were evidently copied from still older 

documents. It is recorded that as early as the ninth century magic 

squares were used by Arabian astrologers in their calculations of 

horoscopes etc. Hence the probable origin of the term "magic" 

which has survived to the present day. 

THE ESSENTIAL CHARACTERISTICS OF MAGIC SQUARES. 

A magic square consists of a series of numbers so arranged 

in a square, that the sum of each row and column and of both the 

corner diagonals shall be the same amount which may be termed 

the summation ( S). Any square arrangement of numbers that 

fulfils these conditions may properly be called a magic square. 

Various features may be added to such a square which may en

hance its value as a mathematical curio, but these must be considered 

non-essentials. 
There are thus many different kinds of magic squares, but this 

chapter will be devoted principally to the description of associated 

or regular magic squares, in which the sum of any two numbers 
that are located in cells diametrically equidistant from the center 
of the square equals the sum of the first and last terms of the 

series, or n2 + I. 

Magic squares with an odu number of cells are usually con-

*See page 19 of Chiii<'SC f'hilvsophy by Paul Cants. 
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structed by methods which differ from those governing the con

struction of squares having an even number of cells, so these two 

classes will be considered under separate headings. 

ASSOCIATED OR REGULAR MAGIC SQUARES OF ODD NUMBERS. 

The square of 3 X 3 shown in Fig. I covers the smallest ag

gregation of numbers that is capable of magic square arrangement, 

and it is also the only possible arrangement of nine different num

bers, relatively to each other, which fulfils the required conditions. 

It will be seen that the sum of each of the three vertical, the three 

horizontal, and the two corner diagonal columns in this square is 

IS, making in all eight columns having that total: also that the sum 

of any two opposite numbers is 10, which is twice the center num

ber, or n 2 +I. 
The next largest odd magic square is that of 5 X 5, and there 

are a great many different arrangements of twenty-five numbers, 

17 21,. I J' IS 

8 I /, 2J .) 7 1¥ 16 

J s 7 S =IS. /f 6 IJ 20 22 S=6S. 

¥ 9 2 /0 /2 /.9 21 J 

// /3 2S 2 9 

Fig. 1. Fig. 2. 

which will show magic results, each arrangement being the pro

duction of a different constructive method. Fig. 2 illustrates one 

of the oldest and best known arrangements of this square. 

The sum of each of the five horizontal, the five vertical, and the 

two corner diagonal columns is 65, and the sum of any two numbers 

which are diametrically equidistant from the center number is 26, 

or twice the center number. 

In order intelligently to follow the rule used in the construction 

of this square it may be conceived that its upper and lower edges 

are bent around backward~ and united to form a horizontal cylinder 

with the numbers on the outside, the lower line of figures thus 

coming next in order to the upper line. It may also be conceived 
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that the square is bent around backwards in a direction at right 

angles to that which was last considered, so that it forms a vertical 

cylinder with the extreme right- and left-hand columns adjacent to 

each other. 
An under;;tanding of this simple conception will assist the 

student to follow other methods of building odd magic squares 

that are to be described. which are based on a right- or left-hand 

diagonal formation. 
Referring to Fig. 2, it will be seen that the square is started 

by writing unity in the center cell of the upper row, the consecutive 

numbers proceeding diagonally therefrom in a right-hand direction. 

Using the conception of a horizontal cylinder, 2 will be located in the 

lower row, followed by 3 in the next upper cell to the right. Here 

the formation of the vertical cylinder being conceived, the next up

per cell will be where 4 is written, then 5 ; further progress being 

here blocked by 1 which already occupies the next upper cdl in 

diagonal order. 

When a block thus occurs in the regular spacing (which will 

be at every fifth number in a 5 X 5 square) the next number must 

in this case be written in the cell vertically below the one last filled, 

so that 6 is written in the cell below 5, and the right-hand diagonal 

order is then continued m cells occupied by 7 and 8. Here th~ 

horizontal cylinder is imagined, showing the location of 9, then the 

conception of the vertical cylinder will indicate the location of ro; 

further regular progression being here once more blocked by 6, 

so I I is written under IO and the diagonal order continued to I 5· 

A mental picture of the combination of vertical and horizontal cyl
inders will here show that further diagonal progress is blocked by 

II, so I6 is written under I 5· The vertical cylinder will then indi

cate the cell in which I7 must be located, and the horizontal cylinder 

will show the next cell diagonally upwards to the right to be occu
pied by I8, and so on until the final number 25 is reached and the 
square completed. 

Fig. 3 illustrates the development of a 7 X 7 square constructed 
according to the preceding method, and the student is advised to 

follow the sequence of the numbers to impress the rule on his mem-
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ory. A variation of the last method is shown in Fig. 4, illustratmg 

another 7 X 7 square. In this example r is placed in the next cell 

horizonally to the right of the center cell, and the consecutive 

numbers proceed diagonally upward therefrom, as before, in a 

right-hand direction until a block occurs. The next number is then 

written in the second cell horizontally to the right of the last cell 

filled (instead of the cell below as in previous examples) and the 

upward diagonal ord:r is resumed until the next block occurs. 

S-175 -

JO J.!) 4J I 10 1.9 2tf If 29 12 JJ 20 tiS" 2.f 

.3,? 47 7 9 /,J 27 29 JS II J6 19 44 .27 j 

f',-6 6 ,f IJ 26 Js- J? 10 42 /8 #J .26 2 J4 

.J 14 /6 2S .34 J6 4.5" /II IJ .lf.9 2.J- I JJ .9 

/J IS 24 JJ ¥2 44 4 16 95 24 7 J2 g 40 

21 2J J2 41 4J J 12 47 2J 6 J/ I<; .3.9 l.j 

22., J.l 40 4.9 2 II 20 22.- .f JO 1.3 JS 21 tr6 

Fig. 3. Fig. 4· 

10 13 I 14 .22 

II 2.1f l 20 .J 

17 " /.:J 21 .9 S=6s. 

.2.3 6 1.9 2 1.) 

/I- /Z 2.) f J6 

Fig. 5. 

Then two cells to the right again, and regular diagonal order con

tinued, and so on until all the cells are filled. 

The preceding examples may be again varied by writing the 

numbers in left-hand instead of right-hand diagonal sequence, 

making use of the same spacing of numbers as before when blocks 

occur in the regular sequence of construction. 

We now come to a series of very interesting methods for 

building odd magic squares which involve the use of the knight's 

move in chess, and it is worthy of note that the squares formed by 
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these methods possess curious characteristics 111 addition to those 

previously referred to. To chess-players the knight's move will 

require no comment, but for those who are not familiar with this 

game it may be explained as a move of two cells straight forward 

in any direction and one cell to either right or left. 

The magic square of 5 X 5 illustrated in Fig. 5 is started by 

placing r in the center cell of the upper row, and the knight's 

move employed in its construction will be two cells upward and 

one cell to the right. 

Using the idea of the horizontal cylinder 2 must be written 

in the second line from the bottom, as shown, aiJ.d then 3 in the 

second line from the top. Now conceiving a combination of the 

horizontal and vertical cylinders, the next move will locaL: 4 in the 

extreme lower left-hand corner, and then 5 in the middle row. \Ve 

now find that the next move is blocked by 1, so 6 is written below 

5, and the knight's moves are then continued, and so until the 

last number, 25, is written in the middle cell of the lower line, and 

the square is thus completed. 

In common with the odd magic squares which were previously 

described, it will be found that in this square the sum of each of 

the five horizontal, the five perpendicular, and the two corner diag

onal columns is 65, also that the sum of any two numbers that are 

diagonally equidistant from the center is 26, or twice the number 

in the center cell, thus filling all the qualifications of an associated 

magic square. 

In addition, however, to these characteristics it will be noted 

that each spiral row of figures around the horizontal and vertical 
cylinders traced either right-handed or left-handed also amounts 
to 65. In the vertical cylinder, there are five right-hand, and five 

left-hand spirals, two of which form the corner diagonal col
umns across the square, leaving eight new combinations. The same 

number of combinations will also be found in the horizontal cylin
der. Counting therefore five horizontal columns, five vertical col

umns, two corner diagonal columns, and eight right- and left
hand spiral columns, there are in all twenty columns each of 

which will sum up to 65, whereas in the 5 X 5 square shown 
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iu Fig. 2 there will be found only sixteen columns that will amount 
to that number. 

This method of constntction is subject to a number of varia

tions. For example, the knight's move may be upwards and to the 

left hand instead of to the right, or it may be made downward and 

either to the right or left hand, and also in other directions. There 

are in fact eight different ways in which the knight's mon may 

be started from the center cell in the upper line. Six of these 

moves are indicated by figure 2's in different cells of Fig. 6, and 

each of these moves if continued in its own direction, varied by 

the breaks as before described, will produce a different but associated 

square. The remaining two possible knight's moves, indicated by 

cyphers, will not produce magic squares under the above rules. 

19 2 IS 2J 

I! 2S ,f 4 

I 10 18 I 14 22 /0 

" 0 II 2/1 7 20 ~ 

2 2 17 s /.3 u !) 17 

2 .2 1.3 6 1.9 .2 IS 

~ 2 4 12 ~s J' 16 

Fig. 6. Fig. 7· 

It may here be desirable to explain another method for locating 
numbers in their proper cells which some may prefer to that which 
involves the conception of the double cylinder. This method con

sists in constructing parts of auxiliary squares around two or more 
sides of the main square, and temporarily writing the numbers in 

the cells of these auxiliary squares when their regular placing car

ries them outside the limits of the main square. The temporary 
locati011 of these numbers in the cells of the auxiliary squares will 

then indicate into which cells of the main square they must be per
manently transferred. 

Fig. 7 shows a 5 X 5 main square with parts of three auxiliary 
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squares, and the main square will be built up in the same way as 

Fig. 5· 
Starting with I in the center of the top line, the first knight's 

move of two cells upward and one to the right takes 2 across the 

top margin of the main square into the second cell of the second 

line from the bottom in one of the auxiliary squares, so 2 must be 

transferred to the same relative position in the main square. Start

ing again from 2 in the main square, the next move places 3 within 

the main square, but 4 goes out of it into the lower left-hand corner 

of an auxiliary square, from which it must be transferred to the 

same location in the main square, and so on throughout. 

The method last described and also the conception of the double 

cylinders may be considered simply as aids to the beginner. With 
a little practice the student will be able to select the proper cells in 

the square as fast as figures can be written therein. 

Having thus explained these specific lines of construction, the 

general principles governing the development of odd magic squares 

by these methods may now be formulated. 

I. The center cell in the square must always contain the middle 
number of the series of oumbers used, i. e., a number which 

is equal to one-half the sum of the first and last numbers of 

the series, or n2 + I. 
2. No associated magic square can therefore be started from its 

center cell, but it may be started from any cell other than 

the center one. 

3· With certain specific exceptions which will be referred to 
later on, odd magic squares may be constructed by either 

right- or left-hand diagonal sequence, or by a number of so
called knight's moves, varied in all cases by periodical and 
well defined departures from normal spacing. 

4· The directions and dimensions of these departures from 
normal spacing, or "break-moves," as they may be termed, 

are governed by the relative spacing of cells occupied by 
the first and last numbers of the series, and may be deter
mined as follows: 
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Rt.:LE: Place the first number of the series in any desired cell 
(excepting the center one) and the last number of the series 

in the cell which is diametrically opposite to the cell con

taining the first number. The relative spacing between the 

cell that contains the last number of the series and the cell 
that contains the first number of the series must then be 

repeated whenever a block occurs in the regular progres

sion. 

EXAMPLES. 

Using a blank square of 5 X 5, I may be written in the middle 

cell of the upper line. The diametrically opposite cell to this being 
the middle cell in the lower line, 25 must be written therein. I will 

therefore be located four cells above in the middle vertical column, 

or what is the same thing, and easier to follow, one cell below 25. 

I IS ,_ 16 /.f' 

,) 16 2tJ r-1>21 

6 2/J 2.)-r- / 

10 21 ,) f-- 6 

# 26- 'II ~0 r-

Fig. 8. Fig. g. 

When, therefore, a square of 5 X 5 is commenced with the first 

number in the middle cell of the upper line, the break-move will 
be one cell downward, irrespective of the method of regular ad

vance. Fig. 8 shows the break-moves in a 5 X 5 square as above 
described using a right-hand upward diagonal advance. 

Again using a blank 5 X 5 square, I may be written in the cell 
immediately to the right of the center cell, bringing 25 into the cell 

to the left of the center cell. The break-moves in this case will 
therefore be two cells to the right of the last cell occupied, irrespec

tive of the method used for regular advance. Fig. 9 illustrates the 
break-moves in the above case, when a right-hand upward diagonal 
;;.dvance is used. The positions of these break-moves in the square 
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will naturally vary with the method of advance, but the relative 

spacing of the moves themselves will remain unchanged. 

NoTE: The foregoing break-moves were previously described in 

several specific examples (See Figs. I, 2, 3, 4, and 5) and 

the reader will now observe how they agree with the gtn

cral rule. 

Once more using a blank square of 5 X 5, I may be written 

in the upper left-hand corner and 25 in the lower right-hand corner. 

I will then occupy a position four cells removed from 25 in a left

hand upward diagonal, or what is the same thing and easier to 

follow, the next cell in a right-hand downward diagonal. This will 

therefore be the break-move whenever a block occurs in the regular 

spacing. Fig. ro shows the break-moves which occur when a 

I /J' / I 1-- /,r 

16 s s 111 I -

20 6 1-- 20 6 I 

21 /0 I 1-- 10 2'(1 

II zs II I 1-- 2S .. 
Fig. IO. Fig. I I. 

knight's move of two cells to the right and one cell upward is used 

for the regular advance. 

As a final example we will write I in the second cell from the 

left in the upper line of a 5 X 5 square, which calls for the placing 

of 25 in the second square from the right in the lower line. The 

place relation between 25 and I may then be described by a knight's 

move of two cells to the left and one cell downward, and this will 

be the break-move whenever a block occurs in the regular spacing. 

The break-moves shown in Fig. I I occur when an upward right

hand diagonal sequence is used for the regular advance. 

As before stated odd magic squares may be commenced 111 

any cell excepting the center one, and associated squares may be 

built up from such commencements by a great variety of moves, 
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such as right-hand diagonal sequence, upward or downward, left
hand diagonal sequence upward or downward, or a number of 

knight's moves in various directions. There are four possible moves 

from each cell in diagonal sequence, and eight possible moves from 

each cell by the knight's move. Some of these moves will produce 

associated magic squares, but there will be found many exceptions 

which can be shown most readily by diagrams. 

Fig. 12 is a 5 X 5 square in which the pointed arrow heads in
dicate the directions of diagonal sequence by which associated 

squares may be constructed, while the blunt arrow heads show the 

directions of diagonal sequence which will lead to imperfect results. 

Fig. 13 illustrates the various normal knight's moves which may be 

X X X X X ffi ffi fH ffi ffi 
X X X X X ffi ffi ffi ffi ffi 
X X X X X ffi ffi ffi ffi E8 
X X X X X EB ffi ffi EB ffi 
X X X X X t8 ffi ffi ffi ffi 

Fig. r2. Fig. IJ.. 

started from each cell and also indicates with pointed and blunt 

arrow heads the moves which will lead to perfect or imperfect re
sults. For example it will be seen from Fig. 12 that an associated 
5 X 5 square cannot be built by starting from either of the four 

corner cells in any direction of diagonal sequence, but Fig. 13 shows 

four different normal knight's moves from each corner cell, any 
of which will produce associated squares. It also shows four other 

normal knight's moves which produce imperfect squares. 

EXXMPLES OF 5 X 5 ~L\GIC SQUARES. 

Figs. 14 and 15 show two 5 X 5 squares, each having r in 
the upper left-hand corner cell and 25 in the lower right-hand 
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corner cell, and being constructed with different knight's mo\'es. 

Fig. r6 shows a similar square in which an elongated knight's move 

/ /S :u~ J' '7 I 21,. '7 IS 8 I 18 /0 22 /'f. 

.ZJ 7 16 .; I 'I /If 7 S' 2.3 16 20 7 2~ II J 

20. 'I IJ 22 6 22 20 /.3 6 4 !J 21 /J J '1 
12 21 10 /9 .3 /0 .J 21 /9 12 2J 15 2 1.9, 6 

9 13 2 II 2.5' IS II 9 2 2.f 12 4 t6 8 2.J 

Fig. 14. Fig. IS. Fig. r6. 

is used for regular advance. The break-move IS necessarily the 

same in each example. (See Fig. IO.) 

,f / 24 IJ /.) /.1" / IJ ,p 24 

.> 2J 16 14 7 23 141 .) /6 7 

22 20 /J 6 4 6 22 /J 4 20 

1.9 12 /0 "' 21 /.9 I(} 2.1 12 .3 

II .9 2.. 25" t.J 2 /,/ .9 2.5' /I 

Fig. 17. Fig. 18. 

Figs. 17, r8, 19 and 20 show four 5 X 5 squares, each having 

I in the second cell from the left in the upper line and 25 in the 

2:2. / 10 /4 /.f 2J I 9 12 .zo 
II 20 24 J 7 IS IS 21 "" 7 
.r .9 /J '7 21 2 /0 1.3 /6 24 

/.9 2.3 2 6 IS' /.9 22 s tf II 

,f 12 t6 2.5" "" 6 1/f '7 2.5' J 

Fig. 19. Fig. 20. 

second cell from the right m the lower line, and being built up 
respectively with right- and left-hand upward diagonal sequence 
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and upward right- and downward left-hand knight's moves, and 

with similar break-moves in each example. See Fig. I r.) 

Figs. 2I, 22, and 23 illustrate three 5 X 5 squares, each having 

I in the upper right-hand corner and 25 in the lower left-hand 

corner, and being built up respectively with upward and downward 

right-hand normal knight's moves, and a downward right-hand 

elongated knight's move. 
For the sake of simplicity these examples have been shown in 

5 X 5 squares, but the rules will naturally apply to all sizes of odd 

magic squares by using the appropriate numbers. The explana

tions have also been given at some length because they cover gen

eral and comprehensive methods, a good understanding of which 

Is desirable. 
It is clear that no special significance can be attached to the 

M 10 22 /~ I .9 12 20 2J I 12 2J 9 20 I 

II J 20 7 2.V. IJ' :u 1,< 7 1.> -¥ 15 21 7 IJ' 

9 21 /J s '7 2 10 1.3 16 21,< 16 .2 1.3 2¥ /0 

.2 19 6 2.3 15 II 1.9 22 .} ti J' 1.9 6 II 22 

2.f 12 -¥ 16 t! 2.5 ..l 6 II,< 'l 25 6 IJ J Ill-

Fig. 21. Fig. 22. Fig. 23. 

so-called knight's move, per se, as applied to the construction of 

magic squares, it being only one of many methods of regular spa

cing, all of which will produce equivalent results. For example, the 

3 X 3 square shown in Fig. I may be said to be built up by a suc
cession of abbreviated knight's moves of one cell to the right and 

one cell upwards. Squares illustrated in Figs. 2, 3, and 4 are also 
constructed by this abbreviated knight's move, but the square illus

trated in Fig. 5 is built up by the normal knight's move. 

It is equally easy to construct squares by means of an elongated 
knight's move, say, four cells to the right and one cell upwards 
as shown in Fig. 24, or by a move consisting of two cells to the 

right and two cells downwards, as shown in Fig. 25, the latter being 
equivalent to a right hand downward diagonal sequence wherein 

alternate cells are consecutively filled. 
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There are in fact almost innumerable combinations of moves 

by which these odd magic squares may be constructed. 

The foregoing method for building odd magic squares by a 

Ro .u .l,f.l 2J / 6.9 47 Jq /2 

9 6J 96 .J.f // 7.9 .JJ 9~ .22. 

10 l~ .rtl "'" 21 J 6J .)q J2. 

20 7 66 .j;J J/ /of 77 .;-c 42 

30 /7 76 6.J -¥-1 /.9 6 6.> s-z S=J6g. 

.l,fiJ 2J s- 6~ o/ 29 16 7J 62. 

.j7J u· /.) 171< 61 J.9 :M ~ JZ 
6tJ .Jtf 2o .3 Jl 4.9 .36 /1' ?J 

7/) 48 JS /J .II so J? 24- 2 

Fig. 24. 

continuous process involves the regular spacing of consecutive 

numbers varied by different well defined break-moves, but other 
methods of construction have been known for many years . 

.3.9 Jq 20 IS / 77 72. . n· .1'J 

49 4-4- JO 2.) /I 6 7" 6J- 6J 

.J--.9 S4 q() J,j' .2.1 /6 2 7" 09 

.f9 .).f .;-o 4.1 J/ .t6 /2. 7 l~ 

1.7.9 0.1' 6n 4& 41 J6 !22. 17 .J S=J6g. 

J' 17.> 7"' .r6 ol J7 J.t 27 /J 

/tf ~ J'o 66 61 47 42 24 2J 

Nl 14- .!J 7tf 71 .1'J .1'2. ,J,f JJ 

2.9 2¥ /0 " J'l 61 62. -YJ q.J 

Fig. 25. 

One of the most interesting of these other methods involves 
the use of two or more primary squares, the sums of numbers in 
similarly located cells of which constitute the correct numbers for 
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transfer into the corresponding cells of the magic square that is 

to be constructed therefrom. 

This method has been ascribed primarily to De Ia Hire but has 

been more recently improved by Prof. Scheffler. 

It may be simply illustrated by the construction of a few 5 X 5 

squares as examples. Figs. 26 and 27 show two simple primary 

squares in which the numbers r to 5 are so arranged that like num

bers occur once and only once in similarly placed cells in the two 

squares; also that pairs of unlike numbers are not repeated in the 

same order in any similarly placed cells. Thus, 5 occupies the ex

treme right-hand cell in the lower line of each square, but this com

bination does not occur in any of the other cells. So also in Fig. 27 
4 occupies the extreme right-hand cell in the upper line, and in Fig. 

I 5 ¥ J 2 I J .) 2 ~ 

J 2 I 5 ¥ .f" 2 4 I J 

5 4 J 2 I 4 I .3 s 2 

2 I .r 4 J J .f" 2 * I 

4 J 2 I .) 2 4 I J .) 

Fig. 26. Fig. 27. 

26 this cell contains 2. No other cell, however, in Fig. 27 that con

tains 4 corresponds in position with a cell in Fig. 26 that contains 2. 

Leaving the numbers in Fig. 26 unaltered, the numbers in Fig. 27 
must now be changed to their respective root numbers, thus pro

ducing the root square shown in Fig. 28. By adding the cell num

bers of the primary square Fig. 26 to the corresponding cell numbers 

Primary numbers . . . . r, 2, 3, 4, 5· 

Root numbers O, 5, IO, 15, 20. 

of the root square Fig. 28, the magic square shown in Fig. 29 is 

formed, which is also identical with the one previously given 111 

Fig. 14. 

The simple and direct formation of Fig. 14 may be thus com

pared with the De Ia Hire method for arriving at the same result. 
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It is evident that the root square shown in Fig. 28 may bl! dis

pensed with by mentally substituting the root numbers for the pri

mary numbers given in Fig. 27 when performing the addition, and 

by so doing only two primary squares are required to construct the 

magic square. The arrangement of the numbers I to S in the two 

primary squares is obvio.usly open to an immense number of varia-

0 /0 20 .r /.S / /.J 2~ i 17 

20 5 /5 0 /0 2.3 7 /6 s I~ 

/5 0 10 20 " 20 * IJ 22 6 

10 20 s /5 0 12 21 10 19 J 

s IS 0 10 s 9 13 2 II 2S 

Fig. 28. Fig. 29. 

tions, each of which will result in the formation of a different but 

associated magic square. Any of these squares, however, may be 

readily constructed by the direct methods previously explained. 

A few of these variations are given as examples, the root num

bers remaining unchanged. The root square Fig. 32 IS formed 

from the primary square Fig. 3I, and if the numbers in Fig. 32 

I 4 2 " J / .j- 4 " 2 

4 2 5 J I J 2 / .) "' 2 5 J I 4 .F 4 .J 2 / 

s .3 / 4 2 2 I " 4 J 

J / 4< 2 s 4 J 2 / ,j-

Fig. JO. Fig. 31. 

are added to those in the primary square Fig. 30, the magic square 

Fig. 33 will be produced. This square will be found identical with 
that shown in Fig. IS. 

As a final example the magic square shown in Fig. 37, pre
viously given in Fig. I7, is made by the addition of numbers in the 
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primary square Fig. 34 to the numbers occupying similar cells in 

root square Fig. 36, the latter being derived from the primary square 

Fig. 35· If the root square shown in Fig. 38 is now constructed 

0 20 l.r 10 " / 2¥ 11 IS' J' 

/0 " 0 20 15" 1/f, 1 5' .ZJ 16 

20 1$ 10 " 0 22. 20 IJ 6 * 
" 0 20 1.7 /0 10 J 21 1.9 12 

/$" /0 s () .20 l.l' II .9 z 2J' 

Fig. 32. Fig. 33· 

from the primary square Fig. 34 and the root numbers therein added 
to the primary numbers in Fig. 35, the magic square shown in Fig. 

39 is obtained, showing that two different magic squares may be 

J / 4 2 s 2 I s- 4 J s 0 20 IS /0 

s J / 4 2 / s 4 j 2 0 20 IS 10 .r 
2 s .3 / ..v s * J 2 / 20 /S 10 s 0 

4 .2 s J I 4 J 2 I " /.J /0 .> 0 20 

/ 4 2 ~ ..; J 2 / " 4 /(} s 0 20 1.7 

Fig. 34· Fig. 35· Fig. 36. 

J' / 21.1 17 I.J /(.) 0 /.l .7 2CJ /2 / 20 .9 .t.J 

S' 2J /6 I* 7 20 10 0 ;,r s 21 1.7 4 IJ' 7 
22 20 /J 6 * .7 20 10 0 /$ /0 2-Y /.J z 16 

1.9 12 10 J 2/ /.5 .a 20 /0 0 1.9 .F 22 II s 
II .9 2, 2.J ltf 0 /.5 s 20 10 J /7 6 2.S ~~ 

Fig. 37. Fig. 38. Fig. 39. 

made from any two primary squares by forming a root square from 
each of them in turn. Fig. 39 has not been given before in this 
book, but it may be directly produced by an elongated knight's 



MAGIC SQUARES. 17 

move consisting of two cells to the right and two downward, using 

the normal knight's move of two cells to the left and one cell down

ward as a break-move at every block in the regular spacing. 

It will be observed in all the preceding examples that the 

number 3 invariably occupies the center cell in all 5 X 5 primary 

squares, thus bringing IO in the center of the root squares, and 13 in 

the center of the magic squares, no other number being admissible 

in the center cell of an associated 5 X 5 magic square. A careful 

study of these examples s-hould suffice to make the student familiar 

with the De Ia Hire system for building odd magic squares, and 

-
5 

.1!- /0 

J .9 /.5" 

2 ,j /~ .20 
J /6 g 22 /S" 

II 7 /J /.9 ~ 20 <f 2./ /¥ 2 

·6 /2 /J 2¥ 7 .2.5 /J / /.9 

/I /7 2J 
2-¥- /2 s- /J b 

/6 22 // 4< /7 /0 2J 

2/ 
'---

Fig. 40. Fig. 4I. 

this knowledge is desirable m order that he may properly appre

ciate the other methods which have been described. 

Before concluding this branch of the subject, mention may 

be made of another method for constructing odd magic squares 

which is said to have been originated by Bachet de Meziriac. 

The application of this method to a 5 X 5 square will suffice for 

an example. 

The numbers I to 25 are written consecutively in diagonal 

columns, as shown in Fig. 40, and those numbers which come 

outside the center square are transferred to the empty cells on 

the opposite sides of the latter without changing their order. The 

result will be the magic square of 5 X 5 shown in Fig. 41. It 
will be seen that the arrangement of numbers in this magic square 
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is similar to that in the 7 X 7 square shown 111 ·Fig. 4, which 

was built by writing the numbers r to 49 consecutively according 

to rule. The 5 X 5 square shown in Fig. 41 may also be written 

out directly by the same rule without any preliminary or additional 

work. 

ASSOCIATED OR REGULAR MAGIC SQUARES OF EVEN 
NUMBERS. 

The numbers in the two corner diagonal columns in these magic 

squares may be determined by writing the numbers of the series in 

arithmetical order in horizontal rows, beginning with the first 

number in the left-hand cell of the upper line and writing line after 

line as in a book, ending with the last number in the right-hand cell 

/ /J 14 4 I z J ?. 

/2 6 7 9 .s- 6 1 I' 

J> /() II ~ .9 /I) II /f-

/J ,J .2 16 IJ /~ /,0 lb 

Fig. 42. Fig. 43. 

of the lower line. The numbers then found in the two diagonal 

columns will be in magic square order, but the position of the other 

numbers must generaily be changed. 

The smallest even magic square that can be built is that of 

4 X 4, and one of its forms is shown in Fig. 42. It will be 

seen that the sum of each of the four horizontal, the four vertical, 

and the two corner diagonal columns in this square is 34, making 

in all ten columns having that total; also that the sum of any two 

diametrically opposite numbers is 17, which is the sum of the first 

and last numbers of the series. It is therefore an associated square 

of 4 X 4· 
The first step in the construction of this square is shown in 

Fig. 43, in which only the two corner diagonal columns, which are 
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written in heavy figures, have the correct s:.:mmation. The numbers 

in these two columns mcst therefore be left as they are, but the loca

tion of all the other numbers, which are written in light figures, must 

be changed. A simple method for effecting this change consists in 

substituting for each number the complement between it and 17. 

Thus, the complement between 2 and I 7 is I 5, so r 5 may be written 

in the place of 2. and so on throughout. All of the light figure 

16 2 j /.3 

.) // /t? tY 

9 7 6 .12 

4 /<'/ /.J / 

/Q/6 .f"Q/L 
2 /.J 6 N 

J /* 7 '"' 

"' /~ " , 
Fig. 44· Fig. 45 .. 

numbers being thus changed, the result will be the magic square 

shown in Fig. 42. 

The same relative arrangement of figures may be attained by 

leaving the light figure numbers in their original positions as shown 

in Fig. 43, and changing the heavy figure numbers in the two 

corner diagonal columns to their respective complements with 17. 

It will be seen that this is only a reversa·l of the order of the figures 

/ J.f .J4 .J J2 ,.; / 2 J 9- s 6 
JO ,f u 27 // 7 7 " I /d // /~ 

2/f 2J l:r /0 /.Y. /.9 /J /~ /.J /6 /7 /J' 

1.3 /l 21 22 2tJ /J /.9 ~I? :u 22 2.3 2¥ 

12 26 .9 10 29 2J 2.r :M 27 zl' 29 J<-

.3/ 2 4 .3.3 .J J6 Jl J2 JJ ""' 3J- J6 

Fig. 46. Fig. 47. 

in the two corner diagonal columns, and the resulting magic square 

which is shown in Fig. 44 is simply an inversion of Fig. 42. 

Fig. 45 is a geometrical diagram of the numbers in Fig. 42, 

and it indicates a regular law in their arrangement, which also holds 

good in many larger even squares, as will be seen 'later on. 
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There are many other ~rrangements of sixteen numbers which 
will fulfii the required conditions but the examples given will suffice 
to illustrate the principles of this square. 

The next even magic square is that of 6 X 6, and one of its 

many variations is shown in Fig. 46. An analysis of this square 

I 3.1 J* .13 .32 6 
.,() J' 23 27 II zs-

2¥ .2J /.$ /1$ zo 1.9 

/1 17 :1-/ 22. ~~ /J 

12 26 /0 .9 29 ? 

Jl • /f .J z J6 

Fig. 48. 

with the aid of geometrical diagrams will point the way not only 
tD its own reconstruction but also to an easy method for building 

other 6 X 6 squares of this class. 
Fig. 47 shows a 6 X 6 square in which all the numbers from 

, .. , 7 1.1 2q 

2 I lq .. 
" 8 u 22 

A 8 c 
" "' 17 16 11 

.r .. , 
211 

6 •.r II ,, 
Fig. 49· 

1 to 36 are written in arithmetical sequence, and the twelve numbers 
in the two corner diagonal columns will be found in magic square 
order, all other numbers requiring rearrangement. Leaving there
fore the numbers in the diagonal columns unchanged, the next step 
will be to write in the places of the other numbers their complements 
with 37, making the square shown in Fig. 48. In this square 
twenty-four numbers (written in heavy figures) out of the total of 
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thirty-six numbers, will be found in magic square order, twelve 

numbers (written in light figures) being still incorrectly located. 

Finally, the respective positions of these twelve numbers being re

versed in pairs, the magic square given in Fig. 46 will be produced. 

Fig. so shows the geometrical diagrams of this square, A 

being a diagram of the first and sixth lines, B of the second and 

fifth lines, and C of the third and fourth lines. The striking ir

regularity of these diagrams points to the irregularity of the 

square which they represent, in which, although the sum of each 

of the two corner diagonal, the six horizontal, and the six perpendic

ular columns is II r, yet only in the two diagonal columns does the 

s1,1m of any two numbers which occupy diametrically opposite cells, 

amount to 37, or the sum of the first and last numbers of the series. 

Owing to their pronounced irregularities, these diagrams convey 

I .J& 13 ~~ 

% Js- 2J 

.J 1'1- 22. 

A B c 
"" 

3J %7 
,, 

%1 

.J.t %D 

13 

Fig. SCJ. 

but little meaning, and in order to analyze their value for further 

constructive work it will be necessary to go a step backwards and 

make diagrams of the intermediate square Fig. 48. These diagrams 

are shown in Fig. 49, and the twelve numbers therein which must 
be transposed (as already referred to) are marked by small circles 

around dots, each pair of numbers to be transposed in position 

being connected by a dotted line. The numbers in the two corner 

diagonal columns which were permanently located from the be

ginning are marked with small circles. 

We have here correct geometrical figures with definite and well 

defined irregularities. The series of geometrical figures shown in 

A, B, and C remain unchanged in shape for all variations of these 
6 X 6 squares, but by modifying the irregularities we may readily 
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obtain the data for building a large number of variants, all showing, 

however, the same general characteristics as Pig. 46. 

A series of these diagrams, with some modifications of their 

irregularities, is given in Fig. 5 I, and in order to build a variety 

of 6 X 6 magic squares therefrom it is only necessary to select three 

A 

c 

Fig. 51 (First Part). 

diagrams in the order A, D, and C, which ha~·e each a different form 

of irregularity, and after numbering them in arithmetical sequence 

from I to 36, as shown in Pig. 49, copy the numbers in diagrammatic 

order into the cells of a 6 X 6 square. 

It must be remembered that the cells in the corner diagonal 
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columns of these even magic squares may be correctly filled by writing 
the numbers in arithmetical order according to the rule previously 

given, so in beginning any new even square it will be found helpful 

to first write the numbers in these columns, and they will then serve 

as guides in the further development of the square. 

6 1 II 

A 

c 

Fig. 51 (Second Part). 

Taking for example the 6 X 6 magic square shown in Fig. 46, 
it will be seen from Fig. 49 that it is constructed from the diagrams 
marked 1--9 and 17 in Fig. 51. Comparing the first line of Fig. 46 

with diagram A, Fig-. 49, the sequence of numbers is 1,-35,-34 
ln unbroken order ; then the diagram shows that 33 and 3 must be 
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transposed, so 3 is written next (instead of 33) then 32 and 6 in 
unbroken order. In the .last line of this square (still using diagram 

A) 3 I comes first, then, seeing that 5 and 2 must be transposed, 
2 is written instead· of 5; then 4; then as 3 and 33 must be trans
posed, 33 is written instead of 3, 5 instead of 2, and the line is 
finished with 36. Diagram B gives the development of the second 

TABLE SHOWING 128 CHANGES WHICH MAY BE RUNG ON 
THE TWENTY-FOUR DIAGRAMS IN FIG. 51. 

A B C 
I, 2, 3 or 4 9 I7, 18, 19 or 20 = 16 changes 
u " " " 10 " " •' " = r6 " 

II " = I6 " 

" " " " 12 " " "= I6 
13 21, 22, 23 or 24 = 16 
14 " " " " = 16 

5, 6, 7 or 8 
" " " 

" 

" " " IS " "= 16 " 
" " " " 16 " "= I6 " 

Total changes = 128 " 

EXAMPLES. 

I .J5 * .JJ .J2 6 I s .JJ J9 J.t- 6 

I! I u 2J /1 .zs J() s :u 9 II 25" 

I* 17 1$ 14 ,U} NJ 16 2J /5 /6 20 /.9 

I.J 2.3 u 22 I .(I /8 2.(1 1¥ 21 2Z IJ I.J 

.JO 26 .9 /0 2.9 7 7 26 10 27 29 I:L 

.JI z .J.(I .J s J6 ·" .J5 * " .t .J6 

Square derived from dia
grams 2, 10, and r8. 

Square derived from dia
grams 8, 13, and 22. 

and fifth lines of the square in the same manner, and diagram C 
the development of the third and fourth lines, thus completing the 
square. 

The annexed table shows I28 changes which may be rung on 
the twenty-four diagrams shown in Figure 51, each combinatiob 
giving a different 6 X 6 square. and many others might be added 
to the list. 

The next size of even magic squo.re is that of 8 X 8, and instead 
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of presenting one of these squares ready made and analyzing it, 

we will now use the information which has been offered by previous 
examples in the construction of a new square of this size. 

Referring to Fig. 45, the regular geometrical diagrams of the 

4 X 4 square naturally suggest that an expansion of the same may 

be utilized to construct an 8 X 8 square. This expanded diagram 

/ lq f S'l '7 "# •r "" 
.t 'J I• .rr II ., 21 J.J 

.. '• II .r, , .. ,, i? .JI 

.,. ,, 
11 .n "" I,S" ., 

"7 

~ '• IJ .r~ ill "" ... "' 
~ ra II, d"l u "' .,. Jr 

7 S'l 1r s-. .. I,.Z Jl "" , ... , It/ "" .lfl ,, Jt .JJ 

Fig. 52. 

is accordingly shown in Fig. 52, and in Fig. 53 we have the magic 

square that is produced by copying the numbers in diagrammatic 

order. 

/ ~J 1.2. ., .r 4:9 4"1 J> 

.s·~ 10 1/ .r.J .u /9 /.r ,.,9 

¥1 II 1.9 q.r ~., zz .za ,.,, 
z.r .J9 Jl Zl 2.9 .J.r -'9 .JZ 

Totals = 26o. 
JJ .J/ JO .J~ -'7 !17 2.1 """ 
29 ~z 4J 2/ 20 .,~ ~7 '7 

/6 4"0 .,, /J 12 ..-~ 4"4" 9 

.r? 7 6 "" 61 J 2 6., 

Fig. 53-

As might be anticipated. this square is associated and the ease 
with which it has been constmcted points to the simplicity of the 

method employed. 

The magic square shown in Fig. 53 is, however, only one of a 
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multitude of 8 X 8 squares, all of which have the same general 

characteristics and may be constructed with equal facility from 

.?Yp,/. om.'-· 

Fig. 54· 

, 
'*~ (} ,,., 

'l *' 
,, 

.t t6.J sr II ,, 49 

J t.t. " 14 IJ6 ~, -41 

II ~, ,~ SJ .11} liS" u "7 

'" '" S2. .1.1 ,,. 2f) .Jil 

" r.9 ,, 4'1 J/2 "'" JD J.J-

5'1 -3'0 .2J ,~, ,, 
Jl.' 

, 4'7 M -.s .:u, ,, ·"'· "' 
Fig. 55. 

various regular diagrams that can be readily derived from trans-

positions of Fig. 52. Five of these variations are illustrated in Fig. 
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54, which also show the transpositions by which they are formed 
from the original diagrams. To construct an associated magic square 

from either of these variations it is only necessary to make four 

copies of the one selected, annex the numbers I to 64 in arithmetical 

I 7 .rs &o &1 t5a 2, tF 

16 /0 "'* .rJ S2 S/ /.1' .9 

4tf *l /.9 2/ 20 22 92 ,Y/ 

JJ J~ .Jo 2.f 2.9 27 J.9 40 
Totals = 26o. 

2S 2tf .JI' .M .J7 J.r J/ J2 

29 2J 4.J 4.1" 4~ 4.1 /tF '7 
.liJ .ro ~~ /J /2. // J-.F 99 

.f7 tfJ .J of,£ .r 6 J"'l If~ 

Fig. s6. 

order as before explained, and then copy the numbers in diagram
matic sequence into the cells of an 8 X 8 square. 

It will be noted in the construction of the 4 X 4 and 8 X 8 

I ,, r& IJ Ill 1r liD 

.% IIJ .rr II' "7 u J!J 

.1 , .. II ...... I:J ,, 
'7 ;JI 

" II .rJ 2o «&" u 7 
r ~ IJ n. u --~ Z9 "' 
~ J';/J r1 .u. «J 3D ,,. 
7 ~-, $r1 u ~"- Jl Jt.-. 
8 .$1 16 .11.9 ~,. IP JZ. .14 

Fig. 57 

squar.es that only one form of diagram has been hitherto used for 
each square, whereas three different forms were required for the 
6 X 6 square. It is possible, however, to use either two, three, or 

four different diagrams in the construction of an 8 X 8 square, as 
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/ 7 6t- 61 ~0 "9 2 ,f 

¥.9 10 //~ SJ S2 II l.l 4"6 

*" 4<.2 1.9 20 2/ 22 4<7 .~,</ 

40 J.!J 27 2.f 2.9 JO J.t,< .JJ 
Totals= 26o. 

.32 Jl J.S J6 .J7 .J.f 26 .2.J 

2¥ /.f .«.J ** *" 4<& 2.J '7 
.9 .s-o .5"9- /J /2 .Y/ o.f' /6 

oJ oJ tf J- /,1 " sr 6~ 

Fig. ss. 

6v 9 4"6 '7 
,, 

"" 
z 6.J "' ... ~ II "1 .%6 J9 

J 6:o , S"'l I.!J .(<6 ~, Jl' 

, 61 IZ ..... >o --~ 
,., '? 

6d' ~~ .TZ u ""' lS Jil 

6 6".JI 1¥ ,,.., u 

--· 
JO JS' 

l .r, IF ..... .. ~ ..... J/ J~ 

, "7 16 '1.9 l'f 'II Jl Jol 

Fig. 59. 

/ 6J .1".9 ¥ s If .a ss i 

S6 /0 J"¥ IJ n J"/ IS ~;9 

.1.4 "-? 1.9 t;.r "" 2-2 /;1. 17 

.2$ .J"" .u 24' 2.9 JS J9 J2 
Totals= 26o. 

J.J t.6 JO .J6 ·Y 27 Jl 4<0 

*" 2J 4J 21 20 t;& N -9/ 

M so /.q .>J .1-z /I J'$ 9 

J'7 7 J 6o 61 6 :t If'/-

Fig. 6o. 
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shown in the annexed examples. Fig. 55 illustrates two different 

forms from which the magic square Fig. 56 is constructed. Fig. 57 
shows three different forms which are used in connection with the 

square in Fig. 58, and in a similar manner Figs. 59 and 6o show 
four different diagrams and the square derived therefrom. The 

/ ,.o gn :u 10 

1. 99 /Z S9 22. 79 
.J 91 /J u %J 7' 

9 97 /9 17 •v 77 
~ 96 

,. s6 z.r J6 

6 /.$ 4:i z.s J.f" 

J !J<I '1 611 .. 7 J# 

, 9) /J' 4J 21 ,~ 

JJ 111 
,, IZ 2!1 J:l. 

/D Sl 21? 1'1 Jl) 1' 

.J/ J• #I f>D 

,J.Z h!l '12 6'9 

JJ 61 oi'J ~-, 

Ji~ 61 "'"' J7 

Jr 66 ..,. J'f> 

J6 loS' <'6 SS' 

~l 6'1 "7 S'4' 

Jl ~J "'" Sl 

.J!) 6L #(I sz 

"0 ,, .s-u ,.., 
Fig. 61. 

foregoing examples are sufficient to illustrate the immense number 

of different 8 X 8 magic squares that may be constructed by the 
aid of various diagrams. 

We now come to the magic square of 10 X ro, and applying 
the comparative method to the last examples, it will be easy to ex-
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pand the three diagrams of the 6 X 6 square (Fig. 49) into five 
diagrams that are required for the construction of a series of 

I .9.9 ,) .9J !Jb , 94 ¥ 9.2 //) 

~0 /2- II I 'I M .I$ 17 J'J 1.9 II 

8() 79 ZJ 17 2.5" 2b 1~ 2tf 22 1' 
.J/ 6!J ~3 J4 66 6.> .J7 "" ~~ ¥t? 

6fJ #Z .u "7 ¥6 46 ** 5.3 4.9 J-1 

${) S2 ¥.3 *l s~- ~-6 5""' 48 J"!J *' 
Totals = sos. 

/JI az J/ 64 J6 J~ 61 6J J.9 1{) 
II 2.9 7" :q JS 76 2"1- Ji J2 .JO 

21J 82 18 "* 15" 16 '1 IJ ,f.9 ,, 
fgl .9 .9J * b .!1.> 7 !J.f .2- /OIJ 

Fig. 62. 

10 X 10 squares. These five diagrams are shown in Fig. 61, and 
in Fig. 62 we have the magic square which is made by copying the 

I "''~ /J /JZ u· nu 

!l /tt,J /1! /J/ 311 N!J 

.J /ttl IS IJo 9 Nl 

41 /(I/ 14 11.!1 u "1 

s '"'" IJ Ill 29 "" 
6 ,,_g , 

"1 .JO 1/S" 

1 /Ji I .!I II If Jl ""' , 
'7 ID n.s Jz NJ 

.!1 /31 u "'"' .JJ //Z 

'" IJS .12 /2J d~ '" 
, /.3<,1 .ZJ ,.._ Js '"' 
/-t- /.JJ .2~ l:zl J6 ID!J 

Fig. 63 (First part). 

numbers from I to 100 in diagrammatic order into the cells of a 

10 X 10 square. 
It will be unnecessary to proceed further with the construction 



MAGIC SQUARES. 31 

of other 10 X 10 squares, for the reader will recognize the strik-

ing resemblance between the diagrams of the 6 X 6 and the 10 X 

J7 106 , .. !16 ,;, 19-

.u "'? sn !lr 62 IJ 

.JJI IOtf 4"1 .tl'< 6.J u, 

... lOS" s>- .9J 6., ,., 
"" 10'1 ~-, .91- 6s h' 

"'' /DJ ...... !II tM ,., 
,. /01. ..... flo '7 7' 

'"' "" stS 19 &I 7? 

•.r /CO ,.7 II 6.9 ;nf 

q,{ .9.9 .. ., '7 ?" 7S" 

"'? !II 4;9 16 7' 

"' Jl? 6o Is- 72. 7" 

Fig. 63 (Second part). 

I N,J 19Z 9 ~ /J9 I.JI 6 .9 /JS /Jf. Itt 

/.J2 I" ~~ 12.!1 121 II 1.9 12S" '"" 22 23 IZ/ 

/20 26 :J-7 "7 116 .Jo J/ 113 112. J9- J.r 109 

.Jj '"1 ltJ6 {<0 ~I /.OJ /()2 ~" '(<S 99 !16 *" 
J,9 95" .9~ .J".2 S".J .91 90 .J"b S"J IJ 16 tfo 

,, &:t 64 II IO 66 67 77 '" JO 7' ?J 
Totals= 870. 

J2 ,, l.r 6.!1 61 7" J.!l 6•- 6,. IlL ./'.J 6/ 

,r.r S9 ~J' 6J' J'.9 JJ" .u, 92 .!I.J 5"/ .s-o .9tl 

.97 "'7 --~ 
, .. /()/ #.J 4<11- '"" l().r J!J .JI '"' 

J6 lltl Ill J.J .J:t "" 1/J" 29 21 Ill 119 :;.r 

2¥ /22. /2.J 21 .10 /26 /27 '7 "' I.JO IJ/ /J 

/JJ II /0 /J6 /Jl 1 6 /If() '"' J 2 '"*' 
Fig. 64. 

10 squares, especially in connection with their respective irregu
larities. 
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It will also be seen that the same methods which were used for 

varying the 6 X 6 diagrams, are equally applicable to the 10 X 10 

diagrams, so that an almost infinite variety of changes may be rung 

on them, from which a corresponding number of 10 X 10 squares 

may be derived, each. of which will be different but will resemble 

the series of 6 X 6 squares in their curious and characteristic im

perfections. 

'13 

/~' 

tl'.f 

/,t,t.. '1" ,,, 
113• ,,, trs-

Fig, 6s (First part). 

We have thus far studied the construction of even magic 
squares up to and including that of 10 X ro, and it is worthy 

of remark that when one-half the number of cells in one side of 

an even magic square is an even number the square can be made 

associated, but when it is an uneven number it is impossible to 

build a fully associated square with a straight arithmetical series. The 
difficulty can however be easily overcome by using a suitable number 
senes. As this subject is fully treated in Cahpter XI under the 

heading, "Notes on the Construction of Magic Squares of Orders 

in which n is of the General Form 4P + 2," it is not discussed here. 

Fig. 63 shows a series of diagrams from which the 12 X 12 
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l'k/ 

# 
,., 
~"! Ill 

IF/ Co 

61 

,.,., 
IU 

fl? 
.I'll nJ "1 

,,., 
1'/'s' "l 

IJO ,. 
,.,, 

I Sf '"' ,,. .. IU 

,.,, ,,. 
Fig. 65 (Second Part). 

I I.!JS .s IOJ s 1.91 190 7 Ill 10 tM II. 11/f I'! 

112 16 /10 II '7' 20 IJ6 IJIT 2J IJJ 2.J- IJI 2J IS 

161 t6J 
.,, t6r JJ 16.5 JIT J6 16o .u n·J •o J(} ISS 

9J ISJ ISZ ,,s n-o /II I /II '"l .FI 1'14 .T.J ~s- +2 s6 

1¥0 Sl IJI '~7 6t IllS 6.5 6q 1.52 66 t$1) 129 6.9 12J 

Jl n.s J& 123 122 J6 t!IIJ II.!J J.!l JS 116 Ia ""' '"' 
112 16 /10 II 101 IOJ .91 ,92, .90 /OJ .9.r 101 OJ .99 

91 tOO 96 102 J'O OJ IDS 106 '"* :9~ 109 '7 Ill ,, 
113 IJ liS Jl.f 10 Ill Jl 77 121 "l II I:Z'f JZ. I :til 

7" /1.1 ~-g 67 /&1 6.r '"'"' n,.. 6z 1.56 I.JIJ ,, I.J.9 ~"7 

11,11 <1/.Y S.Y l'llf .s·2 ,,.,s ~-f) q.!l 1"-9 "7 IS"/ lf/J .rr /4""¥-

I# II/ IGJ .JII IS .!I .JJ 161 162, Jq 16'1 .12. 1111> IS6 -1<.2. 

21 IJO 26 '7" :ZI.f '1" Z.l Z.t. 177 1.9 q.!l '7 Nl /6.9 

/IJ IJ ,,r II IIJ 6 I 119 .9 1.92 "" 19, .z. 1.96 

Fig. 66. 
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square in Fig. 64 is derived. The geometrical design of these 
diagrams is the same as that shown in Fig. 52 for the 8 X 8 square, 

and it is manifest that all the variations that were made in the 8 X 8 
diagrams are also possible in the I2 X I2 diagrams, besides an 

immense number of additional changes which are allowed by the 
increased size of the square. 

In Fig. 65 we have a series of diagrams illustrating the de
velopment of the I4 X I4 magic square shown in Fig. 66. These 
diagrams being plainly derived from the diagrams of the 6 X 6 and 

10 X 10 squares, no explanation of them will be required, and it is 
evident that the diagrammatic method may be readily applied to 

the construction of all sizes of even magic squares. 

It will be noted that the foregoing diagrams illustrate in a 

graphic manner the interesting results attained by the harmonious 
association of figures, and they also clearly demonstrate the almost 
infinite v::~riety of possible combinations. 

/ J 2 4 / fl 4 I 

4 2 J / .J 2 .2. 0 

4 2 J / .2 J " 2 

.I " 2 ~ #- / / 9-

Fig. 67. Fig. 68. Fig. 69. 

THE CONSTRUCTION OF EVEN MAGIC SQUARES BY DE LA 

HIRE'S METHOD. 

An associated magic square of 4 X 4 may be constructed as 

follows: 

1. Fill the corner diagonal columns of a 4 X 4 square with the 
numbers I to 4 in arithmetical sequence, starting from the 
upper and lower left hand corners (Fig. 67). 

2. Fill the remaining empty cells with the missing numbers of 

the series I to 4 so that the sum of every perpendicular and 
horizontal column equals 10 (Fig. 68). 
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3· Construct another 4 X 4 square, having all numbers in the 
same positions relatively to each other as in the last square, 

but reversing the direction of all horizontal and perpendicular 

columns (Fig. 69). 

4· Form the root square Fig. 70 from Fig. 69 by substituting 

root numbers for primaty numbers, and then add the numbers 

in this root square to similarly located numbers in the primary 

square Fig. 68. The result will be the associated square of 

4 X 4 shown in Fig. 72. 
By making the root square Fig. 71 from the primary square 

Fig. 68 and adding the numbers therein to similarly located numbers 

0 12 12 0 0 J' /,t /:l 

,f- Ll -'1- ,F /2 Ll "' t7 

4 J' J' .,._ /2 4 tl' t7 
PRIMARY ROOT 

NUMBERS NUMBERS /2 0 0 /2 0 ,f If "/z 

0 Fig. 70. Fig. 7r. 

2 4 

3 8 I /5 /If If / /2 J' /.3 

4 !2 IZ 6 7 .9 1-' 6 /0 J 

tf /() II 0 /If 7 // 2. 

'"' J :l /15 4 .9 " 16 

Fig. 72. Fig. 73· 

in the primary square Fig. 69, the same magic square of 4 X 4 will 
be produced, but with all horizontal and perpendicular columns re

versed in direction as shown in Fig. 73· 
The magic square of 6 X 6 shown in Figure 46 and also a 

large number of variations of same may be readily constructed by 

the De Ia Hire method, and the easiest way to explain the process 

will be to analyze the above mentioned square into the necessary 

primary and root squares, using the primary numbers 1 to 6 with 
their respective root numbers as follows: 

Primary numbers ..... I, 2, 3, 4, 5, 6. 
Root numbers . . . . . . . . o, 6, 12, r8, 24, 30. 
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The cells of two 6 X 6 squares may be respectively filled with 

primary and root numbers by analyzing the contents of each cell in 

Fig. 46. Commencing at the left-hand cell in the upper row, we 

note that this cell contains I. In order to produce this number by 

the addition of a primary number to a root number it is evident that 

o and 1 must be selected and written into their respective cells. 

The second number in the top row of Fig. 46 being 35, the root 

number 30 must be written in the second cell of the root square and 

the primary number 5 in the second cell of the primary square, and 

so on throughout all the cells, the finished squares being shown in 

Figs. 74 and 75· 
Another primary square may now. be derived from the root 

square Fig. 74 by writing into the various cells of the former the 

I .J.f JQ. .; J2 6 0 .30 .JO 0 JO 0 

JO " :u· 2J II 7 24 6 24 u, 6 6 

2/t 2J /,j- 16 19 1.9 IJ ltf 12 /2. 12. /-' 

1.3 IJ 21 22., 20 /,1 12 12 /I II l.f 12 

12 2b .9 10 2.9 2.r 6 2ft 6 6 2~ u, 

J/ 2 .II JJ .f J6 .30 0 {) .JO () .JO 

Fig .. 46 (Dup.) Fig. 74· 

primary numbers that correspond to the root numbers of the latter. 

This second primary square is shown in Fig. 76. It will be seen that 
the numbers in Fig. 76 occupy the same relative positions to each 

other as the numbers of the first primary square (Fig. 75), but the 

direction of all columns is changed from horizontal to perpen
dicular, and vice versa. 

To distinguish and identify the two primary squares which are 

used in these operations, the first one (in this case Fig. 75) will in 
future be termed the A primary square, and the second one (in this 

case Fig. 76) the B primary square. 
It is evident that the magic square of 6 X 6 shown in Fig. 46 

may now be reconstructed by adding the cell numbers in Fig. 74 
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to the similarly placed cell numbers in Fig. 75· Having thus in
versely traced the development of the magic square from its A and B 

primary and root squares, it will be useful to note some of the general 

characteristics of even primary squares, and also to study the rules 

which govern their construction, as these rules will be found in

structive in assisting the student to work out an almost endless 

variety of even magic squares of all dimensions. 

1. Referring to the 6 X 6 A primary square shown in Fig. 75, it 

will be noted that the two corner diagonal columns contain 

the numbers I to 6 m arithmetical order, starting respectively 

from the upper and lower left hand corner cells, and that the 

diagonal columns of the B primary square in Fig. 76 also 

contain the same numbers in arithmetical order but starting 

I .f If J 2 6 I (. 6 / t5 / 

6 2 "' J s I ,;- 2 ,;- ,;- 2 2 

6 5 .3 If 2 / 4 4 J ,J .3 4 

I 5 .3 4 2 6 j _, 4- "' 4 J 

6 2 J "' s / 2 ,;- 2 2 s ~-

I 2 4 J .s 6 6 I I 6 / {1 

Fig. 75. Fig. 76. 

from the two upper corner cells. The numbers m the two 

corner diagonal columns are subject to many arrangements 

which differ from the above but it will be unnecessary to 

consider them in the present article. 

2. The numbers in the A primary square Fig. 75 have the same 
relative arrangement as those in the B primary square Fig. 

76, but the horizontal columns in one square form the per

pendicular columns in the other and vice versa. This is a 

general but not a universal relationship between A and B 

primary squares. 

3· The sum of the series I to 6 is 2I and the sum of every 

column in both A and B 6 X 6 primary squares must also 

be 2r. 
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4· The sum of every column in a 6 X 6 root square must be 90, 
and under these conditions it follows that the sum of every 

column of a 6 X 6 magic square which is formed by the 
combination of a primary square with a root square must be 

III (2I + 90 =III). 

5· With the necessary changes in numbers the above rules hold 
good for all sizes of A and B primary squares and root 
squares of this class. 

We may now proceed to show how a variety of 6 X 6 magic 
squares can be produced by different combinations of numbers in 

a 

h 

c 

d 

e 

I 

1st line 

2nd " 

3rd " 

4th " 

5th " 
6th •. 

I 

I 

/ 

6 

6 

6 

I 

/ 

2 

.J 

.J 

.J 

2 

2 

2 

2 

II- .J 

q J 

" 9 

J /.I 

J 4 

4 .J 

Fig. 77· 

J * J 4 

Fig. 7~· 

.J 

2 

2 

2 

.> 

.> 

"' 

.r 

6 

6 

6 

/ 

/ 

/ 

6 

6 

a, h, or c. 

a, e, or/. 

c, d, or e. 

c, d, or e. 

a, e, or/. 

a, h, or c. 

primary and root squares. The six horizontal columns m Fig. 75 
show some of the combinations of numbers from I to 6 that can be 
used in 6 X 6 A primary squares, and the positions of these columns 
or rows of figures relatively to each other may be changed so as 
to produce a vast variety of squares which will naturally lead to 
the development of a corresponding number of 6 X 6 magic squares. 

In order to illustrate this in a systematic manner the different 
rows of figures in Fig. 75 may be rearranged and identified by letters 

as given in Fig. 77· 
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Fig. 78 shows the sequence of numbers in the diagonal columns 

of these 6 X 6 A primary squares, and as this arrangement cannot 

be changed in this series, the various horizontal columns or rows in 

Fig. 77 must be selected accordingly. The small letters at the right 

No. r. No.2. No.3· No.4· No.5· No.6. 

a a b b c c 
I e I e a I 
c d c d d e 
d c d c e d 
e I e I I a 

b b a a b b 

Fig. 79· 

of Fig. 78 indicate the different horizontal columns that may be used 

for the respective lines in the square; thus either a, b, or c column 

in Fig. 77 may be used for the first and sixth lines, a, e, or f for the 

second and fifth, and c, d, or e for the third and fourth lines, but 
neither b, c, or d can be used in the second or fifth lines, and so forth. 

Six different combinations of columns are given in Fig, 79, 
from which twelve different 6 X 6 magic squares may be con

structed. Taking column No. 1 as an example, Fig. 8o shows an 

a I 2 ~ J .5" 6 / 6 I 6 6 / 

I 6 2 ~ j ~ / 2 2 .) .r 2 ,.. 
c / .5" J 4 2 6 4 ~ J .J e3 4 

d 6 .5" ,j 4 2 / J J 4 4 4 J 

e 6 .2 J 4 .r / " J 2 2. .) 2 

b / J 4 .J 2 6 6 / 6 / / 15 

Fig. 8o. Fig. 8I. 

A primary square made from the combination a, f, c, d, e, b, and 
Fig. 81 is the B primary square formed by reversing the direction 
of the horizontal and perpendicular columns of Fig. 8o. The root 

square Fig. 82 is then made from Fig. 81 and the 6 X 6 magic 
square in Fig. 84 is the result of adding the cell numbers of Fig. 82 

to the corresponding cell numbers in Fig. 8o. 
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The above operation may be varied by reversing the horizontal 
columns of the root square Fig. 82 right and left as shown in Fig. 

83 and then forming the magic square given in Fig. 85. In this way 

two different magic squares may be derived from each combination. 

(} J(J () ,j() .J() tJ () .30 JtJ (} JO 0 

tJ 6 2~ .29 h 2~ 29 6 29 29 tJ 6 

/J' /,/' /2 /2- /Z /r /! /2 /2 /2 /.I' /J 

12 IZ /J' /J /.I' /Z /Z /J' /.I' /.I' /2 /2-

~* 29 6 6 2~ 6 ;; 29 6 6 .29 2.t;. 

.JO () .:JtJ 0 (} .Jo .JO (} () ,J(} 0 ,J() 

Fig. 82. Fig. 83. 

It will be noted that all the 6 X 6 magic squares that are con
structed by these rules are similar in their general characteristics 
to the 6 X 6 squares which are built up by the diagrammatic system. 

Associated 8X8 magic squares may be constructed in great vari
ety by the method now under consideration, and the different com-

/ J2. ~ JJ J,r 6 I JZ Jlf .J J-' 6 

12 J> 2J' 2J /I 25" .JO J' :u 2J // 7 
If 2J .~.r /6 /-¥ 29 /.!1 IJ /.> /6 20 2~ 

/J ? 21 22 2o /.J /J' 2J .2/ 2Z /~ /J 

J() 26 .9 /0 2.9 7 /2 26 0 /0 3.9 2J 

f3/ s- J4 "' 2 "" J/ 0 ¥ J3 2 .J& 

Fig. 84. Fig. 85. 

binations of numbers from 1 to 8 given in Fig. 86 will be found use
ful for laying out a large number of A primary squares. 

Fig. 87 shows the fixed numbers in the diagonal columns of 
these 8 X 8 A primary squares, and also designates by letters tlw 
8pecific rows of figures which may be used for the different hori
zontal columns. Thus the row marked a in Fig. 86 may be used 
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for the first, fourth, fifth, and eighth horizontal columns but cannot 

be employed for the second, third, sixth or seventh columns, and so 

forth. 

Fig. 88 suggests half a dozen combinations which will form 

I 7 6 * s-
/ 2 6 * .r 

/ 2- p s- * 
/ 7 J 4 .) 

/ 7 " s- 4 

~ z .., s * ,; 7 " .r * 
5' 7 " 4 .,-
F 2. ~ J- 4 

1'- .2 h 4 .r 

Fig. 86. 

J z 
J 7 
J 7 
If 2-

15 .2 

If 7 
,; 2-

~ 2 

.., 7 
J 7 

J' 

J' 

J' 

,; 

J' 

/ 

/ 

/ 

/ 

/ 

a 

b 

c 

d 
e 

aa 

bb 

cc 

dd 
ee 

as many primary squares, and it is evident that the number of 
possible variations is very large. It will suffice to develop the first 
and third of the series in Fig. 88 as examples. 

1st line' 

2nd " 

3rd " 

4th " 

sth " 

6th " 

7th " 

8th " 

/ 

/ 

2 

" 

J 

2 

* .r 

4 s 

Fig. 87. 

7 

" 
6 

7 

J' 

J' 

a, b, c, d, or e. 

b, c, aa, dd, oree. 

d, e, aa, or cc. 

a, b, d, cc, or ee. 

a, b, d, cc, or ee. 

d, e, aa, or cc. 

b, c, aa, dd, or ee. 

a, b, c, d, or e. 

Fig. 89 is the A printary square developed from column No. I 

in Fig. 88, and Fig. 90 is the B primary square made by reversing 
the direction of all horizontal and perpendicular columns of Fig. 8g. 

Substituting root numbers for the primary numbers in Fig. 90, and 
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adding these root numbers to the primary numbers in Fig. 89 gives 

the regular magic square of 8 X 8 shown in Fig. gr. The latter will 

be found identical with the square which may be written out directly 

from diagrams in Fig. 52. 

No. I. No.2. No.3. No.4. No.5. No.6. 

a b c d e a 

a a b c dd ee b 
a a d cc e e e 

a b cc d ee d 

a b cc d ee d 

a a d cc e e e 

a a b c dd ee b 

a b c d e a 

Fig. 88. 

Fig. 92 shows an A primary square produced from column 

No. 3 in Fig. 88. The B primary square Fig. 93 being made in the 

regular way by reversing the direction of the columns in Fig. 92. 

/ 

,f 

tf 

/ 

/ 

J' 

J' 

/ 

Primary numbers . . I, 2, 3, 4, 5, 6, 7, 8. 

Root numbers ..... o, 8, I6, 24, 32, 40, 48, 56. 

7 6 /,1 .r J 2,. " a / J' J' / / ~ ,f 

2 .I .r # 6 7__ / 
~ 

7 z z 7 17 2 2-

2 J " .1,£ 6 7 / a a 6 .J .3 6 6 J J 

7 6 /,! .3 J 2 J' a /,1 s .r /,1 /,1 .5' .r 

7 6 /,1 .5" .J 2 J" .> 41 41 .5' 0 .1,£ /,I 

2 .J 0 .1,£ 6 7 / a a .3 6 6 J J 6 6 

z J .r 4 6 7 / a a. 2 7 7 2 .z 7 7 

7 6 .1,1 .r .J 2 J' J' / / J' J" / / 

Fig. 89. Fig. 90. 

/ 

7 
6 

.1,£ 

.5' 

J 

.z 
,!" 

The associated magic square of 8 X 8 in Fig 94 is developed from 

these two primary squares as in the last example, and it will be 

found similar to the square which may be formed directly from 

diagram l\ o. 2 in Fig. 54· 
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I I§J 61- .l,l " J-.9 .1""1 ,. 
s-6 /0 /I d"J 4"2 /9 /o .9.9 

41' N /.9 4d" 44 22 2J ./1./ 

2.> J9 JJ' .u· 2.9 .J.r .Jq. .32-

~-'" J/ JO J6 JJ 2J 26 
Totals = 260. 

Jl.() 

29. 42- 4.3 2/ 20 46 ~7 '7 
/6 d"O J-/ /J /2.- ,~ .r.Y .9 

SJ 7 ~ 6n 61 .3 z 6-v 

Fig. 91. 

I 2 6 .r 4 J 7 J' 0 / / J' I" I' J' I I 

/ 2 6 " 9 .., 7 
,_ c 2 2 7 7 7 7 2 z 

J' 7 J 4 0 0 2 / 6 6 J J J J 6 6 

J' 7 .3 9 .1- 6 2 / ac .r " 9 * 9 9 .r .r 

? 7 .J * " 6 2 / 9 9 .r .r .r .r * *-
J' 7 " 9 .r 6 2 / J J If 6 6 6 ,J J 

/ 2 6 .r 9 J 7 J' 7 7 z 2 2.- z / 7 
/ 2 6 " 9 ,J 7 rJ' ,}'- J' / / I / I' ? 

Fig. 92. Fig. 93. 

/ 2- 6t 6/ 6o J-.9 7 J' / 7 02 6o 61 J;9 z J' 

9 /0 """* S"J J-.z s-/ /S /6 /6 /0 Sl .J'J ,-2 J~ /.r .9 

~,. ~7 /.9 20 2./ 2-2. ~2 9/ 91' 42 /.9 :u 20 22 "7 -9/ 

40 J.9 2J 21' 2..9 J() J!t- JJ JJ ,).9 .JO 2J' 2..9 :ZJ 29 ~0 

.Jt J/ ,, J6 "7 J.f 26 2.r z.r J/ J.f J6 J7 J,r 26 JL 

:u, 2J *" 49 qS q6 /S '? 24 /I" 4J ,,- 49- 9b 2J '7 

4:9 s-o /4 /J /2 // J-.5- s-15 .>6 so II /J /2 '"- .r.r 4.9 

.1"J .r.r 6 .r ~ J 6J 6~ s-7 43 6 9 .r " .1"~ 6-,. 

Fig. 94· Fig. 95. 
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Fig. 95 shows another 8 X 8 magic square which is constructed 
by combining the A primary square in Fig. 89 with the B primary 

square in Fig. 93 after changing the latter to a root square in th<.' 

manner before described. This magic square may also be directly 

constructed from diagram :t\o. 4 in Fig. 54· 

It is evident that an almost unlimited number of differ::nt 

8 X 8 magic squares may be made by the foregoing methods, ami 

their application to the formation of other and larger squares is 

so obvious that it will be unnecessarry to present any further ex

amples. 

COMPOSITE MAGIC SQUARES. 

These squares may be described as a series of small magic 

squares arranged quadratically in magic square order. 

The 9 X 9 square shown in Fig. 96 is the smallest of this class 

that can be constructed and it consists of nine 3 X 3 sub-squares 

arranged in the same order as the numerals I to 9 inclusive in the 

3 X 3 square shown in Fig. r. The first sub-square occupies the 

71 6/f 69 J I tJ, .>J ~(, ~I 

"" (,; 70 .3 ,) 7 ~J' .)() J-z 

67 72 6.> .l,t .9 2. 4..9 .,-., 47 

26 1.9 21,t .l,t.{t .37 42 &.2 oS 6o 

21 2.3 2S .3.9 41 4J .!7 .l-.9 ~I Totals = 369. 

22 27 20 40 NS JJ .;;I @J .;--& 

JS 23 J.3 ,fO 7J ?J /l /0 /J-

JO JZ J¥ 7.;- 77 7.9 /Z /<¥- /0 

Jl J6 2.9 76 J'/ 7¥ /J " /I 

Fig. g6. 

middle section of the first horizontal row of sub-squares, and it 

contains the numbers I to 9 inclusive arranged in regular magic 
square order being a duplicate of Fig. I. The second sub-square 
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is located in the right hand lower corner of the third horizontal row 

of sub-squares and it contains the numbers 10 to 18 inclusive ar

ranged in magic square order, and so on to the last sub-square 
which occupies the middle section of the third horizontal row of 

*l SJ ~, ;o I 12 2.3 .JI,I fi..J 

SJ Gl 7.9 9 // 22 .33 #-l,l 46 

67 7' I /CJ 21 .32 .I<J s~ J-6 

71 7 II 20 .JI "'' .J"J .N 6~ 

6 IJ NJ J(J fl./ ~:t 63 G.> 7" 
16 RJ 2? 1,1.() .$""/ 62. 6'1 7~ .;-

2~ Zl .J.9 StJ (,I /2 7'1 'I IS 

J(, .11 #f 60 /I ?J .3 /'(: 2S 

37 41 S!l 717 .PI z /3 2'1 J.> 

Fig. g;. 

//J IZJ 
,,, Ill- I t.r PI If J'/ ?.J ?11 

12¥ Ill /If /2/ /!I. " 7 ? 92 ~~ I'J 

/10 122 /2J Ill " //) // s .r.r 7" 91 

12.> /IS II¥ IU 1.3 .3 2 /6 9J .PJ 12 

.9J *7 "'" Jl> 6s l? 7" (,J' ?7 II/ /10 

4¥ 31 3f 41 76 70 71 7"' /O.P /n2. /011 

*" 1,1.2 4.3 .17 72 7'>' 7.3 &j> '"" '"" ltJ? 

4.J 3.> "*- ""' 77 "7 6& /0 /17? ?? ?' 
i---
49 6.3 /.!I. .$2 12f l'otJ l'ot2 1.32 '7 J/ .30 
-
60 .::~ .j-.r &-7 /'otO /3'1 /.34" IJ7 2/ :Z2. !I..J 

.s-6 .$-, .1"f S".J /31. /JI /.Jj /J.3 2¥ 2.6> :z; 

61 .0/ .J"(J "* 1¥/ /.31 1.31 """ 2? '.? /,/'-

Fig. g8. 

Totals = 36g. 

I'~ 

.Ff 

J'.r 

f6 

/tJO 

/11S 

/PI 

/12. 

20 

,_,_ 
ll.l 

JL 

Totals 
=870. 

sub-squares, and which contains the numbers 73 to 81 inclusive. 
This peculiar arrangement of the numbers 1 to 81 inclusive 

forms a magic square in which the characteristics of the ordinary 
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9 X 9 square are multiplied to a remarkable extent, for whereas in 
the latter square (Fig. 97) there are only twenty columns which 

sum up to 369, in the compound square of 9 X 9 there are an 
immense number of combination columns which yield this amount. 

This is evident from the fact that there are eight columns in the 

first sub-square which yield the number IS; also eight columns in 

the middle sub-square which yield the number I23-and eight col

umns in the last sub-square which sum up to the number 23I-and 

IS + I23 + 23I = 369. 

2.3 I 2 20 

22 16 9 19 

.J II I,J /.J 

J' 12 IJ 10 

7 2t>- 2/f 6 

Fig. 99· 

2.> I z 20 

22 12 /I 16 

s IJ /.3 g 

s /0 /a /,r,t. 

7 2.) 241- t5 

Fig. 102. 

I . . 2.5 

19 
:l . . 2/,< 

4-
.J 2J 

21 
¥ . 22 

/J' 
.r u 

.J 
(!) . zo 

7 /.9 

" 
.9 

19 
/() /6 

4 

21 
12 /,< 

/J 

.; 
14 

Fig.'Ioo. 

Totals of 3 X 3 squares= 39· 
Totals of s X s squares= 6s. 

/ zs-

2 24<-

.q zz 

,$" Z/ 

6 '"' 
1.9 

" /.! 

9 

~ 
IJ 

I# /6 

// l,r" 

IZ //,<-

14 

Fig. IOI. 

The r S X r S comes next in order and this may be constructed 
with twenty-five 3 X 3's or nine s X s·s, and so on in the larger 
sizes of these squares. 

The next larger square of this class is that of 16 X 16 which 
can only be built with sixteen sub-squares of 4 X 4· Next comes 

the r8 X 18 compound square which may be constructed with 

thirty-six sub-squares of 3 X 3 or with nine sub-squares of 6 X 6, 
and so on indefinitely with larger and larger compound squares. 
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CONCENTRIC MAGIC SQUARES. 

Beginning with a small central magic square it is possible to 

arrange one or more panels of numbers concentrically around it so 

that after the addition of each panel, the enlarged square will still 
retain magic qualifications. 

Either a 3 X 3 or a 4 X 4 magic square may be used as a 
nucleus, and the square will obviously remain either odd or even, 

according to its beginning, irrespective of the number of panels 

which may be successively added to it. The center square will 

19 2 20 I 

4 16 9 /"f 

/J' II 1.3 IS 

21 12 11 /0 

J 21,. 6 2.f 

Fig. 103. 

l.f 

2 • . 1V 

2~ 

q • u. 

2J u 

22 20 

rY 1(1 

.) 

1 
/6 

/¥. 

IJ 

Fig. 104-

Totals of 3 X 3 square = 39· 
Totals of 5 X 5 square = 65. 

I 2S" 

t lr,t 

" 22 

.r v 

,; 20 

,J II 

9 '7 

/0 I if 

II I~-

/2 I~ 

,., 

Fig. 105. 

naturally be associated, but after one or more panels have been added 

the enlarged square will no longer be associated, because the pecu

liar features of its construction will not permit the sum of every 

pair of diametrically opposite numbers to equal the sum of the 

first and last numbers of the series used. The sum of every hori

zontal and perpendicular column and of the two corner diagonal 

columns will, however, be the same amount. 
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The smallest concentric square that can be constructed is that 

of 5 X 5, an example of which is illustrated in Fig. 99· 

The center square of 3 X 3 begins with 9 and continues, with 
increments of I, up to 17, the center number being 13 in accordance 

with the general rule for a 5 X 5 square made with the series of 

.:.Oto,l"''al Ulumn.r l X Z :PamZ .r x s :Pa ... z. 

4· . ~J 

Fig. 1o6. 

49 I~ 

¥9 

J (<7 

10 

.f' "" 7 
6 .... /,r 

7 lfJ 

" «.t 20 

.5I Fig. 108. 

J.9 

#6 I 

Fig 107. "" J,] 

44 "* 
7 17 

II 20 

12 19 

10 49 

Totals of 3 X 3 square= 75 
Totals of 5 X 5 square= 125 
Totals of 7 X 7 square= 175 

Jx.J s9" ....... 

::~: 
,2J 1J 

'* . 11 

•.r 
Fig. 109. 

2. " 42 41 #.0 

/J '* .32. J/ .r 

.u 21 2.6 16 6 

2J 2.> 27 JJ 4.3 

24 2.9 2.2 JO J.9 

J? J6 l.f ,,r .U' 

o¥6 ~7 ,f .5I ~ 

Fig. IIO. 

numbers 1 to 25. The development of the two corner diagonal 

columns is given in diagram Fig. 100, the numbers for these col

umns being indicated by small circles. The proper sequence of the 
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other twelve numbers in the panels is shown in Fig. 101. The 

relative positions of the nine numbers in the central 3 X 3 square 

cannot be changed, but the entire square may be inverted or turned 

one quarter, one half, or three quarters around, so as to vary the 

JJt~r(Jndl Columi"'.J. .9 X 9 ?&n~ l. 

J 

/.) 

21> 

. J'6 

J/ . .J'I 

/5' 

"' 
Fig. III. 

/tf 

Fig. II2. 

TOT,\LS: 

3 X 3 square 123, 
5 X 5 square 205, 
7 X 7 squa!"e 287, 
9 X 9 square 369. 

41 

7.9 1.9 

17 I 

?6 62 

7J 61 

74 6o 

9 2.l 

/4 2J 

/.) 26' 

/6 26 

/J Bl 

:~:~ 
J9 .. J 

'-C *' 

Fig. ns. 

Fig. 114 . 

2 J ~ 72 71 70 6.9 

'7 /,f /9 .:)<f .:YJ .n5 6 

J"/ 2.9 .30 46 47 21 7 

J"O 94 .3J .Y2 J2 22 J' 

.3..3 .39 41 4.3 49 .J"9 J.3 

.36 40 4.:5" .36' 46 ,j".J 6J' 

.J,j" .5".3 ,j"2 .34 J/ .J"4 67 

6s 6¥ 6J 24 :!.>" 20 66 

so J.9 JS /0 /I /2 .;-

Fig. II6. 

position of the numbers in it relatively to the surrounding panel 

numbers. Fig. 102 shows a 5 X 5 concentric square in which the 
panel numbers occupy the same cells as in Fig. 99, but the central 
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3 X 3 square is turned around one quarter of a revolution to the 
right. 

Several variations may also be made in the location of the panel 
numbers, an example being given in Figs. 103, 104, and ros. Many 

:z>' .. .f11ti!lt {;/un?n.t 

I 0 p JJ 

I ,Ji) Ia d/ 

16 lo- 'o :u 

'J~2Q 

Fig. 117. 

;JJ:J,,In-.r ,., 

6 Jc6 ""P.. .. ,t. 

I 0 0 d/J 

2. ;JS 

,J d¥ 

~ JJ 

.r J.2 

If 

? JO 

" 2.9 

.9 21 

"' 27 

Fig. 118. 

/ 

.. M 

tf 

24' 

10 

.JI 

J$ 

1/ 

22 

14' 

2J 

.2 

;;J:,,,lo•.r lN 

4 )C ~ J9, .. .,.,l!lo. 

"Q 
,_6 

IlL ZtF 

IJ 1¥-

'"' 2.J 

:Q Z!l. 

2~ 

'7 217 

II 18 

Fig. 119. 

..,~ J .JO 6 

2$ 2,Y. 19 ~ 

/6 '7 1.9 2..9 

20 21 1$ .9 

/J /2 26 27 

J .J2 7 
..,,~ 

Fig. 120. 

Totals of 4 X 4 square = 74· 
Totals of 6 X 6 square = II I. 

other changes in the relative positions of the panel numbers are 
selfevident. 

One of many variations of the 7 X 7 concentric magic square 
is shown in Fig. I ro. The 3 X 3 central square in this example is 
started with 21 and finished with 29 in order to comply with the 
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general rule that 25 must occupy the center cell in a 7 X 7 square 

that includes the series of numbers I to 49· The numbers for the 
two corner diagonal columns are indicated in their proper order 

by small circles in Fig. ro6, and the arrangement of the panel num

bers is given in Figs. 107, ro8, and 109. As a final example of an 

iJt't11P 1 & I I'.J l ?I 

,:P,aJonetl (oluutJz..r, 

I 

6 

r . 

Fig. 121. 

.7YZ.o:nltr.J l!rf 

6 )( b B.nd• 

/ e 0 J6 

Fig. 122. 

/ 

J.J 

2i 

/0 

J" 

.3/ 

::~:: 
/J %4 

"' 2J 

::~:: 
'i 20 

/,f 1.!1 

Fig. 123 . 

JJ JO s .J4 6 

II 2'1 2.J /'I // 

/! 2/ 20 /,) 9 

22 /7 /6 /.9 27 

2J /2 /.J 26 2.9 

2 7 J2 ..l .36 

Fig. 124. 

Totals of 4 X 4 square= 74· 
Totals of 6 X 6 square = r I r. 

odd concentric square Fig. I r6 shows one of 9 X 9, its development 
being given in Figs. III, 112, II3, II4, and IIS. 

All these diagrams are simple and obvious expansions of those 

shown in Figs. roo and ror in connection with the 5 X 5 concentric 
square, and they and their numerous variations may be expanded 
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indefinitely and used for the construction of larger odd magic 

squares of this class. 
The smallest even concentric magic square is that of 6 X 6, of 

:z>,'e,,2_,.,111/ G/umn.t. 

I o p 6" 

8 0 S"7 

l.r S"O 

zo 4S" 

2S 0 40 

21 :0' CXJ?. 

.JO '() J.f" 

Jl 'Q.__ ~Jf< 

Fig. 125. 

11 X li' 7'aioel. 6 JC 6 .Panel. 4 x Ll s9 ua,·e.. 

' 0 Q 64 

.2 dJ 

J 6~ 

4 61 

li1" 0 0 ~() "Q'" 16 49 24 J9 

17 41 27 31 

II "'7 21 J7 

.r 6• 

6 .r/J 

7 ~-, 

I o 0 4"1 

I!/ ¥6 "Q" J(J J~-

21 "'"' .J' .Jll 

2~ ¥J .Sl JJ 

9 .r6 2J .,,. Fig. 128 • 

"' .rr 2q d/ 

/~ ~" 
Fig. 127. 

12 ;1"J 

IJ .n 

"" J"l 
I 6J 62. ~ s ;19 S"J' s 

Fig. 126. S6 IS" q9 48 19 44 20 9 

S5" l,q 2.> J9 Jl 2J' IS 10 

/I 22 J6 .JO Jl JJ 4J J"f,< 

SJ 92 J2 J4 J.> 2.9 2J 12. 

/.3 24< .J? 27 26 "'0 .VI S2 

/4 4$ /6 '7 -46 21 .,-0 .>/ 

.1"7 :L .J 61 biJ 6 7 6~ 

Fig. 129. 

Totals of 4 X 4 square= 130. 

Totals of 6 X 6 square = 195. 
Totals of 8 X 8 square = 200. 

which Fig. 120 is an example. The development of this square 

may be traced in the diagrams given in Figs. II7, u8, and II9. 

The center square of 4 X 4 is associated, but after the panel is added 



MAGIC SQUARES. 53 

the enlarged square ceases to be so, as already noted. Figs. 121, 

122, 123, and 124 illustrate another example of this square with 

diagrams of development. 

IJ,,.t.,,.t {;/.,.,n IOXIO.Bmel. 6X9 7lmel. 6it6 :Rmel 

. too to QlfJ() 

z 9/) 

.91 

/0 91 .If DJ 

.96 

.95" 

/!I • 82. 
7 J/t, 

I .9J 

IJ .9J. 
16 ,~ 

II 90 

60 
/2 19 

IJ 66 
. 6J 

'" '7 

•• .S9 14" 16 

=~~·==:PI:~~ IJ 

Fig. IJO. Fig. IJI. 

TOTALS: 

4 X 4 square = 202 
6 X 6 square = 303 
8 X 8 square = 404 

10 X 10 square= 505 

IDo oil JJ 0 o61 

~ 
.., J{f fiJ 

2/ 40 JJ" 66 

22 79 &6 6..-

2J 7' J7 6" 

2¥ 77 

76 .J!J ,s .. 

Mo o74" ~ 61 

27 7¥ "' 6o 

21 ?J 112 4"9 

l9 , .. Fig. 133. 
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Fig. IJ2. 

I 99 .n ;1' !N 9 .9() 

97 If) u 50 22 .2J 17 
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9J 7J 6s .iiJ S"7 .>6 ~ 

/2 29 ¥0 .S# 44 .99 .>/ 

SJ Jl 6o .f'O .>2 ~"J 47 

/6 j/ 42 .j"J -95" ** n 

.u, J2 6J "* .JS" b4 .J.9 

/J' 75 20 2/ 7.9 7J' 2/r< 

!}/ 2 ..3 .96 7 92 // 

Fig. 135. 
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Fig. 134. 

/J .M /0 

76 26 ~ 

,J,; 27 9.1" 

J6 2.1 d 

0/ J2 4-f) 

41 ,J() /4 

.Y.9 70 65 

6.1' 6.!J '7 
25 J'.2 J'.J 

tfJ' /.Y /01) 

A concentric square of 8 X 8 with diagrams are given in Figs. 

125, 126, 127, 128, and 129, and one of 10 X 10 in Figs. 130, 131, 

132, 133, 134, and 135. It will be seen that all these larger squares 
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have been developed in a very easy manner from successive expan

sions of the diagrams used for the 6 X 6 square in Figs. II7, II8, 
and IIg. 

The rules governing the formation of concentric magic squares 

have been hitherto considered somewhat difficult, but by the aid of 

diagrams, their construction in great variety and of any size has 

been reduced to an operation of extreme simplicity, involving only 

the necessary patience to construct the diagrams and copy the num

bers. 

GENERAL NOTES ON THE CONSTRUCTION OF MAGIC SQUARES. 

There are two variables that govern the summation of magic 

squares formed of numbers that follow each other with equal in

crements throughout the series, viz. : 

r. The Initial, or starting number. 

2. The Increment, or increasing number. 

\Vhen these two variables are known, the summations can be 

easily determined, or when either of these variables and the sum

mation are known, the other variable can be readily derived. 

The most interesting problem in this connection is the construc

tion of squares with predetermined summations, and this subject 
will therefore be first considered, assuming that the reader is familiar 

with the usual methods of building odd and even squares. 

* * 
If a square of 3 X 3 is constructed in the usual manner, that is, 

beginning with unity and proceeding with regular increments of 

I, the total of each column will be IS. 

,f I 6 

J " 1 Totals= IS. 

~ !1 2 

Fig. IJ6. 

If 2 is used as the initial number instead of I and the square 

is again constructed with regular increments of I, the total of each 

column will be IS. 
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9 2 7 
,¥. 6 J" Totals = I8. 

s IO " 
Fig. 137. 

If 2 is still used as the initial number and the square is once 

more constructed with regular increments of 2 instead of I, the 

total of each column will be 30. 

16 2 12 

6 10 /~ Total 30. 

8 18 4 

Fig. 138. 

It therefore follows that there must be initial numbers, the use 

of which with given increments will entail summations of any pre

determined amount, and there must also be increments, the use of 

which with given initial numbers, will likewise produce predeter

mined summations. 

These initial numbers and increments may readily be determined 

by a simple form of equation which will establish a connection be

tween them and the summation numbers. 

Let: 

A = initial number, 

fJ = increment, 
n = number of cells in one side of square, 

S = summation. 

Then, if A = 1 and fJ = I 

n 
-(n2 +I)= S. 
2 

If A and fJ are more or less than unity, the following general 

formula may be used: 

An + fJ _!!_ ( 11 2 - I) = S. 
2 

It will be found convenient to substitute a constant, (K) for 
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!!_ ( 11 2 -- I) in the above equation, and a table of these constants is 
2 

therefore appended for all squares from 3 X 3 to 1::! X 12. 

Squares: Const.=K 

3X3 12 

4X4 38 

5 X 5 6o 

6X6 105 

7X7 168 

8X8 252 

9X9 360 
IOXIO 495 
II XII 66o 

12 X 12 858 
vVhen t:sing the above constants the equation will be: 

An+ {JK = S. 

EXAMPLES. 

·what initial number is required for the square of 3 X 3, with 

I as the increment, to produce 19:::>3 as the summation? 

Transposing the last equation: 

S-{JK =A, 
11 

or 

19°3-i I X 12) = 630 '/,=Initial No. 

03Jf 6Joi ~J.f"f 

6.J2-f &..3/,lf t..J6t Totals = 1903. 
6.J3i 6.Ui" 6.3/:S 

Fi:;-. IJJ. 

vVe will now apply the same equation to a square of 4 X 4, in 

which case: 

I90J- ( 1 X 30) = 468}4 =Initial No. 
4 
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46S~ ~S2V: 4J'/~ 47/~ 

479-:. /,L}'J¥ 4)'/~--::- *76-} 

4/.s-:C *-77~ *74'v #721< 
Totals = I903. 

.1,</iO-:_ *-7"¥ 4l!.j'~ 4./'.Jfr 

Fig. 140. 

Also to a square of 5 X 5, 

I903- (I X 6o) 
5 

368.6 =Initial No. 

.J,fq.6 Jj'/-6 .361'-6 "7$6 .!J.f2.6 

.390-6 J72-6 .37~.6 ,JI'/.6 ,UJ.6 

57 

.Jp.6 J7J.tf .380-6 .31}'-6 .3.19-6 Totals = I 903 . 

.J77· 6 .37?·6 .J86. 6 JU-6 .JJ0.6 

"75.6 .JS-';~ Jj'2.6 .J6g.6 .Jj'6.6 

Fig. 14r. 

And for a square of 6 X 6. 

1903 - (I X I05) ·; I 't' 1 N 6 = 299 - 3 = 111 la o. 

:tj'j't JU i'- JJ.tf .10/ ~ .JJO t JOi,<T 

.JUt J06 t J26:} ..12~t .30j' t- Jos-t 

.J22 ~ .32/ t- d/.J r .5/9- T .J;'.2 T .U7 t-

J//l=- .1/~t J/?f- .J20 "} Jur J/6t 

,J/0-r J2~ t Jo71' ..Jt:J,It 32J'} J2.3 t 
J:2j'i'- JOO f' .JD2. :i JJ/t .JOJ-} 33,..1' 

Fig. 142. 

Totals 

= 1903· 

The preceding examples illustrate the construction of squares 

built up with progressive increments of I, but the operation may b~ 

varied by using increments that are greater or less than unity. 

EXAMPLES. 

What initial number must be used in a square of 3 X 3, with 

increments of 3, to produce a summation of 1903? 
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Applying the equation given on page 56, but making {3 = 3 

instead of I, we have: 

_I 9~0__,3:______,_(_,_3 _:__X..:__I 2--<--) = 622 1/ 3 • 

3 

622 1/ 3 is therefore the initial number and by using this in a 

3 X 3 square with progressive increments of 3, the desired results 

are obtained. 

~4.3-i" 6z.z+ ~.3?"} 

6uit ~.34-f 6*oT- Totals = I903. 

6.31 ;t 6*6J 62st 

Fig. 143. 

To find the initial number with increments of IO. 

-12_0:.!3!__(;,..1...:.o...:X_:_I_2.!_) 1 / I . . l N = 594 3 = mha o. 
3 

~6¥-t .1f4i ~-'<4! 

6//~f i6J4i- 6s~t- Totals= 1903. 

62*;t &?~t 6o/,#j 

Fig. 144. 

Or to find the initial number with increments of 1/ 3• 

1903 - (1/3 X 12) = 633 =Initial No. 
3 

tfi.JsT 6.3.3 tfi.3~,< i-

6J.3~ 6J4t 6JS" Totals = 1903. 

t{;J'f ".3Sf" IG.Ht 

Fig. 145. 

These examples being sufficient to illustrate the rule, we will 

pass on another step and show how to build squares with predeter

mined summations, using any desired initial numbers, with proper 

increments. 
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EXAMPLES. 

What increment number must be used m a square of 3 X 3, 
wherein I is the initial number and 1903 the desired summation? 

Referring to equation on page 56 and transposing, we have 

S-An 
---c;Kc;c-- = f3 = increment, or 

I903 - (I X 3) = rs8'/a =Increment. 
I2 

Starting therefore with unity and building up the square with 

successive increments of I 58 1 / 3 , we obtain the desired result. 

1/0.f!J I 7.92-t 

.317 t- 6 .;4<-t 9J-I Totals = I903 . 

4]6 /267~ /,}.9 t 

Fig. 146. 

\iVhen it is desired to start with any number larger or smaller 

than unity, the numbers in the equation can be modified accordingly. 

Thus if 4 is selected as an initial number, the equation will be: 

I903- (4 X 3) 
--"---"---'-'--'--~"-- = I 57 7/ 12 = Increment. 

12 

//(J 7* 4 7.9/ /;_ 

J/.9!1: 6Jqf} 94.9-/;: Totals = I903. 

476-li: /2oqfi /alit-

Fig. 147. 

vVith an initial number of 1 / 3 • 

I9°3- ('/,X 3) = rs80 =Increment. 
12 

110.9-fi_ ·'!' 7.92f£ 72::' 

.J/7-if 6J4<" !Js-1-!f Totals = I903. 

47.5-/i 12hf1i / s-J-7i 

Fig. q8. 
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It is thus demonstrated that any initial number may be used 

providing (in a square of 3 X 3) it is less than one-third of the 

summation. In a square of 4 X 4 it must be less than one-fourth 

of the summation, and so on. 

To illustrate an extreme case, we will select 634 as an initial 

number in a 3 X 3 square and find the increment which will result 

in a summation of I903. 

I9o3- (634 X 3) --"----"'----'----"-'-----"-'- = 1 / 12 = Increment. 
I2 

6JL.t;i 6J¥ 6.j¥ ;f 

6 .. Mf. 6J¥-Ji: 6.j¥~ Totals = I903. 

6~¥!. 6J¥h 03¥7,;: 

Fig. 149. 

Having now considered the formation of magic squares with 

predetermined summations by the use of proper initial numbers 

and increments, it only remains to show that the summation of any 

square may be found, when the initial number and the increment 

are given, by the application of the equation shown on page 56, viz.: 

An+ {3K= S. 

EXAMPLES. 

Find the summation of a square of 3 X 3 using 5 as the initial 

number, and 7 as the increment. 

(5 X 3) + (7 X I2) = 99 =Summation. 

~~ " 40 

/9 JJ ~7 Totals= 99· 

2.6 6/ /2 

Fig. ISO. 

What will be the summation of a square of 4 X 4 using 9 as 

an initial number and I I as an increment? 

(9 X 4) +(II X 30) = 366 =Summation. 
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q 16J /j"2. 92 

/3(J ~# ?.J" 97 Totals= 366. 
4'6 /(JJ' lltJ SJ 

1#1 .31 20 / 7>¥ 

Fig. ISI. 

The preceding equations may also be used for the construction 

of magic squares involving zero and minus quantities, as illustrated 
in the following examples. 

What will be the summation of a square of 3 X 3, using ro as 

the initial number with - 2 increments? 

(10 X 3) + (-2 X 12) = 6 =Summation. 

-'I- 10 0 

~ 2 - 2 Totals= 6. 

.t,< -~ 8 

Fig. T52. 

·what initial number must be used in a square of 3 X 3 with 

increments of - 3 to produce a summation of 3? 

3- (-3 X I2) --"'--->---'"'-'--'-_.c._= I3 =Initial No. 
3 

- J'" /3 - 2 

7 I -.r Totals= 3· 

~ -II /0 

Fig. 153. 

What initial number is required for a 3 X 3 square, with in
crements of I, to produce a summation of o? 

0- (I X I2) __ _,__..:......:._.:... = - 4 = Initial No. 
3 

J -.t,< I 

-2. 0 2 Totals= o, 

-1 .t,< -.3 

Fig. I54· 
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What increment must be used in a square of 3 X 3 wherein 
12 is the initial number and - 12 the required summation? 

-12- (12 X 3) -----'--------'----'--'"-'--- = - 4 = Increment. 
12 

-/6 /2 _,p 

4 -~ -/2 Totals =- 12. 

0 -20 ; 

Fig. ISS· 

What increment must be used in a square of 4 X 4 wherein 48 
is the initial number and 42 the summation? 

42- (48 X 4) 
--'---'-'---'-..:.....!-<- = - 5 = Increment. 

30 

.#.f -22. -"7 Jj 

-7 .2.) """ J'" 
Totals =42· 

/J J -2 26' 

- /2. .J! 4<.3 -27 

Fig. rs6. 

The foregoing rules have been applied to examples in squares 
of small size only for the sake of brevity and simplicity, but the 

principles explained can evidently be expanded to any extent that 

may be desired. 

Numbers following each other with uniform increments have 
been used throughout this article in the construction of magic 

squares, in order to illustrate their formation according to certain 
rules in a simple manner. It has however been shown by various 
writers that the series of numb::rs used in the construction of 
every magic square is divided by the breakmoves into n groups of n 

numbers per group (n representing the number of cells in one 

side of the square), and that the numbers in these groups do not 

necessarily follow each other in regular order with equa] increments, 
but under certain well defined rules they may be arranged in a 
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great variety of irregular sequences and still produce perfect magic 

squares. 

Referring to Fig. 40 as an example, many different 5 X 5 

squares may be formed by varying the sequence of the five groups, 

and also by changing the arrangement of the numbers in each group. 

Instead of writing the five diagonal columns in Fig. 40 with 

the numbers 1 to 25 in arithmetical order thus: 

a. 2 3 4 5 
b. 6 7 8 9 IO 

c. I I I2 13 14 IS 

d. 16 17 18 19 20 

e. 21 22 23 24 25 
they may be arranged in the order b e c ad, which will develop 

the 5 X 5 square shown in Fig. 17. 
Other variations may be made by re-arranging the consecutive 

numbers in each group, as for example thus: 

a. 4 3 2 5 
b. 6 9 8 7 10 
c. II J4 13 12 IS 

d. 16 19 18 17 20 

e. 21 24 23 22 25 

The foregoing may be considered as only suggestive of many 
ways of grouping numbers by which magic squares may be pro
duced in great variety, which however will b:! generally found to 

follow regular constructive rules, providing that these rules are 

applied to series of numbers arranged in similar consecutive order. 



CHAPTER II. 

MAGIC CUBES. 

THE curious and interesting characteristics of magic squares 

may be developed in figures of three dimensions constituting 

magic cubes. 

Cubes of odd numbers may be constructed by direct and con

tinuous process, and cubes of even numbers may be built up by the 

aid of geometrical diagrams. In each case the constructive meth

ods resemble those which were previously explained in connection 

with odd and even magic squares. 

As the cube is a figure of three dimensions it is naturally more 

difficult to construct in magic formation than the square (which 

has only tw0 dimensions) because the interrelations between the 

various numbers are more complext than those in a square and not 

so easily adjusted one with the other to sum the magic constants. 

THE ESSENTIAL CHARACTERISTICS OF MAGIC CUBES. 

A magic cube consists of a series of numbers so arranged 111 

cubical form that each row of numbers running parallel with any 

of its edges, and also each of its four great diagonals shall sum 

the same amount. Any cubical arrangement of numbers that fulfils 

these conditions may be properly termed a magic cube. As in the 

case of magic squares, various interesting but non-essential features 

may be added to these requisites, and in this way many different 

kinds of magic cubes may be constructed. In the present chapter, 

however, associated or regular magic cubes will be principally 

described. 
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ASSOCIATED OR REGULAR MAGIC CUBES OF ODD NUMBERS. 

The smallest magic cube is naturally 3 X 3 X 3· 
Fig. I57 shows one of these cubes, and in columns I, II and 

III, Fig. IS8, there are given the nine different squares which it 

contains. In this cube there are twenty-seven straight columns, 

two diagonal columns in each of the three middle squares, and four 

diagonal columns connecting the eight corners of the cube, making 

in all thirty-seven columns each of which sums up to 42. The 

center number is also 14 or ( 11'1 + I) /2 and the sum of any pair 0f 

diametrically opposite numbers is 28 or n3 + I. 

Totals= 42. 

Fig. 157. 

In describing the direct method of building odd magic squares, 

many forms of regular advance moves were explained, including 

right and left diagonal sequence. and various so-called "knight's 

moves." It was also shown that the order of regular advance was 

periodically broken by other well-defined spacings which were 
termed "breakmoves.'' In building odd magic squares, only one 
form of breakmove was employed in each square, but in the con

struction of odd magic cubes, two kinds are required in each cube 

which for distinction may be termed n and n2 breakmoves respec
tively. In magic cubes which commence with unity and proceed 

with increments of I, the n2 breakmoves occur between each mul

tiple of n2 and the next following number, which in a 3 X 3 X 3 
cube brings them between 9 and IO, I8 and I9, and also between 

the last and first numbers of the series, 27 and I. Then breakmoves 
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are made between all other multiples of 11, which in the above case 

brings them between 3 and 4, 6 and J, I2 and IJ, IS and I6, 2I and 

22, and 24 and 25. With this explanation the rules for building 

the magic cube shown in Fig. I may now be formulated, and for 

convenience of observation and construction, the cube is divided 

horizontally into three sections or layers, each section being shown 

separately in Column I, Fig. IS8. 
It may be mentioned that when a move is to be continued up

ward from the top square it is carried around to the bottom square, 

THREE SQUARES THREE SQUARES THREE SQUARES 

FROMTOPTOBOTTOM FROM FRONT TO BACK FROM LEFT TO RIGHT 

COLUMN I. COLUMN II. COLUMN III. 

10 26 6 8 IS' 1.9 10 2~ J' 

2# I 17 /.2 2.5' s 23 7 /2 

3 /.) 1.9 22 2 16' g // 22 

.2J .3 /0 24 I 17 26 / /S' 

7 14 21 7 I/; 21 .3 14 2.5' 

12 2.5' s II 27 /; IJ 27 .2 

9 /3 20 /{) .20 6 6 17 /9 

II 27 4 23 J ;6 /6 21 S' 

22 2 M g /J 20 20 4 /J' 

Fig. rsS. 

All totals = 42. 

and when a move is to be made downward from the bottom square, 

it is carried around to the top square, the conception being similar 

to that of the horizontal cylinder used in connection with odd magic 

squares. 

Commencing with I in the center cell of the top square, the 

cells in the three squares are filled with consecutive numbers up 

to 27 in accordance with the following directions: 

Aclv·\nce move. One cell clown in next square up (from last 

entry). 
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n breakmove. One cell in downward right-hand diagonal in 
next square down (from last entry). 

n2 breakmove. Same cell in next square down (from last 

entry). 

If it is desired to build this cube from the three vertical squares 

from front to back of Fig. 157, as shown in Column II, Fig. 158, 
the directions will then be as follows: commencing with I in the 
middle cell of the upper row of numbers in the middle square, 

Advance move. One cell up in next square up. 
n breakmove. One cell in downward right-hand diagonal in 

next square up. 

n2 breakmove. Next cell down in same square. 

TABLE I. 

A B c A B c A B c 

I I I I 10 2- I I 19 J I I 

2 I I 2 II 2- I 2 20 J I 2 

3 I I J 12 2 I ~ 21 J I ,} 

4 I 2 I 13 z 2 I 22 J 2 I 

5 I 2, 2 14 2- 2 2 23 J 2 2 

6 I 2 J 15 2 2 J 24- J 2 J 

7 I J I 16 z J I 25 J .J I 

8 I J 2 '7 2 .; 2 26 J J 2 

9 I J J 18 2 J J 2{ J J J 

Fig. I59· 

Finally, the same cube may be constructed from the three vertical 
squares running from left to right side of Fig. I57, as shown in 
Column III, Fig. 158 commencing, as in the last example, with I 

in the middle cell of the upper row of numbers in the middle 

square, and proceeding as follows: 
Advance move. Three consecutive cells in upward right-hand 

diagonal in same square (as last entry). 
11 breakmove. One cell in downward right-hand diagonal in 

next square down. 
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n2 breakmove. One cell clown in same square (as last entry). 

Five variations may be derived from this cube in the simple 

way illustrated in Table I on the preceding page. 

Assign three-figure values t:::> the numbers I to 27 inclusive in 

terms of I, 2, 3 as given in Table I, Fig. rsg, and change the 

numbers in the three squares in Column I, Fig. I s8, to their cor

responding three-figure values, thus producing the square shown in 

Fig. r6o. It is evident that if the arrangement of numbers in the 

three squares in Column I were unknown, they could be readily 

produced from Fig. r6o by the translation of the three-figure values 

into regular numbers in accordance with Table I, bGt more than 

A B c 
2 I I 

.3 2 J 

I .3 2 

.J 2 z 

I J I 

2 I .3 

I J .3 

2 I 2 

.3 2 I 

A B c 
J J 2 

I I I 

2 z J 

I I J 

2 2 2 

J .3 I 

2 2 I 

.3 .J .3 

I I 2 

Fig. r6o. 

A B 

I 2 

2 J 

.3 I 

z J 

.3 I 

I 2 

J I 

I 2 

2 .3 

c 

.3 

2 

I 

I 

.3 

2 

2 

I 

J 

If __t;;,._ 

2'¥ 

this can be accomplished. The letters A, B, C, in Table I indicate 

the normal order of the numerals I, 2. 3, but by changing this order 

other triplets of 3 X 3 squares can be made which will differ more 

or less from the original models in the arrangement of their cell 

numbers, but which will retain their general magic characteristics. 

The changes which may be rung on A, B, C, are naturally six, as 

follows: 

A. B. C. 
B. C. A. 

C. A. B. 

C. B. A. 
B. A. C. 

A. C. B. 
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The combination of I, 2, 3 being given in normal order in the 

original cube, the five cubes formed from the other combinations 

are shown in Figs. r6r-165. 

These magic cubes may also be constructed by the direct method 

in accordance with the annexed directions. 

2. 18 22 4 /J' 20 2 2'1 16 II 26 12 /0 24 ,f 

2~ I 17 26 / IS IJ' I 2.3 IJ' I 2J 26 I /.J 

16 2.3 J 12 2J 7 22 '7 .3 20 IS" 7 6 IJ /.3 

IS 1.9 ,? '7 19 6 IS 7 20 '7 .3 22 2..3 7 12 

7 14 2/ .3 '"~ 2.5" 19 /If .9 !9 /If .9 .) 14 2.5 

20 g /J 22 9 II ,f 21 1.3 6 25 II 16 21 s 

2S .5" /2 21 .>- 16 2.5" II 6 21 1.3 8 .9 II 22-

II :lJ "' /J 2J 2 .5" 27 /0 .5" 2J /0 /J 2J 2 

6 /0 26 J' /0 24 /2 4 26 16 2 2'1c 20 4 /.f 

FIG .. I6I (B.C. A.) FIG. 16~. (C. A.B.) FIG. I63.(C.B.A.) FIG, I64. (B.A. C.) FIG. I65.(A.C.B,) 

Fig. r66 is an example of another 3 X 3 X 3 cube in which the 

first number occupies a corner cell, and the last number fills the 

diametrically opposite corner cell, the middle number coming m 

TOP SQUARE. MIDDLE SQUARE. BOTTOM SQUARE. 

I IJ 24 2..3 .; 16 15 22 2 

IS /.9 6' 7 /'I 21 20 .9 /J 

26 6 /0 12 2.J J' ,. // :q 

Fig. r66. 

the center cell in accordance with the rule. Fig. 167 shows this 

cube with the numbers changed to their three-figure values from 

which five variations of Fig. 166 may be derived, or they may be 

constructed directly b)· the directions which are marked with the 

changes of A. D. C. for convenient reference. 
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The analysis of the numbers in Fig. IS7 and Fig. I66 into their 

three-figure values in terms of I, 2, 3, as shown in Figs. I6o and 

167, makes clear the curious mathematical order of their arrange

ment which is not apparent on the face of the regular numbers as 

DIRECTIONS FOR CONSTRUCTING THE 3X3X3 MAGIC CUBE SHOWN IN FIG. 157 

AND FIVE VARIATIONS OF THE SAME. 

COMBINA 
n2 BRIIAKMOVI!S ADVANCII MOVIIS n BRI!AKMOVIIS 

TION 

One cell down in next 
One cell in right· hand 

Same cell in next A. B. C. downward diagonal 
square up in next square down square down 

Three consecutive 

B.C A. cells in upward One cell to left in Same as in A. B. C. 
left-hand diagonal next square up 
in same square 

C. A. B. One cell to right in One cell up in next Same as in A. B. C. 
next square up square up 

C. B. A. Same as in B. C. A. Same as in C. A. B. Same as in A. B C. 

B. A. C. Same as in A. B. C. Same as in B. C. A. Same as in A. B. C. 

A. C. B. Same as in C. A. B. Same as in A. B. C. Same as in A. B. C. 

they appear in the various cells of the cubes. For example, it may 
be seen that in every subsquare in Figs. r6o and 167 (corresponding 

to horizontal columns in the cubes) the numbers r, 2, 3 are each 

repeated three times. Also in every horizontal and perpendicular 
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column there is the same triple repetition. Furthermore, all the 

diagonal columns in the cubes which sum up to 42, if followed into 

their analyses in Figs. r6o and 167 will also be found to carry simi
lar repetitions. A brief study of these figures will also disclose 

other curious mathematical qualities pertaining to their intrinsic 

symmetrical arrangement. 

The next odd magic cube in order is 5 X 5 X 5, and Fig. r68 
shows one of its many possible variations. For convenience, it is 

divided into five horizontal sections or layers, forming five 5 X 5 
squares from the top to the bottom of the cube. 

Commencing with r in the first cell of the middle horizontal 

A B c A B c A B c 
I I I .2 .3 .2 .3 .2 J 

2 2 " .3 I I I J ,2 

.5 .} 2 I 2 J .2 I I 

J 2 2. I I J 2. J I 

I J I 2 2 2 .3 I J 

z I j J J I I 2 2. 

2 J J J 2 I I I 2 

.> I 2 I J J 2 2. I 

I 2 I 2 I 2. J J J 

Fig. r67. 

column in the third square, this cube may be constructed by filling 

in the various cells with consecutive numbers up to 125 in accord

ance with the following directions: 

Advance moves. One cell up in next square down. 

n breakmove. Two cells to the left and one cell down (knight's 

move) in same square as the last entry. 
n2 breakmove. One cell to right in same square as last entry. 

This cube exhibits some interesting qualifications. Examin
ing first the five ho:-izo:1tal squares from the top to the bottom of 

the cube as shown in Pig. r68, there are: 
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50 straight columns summing up to ......... 315 
10 corner diagonal columns summing up to .. 315 

40 sub-diagonal columns summing up to .... 315 
Total 100 columns having the same summation. 

DIRECriONS FOR CONSTRUCTING THE 3X3X3 MAGIC CUBE SHOWN IN FIG. 166 

AND FIVE VARIATIONS OF THE SAME. 

COM BIN A· 
n2 BREAKMOVES ADVANCE MOVES n BREAKMOVES 

TIONS 

One cell in upward One cell in downward 

A. B. C. 
One cell to left in next left-hand diagonal right-hand diago-

square up in next square down nal in next square 
down 

Three consecutive One cell in upward 

B. C. A. 
cells in upward left- right-hand diago- Same as in A. B. C. 
hand diagonal in nal in next square 
same square up 

One cell in downward 
C. A. B. One cell up in next left-hr.nd diagonal Same as in A. B. C. 

square up in next square up 

C. B. A. Same as in B. C. A. Same as in C. A. B. Same as in A. B. C. 

-----

B. A. C. Same as in A. B. C. Same as in B. C. A. Same as in A. B. C. 

A. C. B. Same as in C. A, B. Same as in A. B. C. Same as in A B. C. 

In the five vertical squares from front to back of this cube 
there are: 
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50 straight columns st:mming up to ..•.•••.• 315 
6 corner diagonal columns summing up to .. 315 

20 sub-diagonal columns summing up to .... 315 
Total 76 columns having the same summation. 

73 

In the five vertical squares from right to left of cube, there are, 

as in the last case, 76 columns which all sum up to 315. In the com
plete cube there are also four great diagonals and also a number 

of broken diagonals that sum up to 315. 

67 
110 

u 
J6 

.y 

106 

4.9 

J'7 

" 6.r 

I. 

9,f IO'f II) 

II 42 7J 
.f4 JS Ill 

IIJ 2J 2.9 

.u 0/ .92-

TOP SQUARE. 

2. 

/2, ,YJ 74 
.5.5 ,f/ 112 

II! 24 JO 

Jl 6.2 .9J 

.9.9 /dj 6 

.JO .)0 

7.9 J<f 

17 I 

6o 6.9 

12J IOJ 

1'0 5.9 

IJ 2 

so 7tJ 
1.2'f IO.t 

·'1 46 

3· 5· 

.tl J.2 1/J 1.9 .; .34 6.> .91 /2.2 

11.9 2.J 26 .>J 66 .97 /()J .9 /;() 

J2 oJ .94 12.5 10.9 /.f" If/ 12 J# 
/0() /0/ 7 J,f .Yl SJ tflf /I.J 16 

/.5 4't 7.J 76 .90 116 2:t 2<1 S.9 

BOTTOM SQUARE 

4· 

/20 21 27 .f"J 

JJ 6/f .9.f" 121 

tJ6 102 tf" J.9 

14 /;.J 7' 77 
.>2- J'J 114 :UJ 

Fig. r68. 

A table similar to Fig. I59 may be laid out giving three-figure 
values for the numbers in 5 X 5 X 5 cubes from I to 125, and by 
changing the numbers in Fig. I68 to these three-figure values, a 

square similar to Fig. I6o will be produced from which five varia

tions of Fig. 168 may be derived. Similar results, however, can 

be obtained with less work by means of a table of numbers con
structed as shown in Fig. I6g. (Table II.) 

The three-figure values of cell numbers in 5 X 5 X 5 magic 

cubes are found from this table as follows: 
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Select the root-number which is nearest to the cell-number, but 
below it in value. Then write down 

I. The section numbet in which the root-number is found, 

2. The primary number over the root-number, 

3· The difference between the root-number and the cell-number. 

Three figures will thus be determined which will represent the 
required three-figure value of the cell-number. 

Examples. The first number in the first row of the upper 

square in Fig. r68 is 67. The nearest root-number to this and be

low it in value is 65 in section 3 under the primary number 4 and the 

TABLE II. 

p,.,~llory.710J. I z ~ ¥ .> Sccllon.. 

.Re~o(-JI'Os 0 .> /0 ,,,- l!O I 

?7v ,uo·y ..i)"'QJ. / .e .3 4 ., . SecftOn.. 

.R..twl.JYo.s 2S .JO .J.> 4<0 4<S z 
(?i-'li1la~·y.Jro.s. / 2 J 4 s Suli.t-n.-

R-t~.s. so SJ" 6o 6.> 7<> .3 

~'lim71¥·/f;_,,s. I z J .... .s Su:U'o7&. 

R=t.Abs. 7" 80 /Jti" .90 9S 4 

?'n;nctr</ .:JY'u. I 2 .J 4 s Su!iOn. 

~vt.?fC.t. /(>0 10.5 /10 /IS ll!O .5' 

Fig. !69. 

difference between the root-number and the cell-number is 2. The 
three-number value of 67 IS therefore 3· 4· 2. Again, the fourth 
number in the same row is ro. The nearest root-number but below 

it in value is 5 in section r under the primary number 2, and the 

difference between the root-number and the cell-number is 5· The 
three-figure value of ro is therefore r. 2. 5· By these simple opera
tions the three-figure values of all the cell-numbers in the 5 X 5 X 5 

cube in Fig. r68 may be quickly determined, and by the system of 
transposition previously explained, five variations of this cube may 

be constructed. 
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The shorter method of building these 5 X 5 X 5 cubes by the 
direct process of filling the different cells in regular order with 

consecutive numbers may, however, be considered by some to be 

preferable to the more roundabout way. (See directions in the 
following table.) 

DIRECTIONS FOR CONSTRUCTING THE 5 X 5 X 5 MAGIC CUBE SHOWN IN FIG. z68 

AND FIVE VARIATIONS OF THE SAME. 

COMBINA· 

TIONS 
ADVANCE MOVES n BREAKMOVES n2 BREAKMOVES 

cell up in 
Two cells to left and One cell to right in 

A. B. C. One next one down in same same square as last 
square down square as last en try entry 

Two cells to left and Two cells in upward 
B.C. A. 

one up for five left hand diagonal Same as in A. B. C. 
consecutive num- in next square down 
hers in same square 

Two cells in left band One cell in right-

C. A. B. 
downward diago- hand downward di- Same as in A. B. C. 
nal in next square agonal in next 
up square up 

----

C. B. A, Same as in B, C. A. Same as in C. A. B. Same as in A. B. C. 

----·-· 

B. A. C. Same as in A. B. C. . Same as in B. C. A. Same as in A. B. C . 

--··· . --

A. C. B. Same as in C. A. B. Same as in A. D. C. Same as in A. B.C. 

' 

Fig. 170 is another example of a 5 X 5 X 5 magic cube which 
is commenced in the upper left-hand corner of the top square, and 

finished in the lower right-hand corner of the bottom square, the 
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middle number of the series ( 63) appearing in the center cell of the 

cube according to rule. 

Odd magic cubes may be commenced in various cells other 

than those shown in the preceding pages, and they may be built 

up with an almost infinite number of variations. It would, however, 

be only superfluous and tiresome to amplify the subject further, as 

the examples already submitted cover the important points of con

struction, and may readily be applied to further extensions. 

I. 3· 5· 

I n JJ' 11.9 7.5 6.l !6 97 2i 10.9 12~ J".f 6 "7 
..,., 

74 ,5"" tfl .Jl //J' 108 611- 20 96' 2-1 42 I2J .J:Y 10 ,yt) 

IIJ 7.3 -'1 J.5 .J6 26 /07 6J 19 /00 .90 ft./ 122 J-.J .9 

/tO 116 7'- J cf/~ .9.9 JO lOb 6z /J" f !'.9 45 /21 ,;z 
J.J .J.9 120 71 2 17 9S 2.9 /10 bl ,j-/ 7 ,u Lf'f 126 

TOP SQUARE. BOTTOM SQUARE. 

2. 4· 

.J.3 //ft. JO 21 77 .92 ~" 10¥ 6o 1/ 

76 .n /1.3 0.!1 25 /,5"" .91 47 /OJ .59 

2o/- JO Jl /12 6J "" //" .95 '!6 IO.l 

67 2J 1.9 J.f Ill /0/ -'7 /.3 .94 50 

1/.f 66 22- J3 J¥- 49 /OS .1'6 IZ .9.J 

Fig. 170. 

Any sizes of odd magic cubes larger than 5 X 5 X 5 may be 

constructed by the directions which govern the formation of 3 X 3 

X 3 and 5 X 5 X 5 cubes. 

ASSOCIATED OR REGULAR MAGIC CUBES OF EVEN NUMBERS. 

Magic cubes of eyen numbers may be built by the aid of geo

metric diagrams, similar to those illustrated in the preceding chap

ter, which describes the construction of even magic squares. 
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Fig. 171 shows one of the many possible arrangements of a 

4 X 4 X 4 cube, the diagram of which is given in Fig. 172. 

There are fifty-two columns in this cube which sum up to 130, 

viz., sixteen vertical columns from the top of the cube to the 

DIRECTIONS ·FoR CONSTRUCTING THE 5 X 5 X 5 MAGIC CUBE SHOWN IN FIG. I?O 

AND FIVE VARIATIONS OF THE SAME. 

COMBINA• 
ADVANCE MOVES n BREAKMOVElJ 112 BREAKMOVES 

TIONS 

Five consecutive cells One cell in upward One cell in downward 

A. B. C. in upward left hand right· hand diago- right-hand diago• 
diagonal in next nal in next square nal in next square 
square up up down 

One cell in downward 

B. C. A. Two cells down in left-hand diagonal Same as in A. B. C. 
second square down in second square 

down 
-----

Two cells in down· 

C. A. B. Two cells to right in ward right hand Same as in A. B. C. 
next square up diagonal in next 

square down 

C. B. A. Some as in B. C. A. Same as in C. A. B. Same as in A. B. C. 

B. A. C. Same as in A. B. C. Same as in B. C. A. Same as in A. B. C. 

A. C. B. Same as in C. A. B. Same as in A. B. C. Same as in A. B. C. 

bottom, sixteen horizontal columns from the front to the back, six
teen horizontal columns from right to left, and four diagonal columns 
uniting the four pairs of opposite corners. The sum of any two 



MAGIC CUBES. 

numbers, which are diametrically opposite to each other and equi

distant from the center of the cube also equals 65 or n3 + 1. 

Another feature of this cube is that the sum of the four num

bers in each of the forty-eight sub-squares of 2 X 2 is 130. 

It has been shown in the chapter on "Magic Squares" that the 

(Top.) 
Section I. 

Section II 

Section III. 

Section IV. 
(Bottom.) 
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Fig. 172. 

Totals = 130. 
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square of 4 X 4 could be formed by writing the numbers 1 to 16 
in arithmetical order, then leaving the numbers in the two corner 

diagonals unchanged, but changing all the other numbers to their 

complements with 17 or n2 + 1. It will be noted in the magic cube 

of 4 X 4 X 4, given in Fig. 171, that in the first and last of the 
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four sections (I and IV) this rule also holds good. In the two 

middle sections (II and III) the rule is reversed; the numbers in the 

two corner diagonals being complements with 65 or n3 + I, and all 
the other numbers in arithmetical order. 

Fig. I73 shows four squares or sections of a cube, with the 

numbers I to 64 written in arithmetical order. Those numbers 

that occupy corresponding cells in Fig. I7I are enclosed within 

circles. If all the other numbers in Fig. I73 are changed to their 

complements with 65, the total arrangement of numbers will then 

be the same as in Fig. I7I. 

In his interesting and instructive chapter entitled "Reflections 

on Magic Squares"* Dr. Paul Carus gives a novel and ingenious 

analysis of even squares in different "orders" of numbering, these 

orders being termed respectively o, ro, i and ri. It is shown that 

the two magic squares of 4 X 4 (in the chapter referred to) con-

0 2 J f 17 @ @ 20 .JJ J¢ J? .J6 ~.J .s-o .J/ 5"2 

0 0 ICL J' 21 22 Z-' 2/t 1~1 .u J.9 ~0 SJ .J.{t .:1~ .;,I 

.9 ® 0 12 @ 26 27 2J' @ 42 4tJ .;;: oJ7 .J,f .J.!J c" 
/.j /~ IS 16 2.9 @) J/'1 JZ 4" -4<6 :2) 44' ® 02 0-' @ 

Fig. 173. 

sist only of o and ro numbers ; ro numbers being in fact the com

plements of o numbers with n2 + I. This rule also obtains in the 

magic cube of 4 X 4 X 4 given in Fig. 171. The four sections of 

this cube may in fact be filled out by writing the o numbers, in arith

metical order in the cells of the two corner diagonal columns of 
sections I and IV, and in all the cells of sections II and III, ex
cepting those of the two corner diagonal columns, and then writing 

the ro numbers, also in arithmetical order, in the remaining empty 
cells of the four sections. 

Fig. 171 may be considered as typical of all magic cubes of 

4 X 4 X 4 and their multiples, of this class, but a great many varia
tions may be effected by simple transpositions. For example, Fig. 

*See p. 113 ff. 
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174 is a 4 X 4X 4 cube which is constructed by wntmg the four 

numbers that are contained in the 2 X 2 sub-squares (Fig. 171) in 

a straight line, and there are many other possible transpositions 

which will change the relative order of the numbers, without de

stroying the magic characteristics of the cube. 

Section I. 
(Top.) 

Section II. 

Section III. 

Section IV 
(Bottom.) 
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23 20 11-6 
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1.> 12 .>,Y. 

S2 ss .9 
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Fig. '74· 

tfq_ '7 /(.f 

2 6J /J' "-7 
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.,- oo 21 ¥4 

6 .j".9 22 1/-J 

7 .56' 2J 1'2 

J' .57 2~ 11-/ 

.g s6 2S 40 

IQ .;-.; 26 J.9 

II J".;< 27 .u 

12 .j-.'J 2J' ..J? 

/J S2 2.9 J6 

'" ,f/ JO ..JS 

;.;- Sd J/ ..J.t,. 

16 '79 ,J2 JJ 

Fig. 175. 

Totals= 130. 

The arrangement of the nnmbers 111 Fig. 174 follows the dia

grammatic order shown in Fig. 175. 

The next even magic cube is 6 X 6 X 6, but as Chapter IX 

of this book has been devoted to a description of these cubes they 

will be passed over here. 



1\IAGIC CUBES. 81 

The 8 X 8 X 8 magic cube follows next in order. Fig. 176 

shows this cube divided, for convenience, into eight horizontal layers 

or sections, and Fig. 177 gives the diagrammatic order of the num

bers in the first and eighth sections, the intermediate sections being 

built from similar diagrams, numbered in arithmetical order. 

I Sll SIO 

"'" 
or SOJ so6 

SO'!- 10 II sot soo '*" 1$" 

1,<96 /8 Ill -¥9J ~92 22 2.1 

2S '1-87 1,<86 2S 2!) ,r,8:3 q62 

.14 *7.9 *7" a6 J? '1-J.S "-7'1 

'-72 ¥2 4<-J 4-6.9 468 +If *7 

*"" 4"0 d"/ .1,<61 46o 4"¥ . ., 
"7 ... ss ...... ,_ tfp 61 ~.j-/ """ 

Section I. 

j9~,<8 M "? 4?~ ~""" 7" 7' 

7J f'J9 I,<J,f 76 77 ,y.J4 -«JI,< 

,fl .Y.JI *JO l.y_ 14" "'1 ~,<26 
1,<21,< 90 9/ «21 ¥20 9* g.-

1,</6 .:IS .!}.9 .j</.3 1,<12 1(12 /OJ 

IllS *"! 1'•6 101 109 .I,< OJ oj<02 

IIJ J.!I.Y .J98 1/6 "7 J.9S JlJ¥ 

.J.!IZ 122 111..3 J89 .us 1.26 127 

Section II. 

6' 

-¥-.97 

1,<49 

J2 

"'" 
1,<64" 

44} 

6~ 

?1'1 

"" 
<18 

"'7 
<t09 

//2 

/20 

.us 

(First Part.) 
Fig. I76. 

J{~ /.JIJ 

!.l7 J7S 

If'S J6)' 

.Jio /off'-

.JS2 /(,2. 

,., .J?J 

117 ,!)8.!' 

JZI' Ill: 

19J .J/.9 

.J/Z 202 

JO? 2/0 

21J z9..-

22.1" :UJ 

Ud 2J't' 

272 2?2 

2¥9 .ztf.J 

1.31 .31'/ .Jso I.J? IJS "ll 
"7<S< /,yo '"'' J)'/ J)'O '"* 
Jlf,lf, 1{<.8 /",<.9 Jtf.J Jtfz IS:l 

/J"..- JJ7 Jot. /,f./ /J"9 ,JS,J 

J{.J .J-«9 .J~,<I '"" ,., ,Jf<.f 

.J¥2 IJ2 "7.1 ,JJ9 .JJ<T IJif 

J3f<- 110 /J'/ J.J/ .Jao /J'¥ 

'"'7 J:lS .12,. /90 /91 .J:U 

Section III. 

JU 196 I.!IJ .JI.f" JI.Y. 200 

20J J09 Jl)j 206 20J Jo.r 

.UI ,JIJ/ .JOO 219 21.> 2fJ 

29¥ 220 22J 2.91 290 22,. 

u6 221 228 2J'J 212 .2J2 

2J.r 277 2Jif 2J8 ~J.!I .2)'.J 

2?.J 26.9 .till .2-~<<l .w; ztf.-

.uh 2.S2 2SJ 2•-;rl 24"1 24"6 

Section IV. 

It will be seen from these diagrams that the 8 X 8 X 8 magic 

cube is simply an expansion of the 4 X 4 X 4 cube, just as the 

8 X 8 magic square is an expansion of the 4 X 4 square. In like 
manner all the diagrams which were given for different arrange

ments of 8 X 8 magic squares may also be employed in the con

struction of 8 X 8 X 8 magic cubes. 
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An examination of Fig, 176 will show that, like the 4 X 4 X 4 

cube in Fig. 171 it is built up of o and ro numbers exclusively. In 

sections I, IV, V, and VIII, the cells in the corner diagonal columns, 

and in certain other cells which are placed in definite geometrical 

relations thereto, contain o numbers, while all the other cells con-

2SJ u-.J .,~ :ufo :1.61 :lSI 

:M/<f 266 267 '"" 2¥9 27d 

2q0 v~ o/'" 2J7 2&6 '7"' 
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II/ /10 *"~~' 90J" 107 /06 ~oJ 
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Section VII. 

6.J 62 ,YJ~ qSJ mJ"9 J'J' 4.4"6 

{<.f,f .Y.J"9 ,}J S2 -«62 ,qtfJ .1,1.9 

~,{6 *'7 .,s "'"' .1,170 '9' ""' 
J.9 JJ' 4)'6 4/7 J.'l- .l/1' .;,M 

.J/ .Jo "''" 9'n 27 2b *"" 
{1.90 4.9/ 2/ 20 {1.9~ q!/J '1 
f,<.!JJ' 4.99 /3 12 .roz soJ .9 

7 6 ,,-or- s-a.9 .J z J7Z 

Section VIII. 

tain ro numbers. In sections II, III, VI, and VII, the relative 

positions ot the o and ro numbers are reversed. 

By noting the symmetrical disposition of these two orders of 

mtmbers in the different sections, the cube may be readily con

structed without the aid of any geometrical diagrams. Fig. 178 

shows sections I and II of Fig. 176 filled with o and ro symbols 
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e "o" numbers. 0 "ro" numbers . 

0 • • 0 0 • • 0 • 0 0 • • 0 0 • • 0 0 • • 0 0 • 0 • • 0 0 • • 0 • 0 0 • • 0 0 • 0 • • 0 0 • • 0 
0 • • 0 0 • • 0 • 0 0 • • 0 0 • 0 • • 0 0 • • 0 • 0 0 • • 0 0 • • 0 0 • • 0 0 • 0 • • 0 0 • • 0 

• 0 0 • • 0 0 • 0 • • 0 0 • • 0 
0 • • 0 0 • • 0 • 0 0 • • 0 0 • 

Fig. 178. 
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without regard to numerical values, and the relative symmetrical 

arrangement of the two orders is therein plainly illustrated. This 

clear and lucid analysis, for which we are indebted to Dr. Can1s, 

reduces the formation of a rather complicated numerical structure 

to an operation of the utmost simplicity. 

In this cube there are I92 straight columns, and 4 great diag

onals (which unite the eight corners of the cube) each of which 

sums up to 2052; also 3R4 half columns and the same number of 

2 X 2 sub-squares each of which has the summation of 1026. It 

will also be seen that the sum of any two numbers, which are lo

cated in cells diametrically opposite to each other and equidistant 

from the center of the cube, is 5I3 or n3 + I. 

GENERAL NOTES ON MAGIC CUBES. 

Magic cubes may be constructed having any desired summa

tions by using suitable initial numbers with given increments, or 

by applying proper increments to given initial numbers. 

* * * 
The formula for determining the summations of magic cubes 

is similar to that which was given in connection with magic squares 

and may be expressed as follows: 

Let: 

A= initial number, 

f3 = increment, 

n = number of cells m each column of cube, 

S = summation ; 

then if A = I and f3 = I :-

.!!_ ( n3 + I) = S. 
2 

If A and f3 are more or less than unity, the following general 

formula may be employed: 

An + f3 ; ( n3 - I) = S. 

To shorten the above equation, ; ( n3 - I) may be expressed 

as a constant ( K) for each size of cube as follows: 
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Cubes. Const.= K. 

3X3X3······················· 39 
4 X 4 X 4· ...................... 126 

SXSXS······················· 310 
6 X 6 X 6 ....................... 64S 
7 X 7 X 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 II97 
8X8X8 ...................... 2044 

9 X 9 X 9· ...................... 3276 
IO X IO X IO. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 499S 

When using the above constants the equation will be: 

(r) An+fiK= S, 
or: 

(2) 
S-An 

= fi, K 
or: 

(3) 
S-fiK A. 

n 

EXAllfPLES. 

·what increment number is required for the cube of 3 X 3 X 3 
with an initial number of ro to produce summations of ro8? 

Expressing equation ( 2) in figure values: 

ro8-(IOX3) ----'-------'---'-"--'- = 2 
39 

23 6o 20 .5".1/ 14 40 26 .34 4S 

.;6 10 /!2 22 "6 .;o .30 6z /0 

24 .M 46 .J2 .;~ /t! .52 lie 4"1 

Fig. 179. S = ro8. 

What increments should be used in a cube of 4 X 4 X 4 to 

produce summations of 704 if the initial number is so? 

704- (so X 4) 
6 =4· 12 
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.10 2.9a 2.9/f 62 2M 1/J' /22 226 '7* /6'2 Nb 162 21{11. tn6 /02 2S4 

:U6 10 1¥-- 2JP. /JO 2./J' 2/.V- 192 1.9/~ '"* V.iV 20tf .94 !l61. 266 4'2 

2JO ,nf .90 2.1"$ '46 202 1,9,f /~(/ 210 IM /J9 .l22 94' .27J' U2 66 

.94' 2SO 2# //0 /.90 166 110 IJt! 126 2.30 2J~ /1/f- 290 .>8 s~ J02 

Section I (Top). Section II. Section III. Section IV (Bottom). 
Fig. I8o. 

Totals= 704. 

What initial number must be used with increments of 10 to 

produce summations of 1900 in a 3 X 3 X 3 cube? 

Expressing equation (3) in figure values: 

- _I 9~00 _ ___,_(_1 o--=---X'-'3'-"-9-'-) 1/ 

3 = 505 a· 

.F!JJJt JS"SJ J"S".1'i 'J-.u-a- J"2J"j t5ssd .1"8~ tfu.t 6.!J.sJ 

~J# stMf Ms-t StfJ• 6.JJ".J 7ost 6o.>~ 7tfs. S.JJ';/ 

.fJoS"i 6#"t 6J".>t /JIS:f '7.vs.J .1".¥S:f 7'"'• .rts. o/Sif 

Top Section. Middle Section. Bottom Section. 
Fig. I8r. 

Totals= 1go6. 

What initial number is required for the cube of 5 X 5 X 5, 

with 4 as increment number, to produce summations of 1900 ?* 

1900- (4 X 310) 
5 ' = 133·2 

The preceding simple examples will be sufficient to illustrate 

the formulre given, and may suggest other problems to those who 

are interested in the subject. 

It will be noted that the magic cubes which have been described 

in this chapter are all in the same general class as the magic squares 

which formed the subject of the previous chapter. 

There are, however, many classes of magic squares and cor

responding cubes which differ from these in the general arrange-

*This example was contributed by the late 1\lr. D. B. Ventres of Deep 
River, Conn. 
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ment of numbers and in various other features, while retaining the 

common characteristic of having similar column values. An ex

ample of this differentiation is seen in the interesting "J aina" square 

l!.9J2 .;2/. 2 .f4.f.Z /6!1.2 27J-2 J",)J.2 1772 .JP/.2- 42.f.2 4'1.!1.2 
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14J".2 269.2 JJJ.2 49,?-2 b2/.1! f'<ot. 2 S2J~2. 54.9. /.>J.2 z;7z 

Section I (Top). Section II. 

ll29.2 .33J.Z .lf4"J2 .>J'/. 2 20.f.< .lfJ'$.2 00.9.2. 21J.2 2JJJ. .W.z 

f«t!.Z 6o.>2 1!2.9.2 2JJ.2 J.>j2 IJJ2 261.2 JJ'-1:2 5092 61J.Z 

/JJ.2 2.1"J'.Z JJ'/.2 d"P£2 629.2 40.9.2 .)/J.2 .YJJ /0/.2 2J'J~2 

~O.f.2 52.92 d".$J.2 1.5"}2 2<11.2 j/5/.2 /1'5.2 J092 4/J.2 -1-o/-2 

d"S".l /J'/ . .2. JP.t:2 42.9.2 4-JJ.Z J/J.Z JJ72 4tf/. 2 .fl'.>.< 209.2 

Section III. Section IV. 

1./;I.Z 26.r.z JJ'.!I.;t 4.!/J. 6'7-J. 

J.9J.2 .>IJ2 J-;vt.z llf.>.z !U!I.2 

~6J~..! 1"-!IZ 29.U. 41J2 #41.2 

JIJ2 J.lf/.2 46-r. :},f.!J,Z /.9J. 2 
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Section V. 
Fig. I82. 

described by Dr. Carus in his "Reflections on Magic Squares." 

Squares of this class can readily be expanded into cubes which will 

naturally carry with them the peculiar features of the squares. 
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Another class is illustrated in the "Franklin Squares," and 

these can also be expanded into cubes constructed on the same 

general principles. 
The subject of magic squares and cubes is indeed inexhaustible 

and may be indefinitely extended. The philosophical significance 

of these studies has been so ably set forth by Dr. Carus that the 

writer considers it unnecessary to add anything in this connection, 
but he trusts that the present endeavor to popularize these inter

esting problems may some time lead to useful results. 



CHAPTER III. 

THE FRANKLIN SQUARES. 

THE following letter with squares of 8 X 8 and r6 X r6 is 
copied from "Letters and papers on Philosophical subjects by 

Benjamin Franklin, LL.D., F.R.S.," a work which was printed in 

London, England, in 1769. 

FRoM BENJAMIN FRANKLIN EsQ. OF PHILADELPHIA. 

To PETER CoLLINSON EsQ. AT LoNDON. 

DEAR SIR :-According to your request I now send you the arith

metical curiosity of which this is the history. 

Being one day in the country at the house of our common 

friend, the late learned Mr. Logan, he showed me a folio French 

book filled with magic squares, wrote, if I forget not by one Mr. 

Frenicle, in which he said the author had discovered great ingenuity 

and dexterity in the management of numbers ; and though several 

other foreigners had distinguished themselves in the same way, he 
did not recollect that any one Englishman had done anything of the 
kind remarkable. 

I said it was perhaps a mark of the good sense of our mathe

maticians that they would not spend their time in things that were 
merely difficiles nuga:, incapable of any useful application. He 

answered that many of the arithmetical or mathematical questio:-~s 

publiciy proposed in England were equally trifling and useless. 
Perhaps the considering and answering such questions, I replied, 
may not be altogether ·useless if it produces by practice an habitual 
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readiness and exactness in mathematical disquisitions, which readi

ness may, on many occasions be of real use. In the same way 

says he, may the making of these squares be of use. I then con

fessed to him that in my younger days, having once some leisure 

(which I still think I might have employed more usefully) I had 

amused myself in making these kind of magic squares, and, at 

length had acquired such a knack at it, that I could fill the cells of 

any magic square of reasonable size with a series of numbers as 

fast as I could write them, disposed in such a manner that the sums 

of every row, horizontal, perpendicular or diagonal, should be 

equal; but not being satisfied with these, which I looked on as com-
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Fig. 183, 

mon and easy things, I had imposed on myself more difficult tasks, 

and succeeded in making other magic squares with a variety of 
properties, and much more curious. He then showed me several 

in the same book of an uncommon and more curious kind ; but as 

I thought none of them equal to some I remembered to have made, 

he desired me to let him see them; and accordingly the next time 

I visited him, I carried him a square of 8 which I found among my 

old papers, and which I will now give you with an account of its 

properties (see Fig. 183). The properties are: 

I. That every straight row (horizontal or vertical) of 8 num

bers added together, makes 26o, and half of each row, half of 26o. 
2. That the bent row of 8 numbers ascending and descending 
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diagonally, viz., from 16 ascending to 10 and from 23 descending to 

I7 and every one of its parallel bent rows of 8 numbers make 260, etc., 

etc. And lastly the four corner numbers with the four middle numbers 
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make 260. So this magical square seems perfect in its kind, but 
these are not all its properties, there are 5 other curious ones which 
at some time I will explain to you. 

Mr. Logan then showed me an old arithmetical book in quarto, 
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wrote, I think by one Stifelius, which contained a square of 16 

which he said he should imagine to be a work of great labour; but 

if I forget not, it had only the common properties of making the 

same sum, viz., 2056 in every row, horizontal, vertical and diagonal. 

Not willing to be outdone by Mr. Stifelius, even in the size of my 

square, I went home, and made that evening the following magical 

square of 16 (see Fig. 184) which besides having all the properties 

of the foregoing square of 8, i. e., it would make 2056 in all the 

same rows and diagonals, had this added, that a four-square hole 
being cut in a piece of paper of such a size as to take in and show 

through it just 16 of the little squares, when laid on the greater 

2 't/ Z,·,., ends.~ __ _ 

Fig. 186. 

square, the sum of the 16 numbers so appearing through the hole, 

wherever it was placed on the greater square should likewise make 
2056. This I sent to our friend the next morning, who after som~ 

days sent it back in a letter with these words: 

"I return to thee thy astonishing 

"or most stupendous piece 
"of the magical square in which" .... 

-but the compliment is too extravagant and therefore, for his sake, 

as well as my own I ought not to repeat it. Nor is it necessary, 

for I make no question but you will readily allow the square of 16 
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to be the most magically magical of any magic square ever made 

by any magician. 
I am etc. B. F. 

It will be seen that the squares shown m Figures r83 and 184 

are not perfect according to the rules for magic squares previously 

Fig. r87. 

.. .J~z,..,e- Jef/,.J 

--------/:f.! I,·, .. b"--7'.""' 

_ . . /:!!' Lne. ,ne?.t 

- -- _J ~ _z;;"~ ~n.:?.t 

given, but the interesting feature of their bent diagonal columns 

calls for more than passing notice. In order to facilitate the study 

of their construction, a 4 X 4 square is given in Fig. 185 which 

presents similar characteristics. 
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The dotted lines in this square indicate four bent diagonal col

umns, each of which has a total of 34; three of these columns being 

intact within the square and one being broken. Four bent diagonal 

columns may be formed from each of the four sides of the square, 

but only twelve of these sixteen columns have the proper totals. 

Adding to these the eight straight columns, we find that this square 

contains twenty columns with summations of 34· The 4 X 4 "Jaina" 

square contains sixteen columns which sum up to 34 while the 

ordinary 4 X 4 magic square may contain only twelve. 

The 8 X 8 Franklin square (Fig. r83) contains forty-eight col

umns which sum up to 260, viz., eight horizontal, eight vertical, six

teen bent horizontal diagonals, and sixteen bent vertical diagonals, 
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whereas the pandiagonal associated 8 X 8 magic square may contain 

only thirty-two columns and diagonals of the same summation. 

In addition to the other characteristics mentioned by Franklin 

in his letter concerning his 8 X 8 magic square it may be stated that 

the sum of the numbers in any 2 X 2 sub-square contained therein 

is 130, and that the sum of any four numbers that are arranged dia

metrically equidistant from the center of the square also equals 130. 

In regard to his r6 X r6 square, Franklin states in his letter 

that the sum of the numbers in any 4 X 4 sub-square contained 

therein is 2056. The sub-division may indeed be carried still further, 

for it will be observed that the sum of the numbers in any 2 X 2 
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sub-square is 514, and there are also other curious features which a 

little study will disclose. 

Fig. r8g. 

The Franklin Squares possess a unique and peculiar symmetry 

in the arrangement of their numbers which is not clearly observable 

on their faces, but which is brought out very strikingly in their 
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geometrical diagrams as given in Figs. 186 and 187, which illustrate 

respectively the diagrams of the 4 X 4 and 8 X 8 squares. 

Magic cubes may be readily constructed by expanding these 

diagrams and writing in the appropriate numbers. 

The cube of 4 X 4 X 4 and its diagram are given as examples 

in Figs. 188 and 189, and it will be observed that the curious char

acteristics of the square are carried into the cube. 

AN ANALYSIS OF THE FRANKLIN SQUARES. 

In The Life and Times of Benjamin Franklin, by James Parton, 

(Vol. I, pp. 255-257), there is an account of two magic squares, one 

8 X 8, the other 16 X 16, which are given here in Figs. 191 and 192. 

v EB I I I 
=26o = 130 = 130 =260 

=260 =260 = 130 =260 

_j L 

EE 
h 

= 260 = 260 =260 =260 

PROPERTIES OF FRANKLIN'S 8X8 SQUARE. 

Fig. Ig<l. 

Mr. Parton explains the 8X8 square as follows: 

"This square, as explained by its contriver, contains astonishing 

"properties: every straight row (horizontal or vertical) added to-
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52 61 4 13 20 29 36 45 

14 3 62 51 46 35 30 19 

53 60 5 12 21 28 37 44 

11 6 59 54 43 38 27 22 

55 58 7 10 23 26 39 42 

9 8 57 56 41 40 25 24 

50 63 2 15 18 31 34 47 

16 1 64 49 48 33 32 17 

FRANKLIN 8X8 SQUARE. 

Fig. 191. 

200 217 232 249 8 25 40 57 72 89 104 121 136 153 168 185 

58 39 26 7 250 231 218 199 186 167 154 135 122 103 90 71 

198 219 230 251 6 27 38 59 70 91 102 123 134 155 166 187 

60 37 28 5 252 229 220 197 188 165 156 133 124 101 92 69 

201 216 233 248 9 24 41 56 73 88 105 120 137 152 169 184 

55 42 23 10 247 234 215 202 183 170 151 138 119 106 87 74 

203 214 235 246 11 22 43 54 75 86 107 116 139 150 171 162 

53 44 21 12 245 236 213 204 181 172 149 140 117 106 85 76 

205 212 237 244 13 20 45 52 77 84 109 116 141 146 173 180 

51 46 19 14 243 238 211 206 179 174 147 142 115 110 83 78 

207 210 239 242 15 18 47 50 79 62 111 114 143 146 175 178 

49 46 17 16 241 240 209 206 177 176 145 144 113 112 81 80 

196 221 228 253 4 29 36 61 68 93 100 125 132 157 164 169 

62 35 30 3 254 227 222 195 190 163 158 131 126 99 94 67 

194 223 226 255 2 31 34 63 66 95 96 127 130 159 162 191 

64 33 32 1 256 225 224 193 192 161 160 129 128 97 96 65 

FRANKLIN I6XI6 SQUARE. 

Fig. Ig2. 
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I I I I I ! ! 
=1028 

=2056 

= 1028 = 2056-128 

PROPERTIES OF FRANKLIN'S I6X 16 SQUARE. 

Fig. IQJ. 
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"gethcr makes 2Go, and each half row half 260. The bent row of 

"eight numbers ascending and descending diagonally, viz., from 16 

"ascending to 10, and from 23 descending to 17, and every one of 

"its parallel bent rows of eight m:mbers, makes 260. Also, the bent 

=2os6+r28 

= 2056 =2056 

PROPERTIES OF FRANKLIN's r6X 16 SQUARE. 

Fig. 193 (con.). 

"row from 52 descending to 54, and from 43 ascending to 45, and 
"every one of its parallel bent rows of eight numbers, makes 26o. 

"Also, the bent row from 45 to 43, descending to the left, and from 



100 THE FRANKLIN SQUARES. 

"23 to 17, descending to the right, and every one of its parallel bent 
"rows of eight numbers, makes 260. Also, the bent row from 52 

"to 54, descending to the right, and from 10 to 16, descending to 
"the left, and every one of its r~:ailel bent rows of eight numbers, 

"makes 260. Also, the parallel bent rows next to the above-men
"tioned, which are shortened to three numbers ascending and three 

"descending, etc., as from 53 to 4 ascending and from 29 to 44 

"descending, make, with the two corner numbers, 260. Also, the two 

"numbers, 14, 61, ascending, and 36, 19, descending, with the lower 

"four numbers situated like them, viz., so, 1, descending, and 32, 47, 
"ascending, makes 200. And, lastly, the four corner numbers, with 

"the four middle numbers, make 200. 
"But even these are not all the properties of this marvelous 

"square. Its contriver declared that it has 'five other curious ones,' 
"which he does not explain; but which the ingenious reader may 

"discover if he can." 

These remarkable characteristics which Mr. Parton enumerates 

are illustrated graphically in the accompanying diagrams in which the 

relative position of the cells containing the numbers which make up 
the number 260, is indicated by the relation of the small hollow 

squares (Fig. 190). 
Franklin's 16X 16 square is constructed upon the same principle 

as the smaller, and Mr. Parton continues: 

"Nor was this the most wonderful of Franklin's magical 

"squares. He made one of sixteen cells in each row, which besides 

"possessing the properties of the squares given above (the amount, 
"however added, being always 2056), had also this most rcmark
"able peculiarity: a square hole being cut in a piece of paper of such 

"a size as to take in and show through it just sixteen of the little 
"squares, when laid on the greater square, the sum of sixteen num

"bers, so appearing through the hole, wherever it was placed on the 

"greater square, should likewise make 2056." 
The additional peculiarity which Mr. Parton notes of the 16X 

16 square is no more remarkable than the corresponding fact which 
is true of the smaller square, that the sum of the numbers in any 
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Fig. 194. THE PLAN OF CONSTRUCTION. 

E F G H AI Bs c, DB 

D c B A H7 G2 F7 E2 

A3 B6 c3 D6 

Hs G4 F5 E4 

As B4 Cs D4 

H3 G6 F3 E6 

A7 B2 c7 D2 

HI Gs Fl Es 

El Fa o, 

D7 c2 B7 

E3 F6 G3 

o5 c4 B5 

E5 F4 Gs 

D3 c6 B3 

E7 F2 G7 

o, Cs s, 
Fig. 195. First Step. Fig. r96. Second Step. 

Hs 

A 
2 

H6 

A4 

H4 

A6 

H2 

As -· 
KEY TO THE SCHEME OF SIMPLE 

ALTERNATION· 
COMPLETED SCHEME OF SIMP'"."!' 

ALTERNATION. 

1 16 17 32 33 48 4<} 64 

63 50 47 34 31 18 15 2 

3 14 19 30 35 46 51 62 

61 52 45 36 29 20 13 4 

5 12 21 28 37 44 53 60 

59 54 43 38 27 22 11 6 

7 10 23 26 39 42 55 58 

57 56 41 i 40 25 24 9 8 

Fig. 197. Third Step. 

8X8 MAGIC SQUARE CONSTRUCTED llY SIMPLE ,\LTER:-<ATION. 
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2X2 combination of its cells yields I30. The properties of the 

larger square are also graphically represented here (Fig. I93). 

A clue to the construction of these squares may be found as 

follows: 

We write down the numbers in numerical order and call the 

cells after the precedent of the chess-board, with two sets of symbols, 

letters and numbers. We call this "the plan of construction" (Fig. 

I94). 
Before we construct the general scheme of Franklin's square 

we will build up another magic square, a little less complex in prin

ciple, which will be preparatory work for more complicated squares. 

We will simply intermix the ordinary series of numbers according 

to a definite rule alternately reversing the letters so that the odd 

rows are in alphabetical order and the even ones reversed. In order 

to distribute the numbers in a regular fashion so that no combina

tion of letter and number would occur twice, we start with I in the 

upper left-hand corner and pass consecutively downwards, alter
nating between the first and second cells in the successive rows, 

thence ascending by the same method of simple alternation from I 

in the lower left-hand corner. We have now the key to a scheme 

for the distribution of numbers in an 8X8 magic square. It is the 

first step in the construction of the Franklin 8X8 magic square, and 

we call it "the key to the scheme of simple alternation" (Fig. 195). 

It goes without saying that the effect would be the same if we 

begin in the same way in the right-hand corners,-only we must 

beware of a distribution that would occasion repetitions. 
To complete the scheme we have to repeat the letters, alternately 

inverting their order row after row, and the first two given figures 

must be repeated throughout every row, as they are started. The 

top and bottom rows will read I, 8; I, 8; I, 8; I, 8. The second 

row from the top and also from the bottom will be 7, 2; 7, 2; 7, 2: 

7, 2. The third row from the top and bottom will be 3, 6; 3, 6; 

3, 6; 3, 6; and the two center rows 5, 4; 5, 4; 5, 4; 5, 4· In 
every line the sum of two consecutive figures yields 9· This is the 

second step, yielding the completed scheme of simple alternation 

(Fig. Ig6). 
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The square is now produced by substituting for the letter and 

figure combinations, the corresponding figures according to the con

secutive arrangement in the plan of construction (Fig. 197). 
Trying the results we find that all horizontal rows sum up to 

260, while the vertical rows are alternately 200 - 4, and 260 + 4· 
The diagonal from the upper right to the lower left corner yields 

a sum of 260+32, while the other diagonal from the left upper 

corner descending to the right lower corner makes 200- 32. The 
upper halves of the two diagonals yield 200, and also the sum of 

the lower halves, and the sum total of both diagonals is accordingly 

520 or 2X26o. The sum of the two left-hand half diagonals re
sults in 260- 16, and the sum of the two half diagonals to the 

right-hand side makes 26o+ 16. The sum of the four central cells 

plus the four extreme corner cells yields also 260. 

Considering the fact. that the figures 1 to 8 of our scheme run 

up and down in alternate succession, we naturally have an arrange
ment of figures in which sets of two belong together. This binate 

peculiarity is evidenced in the result just stated, that the rows yield 

sums which are the same with an alternate addition and subtraction 

of an equal amount. So we have a symmetry which is astonishing 

and might be deemed magical, if it were not a matter of intrinsic 

necessity. 

We represent these peculiarities in the adjoined diagrams (Fig. 

198) which, however, by no means exhaust all the possibilities. 

VIe must bear in mind that these magic squares are to be re

garded as continuous; that is to say, they are as if their opposite 

sides in either direction passed over into one another as if they 

were joined both ways in the shape of a cylinder. In other words 
when we cross the boundary of the square on the right hand, the first 
row of cells outside to the right has to be regarded as identical 

with the first row of cells on the left; and in the same way the 

uppermost or first horizontal row of cells corresponds to the first 

row of cells below the bottom row. This remarkable property of 

the square will bring out some additional peculiarities which mathe
maticians may easily derive according to general principles; espe

cially what was stated of the sum of the lower and upper half-
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=26o+ 16 =260-16 =260-32 =260+32 

=~6o 

=260 =2X 26o =26o 

Fig. 1g8. PROPERTIES OF 8X8 SQUARE DY SIMPLE ALTERNATION. 

AB 

A=2056-8 
B=2o66+8 

A+B=2X2o56 

I I I ·I 
=2056 

= 2056 

I I I I 

Fig. 199. PROPERTIES OF I6Xr.6 SQUARE DY SIMPLE ALTERNATION. 
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diagonal of any bent series of cells running staircase fashion either 

upward or downward to the center, and hence proceeding in the 
opposite way to the other side. 

The magic square constructed according to the method of sim-

= 20 56 + 128 = alternate! y 2056- 64 and 2056 + 64 

PROPERTIES OF I6X 16 SQUARE llY SIMPLE ALTERNATION. 

Fig. 199 (con.). 

ple alternation of figures is not, however, the square of Benjamin 
Franklin, but we can easily transform the former into the latter 

by slight modifications. 
We notice that in certain features the sum total of the bent 
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1 8 At B8 c D E F 0 H 

7 2 H7 02 F E D c B A 

3 6 8 1 

5 4 2 7 

8 1 6 3 

2 7 4 5 

6 3 3 6 

4 5 5 4 

Fig. zoo. First Steps. Fig. 201. 

KEY TO THE SCHEME OF ALTERNATION WITH BINATE TRANSPOSITION. 

At Bs c, DB Et Fs o, HB 

H7 02 F7 E2 D7 c2 B7 A2 

As Bt Cs Dt Es F1 08 H 1 

H2 07 F2 E7 D2 c7 B2 A7 

A6 B3 c6 D3 E6 F3 06 H3 

H4 05 F4 E5 D4 c5 B4 As 

A3 B6 c3 D6 E3 F6 03 H6 

H5 04 F5 E4 D5 c4 Bs A4 

Fig. 202. Second Step. 
SCHEME OF ALTERNATION WITH 

BINATE TRANSPOSITION. 

04 Hs A4 

B6 A3 H6 

o5 H4 '\ 
B3 A6 H3 

07 H2 A7 

B1 As H1 

02 H7 A2 

Bs At Hs 

Bs 

03 

B4 

06 

B2 

08 

B7 

01 

1 16 17 32 33 48 49 64 

63 50 47 34 31 13 15 2 

8 9 24 25 40 41 56 57 

58 55 42 39 26 23 10 7 

6 11 22 27 38 43 54 59 

60 53 44 37 28 21 12 5 

3 14 19 30 35 46 51 62 

61 52 45 36 29 20 13 4 

Fig. 203. Third Step. 
SQUARE CONSTRUCTED BY ALTERN A 
TION WITH BINATE TRANSPOSITION 

c4 Ds E4 Fs 

F6 E3 D6 c3 

cs D4 E5 F 4 

F3 E6 D3 c6 

c7 D2 E7 F2 

F1 EB D1 CB 

c2 D7 E2 F7 

FB E 1 Da c1 

Fig. 204. SCHEME OF FRANKLIN'S BX8 SQUARE. 
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2 4 5 6 7 8 9 10 11 12 13 14 15 16 

l 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

18 19 20 21 l2 23 24 25 26 27 28 29 30 31 32 

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 

50 51 52 53 54 55 56 57 58 59 60 61 6l 63 64 

66 67 "" 69 70 71 72 73 74 75 76 77 78 79 80 

82 83 84 85 86 87 88 89 .., 91 92 93 94 95 96 

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 

162 163 164 165 166 167 16<1 169 170 171 172 173 174 175 176 

178 179 180 181 182 183 184 185 1tl6 IUJ 188 189 190 191 192 

194 .195 196 197 198 199 200 201 202 203 204 205 206 207 208 

210 211 212 213 214 '215 216 217 218 219 220 221 222 223 224 

226 227 226 229 230 231 232 233 234 235 236 237 238 239 240 

242 243 244 245 246 247 248 249 250 251 252 l53 254 255 256 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

A 
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N 

0 

p 

Q 

Fig. 205. CONSECUTIVE ARRANGEMENT OF NUMBERS IN A 16 X 16 SQUARE 

AI 6 16 c D E F G H I K L M N 0 p 0 

015 p2 0 N M L K I H G F E D c B A 

3 14 

13 4 

5 12 

11 6 

7 10 

9 8 

9 8 

7 10 

11 6 

5 12 

13 4 

3 o4 

15 2 

1 16 

Fig. oo6. KEY TO THE SCHEME OF SIMPLE ALTERNATION. 
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At 8 t6 c, 0 t6 Et F 16 o, H16 ,, K16 L 1 M16 N1 0 t6 PI o,6 

0 ts Pz 0 ts N2 MIS L2 K15 12 HIS 02 f15 E2 0 ts Cz 8 ts Az 
Al a,4 cl 0 t4 El F14 03 H14 1 3 1<.14 Ll M14 ~3 0 t4 pl 0 t4 

o,l p4 o,l N4 M13 L4 K13 1 4 H13 04 F13· E4 0 t3 c4 8 t3 A4 

As a,2 cs Oil Es Ft2 os H1Z 1 5 Kt2 L5 M12 N; 0 t2 Ps 0 t2 

o,, p6 o,, N6 Mtt L6 "'tt 1 6 H11 06 Ftt E6 o,, c6 a,, A6 

A7 8 to c, o,o E7 FlO o, Htn 1 7 "-to L7 Mto N7 o,o p7 0 to 

Og Pa Og N8 Mg L8 Kg 'a H9 Ga fg Ea Og Ca 89 A a 

A9 as Cg 08 Eg Fa 09 HB 1 9 "'a Lg ~'~a N 9 Oa p9 08 

o, p10 o, N10 M7 L 10 K7 110 H7 0 to F7 Eto o, c,o a, A to 

An 86 Cn 06 En F6 o,, H6 'n 1<.6 Ltt M6 Nn 06 Pit 06 

Os p12 05 N12 M5 L12 "'s 112 Hs 0 12 F 5 E12 05 c,2 85 A12 

A13 84 c,l 04 E13 F4 G13 H4 113 1<.4 Ltl M4 N13 04 p13 04 

03 p14 03 N14 Ml L14 11.3 114 Hl 0 t4 FJ E14 03 c,4 a3 -'14 

AIS a2 c,s o2 ~15 F2 0 ts Hz 1ts K2 Lts M2 N15 02 PIS 02 

o, p16 o, N16 ~'~t L16 ~~., 116 HI 0 t6 F 1 E16 01 Ct6 a, A16 

Fig. 207. SCHEME OF SIMPLE ALTERNATION. 

1 32 33 64 65 96 97 128 129 160 161 192 193 224 225 256 

255 226 m 194 191 162 159 130 127 98 95 66 63 34 31 2 

3 30 35 62 67 94 99 126 131 158 163 190 195 222 227 254 

253 228 221 196 ta9 164 157 132 125 100 93 68 61 36 2'1 4 

5 28 37 60 69 92 101 124 133 156 165 188 197 220 229 252 

251 230 219 198 ta7 166 155 134 123 Hl2 91 70 59 38 27 6 

7 26 39 58 71 90 103 122 135 154 167 186 199 218 231 250 

249 232 217 200 ta5 168 153 136 121 104 ag 72 57 40 25 a 

9 24 41 56 73 88 105 120 137 152 169 184 201 216 233 248 
- f---
247 234 :us 202 183 170 151 138 119 106 87 74 55 42 23 10 

11 22 43 54 75 86 107 118 139 150 171 ta2 203 214 235 246 

245 236 213 204 181 172 149 140 117 108 85 76 53 44 21 12 

13 20 45 52 77 84 109 116 141 148 173 180 205 l12 237 244 

243 238 211 206 179 174 141 142 115 110 83 78 51 46 19 14 

15 18 47 50 79 a2 111 1U 143 146 175 178 207 210 239 242 

241 240 209 208 177 176 145 144 113 112 81 80 49 48 17 16 

Fig. !JOB. 16X16 MAGIC SQUARE CONSTRUCTED BY SIMPLE ALTERNATION. 
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A1 8 16 e D f f G H I K L M N 0 r 0 

0 15 1'2 0 N M l K I H G f E D e B A 

3 14 

13 4 

16 I 

2 15 

14 3 

4 1J 

12 5 

6 11 

10 7 

8 9 

5 12 

11 6 

7 10 

y 8 

ig. 209. KEY TO THE SCHEME OF ALTERNATION WITH QUA TERN ATE TRANS· 

POSITI0:-.1. 

Al 8 J6 c1 016 E 1 f16 Gl Hl6 11 Kl6 Ll Ml6 Nl 0 J6 PI 0 16 

0 1s 1'2 0 Js N2 MIS L2 KIS I 2 HIS G2 flS E2 01s e2 8 1s "'2 

AJ 8J4 el 014 f 3 fl4 GJ Hl4 13 Kl4 LJ Ml4 NJ 0 J4 rl 0 J4 

0 13 1'4 0 JJ N4 Mll L4 Kll 14 Hll G4 fll E4 0 JJ e4 8 13 A4 

A16 81 el6 Dl El6 f I Gl6 HI 116 Kl Ll6 Ml Nl6 OJ 1'16 01 

02 rlS 02 NIS M2 LIS K2 1Js H2 GIS f2 E15 D2 c1s 82 AIS 

A14 83 e14 03 El4 FJ Gl4 Hl 114 KJ Ll4 Ml Nl4 OJ 1'14 OJ 

04 1'13 04 NIJ M4 LlJ K4 113 H4 GIJ F4 Ell D4 ell 84 Al.J 

Al2 8s e12 Ds El2 Fs Gl2 Hs 112 K5 Ll2 Ms N12 OS lj2 OS 

06 I'll 06 Nil M6 Lll K6 Ill H6 Gil f6 Ell 06 ell 86 All 

AIO 87 elO D7 EIO f7 GIO H7 110 K7 LIO M7 NIO 07 1'10 07 

08 Pg Oa Ng M8 Lg K8 19 H8 Gg Fa fg D8 eg 88 Ag 

As 8 J2 es 012 Es fl2 Gs Hl2 Is Kl2 Ls M12 Ns 0 J2 ~'s 0 12 

011 1'6 0 11 N6 Mll L6 Kll 16 Hll G6 fll E6 0 11 c6 8 11 A6 

A7 8 Jo e7 010 E7 flO G7 HIO 17 KIO L7 M10 N7 0 Jo 1'7 0 Jo 

Og ~'a 09 Na Mg La Kg Ia Hg Ga fg Ea Dg ea 89 As 

Fig. 210. SCHEME OF ALTERNAT!0:-.1 WITH QUATERNATE TRANSPOSITION. 
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I 32 33 64 65 96 97 128 129 160 161 192 193 224 225 256 

255 226 m 194 191 162 159 130 127 911 95 66 63 34 31 2 

J 30 35 62 67 94 99 126 Ill 158 163 190 195 222 227 254 

253 228 221 196 189 164 157 132 125 100 93 68 61 36 29 4 

16 17 48 49 80 81 112 113 144 145 176 177 208 209 240 241 

242 239 210 207 178 175 146 143 114 Ill 82 79 50 47 18 15 

14 19 46 51 78 83 110 115 142 147 174 179 206 211 238 243 

244 237 212 205 180 173 148 141 116 109 84 77 52 45 20 13 

12 21 44 53 76 85 108 117 140 149 172 tat 204 213 236 245 

246 235 214 203 ta2 171 150 139 II a 107 86 75 54 43 22 II 

10 23 42 55 74 87 106 119 138 151 170 183 202 215 234 247 

24a 233 216 201 la4 169 152 137 120 lOS 88 73 56 41 24 9 

5 28 37 60 69 92 101 124 133 156 165 188 197 220 229 252 

251 230 219 198 1a7 166 ISS 134 123 10l 91 70 59 38 27 6 

7 26 39 58 71 90 103 122 135 154 167 186 199 21a 231 250 

249 232 217 200 1as 168 153 136 121 104 ag 72 57 40 25 a 

Fig. ~:_1. A SQUARE CONSTRUCTED BY ALTERNATION WITH QUA TERN ATE TRANS 

POSITION. 

Na 09 Pa Og A a 69 Ca Og Ea fg Ga Hg 'a Kg La N9 

o,o c7 s,o A7 o,o p7 o,o N7 "'•o L7 KID 17 H10 G7 FlO E7 

Ns 011 p6 011 As Bll c& 011 E6 f" G6 Hll 's Kll L6 "'" 
o,2 cs 612 As o,2 Ps o,2 Ns "'•2 Ls "•2 's H12 Gs F12 Es 

Ng Oa p9 Oa A9 Ba C9 Oa E9 fa Gg Ha ·~ "'a Lg "'a 

o, c,o s, A10 07 PIO 07 NIO 1'17 LID K7 'tO H7 GIO f7 E10 

N11 06 p" 06 All 86 c" 06 Ell f 6 Gil H6 '" ~6 L" "'s 

os c,2 8s A12 05 pl2 Os N12 "'s L12 "'s '•2 Hs Gl2 Fs E12 

Nl3 04 pl3 04 All 84 c13 04 Ell f 4 G,J H4 '•3 K4 Ll3 "'• 
03 c14 83 A14 03 pl4 0) Nl4 MJ Ll4 "3 '•4 HJ G,4 fl t,. 
NIS 02 PIS 02 AIS 82 c,s 02 EIS F 2 GIS H2 '•s K2 LIS M2 

01 c1& s, Al6 o, pl6 o, Nl6 .,, 
Ll6 K1 '•6 H, Gt6 fl El6 

N4 o,J p 4 o,3 A4 8 13 c4 o,J E4 fl3 G4 HIJ 14 K13 L4 "'•3 

o,. C3 814 AJ o,4 PJ 014 NJ "'•4 LJ "'•4 '3 H14 GJ fl4 EJ 

N2 o,s p2 o,s A2 8 15 (.2 o,s E2 FIS G2 HIS '2 KIS L2 "'•s 

o,6 c, 8 16 "• o,s PI o,. N I "'•6 Ll "'•6 11 Hl6 G, fl6 E1 

Fig. 212. SCHEME OF FRANKLIN'S 16X 16 SQUARE. 
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diagonals represents regularities which counterbalance one another 
on the right- and the left-hand side. In order to offset these results 

we have to shift the figures of our scheme. 
We take the diagram which forms the key to the scheme of our 

distribution by simple alternation (Fig. I95), and cutting it in the 
middle, turn the lower half upside down, giving the first two rows as 
seen in Fig. 200 in which the heavy lines indicate the cutting. Cutting 

then the .upper half in two ( i. e., in binate sections), and transposing 
the second quarter to the bottom, we have the key to the entire ar

rangement of figures; in which the alternation starts as in the 
scheme for simple alternation but skips the four center rows passing 

from 2 in the second cell of the second row to 3 in the first cell of 
the seventh, and from 4 in the second cell of the eighth passing to 

5 in the first cell, and thence upwards in similar alternation, again 
passing over the four central rows to the second and ending with 8 
in the second cell of the first row. Then the same alternation is pro
duced in the four center rows. It is obvious that this can not start 

in the first cell as that would duplicate the first row, so we start with 
I in the second cell passing down uninterruptedly to 4 and ascending 
as before from 5 to 8. 

A closer examination will show that the rows are binate, which 

means in sets of two. The four inner numbers, 3, 4, 5, 6 and the 
two outer sets of two numbers each, I, 2 and 7, 8, are brought to
gether thus imparting to the whole square a binate character (Fig. 

202). 

We are now provided with a key to build up a magic square 
after the pattern of Franklin. We have simply to complete it in 
the same way as our last square repeating the letters with their 
order alternately reversed as before, and repeating the figures in 
each line. 

When we insert their figure values we have a square which is 
not the same as Franklin's, but possesses in principle the same 
qualities (Fig. 203). 

To make our 8 X 8 square of binate transposition into the 
Franklin square we must first take its obverse square ; that is to 
say, we preserve exactly the same order but holding the paper 
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with the figures toward the light we read them off from the obverse 
side, and then take the mirror picture of the result, holding the 

mirror on either horizontal side. So far we have still our square 

with the peculiarities of our scheme, but which lacks one of the 

incidental characteristics of Franklin's square. We must notice 

that he makes four cells in both horizontal and vertical directions 

sum tlp to 130 which property is necessarily limited only to two 

sets of four cells in each row. If we write down the sum of 1+2+ 
3+4+s+6+7+8=2X r8, we wiiJ find that the middle set 3+4+ 
s+6 is equal to the rest consisting of the sum of two extremes, 

I +4, and 7+8. In this way we cut out in our scheme (Fig. 202), the 

rows represented by the letters C, D, E, F in either order and ac

cordingly we can shift either of the two first or two last vertical 

rows to the other side. Franklin did the former, thus beginning 

his square with G4 in the left upper corner as in Fig. 204. We have 
indicated this division by heavier lines in both schemes. 

The greater square of Franklin, which is r6X r6, is made after 

the same fashion, and the adjoined diagrams (Figs. 205-212) will 
sufficiently explain its construction. 

vVe do not know the method employed by Franklin ; we pos

sess only the result, but it is not probable that he derived his square 

according to the scheme employed here. 

Our r6X r6 square is not exactly the same as the square of 

Franklin, but it belongs to the same class. Our method gives the 

key to the construction, and it is understood that the system here 

represented will allow us to construct many more squares by simply 
pushing the square beyond its limits into the opposite row which 

by this move has to be transferred. 

There is the same relation between Franklin's r6Xr6 square 

and our square constructed by alternation with quaternate trans
position, that exists between the corresponding 8X8 squares. 

P. C. 



CHAPTER IV. 

REFLECTIONS ON MAGIC SQUARES. 

MATHEMATICS, especially in the field where it touches philos

ophy, has always been my foible, and so Mr. W. S. Andrews's 

article on "Magic Sqtmres" tempted me to seek a graphic key to the 

interrelation amon6 their figures which should reveal at a glance 

the mystery of their construction. 

THE ORDER OF FIGURES. 

In odd magic squares, 3 X 3, 5 X 5, 7 X 7, etc., there is no 
difficulty whatever, as "!\h. Andrews's diagrams show at a glance 

(Fig. 213). The consecutive figures run up slantingly in the form 
-
5 

.1!- /() 

J .9 /.Y 

2 J1 /~ .2() .J /6 9 22. /J 

1/ 7 ·/.J /.9 2sj 20 cf 2./ /~ 2 

6 /2 /t! 29- 7 2-' /J / /.9 

// /7 2.J 2¥ /2 d" /J 6 

/6 :22 // ,;-. "7 /0 2J 

2/ ..__ 
Fig. 213. A SPECIMEN OF 5 X 5 MAGIC SQUARE. 

of a staircase, so as to let the next higher figure pass over into the 

next higher or lower cell of the next row, and those figures that ac

cording to this method would fall outside of the square, revert 
into it as if the magic square were for the time (at the moment of 

crossing its boundary) connected with its opposite side into the 
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shape of a cylinder. This cannot be done at once with both its two 

opposite vertical and its two opposite horizontal sides, but the pro

cess is easily represented in the plane by having the magic square 

extended on all its sides, and on passing its limits on one side we 

must treat the extension as if we had entered into the magic square 

on the side opposite to where we left it. If we now transfer the 

figures to their respective places in the inside square, they are shoved 

over in a way which by a regular transposition will counteract their 

regular increase of counting and so equalize the sums of entire rows. 

The case is somewhat more complicated with even magic 
squares, and a suggestion which I propose to offer here, pertains 

to their formation. Mr. Andrews begins their discussion by stating 

that "in regard to regular or associated magic squares it is not only 

necessary that each row, column and corner diagonal shall sum 

the same amount, but also that the pairs of numbers which sum 

n2 + I inust occupy cells which are located diametrically equidis

tant from the center of the square." 

The smallest magic square of even numbers is, of course, 4 X 4; 

and he points out that if we write the figures in their regular order 

in a 4 X 4 square, those standing on the diagonal lines can remain 

in their places, while the rest are to be reversed so as to replace 

every figure by its complementary to I7 (i.e., 2 by IS, 3 by 14, 5 by 

12, 9 by 8) the number 17 being the sum of the highest and lowest 
numbers of the magic square ( i. e., n2 + I). It is by this reversal 

of figures that the inequalities of the natural order are equalized 
.again, so as to make the sum of each row equal to 34, which is one 
fourth of the sum total of all figures, the general formula being 

1+2+3+4+····" 
11 

n 
-(ll2+ 1). 
2 

We will now try to find out more about the relation which the 
magic square arrangement bears to the normal sequence of figures. 

For each corner there are two ways, one horizontal and one 

vertical, in which figures can be written in the normal sequence; 

accordingly there are altogether eight possible arrangements, from 
which we select one as fundamental, and regard all others as mere 

variations, produced by inverting and reversing the order. 



REFLECTIONS ON MAGIC SQARES. IIS 

As the fundamental arrangement we choose the ordinary way 

of writing from the left to the right, proceeding in parallel lines 

downward. We ca11 this '"the original order" or o. Its reverse 

proceeds from the lower right-hand corner toward the left, and 

line by line upward, thus beginning the series where the ordinary 

arrengement ends, and ending where it started, as reflected on the 

ground glass of a camera. We call this order "the reversed orig

inal," or simply ro. 

Another order is produced by fo11owing the Hebrew and Arabic 

mode of writing: we begin in the upper right-hand corner, proceed

ing to the left, and then continue in the same way line by line 

downward. This, the inverse direction to the original way, we call 
briefly i or "mirror"' order. 

The reverse order of -i, starting in the lower left corner, pro

ceeding to the right, and line by line upward, we call ri, or "lake" 

order. Further on we sha11 have occasion to present these four orders 

by the following symbols: o by • ; ro by ®; i by +; ri by + 
I 1 2 3 4 5 6 
I 

7 8 9 10 11 12 

13 14 15 16 17 18 

6 5 4 ~1-2_12_~ 1-1--
12 11 101 9 , 8 7 

--i---f - '--
18 17 16 1151 11 In 

I-- 1---- --1--l----

19 20 21 22 23 24 24 23 22 21 20 19 
--1-

25 26 27 28 29 30 30 29 28 27 26 25 
--1--

31 32 33 34 35 36 36 35 34 33 32 31 

ORDER 0 (.), ORIGINAL. ORDER i ( +), MIRROR. 

31 32 33 34 35 36 
·-1-
25 26 27 28 29 30 
--,_ - 1---j_ J-

19 20 21 22 23 24 

--~ 

3~~ 34 33132131 - -1-----------

3o 1 29 28 n 26 i 25 
1-- ---1----+---:-

24 23 22 21 20~ 

13 14 15 16 17 18 18 17 16 15 14 13 
- --

7 i 8 9 10 11 12 12 11 10 9 IJ 7 
---

1 2 3 4 5 6 6 5 4 3 2 1 

ORDER ri ( +), LAKE. ORDER ro (®),CAMERA. 

Fig. 214. 
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/ ~~ /.If #- lh 2. .3 /.3 

12 6 7 9 J // /tJ ,f 

i /0 II ~ 9 7 6 /2, 

/J j 2 16 4 /4 /.J I 

/ 6J .J9 * .} tfz s,; ! 

Sli /0 J4- /.J 12 fl IS 49 

.24 9 /9 4.5" .V4 2Z .vz '7 
2.> J« .JJ' .24 29 .l,> J9 J2 

JJ 26 ,JO .36 J/ 27 .J! 4<0 

4J' ZJ 4J 2/ 20 46 /&' -'// 

16 so /~ .j-.J .rz II J·,,- 9 

J7 7 .3 6o Iii 6 z 6''1 

I 143 142 4 .)" IJ.9 IJd ,; .9 IJS /J~ 12 

1.32 l'f IS /2.9 /2.f /,! 1.9 /2S 12¥ 22 23 12/ 

/20 26 27 "1 //6 Jo .JI IIJ 1/2 J4< Js- 109 

.3J IOJ /06 .vo 41 /OJ 102 4¥ 'IS 9£J .95 4.1 

4.9 9.5" .9z,. J"2 SJ .91 90 J·o JJ .fJ .r6 6o 

., 6t. 6J 41 !t? !1(, 61 77 76 JO 71 p 

JZ 7" 7" 6g 6J' 7' J.!l 6.- 6,_ 42 FJ 61 

J'f S.9 S.f .FJ' J'.9 JS J'L, .92 .9.3 Sl so ,g,f 

.9J "1 v6 IOO /o/ "'" ,Y2. IO'f ;r,r J9 J,f /0.1 

.36 /IQ Ill JJ .32. II~ IIJ' 29 2J' '"' 11.9 2.r 

24< /22 12.3 21 .20 /26 "1 '1 /6 IJO IJ/ /J 

IJJ II /0 /J6 IJ7 7 h /',10 I'll J 2 1'19 

Fig. 215, EVEN SQUARES IN MULTIPLES OF FOUR.* 

* These squares, 4 X 4 and its multiples, consist of o and ro orders only, 
'lnd it will be sufficient to write out the two 4 X 4 squares, which show how 
o and ro are mutually interchangeable. 

1 o 1 rolrol o 1 

lrol o I o lrol 
lrolo lo lrol 
1 o lrolrol o 1 

JroJo Jo lroJ 
1 o 1 ro 1 ro 1 o 1 

1 o 1 ro 1 ro 1 o 1 

1 ro 1 o 1 o 1 ro 1 
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It will be noticed that i is the vertical mirror picture of o and 

ro of ri, and vice versa. Further if the mirror is placed upon one 
of the horizontal lines, ri is the mirror picture of o as well as ro of i 

and vice versa. 
There are four more arrangements. There is the Chinese way 

of writing downward in vertical columns as well as its inversion, 

and the reversed order of both. This method originated by the use 

of bamboo strips as writing material in China, and we may utilize 

the two vowel sounds of the word "bamboo" (viz., a and u) to name 

the left and the right downward order, a the left and u the right, 

the reverse of the right ru and of the left ra, but for our present 

purpose there will be no occasion to use them. 

Now we must bear in mind that magic squares originate from 

the ordinary and normal consecutive arrangement by such transpo

sitions as will counteract the regular increase of value in the nor

mally progressive series of figures; and these transpositions depend 
upon the location of the several cells. All transpositions in the 

cells of even magic squares are brought about by the substitution 

of figures of the ro, i, and ri order for the original figures of the 

ordinary or o order, and the symmetry which dominates these 

changes becomes apparent in the diagrams, which present at a glance 

the order to which each cell in a magic square belongs. 

Numbers of the same order are grouped not unlike the Chladni 

acoustic figures, and it seems to me that the origin of the regular

ity of both the magic figures and this phenomenon of acoustics, is 
due to an analogous law of symmetry. 

The dominance of one order o, ro, i, or ri, in each cell of an 
even magic square, is simply due to a definite method of their 
selection from the four different orders of counting. Never can 

a figure appear in a cell where it does not belong by right of some 
regular order, either o, ro, i, or ri. 

The magic square of 4 X 4, consists only of o and ro figures, 
and the same rule applies to the simplest construction of even squares 
of multiples of four, such as 8 X 8, and 12 X 12. 

There are several ways of constntcting a magic square of 6 X 6. 
Our first sample consists of 12 o, 12 ro, 6 ri, and 6 i figures. The 
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12 o hold the diagonal lines. The 12 ro go parallel with one of 
these diagonals, and stand in such positions that if the whole magic 

square were diagonally turned upon itself, they would exactly cover 

the 6 i, and 6 ri figures. And again the 6 i and 6 ri also hold toward 

each other places in the same way corresponding to one another; 

if the magic square were turned upon itself around the other diag
onal, each ri figure would cover one of the i order. 

I .JS * ,JJ .J2 6 I $ "'" .J9 .J.t 6 
1:1. , u 2J N .IS .JO I :u 9 II 2$" 

.It, 17 IS 14 2.0 1.9 18 JJ 15 16 20 /.9 

I.J 2,5 21 22 19 /8 241 /41 21 22 17 /J 

.JO 26 .9 10 2.9 7 l 26 10 2.7 2.9 1:1, 

.JI .3 J9 .J s .,,s .JI .JS " ,J :1, oJ6 

Fig. 2<6. 6X6 EVEN SQUARES. 

If we compare the magic squares with the sanc!-covered glass 

plates which Chladni used, and think of every cell as equally filled 

with the four figures that would fall upon it according to the normal 

sequence of o, ro, i, and ri; and further if we compare their change 

into a magic square to a musical note harmonizing whole rows into 

equal sums, we would find (if by some magic process the different 

values of the several figures would mechanically be turned up so 

0 0 

RO 

as to be evenly balanced in rows) that they would present geomet

rically harmonious designs as much as the Chladni acoustic figures. 

The progressive transformations of o, ro, i, and ri, by mirroring; 

are not unlike the air waves of notes in which o represents the crest 
of the wave, ro the trough, i and ri the nodes. 

In placing the mirror at right angles progressively from o to 

i, from i to ro, from ro to ri, and from ri to o, we return to the 

beginning thus completing a whole sweep of the circle.* The re-

*See diagram on page rrs. 
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a. b 

& a. b 

b 

b 

a a 

b 

Fig. 217. CIILADNI FIGURES.• 

*The letter a indicates where the surface is touched with a finger; while 
b marks the place where the bow strikes the glass plate. In the four upper 
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verse of o which is ro represents one-half turn, i and ri the first and 
third quarter in the whole circuit, and it is natural, therefore, that 

a symmetry-producing wave should produce a similar effect in the 

magic square to that of a note upon the sand of a Chladni glass 
plate. 

MAGIC SQUARES IN SYMBOLS. 

The diagrams which are offered here in Fig. 218 are the best 

evidence of their resemblance to the Chladni figures, both exhibiting 

in their formation, the effect of the law of symmetry. The most 

8 X 8. 32 o and 32 ro. 10 X 10. 72 o and 72 ro. 
SQUARES OF MULTIPLES OF FOUR. 

Constructed only of o and ro. 

8 X 8 SQUARES. 

Constructed from all the orders, o, ro, i, and ri. 
Fig. 218. 

diagrams the plate has been fastened in the center, while in the lower ones 
it has been held tight in an excentric position, indicated by the white dot. 
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elegant way of rendering the different orders, i, ri, o, and ro, vtsible 

at a glance, would be by printing the cells in four different colors, 

•++++++• 
+e®®®®e+ 
®®e++e®® 
+++••+++ 
+++••+++ 
®®e++e®® 
+e®®®®e+ 
•++++++• 

ANOTHER 8X8 SQUARE. 

It will be noted that in this square the arrangement of the o symbols 
corresponds very closely to the distribution of the sand in the second of the 
Chladni diagrams. The same may be said of the two following figures, and it 
is especially true of the first one of the 8 X 8 squares just preceding. 

12 o, 12 ro, 6 i, 6 ri. 

40 o, 40 ro, 10 i, ro ri. 
The reader will notice that there is a remarkable resemblance 

between the symmetry displayed in this figure and in the fourth 
of the Chladni diagrams. 

Fig. 218. (con.). EXAMPLES OF 6X6 AND lOX 10 MAGIC SQUARES. 

but for proving our case, it will be sufficient to have the four orders 

represented by four symbols, omitting their figure values, and we 
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here propose to indicate the order of o by e, ro by ®, i by +. 
ri by+· 

THE MAGIC SQUARE IN CHINA. 

In the introduction to the Chou edition of the Yih King, we 

find some arithmetical diagrams and among them the Loh-Shu, the 

scroll of the river Loh, which is a mathematical square from I to g, 

so written that all the odd numbers are expressed by white dots, 

i. e., yang symbols, the emblem of heaven, while the even numbers 

• ;~ i1 ~PI 
Jg} 

t 
<?~/ ~ -r-

i I I ~ !H±JII + II 

(/ <> 0 
0 • • • • • • 

THE SCROLL OF LOH. THE MAP OF HO.* 

(According to Ts'ai Yiiang-ting.) 
Fig. 219. TWO ARITHMETICAL DESIGNS OF ANCIENT CHINA. 

are in black dots, i. e., yin symbols, the emblem of earth. The in

vention of the scroll is attributed to Fuh-Hi, the mythical founder 

of Chinese civilization, who according to Chinese reports lived 2858-

2738 B. C. But it goes without saying that we have to deal here 

with a reconstruction of an ancient document, and not with the 

document itself. The scroll of Loh is shown in Fig. 219. 

The first unequivocal appearance of the Loh-Shu in the form of 

a magic square is in the latter part of the posterior Chou dynasty 

*The map of Ho properly does not belong here, but we let it stand be
cause it helps to illustrate the spirit of the times when the scroll of Loh was 
composed in China. The map of Ho contains five groups of odd and even 
figures, the numbers of heaven and earth respectively. If the former are re• 
garded as positive and the latter as negative, the difference of each group 
will uniformly yield + 5 or - s. 
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(951-II26 A. D.) or the beginning of the Southern Sung dynasty 

( II27-1333 A. D.). The Loh-Shu is incorporated in the writings 

of Ts'ai Yiian-Ting who lived from II3S-II98 A. D. ( cf: Mayers, 

Chinese Reader's Manual, I, 754a), but similar arithmetical dia
grams are traceable as reconstructions of primitive documents among 

scholars that lived under the reign of Sung H wei-Tsung, which 

lasted from IIOI-II25 A. D. (See Mayers, C. R. M., p. 57.) 

The Yih King is unquestionably very ancient and the symbols 

yang and yin as emblems of heaven and earth are inseparable from 

its contents. They existed at the time of Confucius (551-479 B. C.), 
for he wrote several chapters which are called appendices to the 

Yih King, and in them he says (III, I, IX, 49-50. S. B. E., XVI, 

P· 36s.): 
"To heaven belongs r ; to earth, 2; to heaven, 3; to earth, 4; 

to heaven, 5 ; to earth, 6; to heaven, 7; to earth, 8; to heaven, 9; 
to earth, IO. 

"The numbers belonging to heaven are five, and those belonging 

to earth are five. The numbers of these two series correspond to 
each other, and each one has another that may be considered its 

mate. The heavenly numbers amount to 25, and the earthly to 30. 

The numbers of heaven and earth together amount to 55· It is 
by these that the changes and transformations are effected, and the 

spiritlike agencies kept in movement." 

This passage was written about sao B. C. and is approximately 

simultaneous with the philosophy of Pythagoras in the Occident, 

who declares number to be the essence of all things. 

One thing is sure, that the magic square among the Chinese 
cannot have been derived from Europe. It is highly probable, how
ever, that both countries received suggestions and a general impulse 

from India and perhaps ultimately from Babylonia. But the .devel

opment of the yang and yin symbols in their numerical and occult 

significance can be traced back in China to a hoary antiquity so as 

to render it typically Chinese, and thus it seems strange that the 

same idea of the odd numbers as belonging to heaven and the even 
ones to earth appears in ancient Greece. 

I owe the following communication to a personal letter from 
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Professor David Eugene Smith of the Teachers' College of New 
York: 

"There is a Latin aphorism, probably as old as Pythagoras, 
Deus imparibus numeris gaudet. Virgil paraphrases this as follows: 

Numero deus impare gaudet. (Eel. viii, 75). In the edition I have 
at hand* there is a footnote which gives the ancient idea of the 

nature of odd and even numbers, saying: 

" ... impar numerus immortalis, quia dividi integer non potest, 
par numerus mortalis, quia dividi potest; licet Varro dicat Pytha
goreos putare imparem numerum habere finem, parem esse infinitu111 
[a curious idea which I have not seen elsewhere]; ideo medendi 
causa multarumque rerum impares numeros servari: nam, ut supra 

dictum est, superi dii impari, inferi pari gaudent. 
"There are several references among the later commentators 

to the fact that the odd numbers are masculine, divine, heavenly, 
while the even ones were feminine, mortal, earthly, but I cannot just 
at this writing place my hands upon them. 

"As to the magic square, Professor Fujisawa, at the Inter
national Congress of Mathematicians at Paris in 1900, made the 
assertion that the mathematics derived at an early time from the 
Chinese (independent of their own native mathematics which was 
of a somewhat more scientific character), included the study of 
these squares, going as far as the first 400 numbers. He did not, 
however, give the dates of these contributions, if indeed they are 
known." 

As to other magic squares, Professor Smith writes in another 
letter: 

"The magic square is found in a work by Abraham ben Ezra 
in the eleventh century. It is also found in Arabic works of the 
twelfth century. In 1904, Professor Schilling contributed to the 
Mathematical Society of Gottingen the fact that Professor Kielhorn 
had found a Jaina inscription of the twelfth or thirteenth century 

* P. Virgilii Maronis I Opera, I cum integris commentariis I Servii, Phi
largyrii, Pierii, I Accedunt I Scaligeri et Lindenbrogii I . . . . . I Pancratiu5 
Masvicius I ... I Tom. I, I ... I Leonardiae, I ... I .. cbbccxvn.l 
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in the city of Khajuraho, India, a magic square of the notable 

peculiarity that each sub-square sums to 34·" 
Fig 220 is the square which Professor Smith encloses. 

We must assume that we are confronted in many cases with 

an independent parallel development, but it appears that suggestions 

must have gone out over the whole world in most primitive time'> 

perhaps from Mesopotamia, the cradle of Babylonian civilization, 

or later from India, the center of a most brilliant development of 

scientific and religious thought. 

How old the magic square in China may be, is difficult to say. 

It seems more than probable that its first appearance in the twelfth 

century is not the time of its invention, but rather the date of a 

7 12 1 14 

2 13 8 11 

16 3 10 5 

9 6 15 4 

Fig. 220. 

recapitulation of former accomplishments, the exact date of which 

can no longer be determined. 

THE JAIN A SQUARE. 

Professor Kielhorn's Jaina square is not "an associated or 

regular magic square" according to Mr. Andrews's d~finition, quoted 

above. \Vhile the sums of ali the rows, horizontal, vertical, and 

diagonal, are equal, the figures equidistant from the center are not 
equal to n• + 1, viz., the sum of the first and last numbers of the 

series. Yet it will be seen that in other respects this square is more 

regular, for it represents a distribution of the figure values in what 
might be called absolute equilibrium. 

First we must observe that the Jaina square is continuous, 

by which I mean that it may vertically as well as horizontaliy be 
turned upon itself and the rule still holds good that wherever we 
may start four consecutive numbers in whatever direction, back-
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ward or forward, upward or downward, in horizontal, vertical, or 
slanting lines, always yield the same sum, viz. 34, which is 2(n2+1); 
and so does any small square of 2 X 2 cells. Since we can not bend 

the square upon itself at once in two directions, we make the result 
visible in Fig. 221, by extending the square in each direction by 
half its own size. 

Wherever 4 X 4 cells are taken out from this extended square, 
we shall find them satisfying all the conditions of this peculiar kind 
of magic squares. 

The construction of this ancient Jaina equilibrium-square re

n.~ures another method than we have suggested for Mr. Andrews· 

10 5 16 3 10 5 16 3 

15 4 9 6 15 4 9 6 

1 14 7 12 1 14 7 12 

8 11 2 13 8 11 2 13 

10 5 16 3 10 5 16 3 

15 4 9 6 15 4 9 6 

1 14 7 12 1 14 7 12 

8 11 2 13 8 11 2 13 

Fig. 221. 

"associated squares," and the following considerations will afford us 
the key as shown in Fig. 222. 

First we write the numbers down into the cells of the square 
in tneir consecutive order and call the four rows in one direction 

A, B, C, D; in the other direction I, 2, 3, 4· Our aim is to re
distribute them so as to have no two numbers of the same denomi· 
nation in the same row. In other words, each row must contain 
one and only one of each of the four letters, and also one and only 

one of each 0£ the four figures. 
We start in the left upper corner and write down in the first 

horizontal row the letters A, B, C, and D, in their ordinary succes

sion, and in the second horizontal row, the same letters in their 
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inverted order. We do the same with the numbers in the first and 

second vertical rows. All that remains to be done is to fill out the 
rest in such a way as not to repeat either a letter or a number. In 
the first row there are still missing for C and D the numbers 2 and 3, 

of which 2 must belong to C, for C3 appears already in the second 
row and 3 is left for D. 

In the second row there are missing I and 4, of which I must 
belong to B, because we have B4 in the first row. 

In the first vertical row the letters B and C are missing, of 

which B must belong to 3, leaving C to 4· 

A 

B 

c 

0 

1 

5 

9 

13 

2 3 4 

2 3 4 

6 7 8 

10 11 12 

14 15 16 

In Consecutive Order. 

A1 B4 c2 03 

02 CJ B1 A4 

BJ A2 04 c1 

c4 01 AJ B2 

A1 B4 c 0 

02 c3 B A 

3 2 

4 1 

The Start for a Redistribution. 

1 8 10 15 

14 11 5 4 

7 2 16 9 

12 13 3 6 

The Perfected Redistributioh. Figure Values of the Square. 

Fig. 222. 

In the second vertical row A and D are missing for I and 2. 

A1 and D2 exist, so A must go to 2, and D to I. 
In the same simple fashion all the columns are filled out, and 

then the cell names replaced by their figure values, which yields 
the same kind of magic square as the one communicated by Prof. 
Smith, with these differences only, that ours starts in the left 
corner with number I and the vertical rows are exchanged with 

the horizontal ones. It is scarcely necessary to point out the beauti
ful symmetry in the distribution of the figures which becomes fully 
apparent when we consider their cell names. Both the letters, A, 
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B, C, D, and the figures, I, 2, 3, 4, are harmoniously distributed 
over the whole square, so as to leave to each small square its dis

tinct individuality, as appears from Fig. 223. 

A B c D 1 4 2 3 

D c B A 2 3 1 4 

B A D c 3 2 4 1 

c D A B 4 1 3 2 

Fig. 223. 

The center square in each case exhibits a cross relation, thus: 

ic!BJ 
~ 

In a similar way each one of the four groups of four cells in 

each of the corners possesses an arrangement of its own which is 

symmetrically different from the others. 

P. C. 



CHAPTER V. 

A MATHEMATICAL STUDY OF MAGIC 

SQUARES. 

A NEW ANALYSIS. 

MAGIC squares are not simple puzzles to be solved by the old 

rule of "Try and try again," but are visible results of "order" 

as applied to numbers. Their construction is therefore governed by 

laws that are as fixed and immutable as the laws of geometry. 

It will be the object of this essay to investigate these laws, and 
evolve certain rules therefrom. Many rules have been published 

a ,a c 
~ "' %o' "' ' !I 'II 

8 I 6 2J 2 2() 

d e !I "' "' "" 
'!I ' " !I 

J .f" ' 12 IJ' IJ' 

;I m ,. .. "' .. 
y " !I 'Y " 

.!) 2 /() 2,f 7 

Fig. 224. Fig. 225. Fig. 226. Fig. 227. 

by which various magic squares may be constructed, but they do 
not seem to cover the ground comprehensively. 

Let Fig. 224 represent a 3 X 3 magic square. By inspection we 
note that: 

h+c=b+m 
and h + m =g+ c 

therefore 2h = b + g 

In this way four equations may be evolved as follows: 
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2h= b+g 
2n=b+d 
2c= d+m 
2a=m+g 

It will be seen that the first terms of these equations are the 

CJUantities which occur in the four corner cells, and therefore that 

the quantity in each corner cell is a mean between the two quan

tities in the two opposite cells that are located in the middle of 

the outside rows. It is therefore evident that the least quantity in 

the magic square must occupy a middle cell in one of the four 

outside rows, and that it cannot occupy a corner cell. 
Since the middle cell of an outside row must be occupied by the 

least quantity, and since any of these cells may be made the middle 

cell of the upper row by rotating the square, we may consider this 

cell to be so occupied. 
Having thus located the least quantity, it is plain that the next 

higher quantity must be placed in one of the lower corner cells, 
and. since a simple reflection in a mirror would reverse the position 

of the lower corner cells, it follows that the second smallest quantity 

may occupy either of these corner cells. Next we may write more 

equations as follows: 

also 

therefore 

and 

a+ e + n = S (or summation) 

d+e+g=S 
h+e+c=S 

a+d+h=S 
n+g+c=S 

Je=S 

e=S/3 

Hence the quantity in the central cell is an arithmetical mean 

between any two quantities with which it forms a straight row or 

column. 
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With these facts in view a magic square may now be constructed 

as shown in Fig. 225. 

Let x, representing the least quantity, be placed in the middle 

upper cell, and x + y in the lower right-hand corner cell, y being 

the increment over x. 
Since x + y is the mean between x and the quantity in the 

left-hand central cell, this cell must evidently contain x + 2y. 

Now writing x + v in the lower left-hand corner cell, (con

sidering v as the increment over x) it follows that the central 

right-hand cell must contain x + 2V. 

Next, as the quantity in the central cell in the square is a mean 

between x + 2y and x + 2v, it must be filled with x + v + y. It 

now follows that the lower central cell must contain x + 2V + 2y, 

and the upper left-hand corner cell x + 2V + y, and finally the 

upper right-hand corner cell must contain x + v + 2y, thus com

pleting the square which necessarily must be magic with any con

ceivable values which may be assigned to x, v, and y. 

We may assign values to :r, v, and y which will produce the 

numbers I to 9 inclusive in arithmetical progression. Evidently x 
must equal I, and as there must be a number 2, either v or y must 

equal I also. 

Assuming y = I, if v = I or 2, duplicate numbers would 

result, therefore v cannot be less than 3· 

Using these values, viz., x =I, y = I and v = 3, the familiar 

3 X 3 magic square shown in Fig 226 is produced. 

Although in Fig. 226 the series of numbers used has an initial 

number of I, and also a constant increment of r, this is only an 

accidental feature pertaining to this particular square, the real fact 
being that a magic square of 3 X 3 is always composed of three sets 

each of three numbers. The difference between the numbers of 
each trio is uniform, but the difference between the last term of one 

trio and the first term of the next trio is not necessarily the same as 
the difference between the numbers of the trios. 

For example, if x = 2, y = 5 and v = 8, the resulting square 
will be as shown in Fig. 227. 
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The trios in this square are as follows: 

2- 7-I2 

IO- IS-20 

I8-23-28 

The difference between the numbers of these trios IS y = 5, 

and the difference between the homologous numbers is v = 8. 

A recognition of these different sets of increments is essential 

to the proper understanding of the magic square. Their existence 

is masked in the 3 X 3 square shown in Fig. 226 by the more or less 

accidental quality that in this particular square the difference be

tween adjacent numbers is always r. Nevertheless the square given 

in Fig. 226 is really made up of three trios, as follows: 

Ist trio I- 2-3 

2d " 4-5-6 

3d " 7-8-9 

in which the difference between the numbers of the trios is y = I, 

and the difference between the homologous numbers is v = 3· 

Having thus acquired a clear conception of the structure of a 

3 X 3 magic square, we are in a position to examine a 9 X 9 com

pound square intelligently, this square being only an expansion of 

the 3 X 3 square, and governed by the same constructive rules. 
Referring to Fig. 229 the upper middle cells of the nine sub

squares may first be filled, using for this purpose the terms, x, t, and 

s. Using these as the initial terms of the subsquares the square may 

then be completed, using y as the increment between the terms of 

each trio, and v as the increment between the homologous terms of 
the trios. The completed square is shown in Fig. 228, in which the 

assignment of any values to x, y, v, t and s, will yield a perfect, 

compound 9 X 9 square. 

Values may be assigned to x, y, v, t and s which will produce 
the series I to 8r inclusive. As stated before in connection with 

the 3 X 3 square, x must naturally equal I, and in order to produce 
2, one of the remaining symbols must equal r. In order to avoid 

duplicates, the next larger number must at least equal 3, and by 
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the same reason the next must not be less than 9 and the remaining 

one not less than 27. Because I+ I+ 3 + 9 + 27 = 41, which 
is the middle number of the series I-8I, therefore just these 

values must be assigned to the five symbols. The only symbol 

whose value is fixed, however, is x, the other four symbols may have 

the values I - 3- 9 or 27 assigned to them indiscriminately, thus 

producing all the possible variations of a 9 X 9 compound magic 
square. 

If v is first made I and y = 2, and afterwards y is made I and 

v = 2, the resulting squares will be simply reflections of each other, 

etc. Six fundamental forms of 9 X 9 compound magic squares 

may be constructed as shown in Figs. 230, 231, and 232. 

Only six forms may be made, because, excluding x whose value 

is fixed, only six different couples may be made from the four re

maining symbols. Six cells being determined, the rest of the square 

becomes fixed. 

These squares are arranged in three groups of two each, on 

account of the curious fact that the squares in each pair are mu

tually convertible into each other by the following process : 

If the homologous cells of each 3 X 3 subsquare be taken in 

order as they occur in tht. 9 X 9 square, a new magic 3 X 3 square 
will result. And if this process is followed with all the cells and 

the resulting nine 3 X 3 squares are arranged in magic square 

order a new 9 X 9 compound square will result. 
For example, referring to the upper square in Fig. 230, if the 

numbers in the central cells of the nine 3 X 3 subsquares are ar
ranged in magic square order, the resulting square will be the 

central 3 X 3 square in the lower 9 X 9 square in Fig. 230. This 
1aw holds good in each of the three groups of two squares (Figs. 

230, 231 and 232) and no fundamental forms other than these can 

be constructed. 
The question may be asked: How many variations of 9 X 9 

compound magic squares can be made? Since each subsquare may 
assume any of eight aspects without disturbing the general order of 
the complete square, and since there are six radically different, or 
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fundamental forms obtainable, the number of possible variations 

is 6 X 8"! 

We will now notice the construction of a 4 X 4 magic square 

as represented in Fig. 233. From our knowledge of this magic 

square we are enabled to write four equations as follows: 

a+ h + p + y = S (Summation) 

g+h+n+m=S 
k+o+p+s=S 
t+o+n+d=S 

By inspection of Fig. 233 it is seen that the sum of the initial 

terms of these four equations equals S, and likewise that the sum 

a h c d a a 
.X y a. g ~ a 

ol: v y I 3 12 /J 

!I " n nz 
6 
~ 

b c c ~ 
y t: !I X 14 II 7 z 

A: {l /' s c 
X 

c 6 6 c 
y t- v ol: l.r 10 t5 J 

t y ..c !/ 
g a. a tt X y -t !1 Q a. ~ .z v t: ¥ ,j" .9 16 

Fig. 233. Fig.234. Fig. 235 Fig.236 

of their final terms also equals S. Hence h + n + o + p = S. It 

therefore follows: 
( rst) That the sun~ of the terms contained in the inside 2 X 2 

square of a 4 X 4 square is equal to S. 
(2d) Because the middle terms of the two diagonal columns 

compose this inside 2 X 2 square, their end terms, or the terms in 
the four corner cells of the 4 X 4 square must also equal S, or: 

(3d) Because the two middle terms of each of the two inside 
columns (either horizontal or perpendicular) also compose the cen
tral 2 X 2 square, their four end terms must likewise equalS. 

Vve may also note the following equations: 

b+c+v+x=S 
b-t-c+a+d=S 
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therefore 

a+d=v+x, 

which shows (4th) that the sum of the terms in any two contiguous 

corner cells is equal to the sum of the terms in the two middle cells 

in the opposite outside column. 

Because 

u+h+n+m=S 
and 

o+h+n+p=S 
it follows that 

or, (5th) that the sum of the two end terms of any inside column, 
(either horizontal or perpendicular) is equal to the sum of the two 

middle terms in the other parallel column. 

Since 

and 

therefore 

or (6th) the sum of the two end terms of a diagonal column is equal 

to the sum of the two inside terms of the other diagonal column. 

These six laws govern all 4 X 4 magic squares, but the regu

lar or associated squares also possess the additional feature that 

the sum of the numbers in any two cells that are equally distant 

from the center and symmetrically opposite to each other in the 
square equals S j2. 

Squares of larger dimensions do not seem to be reducible to 

laws. on account of their complexity. 

NOTES ON NU:MBER SERIES USED IN THE CONSTRUCTION OF 

1\IAGIC SQUARES. 

It has long been known that magic squares may be construct:d 
from series of numbers which do not progress in arithmetical order. 
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· Experiment will show, however, that any haphazard series cannot 

be used for this purpose, but that a definite order of sequence 

is necessary which will entail certain relationships between different 

members of the series. It will therefore be our endeavor to deter

mine these relationships and exEI"ess the same in definite terms. 

Let Fig. 237 represent a magic square of 4 X 4· By our 
rule No. 4 it is seen that "the sum of the terms in any two con

tiguous corner cells is equal to the sum of the terms in the two 
middle cells in the opposite outside column." Therefore in Fig. 

237, a + d = v + s, and it therefore follows that a- v = s- d. 

In other words, these four quantities form a group with the inter-

a 6 c d 

g k. k l 

m "" 0 p 

~ ~ s .9 

Fig. 237. 

a-v-s-d 
I 

l • 
"' I -t 

Fig. 238. 

a-v-.s-d 
I I 
t 0 
I I 

"' k I I 
t 6 

Fig. 239. 

a-v-.s-d 
I I 
/-0=11.-9 
II II 

}' k 
I I 
t ~ 

Fig. 240 

relationship as shown. By the same rule (No. 4) it is also seen 

that a+ t = l + p, and hence also, a -l = p- t, giving another 
group of four numbers having the same form of interrelationship, 

and since both groups have "a" as an initial number, it is evident 

that the increment used in one of ihese groups must be different 

from that used in the other, or duplicate numbers would result. It 
therefore follows that the numbers composing a magic square are 

not made up of a single group, but necessarily of more than one 

group. 
Since the term ''a" forms a part of two groups, we may 

write both groups as shown in Fig. 238, one horizontally and the 

other perpendicularly. 
Next, by rule No. 5, it is shown that "the sum of the two end 

terms of any inside column (either horizontal or perpendicular) is 
equal to the sum of the two middle terms in the other parallel col

umn." It therefore follows that v + b = k + o or v- o = k- b. 
lJsing the term vas the initial number, we write this series perpen

dicularly as shown in Fig. 239. In the same way it is seen that 
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l + g = n + o, or l- o = n- g, thus forming the second hori

zontal column in the square (Fig. 240). Next p + m = h + k or 

p- k = h- m, forming the third horizontal column and in this 

simple manner the square may be completed as shown in Fig. 241. 

It is therefore evident that a 4 X 4 magic square may be 

formed of any series of numbers whose interrelations are such as 

to permit them to be placed as shown in Fig. 241. 

The numbers I to I6 may be so placed in a great variety of 

ways, but the fact must not be lost sight of that they only inciden

tally possess the quality of being a single series in straight arith

metical order, being really composed of as many groups as there 

are cells in a column of the square. Unless this fact is remem

bered, a clear conception of magical series cannot be formed. 

In illustration of the above remarks, three diagrams are given 

in Figs. 242-244. Figs. 242 and 243 show arrangements of the 

u- Y- s- d 
I I I I 
l-o-n-g 
I I II P 
p- k-h -1n 
I I I I 
't-6-c-y 

1-2E.J-J(. 
I I I I 
J'- 6 -J -d' 
H II II I 

g -10•11-12 
I I I I 

13 -lti'=IS-16 

I -2 =11-I:L 
I I I I 

.J -/I ~9 -/0 
0 II U h 
b -,j- =16-IS 
I I I I 

4 -7 ~l'f-1.3 

2-9-7-llf 
I I I I 

I0-15:21-26 
II II II II 

12-11 =1.9-13 
I I I I 

.20-IJ=.3.3-.30 

Fig. 24r. Fig. 242. Fig. 243. Fig. 244. 

numbers I to I6 from which the diverse squares Figs. 245 and 246 

are formed by the usual method of construction. 

Fig. 244 shows an irregular series of sixteen numbers, which, 

when placed in the order of magnitude rttn as follows: 

2-7-9-IO-II-I2-I4-I5-I7-I8-I9-20-2I-26-30-33 

The magic square formed from this series is given in Fig. 247. 

In the study of these number series the natural question presents 

itself: Can as many di'l.JCrse squares be formed from one series as 

from another? This question opens up a wide and but little ex
plored region as to the diverse constitution of magic squares. This 
idea can therefore be merely touched upon in the present article, 
examples of several different plans of constrttction being given in 

illustration and the field left at present to other explorers. 

Three examples will be given, Fig. 245 being what is termed 
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an associated square, or one in which any two numbers that are 

diametrically opposite and equidistant from the center of the square 

will be equal in summation to any other pair of numbers so 

situated. The second, Fig. 246, is a square in which the sum 

of every diagonal of the four sub-squares of 2 X 2 is equal, and 

the fourth, Fig. 248, a square in which the pairs of numbers having 

similar summations are arranged symmetrically in relation to a 

perpendicular line through the center of the square. 

Returning now to the question, but little reflection is required 

to show that it must be answered in the negative for the following 

reasons. Fig. 247 represents a magic square having no special 

qualities excepting that the columns, horizontal, perpendicular and 

diagonal, all have the same summation, viz., 66. Hence any series 

I 14 1.5 ¥ I 1 l'l ~~ 2 17 JJ 14 I II 6 16 

j II 10 ,j" IO 16 ,j" J :!6 1.9 /I 10 14 /..3 4 J 

12. 1 6 .9 /j' 9 4 6 15 21 I.J" 12 7 2 IJ' 10 

/.} 2 J 10 8 2 II /J 20 9 7 .JO 12 8 .9 s 

Fig. 245. Fig. 246. Fig. 247. Fig. 248. 

of numbers that can be arranged as shown in Fig. 241 will yield 

magic squares as outlined. But that it shall also produce squares 

that are associated, may or may not be the case accordingly as the 

series may or may not be capable of still further arrangement. 

Referring to Fig. 237, if we amend our definition by now call

ing it an associated square, we must at once introduce the following 

continuous equation: 

a+y=h+o=t+d=n+k=b+s=c+v=g+P=m+~ 

and if we make our diagram of magic square producing numbers 

conform to these new requirements, the number of groups will at 

once be greatly curtailed. 

The multiplicity of algebraical signs necessary in our amended 

diagram is so great that it can only be studied in detail, the complete 

diagram being a network of minus and equality signs. 

The result will therefore only be given here, formulated in the 
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following laws which apply m large measure to all associated 

squares. 
I. Associated magic squares are made of as many series or 

groups of numbers as there are cells in a column. 
II. Each series or group is composed of as many numbers as 

there are groups. 
III. The differences between any two adjoining numbers of a 

J -/3•13-28 
I I I I 

¥ -IJt-1.51-2.9 
• n u 1 

21-.}1-.36- *" 
I I I I 

.e.t-J2-.3J-47 

Fig. 249. 

.J 

2.9 

46 

22 

J2 JJ 2.1 

J6 .3/ 4 

1.9 /4 21 

IJ /J 47 

Fig. 250. 

senes must obtain between the corresponding numbers of all the 
senes. 

IV. The initial terms of the series compose another series, as 

do the second, third, fourth terms and so on. 

V. The differences between any adjoining numbers of these 

secondary series must also obtain between the corresponding terms 

of all the secondary series. 

I -¥ 7 /0 /J 2S .38 / /~ 27 

8 II /9 7 20 JS /.} // 24- 2Z 

/.Y /$ 21 2~ 27 10 8 21 J4 J2 

22 2S 28 J/ "* 20 18 Jl 29 7 
29 J2 JoY J8 4/ 1-'" 2.1 41 4 17 

Fig. 251. Fig. 252. 

The foregoing rules may be illustrated by the series and asso

ciated square shown in Figs. 242 and 245. 

Following and consequent upon the foregoing interrelations 
of these numbers is the remarkable quality possessed by the asso
ciated magic square producing series as follows: 

If the entire series is written out in the order of magnitude and 
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the differences between the adjacent numbers are written below, 

the row of differences will be found to be geometrically arranged 

on each side of the center as will be seen in the following series 

taken from Fig. 249· 

3-4- I3-I4-I8-I9-2I-22-28-29-3I-32-36-37-46-47 

9 4 2 I (6) I 2 4 9 

In the above example the number 6 occupies the center and the 

other numbers are arranged in symmetrical order on each side of it. 

It is the belief of the writer that this rule applies to all associated 

squares whether odd or even. 

The following example will suffice to illustrate the rule as 

applied to a 5 X 5 magic square, Fig. 25I showing the series and 

Fig. 252 the square. 

I. 4. 7. 8 .IO.II.I3.I4.I5.I7.I8.20.2!.22.24.25.27.28.29.3I.32.34·35·38.4I 

3 3 I 2 I 2 I I 2 I 2 III 2 I 2 I I 2 I 2 I 3 3 

The diagram shown in Fig. 253 is given to impress upon the 

reader the idea that a natural series of continuous numbers may 

be arranged in a great variety of different magic square producing 

series. A perfect 9 X 9 square will be produced with any con
ceivable values that may be assigned to the symbols a, b, c, d and g, 

used in this diagram. If the square is to be normal we must assign 

the numbers I, I, 3, 9, 27 for these symbols, and a must equal I. It 

is then evident that for 2 there is a choice of four cells, as this mtm

ber may be either a+ b, a+ c, a+ d or a+ g. Selecting a+ b for 
2, makes b = I. There is then a choice of three for 4, and for 
this number we will choose a+ d, making d = 3· A choice of 

two, (a + g and a + c) now remains for IO. Selecting a + g, 

(and thus making g = 9) 28 becomes the fixed value of a+ c, 
giving the value of 27 to c. It is thus evident that after locating 
I in any cell (other than the central cell) we may then produce at 

will ( 4 X 3 X 2 =) 24 different 9 X 9 magic squares. N everthe
less, each of these twenty-four squares will be made on exactly 

the same plan, and using the same breakmoves; the variations, 
radical as they may appear to be, are only so because different 
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series of the same numbers are employed, of which series, it has 

been shown, there are at least twenty-four. 

If the reader will take Fig. 253 and fill in number values, 

making "b" (successively) = 3, 9, and 27, he will acquire a clear 

idea of the part taken in magic squares by the series conception. 

The work of determining the possible number of 9 X 9 magic 

~ a a a q 

a Cl a a 2g 2{ Zg_ ~ c 2~ c 2g 2d it 2d 2e 
6 26 b 2c 26 b c 26 
Cl a a a a a 
g ci a.. 2d 29. a 29. ~ a 

2d c 2g c (;l 9 2t:l c 
1~ " 2 , 6 2C 26 2c 

6 
a. a a Cl a a a 

a 2g 2d g 2[7 fl a .9 
cl 2c c 2g c 2d lb 2.d 
c 2b 0 d 26 A 2c. 2C 

b 
a a a a a. a a. 

2g a. 2g 
~ 2g ~ a z-?t ct 

2C 2.d 22 b 2h 
6 c 26 b 2d. 2.~ 2C. 

a a. a a 
a. 

Zf! a 29 h 2~ a a 
26 

~ 
2d-

~ a d 2g 
zd 2;j 2c c b 2c 

~ 2 I> g 26 

a a a. a d a a.. a. 
2g g 2g g 2c 2~ 

C( Z!J 2"-2.d. 
2c 21> 2c 2 .2..& d c 6 

d 6 'Is 26 

a. a a a a a a 
a 2g ~ .9 d 29 a 29 
g 2c 2t:. <t 

2d 6 2a' c 2d c 6 2C 2 6 c 26 6 2" 
a a a a a Q 

2!1. 
~ 

a 
2~ 

d a 2d 2g a 
).(i 2c 2C 2g 2.C d 9 c 6 2" b c 2" 

c 
26 ,! 

a a a a 
a a. 9 

a a a 2!] 9 29 

~ 
c 2d cl 29 2.d it. 2c 2d. 

.21> I. 2C zl> 2e c 2.!. c 
6 

Fig. 253. 

squares 1s now greatly simplified, for all elements are thus de

termined saving one, i. e., the number of possible modes of pro

gression. 

I may be located in any of 8o cells and progress may be made 

in x ways, and 24 variants may be constructed in each case. There

fore, the possible number of different 9 X 9 squares will be at least 
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8o X 24 X X = 1920%. 

A single example will serve to illustrate the possibilities open 

to x, the numerical Yalue of which will be left for the present for 

others to determine. As previously given, let 

a= I 

b = I 

d= 3 
g= 9 
c = 27 

Then Fig. 254 will represent a 9 X 9 Sllllare Lased on the 

arrangement of symbols given in Fig. 253. 

29 16 JJ 20 61 24 6.> J"2 6.9 

72 J2 /.9 J6 2.3 t)~ 27 6tf 2J' 

J/ 7.5 JS 22 J/) 26 67 J ,71 

14 .34 Jtf JJ' 2.J 42 2 JO 6 

9 17 .37 J'/ "'I I 9.5 ,j" 7" 
J6 /2 so 40 ,j7 44 *- *" J' 

II 79 /.J .>6 4.3 6o 47 7 •.)/ 

,J"~ /.fl. JS ltf SSI 40 6.3 so /0 

IJ JO 17 .Jtf 2/ 62 49 66 SJ 

Fig. 25~. 

Considering the numbers I to 8r to be arranged in arithmetical 

order the construction of this square must be governed by the fol

lowing rule : 
Regular spac·ing: Three successive cells in upward right-hand 

diagonal. 

Breakmoves between 

3 and 4 ll 
6 7 
9 

12 
IO r 
I 3 etc. J 

Three cells down and one to left. 
(Extended knight's move.) 
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and between 

27 and 
54 
8I 

28 } 
55 

I 

two cells to the right. 

In fact, however, the square is built up by the common rule, 
VIZ.: 

Regular spacing: Nine successive cells in upward right-hand 

diagonal, and all breakmoves, two cells to the right, the numbers 

I to 8r being arranged in the following series: 

1.2.3 

4·5·6 
7.8.g 

28.29·30 

31.32.33 

34·35·36 

55·56·57 
58.5g.6o 
6r .62.63 etc., etc. 

As shown above, the numbers I to 8r may be arranged in at 

least twenty-four of such magic square producing series, thus giving 

twenty-four different squares, by the same method of progression, 

and using the same breakmoves. 

L. S. F. 



CHAPTER VI. 

MAGICS AND PYTHAGOREAN NUMBERS. 

"I have compiled this discourse, which asks 
for your consideration and pardon not only be
cause the matter itself is by no means easy to 
be handled, but also because the doctrines herein 
contained are somewhat contrary to those helfl 
by most of the Platonic philosophers." Plutarch. 

THE mysterious relationships of numbers have attracted the 
minds of men in all ages. The many-sided Franklin, whose 2ooth 

anniversary the philosophical, scientific, and literary worlds have 

recently celebrated, used to amuse himself with the construction 

of magic squares and in his memoirs has given an example of his 
skill in this direction, by showing a very complicated square with 

the comment that he believes the same to be the most magical magic 

square yet const'l"ucted by any magician. 

That magic squares have had in centuries past a deeper mean

ing for the minds of men than that of simple mathematical curios 

we may infer from the celebrated picture by Albert Diirer entitled 
"Melancolia," engraved in 1514. The symbolism of this engraving 
has interested to a marked degree almost every observer. The figure 

of the brooding genius sitting listless and dejected amid her un
completed labors, the scattered tools, the swaying balance, the flow

ing sands of the glass, and the magic square of 16 beneath the bell, 
-these and other details reveal an attitude of mind and a connection 

of thought, which the great artist never expressed in words, but 
left for every beholder to interpret for himself. 

The discovery of the arrangement of numbers in the £orm of 
magic diagrams was undoubtedly known to the ancient Egyptians 
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and this may have formed part of the knowledge which Pythagoras 

brought back from his foreign travels. We have no direct evidence 
that the Pythagorean philosophers in their studies of the relation

ship of numbers ever combined them into harmonic figures, yet tl1'! 

MELANCHOLY. 

supposition that they did so is not at all improbable. Such diagrams 
and their symbolic meanings may well have formed part of the 
arcana of the esoteric school of Pythagoras, for similar facts were 

accounted by ancient writers as constituting a part of the aporrheta 
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of the order and the story is told of an unworthy disciple who re
vealed the secret of the construction of the dodecahedron inscribeu 

within a sphere, this being a symbol of the universe. 
Among the best expositions of the Pythagorean philosophy are 

sections of the "Timreus" and "Republic" of Plato. These dia

logues were written after Plato's return from Magna Grrecia, where 

from contact with Archytas of Tarentum and other philosophers, 

he imbibed so much of the Italian school that his whole system of 

philosophy became permeated with Pythagorean ideas. It is even 
suggested that he incorporated into these dialogues parts of the 

lost writings of Philolaus, whose works he is known to have pur

chased. No portions of the dialogues named have been more 
puzzling to commentators than the vague references to different 

numbers, such as the number 729, which is chosen to express the 

difference between the kingly man and the tyrant, or the so-called 

number of the State in the "Republic," or the harmonic number of 
the soul in the "Timreus" of which Plutarch said that 'it would be 

an endless toil to recite the contentions and disputes that have from 

hence arisen among his interpreters-" Either our text of these pas

sages is corrupt or Plato is very obscure, throwing out indirect hints 

which would be intelligible only to those previously informed. Plato 

states himself in the "Phredrus" that "all writings are to be regarded 
purely as a means of recollection for him who already knows," and 

he, therefore, probably wrote more for the benefit of his hearers 

than for distant posterity. 

It is upon the principle of a magic square that I wish to inter
pret the celebrated passage in the "Republic" referring to the number 
729, proceeding from this to a discussion of certain other numbers 

of peculiar significance in the Pythagorean system. My efforts in 
this direction are to be regarded as purely fanciful; the same may be 

said, however, of the majority of other methods of interpretation. 
The passage from the "Republic" referred to (Book IX, § 587-8, 

Jowett's translation) reads as follows: 
Socrates. "And if a person tells the measure of the interval 

which separates the king from the tyrant in truth of pleasure, he 
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will find him, when the multiplication is completed living 729 times 

more pleasantly, and the tyrant more painfully by this same interval." 
Glaucon. "What a wonderful calculation." 

Socrates. "Yet a true calculation and a m:mber which closely 

concerns human life, if human life is concerned with days and nights 
and months and years." 

The m:mber 729 is found to be of great importance all through 

the Pythagorean system. Plutarch states that this was the number 

belonging to the sun, just as 243 was ascribed to Venus, 81 to Mer

ct:ry, 27 to the moon, 9 to the earth, and 3 to Antichthon (the- earth 

opposite to ours). These and many s:milar numbers were derived 

frcm one of the progressions of the Tetractys,-1 :2: :4:8 and I :3 

: :9 :;q. The figures of the above proportions were combined by 

Plato into one series, I, 2, 3, 4, 9. 8, 27. (Timceus, § 35). Plutarch 
in his "Procreation of the Soul," which is simply a commentary 
cpon Plato's "Timceus," has rep-

resented the numbers in the form 

of a triangle; the interior num-

bers, 5, 13, and 35, representing 
the sums of the opposite pairs, 

1·.-ere also of great importance. 

The deep significance of the 

Tetractys in the system of Py-

2 

4 

G 3 

13 9 

thagoras may be inferred from 

a fragment of an oath contained 
BL-------~35~-----~27 

in the "Golden Verses." 
Fig. 255. 

Nat p.?J. -rov tlp.l-rfpov tf!vx§ 7rapa86v-ra TfTpaKTov 
ITayO.v, d.Ev&ov cf>Vuews p,,Wp.aT' ;xouuav. 

"Yea, by our Tetractys which giveth the soul the fount and 

source of ever flowing nature!" 
Odd numbers were especially favored by the Pythagoreans 

and of these certain ones such as 3 and its higher powers were 
considered to have a higher significance than others and in this way, 

perhaps, arose the distinction between expressible and inexpressible 
or ineffable numbers ( dpdJp.ot p7JTOt Kat fl.ppYJTOt). Numbers which 

expressed some astronomical fact also held high places of honor, 
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as may be seen from a statement by Plutarch (Zoe. cit.) in reference 
to the Tetractys. "Now the final member of the series, which is 

27, has this peculiarity, that it is equal to the sum of the preceding 

numbers (r+2+3+4+9+8); it also represents the periodical num
ber of days in which the moon completes her monthly course; the 

Pythagoreans have made it the tone of all their harmonic intervals." 

Fig. 256. 

This passage indicates sufficiently the supreme importance of 
the number 27. 

If we construct a magic square 27X27 upon the plan of a 
checker-board-arranging the numbers r to 729 first in numerical 
order, then shifting the 9 largest squares (9X9) into the positions 
in(licated in the familiar 3X3 square, repeating the process with 
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the subdivisions of the 9X9 squares and so on down-we will arrive 
at the following combination.1 

It will be noted that we have 365 white squares or days and 
364 dark squares or nights-a veritable "checkerboard of nights and 
days." The number 365, the days of the solar year, very appro
priately occupies the centr.e of the system. The columns, hori

zontals, and diagonals of the central square 3X3 foot up 1095, or 
the days of a 3 year period, those of the larger center square 9X9 
foot up 3285 the days of a 9 year period, while those of the entire 
combination 27X27 foot up g855,2 the days of a 27 year period,
in other words, periods of years corresponding to the Tetractys 
1, 3, g, 27. We may with safety borrow the language of Plato and 
say that the above arrangement of numbers "is concerned with days 
and nights and months and years." 

The interpretation of the other passage referred to in the "Re

public"-the finding of the number of the State-(Book VIII, 
§ 546) has been a subject of the greatest speculation and by con
sulting the various editions of Plato it will be found that scarcely 
any two critics agree upon a solution.8 As Jowett remarks, it is 
a puzzle almost as great as that of the Beast in the Book of Reve
lation. Unfortunately we have no starting-point from which to 
begin our calculations ; this and the very uncertain meanings of 
many of the Greek terms have caused many commentators to give 
up the solution of the problem in sheer despair. Aristotle, who was 
a hearer of Plato's, writes as if having a full knowledge of the 
mystery; Cicero, however, was unable to solve the riddle and his 
sentiment became voiced in the proverb numeris Platonicis nihil 
obscurius. 

By taking a hint from our magic square and starting with the 

1 This method of constructing composite magic squares is, so far as I 
know, original with the writer. It bears some resemblance to the method of 
Schubert (see "Compound Magic Squares," p. 44); the numbers of each 
square, however, increase in periods of threes instead of by sequence. 

• Not only the perpendiculars, horizontals, and diagonals of this large 
square foot up 9855, but there are an almost indefinite number of zig-zag 
lines, which give the same footing. 

• Schleiermacher, Donaldson, and Schneider suggest 216, and much may 
be said in favor of this number. Jowett gives 8ooo as the possible solution. 
Others suggest 951, 5040, 17,500, 1728, 10,000, etc. 
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number 27, I believe we may arrive at as good a solution of the 

problem as any that I have seen suggested. The following inter
pretation of the Greek terms is offered. 

av~~(J£t~ OVVaf'EVai T£ Kat the square of Hoe num: 
t5vvaurev6f1evat ber times its root, 

increased by thrice the 
first terms (of the 
Tetractys) 

Ttrrapar 0~ opovr l.a(3ov- and four times the 
uat 

Op.moVvrwv re Ka£ civo~ 

P,OlOVVTCJV Ka£ £iv~6VTCJV 

Kat rp0tv6rvwv 

whole series 

of numbers unlike yet 
bearing the same ra
tio whether increas
ing or decreasing 

(i, e. 1 :2::4:8 or 8:4: :2:1 It may also refer 
to the ascending and descending figures 

of the triangle. 8, 4, 2, 1, 3, g, 27) 

~ravra 1rpoufryopa Kat PT/Ta makes the sum com-
7rpo~ &A.A.7JA.a aTrerp11vav mensurable and ex-

'Tr£f'Tracft ov(vyei~ 

rpi~ av~7J{iti~ 

pressible in all its 
parts. 

(i e. 2460 is easily divisible by 1, 2, 3, 4. 5, 
6, zo, 12 etc.) 

this sum increased by 
)1 

and adding 5 

is multiplied by 3 

246oXrJ1= 3280 

3280+5= 3285 

3285X3= 9855 

This solution of the problem, 9855, it will be noted, brings us 
again but by a different route to the magic number of our large 

square. The second part of the passage contains a description of 
the number by which the above calculation may be verified. 

ovo dpflovia~ 1rapexemt (the number) yields 
two harmonic parts, 

one of which is a 
square 

multiplied by roo: 

the other has one side 
equal to the square 

and the other oblong 

gXroo= goo 

3 

3X2g8s= 8955 
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The remainder of the passage describes the length of the ob

long which we have shown above to be 2985: 

tKaTOV flEV aptfJpi;,v arro (the oblong) is IOQ 

Otap.frpwv rrep.rraoo~, times the side of a 
rectangle having di
agonals of 5· IOOX3= 300 

(i. e. having sides of 3 and 4.) 

01J7i:Jv O.op.lvwv iva~ iKaa- less of one each of the 
Twv, expressible parts, i. e. 

4 and 5 

appfJrwv cle &veiv, and 2 of the inexpressi-
ble 

EKaTov oe Kv{3wv Tptaoo~ plus 100 times the cube 
of 3 

sum= 2985 

Plato states that the number of the State "represents a geo
metrical figure which has control over the good and evil of births. 
For when your guardians are ignorant of the right seasons and unite 
bride and bridegroom out of due time, the children will not be 
goodly and happy." The number 9855, expressing a period of 
27 years, might thus represent the dividing line between the ages 
when men and women should begin to bear children to the State,-

20-27 years for women, 27-34 years for men. (See also "Republic," 
Book V, § 460). Aristotle in his "Politics" (V, 12. 8) says in 
reference to the number of the State that when the progression of 
number is increased by 1/ 3 and 5 is added, 2 harmonies are produced 
giving a solid diagram. This, as may be seen from our analysis of 
the first part of the passage, may have reference to the number 
3285, which, being represented by 32 X365, may be said to have the 
dimensions of a solid. 

In his "Reflections on Magic Squares" Dr. Carus gives- some 

very striking examples of the relationship between magic squares 
and the musical figures of Chladni. I would like to touch before 
concluding upon a closely related subject and show certain connec
tions which exist between the magic square, which we have con
structed, and the numbers of the Pythagorean harmonic scale. This 
scale had, however, more than a musical significance among the 
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Greek philosophers ; it was extended to comprehend the harmony 
of planetary movements and above all else to represent the manner 
in which the "soul of the universe" was composed. It is especially 
in the latter sense that Plato employs the scale in his "Timreus." 

In a treatise by Timreus the Locrian upon the "Soul of the 
World and Nature," we find the following passage: "Now all these 
proportions are combined harmonically according to numbers, which 
proportions the demiurge has divided according to a scale scien
tifically, so that a persort is not ignorant of what things and by what 
means the soul is combined ; which the deity has not ranked after 
the substance of the body .... , but he made it older by taking the 
first of unities which is 384. Now of these the first being assumed 
it is easy to reckon the double and triple ; and all the terms, with 
their complements and eights must amount to II4,695·" (Trans
lation by Burge.) 

Plato's account of the combination of the soul is very similar 
to the above, though he seems to have selected 192, (384/2) for the 
first number. Plutarch in his commentary makes no mention of 
Timreus, but states that Crantor' was the first to select 384, for the 
reason that it represented the product of 82 X6, and is the lowest 
number which can be taken for the increase by eighths without 
leaving fractions. Another very possible reason, which I have not 
seen mentioned, is that 384 is the harmonic ratio of 272/2 or 364.5, 
a number which expresses very closely the days of the year. 

243 :256: :364·5 :384. 

The proportion 243: 256(3~: 44 ) was employed by the Pyth
agoreans to mark the ratio~ which two unequal semitones of the 
harmonic scale bear to one another. 

Batteux has calculated the 36 terms of the Pythagorean scale 
starting with 384 and his series must be considered correct, for it 
fulfils the conditions specified by Timreus,-the numbers all footing 

'Crantor lived nearly 100 years after Timreus the Locrian. The treatise 
upon the "Soul of the World and Nature," which bears the latter's name 
probably belongs to a much later period. 

'For further references to thi!> ratio see Plato's "Timreus," § 36, and 
Plutarch's "Procreation of the Soul," § 18. 
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up I I4/59S: A few of the numbers of tlus harmonic scale marking 
the "first unity" and several of the semitones will be given. 

( E 384 I 
1st octave 

1~ 
486 
729 (For Batteux's full series and 

{ c method of calculation the 
972 

2nd octave F 1458 
reader is referred to Burge's 
translation of Plato Vol. VI. 

{ c 1944 p. 171). 3rd octave B flat 2187 

4th octave B flat 4374 

By referring to our magic square it will be noted that the first 

of unities," 384, constitutes the magic number of the small 3 X 3 

square beginning with the number roo. If we arrange the magic 

numbers of the 8I squares (3X3) in the order of their magnitudes 

we find that they fall into 9 series of 9 numbers, each series beginning 

as follows: 

II III IV v VI VII VIII IX 

87 330 573 816 1059 1302 1545 1788 2031 

The intervals between these series are worthy of note. 

INTERVALS. 

Between I and II 243 the first member of the ratio 243:256. 
I " III 486 C of the 1st octave 
I " IV 729 F " " 1st 
I " v 972 c 2nd 
I " VII 1458 F " " 2nd 

I " IX 1944 c " " 3'd 

If we arrange the magic numbers of the large squares (9X9) 

in the same way, it will be found that they fall into 3 series of 3 
numbers, each series beginning 

1017 
III 

5391 

Interval between I and II= 2187 B-flat of the 3rd octave. 
I " III= 4374 B-flat " " 4th 

Numerous other instances might be given of the very intimate 
connection between magic squares and various Pythagorean num

bers, but these must be left for the curious-minded to develop for 

themselves. Such connections as we have noted are no doubt in 
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some respects purely accidental, being due to the intrinsic harmony 

of numbers and therefore not implying a knowledge by the ancients 

of magic squares as we now know them. The harmonic arrangement 
by the Greeks of numbers in geometrical forms both plane and 

solid may, however, be accepted, and Plato's descriptions of various 

numbers obscure and meaningless as they were to succeeding gen
erations, may have been easily comprehended by his hearers when 
illustrated by a mathematical diagram or model.6 

Differences between the methods of notation in ancient and 

modern times have necessarily produced differences in the concep
tion of numerical relations. The expression of numbers among the 

Greeks by letters of the alphabet was what led to the idea that every 
name must have a numerical attribute, but the connection of the 
letters of the name was in many cases lost, the number being re
garded as a pure attribute of the object itself. A similar confusion 
of symbols arose in the representation of various concepts by geo
metrical forms, such as the five letters of YrEIA and the symboliza

tion of health by the Pythagoreans under the form of the pentalpha 
or five-pointed star. 

It was the great defect of the Greek schools that in their search 
for truth, methods of experimental research were not cultivated. 
Plato in his "Republic" (Book VII, § 530-531) ridicules the em
piricists, who sought knowledge by studying the stars or by com
paring the sounds of musical strings, and insists that no value is 

to be placed upon the testimony of the senses. "Let the heavens 
alone and train the intellect" is his constant advice. 

If the examples set by Pythagoras in acoustics and by Archi
medes in statics had been generally followed by the Greek philos
ophers, our knowledge of natural phenomena might have been ad
vanced a thousand years. But as it happened there came to prevail 
but one idea intensified by both Plato and Aristotle, and handed 
down through the scholastics even to the present time, that know!-

• The description of the number of the State in the "Republic" and that 
of the Soul in the "Tim::eus" render such a mode of representation almost 
necessary. Plutarch ("Procreation of Soul," § 12) gives an illustration of an 
harmonic diagram SX7 containing 35 small squares "which comprehends in 
its subdivisions all the proportions of the first concords of music." 
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edge was to be sought for only from within. Hence came the flood 
of idle speculations which characterized the later Pythagorean and 

Platonic schools and which eventually undermined the structure of 

ancient philosophy. But beneath the abstractions of these schools 

one can discover a strong undercurrent of truth. Many Pythago

reans understood by number that which is now termed natural law. 

Such undoubtedly was the meaning of Philolaus when he wrote 
"Number is the bond of the eternal continuance of things," a senti

ment which the modern physicist could not express more fittingly. 

As the first study of importance for the youth of his "Republic" 

Plato selected the science of numbers ; he chose as the second ge

ometry and as the third astronomy, but the point which he empha

sized above all was that these and all other sciences should be 

studied in their "mutual relationships that we may learn the nature 
of the bond which unites them." "For only then," he states, "will 

a pursuit of them have a value for our object, and the labor, which 

might otherwise prove fruitless, be well bestowed." Noble utter

ance! and how much greater need of this at the present day with 

our complexity of sciences and tendency towards narrow speciali

zation. 

In the spirit of the great master whom we have just quoted 

we may compare the physical universe to an immense magic square. 

Isolated investigators in different areas have discovered here and 

there a few seemingly restricted laws, and paying no regard to the 

territory beyond their confines, are as yet oblivious of the great 
pervading and unifying Bond which connects the scattered parts 

and binds them into one harmonious system. Omar, the astron

omer-poet, may have had such a thought in mind, when he wrote: 

"Yes; and a single Ali£ were the clue
Could you but find it-to the treasure-house 
And peradYenture to the Master too; 

Whose secret presence, through creation's veins 
Running quicksilverlike eludes your pains;" etc. 

When Plato's advice is followed and the "mutual relationships 
between our sciences" are understood we may perchance find this 

clue, and having found it be surprised to discover as great a sim-
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plicity underlymg the whole fabric of natural phenomena as exists 

in the construction of a magic square. 

C. A. B. 

MR. BROWNE'S SQUARE AND LUSUS NUMERORUM. 

The 27 X 27 square of Mr. C. A. Browne, Jr. is interesting 

because, in additon to its arithmetical qualities commonly possessed 

by magic squares, it represents some ulterior significance of our 

calendar system referring to the days of the month as well as the 

days of the year and cycles of years. It is wonderful, and at first 

sight mystifying, to observe how the course of nature reflects even 

to intricate details the intrinsic harmony of mathematical relations; 

and yet when we consider that nature and pure thought are simply 

the result of conditions first laid down and then consistently carried 

out in definite functions of a distinct and stable character, we will 

no longer be puzzled but understand why science is possible, why 

man's reason contains the clue to many problems of nature and, 

generally speaking, why reason with all its wealth of a priori 
thoughts can develop at all in a world that at first sight seems to be 

a mere chaos of particular facts. The purely formal relations of 

mathematics, materially considered mere nonentities, constitute the 

bond of union which encompasses the universe, stars as well as 

motes, the motions of the Milky Way not less than the minute com

binations of chemical atoms, and also the construction of pure 

thought in man's mind. 

Mr. Browne's square is of great interest to Greek scho1ars be

cause it throws light on an obscure passage in Plato's Republic, re

ferring to a magic square the center of which is 365, the number of 

days in a year. 

The construction of Mr. Browne's square is based upon the 

simplest square of odd numbers which is 3X3. But it becomes 

somewhat complicated by being extended to three in the third power 

which is 27. Odd magic squares, as we have seen, are built up 

by a progression in staircase fashion, but since those numbers 

that fall outside the sqeare have to be transferred to their cor-
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responding places inside, the first and last staircases are changed 

into the knight's move of the chessboard, and only the middle one 

retains its original staircase form. We must construct the square 

so that the central figure, which in a 3X3 square is 5, must always 

fall in the central cell. Accordingly, we must start the square 

beginning with figure 1 outside of the square in any middle cell 
immediately bordering upon it, which gives four starting-points 

from which we may either proceed from the right or the left, either 

upwards or downwards which yields eight possibilities of the 3X3 
square. For the construction of his 27X27 square, Mr. Browne 

might have taken any of these eight possibilities as his pattern. 

3 7 

2 7 6 4 3 8 2 9 4 4 9 2 

9 5 1 9 1 9 5 1 9 3 7 5 3 7 7 3 5 7 3 

4 3 8 2 7 6 6 1 8 8 1 6 

7 3 9 9 

7 3 9 9 

8 3 4 6 7 2 6 1 8 8 1 6 

9 1 5 9 9 1 5 9 1 3 7 5 3 7 7 3 5 7 3 

6 7 2 8 3 4 2 9 4 4 9 2 

3 7 

THE EIGHT POSSIBLE ARRANGEMENTS OF THE 3X3 MAGIC SQUARE. 

Fig. 257. 

He selected the one starting on the top of the square and moving 

toward the right, and thus he always follows the peculiar arrange
ment of this particular square. It is the fourth of the eight arrange
ments show!1 in Fig. 274. Any one who will take the trouble to 

trace the regular succession of Mr. Browne's square will find that it 

is a constant repetition of the knight's move, the staircase move 

and again a knight's move on a small scale of 3X3 which is repeated 

on a larger scale 9X9, thus leading to the wonderful regularity 
which, according to Mr. Browne's interpretation of Plato, astonished 
the sages of ancient Greece. 

Any one who discovers at random some magic square with its 
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immanent harmony of numbers, is naturally impressed l>Y its ap

parent occult power, and so it happens that they were deemed super

natural and have been called "magic." They seem to be the product 

of some secret intelligence and to contain a message of ulterior 
meaning. But if we have the key to their regularity we know that 

the. harmony that pervades them is necessary and intrinsic. 

Nor is the regularity limited to magic squares. There are 

other number combinations which exhibit surprising qualities, and 

I will here select a few striking cases. 

If we write down all the nine figures in ascending and descend

ing order we have a number which is equal to the square of a num

ber consisting of the figure 9 repeated 9 times, divided by the sum 

of an ascending and descending series of all the figures thus: 

999999999)(999999999 
12345678987654321 = 1+2+3+4+s+6+7+8+9+8+7+6+s+4+3+2+r • 

The secret of this mysterious coincidence is that I I X I I=I2I ; 

III)(III=I232I; IIII)(IIII=I23432I, etc., and a sum of an 

ascending and descending series which starts with I is always 

equal to the square of its highest number. I+2+I=2X2; I+2+ 

3+4+3+2+I 4X4. etc., which we will illustrate by one more 
instance of the same kind, as follows: 

'!'here are more instances of numerical regularities. 

All numbers consisting of six equal figures are divisible by 7, 

and also, as a matter of course, by 3 and II, as indicated in the 
bllowing list: 

IIIIII: 7=I5873 
222222:7=31746 
333333:7 47619 
444444: 7=63492 
555555:7=79365 
666666: 7=95238 
777777:7=IIIIII 
888888:7=I26984 
999999:7=142857 
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Finally we will offer two more strange coincidences of :1 lu5tts 

numerorum. 

oX9+I=I 
IX9+2=I.I 

I2 X 9 + 3 =III 
I23 X 9 + 4 = I II I 

I234X9+5=IIIII 
I2345 X 9 + 6 =III III 

I23456 X 9 + 7 =III II II 
I234567 X 9 + 8 = IIIIIlli 

I2345678 X 9 + 9 = IIIIIIIIJ 
I23456789 X 9 + 10 = I I II I II I I I. 

IX8+I=9 
I2 X 8+2 =98 

123 X 8 + 3 = 987 
I234 X 8 + 4 = 9876 

12345 X 8 + 5 = 98765 
I23456 X 8 + 6 = 987654 

1234567 X 8 + 7 = 9876543 
12345678 X 8 + 8 = 98765432 

123456789 X 8 + 9 = 987654321. 

No wonder that such strange regularities impress the human 

mind. A man who knows only the externality of these results will 

naturally be inclined toward occultism. The world of numbers as 

much as the actual universe is full of regularities which can be 
reduced to definite rules and laws giving us a key that will unlock 
their mysteries and enable us to predict certain results under defi

nife conditions. Here is the key to the significance of the a priori. 
Mathematics is a purely mental construction, but its compo

sition is not arbitrary. On the contrary it is tracing the results of 

our own doings and taking the consequences of the conditions we 

have created. Though the scope of our imagination with all its 
possibilities be infinite, the results of our construction are definitely 

determined as soon as we have laid their foundation, and the actual 
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world is simply one. realization of the infinite potentialities of being. 
Its regularities can be unraveled as surely as the harmonic relations 
of a magic square. 

Facts are just as much determined as our thoughts, and if we 
can but gain a clue to their formation we can solve the problem of 
their nature, and are enabler!. to predict their occurrence and some
times even to adapt them to our own needs and purposes. 

A study of magic squares may have no practical application, 

but an acquaintance with them will certainly prove useful, if it 

were merely to gain an insight into the fabric of regularities of any 
kind. P. c. 



CHAPTER VII. 

SOME CURIOUS MAGIC SQUARES AND COM

BINATIONS. 

MANY curious and interesting magic squares and combinations 
have been devised by the ingenious, a selection of which will 

be given in the following pages, some of the examples being here 

presented for the first time in print. 

The curious irregularities of the 6 X 6 magic squares were re

ferred to in the first chapter, and many unsuccessful attempts have 

been made to construct regular squares of this order. An interesting 

/6 /4- ..lJ J4- 6' 6 -'2 .3/ I J 21 2J 

/J /.5 .J6 JS" 6" 7 29 JO 4- 2 2L; 22 

/2 /0 /J /9 29 26 g II 20 /.9 2S 27 

9 /I 20 1.9 2S 27 /2 /0 /1 /J 23 26 

.J2 .JO / 2 2~ 22 16 /6" .JJ .JS s 1 

29 Jl ¥ ..3 2/ 23 /J /~ s6 .J-s< J 6 

Fig. 258. Fig. 259. 

6 X 6 square is illustrated in a work entitled Games, Ancient and 
Oriental by Edward Falkener,* and is here reproduced in Fig. 258. 

It will be seen however that the two corner diagonals of this square 

do not sum I I I, but by a transposition of the figures this imper

fection is corrected in Fig. 259. Other transpositions are also pos
sible which will effect the same result. The peculiarity of this 

* Published by Longmans Green & Co., London and New York, r8g2. 
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square consists in its being divided into nine 2 X 2 squares in each 

of the four subdivisions of which the numbers follow in arithmetical 

sequence, and the 2 X 2 squares are arranged in the order of a 

3 X 3 magic square, according to the progressive value of the 
numbers I to .36. The construction of this 6 X 6 square is regu

lar only in relation to the totals of the 2 X 2 squares, as shown in 

Fig. 26o. 

Fig. 26I is a remarkable 8 X 8 square which is given on page 
300 of the above mentioned book, and which is presented by Mr. 

Falkener as "the most perfect magic square of 8 X 8 that can be 

constructed." Some of its properties are as follows: 

I. The whole is a magic square of 8 X 8. 
2. Each quarter is an associated 4 X 4 square. 

3· The sixteen 2 X 2 subsquares have a constant summation 

of I3o. 

/22 /0 .90 

112 711 1oo 

S;f /JJ' 26 

Fig. 26o. 

4· Each quarter contains four 3 X 3 squares the corner numbers 
of which sum I30. 

5· Any 5 X 5 square which is contained within the 8 X 8 square 
has its corner numbers in arithmetical sequence. 

A very interesting class of squares is referred to in the same 

work on pages 337-338 and 339 as follows: 
"The Rev. A. H. Frost, while a missionary for many years in 

India, of the Church Missionary Society, interested himself in his 

leisure hours in the study of these squares and cubes, and in the 
articles which he published on the subject gave them the name of 
'Nasik' from the town in which he resided. He has also deposited 
'Nasik' cubes in the South Kensington Museum (London) and he 

has a vast mass of unpublished materials of an exhaustive nature 
most carefully worked out. 
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"Mr. Kesson has also treated the same subject in a different way 

and more popular form in the Queen.* He gives them the very 

appropriate name of Caissan Squares, a name given to these squares, 

he says, by Sir William Jones. 
"The proper name, however, for such squares should rather be 

'Indian,' for not only have the Brahmins been known to be great 

adepts in the formation of such squares from time immemorial, not 

only does Mr. Frost give his an Indian name, but one of these 

squares is represented over the gate of Gwalior, while the natives of 

I .19 J6 /// 2 6o .,.J /.f" I .u .3 6o 3 6.J 6 6/ 

¥6 2¥ 2J JJ *1 2/ 2K "'* 16 ss ~~ SJ 9 so II 52 

.32 .u 4/ /.9 .J/ .3J -1'9 1<1 IJ 4Z /.9 .y.y 24 *1 22 "'-" 
J-1 g 6 0/;- .ro /2 s 6.J .32 .3.9 JO JJ 2.5" .l")' 2J .36 

.J SJ S4 /6 * SJ' ss /.3 SJ .2 .>9 4 64 7 62 .f' 

4K 22 2S .JS 4J- 2J 26 J6 .r6 /.1 .f",Y /J 49 /0 S./ /2 

Jo .1,<0 O<J IJ 2.9 J.9 ¥2 20 41 18 .t,<J 20 ft-8 2J 4& 21 

49 /I J' tS2 .12 /0 7 61 40 J/ Jl 2.!) JJ 26 JS 24 

Fig. 2Gr. Fig. 262. 

India wear them as amulets, and La Loubere, who wrote m 1693, 
expressly calls them 'Indian Squares.' 

"In these Indian squares it is necessary not merely that the 

summation of the rows, columns and diagonals should be alike, but 

that the numbers of such squares should be so harmoniously bal

anced that the summation of any eight numbers in one direction 

as in the nta'l'es of a bishop or a knight should also be alike." 

An example of one of these squares is given in Fig. 262 and 
examination will show it to be of the same order as the "Jaina" 

square described by Dr. Carus in a previous chapter ( pp. 125 ff.). 
but having enlarged characteristics consequent on its increase in 
stze. It will be seen that the extraordinar)' properties as quoted 

* Published in London, England. 
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above in italics exist in this square, so that starting from any cell 
in the square, with a few exceptions, any eight numbers that are 
covered by eight consecutive similar moves will sum 260. In 
addition to this the numbers in every 2 X 2 square, whether taken 

within the square or constructively, sum 130; thus, I + 58 + I6 

+ 55 = I3o and I + I6 + 6I +52= 130, also I + 58+ 40 + 3I 
= I30 etc. Furthermore, (as in the Jaina square) the properties 
of this square will necessarily remain unchanged if columns are 

taken from one side and put on the other, or if they are removed 
from the top to the bottom, or vice versa, it being a perfectly con
tinuous square in every direction. 

The wonderful symmetry of this square naturally invites atten

tion to the method of its construction, which is very simple, as may 

I J tf 6 

16 lq 9 /I 

IJ 1.9 2.1,< 22 

J2 .JO 2S 27 
I 14 4 /.$' 

2 If 7 .r 
J' II .,$' /0 

15 1:'> 10 /2 
/,j 2 /6 J 

IJ' 20 2J 21 

J/ 29 20 2<1 
/2 7 .9 6 

Fig. 263. 

be seen by following the natural sequence of the numbers I to 32 
in Fig. 263 which shows the disposition of the numbers of the first 
half of the series. The second half is simply a complementary repe
tition of the first half. The numbers of this square are arranged 

symmetrically in relation to similarly located cells in diagonally 
opposite quarters, thus, (referring to Fig. 262) I+ 64 = 65 and 
4 + 6r = 65 etc. This feature permits the completion of Fig. 263 
by filling in the vacant cells at random with their respective differ
ences between 65 and the various numbers already entered. 

Fig. 264 shows a 4 X 4 square constructed by the same method 
and having similar pr"operties, with natural limitations due to its 
small size. This square strikingly resembles the J aina square as 
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modified by Dr. Carus (see Fig. 222, p. 127) the numbers and 

arrangement of same in the two corner diagonal columns being 

identical in both squares, while the other numbers are differently 

located. 

Fig. 265 is an original 8 X 8 square contributed by Mr. L. S. 
Frierson, which combines to a limited extent some of the curious 

characteristics of the Franklin and the Jaina or Indian squares. It 
possesses the following properties: 

1. Considered as a whole it is an 8 X 8 magic square. 

2. Each quarter is in itself a magic square. 

3· The four central horizontal columns make two 4 X 4 magic 

squares. 

I 2.f s6 44 2 26 .JS *1 
ft() 6ft- 17 .9 .3.9 6.3 IJ 10 

JJ JJ 16 24 J',f M IS 2.3 

32 J' ftl 4.9 .J/ 7 .92 .f"O 

.3 21 .f"4 46 4 23 .JJ 4" 

.J! 62 /.9 II .Jl 0/ 2() /2 

.).9 J,J' 14 22 6o .36 IJ 21 

JO 6 4J .f/ 2.9 .5 44 .f"2 

Fig. 265. Fig. 266. 

4· It contains twenty-five 2 X 2 squares, each having a con

stant summation of I30. 

5· It also contains twenty-four 3 X 3 squares, the four corner 
cells of which have a constant summation of 130. 

6. Any 4 X 4 square has a constant summation of 520. 

7· In any 5 X 5 square the four corner cells contain numbers 
in arithmetical sequence. 

8. Any rectangular parallelogram which is concentric with 
any of the nine subcenters contains numbers in its corner 

cells that will sum 130, excepting when the diagonals of 

any of the four subsquares of 4 X 4 form one side of the 

parallelogram. 
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9· Any octagon of two cells on a side, that is concentric with 

any of the nine subcenters will have a constant summation 

of 260. 

10. No less than I92 columns of eight consecutive numbers 

may be found having the constant summation of 260 as 

follows (see Fig. 266) : 

Horizontal columns 

Perpendicular columns ........................... . 

Perpendicular zig-zags (A to A1 ) •••••••••••••••••• 

Horizontal zig-zags (A to A2 ) ••••••••••••••••••••• 

Corner diagonals ................................ . 

C0nstructive diagonals ( D to D1 ) •••••••••••••••••• 

Bent diagonals (as in Franklin squares) (T to T 1 and 

8 

8 

8 
8 
2 

6 

T to T 2 ) ...................................... I6 

Columns partly straight and partly zig-zag (as V to V 1 ) 88 

Columns partly diagonal and partly zig-zag (as P to D1 ) 32 

Double bent diagonal columns (as M to N) . . . . . . . . I6 

Total ............ 192 

Mr. Frierson has also constructed an 8 X 8 square shown in 

Fig. 267, which is still more curious than the last one, in that it 

perfectly combines the salient features of the Franklin and the In

dian squares. viz., the bent and the continuous diagonals, besides 

exhibiting many other interesting properties, some of which may 

be mentioned as follows: 

I. Any 2 X 2 square has a constant summation of 130, with 

four exceptions. 

2. The corner cells of any 3 X 3 square which lies wholly to 

the right or left of the axis AB sum I30. 

3· The corner cells of any 2 X 4, 2 X 6 or 2 X 8 rectangle 

perpendicular to AB and symmetrical therewith sum 130. 

4· The corner cells of any 2 X 7 or 3 X 6 rectangle diagonal 

to AB sum 130, as r2 +so+ 45 + 23 = 130, 49 + r6 + 
19 + 4) = 130 etc., etc .. 
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5· The corner cells of any 5 X 5 square contain numbers in 
arithmetical progression. 

6. Any constructive diagonal column sums 260. 

7· Any bent diagonal sums 260. 

8. Any reflected diagonal sums 260. 

(NoTE: Reflected diagonals are shown in dotted lines on Fig. 267.) 

By dividing this square into quarters, and subdividing each 

quarter into four 2 X 2 squares, the numbers will be found sym
metrically arranged in relation to cells that are similarly located in 

diagonally opposite 2 X 2 squares in each quarter, thus: 64 + I = 
6s, 57 + 8 = 6s etc. 
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Fig. 267. 
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2 62 .5"9 7 /0 sc,. S/ /.5" 

6J J 6 so S'S /I /.tt .f"O 

6q. ~ ,f" SJ stf l:t /J 4-.9 

24 •M #-.f" 17 J2 J6 J7 2S 

2J 4J 46 /J' J/ JS J<f :t6 

42 22 1.9 47 .J~ JO 27 .3.9 

*' 21 20 ¥J' JJ 2.9 ZJ' .f,o 

Fig. 268. 

Another 8 X 8 square by Mr. Frierson is given m Fig. 268 
which is alike remarkable for its constructive simplicity and for 

its curious properties. Like Fig. 267 this square combines the 

principal features of the Indian and the Franklin squares in its 
bc11t and continuous diagonal columns. 

To render its structure graphically plain, the numbers I to 32 

are written within circles. The numbers in the complete square are 

arranged symmetrically in relation to the two heavy horizontal lines 
so that when the numbers in the first half of the series are entered, 

the remaining numbers may be filled in at random as explained in 
connection with the 8 X 8 Indian square (Fig. 263). 

Two other examples of the Frierson squares showing inter-



170 SOME CURIOUS MAGIC SQUARES AND COMBINATIONS. 

esting constructive features are given in Figs. 269 and 270. The 
scheme followed in these squares may also be employed in making 

magic rectangles, two examples of which are given in Figs. 271 

and 272. In Fig. 272 the numbers are arranged in the following 

series before they are entered in the rectangle: 

I 5 9 . 13 . 17 . 21 . 25 . 29 
2 6 10. 14 . !8 . 22 . 26 . 30 

3 7 11. 15 . 19 . 23 . 27 . 31 

4 8 12 . !6 . 20 . 24 . 28 . 32 

I 2 44 4J 21 22 6q. 6J I J2 .lfO SJ s6 If/ IJ 16 

J ~ 4<2 41 2.J 2.11 62 61 2 Jl .39 .),f .5".5 42 l.f 1,) 

.>6 ,, .5"2 .5"1 13 ~~ 9 I() J .30 Jl 5".9 .5"'1 4.3 1.9 14. 

""' .5".3 .ro -¥-9 IS 16 II 12 4 29 .37 6o J"J ** 20 IJ 

2.5- 20 ,; 6 6o .5"9 ¥0 J9 61 .}() 2J' .5" 12 21 *" .52 

.2J 2J' 7 J' .JJ' .5"7 JJ' J? 62 JS 27 6 II 22 q6 .>I 

¥J' ¥/ 29 ,J() J6 J.r 17 /&' 6J .3¥ 26 7 10 2J *7 .5"0 

46 *·,- .j/ J2 J"' JJ 1.9 20 6q_ .JJ .2S ,f .9 21;- /,tl 49 

Fig. 269. Fig. 270. · 

I 4- .31 J() 

.) J' 27 26 

.9 12 23 22 I 1.9 15 12 

IJ 16 1.9 IJ' 2 20 IJ II 

20 IJ l'f IS' J 21 !6 /0 

2¥- 21 IO II 22. /,< .9 1.5" 

2J' 2.) 6 7 2.3 .5" J' //,< 

J.Z 2.!1 2 J 2'1- 6 7 IJ 

Fig. 271. Fig. 272. 

Figs. 273 and 274 are ingenious combinations of 4 X 4 squares 
also devised by Mr. Frierson. Fig. 273 is a magic cross which 
possesses many unique fea'tures. It is said to contain the almost 

incredible number of 160,144 different columns of twenty-one num

bers which sum 1471. 
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Some of the properties found in the magic pentagram Fig. 274 

may be stated as follows: 
Each 4 X 4 rhombus is perfectly magic, with summations of 

162. It therefore follows that from any point to the next the num-

2 56 /% /OJ 

91 llfS ,J6 20 

16 7" "7 M 

7J 19 92 /10 

.3 5J 26 104 

90 I~ J9 21 

/29 JS .J6 .i"'f. 

7.Z IIi .9.3 Ill 

" ~8 12~ !OJ 5 5".!1 (%'1 106 

~~ 
6 6o ZJ lOS 7 61 122 lc>t 

89 "'" "" .u. , '12 'II .t.J 87 "' -92 2¥ 86 '*~ 43 25 

1 
Jtl Jt .JS S.J IJI 77 .~,. n 

/1~ 
~~ 78 .33 S/ 1.33 J9 .Jtl so 

Jl '1 ~.If 112 JO 16 .fAr IIJ 69 IS Bt 11'1 68 '" .97 115 

8 6:z 121 /OJ 

'K5 il.u ~.I( z4 

3'1 80 J/ ,!I 
67 I !I 84 116 

.!J 6.3 20 02 

8q. .>8 +5 27 
.ss 81 ,JO 114 

66 12 .!J!I ''7 
/0 6" 1/.!J It> I 

8J JJ -v6 28 

"".6 8.1. %8 "7 
6s II 100 118 

Fig. 273. 

hers sum 324, and also that every bent row of eight numbers which 
is parallel with the rows from point to point sums 324. 

In each 4 X 4 rhombus there are five others of 2 X 2 whose 
numbers sum 162, also four others of 3 X 3, the corner numbers of 

which sum 162. 
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In each 4 X 4 rhombus, every number ends with one of two 

numbers, viz., o and I, 2 and 9, 3 and 8, 4 and 7, 5 and 6. 

Fig. 274. 

Modifications of the concentric magic squares (described in the 

first chapter) have been devised by Mr. Frierson, two examples of 

which are shown in Figs. 275 and 276. 

71 I .JI ..32 ,)0 2 go J 7.9 

21 41 6! sG 26 1.3 6.9 2.) S7 

.3/ 31 I/ 20 62 6s IJ 6..1 1.9 

II 21f 2.5 /¥ .3¥ J .34 40 6o ~.3 2<! 6.t,t /<! ss 27 
l<f 2/ 20 1.5 .5 .32 -¥3 4-2 22 S4 .J.9 7.5 7 /0 72 
22 17 /6 /9 2S 9 3.3 SJ IS 68 /6 44 .>&' ns 
2.5 /2 /.3 26 6 J/ 4.9 R..9 67 I"' 66 24 .:JS .r.9 2..3 

/ .3.5 27 JJ J' 7 76 4 JO 7.3 d' J7 J6 JO .Jo5 

.36 2 /0 /,' 30 29 6 78 12 .9 74 L,t,j- q6 47 SJ!. 

Fig. 275. Fig. 276. 

A 5 X 5 magic square, curiously quartered with four 2 X 3 

magic rectangles, devised by Dr. Planck, is shown in Fig. 277. 

The interesting 9 X 9 magic, Fig. 278, was made by Mr-. Frier
son. It possesses the following properties: 
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r. All odd and even numbers are segregated. 

2. Any pair of numbers located equally above and below the 

horizontal axis end in the same integer. 

3· The sum of any pair of numbers located equally right and 

left of the perpendicular axis ends with 2. 

4· The twenty-five odd numbers within the circles make a 

balanced 5 X 5 square. 

S of square = 65 

S of rectangles = { ~~ 

2.J I 23 6 10 

12 II- .3 20 ItS 

2 24 1.3 8 18 

II 7 21 9 17 

IS 1.9 "' 22 4-

Fig. 277. 

s = 2126 

SJ9 .S2S 526 536 

S21' S34- S.JJ J.:JI 

S32 .f.JO S2.9 J".J.j" 

.f27 S.J7 SJI .f24-

Fig. 279. 
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73 2G /() 

GJ 4G 20 

67 ss ($() 

25 17 9 

'17 7.Y .30 

J 76 7() 
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Fig. 278. 

s =6200 

IJ28 1342 /JS/ IJJS IJ#/1-

/JSO /JJ-9 /J-?.J /JJ2 /.J?/ 

/.1·97 /JJ/ 1.3'10 /J4!J /JJJ 

/J.J9 1.398 /.337 /.34/S /J.JO 

/JJ6 /J'IS /.3129 /338 /3S2 

Fig. 280. 

5· The sixteen odd numbers between the circles make a bal

anced 4 X 4 square. 
6. The great square is associated. 

It is purposed to treat of magic squares composed exclusively 
of prime numbers in another book. Mr. Chas. D. Shuldham has 

contributed original 4 X 4 and 5 X 5 magics, having the lowest 
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possible summations when made exclusively of consecutive com

posite numbers, as shown in Figs. 279 and 280. 

There is nothing curious in the construction of these squares, 

as in this particular they follow the same rules that are applied to 

all squares that are made from any consecutive arithmetical series. 

Thus in the square of order 4 given in Fig. 279, 524 takes the 
place of 1 in an ordinary square, 525 of 2, and so on. They are 
here submitted to the reader simply as examples of common squares, 

having the lowest possible summations that can be made from a 

series containing no prime numbers. There are many longer se

quences of consecutive composite numbers, from which larger squares 

might be made, but they run into such high values that the construc

tion. of magics therewith becomes laborious. 
Dr. C. Planck has kindly contributed the following list of con

secutive composite numbers that can be used for squares of order 6 

to order 12 under the condition of lowest possible summations. 

For Order 6. 15,684- 15,719 36 numbers 

" 7· 19,610 19,758 49 
" " 8. 31,398 31,461 64 

9· 155.922 156,002 81 " 
10. 370,262- 370,361 100 
It. r,357,202 - r,357,322 121 

12. 2,0T0,734- 2,010,877 144 

Many attempts have been made to construct magic squares 

from a natural series of numbers by locating each succeeding num
ber a knight's move from the last one, until every cell in the square 
is included in one continuous knight's tour. This difficult problem 

however has never been solved, and the square in question probably 
does not exist. l\Iany squares have been made that smn correctly 

in their lines and columns, but they all fail in their two diagonals and 
therefore are not .strictly magic. 

In Games Ancient and Oriental (p. 325) one of the most 

interesting squares of the above description is presented, and it is 
reproduced here in Fig. 281, the knight's tour being shown in Fig. 
282. 
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This square, like all others of its kind, fails in its two diagonals, 

but it is remarkable in being quartered, i. e., all of its four corner 

4 X 4's are magic in their lines and columns, which sum 130. 

Furthermore, if each corner 4 X 4 is subdivided into 2 X 2's, each 

of the latter contains numbers that sum 130. It is stated that this 

square was made by Mr. Beverly and published in the Philosophical 

Magazine in 1848. 
If the use of consecutive. numbers is disregarded, a continuous 

I -?8 J/ .so J3 ItS tSJ /8 

J(J Sl -?iS J 62 1.9 I+ .3S 

17 2 -?9 .J2 IS .J.P. /7 tS+-

.f2 2.9 4 .f..f 20 61 JG IJ 

s ,.,. 2S SIS 9 "10 21 60 

28 S.J 8 H 24 S7 12. J7 

4J tS ss 26 39 /0 .59 22 

S.f 27 "12 7 S3 23 J8 II 

Fig. 28r. Fig. 282. 

knight's tour may be traced through many different magic squares, 

in which every period of n numbers throughout the tour will sum S. 

A square having this quality is shown in Fig. 26r. The knight's 

Fig. 283. 

tour through this square is given in Fig. 283 in which the starting 

numbers of each period of eight are marked by circles with arrow 

heads indicating the direction of progression. 
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Oddities and curios in magics might be illustrated almost with

out end, but one more will suffice as a final example. 

Fig. 284 shows an I8 X I8 magic made by Mr. Harry A. 

Sayles, the most interesting feature of which is the method of its 

production from the values of n / 19 . The lines of recurring deci

mals for 7{9 , ;{9 , %9 •.••.. 1%9 are arranged one below the other 

so as to form a magic square. S = 81. It will be seen that the 

sequence of the digits in all lines is the same, the position of the 

decimal point in relation to the series being the only difference. 

% "' .o s 2 6 .J I J 7 a 9 ,. 7 " 6 8 4 z I 

~ = ./ 0 .5" z G .3 I s- 7 a 9 .,.. 7 J 6 8 .,. ~ 

~ ;:: ./ of 7 F 9 4 7 .:J 6 8 .,. 2 I 0 J" 2 G .:J 

X = .2 I 0 .s 2 0 ., I s 7 a 9 4- 7 .:J 6 8 4-

% .. .:z 6 .:J I s 7 8 .!J ..,.. 7 J 6 8 ...,. 2 / 0 s 
% = .3 / s 7 8 9 4- 7 J 6 , ...,. 2 / 0 s 2 6 

% = . .J 6 8 4 z / 0 5 z G J / .$" 7 8 9 4 7 

~ = ~ 2 / 0 J" 2 6 " / .s 7 8 .9 4 7 J 6 8 

~ = .4 7 J G 8 4 2 / 0 Q 2 6 oJ / 5 7 8 9 

~ ,: .s- z .6 J / s 7 8 .sl ..,.. 7 " 6 8 -9- 2 / 0 

% == .s 7 8 .!1 4- 7 " 6 8 4 2 / 0 .j- 2 6 ., / 

% "~ = .o J / s 7 I .9 ..,.. 7 J 6 , -9- 2 / 0 .s .e 
% .., = .6 8 4- 2 / 0 5 2 6 ., / J" 7 8 .9 'I' 7 .:J 

% = ·7 .3 G 8 ,. 2 I 0 5 2 6 u / s 7 8 9 9-

% .., = ·7 8 .9 4 7 J G 8' 4 2 / 0 s 2 6 " / .s 

"% /, = .?- + 2 / 0 s :z 6 " / .s 7 8 8 + 7 ., G 

% jl =: .J' .9 ,. 7 J G 8 -9- 2 / 0 .s 2 G J / s- 7 

% 'S/1 = .!I + 7 J s 3' -?- 2 / 0 0 2 6 .:J / .s 7 8 

Fig. 284. 

A peculiar feature of the recurring decimals used in this square 
may be mentioned, although it is common to many other such 

series, with variations. ~~ 0 = .os263157894736842I ..... decimal 
repeats. Starting with the first 5 and dividing by 2 each integer 
determines the next integer following, thus: 
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2) 52631578 .......... = 2631578 ......... . 

The same procession follows for nh 9 and also for rj(19 X 2n) 

though the operation will not apply in all cases to the first few 

numbers of each series. 

If the decimal .05263 ..... r, consisting of r8 figures, is divided 

into two even sections of 9 figures each, and one section superposed 

on the other, the sum will be a series of 9's thus: 

.052631578 

947368421 

999999999 

The series is thus shown to consist of nine 9's = 81, so that each 

line of the square, Fig. 284, must sum 8r. Also, as any two num

bers symmetrically located above and below the horizontal axis 

of the square sum 9, each column also consists of nine 9's = 8r. 

It is not easy to understand why each of the two diagonals 

of this square should sum 8I, but if they are written one over the 

other, each pair of numbers will sum 9· 

Considering its constmctive origin, and the above mentioned 

interesting features, this square, notwithstanding its simplicity, may 

be fairly said to present one of the most remarkable illustrations of 

the intrinsic harmony of numbers. W.S.A. 



CHAPTER VIII. 

NOTES ON VARIOUS CONSTRUCTIVE PLANS BY WHICH 
MAGIC SQUARES MAY BE CLASSIFIED. 

AN odd magic square must necessarily have a central cell, and if 

the square is to be associated, this cell must be occupied by the 

middle number of the series, [ ( n2 + I) j2] around which the other 

numbers must be arranged and balanced in pairs, the sum of each 

pair being n2 + r. Although in 5 X 5 and larger odd squares the 

pairs of numbers are capable of arrangement in a multitude of 

different ways relative to each other as pairs, yet when one number 

of a pair is located, the position of the other number becomes 

fixed in order to satisfy the mle that the sum of any two numbers 

that are diametrically equidistant from the center number must 

equal twice that number, or n2 + r. 
In an even magic square, however, there is no central cell and 

no middle number in the series, so the method of constrttction is 

not thus limited, butt he pairs of numbers which sum n2 + I may 

be harmoniously balanced either around the center of the square, 

as in odd squares, or in a variety of other ways. 

l\ir. L. S. Frierson has cleverly utilized this feature as the basis 

for a series of constructive plans, according to which the various 

types of even squares may be classified. He has shown eleven dif

ferent plans and Mr. Henry E. Dudeney has contributed the twelfth, 

all of which may be used in connection with 4 X 4 squares. These 

tweh·e constructive plans clearly differentiate the various types 

of 4 X 4 squares,-there being for example one plan for ti1e asso · 

ciated or regular squares, another plan for the Franklin squares, 
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another for the pandiagonal or continuous squares and so forth, so 

that a knowledge of these plans makes it easy to classify all 4 X 4 

squares. Six of the eleven plans given by Mr. Frierson cover 

distinct methods of arrangement, the remaining five plans being 

made up of various combinations. 

PLAN NO. I. 

In this plan, which is the simplest of all, the pairs of numbers 
that sum ti2 + I are arranged symmetrically in adjacent cells, form-

16 I IJ /; 

7 10 6 II 

2 l.f J 11 

.:J J 12 s 

Fig. 285. Fig. 286. 

ing two vertical columns, as shown in Fig. 285, and diagrammatically 
in Fig. 286. 

PLAN NO.2. 

This plan differs from No. I only in the fact that the pairs of 

-¥ I IJ 16 

II; 1.5 .3 2 

II 10 (J 7 
.f s 12 .9 

Fig. 28j. Fig. 288. 

numbers are placed in alternate instead of in adjacent columns, as 
seen in Pigs. 287 and 288. 

PI..\X XO. 3· 

I IJ /t 16 

j' 12 .5 .9 

II; 2 1.5 .3 

II 7 /0 6 

Fig. 289. Fig. 290. 
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According to this plan the pairs of numbers are arranged sym

metrically on each side of the central axis, one-half of the elements 

being adjacent to each other, and the other half constructively ad

jacent as shown in Figs. 289 and 290. This arrangement furnishes 
the Franklin squares when expanded to 8 X 8, providing that the 

numbers in all 2 X 2 subsquares are arranged to sum 130 (See 
Figs. 291 and 292). If this condition is not fulfilled, only half of 

.f"2 6t * 1.3 20 29 J6 .1;.5 
- --
- --1¥ J 6z .51 ¥6 JS .30 1.9 

JJ 6o s 12 21 2J' .3J # 
- -r-

II 6 5.9 .54 4.3 .JJ' 27 2Z -- -r-

.5.5 J,f 1 10 2.3 26 .3.9 ¥2 +- -r-

.9 ,r 57 .J6 41 40 2.5 2¥ -I- -r-

sa 6.3 2 15 /J' J/ .34 41 -r- 1-

16 I 64- 4-.9 ¥J' .JJ .32 11 
-- -I-

Fig. 29r. Fig. 292. 

the bent diagonals will have proper summations. An imperfect 
Franklin square of this type may be seen in Fig. 268. 

PLAN NO.4· 

In this plan the pairs of numbers are arranged adjacent to each 

other diagonally, producing four centers of equilibrium (See Figs. 

293 and 294). 

I 7 14 12 

/0 16 s J 

IS 3 4 6 

g 2 II IJ 

Fig. 293. Fig. 294. 

Magic squares constructed on this plan exhibit in part the fea
tures of the Franklin and the pandiagonal squares. 
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PLAN NO. 5, 

The pairs of numbers in this plan are arranged in alternate 

cells in the diagonal columns. and it produces the continuous squares 

which have been termed J aina, .1'\ asik and pancliagonal squares, 

Fig. 295 is the J a ina square as modified by DL Carus (Fig. 222, p. 

127), and Fig. 296 shows the arrangement of the pairs of numbers. 

I s 10 1.5 

14 II .5 4 

7 2 IO ..9 

12 /J J 6 

Fig. 296. 

The diagram of the ~ asik square (Fig. 262) is a simple expansion 

of Fig. 296, and the diagram of the Frierson square (Fig. 267) 

shO\\'S a design like Fig. 296 repeated in each of its four quarters. 

PL\N NO. 6. 

Under this plan the pairs of numbers are balanced symmet

rically around the center of the square. and this arrangement is 

common to all associated squares, whether {)del or even. Fig. 297 

I 1.5 lit .;, 

12 6 7 9 

5 10 II .5 

IJ J 2 40 

Fig. 297. Fig. 298. 

shows a common form of 4 X 4 square. the diagrammatic plan 

being given in Fig. 298. 
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PLAN NO.7· 

Magic squares on this plan are formed by combining plans 

t6 I 12 .f 

2 II 6 IS 

7 14 J ltJ 

9 J' /.3 .,. 
Fig. 299. Fig. 300. 

Nos. I to 3, a square and its diagram being shown in Figs. 299 and 

300. 

PLAN NO.8. 

This plan covers another combination of plans I and 3, and 

Figs. 301 and 302 show square and diagram. 

II 14 J 0 

-J' .'} ;6 I 

10 1 2 IS 

.) 4 1.) 13 

Fig. 30r. Fig. 302. 

PLAN NO.9· 

This is a combination of plans 2 and 3, a square and its dia

gram being given in Figs. 303 and 304. 

s I 12 /0 

10 14 3 1 
/.} II 6 2 

4 J' /J .9 

Fig. 303. Fig. 304. 
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PLAN NO. IO. 

This is also a combination of plans 2 and 3 and is illustrated in 

Figs. 305 and 3o6. 

12 4 1.3 0' 
I .9 /0 J' 

IS 1 2 /0 

0 14 JF 
Fig. 305. Fig. 3o6. 

PLAN NO. I I. 

One-half of this square is made in accordance with plan No. 

2, but in the other half the pairs of numbers are located apart by 

knight's moves, which is different from any plan hitherto considered. 

It is impossible to arrange the entire square on the plan of the 

I 2 !6 1.5 

1.3 14 4 J 

12 7' 9 6 

J' II .5 10 

Fig. 307. Fig. 308. 

knight's move. Figs. 307 and 308 show this square and its construc

tive plan. 

PLAN NO. 12. 

We are indebted to Mr. Henry E. Dudeney for the combination 

shown in Figs. 309-310, thus filling a complete dozen plans which 

probably cover all types of 4 X 4 magic squares. 

2 15 / 16 

II 10 8 s 

14 .3 /J ~ 

7 6 12 9 

Fig. 309. Fig. 3!0. 
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In even squares larger than 4 X 4 these plans naturally exhibit 
great diversity of design. The following 6 X 6 squares with their 

respective plans are given as examples in Figs. 3II, 312 to 321, 322 . 

/ 2<Y 2J /0 .9 .J6 

J.J 26 2,Y /2 // 2 - -
J 22 21 16 /,j" Jf- - -

J,J 2~ 2J /~ /.) ..,. - -
20 6 J' 2.9 .3/ IJ - -
/.9 .r 7 .30 J2 IJ' - -

Fig. 3II. Fig. 312. 

/ 2~ 27 /2 .9 J6 ....... . ':: <:. ...... 
.J.5 2.J 21' /I /0 .2 / ".? '- ....... 

.J 2J 21 /9 /6 J¥ - --=~ -
JJ 22 2~ /.5 /.3 -';< - --= ~ 1-

20 8 ~- .30 J/ 17 ....... ~ k::' . ~ 

1.9 7 6 2.9 .32 /J' 
..... ..... I'-- ....... 

Fig. 3T3. Fig. 314. 

/ .]5 J4 J .J2 6 " - 1- / 

.Jo ,f 2-f 27 // 7 
24 23 /.5 /6 /4f' /.9 I ~ 
/.J 17 2/ 22 20 /<f I I 

/2 26 9 /0 29 2.5 

J/ 2 4 3J J" .36 / - - " 
Fig. 315. Fig. 316. 

Figs. 315 and 317 are identical with 6 X 6 squares shown on 

pages 19 and 24. All squares of this class have the same charac

teristic plans. 
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The peculiar structure of the squares shown in Figs. 319 and 

321 is visualized in their plans (Figs. 320 and 322). Fig. 314 is 
worthy of notice in having eight pairs of numbers located apart 

I .) J3 .J.Y J? 6 
' 

/ 

JO tf' 2-f 9 /I 2S "'' - ~ 
/J' 2.3 /S /6 20 1.9 

24 /4 21 22 /7 /j 

7 26 /0 27 2.9 /2 // K. 
Jl JS "' .) 2 .J6 

/ 

' 
Fig. 317. Fig. 318. 

/ .J6 26 2.J /J /2 

.J.Y 2 2S 2¥ /"' // 

.} .34 2J 2,[ .9 /0 

33 "' 2/ 22 /.J /6 

20 17 7 6 29 J2 

19 /J' s J' ,)/ .JO 

Fig. 3T9. Fig. 32::>. 

2S 2¥ /.3 /2 I .36 - - - -
26 2.3 /.t,< /I .J.r 2 - - - -
2/ 22 /.)- /6 J J.Y - 1- - -
27 2~ .9 /0 JJ .1/ - 1- - -
J- J' 2.9 .32 20 /7 - r- - -
7 6 J/ .JO /9 /J - r- - -

Fig. 32r. Fig. 322. 

by knight's moves. Figs. 323, .324 and 325 illustrate another 6 X 6 
square with its plan and numerical diagram. It will be seen that 

the latter is symmetrically balanced on each side, differing in this 



I86 NOTES ON VARIOUS CONSTRUCTIVE PLANS, 

/ 26 2.&' /I .9 J6 

.JS 25 2J /2 /0 2 

J 2J 21 lq /6 J.f,< 

.J.3 22 2{1 /.5" /J q 

2.() " 6 2.9 J/ "7 
/.9 7 s .JO J2 /4" 

Fig. 323. 

- ,.._ '--
-~ =--
- --= =--

- - t-
-~ ~ r-

- t-- t-

Fig. 324. Fig. 325. 

respect from the numerical diagrams of the 6 X 6 squares as de

scribed in Chapter I. 
Figs. 326-333 are four 6 X 6 magic squares contributed by 

Mr. E. Black which show an interesting symmetry in their con

stmctive plans. 

JS 2 28 .9 4 .3.3 - - - - - 1-

lq 2J 12 2S /S 22 - - - - - -
17 20 6 J/ 10 27 - I- - - - -
s .J2 /.J 2# .J6 I - 1- - - - -

2.9 8 J/1- ,j 16 21 - 1- - - - 1-

II 26 18 1.9 JO 7 - r- - - - 1-

.Fig. 326. Fig. 327 . 
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J6 6 21 16 29 J 

Jl I IS 22 Jf/ ~ 

II 2J 1.9 25 24 .9 

26 14 11. 18 /J 2$ 

5 ,JS IJ 20 4 JO 

2 J2 27 10 7 JJ 

Fig. 328. Fig. 329. 

J 2 I "'6 JS J'l' - f-

.JI J2 JJ 'I .,. 6 - f-

IS' /J 2.J 19 20 21 I I I 1 I I 
22 24 I 'f. 18 '7 16 I I I I l I 

12 II 10 27 26 2$ - -
28 29 JO 7 ~ a - 1--

Fig. 330. Fig. 331. 

.J2 .,. 14 l!J 29 8 

JS 2 IS 22 J4 , 
2S I~ 28 10 I'J /J 

12. /9 27 9 20 24 

6 J/ 16 21 7 JO 

I J6 II 26 "' .JJ 

Fig. 332. Fig. 333· 

THE MATHEMATICAL VALUE OF MAGIC SQUARES. 

The following quotations bearing on the above subject are 
copied from a paper entitled "Magic Squares and Other Problems 
on a Chessboard" by Major P. A. MacMahon, R.A., D.Sc., F.R.S., 
published in Proceedings of the Royal Institution of Great Britain, 
Vol. XVII, No. 96, pp. 50-61, Feb. 4, 1892. 

"The construction of magic squares is an amusement of great 
antiquity; we hear of their being constructed in India and China 
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before the Christian era, while they appear to have been introduced 

into Europe by Moscopulus who flourished at Constantinople early 
in the fifteenth century. 

"However, what was at first merely a practice of magicians 

and talisman makers has now for a long time become a serious 

study for mathematicians. 1\ot that they have imagined that it 

would lead them to anything of solid advantage, but because the 

theory was seen to be fraught with difficulty, and it was considered 

possible that some new properties of numbers might be discovered 

which mathematicians could turn to account. This has in fact 

proved to be the case, for from a certain point of view the subject 

has been found to be algebraical rather than arithmetical and to be 

intimately connected with great departments of science such as the 

'infinitesimal calculus,' the 'calculus of operations,' and the 'theory 

of groups.' 

"?\ o person living knows in how many ways it is possible to 

form a magic square of any order exceeding 4 X 4· The fact is 

that before we can attempt to enumerate magic squares we must 

see our way to solve problems of a far more simple character. 

"To say and to establish that problems of the general natnre 

of the magic square are intimately connected with the infinitesi

mal calculus and the calculus of finite differences is to smn the 

matter up.'' 

* •'• •i• * 
It is therefore evident that this field of study is by no means 

limited, and if this may be said in connection with magic squares 
the statement will naturally apply with a larger meaning to the 

consideration of magic cubes. 



CHAPTER IX. 

MAGIC CUBES OF THE SIXTH ORDER. 

IT is stated by Dr. C. Planck in his article on "The Theory of 
Reversions," Chapter XII, pp. 298 and 304, that the first magic 

cube of this order was made by the late W. Firth, Scholar of 

EmanueL Cambridge, England, in r889. The pseudo-skeleton of 

Firth's construction is shown in Fig. 585, on p. 304 and its develop

ment into a magic 6' is given by Dr. Planck in Fig. 587. He also 

presents in Fig. 597 in the same chapter another magic 6" which he 

made in 1894 by the artifice of "index-cubes," and gives a full 

ex;planation of his method. 

Although the cube presented in this chapter by Prof. H. M. 

Kingery is imperfect in its great diagonals, and therefore not 

strictly magic, it possesses many novel and interesting features, 

being an ingenious example of the general principle of the "Frank

lin'' squares carried into the third dimension, and showing, as it 

does, perfect ••bent diagonals." The same method will construct 

cubes of ro, 1-J., and other cubes of the 4P + 2 orders. 

The second article in this chapter by ::\Ir. Harry A. Sayles 

gives a clear and concise solution of the problem by the La Hireian 
method. Mr. Sayles's cube is strictly magic. 

The cube offered in the third article by the late John Worthing

ton, besides being strictly magic, shows the unique feature of hav-

ing perfect diagonals on the six outside squares. w. s .. \. 

A "FRANKLIN" CUBE OF SIX. 

For a long time after cubes had been constructed and analyzed 
consisting of odd numbers and those evenly even (divisible by 4), 

the peculiar properties of the oddly even numbers baffled all attempts 
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to treat them in like manner. While the following construction 

does not comply with all the criteria laid down for "magic" cubes 
it has some remarkable features which appear to the writer to 

deserve attention. It will at least serve to arouse some criticism 

and discussion, and may contain hints for a complete solution of 

the problem. 
In the first place six magic squares were constructed, exactly 

similar in plan except that three of them began (at the upper left
hand corner) with odd numbers, each of which was I or I plus a 

multiple of 36, and the other three with even numbers, each a mul

tiple of I8. In the first three squares the numbers were arranged 

in ascending order, in the other three descending. The initial 

numbers were so chosen that their sum was 65I, or (nj2) (n3 +I), 
which is the proper summation for each dimension of the projected 

magic cube. In the construction of these original squares, by the 

way, the diagrams presented in the first chapter of this book 

proved a great convenience and saved much time. 

Each of the six squares so made is "magic" in that it has the 

same sum ( 65 I) for each column, horizontal row and corner diag

onal. As the initial numbers have the same sum the similarity of 

the squares, with ascending arrangement in one half and descending 

in the other half, insures the same totals throughout for numbers 

occupying corresponding cells in the several squares; e. g., taking 

the third nttmber in the upper row of each square and adding the 

six together we reach the sum 65I, and so for any other position 

of the thirty-six. 
In constructing our cube we may let the original six squares 

serve as the horizontal layers or strata. Vl e have seen that the 

vertical columns in the cube must by construction have the correct 

summation. Furthermore, as the successive right-and-left rows in 

the horizontal squares constitute the rows of the vertical squares 
facing the front or back of the cube, and as the columns in the 
horizontal squares constitute the rows of the vertical squares facing 

right or left, it is easily seen that each of these twelve vertical 

squares has the correct summation for all its columns and rows. 
Here appears the first imperfection of our cube. Neither the 
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diagonals of the vertical squares nor those of the cube itself have 

the desired totals. though their m•crage footing is correct. It is true 

further that the footings of the two cubic diagonals originating at 

opposite extremities of the same plane diagonal average 651, though 

neit\1er alone is right. 

At this point, however. we come npon an interesting fact. 

While the cubic diagonals vary, the two half-diagonals originating 

at opposite extremities of either plane diagonal in either the upper 

or the lower face, and meeting at the center of the cube, together 

have the sum 65 r. These correspond in the cube to the "bent 

diagonals" of l'ranklin's "sqnare of squares." Of conrse a moment's 

reflection will show that this feature is inevitable. The original 

squares were so constructed that in their diagonals the numbers 

equidistant from the middle were "complementary," that is, taken 

together they equaled 217, or n3 +I, n representing the number of 

cells in a side of the square. In taking one complementary pair from 

each of three successive squares to make our "bent diagonal" we 

mnst of necessity have 3 X 217 = 651. 

As in the Franklin sqnares, so in this cube do the "bent diag

onals" parallel to those already described have the same totals. A 

plane sqnare may be thonght of as being bent aronnd a cylinder so 

as to bring its upper edge into contact with the lower, and when 

this is done with a Franklin square it will be seen that there is 

one of these "bent diagonals'' for each row. In like manner, if it 

were possible by some. fourth-dimension process analogous to this 

to set our cube npon itself, we should see that there were six (or 

in general n) "bent diagonals'' for each diagonal in each of the 

horizontal faces, or 24 in all, and all having the same sum, 651. 

The occurrences of S may be tabulated as follows: 

In the vertical columns . . . . . . . . . . . . . . . . . 36 or n' 

In the rows from front to back •• 0 •••• 0. 36 or n" 
In the rows from right to left ••••• 0 ••• 0 0 36 or n" 
In the diagonals of the original square .... 12 or 2n 

In the cubic "bent diagonals" ••• 0 •• 0 •••• 24 or 4n 



194 MAGIC CUBES OF THE SIXTH ORDER. 

The column of n values at the right represents the "general" num

bers, found in cubes of ro, 14, etc., as well as in that of 6. 

All these characteristics are present no matter in what·· order 

the original squares are piled, which gives us 720 permutations. 

Furthermore, only one form of magic square was employed, and 
Mr. Andrews has given diagrams to illustrate at least 128 forms, 

any one· of which might have been used in the construction of our 

cube.* Still further, numerous transpositions within the squares 

are possible-always provided the vertical totals are guarded by 

making the same transpositions in two squares, one ascending and 

the other descending. From this it is easy to see that the numbers 

1-216 may be arranged in a very great number of different ways 

to produce such a cube. 
So much for the general arrangement. If we so pile our originai 

S• JUares as to bring together the three which begin with odd numbers 

and follow them with the others (or vice versa) we find some new 

features of interest. In the arrangement already discussed none 

of the vertical squares has the correct sum for any form of diagonaL 

The arrangement now suggested shows "bent diagonals" for tre 
vertica_l squares facing right and left as follows: Each of the outside 

squares-at the extreme right or left-has four "bent diagonaL:;'' 

facing the upper and four facing the lower edge. These have their 

origin in the first, second, fourth and fifth rows moving upward or 

downward, i. e., in the first two rows of each group-those yielded 

by original squares starting with odd and those with even numberf. 

Each of the four inside vertical squares has but two "bent diag
onals" facing its upper and two facing its lower edge, and these 

start in the first and fourth rows-the first of each group of three. 

This will be true no matter in what order the original squares are 

piled, provided the odd ones are kept together and the evens to
gether. This will add 32 (8 for each of the two outer and 4 for each 

of the four inner squares) to the 144 appearances of the sum 651 
tabulated above, making 176; but this will apply, of course, only 

to the cube in which the odd ~quares are successive and the even 

squares successive. As the possible permutations of three objects 

* See pp. 22 and 23. 
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number 6, and as each of these permutations of squares beginning 

with odd numbers can be combined with any one of the equal num

ber of permutations of the even squares, a total of 36 arrangements 

is possible. 
While the straight diagonals of these squares do not give the 

required footing the two in each square facing right or left average 
that sum: thus the diagonals of the left-hand square have totals of 

506 and 796, of the second square 708 and 594, third 982 and 320, 

fourth 596 and 7061 fifth 798 and 504, and the right-hand square 
986 and 3I6, each pair averaging 651. I have not yet found any 

arrangement which yields the desired total for the diagonals, either 

straight or bent, of the vertical squares facing back or front; nor do 

their diagonals, like those just discussed, average 6SI for any single 

square, though that is the exact average of the whole twelve. 

By precisely similar methods we can construct cubes of IO, 14, 

I8, and any other oddly-even numbers, and find them possessed of 

the same features. I have written out the squares for the magic 

cube of IO, but time would fail to carry actual construction into 

higher numbers. Each column and row in the IO-cube foots up 

5005, in the 14-cube I9,2I5, in the 30-cube 405,0I5, and in a cube 

of 42 no less than I ,555,869! Life is too short for the construction 
and testing of squares and cubes involving such sums. 

That it is possible to build an absolutely "perfect" cube of 6 is 

difficult to affirm and dangerous to deny. The present construction 

fails in that the ordinary diagonals of the vertical squares and of 
the cube itself are unequal, and the difficulty is made to appear in

superable from the fact that while the proper summation is 65I, 

an odd number, all the refractory diagonals are even in their sum
mation. 

The diagrams in Figure 335 are especially valuable because 

they show how the numbers of the natural series I-2I6 are arranged 
in the squares which constitute the cube. This is a device of Mr. 
Andrews's own invention, and certainly is ingenious and beautiful. 

The diagrams here given for squares of six can be expanded on 
well-defined principles to apply to those of any oddly-even number, 

and several of them are printed in Chapter I. 
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It will be noticed that the numbers I-Io8 are placed at the left 

of the diagrams, and those from Iog to 2I6 inclusive at the right in 

inverse order. Consequently the sum of those opposite each other 

is everywhere 2I7. In each diagram are two pairs of numbers con

nected by dotted lines and marked Q. These in every case are to 
be interchanged. Starting then at the heavy dot at the top we follow 

the black line across to 2I5, down to 2I2 (substituting 3 for 213) 
and back to 6; then across on the dotted line to 210 and along the 

zigzag black line to 8, 2o8, 207, II and 7 (interchanged with 205); 

down the dotted line to 204, then to 203, r 5, r6, 14 (in place of 200), 

199; then across the diagram and upward, observing the same meth

ods, back to 216. This gives us the numbers which constitute our 

square No. I, written from left to right in successive rows. In like 
manner the diagrams in column II give us square 1'\ o .. II, and so 

on to the end. It is worthy of notice that in the fourth column of 

diagrams the numbers are written in the reverse of their natural 

order. This is because it was necessary in writing the fourth square 

to begin with the number 145 (which naturally would be at the bot

tom of the diagram) in order to give the initial numbers the desired 

sum of 65I. H.M.K. 

A MAGIC CUBE OF SIX. 

The two very interesting articles on Oddly-Even Magic Squares 

by Messrs. D. F. Sa·vage and W. S. Andrews, which appear in 
Chapter X, might suggest the possibilities of extending those 
methods of construction into magic cubes. It is an interesting 

proposition and might lead to many surprising results. 

Although the cube to be described here is not exactly of the 
nature mentioned above, it follows similar principles of construc
tion and involves features quite unusual to cubes of this class. 

The six respective layers of this cube are shown in Fig. 336. All 
of its ro8 columns, and its four great diagonals give the constant 

summation of 651. If we divide this into 27 smaller cubes, which 
we will call cubelets, of eight cells each, the six faces, and also 
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two diagonal planes of any cubelet give constant summations. 

For example, \Ye will note the central cubelet of the first and 

4 139 If. I 26 174 147 193 sa 80 215 39 66 

85 I~ 107 188 .93 12. liZ. 31 134 53 12.0 201 

98 I.SZ 138 3 103 157 12.5 71 57 1~2. 130 76 

17.9 17 84 !GS 184 22 44 :Z06 /II 30 4~ 211 

183 21 13 175 89 170 48 210 2.02. 40 "" 35 

102. ISG 148 94 8 143 12.9 75 67 121 197 62. 

2. 

18 153 136 lco3 2.3 158 207 72. 55 2.8 2.12 77 

99 180 I 82 104 185 12.6 45 190 109 131 50 

181 19 95 17.0 171 9 46 2.08 I:ZZ 41 36 198 

100 154 149 14 90 144 12.7 73 68 203 117 63 

167 5 108 189 172 10 32. 194 135 54 37 199 

8co 140 IGZ 2.7 91 145 113 59 81 216 118 64 

3 4 

155 20 150 15 169 142. 74 209 69 204 34 61 

101 182. 9(, 177 88 7 128 47 12.3 42 115 19CO 

6 87 106 187 9Z. 173 195 114 133 52 119 38 

141 1(,8 160 25 II 146 coo 33 79 214 zoo 65 

151 '" 137 83 lOS 153 70 zos 56 110 132 78 

97 178 2 1'-4 186 2.4 12.4 43 191 29 51 2.13 

5 6 

Fig. 336. 

second layer, which IS shown diagrammatic a 11 y 111 Fig. 337· Its 
summations arc as follows. 

The SIX faces: 

57 138 138 8-! 57 192 
192 3 3 165 I I I 30 
30 I05 I92 30 8-t I65 
Ill 8-t 57 I I I I38 3 

390 300 390 390 390 390 
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The two diagonal planes : 

57 I92 
30 I I I 

I65 84 

I38 3 

390 390 

Fig. 337· 

Also, if the sum of the eight cells in each of the cubelets be 

taken as a whole, we have a 3X3X3 cube with 37 summations, each 
amounting to 2604. 

The construction of this cube is by La Rireian method, using 

two primary cubes shown in Figs. 338 and 339· Fig. 338 con
tains 27 cubelets, each containing eight cells with eight equal num

bers; the numbers in the respective cnbelets ranking in order as the 
series, I, 2, 3,, ... 27. These 27 cubclets are arranged according to 

the methods of any 3X3X3 cube. This gives us a primary cube 
with all the features of the final cube. 

Fig. 339 is also divided ino 27 cubelets, each of which must con

tain the series o, 27, 54, 8I, 108, 135, I62, 189. The arrangement 
of the numbers in these 27 cubelets must be such as will give the 
primary cube all the required features of the final cube. The eight 

numbers of the cubelet series are, for convenience, divided by 27, 

and give the series o, I, 2, 3, 4, 5, 6, 7, which can easily be brought 
back to the former series after the primary cube is constructed. 
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To construct the cubelet, we divide the above series into two 

sets of four numbers each, so that the sums of the two sets are equal, 

and the complementaries of one set are found in the other. This 

division is o, 5, 6, 3 and 7, 2, I, 4, which separates the complemen· 

4 4 Z& Z& 12. 12. 4 4 26 26 12. 12. 

4 4- 26 26 12. 12 4 4 2.6 2& 12 12. 

17 17 3 3 zz 2.2. 17 17 3 3 2,2 22 

17 17 3 3 22 22 17 17 3 3 22 22 

.21 Zl 13 13 8 8 Zl 21 13 13 8 8 

2.1 21 13 13 8 8 21 21 13 13 8 8 

18 18 I I Z3 23 18 18 I I 2.3 23 

18 18 I I Z3 23 18 18 I I 23 2.3 

19 1::1 14- 14 9 , 19 13 14 14 9 9 

" " 14 14 
, 9 19 19 14 14 e , 

s s 27 27 10 10 5 5 2.7 27 10 10 

5 s 27 27 10 10 5 5 Z1 2:1 10 10 

3 4 

ZD ZD IS 15 7 7 20 zo IS 15 7 7 
20 ZD IS IS 7 7 20 20 IS 15 7 7 

4> G zs 25 II II 6 6 25 25 II II 

6 " 25 25 II II 6 6 25 25 II II 

IG 16 2. 2 2.4 2a4 ,, 
" 2 2 24 %A-

16 16 2 2 24 24 16 16 2 2 24 M 
~ 6 

Fig. 338. 

taries and gives two sets, each amounting to 14. We can place one 
set in any desired order on one face, and it only remains to place 
the four complementaries in the opposite face, so that the four lines 

connecting complementary pairs are parallel. 
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These cubelets are arranged in the primary cube with the 

O, 5, 6, 3 faces placed in the ISt, 3d, and 5th layers, and the 7, 2, I, 4 

faces placed in the 2cl, 4th, and 6th layers, \vhich arrangement satis

fies the summations perpendicular to the layers. 

0 5 s 0 ~ 5 7 z 2 7 I 2 

3 6 ~ 6 3 0 ... I 4 I 4 7 

~ s 5 0 3 5 4 2. 2 7 4 2 

6 0 3 6 a 0 I 7 4 I I 7 

6 0 0 ' 3 6 I 7 7 I 4 I 

3 5 5 .3 0 s ... 2 z. ... 7 2. 
2 

0 s s 6 0 s 7 2 2 I 7 2 

3 6 0 ~ 3 6 4 I 7 4 4 I 

6 0 3 6 6 0 I 7 4 I I 7 
3 s 5 0 3 s 4 2 z 7 ... 2 

6 0 3 6 6 0 I 7 4 I I 7 

3 s 5 0 3 5 4 z 2 7 4 2 

3 

s 0 s 0 6 s z. 7 2 7 I 2 

3 6 3 6 3 0 4 I 4 I 4 7 

0 3 3 6 3 6 7 4 4 I 4 I 

5 6 s 0 0 s 2 I z. 7 7 2 

5 0 s 3 3 5 z 7 z 4 4 2. 

3 6 0 6 6 0 4 I 7 I I 7 

Fig. 339· 

It now remams to adjust the pairs in the cubelets to suit the 

summations in the layers and the four diagonals. \Ve first arrange 

the pairs that will give the diagpnal summations, and by doing so, 

we set the position of four numbers in each of the layers 3 and 4, 
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and eight numbers in each of the layers I, 2, 5 and 6. We then ar

range the remaining numbers in the layers I, 3 and 5 to suit the 
twelve summations of each layer, which consequently locates the 

numbers for layers 2, 4 and 6, since complementary pairs must lie 
perpendicularly to the cubes layers. This gives us a primary cube 

such as that shown in Fig. 339· 
The numbers in each cell of Fig. 339 must then be multiplied by 

27, and added to the respectiye cells in Fig. 338, which combination 

gives us the final cube shown in Fig. 336. H. A. S. 

MAGIC CUBE OF SIX. 

In the cube, whose horizontal squares are shown in Fig. 340, the 
sum of each of the normal rows (those perpendicular to the 

faces of the cube) is 65I, and the sum of each of the sixteen 
diagonals connecting the corners of the cube is the same. 

These diagonals include the entire diagonals of the surfaces 

of the cube and the four diagonals of the solid running from corner 

to corner through the center of the cube. 

DIAGONALS. 

Top Square. 106 II6 II5 I03 104 I07 
109 I2 II 202 205 1!2 

Bottom Square. III II7 II8 98 97 IIO 
108 I3 I4 207 204 105 

Front Square. 1!2 13I I32 82 84 IIO 
!07 31 29 I90 I89 105 

Rear Square. Io6 I30 I36 83 88 108 
109 30 25 I9I I85 III 

Left Square. Io6 37 40 I82 I8I ros 
112 I26 I2I 89 92 III 

Right Square. 109 34 38 I83 I77 110 
!07 I27 I25 go 94 ro8 
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Diagonals of 106 I 52 147 70 66 IIO 

the Solid. rag 143 139 77 78 105 

107 I 53 I 56 63 6r III 

II2 46 42 I72 171 I08 

FIRST OR TOP SQUARE. SECOND SQUARE. 

Io6 8 'l 212 209 109 166 130 129 32 30 164 

199 II6 IIJ 16 12 19S 37 IS2 148 137 143 34 

1!)6 II4 us II IS 200 33 ISI ISO 142 140 35 

21 203 202 103 100 22 128 41 47 IS7 154 124 

I'/ 205 :zo8 99 104 18 126 46 44 ISS 153 12'/ 

U2 5 6 210 21[ 107 161 131 133 28 31 16'/ 

THIRD SQUARE. FOURTH SQUARE. 

··-
163 135 136 25 2'/ 165 55 192 191 83 81 49 

36 145 149 144 138 39 93 6o 57 1'/6 174 91 

40 146 147 139 141 J8 8g 62 63 1'/2 175 go 

121 48 42 rs6 159 125 182 74 77 70 65 183 

123 43 45 rsS I6o 122 I8o 75 73 68 '/1 184 

168 134 IJ2 29 26 162 52 188 190 82 Bs 54 

FIFTH SQUARE. SIXTH OR BOTTOM SQUARE. 

so ISS 186 86 88 56 Ill I 2 213 216 lo8 

!)2 61 64 169 1'/1 94 194 117 120 9 13 IC)S 

g6 59 sS 17-3 I'/0 95 197 II9 uS 14 10 193 

179 79 76 67 '/2 1'/8 20 206 207 98 101 19 

181 78 8o 6g 66 I'/7 24 204 201 102 97 23 

53 I8g J87 87 84 51 105 4 3 215 '214 IIO 

Fig. 340. 
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The foregoing cube was constructed in the following manner. 

The foundation of this construction is the cube of 3 which is 

shown in Fig. 341. 

FIRST OR 
TOP SQUARE 

19 5 18 

I7 21 4 

6 16 20 

SECOND OR 
MIDDLE SQUARE. 

IS 25 2 

I I4 27 

~ 3 I3 

Fig. 341. 

THIRD OR 
BOTTOM SQUARE 

8 12 22 

24 7 II 

10 23 9 

FIRST, OR TOP, AND SECOND SQUARES. 

144 144 32 32 13C) 136 

144 144 32 32 136 136 

128 128 100 100 24 24 

128 I:z8 100 100 24 24 

40 40 120 120 152 152 

40 40 120 120 1$2 152 

THIRD AND FOURTH SQUARES. FIFTH AND SIXTH SQUARES. 

U2 112 192 192 8 8 s6 s6 88 88 168 168 

112 112 192 192 8 8 s6 s6 88 88 168 168 

0 0 104 104 :zo8 :zo8 184 184 48 48 8o 8o 

0 0 104 104 :zo8 :zo8 184 184 48 48 8o 8o 

200 :zoo 16 16 g6 g6 "/2 '12 176 l?(i 64 64 

:zoo :zoo 16 16 g6 g6 "/2 72 1?(i l?(i 64 64 

Fig. 342· THE BASIC CUBE. 

The sum of each normal row in the above cube, whether run
ning from left to right, from rear to front or from top to bottom, 
is 42; and the sum of each diagonal of which the central term 14 

is a member, as 19 14 9, 5 14 23, 15 14 13, etc., is also 42. 
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Deduct I from each term of the above cube and multiply 

the remainder by 8. With each of these multiples construct a cubic 

group consisting of eight repetitions of the multiple. Substitute 

FIRST OR TOP SQUARE. SECOND SQUARE. 

3 2 8 6 5 3 6 7 I 3 4 6 

5 I 4 7 2 8 4 8 5 2 7 I 

8 7 3 5 3 I 1 2 6 4 6 8 

4 6 8 2 2 5 5 3 I 7 7 4 

s 3 3 2 8 6 4 6 6 7 I 3 

2 8 I 5 7 4 7 I 8 4 2 5 

THIRD SQUARE. FOURTH SQUARE. 

3 2 4 8 7 3 6 7 5 I 2 6 

I 4 7 3 4 8 8 5 2 6 5 1 

7 8 2 5 I 4 2 
I--

1 7 4 8 5 

6 5 8 3 3 2 3 4 I 6 6 7 

8 5 I 2 8 3 I 4 8 7 1 6 

2 3 5 6 4 7 7 6 4 3 5 2 

FIFTH SQUARE. SIXTH OR BOTTOM SQUARE. 

2 3 8 7 2 5 7 6 1 2 7 4 

8 5 4 6 3 I I 4 5 3 6 8 

2 I 2 8 8 6 7 8 7 1 1 3 

3 5 5 3 4 7 6 4 4 6 5 2 

8 6 5 I 2 5 1 3 4 8 7 4 

4 7 3 2 8 3 5 2 6 7 I 6 

Fig. 343· THE GROliP CUBE. 
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FIRST OR TOP SQUARE. SECOND SQUARE. 

147 146 40 38 141 139 ISO 151 33 35 140 142 

149 145 36 39 138 144 148 152 37 34 143 137 

1,16 135 163 165 2'1 25 129 130 166 r64 30 32 

132 134 168 162 26 29 133 131 161 167 31 28 

45 43 123 122 100 158 44 46 r26 12'/ I 53 ISS 

42 48 121 125 159 156 47 41 128 124 154 157 

THIRD SQUARE. FOURTH SQUARE. 

us Il4 196 200 IS II uS Il9 197 193 10 14 

II3 n6 199 195 12 16 1:20 Il7 194 rg8 13 9 

7 8 100 109 209 212 :2 I III Io8 :216 213 

6 5 112 10'/ :211 :210 3 4 105 110 214 215 

:208 :205 17 18 104 99 :201 204 24 23 97 10:2 

:20:2 :203 :21 22 100 103 :20'/ :206 :20 19 101 g8 

FIFTH SQU ,\RE. SIXTH OR BOTTO~! SQUARE. 

ss 59 g6 95 170 173 63 62 8g 90 175 172 

64 61 92 94 171 r6g 57 6o 93 91 174 I?(i 

186 r8s so s6 88 86 191 192 55 49 81 83 

187 r8g 53 51 84 87 190 188 52 54 8s 82 

So 78 I8J 177 66 6g 73 75 I8o t84 71 68 

76 79 179 178 72 67 77 74 18:2 183 6s 70 

Fig. 3·14· TnE Co~IPLETE CvnE. 
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each of these groups for that term of the cube from which it was 

derived, and the result will be a cube with six terms in each row. 

The horizontal squares of this cube are shown in Fig. 342, the 
second square being the same as the first, the fourth as the third, 

and the sixth as the fifth. 

The sum of the terms in each normal row of the preceding 

cube is 624, and the sum of each diagonal which includes two terms 

from the central group of the cube is also 624. It follows that the 
middle two squares in each normal direction are magical and that 

each diagonal of the solid has the same sum as the normal rows. 
This cube is called the basic cube. 

Another magic cube with six terms in each row was next con

structed. This cube is called the group cube. Each position which 

in the basic cube is occupied by a cubic group of eight equal num
bers is occupied in the group cube by a cubic group consisting of 

the numbers 1, 2, 3, 4, 5, 6, 7, 8. All of the rows and diagonals 

which have equal sums in the basic cube will have equal sums in the 
group cube. 

Adding together the terms which occupy corresponding posi

tions in the basic cube and the group cube the result is the complete 

cube shown in Fig. 344, containing the numbers from 1 to 63 = 216. 

In the complete cube the middle two squares in each direction 

are magical while the outer squares are not. 

To bring these magical squares to the surface the squares of 

each set of parallel squares may be permuted as follows: 

Original order ........ 1, 2, 3, 4, 5, 6, 

Permuted order ....... 3, 2, I, 6, 5, 4· 

The result is the final cube shown in Fig. 340. 

The above permutation is subject to two conditions. The sev
eral sets of parallel squares must all be permuted in the same man
ner. Any two parallel squares which in the original cube are located 
on opposite sides of the middle plane of the cube and at an equal 

distance from it, in the permuted cube must be located on opposite 
sides of the middle plane of the cube and at an equal distance from it. 

These conditions are for the protection of the diagonals. J. w. 
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CHAPTER X. 

VARIOUS KINDS OF MAGIC SQUARES. 

OVERLAPPING MAGIC SQUARES. 

PECULIAR species of compound squares may be called over

lapping magic squares. In these the division is not made as usual 

by some factor of the root into four, nine, sixteen or more subsquares 

of equal area, but into several subsquares or panels not all of the 

same size, some lying contiguous, while others overlap. The sim

plest specimens have two minor squares of equal measure apart in 

ovposite corner:;, and in the other corners two major squares which 

overlap at the center, having as common territory a middle square 

?. X 2, 3 X 3, or larger, or only a single cell. Such division can be 

made whether the root of the square is a composite or a prime 

number, as 4-5-9; 4-6-IO; 5-6-I I; 6-9-I5; 8-I2-20 etc. The natural 
series I to n2 may be entered in such manner that each subsquare 

shall be magic by itself, and the whole square also magic to a higher 

or lower degree. For example the 9-square admits of division into 

two minor squares 4 X 4, and two major squares 5 X 5 which over

lap in the center having one cell in common. For convenience, the 
process of construction may begin with an orderly arrangement of 

materials. 

The series I to 8I is given in Fig. 345, which may be termed a 
primitive square. The nine natural grades of nine terms each, ap
pear in direct order on horizontal lines. It is evident that any natural 

series I to n2 when thus arranged will exhibit n distinct grades of n 
terms each, the common difference being unity in the horizontal 

direction, n vertically, n+I on direct diagonals, and n-1 on trans-
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verse diagonals. This primitive square is therefore something more 

than a mere assemblage of npmbers, for, on dividing it as proposed, 

there is seen in each section a set of terms which may be handled 

as regular grades, and with a little manipulation may become mag

ical. The whole square with all its component parts may be tilted 

over to right or left 45 o, so that all grades will be turned into a diag

onal direction, and all diagonals will become rectangular rows, and 

presto, the magic square appears in short order. The principle has 

been admirably presented and employed in various connections on 

pp. 17 and 113. It is a well-known fact that the primitive square 

gives in its middle rows an average and equal summation; it is also 

a fact not so generally recognized, or so distinctly stated, that all 

I 2 J * s 6 7 .; .9 

/0 II /2 1.3 l'f IS 16 17 /J' 

/.9 20 21 22. 2.3 24 2S 26 2J 

26" 2.9 JO J/ J.e J.3 J.y. "" J6 

"7 JJ' .3.9 4-0 41 42 .r,tJ #9 .y..> 

46 4-7 4J' 4.9 so ,>/ a·2 "" 6"4< 

"" .>6 "7 S<f" ,j;g 6o 61 62 6J 

64 6.> 66 67 6J' 6.9 JO Jl 72 

7.3 74 7S 76 77 J<f" J.9 J'O J/ 

Fig. 345· 

the diagonal rows are already correct for a magic square. Thus in 

this 9-square the direct diagonal, I, I I, 2 I, 3 I etc. to 8 I is a mathe

matical series, 41 normal <'>JUpkts = 369. Also the parallel partial 

diagonal 2, I 2, 22, 32, etc. to 72, eight terms, and 73 to complete it, 

= 369. So of all the broken diagonals of that system; so also of 

all the nine transverse diagonals ; each contains 41 normal couplets 

or the value thereof = 309. The greater includes the less, and these 

features are prominent in the subsquares. By the expeditious plan 

indicated above we might obtain in each section some squares of fair 

magical quality, quite regular and symmetrical, but when paired 

they would not be equivalent. and it is obvious that the coupled 
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squares must have an equal summation of rows, whatever may be 

their difference of complexion and constitution. The major squares 

are like those once famous Siamese twins, Eng and Chang, united by 

a vinculum, an organic part of each, through which vital currents 

must flow; the central cell containing the middle term 4I, must be 

their bond of union, while it separates the other pair. The materials 

being parceled out and ready to hand, antecedents above and con

sequents below, an equitable allotment may be made of normal 

couplets to each square. Thus from N. W. section two grades may 

be taken as they stand horizontally, or vertically, or diagonally or 

any way symmetrically. The consequents belonging to those, found 

in S. E. section will furnish two grades more and complete the 

square. The ot)1er eight terms from above and their consequents 

from below will empty those compartments and supply the twin 

4-square with an exact equivalent. Some elaborate and elegant 

specimens, magic to a high degree, may be obtained from the follow

ing distribution: 

Ist grade I, 3. II, I3 (all odd), 2, 4, ro, I2 (all even); 

2d grade I9, 2I, 29, 3I and 20, 22, 28, 30. 

Then from N. E. section two grades may be taken for one of 

the major squares; thus 5, 6, 7, 8, 9 and 23, 24, 25, 26, 27 leaving 

for the twin square, I4, IS, I6, I7, I8 and 32, 33, 34, 35, 36. To 

each we join the respective consequents of all those terms forming 

4th and 5th grades, and they have an equal assignment. But each 

requires a middle grade, and the only material remaining is that 

whole middle grade of the 9-square. Evidently the middle portion, 

39, 40, 41, 42, 43 must serve for both, and the 37, 38, and their 

partners 44, 45 must be left out as undesirable citizens. Each hav

ing received its quota may organize by any plan that will produce 

a magic and bring the middle grade near the corner, and especially 

the number 41 into a corner cell. 

In the 5-square Fig. 346 we may begin anywhere, say the cell 
below the center and write the Ist grade, 14, IS, I6, I7, r8, by a 

uniform oblique· step moving to the left and downward. From the 

end of this grade a new departure is found by counting two cells 

down or three cells up if more convenient, and the 2d grade, 32, 
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33, 34, 35, 36 goes in by the same step of the Ist grade. All the 
grades follow the same rule. The leading terms I4, 32, 39, 46, 64 

may be placed in advance, as they go by a uniform step of their 

own, analogous to that of the grades ; then there will be no need of 

any "break-move," but each grade can form on its own leader 

wherever that may stand, making its proper circuit and returning 

to its starting point. The steps are so chosen and adjusted that 

every number finds its appointed cell unoccupied, each series often 

crossing the path of others but always avoiding collision. The re

sulting square is magic to a high degree. It has its twelve normal 

couplets arranged geometrically radiating around that unmatched 

middle term 4I in the central cell. In all rectangular rows and in 

all diagonals, entire and broken, the five numbers give by addition 

so .J9 JJ 1o 67 2J 4.5' S",f 7J 6 

J¥ 17 6s ¥6 ¥0 ss 70 " J/ 4-¥-

6;, *7 .f</ JS /4' /J JO 4-/ S2. 6.9 

¥2 ;J6 //~ 6s 4J' .J,f .1"1 77 /2 27 

/S 66 4.9 *" J2 76 .9 2-¥- J7 .5".9 

Fig.346. Fig. 347· 

the constant S = 205. There are twenty such rows. Other re
markable features might be mentioned. 

For the twin square Fig. 347 as the repetition of some terms and 
omission of others may be thought a blemish, we will try that dis

carded middle grade, 37, 38, 41, 44, 45· The other grades must be 
reconstructed by borrowing a few numbers from N. W. section so 

as to conform to this in their sequence of differences, as Mr. Frier- ' 

son has ably shown (Fig. 249, p. I4I). Thus the new series in line 

5-6-9-I2-I3, 23-24-27-30-3I, 37~38-(4I)-44-45 etc. has the differ
ences I 3 3 I repeated throughout, and the larger grades will 
necessarily have the same, and the differences between the grades 

will be reciprocal, and thus the series of differences will be balanced 

geometrically on each side of the center, as well as the normal 

couplets. Therefore we proceed with confidence to construct the 

5-square Fig. 347 by the same rule as used in Fig. 346, only applied 
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in contrary directions, counting two cells to right and one upward. 

When completed it will be the reciprocal of Fig. 346 in pattern, 

equivalent in summation, having only the term 4I in common and 

possessing similar magical properties. It remains to be seen how 

those disorganized grades in theN. W. section can be made available 

for the two minor squares. Fortunately, the fragments allow this 

distribution : 

Regular grades I, 2, 3, 4,-irregular grades 7, 8, IO, II 

19, 20, 21, 22 25, 26, 28, 29 

These we proceed to enter in the twin squares Figs. 348 and 

349· The familiar two-step is the only one available, and the last 

half of each grade must be reversed, or another appropriate permu

tation employed in order to secure the best results. Also the 4th 

grade comes in before the 3d. But these being consequents, may 

T 28 7' .J7 / :n [z.r 6.3 

72 .J"6 3 23 78 62 2 2/ 

II 2.Y 74: .YJ 4 1.9 J>/ 6o 

79- oS'.t,. /0 26 so 6/ J 20 

Fig. 348. Fig. 349· 

go in naturally, each diagonally opposite its antecedent. The squares 

thus made are magical to a very high degree. All rectangular and 

all diagonal rows to the number of sixteen have the constant 

S = 164. Each quadrate group of four numbers = I64. There are 
nine of these overlapping 2-squares. The corner numbers or two 
numbers taken on one side together with the two directly opposite 

= 164. The corner numbers of any 3-squares = I64. There are 
four of these overlapping combinations arising from the peculiar 
distribution of the eight normal couplets. 

These squares may pass through many changes by shifting 
whole rows from side to side, that is to say that we may choose any 

cell as starting point. In fact both of them have been thus changed 

when taking a position in the main square. The major squares 

shown in Figs. 346 and 347 pass through similar changes in order to 
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bring the number 41 to a corner. With these four subsquares all 

in place we have the g-square, shown in Fig. 350, containing the 

whole series I to 8r. The twenty continuous rows have the con

stant S = I64 + 205 = 36g. Besides the 4-squares in N. W. and 
S. E. there is a 4-square in each of the other corners overlapping 

the 5-square, not wholly magic but having eight normal couplets 
placed geometrically ·opposite, so that taken by fours symmetrically 

they = I64. The four corner numbers 3I + 36 + 22 + 73 = 164. 
This combination may be taken as typical of the odd squares 

which have a pair of subsquares overlapping by a single cell. What
ever peculiarities each individual may exhibit they must all conform 

7.J .rJ /I 2~ '* 6.r *" q.2 J6 

/0 26 7¥ .J¥ ~ 4-J .J2 /.J 66 

7' .;7 7 2.9 .JJ /6 07 .YO .J9 

J' :u 72 .r6 6&' .,6 9-0 J,Y '7 
.rz 6..9 /.} .J(J ,f<l ,J.S hJ' 6?- *7 
12 27 JJ' .Y/ l77 J'O 20 J b/ 

.J7 j';!J 7'f .9 2* *- 6o tJ'/ 1.9 

7J 6 2J 9-S .JJ' 7..9 21 2 02 

.J/ *-* .r.r 70 .; / 6J 7" 22 

Fig. 350. 

to the requirement of equal summation in coupled subsquares; and 

for the distribution of values the plan of taking as a unit of measure 
the normal COU!Jlet of the general series is so efficacious and of such 
universal application that no other plan need be suggested. These 

principles apply also to the even squares which have no central cell 
but a block of four cells at the intersection of the axes. For ex

ample, the 14-square, Fig. 351, has two minor subsquares 6 X 6, and 
two major squares 8 X 8, with a middle square 2 X 2. This indi
cates a convenient subdivision of the whole area into 2-squares. 

Thus in N. W. section we have sixteen blocks; it is a quasi-4-square, 
and the compartments may be numbered from I to 16 following 

some approved pattern of the magic square, taking such point of 
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departure as will bring I6 to the central block. This is called I for 

the S. E. section in which 2, 3, etc. to I6 are located as before. 

Now as these ~;ingle numbers give a constant sum in every line, 

so will any mathematical series that may replace them in the same 

order as Ist, 2d, 3d terms etc. Thus in I the numbers 1, 2, 3, 4, 

in 2; 5, 6, 7, 8, and so on by current groups, will give correct results. 
In this case the numbers I to I8, and 19 to 36 with their consequents 

should be reserved for the twin minor squares. So that here in 

the N. W. section we begin with 37, 38, in 1 instead of I, 2, leaving 

~7 //~.9 6.Y /J/ .r6 /.YZ ~"' /Jq 1 /.! /.!JJ {' /J'S /J'·"t' 

4J' /SO 66 /JZ s.s /¥/ *" /SJ /16 6 NJ NJ.y / /1 

a; /.JY .JS MJ so /¥.f 6z /J6 .!} /o /IJ J' /.f/ /.96 

Sl /¥0 .f<O /5"1 -¥.9 '*7 6/ /Jo1' /J'J" /6 /J /.90 /12 z 

/¥5" ,f"/ /JJ 6J /J.f 6o /6o JJ' /2 /.!16 /0 ,J /.9/ IJ-9 

/¥6 S2 1.3"1' 6L;. '"7 5"·9. /J:9 ..,T /3.9 /10 ~ /.92 // /~ 

/qJ sJ us "~' /:}.2 #6 /JO 61 /OJ' .90 /OJ .9J //.0 ,// 

/4t.Y SL;. /J'6 ¥2 /S/ ¥J /t.!J 67 IOJ J'.9 /Oq .9tr //6 J'/b 

2S J6 /Jof 22 /67 /66 .9.9 .9J /2/ ?.J" n6 12 //..y J"~ 

161 2¥- /6a '76 1.9 Jo1' /00 .91 /22 ;6 11.1' F //J J'J 

27 JJ 166 16 16J '71 1" /2J J'S //I .96 102 7" 120 

/70 ,J{L J/ /,12 16/{ .eo 7* n-,. J'b /12. .!lor II>/ 77 11.9 

JO IJI 21 21 '7" 161 0/ /OS 7.9 1/l 10 /ZJ' J'J' /10 

/J/ 161. 2.3 11"1' 2.9 .u. .9Z /o6 J'O //.f- 69 /2J "1 /08 

Fig. 351. 

the 3, 4 spaces to be occupied by the consequents I59, r6o. Then 

in 2 we continue 39, 40 (instead of 5, 6) and so following the path 
of the primary series, putting two terms into each 2-square, and 

arriving with 67, 68 at the middle square. Then the coupled terms 

go on 69, 7o--7 I, 72 etc. by some magic step across the S. E. section 
reaching the new No. 16 with the terms 97, 98. This exhausts 

the antecedents. Each 2-square is half full. \Ve may follow a 
reversed track putting in the consequents 99, 100 etc. returning to the 
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starting point with I59, I6o. It is evident that all the 2-squares 

are equivalent, and that each double row of four of them = I576, 

but it does not follow that each single row will = 788. In fact they 
do so, but that is due to the position of each block as direct or re

versed or inverted according to a chart or theorem employed in 

work of this kind. The sixteen rectangular rows, the two entire 

diagonals and those which pass through the centers of the 2 X 2 

blocks sum up correctly. There are also many bent diagonals and 

22.> 216 J 222 .;- 7 7J 1¥-.J 7·r 1¥1 77 /J9 7.9 /S2 /J,P 

/0 / 22.! * 22/ 2/9 /SJ .9,J /S/ J'<r 1«.9 J'7 1¥7 ,YJ 7¥-
6 220 /I /.! 2/2 21/ J'.9 /28 .9/ 12J .93 t.J6 /26 J'/ /¥-<) 

2/,Y "' 1!./J 2/0 /2 IJ I&J 97 /J,j 9.9 /JJ /00 .90 ,Y2 h.; 

2 224 1¥ /S 2/S 20,f /0/ //o!J /0.3 /2"' //.I' .9.> /.1/ /.>0 76 

21J 9 21¥ 209 /J 16 12J /07 12,J lOS /0/2 96 /JO """' 
,.,,. 

77 /.f<.S Tl ISS 6s ISJ /12 IIJ 1/0 /OS 121 /J4- .92 l{'J' 7" 
S2 IJ!f- 6¥ 162. ;o t.>-6 /// //J //0 /06 120 .94' /J!J 6'6 1¥-0 

N/ lf-S /4'0 46 /J'6 /f-0 //6 /o.9 //If-- /22 IO'T /.32 9.y. /1,<0 J'o 

.>J 17J 66 16o /65 IS"' o3J /67 JO 29 .J6 1.9¥ /9.3 2/f-- Zo2 

IJ<f lf-J' 16.3 6.J l?'Z .>4' /d9 ,-,g I.PJ /.!10 /.9:2 Jo .Js 20 206 

ss IJI 16.9 /SJ' J&' 161 "'"' 
/.5_9 62 J2 JJ 1.9J /90 200 26 

176 su 6.1' .r; IJ'.f' 6.r IJ'2 67 16~ /.Jib /.91 oJI J"' M.!l "7 

/I' If- 16.> .!,</ IJ2 lf-J lJO "'7 1"'6 ¥9 21 201, 2.3 2.S 20J /9J' 

61 .1,<2 HS S¥< /J'J s6 IJ9 6'0 IJl 20 22 20J 20/ 2<f /.9 

Fig. 352. 

zigzag rows of eight numbers that = 788. Each quarter of the 

square = I576 and any overlapping 4-square made by four of the 
blocks gives the same total. The minor squares are inlaid. Thus in 

the N. E. square if the twenty numbers around the central block be 
dropped out and the three at each angle be brought together around 

the block we shall have a 4-square magical to a high degree. In 
fact this is only reversing the process of construction. 

Fig. 352 is a IS-square which develops the overlapping principle 
to an unusual extent. There are two minor squares 6X6, and two 
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major squares y X 9 with a middle square 3 X 3 in common. The 
whole area might have been cut up into 3-squares. The present 
division was an experiment that turned out remarkably well. The 

general series, r to 225 is thus apportioned. For N. W. 6-square 

the numbers r to r8 and 208 to 225; for S. E. 19 to 36 and 190 to 

207; that is just eighteen normal couplets to each. For S. W. 9-

square the numbers 37 to 72 and 154 to I89; for N. E. 73 to ro8 

and u8 to 153; for the middle square, rag to II7. Figs. 353 and 
354 show the method of construction. The nine middle terms are 

first arranged as a 3-square, and around this are placed by a well

known process (Fig. 103, p. 47) eight normal couplets IOI + 125 
etc. forming a border and making a 5-square. By a similar process 

7~ /$J I'J /.TI <15 /~9 "7 ""l "" 
1'¥-S .!Ia ""l .!IJ /JJ" 99 I'.J.3 /oo 4'/ 

1'4<;. ""' 1'0/!. /Z.J /0/ 1'2J /08 .95 <12. 

76 /.JO 1'2/ 1'1'2 ''l //0 /0. .!10 I'Sll / U3 ~ 22/ .!l/.9 /() 

1'¥-.e 92 1'/1.0 /N //J //6' "'' /Jt- J'-f' 220 II /d' ~.I.e 2// 6 

lr" /28 '"'"'" //6 /09 //f< /22 .!JJ' /-,.4 " 2/d :uo /1!. "7 214' 

'"'""' .!ilf< 
,,, /0/ //.9 /OJ /2¥ /.J2 J'~ 22~ """ /.s- 2M 2o}, z 

.Fo nt. .f.9 /,/!.!) !J/ 2) .9J /Jtl ,.,.6 .!J 2/<1- 20.S /J n5 2// 

/.JI' 7J """" 7.s- /-f</ ~7 /d.!J J-9 /.s-.t .Z/6 .J 222 5 7 22.$ 

Fig. 353. Fig. 354· 

this is enlarged to a 7-square, and this again to a 9-square, Fig. 353· 
Each of these concentric, or bordered, or overlapping squares is 

magic by itself. The twin square N. E. is made by the same process 
with the same 3-square as nucleus. In order to bring this nucleus to 
the corner of each so that they may coalesce with a bond of union, 

both of the squares are turned inside out. That is, whole rows are 
carried from bottom to top and from left to right. Such trans
position does not affect the value of any rectangular row, but it 
does affect the diagonals. In this case the corner numbers, 74, 138 
and I52 become grouped around the other corner 88, each of the 

couplets having the same diagonal position as before. Thus we 
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obtain a 7-square with double border or panel on the North and 

East, still magic. This 7-square may now be moved down and out 

a little, from the border so as to give room to place its bottom 

row above, and its left column to the right, and we have a s-square 

with panels of four rows. Again we move a little down and out 

leaving space for the bottom and left rows of the s-square and thus 
the 3-square advances to the required position, and the four squares 

still overlap and retain all of their magical properties. The twin 

square S. W. passes through analogous transformation. The minor 

squares were first built up as bordered 42 's as shown in Fig. 354 and 

then the single border was changed to double panel on two sides, 

but they might have gone in without change to fill the corners of the 

main square. As all this work was done by the aid of movable 

numbered blocks the various operations were more simple and 

rapid than any verbal description can be. The IS-square (Fig. 352) 

as a whole has the constant S = I695 in thirty rectangular rows 

and two diagonals, and possibly some other rows will give a correct 

result. If the double border of fifty-two normal couplets be re

moved the remaining I I -square, 4-7-II will be found made up of 

two 4-squares and two overlapping 7-squares with middle 3-square, 

all magic. Within this is a volunteer 7-square, of which we must 

not expect too much, but its six middle rows and two diagonals are 

correct, and the corner 2 X 2 blocks pertaining to the 4-squares 

although not composed of actual couolets have the value thereof, 

224 + 228. However, without those blocks we have two overlapping 

s-squares all right. By the way, these 4-squares have a very high 
degree of magic, like those shown in Fig. 350, with their 2-squares 

and 3-squares so curiously overlapping. Indeed, this recent study 

had its origin some years ago from observing these special features 
of the 4-square at its best state. The same traits were recognized 
in the 8"s and other congeners; also some remarkable results found 

in the oddly-even squares when filled by current groups, as well as 
in the quartered squares, led gradually to the general scheme of 

overlapping squares as here. presented. D. F. S. 
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ODDLY-EVEN MAGIC SQUARES. 

A convenient classification of magic squares is found by recog

nition of the root as either a prime number or evenly-even, or oddly

even, or oddly-odd. These four classes have many common traits, 

but owing to some characteristic differences, a universal rule of 

construction has hitherto seemed unattainable. The oddly-even 
squares especialJy, have proved intractable to methods that are 

readily applicable to the other classes, and it is commonly believed 

that they are incapable of attaining the high degree of magical 

character which appears in those others. 

As some extensive explorations, recently made along those lines, 

have reached a very high latitude, the results will now be presented, 

showing a plan for giving to this peculiar sort, more than the 

ordinary magical properties. 

Problem: To make oddly-even squares which shall have proper 

summation in all diagonal and rectangular rows except two, which 

two shall contain S-I and S+I respectively. This problem is 
solved by the use of auxiliary squares. 

If n is an oddly-even root, and the natural series I, 2, 3 etc. to 

11 2 is written in current groups of four terms, thus: 

I .2.3·4·-5 .6.7.8.-g. 10. II. I2.-13. I4. 15. I6. etc. 
0. I . 2 . 3 . --Q. I . 2 . 3 . --Q. I . 2 • 3 . - 0. I . 2 . 3 . etc. 

5 9 13 etc. 

then from each current group a series 0.1.2.3 may be subtracted, 

leaving a series !.5·9·13 etc. to 112-3, a regular progression of 
n2 j 4 terms available for constructing a square whose side is nj2. 

As there are four such series, four such squares, exactly alike, 

readily made magic by well-known rules, when fitted together around 

a center, will constitute an oddly-even square possessing the magical 
character to a high degree. This will serve as the principal auxil
iary. Another square of the same size must now be filled with the 

series o. I .2.3 repeated n2/4 times. The summation 311/2 being 
always odd, cannot be secured at once in every line, nor equally 
divided in the half lines, but all diagonal and ali rectangular rows, 
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except two of the latter., can be made to sum up correctly. Hence 

the completed square will show a minimum of imperfection. 

In illustration of these general principles, a few examples will 

be given, beginning properly with the 2-square, smallest of all and 

first of the oddly-even. This is but an embryo, yet it exhibits in 

its nucleated cells some germs of the magical character, capable of 

indefinite expansion and growth, not only in connection with those 

of its own sort, but also with all the other sorts. Everything being 

reduced to lowest terms, a very general, if not a universal principle 

of construction may be discovered here. Proceeding strictly by 

rule, the series I. 2. 3. 4. affords only the term I. repeated four 

times, and the series o. I. 2. 3. taken once. The main auxiliary 

(Fig. 355) is a genuine quartered 2-square, equal and identical and 

regular and continuous every way. S=2. 

[I] 
L±J 
Fig. 355. Fig. 356. Fig. 357. Fig. 358. Fig. 359. 

The second auxiliary (Fig. 356) taking the terms in direct order, 

has eight lines of summation, showing equality, S=3, in all four 

diagonals, while the four rectangular rows give inequalities I. 5 
and 2. 4; an exact balance of values. This second auxiliary may 

pass through eight reversed, inverted or revolved phases, its semi

magic character being unchanged. Other orders may be employed, 

as shown in Figs. 357 and 358, bringing equality into horizontal or 
vertical rows, but not in both directions at the same time. Now 
any one of these variables may combine with the constant shown 

in Fig. 355, developing as many as twenty-four different arrange

ments of the 2-square, one example of which is given in Fig. 359· 
It cannot become magic unless all its terms are equal; a series 
whose common difference is reduced to zero. As already suggested, 

this 2-square plays an important part in the present scheme for 
producing larger squares, pervading them with its kaleidoscopic 

changes, and forming, we may say, the very warp and woof of their 

substance and structure. 
The 6-square now claims particular attention. The main auxil-
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iary, Fig. 36o, consists of four 3-squares, each containing the series 

I. 5. 9. I3 etc. to 33· The 3-square is infantile; it has but one .plan 
of construction; it is indeed regular and can not be otherwise, but it 

is imperfect. However, in this combination each of the four has a 

different aspect, reversed or inverted so that the inequalities of par

tial diagonals exactly balance. With this adjustment of subsquares 

the 6-square as a whole becomes a perfect quartered square, S=I02; 

it is a quasi 2-square analogous to Fig. 355· 

The four initial terms, I. I. I. I symmetrically placed, at:e now 

to be regarded as one group, a 2-square scattered into the four 

quarters; so also with the other groups 5. 5. 5. 5 etc. Lines con

necting like terms in each quarter will form squares or other 

1.3 .3J .) s JJ 1.3 0 2 2 0 ,_, 2 

9 IJ 2.5 2S q .9 J I I .3 0 I 

29 I 21 2/ I 2.9 0 2 2 0 ~ 2 

29 I 21 21 I 2.9 J 0 I ~ I I 

9 '7 25 2S '7 ..9 0 J 2 0 2 2 

1.3 .JJ b- s .JJ 1.3 ,J 0 I J / / 

Fig. 36o. Fig. 36I. 

rectangles, a pattern, as shown in Fig. 363, with which the sec

ond auxiliary must agree. The series o. I . 2. 3 is used nine times 

to form this second square as in Fig. 361. There are two con

ditions: to secure in as many lines as possible the proper summation, 

and also an adjustment to the pattern of Fig. 360. For in order that 
the square which is to be produced by combination of the two 
auxiliaries shall contain all the terms of the original series, I to 36, 

a group o. I. 2. 3 of the one must correspond with the group I. I. I. r 
of the other, so as to restore by addition the first current group 

r. 2. 3. 4· Another set o. I. 2. 3 must coincide with the 5. 5. 5. 5 : 

another with the 9·9·9·9 and so on with all the groups. The 
auxiliary Fig. 36I meets these conditions. It has all diagonals cor

rect, and also all rectangular rows, except the 2d and 5th verticals, 

which sum up respectively 8 and ro. 
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Consequently, the finished square Fig. 362 shows inequality in 

the corresponding rows. However, the original series has been 

restored, the current groups scattered according to the pattern, and 
although not strictly magic it has the inevitable inequality reduced 

to a minimum. The faulty verticals can be easily equalized by trans

posing the 33 and 34 or some other pair of numbers therein, but 

the four diagonals that pass through the pair will then become in

correct, and however these inequalities may be shifted about they 

can never be wholly eliminated. It is obvious that many varieties 

of the finished square having the same properties may be obtained 
by reversing or revolving either of the auxiliaries, and many more 

by some other arrangement of the subsquares. It will be observed 

1.3 JS 7 .J .36 /.5 0 - - 2 

IZ l.f 26 2.! 17 /0 

29 J 2.3 2/ .t:< .31 I II I I 
.32 I 22 2~ 2 JO l ll 
.9 2() 27 2:i /.9 /I 

/6 ..JJ 6 " J4 /41 J = I- I 

Fig. 362. 

that in Fig. 360 the group 21 is at the center, and that each 3-square 

may revolve on its main diagonal, r and 25, 9 and 33, 29 and 5 

changing places. Now the subsquares may be placed so as to bring 

either the 5 or the 13 or the 29 group at the center, with two 
changes in each case. So that there may be 8X8X8=5I2 variations 
of this kind. There are other possible arrangements of the sub

squares that will preserve the balance of the partial diagonals, but 

the pattern will be partly rhomboidal and the concentric figures 
tilted to right and left. These will require special adaptation qf 

the second auxiliary. 
We come now to the 10-square, no longer hampered as in the 

6-square, by the imperfection of the subsquares. The main auxil

iary Fig. 364 consists of four 5-squares, precisely alike, each contain

ing the series 1. 5. 9 etc. to 97, S 245, in every respect regular 
and continuous. All four face the same way, but they might have 
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been written right and left, as was necessary for the 3-square. The! 

groups I. I. I. I, 5. 5. 5. 5 etc. are analogously located, and the pat

tern consists of equal squares, not concentric but overlapping. The 

10-square as a whole is regular and continuous. S 490. 

'" 29 rfS ~~ 17 7.3 2.9 JS 41 IJ 

4S / 17 JJ tf.9 4S / 77 JJ tf.9 

J7 .9J 4.9 ,5" 61 .37 .9.3 4.9 .j- 61 

.9 6.; 21 .9J S.J .9 6s 21 .97 S"J 

H .57 /J 6.9 2-'- 1'1 ""1 /J 6.9 2,Y 

7J 2.9 .r.,- 41 17 7.3 2.9 J'l) 4/ 17 

9/J" / 77 JJ J'.9 4-' / 77 .JJ J'.!J 

..17 .9J 49 ~ 61 ..17 .9J #-.!J s 61 

.9 6s 2/ .97 S"J .9 6.,- 21 .97 IJ"o 

.II 1)7 /.} 6.9 2S 81 ""7 1.3 6.9 2,1) 

0 J I 0 J 2 2 0 2 2 

J 0 2 J 0 / / J / / 

0 J / 0 J 2 z 0 2 2 

J 0 2 .J 0 / / J / / 

~ J I 0 " 2 2 0 2 2 

J 0 J " 0 I I 2 / / 

0 J 0 0 J 2 2 / 2 2 

J 0 J J 0 / I 2 / / 

0 J 0 0 .3 2 2 / 2 2 

J 0 ..l J 0 / / 2 / / 

Fig. 365. 

The second auxiliary Fig. 365 is supposed to have at first the 
normal arrangement in the top line 0.3.o.o.3.2.2.I.2.2. which 

would lead to correct results in the rectangular rows, but an alter
nation of values in all diagonals, I4 or 16. This has been equalized 

by exchange of half the middle columns, right and left, making all 
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the diagonals = IS, but as the portions exchanged are unequal 
those two columns are unbalanced. The exchange of half columns 

might have taken place in the Ist and 8th, or in the 2d and 6th, either 
the upper or the lower half, or otherwise symmetrically, the same 

results following. 

The resultant square Fig. 366 contains all the original series, 1 to 

100; it has the constant S=sos in thirty-eight out of the total of 

forty rows. When made magic by transposition of IS and 16, or 

some other pair of numbers in those affected columns, the four 

diagonals that pass through such pair must bear the inequality. 

Here, as in the previous example, the object is to give the second 

7J ..3.2 tf6 41 20 p· .JI tf.f' 4J 1.9 

-'18 I 7.9 .Jo 89 .{<6 2 ,fO ,~ .90 

J7 .96 .70 .f' 6.t,t .3.9 .95" 49 7 6J 

12 6J• 2J 100 s" 10 66 2.t,< 01' .5'4< 

81 6o /4 69 28 IJ .5'.9 IJ 71 27 

76 2.9 1.! ** 17 7* .JO "1 .{<2 II' 

.t,S 4 77 J·J 92 *1 "' 71' .JS 8/ 

.{<0 !JJ .5'2 .r 61 Jl' .94 ,j"l 6 62 

9 68 21 .97 s6 II 67 22 .!J.!J s.r 

tf.t,t 57 16 72 2.5' 12 .5'8 1.:r 70 26 

Fig. 366. 

auxiliary equal summation in all diagonals at the expense of two 

verticals, and then to correct the corresponding error of the fin
ished square by exchange of two numbers that differ by unity. 

In all cases the main auxiliary is a quartered square, but the 

second auxiliary is not; hence the completed square cannot have the 
half lines equal, since S is always an odd number. However, 

there are some remarkable combinations and progressions. For 

instance in Fig. 366 the half lines in the top row are 2S2 + 2S3; in 
the second row 2S3+2S2; and so on, alternating all the way down. 

Also in the top row the alternate numbers 73+86+2o+31+43=2s3 
and the 32, 4I etc. of course= 2s2. The same peculiarity is found 
in all the rows. Figs. 364 nad 36s have similar combinations. Also 
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Figs. 36o, 36I and 362. This gives rise to some Nasik progressions. 

Thus in Fig. 364 from upper left corner by an oblique step one cell to 

the right and five cells down: 73+29+8s+4I etc. ten terms, prac
tically the same as the top row = 490. This progression may be 
taken right or left, up or down, starting from any cell at pleasure. 
In Fig. 365 the ten terms will always give the constantS= IS by the 

knight's move (2, I) or (I, 2) or by the elongated step (3, 4). Fig. 
366 has not so much of theN asik property. The oblique step one to the 

right and five down, 73+29+86 44 etc. ten terms = 505. This 
progression may start from any cell moving up and down, right and 
left by a sort of zigzag. The second auxiliary is richest in this 
Nasik property, the main auxiliary less so, as it is made by the 
knight's move; and the completed square still less so, as the other 
two neutralize each other to some extent. A vast number of varia

tions may be obtained in the larger squares, as the subsquares 

admit of so many different constructive plans. 
The examples already presented may serve as models for the 

larger sizes; these are familiar and easily handled, and they clearly 
show the rationale of the process. If any one wishes to traverse 
wider areas and to set down more numbers in rank and file, no 
further computations are required. The terms o. I . 2. 3 are always 

employed: the series I. 5. 9 etc. to 97, and after that IOI. 105. I09 
and so on. The principal auxiliary may be made magic by any 
approved process as elegant and elaborate as desired, the four sub
squares being facsimiles. The second auxiliary has for all sizes an 
arrangement analogous to that already given which may be tabu
lated as fo11ows: 

6-square, 
Io-square, 
I4-square, 
I8-square, 

etc. 

030-222 
03003-22I22 
0330003-222I22I 
0 3 3 3 0 0 0 0 3-2 2 2 2 I 2 I I 2 

top row 

" 
" 

The top row being thus written, under each term is placed its 
complement, and all succeeding rows follow the same rule, so that 
the Ist, 3d, 5th etc. are the same, and the 4th, 6th, 8th etc. are repe
titions of the 2d. This brings all the o. 3 terms on one side and all 
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the r. 2 terms on the opposite. In columns there is a regular alter

nation of like terms; in horizontals the like terms are mostly con

secutive, thus bringing the diagonals more nearly to an equality 

so that they may be corrected by wholesale at one operation. This 

systematic and somewhat mechanical arrangement insures correct 

summation in rows and columns, facilitates the handling of diag

onals, and provides automatically for the required pattern of the 

2-squares, in which both the auxiliaries and the completed square 

must agree. In making a square from the table it should be ob

served that an exchange of half columns is required, either the 

upper or the lower half, preferably of the middle columns; but as 

we have seen in the ro-square, several other points may be found 

suitable for the exchange. 

I ~ I.J .9 0 .) 0 .J' / J' /J /2 

IJ .9 I :r / 2 / 2 l<tt // 2 7 

I s- /J 8 J 0 J 0 4< .;} /6 .9 

1.3 .9 / s- 2 / 2 / /:J /() .J 6 

Fig. 367. Fig. 368. Fig. 369. 

This plan and process for developing to so high a degree of 

excellence, the oddly-even squares, starting with the 2-square, and 

constantly employing its endless combinations, is equally applicable 

to the evenly-even squares. They do not need it, as there are many 

well-known, convenient and expeditious methods for their construc

tion. However, in closing we will give a specimen of the 4-square, 

type of all that class, showing the pervading influence therein of the 

truly ubiquitous 2-square. 

The primaries Figs. 367 and 368 as well as the complete square 

Fig. 369 singly and together fill the bill with no discount. Each 

is a quartered square, magic to a high degree. Each contains 

numerous 2-squares, four being compact in the quarters and five 

others overlapping. And there are many more variously scattered 

abroad especially in Fig. 368. While these specimens seem to con

form exactly to foregoing rules they were actually made by contin-
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uous process using the knight's move ( 2, I) and (I, 2). The pattern 

is rhomboidal. 
In all the combinations here presented, and especially in these 

last specimens, the 2-square is pervasive and organic. "So we have 

a symmetry," as one of our philosophical writers has said-"which is 

astonishing, and might be deemed magical, if it were not a matter 

of intrinsic necessity." D. F. S. 

NOTES ON ODDLY-EVEN MAGIC SQUARES. 

The foregoing article on oddly-even squares by Mr. D. F. 

Savage is a valuable contribution to the general literature on magic 

squares. Mr. Savage has not only clearly described a clever and 

unique method of constructing oddly-even squares, but he has also 

lucidly demonstrated the apparent limit of their possible perfection. 

The arrangement of concentric quartets of four consecutive 
numbers in his 6X6 square is strikingly peculiar, and in studying 

this feature it occurred to the writer that it might be employed in 

the development of these squares by a direct and continuous process, 

using the arithmetical series I to n2 taken in groups of four con

secutive terms, 1.2.3.4·- 5 .6.7 .8. etc. 

The constructive- method used by Mr. Savage is based on the 

well-known and elegant plan of De Ia Hire, but the two number 

series which he has chosen for the first and second auxiliary squares 

are unusual, if not entirely new. It is difficult to see how these 

unique squares could have been originally evolved by any other 
method than that adopted by Mr. Savage, and the different con

structive scheme presented herewith must be regarded as only a 
natural outcome of the study of his original plan. It may also tend 

to throw a little additional light on the "ubiquitous 2X2 square" and 

to make somewhat clearer the peculiar features that obtain in these 
oddly-even squares. 

Referring to Fig. 370 (which is a reflected inversion of Fig. 

36I and therefore requires no further explanation) it will be seen 
that this square contains nine quadrate groups of the series o. I. 

2. 3., the numbers in each group being scattered in each of the 
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3X3 quarters, and in concentric relationship to the 6X6 square. 
The numbers of these quadrate groups are not, however, distributed 

in any apparent order as viewed numerically, although the diagram 

J 0 I J I I 

0 .3 2 0 2 .:! 

J () I .3 I I 

0 2 2 0 J 2 

J I I J 0 I 

0 .2 2 0 .3 2 

Fig. 370. 

of their consecutive forms, which will be referred to later on, re

veals the symmetry of their arrangement. 

Any middle outside cell of the. 3X3 quarters containing a 

0 I I 3 

z~ 
t ~ ·1 0 11 10 u 15 

A B C D 
Fig. 37!. 

cypher can be used as a starting point for a 6X6 square, and in

spection will show four such cells in Fig. 370. 
Selecting the second cell from the left in the upper line to start 

I• ·-- -----.,2 .32 I 22 24 2 .30 

II 
-· 

9 20 27 2S /.9 II 

t6 JJ 6 3 J9 ~~ 

1.3 J.S 1 s ..36 l,j' 

/2 /0 12 II 26 2J' '7 /0 J. ---- -----·-¥- 29 J 2.3 21 4- o!J/ 

Fig. 372. Fig. 373-

from, the numbers in the quadrate concentric group of which this 

cell is a member will be seen to have the formation shown in Fig. 

37IA, so the first group of four numbers (1.2.3.4) in the series 
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I to 36 are similarly placed in Fig. 372, running also in the same 

relative numerical order. 
To secure magic results in the completed square, each suc

ceeding entry in the 3X3 quarters must follow the last entry in 
magic square order. For the next entry in Fig. 372 there is conse

quently a choice of two cells. Selecting the lower right-hand 

corner cell of the 3X3 quarter of Fig. 370 used at the start, it is seen 
to be occupied by I, and the formation of the quadrate concentric 

group is as shown in Fig. 37IB. The terms 5.6.7.8 are therefore 

entered in Fig. 372 in similarly located cells, and as before, in the 

~ ~ 

~ ~ 

z z 
'>4~~>-<~1>-Z 
·~ 15 u •• ~ ~ 

20 19 z 
18 17 z 
Fig. 374· Fig. 375. 

same relative numerical order. The next quadrate group of 9· 10. 

11.12 have the order shown in Fig. 37IC,-I3.I4.15.16 are ar
ranged as in Fig. 371D, and so on until all of the 36 cells are filled. 

The resulting finished square is shown in Fig. 373· 
Fig. 374 shows the different forms of the nine consecutive 

quadrate groups contained in Fig. 373, written in regular order, and 
it discloses the harmonious relationship of the couplets. 

There are two alternative forms for the first group, as shown 

in Fig. 374· If the square is to be pan-diagonal or continuous at the 
expense of the summation of two vertical columns, the right-hand 
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form must be used, but if the square is to be strictly magic at the 

expense of making four diagonals incorrect, then the left-hand 

form is correct. 

This graphic presentation of number order is instructive, as it 
shows at a glance certain structural peculiarities which are not ap

parent on the face of the square. 

8 2$ 22 2.t,t 2b b 

.33 20 .3 I 1.9 ..lS' 

16 .9 .30 .32 10 1?-

/J I/ Jl 2.9 /2 IS' 

.36 l.f 2 4 17 J.l,t-

.f' 2J 2.3 21 2.f 7 
Fig. 376. 

Another of the many variants of this 6X6 square may be made 

by starting from the fourth cell of the second line in Fig. 370, this 

being also a middle outside cell of a 3X3 square. 

Under this change the forms of the quadrate groups are shown 

in Fig. 375, the resulting square being given in Fig. 376. 

20 41 86 .32 7.3 JS J/ <iS .{<.3 /.9 

J'9 .36 J.9 I 40' 46 2 .Po .Jfl. .90 

63 S' so .9.3 /;.0 .39 .9S .(,9 7 6.y. 

.56 .9J 2.3 63 .9 10 66 24 .9J' "4 
2.5 J2 /4 S.9 34 .f.3 SJ /.3 71 2J 
26 JO /6 s,; !2 !I 6o /S 6.9 23 

ss .9.9 21 6J II 12 6s 22 100 SJ 

62 6 S2 .94 "7 .JJ' 96 Sl J' 61 

9/ .3S 77 d -9-J .fLS *' JS .3.3 .92 

l<f 44 S8 .30 IJ4 J6 29 "7 42 IJ 
+I -I 

Fig. 377. 

When these 6X6 squares are made pan-diagonal, i. e., perfect 
in all their diagonals, the normal couplets are arranged in harmonic 
relation throughout the square, the two paired numbers that equal 

n2 +r being always located in the same diagonal and equally spaced 
nj2 cells apart. If the square is made strictly magic, however, this 
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harmonic arrangement of the couplets is naturally disturbed in the 

imperfect diagonals. 

The above remarks and rules will of course apply generally to 

roXro and larger squares of this class. A IOXIO square modified 

from Mr. Savage's example to secure the harmonic arrangement 

of the couplets. as above referred to, is given in Fig. 377· w. s .. \. 

NOTES 0::--1 PANDIAGONAL AND ASSOCIATED MAGIC SQUARES. 

The reader's attention is invited to the plan of a magic square 

of the thirteenth order shown in Fig. 378 which is original with the 

Fig. 378. 

writer. It is composed of four magic squares of the fourth order, 

t\YO of the fifth order, two of the seventh order, two of the ninth 

order, one of the eleventh order and finally the total square of the 

thirteenth order, thus making twelve perfect magics in one, several 

of which have cell numbers in common with each other. 

To construct this square it became necessary to take the arith

metical series I. 2, 3.... 169 and resolve it into different series 

capable of making the sub-squares. A close study of the con

stitution of all these squares became a prerequisite, and the fol-
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lowing observations are in a large part the fruit of the effort to 

accomplish the square shown. This article is intended however 

to cover more particularly the constitution of squares of the fifth 

order. The results naturally apply in a 4trge degree to all magic 
squares, but especially to those of uneven orders. 

It has of course been long known that magic squares can be 
built with series other than the natural series I, 2, 3 .... n•, but the 

perplexing fact was discovered, that although a magic square might 

result from one set of numbers when arranged by some rule, yet 

when put together by another method the construction would fail 

to give magic results, although the second rule would work all right 

with another series. It therefore became apparent that these rules 
were in a way only accideutally right. With the view of explaining 

a. a 6 c d g X !/ s t v 

a. d {/ a " c s t: v .L !I 

a. b c d a· a. v .L !I s t; 

a. g a " c d !I s t; v X 

a. c ti !l a 6 t; " X y .s 

Fig. 379. Fig. sSo. Fig. s8r. 

these puzzling facts, we will endeavor to analyze the magic square 

and discover, if possible, its raison d'etre. 

The simplest, and therefore what may be termed a "primitive" 

square, is one in which a single number is so disposed that every 

column contains this number once and only once. Such a square 
is shown in Fig. 379, which is only one of many other arrangements 
by which the same result will follow. In this square every column 

has the same summation (a) and it is therefore, in a limited sense, 
a magic square. 

Our next observation is that the empty cells of this figure may 
be filled with other quantities, resulting, under proper arrangement, 

in a square whose every column will still have a constant summa

tion. Such a square is shown in Fig. 380 in which every column sums 

a + b + c + d + g, each quantity appearing once and only once 
in each row, column, and diagonal. These squares however have 
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the fatal defect of duplicate numbers, which can not be tolerated. 

This defect can be removed by constructing another primitive square, 

of five other numbers (Fig. 38I), superimposing one square upon the 
other, and adding together the numbers thus brought together. 

This idea is De la Hire's theory, and it lies at the very foundation 

of magical science. If however we add a to x in one cell and in 

another cell add them together again, duplicate numbers will still 

result, but this can be obviated by making the geometrical pattern 

in one square the reverse of the same pattern in the other square. 

This idea is illustrated in Figs. 380 and 38I, wherein the positions of 
a and v are reversed. Hence, in the addition of cell numbers in 

two such squares a series of diverse numbers must result. These 

series are necessarily magical because the resulting square is so. 
We can now lay down the first law regarding the constitution of 

magical series, viz., A magic series is made by the addition, term to 
term, of x quantities to x other quantities. 

As an example, let us take five quantities, a, b, c, d and g, and 

add them successively to five other quantities x, y, s, t and v, and 

we have the series: 

a+x a+y a+s a+t a+v 
b+x b+y b+s b+t b+v 
c+x c+y c+s c+t c+v 

d+x d+y d+s d+t d+v 

g+x g+y g+s g+t g+v 

This series, with any values given to the respective symbols, will 

produce magic squares if properly arranged. It is therefore a 
universal series, being convertible into any other possible series. 

We will now study this series, to discover its peculiar proper
ties if we can, so that hereafter it may be possible at a glance to 

determine whether or not a given set of values can produce mag
ical results. First, there will be found in this series a property 

which may be laid down as a law, viz.: 
There is a constant difference between the homologous nttm

bers of any two rows or columns, whether adjacent to each other 
or not. For example, between the members of the first row and the 
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corresponding members of the second row there is always the con

stant difference of a- b. Also between the third and fourth rows 
there is a constant difference c- d, and between the second and 

third columns we find the constant difference y- s etc., etc. Second, 

it will be seen that any column can occupy any vertical position in 

the system and that any row could exchange place with any other 

row. (As any column could therefore occupy any of five positions 

in the system, in the arrangement of columns we see a total of 

5 X 4 X 3 X 2 X r = 120 choices. 

Also we see a choice of 120 in the rows, and these two factors 

indicate a total of 14,400 different arrangements of the 25 numbers 
and a similar number of variants in the resulting squares, to which 

point we will revert later on.) 

This uniformity of difference between homologous numbers of 

a h c d g .., .!1 s E v / 23 IJJ 22J Z6J loJ ZSJ I "" IJJ 
d !{ a 6 c 
.s t y ... .Y 167 229 1.91 7 .5".3 ZZJ 7" 2J MJ IJj 
0 c d f a 
( 

"' !I ~ 1.9J "7 3.3 IJJ ISJ 61 IJ IJJ Z2.9 1.97 

!{ a 6 c d 
!I s t: y "' 

8.9 /0/ !6J 22J 6J I.!J 101 ZZJ /.9/ J7 
c d g· a 6 
t v "' !I .J 1.9J 2JJ lJ '7 Oj /0/ I.!JJ 26J 7 J'J 

Fig. 382. Fig. 383. 

any two rows, or columns, appears to be the only essential quality 

of a magical series. It will be further seen that this must neces
sarily be so, because of the process by which the series is made, i. e., 

the successive addition of the terms of one series to those of the 
other series. 

As the next step we will take two series of five numbers each, 

and, with these quantities we will construct the square shown 111 

Fig. 382 which combines the two primitives, Figs. 380 and 381. 

By observation we see that this is a pure square, i. e., in no 

row, column, or diagonal is any quantity repeated or lacking. Be
cause any value may be assigned to each of the ten symbols used, 

it will be seen that this species of square depends for its peculiar 
properties upon the gemnetrical arrangement of its members and not 

on their arithmetical values; a.Jso that the five numbers represented 
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by the symbols a, b, c, d, g, need not bear any special ratio to each 

other, and the same heterogeneity may obtain between the numbers 
represented by .:r, y, s, t, v. 

There is however another species of magic square which is 

termed "associated" or "regular," and which has the property that 

the sum of any two diametrically opposite numbers equals twice 

the contents of the central cell. If we suppose Fig. 382 to be such 

a square we at once obtain the following equations: 

(I) ( d + s) + ( d + ;r) = 2d + 2Y .•. ;r + s = 2Y 

( 2) ( d + t) + ( d + v) = 2d + 2y .·. t + v = 2y 

(3) (c + y) + (g + )') = 2d + 2y :. c + g = 2d 

( 4) (a + y) + ( b + y) = 2d + 2y :. a + b = 2d 

Hence it is evident that if we are to have an associated square, 

the element d must be an arithmetical mean between the quantities 

c and g and also between a and b. Also, y must be a mean between 

;r and s, and between t and v. It therefore follows that an associated 

square can only be made when the proper arithmetical relations 

exist between the numbers used, while the construction of a con

tinuous or pandiagonal square depends upon the method of ar

rangement of the numbers. 

The proper relations are embraced in the above outline, i. e., 

that the central term of each of the five (or ;r) quantities shall be 

a mean between the diametrically opposite pair. For example, 

I, 4, 9, I4, 17, or I, 2, 3, 4, 5, or I. 2, 10, 18, I9, or I, IO, 11, 12, 21 

are all series which, when combined with similar series, will yield 

magical series from which associated magic squares may be con

structed. 
The failure to appreciate this distinction between pandiagonal 

and associated squares is responsible for much confusion that exists, 

and because the natural series I, 2, 3, 4 .... n2 happens, as it were, 
accidentally to be such a series as will yield associated squares, em

pirical rules. have been evolved for the production of squares which 

are only applicable to such a series, and which consequently fail 
when another series is used. For example, the old time Indian 

rule of regular diagonal progression when applied to a certain class 
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of series will yield magic results, but when applied to another class 
of series it fails utterly! 

As an example in point, the following series, which is composed 

of prime numbers, will yield the continuous or Nasik magic square 

shown in Fig. 383, but a square made from the same numbers ar-

ranged according to the old rule is not magic in its diagonals as 

shown in Fig. 384. 

7 37 67 73 
I7 23 53 83 89 

IOI !07 137 167 173 
I 57 163 193 223 229 
191 197 227 257 263 

The fundamentally partial rules, given by some authors, have 

elevated the central row of the proposed numbers into a sort of 

axis on which they propose to build. This central row of the series 

is thrown by their rules into one or the other diagonal of the com

pleted square. The fact that this central row adds to the correct 

s11mmation is, as before stated, simply an accident accruing to the 
normal series. The central row does not sum correctly in many 

magical series, and rules which throw this row into a diagonal are 

therefore incompetent to take care of such series. 

Returning to the general square, Fig. 382, it will be seen that 

because each row, column and diagonal contains every one of the 

ten quantities composing the series, the sum of these ten quantities 

equals the summation of the square. Hence it is easy to make a 
square whose summation shall be any desired amount, and also at 
the same time to make the square contain certain predetermined 
numbers. 

For example, suppose it is desired to make a square whose 

summation shall be 666, and which shall likewise contain the num

bers 6, III, 3 and 222. To solve this problem, two sets of five 
numbers each must be selected, the sum of the two sets being 666, 
and the sums of some members in pairs being the special numbers 
wished. The two series of five numbers each in this case may be 
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3 0 

6 108 
20 216 
SO 100 

100 63 

179 + 487 = 666 

from which by regular process we derive the magic square series 

3 6 20 so IOO 
III 114 I28 1S8 208 
2I9 222 236 266 316 
103 Io6 120 ISO 200 
66 69 83 113 I63 

containing the four predetermined numbers. The resulting magic 

J 1/'f ZJ6 IS11 16J I s:g J 16 1.9 

266 zoo 66 6 12¥ '-'~ /Z /J 21 42 

69 20 1.$4 .J/6 /OJ J3 -'1 43 II 6 

20¥ 2/.9 /06 ,fJ 5"0 .lfS 5 z6 16 10 

/20 /IJ /00 //I 222 .9 22 7 39 2.5" 

Fig. 385. Fig. 386. 

square is shown in Fig. 38s, the summation of which is 666 and which 

is continuous or pandiagonal. As many as eight predetermined num
bers can be made to appear together with a predetermined sum

mation, in a square of the fifth order, but in this case duplicate 

numbers can hardly be avoided if the numbers are selected at ran

dom. We may go still further and force four predetermined num
bers into four certain cells of any chosen column or row as per fol
lowing example: 

A certain person was born on the rst day of the 8th month, 

was married at the age of I9, had IS children and is now 102 years 
old. Make a pandiagonal square whose S = 102 and in which 

numbers I, 8, IS, 19 shall occupy the first, third, fourth and fifth 
cells of the upper row. 

Referring to the universal square given in Fig. 382, 



VARIOUS KINDS OF MAGIC SQUARES. 

Let a=o x= I 

c = 3 S= 5 
d=9 t = 6 
g=6 V =13 

These eight quantities sum 43, so that the other pair (b andy) 

must sum 59, ( 43 + 59= 102). Making therefore b = 20 and 
y = 39, and replacing these values in Fig. 382, we get the desired 

square shown in Fig. 386. 

As previously shown, continuous squares are dependent on the 

geometrical placing of the numbers, while associated squares depend 

also upon the arithmetical qualities of the numbers used. In this 

connection it may be of interest to note that a square of third order 

can not be made continuous, but must be associated; a square of the 

fourth order may be made either continuous or associated, but can 
not combine these qualities; in a square of the fifth order both qual

ities may belong to the same square. As I showed in the first article 

of this chapter, very many continuous or Nasik squares of the 

fifth order may be constructed, and it will now be proven that asso

ciated Nasik aquares of this order can only be made in fewer 

numbers. 
In a continuous or "pure" square each number of the sub-series 

must appear once and only once in each row, column, and diagonal 

(broken or entire). Drawing a square, Fig. 387, and placing in it 

an element x as shown, the cells in which this element cannot then 

be placed are marked with circles. In the second row only two cells 

are found vacant, thus giving only two choices, indicating two 
forms of the square. Drawing now another square, Fig. 388, and 
filling its first row with five numbers, represented by the symbols 

t, v, x, y and s, and choosing one of the two permissible cells for .t" in 

the second row, ft will be seen that there can be but two variants 

when once the first row is filled, the contents of every cell in the 
square being forced as soon as the choice between the two cells in 

the second row is made for x. For the other subsidiary square, 

Fig. 389, with numbers represented by the symbols, a, b, c, d and g, 

there is no choice, except in the filling of the first row. If this row 

is filled, for example, as shown in Fig. 389, all the other cells in this 
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square must be filled in the manner shown in order that it may fit 
Fig. 388. 

Now, therefore, taking the five symbols .x, y, s, t, v, any one 

of them may be placed in the first cell of the first line of Fig. 388. 

For the second cell there will remain a choice of four symbols, for 
the third cell three, for the fourth cell two, for the fifth cell no 

choice, and finally in the second line there will be a choice of two 

cells. In the second subsidiary there will be, as before, a choice of 

five, four, three and finally two, and no choice in the second row. 

Collecting these choices we have (5x4x3x2x2) X (5x4x3x2) 
= 28,800, so that exactly 28,800 continuous or Nasik squares of the 

fifth order may be made from any series derived from ten numbers. 

t v X !I .s a h c d g' / $ 2 j -¥ 

.X: !I .s t v d g- Cl 6 c J /{0 s 2 

.s :t v i)C !I 3 c d ri' a. .j' 0 .3 -¥ / 

v J: !I .s t fi a 6 c d 
"" 

I s 2 " 
!I .s t v .z: c d g- a i5 2 .3 ~ I .r 

Fig. 388. Fig. 389. Fig. 390. 

Only one-eighth of these, or 3600, will be really diverse since any 

square shows eight manifestations by turning and reflection. 

The question now arises, how many of these 3600 diverse N asik 

squares are also associated? To determine this query, let us take the 

regular series I, 2, 3 .... 25 made from the ten numbers 

2 3 4 5 
0 5 IO IS 20 

Making the first subsidiary square with the numbers I, 2, 3, 4, 5, 
(Fig. 390) as the square is to be associated, the central cell must 

contain the number 3· Selecting the upward left-hand diagonal to 

work on, we can place either I, 2, 4 or 5 in the next upward cell of 
this diagonal (a choice of four). Choosing 4, we must then write 

2 in its associated cell. For the upper corner cell there remains 

a choice of two numbers, I and 5· Selecting I, the location of 5 
is forced. Next, by inspection it will be seen that the number I 
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may be placed in either of the cells marked. o, giving two choices. 

Selecting the upper cell, every remaining cell in the square becomes 

forced. For this square we have therefore only 

4 x 2 x 2 = I6 choices. 

For the second subsidiary square (Fig. 39I) the number IO must 

occupy the central cell. In the left-hand upper diagonal adjacent 

cell we can place either o, 5, IS or 20 (four choices). Selecting 

o for this cell, 20 becomes fixed in the cell associated with that con

taining o. In the upper left-hand corner cell we can place either 

5 or IS (two choices). Selecting IS, 5 becomes fixed. Now we 

cannot in this square have any further choices, because all other 

Is's must be located as shown, and so with all the rest of the num

bers, as may be easily verified. The total number of choices in this 

I 9J 6 4J S" "" 
1.> 10 .s 0 20 0 0 JS 17 JO 21 J/ 16 

.J 0 20 IS" 10 0 D J6 12 41 8 ¥0 /J 

20 /S /0 s 0 13 7 4S z 4.9 .3 '14 

/0 s 0 20 N' 2.9 1.9 J.;. IS .JJ 20 

0 20 IS /0 s 4Z 10 .37 14 JJ .9 

Fig. 39L Fig. 392. Fig. 393· 

square are therefore 4 x 2 = 8, and for both of the two subsidiaries, 

I6 x 8 = 128. Furthermore, as we have seen that each square has 

eight manifestations, there are really only 12% = r6 different plans 

of squares of this order which combine the associated and Nasik 

featm'es. 

If a continuous square Is expanded indefinitely, any square 

block of twenty-five figures will be magic. Hence, with any given 

square, twenty-five squares may be made, only one of which can be 

associated. There are therefore r6 x 25 = 400 variants which can 

be made according to the above plan. We have however just now 

shown that there are 36oo different plans of continuous squares of 

this order. Hence it is seen that only one plan in nine (360%00 = 9) 

of continuous squares can be made associated by shifting the lines 

and columns. Bearing in mind the fact that eight variants of a 



VARIOUS KINDS OF MAGIC SQUARES. 239 

square may be made by turning and reflection, it is interesting to 

note that if we wish a square of the fifth order to be both associated 

and continuous, we can locate unity in any one of the four cells 

marked o in Fig. 392, but by no constructive process can the de

sired result be effected, if unity is located in any cells marked Q. 
Then having selected the cell for I, the cell next to 1 in the same 

column with the central cell ( I3) must contain one of the four 

numbers 7, 9, I7, or I9. The choices thus entailed yield our esti
mated number of sixteen diverse associated Nasik squares, which 

may be naturally increased eight times by turning and reflection. 

That we must place in the same row with I and I3, one of the 

four numbers 7, 9, I7, or 19 is apparent when it is noted that of 

the series 

I 2 3 4 S 
0 s IO IS 20 

having placed 3 and ro in the central cells of the two subsidiaries, 

and o and I in two other cells, we are then compelled to use in the 

same line either S or IS in one subsidiary and either 2 or 4 in the 

other subsidiary, the combination of which four numbers affords 

only 7 and I7, or 9 and 19. 

With these facts now before us we are better prepared to con

struct those squares in which only prime numbers are used, etc. 

Reviewing a list of primes it will be seen that every number ex

cepting 2 and S ends in either I, 3, 7 or 9· Arranging them there
fore in regular order according to their terminal figures as 

II 3I 4I 

3 I3 23 43 
7 I7 37 47 etc. 

we can make an easier selection of desired numbers. 

A little trial develops the fact that it is impossible to make 
five rows of prime numbers, showing the same differences between 
every row, or members thereof, and therefore a set of differences 

must be found, such as 6, 30, 30, 6 (or some other suitable set). 
Using the above set of differences, the series of twenty-five primes 

shown on page 234 may be found. In this series it will be seen that 
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similar differences exist between the homologous numbers of any 

row, or column, and it is therefore only necessary to arrange the 

numbers by a regular rule, in order to produce the magic square in 

Fig. 383. 
These facts throw a flood of light upon a problem on which 

gallons of ink have been wasted, i. e., the production of pandiagonal 
and regular squares of the sixth order. It is impossible to dis

tribute six marks among the thirty-six cells of this square so that 
one and only one mark shall appear in every column, row and 

diagonal. Hence a primitive pandiagonal magic square of this 

ISJ /.3 2.! ''-7 10.9 J/ Ill IJ8 J6 66 /02 /00 72 

'"s 25 17 IS.! "' IJ.9 59 ..12 IJ9 /Oft- 68 98 70 

16 S9 n~9 26 "7 s6 JO /12 /30 .9.9 10.5 6o 110 

22 198 156 I 'I //J 11'1 l'fO sa "" 6•· 7' /JJ J7 

.9J 7J 9'1 J6 /J'l 18 21 3.9 Ht6 /JS JS 2S 191 

'79 91 78 92 2J 82 /J7J /.YJ II 63 !OJ J3 IJJ 

7¥ 96 7"" 9S /ljJ IS.9 /J" 20 88 liS .,-,- 101 69 

90 80 .9J 77 1.9 2'1- 31 19.9 IS2 J"'f. 116 /OJ 67 

169 6 J !6J a-s 1'12 tsa 12 28 6'1 106 /OK 62 

7 16J 161 86 I IJZ *'~' .>.9 125 .1"0 q,f /IS 12'1 

162. I 811- z 168 J8 126 /J/ ft-S 120 /22 sz «6 

s 8J 161 /0 166 129 9J 'f-0 128 /2J 117 99 S/ 

J'J 16s 9 160 "' 'II 12_7 /JO '12 ~7 SJ 121 ,'/9 

Fig. 394-

order is excluded by a geometrical necessity. In this case the 

natural series of numbers is not adapted to construct pandiagonal 

squares of this order. That the difficulty is simply an arithmetical 
one is proven by the fact that 6 x 6 pandiagonal squares can be 

made with other series, as shown in Fig. 393· We are indebted to 
Dr. C. Planck for this interesting square which is magic in its six 

rows, six columns and twelve diagonals, and is also four-ply and 

nine-ply, i. e., any square group of four or nine cells respective1y, 
sums four or nine times the mean. It is constructed from a series 

made by arranging the numbers I to 49 in a square and eliminating 
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all mimbers in the central line and column, thus leaving thirty-six 

numbers as follows:* 

2 3 5 6 7 
8 9 10 I2 I3 I4 

IS I6 I7 I9 20 2I 
29 30 3I 33 34 35 
36 37 38 40 4I 42 

43 44 45 47 48 49 

Fig. 394 shows the completed square which is illustrated in 
skeleton form in Fig. 378. All the subsquares are faultless except 
the small internal 3 x 3, in which one diagonal is incorrect. 

L. S. F. 

SERRATED MAGIC SQUARES. 

The curious form of magic squares which is .to be described 
here possesses a striking difference from the general form of magic 
squares. 

-
I+ 

19 16 30 

J!!1 Z+ 4-0 8 I 

~ 17 J" 3' II 2J" 22. 

l.,. Z.7 10 7 Z.l 1.> 32 3.> 38J 
20 33 31 2.6 37 9 3 

41 18 2 34- 13 

IZ 6 Z3 

Z8 
'--

Fig. 395· Fig. 3¢. 

To conform with the saw-tooth edges of this class of squares, 
I have ventured to call them "serrated" magic squares. 

A square containing the series I, 2, 3, 4, .... 4I is shown in 
Fig. 395· Its diagonals are the horizontal and vertical series of nine 
numbers, as A in Fig. 3¢. Its rows and columns are zigzag as 

* For further information regarding squares of this type wherein n is of 
the form 4P +B. See p. 267. 
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shown at B, and are sixteen in number, a quantity which is always 

equal to the number of cells which form the serrations. 

All of this class of squares must necessarily contain the two 

above features. 

r-
14 

r-
1:" 30 16 

z, 40 I u 8 

.;, .r II 22 17 36 z.r 

14 10 Zl 32 :18J l27 7 IS' 3>1 

zo 31 37 3 33 26 , 
41 2 13 18 ,.,. 

12 23 6 .....__ 
28 
'--

Fig. 397· 

But, owing to its Nasik formation, Fig. 395 possesses other fea

tures as follows: 

There are nine summations each of the square and cruciform, 

as at C and Din Fig. 396, the centers of which are 40, II, 32, 5, 21, 

37, 10, 31 and 2 respectively. Of E and F there are six summations 

each, and of the form G there are twelve summations. 
This square was formed by the interconcentric position of the 

I 2 3 4 .r 6 7 8 ~ 

10 1/ 12 I.:J 14- l.f 16 17 14 

19 !/!0 21 22 2:1 u z,.r :26 27 

28 29 :10 31 32 33 ,.,. 3.f 36 

37 38 39 40 41 

Fig. 398. 

two Nasik squares shown in Fig. 397, and the method of selecting 
their numbers is clearly shown in Fig. 398. 

There are numerous other selections for the sub-squares and 

the summations are not necessarily constant. This is shown by the 
following equations. 
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Let N and n equal the number of cells on a side of the large 
and small squares respectively, and let S equal the summations. 

Then, when the means of each sub-square are equal 

S = (l+N2+n2) (N +n) 
2 

When the large square has the first of the series and the small 

square has the last of the series 

S=N(l+W) +n(l+n2) +N2n 
2 2 

When the large square has the last of the series and the small 
square has the first of the series 

. S=N(l+N2) +n(l+n9 +Nn2 
2 2 

,.-
8 

7 .%. 16 

108 ~7 15 61 90 

I~ 4e /00 4.3 91 44 82 

1/0 7.3 /0/ 74 22 68 83 (;? 25 

Ill 48 102 ~ Zl fo .30 fl 2~ h. 17 

z 79 103 80 20 81 29 7.r 87 76 18 77 /OJ' 

r, "" 10 55 19 f6 28 .f7 .u 58 9.!' n 104 60 11.31 

9 37 % 38 27 39 8.5 33 94 34 II 3.r /12 

97 6Z 88 63 84- 64- !J3 6J' /Z ~ 3 

89 4-.J' 31 46 ~ 40 /3 4-/ 4-

32. 70 23 71 ,, 72 .r 

u .5:3 99 47 6 

98 78 107 

10~ 
'---

Fig. 399· 

Only in such squares that fit the first equation, is it possible to 
have complementary pairs balanced about the center; in other words 
known as regular or associated squares. 

Fig. 399 is one of this class and has summations of 855. In 

this case the mean of the series was used in the 7X7 sub-square and 
the remaining extremes made up the 8X8 square. 
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Figs. 400, 401, and 402 are the smallest possible examples of 
serrated squares. Fig. 400 is regular and is formed with the first 

of the above mentioned equations, and its summations are 91. Fig . 

....-- __, ....--,. .,. 13 

zg l'fo 1-r 14 '8 , 2.3 :z. 18 

H , 10 .r B IS" :z.r 7 23 .r 24 9 16 7 14 

r, 6 , 13 17 z.o ui I, zo .,; 21 II z.z. 161 I/o 4 l.f" .r :ZtJ 6 z•l 
18 2.1 16 7 z. IZ 1!1 10 17 z. 21 3 I:!' I II 

1/ IZ 3 8 24 3 17 8 12 

~ 13 
L__ 

22 
'--

Fig. 400. Fig. 40r. Fig. 402. 

401 is formed with the second equation and its summations are 97· 

Fig. 402 is formed with the third equation and its summations are 85. 

H. A.S. 

LOZENGE MAGIC SQUARES. 

Recently the writer has noticed in a weekly periodical a few 

examples of magic squares in which all of the odd numbers are 

arranged sequentially in the form of a square, the points of which 

meet the centers of the sides of the main square and the even 

numbers filling in the corners as shown in Fig. 405. 

These articles merely showed the completed square and did not 
show or describe any method of construction. 

A few simple methods of constructing these squares are de- · 
·scribed belo~, which may be found of some interest. 

To construct such squares, n must necessarily. be odd, as 3, 5, 

7, 9, II etc. 
A La Hircian method is shown in Figs. 403, 404, and 405, in 

which the first two figures are primary squares used to form the 

main square, Fig. 405. We begin by filling in the cells of Fig. 403, 
placing I in the top central cell and numbering downward I, 2, 3 

to 7 or n. We now repeat these numbers pan-diagonally down to 
the left filling the square. 

Fig. 404 is filled in the same manner, only that we use the series 
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o, I, 2, to 6 or n-1 in our central vertical column, and repeat these 

pan-diagonally down to the right. The cell numbers in Fig. 404 are 

then multiplied by 7 or n and added to the same respective cell 

numbers of Fig. 403, which giyes us the final square Fig. 405. 

5 6 7 I z. 3 4- 3 z I () .. J 4- Z6 zo 14 I~ 38 3Z 

6 7 I ;z .3 4- J 4 :3 2 I 0 .. .f 34- Z8 IS 9 3 ~ 4-0 

7 I 2 :3 4 5 6 J 4- .:3 z. I 0 (, "'5' Z9 2:3 17 II .f <1-8 

I ;z 3 4- 5 6 7 6 .f 4 :3 2 I 0 '<.3 37 31 zs I !;I /3 7 

;z :3 4 5 6 7 I 0 6 .f 4- .J 2 I z ~s 3:'1 :3.3 27 21 8 

:3 4- 5" 6 7 I z. I 0 6 5 4 3 2 IO 4 '<7 4-1 3J 22 /6 

4 J 6 7 I 2 .3 2 I 0 6 s 4- .3 18 IZ 6 4-:'1 .% 30 24-

Fig. -103. Fig. -10-1. Fig. -105. 

Another method is shown in Fig. 406 where we have five sub

squares placed in the form of a cross. The central one of these is 

filled consecutively from 1 to n2 • We then take the even numbers of 

the upper quarter, in this case 2, 8 and 4, and place them in the 

same respective cells in the lower sub-square. The lower quarter 

18 

22 24 

I 2 3 4- s 
10 " 7 13 9 IO 6 

14 II IZ 13 14- 15 12 

20 /6 17 18 1!3 zo 16 

2/ 22 23 2-4- 25 

2 4 
8 

Fig. -1o6. 

or 22, r8 and 24, are placed in the upper square. Likewise the 

left-hand quarter is placed in the right-hand square, and the right

hand quarter in the left-hand square. This gives us the required 

square, which is shown in heavy numbers. 

A third method is to write the numbers consecutively, in the 

form of a square, oyer an area of adjacent squares as in Fig. 407. 
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The mean of the series must be placed in the center cell of the 

central or main square and the four next nearest to the center must 

find their places in the corner cells of the main square, which con-

zs 

20 2'> 

IS I!J 23 

ID I+ 18 22. 

s , 13 17 21 

4- 6 12 /6 

14- 10 /~ 18 

3 7 II 
2~ II 7 3 ~ 
21 17 13 .:J .> 

2 6 
z 23 I !I IS 6 

I 8 4- ~:' V"' /~ 

Fig. 407. Fig. 4o8. 

Yt" y_,. It 3 

/37 2, 21 13 .r~ 
J.f" 47 3.9 31 23 IS 71'.. 

73 6J"" .f'7 .,., 4-1 33 zs 17 .9 

~D z 7J 67 J, .>1 43 35 z~V 

LVzs ;!D 12 .,.'- 77 ~ tr.l 53 4-S 

4<. 38 3D 22 /4 6" 7.9 71 "? 
H .>6 4IJ 4-0 32 ;u. 16 8 8~ 

7.,. 66 n so 4-Z 3.p- :!6 /8 

" 76 68 60 ..fZ 4-4 36 

" 78 7D 62 fll. 

" 8D 'Z 

Fig. 409· 

sequently governs the spacing in writing the series. We then re
move all these numbers to the same respective cells in the main 

square, and this gives us the square shown in Fig. 408. 
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This last method is not preferable, owing to the largeness of 

the primary arrangement, which becomes very large in larger squares. 
It might however be used in the break-move style where the steps 

are equal to the distance from the center cell to the corner cell, and 
the breakmoves are one cell down when I is at the top. 

What seems to be the most simple method is shown in Fig. 409 

where the odd numbers are written consecutively in the main square, 

and directly following in the same order of progression the even 

numbers are written. 

~2 3+ 2!6 18 I 7+ " .J"8 ft 

S2 -36 1:? II 3 76 68 60 

62. .J"4. 37 "' Zl 13 s"'- 78 70 

72 .J".J" ~7 ~ 31 :1!3 If 7 80 

73 6-' .J"? +!I 41 33 Z.J" 17 9" 
z 7.J" 67 f!il .J7 43 .3.J" 27 10 

12 ..,. 77 69 61 f3 4.r 28 zo 

2Z 14- 6 f'\!il 71 63 46 38 30 

3Z 24 16 8 ~ 64 .J"6 44 4-0 

Fig. 410. 

The even numbers necessarily run over into three adjacent sub

squares. These are removed to the sc.me respective cells in the 

main square, the result of which is shown in Fig. 410. 

The summations of Fig. 405 are 175, the summations of Figs. 

4o6 and 4o8 are 65, and the summations for Fig. 410 are 369. Also, 
all complementary pairs are balanced about the center. 

H. A. S. 



CHAPTER XI. 

SUNDRY CONSTRUCTIVE METHODS. 

A NEW METHOD FOR MAKING MAGIC SQUARES OF ODD 

ORDERS. 

IN an endeavor to discover a general rule whereby all forms of 

magic squares might be constructed, and thereby to solve the 

question as to the possible number of squares of the fifth order, a 

method was devised whereby squares may be made, for whose con

struction the rules at present known to the writer appear to be in

adequate. 

A general rule, however, seems as yet to be unattainable: nor 

does the solution of the possible number of squares of an order 

higher than four seem to be yet in sight, though, because of the 

discovery, so to speak, of hitherto unknown variants, the goal must, 

at least, have been brought nearer to realization. 

The new method now to be described does not pretend to be 

other than a partial rule, i. e., a rule by which most. but possibly 

not all kinds of magic squares may be made. It is based on De Ia 

1-Iire's method, i.e., on the implied theory that a normal magic square 

is made up of two primary squares. the one superimposed on the 

other and the numbers in similarly placed cells added together. This 

theory is governed by the fact that a given series of numbers may 

be produced by the consecutive addition of the terms of two or more 

diverse series of numbers. For example, the series of natural nt1111-

bers from one to sixteen may be regarded (a) as a single series, 

as stated, or (b) as the result of the addition, successively, of all 
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the terms of a series of eight terms to those of another series of 

two terms. For example, if series No. I is composed of o-I-2-3-4-5-6 

and 7 and series No.2 is composed of I and 9, all the numbers from 

I to I6 may be thus produced. Or (c) a series of four numbers, 
added successively to all the terms of another series of four num

bers, will likewise produce the same result, as for example o-I-2 

and 3, and I-5-9 and 13. 
Without undertaking to trace out the steps leading up to the rule 

to be described, we will at once state the method in connection with 

a 5 X 5 square. First, two primary squares must be made, which 
will hereafter be respectively referred to as the A and B primary 

squares. If the proposed magic square is to be associated, that is, if 
its complementary couplets are to be arranged geometrically equi

distant from the center, the central cell of each square must naturally 

J 10 J 

J 10 J 

J 10 J 

J 10 J 

.; 10 J 

Fig. 41!. Fig. 412. Fig. 413. 

be occupied by the central number of the series of which the square 

is composed. The two series in this case may be I-2-3-4-5 and 0-5-

IO-I5-20. The central number of the first series being 3 and of the 

second series IO, these two numbers must occupy the central cells of 
their respective squares. 

In each of these squares, each of the terms of its series must be 
represented five times, or as many times as the series has terms. 

Having placed 3 and ro in their respective central cells, four other 

cells in each square must be similarly filled. To locate these cells, 

any geometrical design may be selected which is balanced about the 
central cell. Having done this in primary square A the reverse of 
the same design must be taken for primary square D, two examples 

being shown in Figs. 41I and 412 and Figs. 413 and 414. 
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Having selected a design, the next step will be to fill the central 

row, which may be done by writing in any of the four empty cells 

in this row, any of the four remaining terms of the series. The 

10 J I .3 s .2 it-

10 J .J ,) 2 9 I 

10 If I J s 2 If I J s 2 

10 J .5" 2 .y I J 

10 J 2 If / J s 

Fig. 414. Fig. 415. Fig. 416. 

opposite cell to the one so filled must then be filled with the com

plementary number of the one last entered. Next, in either of the 

two remaining empty cells, write either of the remaining two terms 

s IS 0 10 20 6 IJ .5 12 2~ .3 

20 s IS 0 10 2J IO 17 4 II J 

IS 0 10 20 s 1.9 I IJ 2S 7 .3 

10 20 .5 IS 0 1.5 22 .9 16 J .3 

0 10 20 s IS .2 I¥ 21 8 20 3 

Fig. 417. Fig. 418. Fig. 419. 

of the series, and, in the last empty cell the then remaining number, 

which will complete the central row as shown in Fig. 415. All the 

other rows in the square must then be filled, using the same order 

If "' I 2 J /0 s 0 20 1.5 II! 10 I 22 /6 

2 J If .5 I 0 20 IS 10 .5 2 2.3 /.!J 1.5 6 

I 2 J If .5" 20 IS 10 .5" 0 21 '7 /J .9 .5" 

.5" I 2 .; 9 1.5 /0 s 0 20 20 1/ 7 .3 2_f 
J ~ .5 I 2 .5 0 20 IS 10 J" ~ 2S /0 /2 

Fig. 420. Fig. 421. Fig. 422. 

of numbers as in this basic row, and the square will be completed as 

shown in Fig. 416. The second square can then be made up with the 

numbers of its series in exactly the same way, as shown in Fig. 417. 
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Adding together the terms of Figs. 416 and 417, will give the asso

ciated 5 X 5 magic square shown in Fig. 418, which can not be made 
by any previously published rule known to the writer. Another 

example may be given to impress the method on the student's mind, 

Fig. 419 showing the plan, Figs. 420 and 421 the A and B primary 

4 7 " I 2 J .§' 6 

l,t. 6 7 ¥ I z J .§' 

l,t. 4 I z J .5 6 7 

"' 
.f' 6 7 4 I 2 d 

"' I 2 J .5 6 7 4 

" 
J ,) 6 7 "' I 2 

'it 2 ...; .§' 6 7 l,t. I 

Fig. 423· Fig. 424· 

squares, and Fig. 422 the resulting magic square. Any odd square 

can be readily made by this method, a 7 X 7 being shown. Fig. 423 

shows the plan, Figs. 424 and 425 being the primary squares and 
426 the complete example. Returning to the 5 X 5 square, it will be 

seen that in filling out the central row of the A primary square 

J.J I .If 2J' 7 ¥2 21 0 ';2 If 29 .9 ¥.§' 26 6 

/If 2! 7 /t2 21 0 J.§' 20 J,) II 4.3 2J J ¥0 

0 ,J.§' /If 24 7 ¥2 21 "' J6 16 J/ 12 .Y,J' 2J' 

28 7 .1,<2 2·/ 0 J,) ILl- JJ /J ¥.9 2,) I .3J IJ 
.21 0 J.§' l'i' 24 7 ¥2 22 z JJ' /.9 J.;< /.If .;<6 

7 1,<2 u 0 J,) ILl- 24 /0 1/-7 27 7 J.9 /.5 JO 

¥2 21 0 JS /.If 2,1? 7 41< 21,< .F 4/ 2/ J2 J' 

Fig. 425. Fig. 426. 

Fig. 415, for the first of the four empty cells, there is a choice of 
16, and next a choice of four. Also for the B primary square there 
are the same choices. Hence we have 

( 16 X 4) 2 = 4096 choices. 
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In addition to this, by reversing the patterns in the two primary 
squares, the above number can be doubled. 

It is therefore evident that with any chosen geometrical plan, 

8192 variants of associated 5 X 5 squares can be produced, and as at 

least five distinct plans can be made, 40,960 different 5 X 5 asso

ciated squares can thus be formed. This however is not the limit, 

for the writer believes it to be a law that all "figures of equilibrium" 

I 2 

I 2 

I 2 

I 2 

I 2 

Fig. 427. Fig. 428. Fig. 429. 

will produce magic squares as well as geometrically balanced dia
grams or plans. 

Referring to Fig. 427, if the circles represent equal weights 

connected as by the dotted lines, the system would balance at the 

center of the square. This therefore is a "figure of equilibrium" 

and it may be nsed as a basis for magic squares, as follows: Fill the 

4 " / 4 .5 2 

4 .J 2 ., s / 

4 " s 2 4 / 

4 " .J / 2 4< 

4 " 4 / 2 .§"" 

Fig. 430. Fig. 43I. Fig. 432. 

marked cells with a number, as for example 1 as in Fig. 428; then 
with the other numbers of the series, (excepting only the central 
number) make three other similar "figures of equilibrium" as shown 

separately in Figs. 429, 430 and 431, and collectively in Fig. 432. 
The five cells remaining empty will be geometrically balanced, and 

must be filled with the middle terms of the series (in this instance 
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3) thus completing the A primary square as shown in Fig. 433· 

Fill the B primary square with the series o-S-IO-IS-20 in the same 

manner as above described and as shown in Fig. 434· The com-

I J f( .f :t s 0 l.f" 10 :tO d J 1.9 1.} 22 

2 ¥ s I J 10 20 0 l.f" " 12 .2* .} 16 .f 

.f :t J 4- I 20 IS 10 s 0 2S 17 IJ .9 I 

J s I 2 4- IS s 20 0 10 l.f 10 21 2 19-

-¥ I 2 J .f 0 /0 " 20 IS .y. II 7 2J 20 

Fig. 433· Fig. 434. Fig. 435· 

bination of Figs. 433 and 434 produces the associated magic square 

given in Fig. 435· 
There are at least five different "figures of equilibrium" that 

0 .f 1.} 20 IO J I 2 '1- s 2 "' I J .f 

s 1.5 20 10 0 .; .3 I 2 -s<- J .5 2 * / 

IS 20 /0 0 .f * .> J I .2 4 I .:J .f z 
20 /0 0 .5" IS .2 'I .} (J I s 2 4 / 3 

/0 0 .f IS 20 I 2 * .)" J / .3 s 2 4< 

Fig. 436. Fig. 437· Fig. 438. 

can be drawn in a 5 X 5 square, and these can be readily shown to 
give as many variants as the geometrical class, which as before 

noted yielded 40,960 different squares. The number may therefore 

.; 6 11 24 /S 2 .9 /6 2.3 IS 

10 13 21 /2 * 
,f 20 22 /~ / 

/.!} 2.5 IJ I 7 1.9 2/ I.J s 7 

22 /* s " 16 2.5 /2 .y &> /J' 

II 2 .9 20 .:2.3 II J /0 17 2¥ 

Fig. 439· Fig. 440. 

now be doubled, raising the total to 81,920 associated 5 X 5 magic 
squares that are capable of being produced by the rules thus far 
considered. 
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The student must not however imagine that the possibilities of 

this method are now exhausted, for a further study of the subject 

will show that a geometrical pattern or design may often be used 
not only with its own reverse as shown, but also with another 

entirely different design, thus rendering our search for the universal 

rule still more difficult. 

¥ 2. " .3 / 2 a * " / J / * 2- S' 

.3 / * 2. " 4< " / 2 3 oY J / ~ 2-

2 " .3 / # / 2 .3 * s 2 oY " / ~ 

/ 4< 2, S' a J * s / 2. * 2 s J / 

S' a / 4< 2 .1" / 2- J *- / 4< 2- , J 

Fig. 44!. Fig. 442· Fig. 443. 

For example the pattern shown in Fig. 436 may be combined in 

turn with its reverse shown in Fig. 437 and also with Fig. 438, mak

ing the two associated magic squares shown in Figs. 439 and 440. 
In consideration of this as yet unexplored territory, therefore, 

Fig. 444 Fig. 445· 

the rules herein briefly outlined can only be considered as partial, 
and fall short of the "universal" rule for which the writer has been 

seeking. Their comprehensiveness however is evidenced by the 

fact that any square made by any other rule heretofore known to the 

writer, may be made by these rules, and also a great variety of other 
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squares which may only be made with great difficulty, if at all, by 

the older methods. 

To show the application of these rules to the older methods, 

a few squares given in Chapter I may be analyzed. 

Figs. 441, 442 and 443 show the plans of 5 X 5 squares given 
in Figs. 22, 23 and 41 in the above mentioned chapter. 

Their comprehensiveness is still further emphasized in squares 

of larger size, as for example in the 7 X 7 square shown in Fig. 426. 

Two final examples are shown in Figs. 444 and 445 which give 

plans of two 9 X 9 squares which if worked out will be found to 

be unique and beyond the power of any other rule to produce. In 

conclusion an original and curious 8 X 8 square is submitted in 

I I~ 7 12 .Bl I 1¥ 7 /2 .J 16 ,j- .tO ... 
IS "" 

.!} 6 .IS 

"" 
.9 6 I.J 2 1.1 " 

10 .5 16 .., .tO .5 16 .J .12 7 ~~ I ,. .... 
J II .2 I.J ;c ,f .II 2 /J 6 .9 ~ to 

.d'; ¥ IS 6 .9 z .t.J 4' "' ~ /j- " .!} 
..... : 

1¥ I 12 7 16 .., /0 .5 14 I /Z 7 
II J' I.J ;._ .9 6 /S 4 II ~ .t.J 2. 

r···-· 
l.D .5 10 .J /6 7 /2 / /~ .r /0 J /0 

Fig. 446. Fig. 447· 

Fig. 449· This square is both associated and continuous or Nasik, 

inasmuch as all constructive diagonals give the correct summation. 

The theory upon which the writer proceeded in the construction 
of this square was to consider it as a compound square composed 
of four 4 X 4 squares, the latter being in themselves continuous 

but not associated. That the latter quality might obtain in the 

8 X 8 square, each quarter of the 4 X 4 square is made the exact 

counterpart of the similar quarter in the diagonally opposite 4 X 4 
square, but turned on its axis r8o degrees. 

Having in this manner made an associated and continuous 

8 X 8 square composed of four 4 X 4 squares, each containing the 
series r to r6 inclusive, another 8 X 8 square, made with similar 
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properties, with a proper number series and added to the first square 

term to term will necessarily yield the desired result. 

Practically, the work was done as follows: In one quarter of 

an 8 X 8 square, a continuous (but not associated) 4 X 4 square 

was inscribed, and in the diagonally opposite quarter another 4 X 4 

square was written in the manner heretofore described and now 

illustrated in Fig. 446. A simple computation will show that in the 

unfilled parts of Fig. 446, if it is to be cdntinuous, the contents of 

the cells C and D must be 29 and A and B must equal S· Hence 

A and B may contain respectively I and 4, or else 2 and 3· Choosing 

2 and 3 for A and B, and I4 and IS forD and C, they were located 

I I~ ss 6o .JS -98 21 26 

IS 4<- "7 Sq. .!,tS .34<- 27 2¥-

.>4' .>.3 16 J :u .2.) 46 J.3 

s6 S.9 2 /.J .22 2S J6 ~7 

0 .l,tJ' J.2 /6 16' 2.9 "'0 #J .>2 6J 6 .!J 

43 0 lo J.2 .):2_ 1.9 .l,t2 .37 62 .l,t9 /2 7 
16 J2 ,q,Y 0 .l,tl J.f .J/ 20 // 3 6/ so 

.32 /0 0 *" J.9 ~,., ... IJ JO " /0 .>I 0'/-

Fig. 448. Fig. 449· 

as marked by circles 111 Fig. 447, the associated or centrally bal

anced idea being thus preserved. 

The other two quarters of the 8 X 8 square were then com

pleted in the usual way of making Nasik 4 X 4 squares, thus pro
ducing the A primary square shown in Fig. 447, which, in accord
ance with our theory must be both associated and continuous which 

inspection confirms. 

As only the numbers in the series I to I6 inclusive appear in this 
square, it is evident that they must be considered term by term with 

another square made with the series o-I6-32-48 in order that the 
final square may contain the series I to 64 inclusive. This is accom

plished in Fig. 448, which shows a 4 X 4 square both associated and 
continuous, composed of the numbers in the above mentioned 

series. 
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At this point, two courses of operation seemed to be open, the 

first being to expand Fig. 448 into an 8 X 8 square, as in the case of 

the A primary square, Fig. 447, and the second being to consider 

Fig. 447 as a 4 X 4 square, built up of sixteen subsquares of 2 X 2 

regarded as units. 
The latter course was chosen as the easier one, and each indi

vidual term in Fig. 448 was added to each of the four numbers in the 

corresponding quadruple cells of Fig. 447, thus giving four terms 

in the complete square as shown in Fg. 449· For example o being 
the term in the upper left-hand cell of Fig. 448, this term was added 

to 1-14-15-4 in the first quadruple cell of Fig. 447, leaving these 
numbers unchanged in their value, so they were simply transferred 

to the complete magic square Fig. 449· The second quadruple cell 

in Fig. 447 contains the numbers 7-12-9-6, and as the second cell 

in Fig. 448 contains the number 48, this number was added to 

each of the last mentioned four terms, converting them respectively 

into 55-6o-57 and 54, which numbers were inscribed into the cor
responding cells of Fig. 449, and so on throughout. 

Attention may here be called to the "figure of equilibrium" 

shown in Fig. 448 by circles and its quadruple reappearance in Fig. 

449 which is a complete associated and continuous 8 X 8 magic 

square, having many unique summations. L. S. F. 

THE CONSTRUCTION OF MAGIC SQUARES AND RECTANGLES 
BY THE METHOD OF "COMPLEMENTARY DIFFERENCES."* 

We are indebted to Dr. C. Planck for a new and power

ful method for producing magic squares, rectangles etc. This 
method is especally attractive and valuable in furnishing a general 

or universal rule covering the construction of all conceivable types 

of squares and rectangles, both odd and even. It is not indeed the 

easiest and best method for making all kinds of squares, as in many 

cases much simpler rules can be used to advantage, but it will be 

found exceedingly helpful in the production of new variants, which 

*This article has been compiled almost entirely from correspondence re
ceived by the writer from Dr. Planck, and in a large part of it the text of his 
letters has been copied almost verbatim. Its publication in present form has 
naturally received his sanction and endorsement. w. s. A. 
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might otherwise remain undiscovered, seeing that they may be non

La Hireian and ungoverned by any obvious constructive plan. 
When a series of numbers is arranged in two associated col

umns, as shown in Fig. 450, each pair of numbers has its distinctive 

difference, and these "complementary differences," as they are 

termed by Dr. Planck, may be used very effectively in the con

struction of magic squares and rectangles. In practice it is often 

quite as efficient and simpler to use half the differences, as given in 

Fig. 450. 
In illustrating this method we will first apply it to the con-

I IS 7 a b 

2 I .If 6 c c 

.3 /J s b a 

4 12 4 Fig. 45r. 

s II .) 

6 10 2 2 .5 4 .J I 

7 .!) I 7 6 g 10 .9 

8 1.5 /.J 12 II I~ 

Fig. 450. Fig. 452. 

struction of an associated or regular 3 x 5 magic rectangle, in which 

the natural numbers 1 to 15 inclusive are to be so arranged that 
every long row sums 40, and every short column sums 24. The 

center cell must necessarily be occupied by 8, which is the middle 

number of the series, and the complementary numbers must lie in 

associated cells, such as a a - b b - c c in Fig. 451. 
The first operation is to lay out a 3 x 5 rectangle and fill it 

with such numbers that all the short columns shall sum 24, but 

in which the numbers in the columns will not be placed in any 

particular order. When two columns of this rectangle are filled 
three pairs of complementary numbers will have been used, and 

their differences will have disappeared, as these two columns must 
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each sum 24. Hence, one complementary difference must equal 

the sum of the other two. 

We have therefore (neglecting the middle column) to make 

two equations of the forms a = b + c from the complementary dif

ferences, without using the same difference twice. Thus : 

::~:~} ........................................... (I) 

is such a pair of equations. 

The first equation indicates that the greater of the two comple

ments whose half difference is 7 can lie in the same column with 

the lesser members of the pairs whose half differences are 6 and 1. 

In other words, the numbers 15, 7 and 2 can lie in one column, 

and their complements 14, 9 and 1 in the associated column. The 

second equation ( 5 = 3 + 2) gives similar information regarding 

the other pair of associated columns, and the three remaining num

bers must then be placed in the middle column, thus producing the 

rectangle shown in Fig. 452. 

These equations determine nothing as to the placing of the 

numbers in the rows, since in Fig. 452 the numbers in the columns 

have no definite order. 

The rows may now be attacked in a similar manner. Two of 

the complementary differences in the upper or lower row must equal 

the other three, and the equation will therefore be of the order 

a+ b = c + d+ e. 

In order that the disposition of numbers in the columns shall 

not be disturbed, the numbers used in this equation must be so 

chosen that any two numbers which appear together on the same 

side of an equality sign in the short column equation, must not so 

appear in a long row equation, also if two numbers appear on the 

opposite sides of an equality sign in a short column equation, they 

must not so appear in the long row equation. 

There is only one such equation which will conform to the 
above rules, viz., 
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Interpreting this as before we have the rectangle given m Fig. 

453, in which each of the three rows sums 40. We have now two 

rectangles, Fig. 452 showing the correct numbers in the columns, 

and Fig. 453 showing the proper disposition of the numbers in the 

rows. By combining them we get the associated or regular magic 

rectangle given in Fig. 454. 

I 0 7 10 l"f 1 J 4 /0 /¥ 

I j 8 /.3 IS" IS /.3 8 J / 

2 6 .9 II 12 2 6 /2 // .9 

Fig. 453. Fig. 454· 

If a mere shuffling of pairs of complementary rows or columns 

IS ignored, this is the only solution of the problem.* 

There are two pairs of equations of the form 

a=b+c 

d=e+f 

namely, the one given in (I) and 

:: ~: ~} 0 0 0 0 0 0' 0 0 •• 0 ••• '. 0 ••••• 0 •• '. ". 0. 0 •• 0 0 0 0 0 0 (II) 

and there are nine equations of the form 

a+b=c+d+e 

but of these nme equations only one will go with (I) and none 

will go with (II) so as to conform with the above rules. 

If the condition of association is relaxed there are thirty-nine 

different 3 x 5 magic rectangles. 

This method can naturally be used for constructing all sizes of 

magic rectangles which are possible.t but we will only consider 

one of 5 x 7 as a final example. 

*The solution of this problem of the associated rectangle is the first step 
in the construction of the higher ornate magics of composite odd orders. For 
example, if the above single solution for the 3X5 rectangle did not exist it 
would be impossible to construct a magic, pan-diagonal, associated ( = regu
lar) square of order 15, which shall be both 9-ply and 25-ply, i. e., a11y square 
bunch of 9 cells to sum up 9 times the mean, and a11y square bunch of 25 cells 
25 times the mean. c. P. 

t A magic rectangle with an odrl number of cells in one side and an even 
number in the other, is impossible with consecutive numbers. c. P. 
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Fig. 455 shows the associated series of natural numbers from 

1 to 35 with their half differences, from which the numbers must 

be chosen in accordance with the above rules. In this case three 

will be three equations of the order 

I .3.5 17 /.9 22 .3.3 29 2.3 21 20 

2 J~ 16 .35 J/ .34 28 .30 29- 2S 

J .33 1.5- 9 /0 4 /8 .32 26 27 

4 .32 14 II /2 6 7 2 .j- I 

s Jl IJ 16 IS /.3 8 .3 /'{ 17 

6 30 12 Fig. 456. 

7 29 II 

8 2c5 10 
.30 .3/ J.V / 7 .9 1/r-

2S 26 28 16 /S /.3 J 
.9 27 9 

10 26 8 
.32 2-L,! /.9 /8 17 /2 9-

.3.3 2.3 2/ 20 8 /0 /I 
II 25 7 
12 24 6 

22 27 29 .36" .2 s 6 

1.3 2.3 s· 
Fig. 457· 

/.If 22 4 9 .3/ .34 7 .30 ~~ / 

IS" 21 J /6 /S /.3 2,i ..3 .z6 25 

16 20 2 /.9 /2 4 /8 .32 24 17 

17 1.9 I // /0 JJ 8 2.3 2/ 20 

/8 J.j" 22 6 2.9 2 s 27 

Fig. 455· Fig. 458. 

for the columns, and two equations of the order 
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for the rows. The following selection of numbers will satisfy 

the conditions : 

1+17= 9+ 7+2! 
4+13= 8+ 6+3 

15+16=14+12+5 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (III) 

for the columns, and 

12+13+16=17+11+9+ 4} ................... (IV) 

7 + 8 + 10 = 2 + 3 + 5 + 15 

for the rows. 

Fig. 456 1s a rectangle made from (III) in which all the 

columns sum 90, and Fig. 457 is a rectangle made from (IV) in 

which all the rows sum 126. Combining these two rectangles pro

duces Fig. 458 which is magic and associated. 

We will now consider this method in connection with magic 

squares and will apply it to the construction of a square of order 5 
as a first example. In this case two equations of the order 

a+b=c+d+e 

will be required for the rows and two more similar equations for 

the columns. 

The following will be found suitable for the rows: 

12+11=10+9+4} ............................... (V) 
8+ 6= 7+5+2 

and 

~~:;: 1~:~:~} ............................... (VI) 

for the columns. 

It will be seen that the rule for pairs of numbers in the same 

equation is fulfilled in the above selection. In (V) 12 and 11 are on 

the same side of an equality sign, but in (VI) these numbers are 

on opposite sides, also, 10 and 9 are on the same side in (V) and 
on opposite sides in (VI) and so on. 
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The resulting magic square is given in Fig. 459, it is non

La Hireian, and could not easily be made in any way other than as 

above described. 
The construction of a square of order 6 under this method 

presents more difficulties than previous examples, on account of 

the inherent disabilities natural to this square and we will consider 

it as a final example. The method to be employed is precisely the 

same as that previously discussed. 

For the columns three equations should be made of the form: 

a+b+c=d+e+f 
or 

a+b =c+d+e+f 

and three similar equations are required for the rows, all being 
subject to the rule for "pairs and equality sign" as above described . 

24 J .9 4- 2.5' 

21 6 II & 1.9 

/2 16 /J /0 14-

7 1,5 IS 20 .Y 

/ 22- 17 2.3 2 

Fig. 459-

0n trial, however, this will be found to be impossible,* but if for 

one of the row- or column-equations we substitute an inequality 
whose difference is 2 we shall obtain a square of 6, which will be 

"associated," but in which two lines or columns will be erratic, one 
showing a correct summation - 1 and the other a correct summa
tion + 1. The following equations (VII) may be used for the 
columns: 

- 11+ 7= 9+ 5+ 3+11 
2;, + 17 + 13 = 21 + 19 + 15 I . . . . . . . . . . . . . . . . . . (VII) 

35+31+23=33+29+27 J 
and for the rows: 

* It is demonstrably impossible for all orders = 4P + 2, i. e., 6, ro, 14, etc. c.P. 
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29 + 25 = 33 + 13 + 7 + 1] 
35 + 19 + 3 = 31 + 21 + 5 ................ . 

27 +23~17 + 15 + 11 +9 

(VIII) 

the last being an inequality. Fig. 460 shows the complementary 

24 J/ .36 ,.,- 2.9 2/ 

22 27 .34 .3.3 23 20 

/ .36 .3.) /4 25 .30 .32 26 /.9 

2 .;s .3.3 /6 8 2 I 6 /.3 

.3 .34- .31 IJ ..9 4 .J /0 /.5" 

~ .3.3 29 /8 /I s 7 /2 2.J 

eY .32 2/ Fig. 46r. 

6 J/ 2.S .3.3 .3/ 2 /2 /.5" /8 

7 .30 2.J .36 26' 20 j cf /6 

6' 2.9 21 .32 .30 /0 /I /.3 /Lf 

9 28 /9 26 2£t 2.3 .5 7 2J 
/0 27 17 .34 2.9 2/ / .9 IJ 
II 26 /.5- 2.) 22 /.9 -Lf 6 .JS 

12 25' /.3 Fig. 462. 

/J 2Lj II /8 J/ 2 .3.3 /2 IS" 

14 .Z.J 9 ;6 J' ..;6 .J 26' 20 

/j- 22 7 /Lf /I .30 .32 /0 /.J 

/6 21 s 2£t :q s 7 26 2.3 

17 20 J IJ .9 .34 / 2.9 2/ 

18 /.9 I 22 2.5 Lf .J.J" 6 /..9 

Fig. 460. Fig. 463. 

pairs of natural numbers 1 to 36 with their whole differences, 

which in this case are used in the equations (VII) and (VIII) in

stead of the half differences, because these differences cannot be 
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halved without involving fractions. Fig. 461 is the square derived 

from equations (VII) and will be found correct in the columns. 
Fig. 462 is the square formed from equations (VIII) and is correct 

in the 1st, 2d, 5th, and 6th rows, but erratic in the 3d and 4th rows. 
The finished six-square made by combining Figs. 461 and 462 is 

shown in Fig. 463 which is associated or regular, and which gives 

/3 J/ 2 /.D- /2 JJ 

/6 J> .36 20 23 J A B 

/~ // .30 /J /0 .32 

22 2.5" 4 /.9 6 JS 

/7 .9 .34- :u 2.9 / c LJ 

2Ef 27 .j- 2J .26 7 
Fig. 464. Fig. 465. 

correct summations m all the columns and rows excepting the 3d 

and 4th rows which show - 1 and + 1 inequalities respectively. 

Fig. 463, like Fig. 459, could not probably be produced by any 

other method than the one herein employed, and both of these 

squares therefore demonstrate the value of the methods for con

stmcting new variants. Fig. 463 can be readily converted into a 

7 /Z / /~ 7 /2 /4 / 

z /J ,f' II 2 /J // J' 

16 J 10 s .9 6 4 /S 

.9 6 /S 4 /6 J .j- /0 

Fig. 466. 

continuous or pan-diagonal square by first interchanging the 4th 

and 6th columns and then, in the square so formed, interchanging 

the 4th and 6th rows. The result of these changes is given in 
Fig. 464 which shows correct summations in all columns and rows, 

excepting in the 3d and 6th rows which carry the inequalities 
shown in Fig. 463. This square has lost its property of association 
by the above change but has now correct summation in all its diag-
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onals. It is a demonstrable fact that squares of orders 4p + 2, 

(i.e., 6, 10, 14 etc.) cannot be made perfectly magic in columns and 

rows and at the same time either associated or pandiagonal when 
constructed with consecutive numbers. 

Dr. Planck also points out that the change which converts all 

even associated squares into pan-diagonal squares may be tersely 

expressed as follows: 

Divide the square into four quarters as shown in Fig. 465. 

Leave A untouched. 

Reflect B. 
Invert C. 

Reflect and invert D. 

/ 4L! .JZ S.J 2 L!.J .J/ -'¥ 

.59 1.9 .3.9 If;- s-; 20 40 /.3 

.38 IS ,j:!) /J' .Jj /6 6o 17 

2.9 ~-6 4 ~I .JO S.5 J 42 

2.3 6z /0 .Jc} 24 6/ ..9 .J6 

49 .5 4.9 2J' 47 6 .JO 2J 
.72 2.5 4.5" J .J/ 26 46 7 

// .J4- 22 6.; /2 .J..3 21 6/i--

Fig. 468. 

The inverse change from pan-diagonal to association is not 
necessarily effective, but it may be demonstrated with the "Jaina" 
square given by Dr. Carus on p. 125, which is here repeated in Fig. 

466. This is a continuous or pan-diagonal square, but after making 

the above mentioned changes it becomes an associated or regular 

square as shown in Fig. 467. 
Magic squares of the 8th order can however be made to com

bine the pan-diagonal and associated features as shown in Fig. 468 
which is contributed by Mr. Frierson, and this is true also of all 

larger squares of orders 4p. W.S.A. 
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NOTES ON THE CONSTRUCTION OF MAGIC SQUARES OF 
ORDERS IN WHICH n IS OF THE GENERAL FORM 4P + 2. 

It is well known that magic squares of the above orders, i. e., 

62 , 102 , 142 , 182 , etc., cannot be made perfectly pandiagonal and ornate 

with the natural series of numbers. 

Dr. C. Planck has however pointed out that this disability is 

purely arithmetical, seeing that these magics can be readily con

structed as perfect and ornate as any others with a properly selected 

series of numbers. 

In all of these squares n is of the general form 4p + 2, hut they 

can be divided into two classes: 

Class I. Where n is of the form 8p- 2, as 62 , 14", 222 etc. 

Class II. Where n is of the form 8p + 2, as 102 , 182 , 262 etc. 

The series for all magics of Class I may be derived by making 

a square of the natural series 1 to ( n+ 1) 2 and discarding the numbers 

in the middle row and column. 

Thus, for a 62 magic the series will be: 

23-567 
8 9 10 - 12 13 14 
15 16 17 - 19 20 21 

29 30 31 - 33 34 35 
36 37 38 - 40 41 42 
43 44 45 - 47 48 49 

The series for all magics of Class II may be made by writing 

a square of the natural numbers 1 to (n+3) 2 and discarding the 

numbers in the three middle rows and columns. The series for a 
102 magic, for example, will be: 

2 3 4 5 9 10 11 12 13 

14 15 16 17 18 22 23 24 25 26 

27 28 29 30 31 35 36 37 38 39 

40 41 42 43 44 48 49 so 51 52 

53 54 55 56 57 61 62 63 64 65 
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105 106 107 108 109 

118 119 120 121 122 

131 132 133 134 135 

144 145 146 147 148 

157 158 159 160 161 

113 114 115 116 117 

126 127 128 129 130 

139 140 141 142 143 

152 153 154 155 156 

165 166 167 168 169 

By using series as above described, pandiagonal magics with 

double-ply properties, or associated magics may be readily made 

either by the La Hireian method with magic rectangles, or by the 

path method as developed by Dr. C. Planck. 

7 .2 ..; 7 2 .3 

I 6 .5 / 6 .>-

Fig. 469. 7 2 J 7 2 J 

/ 6 .5 / 6 .j-

42 7 I* 7 2 J 7 2 J 

0 .>S 2t5 / 6 s- / 6 s 
Fig. 470. Fig. 47I, 

Referring now to the La Hireian method and using the 62 

magic as a first example, the rectangles required for making the 

two auxiliary squares will necessarily be 2x3, and the numbers used 

therein will be those commonly employed for squares of the seventh 

order, i. e., (6+1 ) 2 , with the middle numbers omitted thus: 

1 2 3 5 6 7 
0 7 14 - 28 35 42 

It may be shown that a magic rectangle having an odd number 
of cells in one side, and an even number of cells in the other side 

is impossible with consecutive numbers, but with a series made as 

above it can be constructed without any difficulty, as shown in 

Figs. 469 and 470. 
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Two auxiliary squares may now be made by filling them with 
their respective rectangles. If this is done without forethought, 

a plain pandiagonal magic of the sixth order may result, but if 
attention is given to ornate qualities in the two auxiliaries, these fea

tttres will naturally be carried into the final square. For example, by 

the arrangement of rectangles shown in Figs. 471 and 472 both auxil

iaries are made magic in their six rows, six columns and twelve 

0 42 0 42 0 -¥.2 7 4/t .} .lf8 z 4S 

3.5' 7 .3.5' 7 .3.5' 7 .J6 /.} 40 ~~"cr 41 /2 

ZJ' /.fF 23' /4 z~ /¥ .}S /6 .}/ .21 .30 17 

0 42 0 4-2 0 .¥2 / 
II' 

6 -¥8 6~ 4J 4-J 

.JS" 7 .}5' 7 .35 7 42 .9 .38 /-¥ 3J /0 

2tf /4- 28 /-¥- 28 /~ 29 20 .3.3 /S 34 /.9 

Fig. 472. Fig. 473. 

7 z .3 .3 .2 7 0 42 0 4-2 0 ¥Z 

I 6 .5' ~- 6 I 3.5" 7 .35 7 .3.5 7 

7 2 .3 .3 2 7 28 /4 28 /¥ 26' /~ 

/ 6 s- ,5 6 / 28 /.If- 28 /¥- 28 /.If-

7 z .3 .3 2 7 35 7 .3S 7 .JS 7 
I 6 5" .5 6 / 0 /./-2 0 -¥2 0 42. 

Fig. 474· Fig. 475· 

diagonals, and they are also 4-ply and 9-ply. Their complementary 

couplets are also harmoniously connected throughout in steps of 

3, 3. These ornate features are therefore transmitted into the fin

ished 62 magic shown in Fig. 473. If it is desired to make this square. 
associated, that is with its complementary couplets evenly balanced 

around its center, it is only necessary to introduce the feature of 

association into the two auxiliary squares by a rearrangement of 
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their magic rectangles as shown in Figs. 474, 475 and 476. the last 

figure being a pandiagonal associated magic. 
The next larger square of Class I is 14•, and it can be made 

with the natural series 1 to ( 14-t 1) • arranged in a square, discard

ing, as before, all the numbers in the central row and column. 
The rectangles for this square will necessarily be 2x7 and the 

numbers written therein will be those ordinarily used for a square 

1 44 J 4S ,2, 49 

J6 /.J 40 /,2 4/ 8" 

.).J 16 .J/ IJ .J() Z/ 

2.9 20 .J.J /.9 .J4 IS" 

42 .9 .u /0 .J7 //f. 

/ 4tf ,j- 47 6 4J 

Fig. 476. 

of the fifteenth order, ( 14-t 1) •, with the middle numbers omitted, 

thus: 

1 2 3 4 5 6 7 
0 15 30 45 60 75 90 

9 10 11 12 13 14 15 
120 135 150 165 180 195 210 

Simple forms of magic rectangles for the auxiliaries are shown 
in Figs. 477 and 478 but many other arrangements of the couplets 
will work equally well .. 

/S" 2 0 /2 1/ 6 7 ZIO /.}" .JO 16.5" /.:}0 7S" 90 

/ /~ IJ 4 .5" /0 .9 0 1/J,j' /80 4S 00 /.JS /,20 

Fig. 477. Fig. 478. 

The smallest magic of Class II is 10•, the series for which is 
given below. The rectangles used for filling the two auxiliaries of 
this square are 2x5, and they can be made with the numbers which 
would be commonly used for a square of the thirteenth order (10+3) 2 

omitting the three middle numbers in each row thus : 
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1 2 3 4 5 
0 13 26 39 52 

9 10 11 12 13 

104 117 130 143 156 

Figs. 479 and 480 show these two rectangles with a simple ar
rangement of the numbers. The two auxiliaries and the finished 102 

magic are given in Figs. 481, 482 and 483. Fig. 483 is magic in its 

1.3 2 II 4 S' /S6 /.3 /.30 .39 .54 

/ /Z .3 10 9 0 /43 z6 ''7 /0~ 
Fig. 479· Fig. 48o. 

ten rows, ten columns and twenty diagonals. It is also 4-ply and 
25-ply. Like the 62 magic, this square can also be associated by 

changing the disposition of the magic rectangles in the auxiliaries. 

The above examples will suffice to explain the general con-

1.3 2 /I 4 5 /,3 2 /I 4 S" 

I 12 .3 /0 9 / /2 .3 /0 .9 

IJ 2 II ~ s I..J z /I * s 

I /2 J /0 9 I /2 .3 /0 8 

1.3 2 II -'1- .5" IJ 2 II 4 S" 

I /Z .3 10 9 I /2 J 10 .9 

I~ z II ~ s 1.3 ~ /I ¥ .5" 

I IZ .3 10 8 I /2 .3 10 .9 

/.) 2 /I -¥ S" /.3 2 // ~ S" 

/ 12 J /0 .9 / IZ ..3 /0 .9 

Fig. 481. 

struction of these squares by the La Hireian method with magic 
rectangles. It may however be stated that although the series pre
viously described for use in building these squares include the lower 
numerical values, there are other series of higher numbers which 
will produce equivalent magic results. 
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0 /,)6 0 IS6 0 1.5"6 0 !Sb 0 1.>6 

/lfJ /j /9J /.} /9-J IJ /9.3 /.J /~.3 /J 

26 /.}0 z6 IJO z6 /JO 2b /JO 26 I.J(} 

117 .39 IIJ .39 IIJ J.9 IIJ .).9 ''l J9 

/09 ,j-z /()~ .5"2 109 S2 /0~ f2 /Oj sz 

0 IS6 0 1.>6 (J /S6 0 /.5'6 0 15"6 

/~J /J /{d /.J 19.3 /.J /-¥J /.3 /qJ 1.3 

26 /.30 z6 /.30 26 /.JO 26 /J() .26 1.30 

1/7 .39 IIJ .3.9 'IJ J9 IIJ .39 IIJ .J.9 

VO¥ .52 /oq .>2 10-¥ sz VO¥ 52 10~ S2 

1:3 /6o II 160 .5' 169 2 !6J ~ /61 

/¥Ef. 2.5 /~t6 2.3 IS2 1¥ /6.)" /t~ /SJ 22. 

.)9 /J2 J7 1.3¥ .}/ /~J .2S /~/ JO /JJ 

1/8 6-/ /20 ~.9 !26 40 /28 ¥Z /Z7 ~s 

IIJ .5.y //.5 .s6 /0.9 b5 /06 6J /OJ' .5"7 
/ 16t1 J 1615 .9 IS'J /2 /.5'9 /0 /6.6 

-'S6 /.5 /S-'-1 IJ /~3 26 /~S Z-9 ~~; /J> 

2J /~2 29 /~0 JS /J/ Ja' /.J.3 Jb /~9 

/.,)0 ¥1 IZJ' ¥.3 /22 .52 //8 so /2/ 4t.t,Jt 

/0.5 6~ IOJ 6z //.} JJ //6 .ss //¥ 6/ 
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The following table illustrates another rule covering the selec

tion of numbers for all magic squares of these orders. 

ORDER 
OF NATURAL SERIES DISCARDING NUMBERS IN 

SQUARE 

6th 1 to ( 6+1)• the middle row and column. 
lOth 1 to ( 10+3) • the 3 middle rows and columns. 
14th 1 to ( 14+5)• the 5 middle rows and columns. 
18th 1 to (18+7)• the 7 middle rows and columns. 
22nd 1 to (22+9)• the 9 middle rows and columns. 
26th 1 to (26+11)• the 11 middle rows and columns. 

and so forth. 

These figures show that this rule is equivalent to taking the 

b f h I . (3n - 4) 2 d . . h 1 n - 4 num ers o t e natura senes - 2- an om1ttmg t e centra - 2-

rows and columns. In comparing the above with the rules pre

viously given, for which we are indebted to Dr. C. Planck, it will 

be seen that in cases of magics larger than 10• it involves the use of 

unnecessarily large numbers. 

The numerical values of the ply properties of these squares 

are naturally governed by the dimensions of the magic rectangles 

used in their construction. Thus the rectangle of the 6• magic 

(Fig. 473) is 2x3, and this square is 22-ply and 32-ply. The rectangle 

of the 10• magic being 2x5, the square may be made 2•-ply and 

5•-ply, and so forth. 

The formation of these squares by the "path" method which has 

been so ably developed by Dr. C. Planck* may now be considered. 

The first step is to rearrange the numbers of the given series in 
such a cyclic order or sequence, that each number being written con

secutively into the square by a well defined rule or path, the re

sulting magic will be identical with that made by the La Hireian 

method, or equivalent thereto in magic qualities. Starting, as before, 

with the 62 magic, the proper sequence of the first six numbers is 

found in what may be termed the "continuous diagonal" of its magic 
rectangle. RefeHing to Fig. 469, this sequence is seen to be 1, 2, 5, 

*The Theory of Path Nasiks, by C. Planck, M.A., M.R.C.S., published 
by A. T. Lawrence, Rugby, England. 
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7, 6, 3, but it is obvious that there may be as many different se

quences as there are variations in the magic rectangles. 

The complete series given on page 267 must now be rearranged 

in its lines and columns in accordance with the numerical sequence 

9 /0 12 /" /~ .9 IZ ~~ /J 

16 17 1.9 zo 21 ,jO J.3 "s J¥ 

J/ JJ JLf J~ ,M 4Lf "~-l ~.9 Lf<f Lf 

Jo ~0 Lf/ "1-Z .36 .)7 

4<1 4.5 4-1 "f-J' ¥8 16 19 .ZI zo 17 

of the first six numbers as above indicated. To make this arrange

ment quite clear, the series given on p. 267 is reproduced in Fig. 484, 

the numbers written in circles outside the square showing the numer

ical order of lines and columns under rearrangement. Fig. 485 shows 

the complete series in new cyclic order, and to construct a square 

directly therefrom, it is only necessary to write these numbers con-

7 J z 
'S A B 

I s 6 

c D 

Fig. 486. Fig. 487. 

secutively along the proper paths. Since the square will be pandiag
onal it may be commenced anywhere, so in the present example we 

will place 1 in the fourth cell from the top in the first column, and 

will use the paths followed in Fig. 473 so as to reproduce that square. 

The paths may be written I 3, 21 and since we can always write 
! 4, 3 
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/ 2 ..} -¥ 9 /.3 12 II /0 s 
lq IS t6 '7 22 z6 25 Z4 2..3 M' 

27 26' 29 .};(7 .3.5" .).!} .)J' .J7 o6 .31 

40 *"' .liZ .II.J .116' .)2 5/ so ¥.9 ¥~ 

/OS 106 !OJ lOS //.3 117 116 /IS //~ /0.9 

loJ /S.f /SlJ 160 165 16.9 !66' 16J 166 161 

/Lt-9 /Lt-5 196 '*7 /.72 IS6 ISS /5"~ /S.3 /~<! 

/.3/ /.32 /.33 13¥ /MJ 1¥.3 I~Z /~I 1¥0 V-'~ 

//,! 11.9 120 121 126 1.30 IZ-.9 123 12J /22 

.5".3 S9 ss- .j-6 61 65 6~ 6.3 6z S7 

Fig. 488. 

/J 16o z /6/ I/ 169 ¥ t.rs " ISJ 
27 I~ .Jo /Jf) 29 /JI .36 /~2 .35 /JJ 

"7 .96 106 SJ /IS 6s /06 S"¥ /09 6J 

144 2.3 ISS 2Z /Lt-6 /q M-.3 25 1$2 !6 

1.30 .r,t.3 11.9 4~ 123 52 121 .If/ 122 so 

/ /~6 IZ 165 .3 1.57 /0 163 .9 IS.9 

J9 1.3¥ 2J' /JS .31 /~J JO 132 .3/ I .Ill 

lOS 6z 116 61 IOJ oJ //L/ 6¥ 11.3 .j""S"" 

11'>"6 '7 /~.) /J' 15"/ 26 1¥7 15 ///J' 2¥ 

/16 .11-.9 12.9 q.J' 120 q() 12J Sl 126 4-Z 

Fig. 489. 
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-(n-a) instead of a, we may write this I 3, 2,. This only means 
-2,3 

that the numbers in the first column of Fig. 485 (which may be 

termed the leading numbers) are to be placed in order along the 

path ( 3, 2), as in the numbers enclosed in circles in Fig. 473; and 

then starting from each cell thus occupied, the remaining five num

bers in each of the six rows of Fig. 485 are to be written along the 

path (-2, 3). It will be seen that this is equivalent to writing the 

successive rows of Fig. 485 intact along the path ( -2, 3), or ( 3, -2) 
and using a "break-step" {1, -1), as in Fig. 486 where the first 

break-step is shown with an arrow. The break-step is always given 

21 z j ~ '7 16 IS' J" /.3 

I 20 /.9 IJ ,{)- 6 7 ~~ .9 

Fig. 490. 

2.3 2 21 4 /9 6 17 J" .9 /0 /,.3 

/ 22 .3 20 s- It!'" 7 16 /.5" ~~ 1/ 

Fig. 49r. 

29 z 27 .q. 2.5' 6 23 &' a 20 /I /J' /3 

I 26'" ..3 26 5 Z¥- 7 22 21 /0 /.9 12 17 

Fig. 492. 

by summing up the coordinates ; thus, the paths here being I 3, 21, 
j-2, 3 

by summing the columns we get ( 1, 5), that is ( 1, - 1). The re
sulting square is, of course, identical with Fig. 473. 

As previously stated, this square being pandiagonal, it may be 

commenced in any of its thirty-six cells, and by using the same 

methods as before, different aspects of Fig. 473 will be produced. 
Also, since by this method complementary pairs are always sepa

rated by a step ( n/2, n/2), any of the thirty-six squares thus formed 



SUNDRY CONSTRUCTIVE METHODS. 277 

may be made associated by the method described under the heading 

"Magic Squares by Complementary Differences," viz., Divide the 

square into four quarters as shown in Fig. 487; leave A untouched, 

reflect B, invert C and reflect and invert D. For this concise and 

elegant method of changing the relative positions of the comple

mentary couplets in a square we are indebted to Dr. Planck. 

The next square in order is 10•. The series of numbers used 

is given on page 267 and their rearrangement in proper cyclic order 

for direct entry may be found as before in the continuous diagonal 

of its magic rectangle. The sequence shown in Fig. 479 is, 1, 2, 3, 4, 

9, 13, 12, 11, 10, 5, and the complete rearrangement of the series in 

accordance therewith is given in Fig. 488. Various 102 magics may 

be made by using this series with different paths. The paths I 5, 41 
-4,5 

will produce Fig. 483, and I 5, 21 will make Fig. 489, which is 
2,5 

equivalent to Fig. 483 in its ornate features. 

These squares and all similarly constructed larger ones of these 

orders may be changed to the form of association wherein the com

plementary couplets are evenly balanced around the center of the 

square, by the method previously explained. It will be unnecessary 

to prolong the present article by giving any examples of larger 

squares of this class, but the simple forms of magic rectangles for 

182 and 222 and 262 magics, shown in Figs. 490, 491, and 492, may be 

of some assistance to those who desire to devote further study to 

these interesting squares.* W. S. A. L. S. F. 

NOTES ON THE CONSTRUCTION OF MAGIC SQUARES OF 

ORDERS IN WHICH n IS OF THE GENERAL FORM 8/>+2. 

It has just been shown that the minimum series to be used in 

constructing this class of squares is selected from the series 1, 2, 

*More generally, if p, q are relative primes, the square of order pq will 
lie magic on its pq rows, pq columns and 2 pq diagonals, and at the same time 
p2-ply and q2-pJy, if it be constructed with the paths I p, q I· and the period be 

q,p 
taken from the contimtotts diagonal of the magic rectangle p X q. The limi
tations are dictated by the magic rectangle. Evidently p and q must both be 
> 1, and consecutive numbers must fail if the order is = 2 (mod. 4); in all 
other cases consecutive numbers will suffice. c. P. 
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3, ..... ( n + 3) 2 , by discarding 3 rows and columns from the natural 

square of the order n + 3. 

It is· not necessary, however, to discard the three central rows 

and columns, as was therein explained, there being numerous 

variations, the total number of which is always equal to ( n; 2 ) 2 

Fig. 493· Fig. 494· Fig. 495· 

Fig.4¢. Fig. 497. Fig. 498. 

Fig. 499· Fig. soo. Fig. 501. 

therefore the 10• can be constructed with 9 different series, the 18• 

with 25 different series, the 26• with 49 different series, and so on. 

In Figs. 493 to 501 are shown all the possible variations of dis

carding rows and columns for the 102 , Fig. 493 representing the 

series explained in the foregoing article. 

The central row and column must always be discarded, the 
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5th, or 7th, etc. rows from it, and irrespective of the rows, we do 
likewise with the columns. 

In a manner already explained, numbers are selected according 

to the series desired and arranged in rectangles with which the 
magic square is constructed. 

A set of rectangles with their respective series is shown in 

Fig. 502, and the following table will give directions for their use. 

SERIES 

Fig. 493 
Fig. 494 
Fig. 495 
Fig. 496 
Fig. 497 
Fig. 498 
Fig. 499 
Fig. 500 
Fig. 501 

RECTANGLES (SEE Fig. 502) 

Fig. 503. 

A and X 
Band X 
C and X 
A andY 
BandY 
CandY 
A and Z 
Band Z 
C and Z 

For example, suppose we were to construct a square, using the 
series denoted in Fig. 495. By referring to the table it is seen that we 

must employ rectangles C and X. By usin;; the La Hireian method 
these rectangles are placed as shown in Fig. 503, care being taken to 

arrange them in respect to fhe final square, whether it is to be asso
ciated or non-associated.* 

* See preceding article. 
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GS 107 .f6 113 58 117 .f"S lOll 61 110 

40 128 49 122 47 118 Si) 127 44 /2.$" 

143 29 134- 3.f" 136 .39 133 .30 I.J!!? .32 

14 154 23 148 21 144 24 /.5:3 18 !57 

169 3 /60 9 /62 /.J 159 4 165 6 

53 11.5 62 109 60 /OS 63 114 .5'7 112 

52. 120 43 126 +5 /30 42 IZI f8 12.3 

13! 37 140 .J/ 138 Z7 14/ 36 /3,f 31-

Z6 I~ 17 ISZ 19 !SG /6 147 22 l"f? 

157 II 166 .) 164 I 167 /0 161 8 

Fig. 504 . 

I 2 3 .J 6 8 .9 II IZ 13 

27 28 25' 31 32 34- 3.f 37 38 39 

40 4-1 4-2 44 45 47 "!8 50 Sl .52. 

.£3 .J4 S.f .f7 .m 60 61 6.3 64 6S 

66 67 68 70 71 73 74 76 77 78 

qz 5'3 94 96 97 9!} /eX) /02 /03 104 

lOS" 106 /07 IO:J /10 112 11.3 liS 116 117 

118 119 120 122 /23 125 126 128 129 130 

131 1.32 133 13S 136 138 139 If/ 142 143 

157 IS8 I~ 161 162 164- /65 167 168 16.9 

Fig. 505. 
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I z II 9 6 13 12. :3 .F 8 

27 ze 37 3S 3Z 39 38 29 3/ 34 

118 119 128 126 12.3 130 129 /20 122 12.5" 

/OJ" /06 11.5" /IS //0 117 1/6 107 /09 112 

~ 93 /02 /00 97 104 /03 ~ % 99 

/.Jj 1.!'8 167 !6S 16Z 169 !68 /.f!J? /61 16"1-

13/ 132 141 139 196 14-3 /~ /33 13..1 138 

40 41 J"o 48 4-5 ..f"2 J7 42 44 47 

.f".:J .5"4 63 61 ,f:8 GS 64- .F5 S'7 6o 

,, t.7 76 74- 71 78 77 68 70 73 

Fig. soo . 

.5" 162 I 168 II 161 6 1.5"7 /2. 167 

/00 73 /04 67 9+ 74- fH 78 93 68 

.5"7 l/0 ,J.:J 1/6 63 IO!J .F8 !OS 64 1/.f 

126 47 130 41 /20 48 12.5" .;z /19 42 

/3S .32 131 38 !+I 31 136 27 142 37 

!J 161- /3 I ..!a 3 /6.J 8 /69 2 15!11 

96 71 92 77 102 70 97 G6 /03 76 

61 1/2 6S /06 .!"5 1/3 Go 117 .P} /07 

122 45 118 ..f"/ /ZB 44 123 40 /29 J"o 

/~ .J4. .11-3 28 /33 .:Jf /:JB .:J!fl 1.32 29 

Fig. 507. 
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A non-associated square resulting from rectangles C and X is 

shown in Fig. 504. Another example is shown in Figs. 505, 506 

and 507. Here a series corresponding to Fig. 500 has been selected 

and the natural square is shown in Fig. 505, the heavy lines indi

cating the discarded rows and columns. The rows and columns 

are re-arranged according to the numerical sequence of the contin

uous diagonals* of rectangles B and Z of Fig. 502, this re-arrange

ment being shown in Fig. 506. 

In constructing the final square, Fig. 507, an advance move -4, 
- 5 and a break move 1, 1 was used. 

It will be unnecessary to show examples of higher orders of 

these squares, as their methods of construction are only extensions 

of what has been already described. It may be mentioned that these 

squares when non-associated can be transformed into associated 

squares by the method given in the preceding article. H. A. s. 

GEOMETRIC MAGIC SQUARES AND CUBES. 

The term "geometric" has been applied to that class of magic 

squares wherein the numbers in the different rows, columns, and 

diagonals being multiplied together give similar products. They 

are analogous in all respects to arithmetical magic squares. 

Any feature produced in an arithmetical square can likewise 

be produced in a geometric square, the only difference being that the 

features of the former are shown by summations while those of the 

latter are shown by products. Where we use an arithmetical series 

for one, we use a geometric series for the other, and where one is 
constructed by a method of differences the other is constructed by 
ratios. 

These geometric squares may be considered unattractive because 

of the large numbers involved, but they are interesting to study, 

even though the actual squares are not constructed. The absurdity 
of constructing large geometric squares can be easily shown. For 
example, suppose we were to construct an 8th order square using 

the series 2°' 21, 22 ' 23 ' •••• 263 ' the lowest number would be 1 and 

* See preceding article. 
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the highest number would be 9,223,372,036,854,775,808. Who would 

be willing to test the accuracy of such a square by multiplying to

gether the numbers in any of its rows or columns? 

Analogous to the arithmetical squares the geometric squares 

may be constntcted with a straight geometric series, a broken geo

metric series, or a series which has no regular progression. 

I have divided the methods of constntction into four groups, 

namely: the "Exponential method," the "Exponential La Hireian 

method," the "Ratio method," and the "Factorial method." 

The Exponential Method. 

The most common way of constntcting these squares is with 

a straight geometric series, arranged in the same order as a straight 

arithmetical series would be in any summation square. This is 

equivalent to the following. 

Form any magic with a straight arithmetical series as in Fig. 

508. Consider these numbers as exponents by repeating any number 

7 0 s z7 z• zr /Z8 I 32 

z 4 6 z.Z z• z• + It> 64 P=4og6 

3 8 I z.3 z• z' 8 ZS6 z 

Fig. 508. Fig. 509. Fig. 510. 

(in this case 2) before each of them, which will give us a square as 

shown in Fig. 509. It may be noticed that 2 is taken 12 times as a 
factor in each of the rows, columns, and diagonals, therefore form
ing a geometric square with constant products of 4096. The square 

transposed in natural numbers is shown in Fig. 510. 

4 -3 z 3"" 3-3 32 81 " !J 

-I I 3 3-J 3' 33 f 3 Z7 P=27 

0 s -z 3. 3 .. 3-z I a4a -l 
Fig. srr. Fig. 512. Fig. 5I3. 

Fig. 511, 512 and 513 show the same process involving negative 

exponents. 



SUNDRY CONSTRUCTIVE METHODS. 285 

Figs. 514, 515 and 516 show how fractional exponents may be 

used; and the use of both fractional and negative exponents is 

shown in Figs. 517, 518 and 519. 

Figs. 520 and 521 show the exponential method applied to a 

fourth order square. The exponents in Fig. 520 taken alone, ob

viously form an arithmetical magic. 

3j 0 zi 4:;. 40 ,.,..J. 128 I 32. 

I 2. 3 41 42 43 4 16 64 P=4o96 

lj + i 
3 44 4t 4"' 8 ZS6 z. 

Fig. SI4. Fig. 515. Fig. sr6. 

z-j -I It 
... 3-1 3 3Z 3X }U3 I m 3 

0 I z 30 :3' 32 I 3 9 p =27 

l 3 -i 3i 3" 3-J i3 27 ff 
Fig. 5I7. Fig. sr8. Fig. 519. 

This square is an associated square with the products of each 

complementary pair equaling 32. 

-s 2., 211 2-z 
2. .L .512 2.56 .L 

32 4 

z.• 2.0 2' z• 64 I 2. 8 

zz 2 .. 2.r z-' 4 16 32 i 
p = !024 

2' 
-3 2 ... 2'" 2. 128 .L ~ 1024 8 

Fig. 520. Fig. 521. 

The Exponential La Hire ian Method. 

Two primary squares are shown in Figs. 522 and 523. One is 

filled with the powers 0, 1 and 2 of the factor 2, and the other with 

the powers 0, 1 and 2 of the factor 5. Each primary square in itself 

is a geometric magic with triplicate numbers. Figs. 522 and 523 

multiplied together, cell by cell, will produce the magic shown in 

Fig. 524. 

The factor numbers, in this case 2 and 5, are not necessarily 
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different, but when they are alike the exponents must suit the con

dition, to avoid duplicate numbers in the final square. To make this 

clearer: if we form two primary squares that will add together and 

form an arithmetical magic, the same factor number may be added 

to each of these primary squares, using the former numbers as ex-

p = 1000 

z• z_Z 2.' s' .s~ s" s /00 z 

z." z.' 2." s" s' 52 + /0 zs 

z.' z(J z." 52 s" 5' so I zo 
' 

Fig. 522. Fig. 523. Fig. 524. 

ponents, and the two will become geometric primary squares that 

will multiply together and form a geometric magic without duplicate 

numbers. 

Figs. 525, 526 and 527 show the same methods applied to the 

fourth order squares. This is a Jaina square, and is consequently 

pandiagonal and also contains the other Jaina features. 

P=2985984 

3. 3' 3" 3. . • z z'" z 2 2 I I!JZ 36 4.3Z 

f 3" 3' 3. 2z z'" z" z• 108 144 3 64 

3' 3" .3" 3& 2.-f 2:z 2. z• 48 4 1728 !3 

3& 3:1 3" 3' 2~ 2 
. 

2"" z:z S76 27 16 /2 

Fig. 525. Fig. 526. Fig. 527. 

Figs. 528, 529, 530 show the application of a double set of 
factors to the primary squares. The constants of Fig. 528 are 

3 X 53 and those of Fig. 529 are 23 X 7. This is also a Jaina square. 

The Ratio Method. 

If we fill a square with numbers as in Fig. 531, such that the 

ratios between all horizontally adjacent cells are equal, and the 
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ratios between all vertically adjacent cells are equal, we have a 

natural square which can be formed into a geometric magic by any 

of the well-known methods. 
The horizontal ratios in Fig. 531 are 2 as represented by the 

figure at the end of the division line, and the vertical ratios are 3 
as indicated, and Fig. 532 shows the magic arrangement of this 

senes. 
In a fourth order square, as in Fig. 533, the horizontal ratios 

p = 21000 

30 s' s" 3' z' 20 22 7' 2 s /00 Z.l 

3' .s:z s' 30 z" 7' z.' zo /2 17.5' /0 I 

.;' 30 3' s" 7' z." zo z' 3.5' 4 3 so 

.s" 3' 30 s' ZD z' 7' z" zs 6 7 zo 

Fig. 528. Fig. 529. Fig. 530. 

are not necessarily equal, and neither are the vertical ratios. A 

magic may be made from this natural square by forming the num
bers in the upper row into a primary square as in Fig. 534. The 

numbers in the left-hand column are then formed into another pri
mary square as in Fig. 535. These two primary squares will then 
produce the magic shown iri Fig. 536. 

2 2 

I z 4 18 I IZ. 
3 

3 6 IZ 4 6 .9 P=2I6 
3 

g 18 .36 ..3 36 2 

Fig. 531. Fig. 532. 

Fig. 537 is a balanced natural square. This series will produce 
a perfect Jaina, or Nasik,* or an associated square. Figs. 538, 539 
and 540 show it arranged in a Nasik formation. 

Mr. L. S. Frierson's arithmetical equation squares also have 
their geometric brothers. Where he applies the equation a- b = 

*A concise description of Nasik squares is given in Enc. Brit. 
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c - d, we use the proportion a: b : : c: d. Fig. 542 shows a natural 

equation square, and besides the proportions there shown, the diag

onals of the magic depend on the necessary proportion a: b : : c: d 

as indicated in the respective cells of Fig. 544a. 

4 

I 

1 

2 

I 

.,. 
s 

7 

P=756o 
a 

z. 3 g I 2 3 !J I '7 4 s I ,.,. IZ '" 
8 12 36 g 3 2 I 4 s I 7 3~ IS' 2 7 

If) IS 4S z. I , 3 S' .,. 7 I /0 4 63 3 

14 21 63 3 g I 2 7 I S' , 21 , S' 8 

Fig. 533· Fig. 534. Fig. 535· Fig. 536. 

The magic is then formed by revolving the diagonals 180° as 

is shown in Fig. 543, or by interchanging the numbers represented 

by like letters in Fig. 541. 
P= 14400 

2. " 
I 2 S' 10 I 2 "' s I 12 I 12. I u 10 60 

3 

3 ~ IS' 30 /0 s I 2 3 4 3 .,. 30 zo 3 8 

4 8 20 40 I :z. If) .. 12 I IZ I 12. z 12.0 S' 
3 

~ M 60 /20 /() S' I 2 .,. 3 .,. 3 40 IS .,. 6 

Fig. 537· Fig. 538. Fig: 539. Fig. 540. 

Another form of natural equation square is shown in Fig. 546. 
The diagonals in this square depend on the equation ax b = c x d 
(see Fig. 544b). The magic is made by interchanging the numbers 

2 3 .,. "' 84 3 4 "'" A B 

C F E C I 7 8 .;G I IZ 21 .% 

/) /!!. F D 28 Zl "12 !J 28 8 7 9 
p = 14II2 

A B 

"" 4-!1 "24 8-1- 6 49 M 2 

Fig. 54I. Fig. 542· Fig. 543· 

represented by like letters in Fig. 545, producing Fig. 547 and then 
adjusting to bring the numbers represented by the A's and D's in 

Fig. 545, in one diagonal and the numbers represented by the B's 
and C's in the other diagonal, or in other words, shifting the left-
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hand column of Fig. 547 so as to make it the right-hand column, 

and then shifting the bottom line of the square thus formed to the 
top. The result of these changes is shown in Fig. 548. 

a a 

h h 
c c 

el d 

Fig. 544a. Fig. 544b. 

P= II76o 

e 8 

D 

c 

42. 3S "' Z./ 

z. 4 8 .I 

G 
. .. 
s K? 3 

14 Z8 ,J6 7 

42 3S I 8 

2 
"'" 

Z./ "' 
28 14 ltJ 3 

s 6 $ 7 

10 .J"G 7 S' 

3S I 8 42 

"'" 
Zl ~ 2 

14 /0 3 1!.8 

Fig. 545· Fig. 546. Fig. 547. Fig. 548. 

..,. 

I z 3 4 5 I 2 .3 
"'" 

s 

6 IZ. 18 2 .. 30 3 4 s I 2 

7 14 Zl 26 3S s I 2 3 4 
I 

II 22 33 4<1 ss 2 3 4 s I 

13 26 3!) sz 6.5 
,. s I 2 3 

Fig. 549· Fig. 550. 

P=72072o 

I 7 /3 6 II I 14 3!J 2 .. a 

6 II I 7 /3 18 44- s 7 1!.6 

7 13 li 1/ I 3S 13 IZ 33 4 

II I 7 /3 6 zz 3 28 "" 6 

13 G II I 7 n. 3D II 2 21 

Fig. 551. Fig. 552. 

Fig. 549 is a fifth order natural square, and Figs. 550, 551 and 
552 clearly show the method of forming the magic, which is pan

diagonal. 
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In the same manner Dr. Planck constructed his arithmetical 

Nasik squares* of orders 4p + 2, we can likewise construct geo

metric squares. 
Fig. 553 shows a natural 7 x 7 square with the central row and 

column cast out. This is formed by path method into the Nasik 

square, rearranging the columns in this order 1, 4, 32, 64, 16, 2 

P > 22 X w•2 
2. 2. 2. 2. 

I 2. 4 16 32 64- z.• Z'" 2." z"• z' 2. .... 

2~ zu z"' 2" z7 z.4D Z." 

z.'" z." z.'s Z."" z•• z.Z9 Z"' 

z."· z." z"7 z .. z+z zs 2." 

2 3s z"' za z.:r: z.'3 z.u. z" 
• 
2~ zz• 2·" 2 3z z,.. z3> z'" 

Fig. 553. Fig. 554· 

and the rows in this order 1, 27 , 228, 242 , 235 , 214 and using advance 

move 2, 3 and a break-move - 1, - 1. 

The Factorial Method. 

In this method we fill two primary squares, each with n sets 

of any n different numbers, such that each row, column, and diag

onal contains each of the n different numbers. 

To avoid duplicates in the magic, the primary squares should 

have only one number in common, or they may not have any number 
m common. Also, no two numbers in one primary square should 
have the same ratio as two numbers in the other primary square. 

This may be more clearly explained by an example. Suppose 

we select two sets of numbers as follows for constructing a fourth 
order square. 

2 4 7 
1 3 s 6 

Four sets of the upper row of numbers are to fill one primary 

*See "Notes on the Construction of Magic Squares" (n in the form of 
4P+2), p. 267. 
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square and four sets of the lower row are to fill the other. These 

two groups contain only one number in common, but the magic 

would contain duplicate numbers due to the duplicate ratios 2: 4 as 

3: 6. Therefore 2 x 6 = 4 x 3, consequently the duplicate numbers 

would be 12. But if we interchange the numbers 2 and 5, the fault 

will be corrected and the square can then be constructed without 

d:tp!icate numbers. 

The square in Fig. 555 is constructed with the two groups 

I 

/Z. 

Zl 

zo 

I 3Z. ,, 
'4- z. 4 

IS 24 14 

za 3 s 

b /0 4 

z 7 /8 

Fig. 555· 

I Z43 

'm~ 3 

1 2 3 4 

1 5 6 7 

81 

!} 

p- 36288o -

I /0 Zl 32 S4 

Z8 48 !!!} 2 /.S 

/8 3 20 42 8 

30 7 16 Z7 4 

24 36 b .5" 14 

Fig. 557. Fig. 558. Fig. 559. 

A fifth order square is shown in Fig. 556 and in this case the 

following groups are used: 

2 3 4 6 
5 7 8 9 

This square is pan-diagonally magic. 

I will now show how a Nasik sixth order square may be made 
by a method derived from Dr. Planck's method of constructing 
Nasik squares with arithmetical series. 

Fill two six-celled rectangles, each with six different numbers, 
the two rectangles to have no more than one number in common. 
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The numbers in each rectangle should be arranged so that the 

products of its horizontal rows are equal, and the products of its 

vertical rows are equal. 
Two of such sets of numbers that will suit the above conditions 

will not be found so readily as in Dr. Planck's examples above men

tioned. 

72; 1!12 9 IH$6 3 ~ 

32 481; ZS92 2. 7776 162 

/1664 12 144 2!116 48 .36 

P = IOI,559,956,668,4T6. 
I 155.52 8/ 64 243 5184 

~332.8 .. 288 1458 .36 18 

" !17Z /2.36 4 38138 324 

Fig. s6o. 

The two sets forming the magic rectangles in Figs. 557 and 558 

are taken from the following groups: 

20 21 22 23 24 25 26 

3° 31 32 33 34 35 3" 

Each group is a geometrical series of seven numbers, and in form

ing the rectangle, the central number in each group is omitted. 

2 3 3 

I z 4- 3 6 12 !1 18 3fi 
5 

s 10 zo IS 30 60 4S ~ 180 
5 

zs so /0() 7.5' lSD 300 225 4SO 900 

Fig. s6r. 

The rectangles are arranged in primary squares as shown in 
Fig. 559, and the two rectangles in Figs. 557 and 558 so arranged 
will produce the square in Fig. 560. This square is pan-diagonal, 

22-ply and 32-ply.* 

*A square is said to be m•-ply when the numbers in any m2 group of con
tiguous cells give a constant product in geometric squares, or a constant stun 
in arithmetical squares. 
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Geometric Magic Cubes. 

I will here briefly describe the analogy between the series which 

may be used in constructing cubes, and those used in constructing 

squares. 

It is obvious that an unbroken geometric series of any sort may 

I 90 300 ISO 4 4-S 180 7S 2 

60 25 18 9 30 /00 so 36 IS p =27000 

450 12 s 20 225 6 3 10 900 

Fig. 562. 

be arranged in a cube of any order, by placing the numbers in the 

cube in the same progression as the numbers of an arithmetical 

series would be placed in forming an arithmetical cube. This may 

be accomplished by an extension of the method exemplified in Figs. 

508 to 521 inclusive. 

2 :z 7 7 

I z s /0 7 14- 3S ~ 9 18 4-S 90 63 126 3/S 630 

3 6 IS 30 21 42 /OS Z/0 Z7 S4 13S Z70 189 378 94-S 1890 

+ 8 20 4-0 28 56 140 280 36 72 180 360 ZS2 S04 IZ60 2SZO 
3 

IZ 24 60 /ZO 84 168 4ZO 840 lOB 216 $40 /080 7S6 ISIZ 3780 7St;O 

Fig. s63. 

p = 57,153,600 

7SMJ 2 s 7J"4; 7 S40 216 70 9 420 /~ 90 /20 126 315 12 

3 ltMJ Sc-I 30 360 42 /OS .% Z80 S4 /3S 28 189 20 8 1890 

4 94-S 378 40 270 S6 140 27 ZIO 72 180 21 zsz IS 6 zszo 

630 Sf 60 63 84 4S 18 84-0 /08 3S 14- /080 /0 !SIZ 3780 I 

F1g. 56-t. 

In using the Exponential La Hireian method, the same process 

ts followed in cubes as in squares, the main difference being that 
three primary cubes are necessarily used. 

Fig. 561 shows a natural cubic series, obtained by the ratio 

method. The three squares represent the three planes of the cube. 
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The numbers 5 at the left of the first square represent the ratio 

between vertically adjacent cells in each of the planes. The num

bers 2 above represent the ratio between horizontal1y adjacent cells 

in each of the planes, and the numbers 3 between the squares repre

sent the ratio between adjacent cells from plane to plane. 

By rearranging this series into a cube according to the path 

methods as in arithmetical cubes many results may be obtained, 

one of which is shown in Fig. 562. 

A fourth order balanced or associated series is shown in Fig. 

563. This series is analogous to the plane series in Fig. 537, and 

may be transformed into a magic cube by the following well-known 

method: 
Interchange the numbers in all associated pairs of cells which 

are inclosed in circles, producing the result shown in Fig. 564. 

The possibilities in using the Factorial method in constructing 

cubes, have not been investigated by the writer. H. A. S. 



CHAPTER XII. 

THE THEORY OF REVERSIONS. 

SQUARES like those shown in Figs. 565 and 566, in which the 
numbers occur in their natural order, are known as natural 

squares. In such squares, it will be noticed that the numbers in 

associated cells are complementary, i. e., their sum is twice the 

mean number. It follows that any two columns equally distant 

from the central bar of the lattice are complementary columns, 

that is, the magic sum will be the mean of their sums. Further any 

two numbers in these complementary columns which lie in the same 

I 2 3 4 5 6 

7 8 9 10 11 12 

1 2 3 4 13 14 15 16 11' 18 

5 6 7 8 19 20 21 22 23 24 

9 10 11 12 25 26 27 28 29 30 

13 14 15 16 31 32 33 34 35 36 

Fig. s6s. Fig. s66. 

row have a constant difference, and therefore the sums of the two 
columns differ by n times this difference. If then we raise the 

lighter column and depress the heavier column by nj2 times this 

difference we shall bring both to the mean value. Now we can 
effect this change by interchanging half the numbers in the one 

column with the numbers in the other column lying in their respec
tive rows. The same is true with regard to rows, so that if we can 

make nj2 horizontal interchanges betweea every pair of comple
mentary columns and the· same number of vertical interchanges 
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between every pair of complementary rows, we shall have the 

magic sum in all rows and columns. It is easy to see that we can 
do this by reversing half the rows and half the columns, provided 

the two operations are so arranged as not to interfere with one 

another. This last condition can be assured by always turning over 

columns and rows in associated pairs, for then we shall have made 

horizontal interchanges only between pairs of numbers previously 

untouched between pairs, each of whose constituents has already 

received an equal vertical displacement; and similarly with the 

vertical interchanges. By this method, it will be noticed, we always 
secure magic central diagonals, for however we choose our rows 

and columns we only alter the central diagonals of the natural 

~ ~ 
1 58 59 4 5 62 63 8 

( 16 55 54 13 IZ 51 so 9 ) 
17 42 43 20 21 46 47 24 

( 32 39 38 29 28 35 34 25 ) 40 31 30 37 36 27 26 33 

41 18 19 44 45 22 23 48 

( 56 15 14 53 52 11 10 49 ) 
57 2 3 60 61 6 7 64 

\....__/ 
Fig. 567. 

square (which are already magic) by interchanging pairs of com
plementaries with other pairs of complementaries. 

Since the n/2 columns have to be arranged in pairs on. either 

side of the central vertical bar of the lattice, n/2 must be even, 

and so the method, in its simplest form, applies only to orders = o 

(mod 4). We may formulate the rule thus: For orders of form pn, 
rc~•erse m pairs of complementary columns and m pairs of comple

mentar:y rows, and the crude magic is completed. 

In the following example the curved lines indicate the rows 

and columns which have been reversed (Fig. 567). 
vVe have said that this mefhod applies only when n/2 is even 
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but we shall now show that by a slight modification it can be applied 

to all even orders. For suppose n is double-of-odd; we cannot 

then arrange half the columns in pairs about the center since their 

number is odd, but we can so arrange n/2- r rows and n/2 -I 
columns, and if we reverse all these rows and columns we shall 

have made n/2- I interchanges between every pair of comple

mentary rows and columns. We now require only to make the 

16 2 3 13 

5 11 10 8 

9 7 6 12 

4 14 IS I 

Fig. s68. 

one further interchange between every pair of rows and columns, 

without interfering with the previous changes or with the central 

diagonals. To effect this is always easy with any orders = 2 

(mod 4), (6, IO, 14 etc.), excepting the first. In the case of 62 

an artifice is necessary. If we reverse the two central diagonals 

of a square it will be found, on examination, that this is equivalent 

to reversing two rows and two columns; in fact, this gives us a 

36 32 3 4 5 31 

12 29 9 28 26 7 

• I 
I 
-

13 14 22 21 17 24 

19 23 16 15 20 18 

25 11 27 10 8 30 

6 2 34 33 35 1 

Fig. s69. Fig. 570. 

method of forming the magic 42 from the natural square with the 
least number of displacements, thus: 

Applying this idea, we can complete the crude magic 62 from 

the scheme shown in Fig. 569 where horizontal lines indicate hori

zontal interchanges, and vertical lines vertical interchanges; the 
lines through the diagonals implying that the diagonals are to be· 

reversed. The resulting magic is shown in Fig. 570. 
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The general method here described is known as the method 
of reversions, and the artifice used in the double-of-odd orders is 

called the broken reversion. The method of reversions, as applied 

to all even orders, both in squares and cubes, was first(?) investi

gated by the late W. Firth, Scholar of Emmanuel, Cambridge.* 

The broken reversion for 6' may, of course, be made in 

various ways, but the above scheme is one of the most symmetrical, 

and may be memorialized thus: For horizontal changes commence 

at the two middle cells of the bottom row, and progress upward 
and divergently along two knight's paths. For vertical changes turn 
the square on one of its sides and proceed as before. 

1 92 8 94 95 96 97 3 9 10 

20 12 13 84 85 86 87 88 19 11 

71 29 23 74 75 76 77 28 22 30 
~ 

I - - 40 39 38 67 66 65 64 33 62 31 
- I - 50 49 48 57 56 55 54 43 42 51 
1- -

( 
I 

~ I 
I 

I 

60 59 58 47 46 45 44 53 52 41 

70 69 68 37 36 35 34 63 32 61 

21 72 73 24 25 26 27 78 79 80 
I 

- -I 81 82 83 17 15 16 14 18 89 90 
I --

'---""' 91 2 93 4 6 5 7 98 99 100 

Fig. 57r. Fig. 572. 

In dealing with larger double-of-odd orders we may leave the 
central diagonals "intact" and invert n/2- I rows and nj2- I 

columns. The broken reversion can then always be effected in a 

multitude of ways. It must be kept in mind, however, that in 
making horizontal changes we must not touch number~ which have 

been already moved horizontally, and if we use a number which 

has received a vertical displacement we can only change it with 
a number which has received an equal vertical displacement, and 

similarly with vertical interchanges. Lastly we must not touch 

the central diagonals. 

*Died 1889. For historical notice see pp. 304-305. 



THE THEORY OF REVERSIONS. 299 

Fig. 571 is such a scheme for ro2 , with the four central rows 

and columns reversed, and Fig. 572 shows the completed magic. 
It is unnecessary to formulate a rule for making the reversions 

in these cases, because we are about to consider the method from a 

broader standpoint which will lead up to a general rule. 

If the reader will consider the method used in forming the 

magic 62 by reversing the central diagonals, he will find that this 

artifice amounts to taking in every column two numbers equally 

distant from the central horizontal bar and interchanging each of 

them with its complementary in the associated cell, the operation 

being so arranged that two and only two numbers are moved in 

each row. This, as we have already pointed out, is equivalent to 

reversing two rows and two columns. Now these skew inter

changes need not be made on the central diagonals-they can be 

made in any part of the lattice, provided the conditions just laid 

down are attended to. If then we make a second series of skew 

changes of like kind, we shall have, in effect, reversed 4 rows and 4 

columns, and so on, each complete skew reversion representing 

two rows and columns. Now if n. = 2 (mod 4) we have to reverse 

nj2- r rows and columns before making the broken reversion, 

therefore the same result is attained by making ( n- 2) j 4 com

plete sets of skew reyersions and one broken reversion. In like 

manner, if n = o (mod 4), instead of reversing nj2 rows and 

columns we need only to make n/4 sets of skew reversions. 

We shall define the symbol [X] as implying that skew inter

changes are to be made between opposed pairs of the four numbers 

symmetrically situated with regard to the central horizontal and 
vertical bars, one of which numbers occupies the cell in which the 
symbol is placed. In other words we shall assume that Fig. 573a 

indicates what we have hitherto represented as in Fig. 573b. 
Further, it is quite unnecessary to use two symbols for a vertical 

or horizontal change, for Fig. 573c sufficiently indicates the same 

as Fig. 573d. If these abbreviations are granted, a scheme like 

Fig. 569 may be replaced by a small square like Fig. 574, which is 
to be applied to the top left-hand corner of the natural 62 • 

Fig. 575 is the extended scheme from Fig. 574, and Fig. 576 
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is the resulting magic. The small squares of symbols like Fig. 574 

may be called index squares. 

The law of fonnation for index squares is sufficiently obvious. 

To secure magic rows and columns in the resulting square, the 

symbols - and I must occur once on each row and column of the 

index, and the symbol X an equal number of times on each row 

and column: that is, if there are two series X X .... X the symbol 

X must appear twice in every row and twice in every column, and 

a b c d 

mmmm 
Fig. 573-

so on. But we already know by the theory of paths that these 

conditions can be assured by laying the successive symbolic periods 

along parallel paths of the index, whose coordinates are prime to 

the order of the index. If we decide always to use parallel diagonal 

paths and always to apply the index to the top left-hand corner 

of the natural square, the index square will be completely repre-

36 5 33 4 2 31 

25 29 10 9 26 12 

• 
18 20 22 21 17 13 

19 14 16 15 23 24 

7 11 27 28 8 30 

6 32 3 34 35 1 

Fig. 57-t- Fig. 575- Fig. 576. 

sented by its top row. In Fig 574 this IS I X I -I I I, which we 

may call the index-rod of the square, or we may simply call Fig. 

576 the magic I X I - I I 1. Remembering that we require ( n-2) /4 

sets of skew reversions when n"" 2 (mod 4) and n/4 when n = o, 

it is obvious that the followi~<g rule will give crude magic squares 

of any even order n: 

Take a rod of nj2 cells, n/ 4 symbols of the form X, (using 

the integral part of n/ 4 only), and if there is a remainder when n 
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is divided by 4, add the symbols I and -. Place one of the sym

bols X in the left-hand cell of the rod, and the other symbols 

in any cell, but not more than one in each cell. The result is an 

index-rod for the magic n'. 
Take a square lattice of order nj2, and lay the rod along the 

top row of the lattice. Fill up every diagonal slanting downward 

and to the right which has a symbol in its highest cell with repeti

tions of that symbol. The resulting index-square if applied to the 

top left-hand corner of the natural n', with the symbols allowed 

the operative powers already defined, will produce the magic n'. 
The following are index-rods for squares of even orders: 

42 [ill 102 lxl lllxl-l 
62 IB3JJ 122 lxl I lxlxl 
82 lRLJill 142 lxHxl I lxl 11 

When the number of cells in the rod exceeds the number of 

symbols, as it always does excepting with 62 , the first cell may be 

left blank. Also, if there are sufficient blank cells, a X may 

144 134 135 9 140 7 6 137 4 10 11 133 

24 131 123 124 20 127 126 17 21 22 122 13 

120 35 118 112 113 31 30 32 33 111 26 109 

48 107 46 105 101 102 43 44 100 39 98 37 

85 59 94 57 92 90 55 89 52 87 so 60 

73 74 70 81 68 79 78 65 76 63 71 72 

lxl1l11-ixB 61 62 75 69 77 67 66 80 64 82 83 84 

49 86 58 88 56 54 91 53 93 51 95 96 

X I I -x- 97 47 99 45 41 42 103 104 40 106 38 108 
-x I I -x 
x-x I I - 36 110 34 28 29 114 115 116 117 27 119 25 

-x X I I 121 23 15 16 125 19 18 128 129 130 14 132 
I x-x I 
I I -X -x 12 2 3 136 8 138 139 5 141 142 143 1 

Fig. 577. Fig. 578. 

be replaced by two vertical and two horizontal symbols. Thus r2' 

might be given so I X I I I I I - I X I - 1. This presentation of 
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122 is shown in Figs. 577, 578, and 142 from the index-rod given 

above, in Figs. 579 and 58o. 
Of course the employment of diagonal paths in the construction 

of the index is purely a matter of convenience. In the following 

index for 102 , (Fig. 581) the skew-symbols are placed along two 

I96 IJ I94 4 5 I9I I89 8 ISS 10 11 ISS 2 I83 

I69 ISI 26 I79 I9 20 I76 75 23 24 I72 I7 I70 28 

I68 I 56 I66 39 I64 34 35 36 37 I 59 32 I 57 4I ISS 

43 I 53 I43 ISI 52 I49 49 50 I46 47 I44 54 I42 56 

57 58 I38 I30 I36 65 I34 I33 62 I31 67 129 69 70 

I26 72 73 I23 117 I2I 78 77 II8 80 116 82 83 113 

98 11I 87 88 IOS 104 I06 105 93 103 95 96 IOO 85 

99 97 IOI 102 94 90 92 9I 107 89 109 110 86 112 

84 114 115 8I iS 79 119 I20 76 122 74 I24 125 71 

127 128 68 60 66 I32 64 63 I35 6I 137 59 139 I40 
X- X XI 
IX -x X I41 55 45 53 I45 51 I47 I48 48 150 46 152 44 154 
XI x- X 

XI x- X 
42 30 40 158 38 160 16I 162 163 33 165 31 167 29 

XI x- X IS 27 171 25 I73 174 22 21 I77 178 18 180 16 182 
X XI x-
-x XI X 14 I84 12 186 187 9 7 190 6 192 193 3 195 1 

Fig. 579. Fig. sSo. 

parallel paths ( 2, 1) and the symbols - and I are then added so 

that each shall appear once in each row and once in each column, 
but neither of them on the diagonal of the index slanting upward 
and to the left. 

X I X• -
XI -x I 
IX X·-
- X• I X 

-x I X• 

Fig. 581. 

Crude cubes of even orders we shall treat by the index-rod 
as in the section on squares. The reader will remember that we 

constructed squares of orders = o (mod 4) by reversing half the 
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rows and half the columns, and it is easy to obtain an analogous 

method for the cubes of the same family. Suppose we reverse the 

V-planes* in associated pairs; that is, turn each through an angle 

of 180° round a horizontal axis parallel to the paper-plane so that 

the associated columns in each plane are interchanged and reversed. 

We evidently give to every row of the cube the magic sum, for half 

the numbers in each row will be exchanged for their complemen-

~ .....---..... .....---..... ,--..... 
1 62 63 4 17 46 47 20 33 30 31 36 49 14 IS 52 

5 58 59 8 21 42 43 24 37 26 27 40 53 10 11 56 

9 54 55 12 25 38 39 28 41 22 23 44 57 6 7 60 

13 so 51 16 29 34 35 32 45 18 19 48 61 2 3 64 
........___.., .........__.... ...__..... ---..,..... 

Magic in rows only. 
Fig. 582. The natural 4~ with V -planes reversed. 

1 62 63 4 17 46 47 20 33 30 31 36 49 14 IS 52 

( 56 II 10 53 )( 40 27 26 37 I)( 24 43 42 21 

~( 
8 59 58 : ~ 60 7 6 57 44 23 22 41 28 39 38 25 12 55 54 

• 13 so 51 16 29 34 35 32 45 18 19 48 61 2 3 64 

Magic in rows and columns. 
Fi. 583. Being Fig. 583 with H-planes reversed . 

Jt:C ........... ...... - ............ 

1 62 63 4 32 35 34 29 \ 48 19 18 45 \ 49 14 IS 52 

56 11 10 53 41 22 23 44 25 38 39 28 8 59 58 5 

60 •7 6 57 37 26 27 40 21 42 43 24 d. 12 55 54 9 

13 so 51 16 20 47 46 17 
,. 

36 31 30 33 ~· 61 2 3 64 

Magic in rows, columns and Jines. 
Fig. 584. Being Fig. 19, with P-planes reversed. 

CRUDE MAGIC 43 • 

taries. If we do likewise with H-planes and P-planes the rows and 

linest will become magic. But as with the square, and fer like 

reasons, these three operations can be performed without mutual 

* P-plane = Presentation-, or Paper-plane; H-plane = Horizontal plane; 
V -plane = Vertical plane. 

t "Line" = a contiguous series of cells measured at right angles to the 
paper-plane. 
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interference. Hence the simple general rule for all cubes of the 

double-of-even orders: 

Reverse, in associated pairs, half the V-planes, half the H

planes and half the P-planes. 

With this method the central great diagonals, of course, main

tain their magic properties, as they must do for the cube to be 

considered even a crude magic. To make the operation clear to 

A B c 

2538 6471 2538 
6174 2835 6174 

5832 2538 6714 
6741 6174 8532 

6174 2835 6174 
2538 6471 2538 

6482 5238 1735 
1735 6147 6482 

6372 5832 8154 
4518 6741 2736 

1735 6147 6482 
6482 5238 1735 

8352 6471 8352 2358 6174 1476 4716 2835 4716 
4716 2835 4716 4176 2538 2385 8352 6471 8352 

Fig. 585. 

the reader we append views of 43 at each separate stage, the central 

pair of planes being used at each reversion. 

By this method the reader can make any crude magic cube of 

order 4m. With orders of form 4m + 2 we find the same diffi
culties as with squares of like orders. So far as we are aware 

no magic cube of this family had been constructed until Firth sue-

1 17 24 15 19 8 26 6 10 

23 3 16 7 14 21 12 25 5 

18 22 2 20 9 13 4 11 27 

Fig. s86. 

ceeded with 6" in 188g. Firth's original cube was built up by the 

method of "pseudo-cubes," being an extension to solid magics of 

Thompson's method. The cube of 216 cells was divided into 27 
subsidiary cubes each containing 2 cells in an edge. The 8 cells of 

each subsidiary were filled with the numbers 1 to 8 in such a way 
that each row, column, line, and central great diagonal of the large 

cube summed 27. The cube was then completed by using the 
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magic 33 in the same way that 62 is constructed from 32 • Firth 

formulated no rule for arrangement of the numbers in the pseudo

cubes, and great difficulty was encountered in balancing the central 

great diagonals. His pseudo-skeleton is shown in Fig. 585, where 

each plate represents two P-planes of 63 , each plate containing 9 

pseudo-cubes. The numbers in the subsidiaries are shown in dia

grammatic perspective, the four "larger" numbers lying m the 

anterior layer, and the four "smaller" numbers, grouped in the 

center, in the posterior layer. 

2 8 134 129 186 

6 4 130 133 190 

182 178 21 24 121 

177 181 22 23 126 

144 138 174 169 16 

140 142 170 173 12 

120 115 149 147 63 

119 116 145 151 61 

51 55 112 107 161 

53 49 Ill 108 167 

ISS 157 65 71 100 

153 159 69 67 99 

IV 

192 5 

188 1 

125 180 

122 183 

10 139 

14 143 

59 206 

59 202 

165 89 

163 94 

103 28 

104 32 

II 

3 132 135 

7 136 131 

184 18 19 

179 17 20 

141 172 175 

137 176 171 

204 42 45 

208 46 41 

93 198 199 

90 197 200 

30 82 85 

26 86 81 

v 
Fig. 587. 

III. 

189 187 117 114 146 152 62 60 

185 191 118 113 ISO 148 64 58 

127 123 54 so 109 106 168 164 

124 128 52 56 110 105 162 166 

11 13 154 160 70 68 97 102 

IS 9 156 158 66 72 98 101 

78 76 201 207 48 43 73 79 

74 80 205 203 44 47 77 75 
38 34 95 91 193 196 36 40 

33 37 92 96 194 195 39 35 

212 214 31 25 88 83 215 209 

216 210 27 29 84 87 211 213 

VI 

If we use this with the magic of Fig. 586 we obtain the magic 
63 shown in Fig. 587. 

This cube is non-La Hireian, as is frequently the case with 

magics constructed by this method. 

The scheme of pseudo-cubes for 63 once found, we can easily 

extend the method to any double-of-odd order in the following 
manner. Take the pseudo-scheme of next lower order [e. g., 63 to 

make ro3 , ro" to make I43 etc.]. To each of three outside plates 

of cubes, which meet at any corner of the skeleton, apply a replica

plate, and to each of the other three faces a complementary to the 
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plate opposed to it, that is a plate in which each number replaces 

its complementary number (r for 8, 2 for 7, etc.). We now have 

a properly balanced skeleton for the next double-of-odd order, 

wanting only its 12 edges. Consider any three edges that meet at 

a corner of the cube : they can be completed (wanting their corner

cubes) by placing in each of them any row of cubes from the 

original skeleton. Each of these three edges has three other edges 

parallel to it, two lying in the same square planes with it and the 

third diagonally opposed to it. In the former we may place edges 

complementary to the edge to which they are parallel, and in the 

latter a replica of the same. The skeleton wants now only its 8 

corner pseudo-cubes. Take any cube and place it in four corners, 

no two of which are in the same row, line, column, or great diag

onal (e. g., B, C, E, H in Fig. 6o2), and in the four remaining 

corners place its complementary cube. The skeleton is now com

plete, and the cube may be formed from the odd magic of half its 

order. 

This method we shall not follow further, but shall now turn 

to the consideration of index-cubes, an artifice far preferable. 

Before proceeding, the reader should carefully study the method 

of the index-rod as used for magic squares (pp. 299-302). 

The reversion of a pair of planes in each of the three aspects, 

as previously <:mployed for 43, is evidently equivalent to inter

changing two numbers with their complementaries in every row, 

line, and column of the natural cube. If therefore we define the 
symbol X as implying that such an interchange is to be made not 
only from the cell in which it is placed, but also from the three 

other cells with which it is symmetrically situated in regard to the 

central horizontal and vertical bars of its P-plane, and can make 

one such symbol operate in every row, line and column of an index

cube whose edge is half that of the great cube, we shall have 
secured the equivalent of the above-mentioned reversion. For 

example, a X placed in the second cell of the top row of any 

P-plane of 43 , will denote that the four numbers marked a in Fig. 

588 are each to be interchanged with its complement, which lies in 
the associated cell in the associated P-plane. 
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From this it follows that we shall have a complete reversion 

scheme for any order 411t, by placing in every row, line and column 

of the index (2m) 3 , m of the symbols X. In the case of orders 

4m X 2, after placing m such symbols in the cube (2m+ 1) 3 , we 

have still to make the equivalent of one reversed plane in each of 

the three aspects. This amounts to making one symmetrical ver

tical interchange, one symmetrical horizontal interchange, and one 

symm::trical interchange at right angles to the paper-plane in every 

~ 
tWili 

Fig. s88. 

row, line and column. If we use the symbol I to denote such a ver

tical interchange, not only for the cell in which it stands, but also 

for the associated cell, and give like meanings to - and · , for hori

zontal changes and changes along lines, we shall have made the 

broken reversion when we allow each of these symbols to operate 

once in every row, column and line of the index. For example, 

a in Fig. 589 means b in its own P-plane, and c in the associated 

P-plane; while d indicates that the numbers lying in its own 

a b c d e f 

mmmmmm 
Fig. 589. 

P-plane as in c are to be interchanged, A with A and B with B, 
with the numbers lying in the associated plane f. We can always 

prepare the index, provided the rod does not contain a less number 

of cells than the number of symbols, by the following rule, n 
being the order. 

Take an index-rod of nj2 cells, n/4 symbols· of the form X, 
(using the integral part of n/ 4 only), and if there is any remainder 

when n is divided by 4 add the three symbols I, -, · . Now prepare 
an index square in the way described on page 300, but using the 
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diagonals upward and to the right instead of upward to the left,* 

and take this square as the first P-plane of an index-cube. Fill 

I II III IV 

64 2 3 61 48 18 19 45 32 34 35 29 16 50 51 13 

5 59 58 8 21 43 42 24 37 27 26 40 53 11 10 56 

9 55 54 12 25 39 38 28 41 23 22 44 57 7 6 60 

52 14 15 49 36 30 31 33 20 46 47 17 4 62 63 1 

Fig. 590. 

every great diagonal of the cube, running to the right, down and 

away, which has a symbol in this P-plane cell, with repetitions of 

that symbol.t This index-cube applied to the near, left-hand, top 

I - . XX 
X I - • X 
XX I - . 
• X X I -

lxlxi•JIJ-1 - . XX I 
Index Rod. Index Square. 

Fig. 591. 

corner of the natural n3 , with the symbols allowed the operative 

powers already defined, will make the magic n3• 

This method for even orders applies universally with the single 

XX- I . I . XX- X • I -x -x X • I . I -xx 
X- I • X . XX- I . I -XX X X • I - I -x X • 
- I . XX XX- I . I -X X • X • I -x -x X • I 
I • X x- x- I • X -x X • I . I -xx XX . I -
• X X- I - I . XX XX• I - I -x X • X • I -x 

Fig. 592. Index Cube. 

exception of 63 , and in the case of 63 we shall presently show 

that the broken reversion can still be made by scattering the sym

bols over the whole cube. The following are index-rods for various 

cubes. 

43 m 123 I lxlxl lxl 
83 lxl I lxl 143 lxl-lxl•lxlll 

103 IXIII-Ixl•l 
* Either way will do, but it happens that the former has been used in the 

examples which follow. 
t More briefly, in the language of Paths, the symbols are laid, in the square, 

on (I, I); their repetitions in the cube, on (I,- I, I). 
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As in the case of index-rods for squares, the first cell may be 

left blank. otherwise it must contain a X-

' ' . I - - / / jl - ' ' . / / - ' . I - ' /- / 

' . I - ' /- / 1- ' ' . I / / - . I - ' ' / / -. I - ' ' / / - ' ' . I - - / / I - ' ' . / / -
I - ' ' . / / - ' . I - ' / - / - ' ' . I / / -
- ' ' I / / - . I - ' ' / / - ' ' . I - - / / 

/ / I . ' ' I / / ' ' ··-
~ ~ 

/ / I . ' ' I / / . ' ' / I / ' / / I . ' ' I / / ' ' . / / I . ' ' I / / . ' ' / I / ' . ' / / I . ' ' I / / ' ' . 
/ / I . ' ' I / / . ' ' / I 

/ ' . ' 
- ' ' . I / / - . I - ' ' / / - . ' ' / / -'1-

' ' . I - - / / I - ' ' . / / - ' ' . / / I 

' 
. I -' / - / - ' ' . I , / - ' ' . I / / . I - ' ' / / - ' ' . I - - / / ' ' . I / / 

I - ' ' . / /- ' . I - ' / 
- / ' . ' / I / 

I / / . ,, / I / ' . ' / - / 
,_ 

I . ' 
I / / ' ' . / / I . ' ' / / - - I . ' ' 

/ I /' . ' / / I . ' ' - / / I . '' -/ / I . ' ' I / / . ' ' - / / . ' ' - I 

/ / I . ' ' I / / ' ' . - / / ' ' - I . 
--

' ' . I / / ' . ' / I / ' ' . / / I 

' ' . I / / . ' ' / / I ' ' . I / / 

' . ' / I / ' ' . // I ' ' . I / / . ' ' / / I ' ' . I / / ' . ' / I / 

'' . / / I ' ' . I / / . ' ' / / I 

/ / . ' ' - I / / - I . '' - / / ' ' - I . 
-/ / ' ' - I . - / / I . ' ' / - / ' - I . ' / /' I . ' - / / . ' ' - I / / - - I . ' ' / / - - I . ' ' - / / ' ' - I . - / / I . ,,_ 

-/ / I . ' ' - / / 
,_ 

I . ' - / / . ' ,_ 
I 

' ' . I / / 

' . ' / I / . ' ' / / I 

' ' . / / I 

' ' . I / / 

/ / I . '' - // . ' ' I 
-/ / ' ' - I . 

/ - / ' - I . ' 
/ / -- I . ' ' 

Fig. 593- Ext'"'ded Re,·ersion Scheme for 103. 

Fig. 590 is a 4", made with the index-rod given above. It has 

only half the numbers removed from their natural places. Figs. 
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00 999 903 94 6 5 7 8 992 991 191 109 898 897 805 106 894 893 102 110 

990 912 83 17 986 985 14 18 19 981 120 889 888 814 185 116 117 883 882 Ill 

921 72 28 977 976 975 974 23 29 30 880 879 823 174 126 125 127 128 872 871 

61 39 968 967 935 36 964 963 32 40 870 832 163 137 866 865 134 138 139 861 

so 959 958 944 55 46 47 953 952 41 841 152 148 857 856 855 854 143 149 ISO 

51 949 948 54 45 56 957 943 942 60 151 142 153 847 846 845 844 158 159 860 

31 62 938 937 65 966 934 933 69 70 840 162 133 164 836 835 167 168 869 831 

71 22 73 927 926 925 924 78 79 980 830 829 173 124 175 176 177 878 822 821 

920 82 13 84 916 915 87 88 989 911 181 819 818 184 115 186 887 813 812 190 

910 909 93 4 95 96 97 998 902 901 101 192 808 807 195 896 804 803 199 200 

800 702 293 207 796 795 204 208 209 791 310 699 698 604 395 306 307 693 692 301 

7ll 282 218 787 786 785 784 213 219 220 690 689 613 384 316 315 317 318 682 681 

271 229 778 777 725 226 774 773 222 230 680 622 373 327 676 675 324 328 329 671 

240 769 768 734 265 236 237 763 762 231 631 362 338 667 666 665 664 333 339 340 

760 759 743 254 246 245 247 248 752 751 351 349 658 657 645 346 654 653 342 350 

750 749 253 244 255 256 257 758 742 741 341 352 648 647 355 656 644 643 359 360 

261 739 738 264 235 266 767 733 732 270 361 332 363 637 636 635 634 368 369 670 

221 272 728 727 275 776 724 723 279 280 630 372 323 374 626 625 377 378 679 621 

281 212 283 717 716 715 714 288 289 790 620 619 383 314 385 386 387 688 612 611 

710 292 203 294 706 705 297 298 799 701 391 609 608 394 305 396 697 603 602 400 

SOl 492 408 597 596 595 594 403 409 410 401 502 503 497 496 495 494 508 599 510 

481 419 588 587 515 416 584 583 412 420 511 512 488 487 415 516 484 483 519 590 

430 579 578 524 475 426 427 573 572 421 521 479 478 424 525 576 527 473 472 530 

570 569 533 464 436 435 437 438 562 561 470 469 433 534 535 536 567 538 462 461 
- -
560 542 453 447 556 555 444 448 449 551 460 442 543 544 456 455 547 558 549 451 

550 452 443 454 546 545 457 458 559 541 450 552 553 557 446 445 554 548 459 441 

540 539 463 434 465 466 467 568 532 531 440 439 563 564 566 565 537 468 432 431 

471 529 528 474 425 476 577 523 522 480 580 429 428 574 575 526 477 423 422 571 

411 482 518 517 485 586 514 513 489 490 581 589 418 417 585 486 414 413 582 520 

491 402 493 507 506 505 504 498 499 600 591 592 598 407 406 405 404 593 509 500 

Fig. 594· First 6 plates of 103, made from Fig. 593· (Sllm = soos.) 
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591 and 592 are the index-rod, index-square and index-cube for 

ro3, and Fig. 593 is the extended reversion scheme obtained from 
these, in which "".. and / denote single changes between associated 

cells, and the symbols 1. -,and·, single changes parallel to columns, 

rows, and lines. Figs. 594 and 595 show the resulting cube. 

If we attack 63 by the general rule, we find 4 symbols, X, -, 

I, · , and only 3 cells in the rod; the construction is therefore 

601 399 398 304 605 696 607 393 392 610 300 202 703 704 296 295 707 798 709 291 

390 389 313 614 615 616 687 618 382 381 211 712 713 287 286 285 284 718 789 720 

380 322 623 624 376 375 627 678 629 371 721 722 278 277 225 726 274 273 729 780 

331 632 633 367 366 365 364 638 669 640 731 269 268 234 735 766 737 263 262 740 

641 642 358 357 345 646 354 353 649 660 260 259 243 744 745 746 757 748 252 251 

651 659 348 347 655 356 344 343 652 650 250 249 753 754 756 755 747 258 242 241 

661 662 668 337 336 335 334 663 639 370 77{) 239 238 764 765 736 267 233 232 761 

330 672 673 677 326 325 674 628 379 321 771 779 228 227 775 276 224 223 772 730 

320 319 683 684 686 685 617 388 312 311 781 782 788 217 216 215 214 783 719 290 

700 309 308 694 695 606 395 303 302 691 210 792 793 797 206 205 794 708 299 201 

801 802 198 197 105 806 194 193 809 900 100 99 3 904 905 906 997 908 92 91 

811 189 188 114 815 886 817 183 182 820 90 12 913 914 86 85 917 988 919 81 

180 179 123 824 825 826 877 828 172 171 21 922 923 77 76 75 74 928 979 930 

170 132 833 834 166 165 837 868 839 161 931 932 68 67 35 936 64 63 939 ~70 

141 842 843 157 156 ISS !54 848 859 850 941 59 58 44 945 956 947 53 52 950 

851 852 858 147 146 145 144 853 849 160 960 49 48 954 955 946 57 43 42 951 

140 862 863 867 136 135 864 838 169 131 961 969 38 37 965 66 34 33 962 940 

130 129 873 874 876 875 827 178 122 121 971 972 978 27 26 25 24 973 929 80 

890 119 118 884 885 816 187 113 112 881 20 982 983 987 16 IS 984 918 89 II 

891 899 108 107 895 196 104 103 892 810 10 9 993 994 996 995 907 98 2 I 

Fig. 595. Last 4 plates of ro•, made from Fig. 593. (Sum= soos.) 

impossible. Suppose we construct an index-cube from the rod 

I X I I I -· I, we shall find it impossible to distribute the remaining 
symbol [ · ] in the extended reyersion-scheme obtained from this 
index. The feat, however, is possible if we make (for this case 

only) a slight change in the meanings of I and -. By the general 
rule X operate~ on 4 cells in its own P-plane, where, by the rule of 
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I I with 61 
association, the planes are paired thus: /2 " 5 . In interpreting 

3 " 41 
the meanings of I and -, in this special case, we must make 

I IT III 

' I -- . / I - ' / - . - ' I . / -
I - ' / - . - ' I . / - ' I - - . / 
- ' I . / - ' I - - . / I - ' / - . . / I ' / I . ' I . / ' 
I . / ' . / I ' / I . ' / I . ' I . / ' . / I ' 

' . / I ' / I . ' I . / 
' I . / ' . / I ' / I . 

' / I . ' I . / ' . / I 

- . / ' I - / - . I - ' . / - - ' I 

/ - . I - ' . / - -' I - . / ' I -. / - - ' I - . / ' I - / - . I - ' 
IV v VI 

Fig. 596. Exteaded Reversion-Scheme for 63 . 

TT III 

216 32 4 3 185 211 67 41 178 177 38 150 78 143 lOS 112 140 73 

25 II 208 207 8 192 48 173 63 154 170 43 138 98 82 81 119 133 

18 203 21 196 200 13 168 56 52 51 161 163 91 89 130 129 86 126 

199 197 15 22 194 24 162 so 165 58 59 157 85 128 124 123 95 96 

7 206 190 189 29 30 169 ISS 45 64 !52 66 120 80 135 100 !OJ 115 

186 2 213 34 35 181 37 176 148 147 71 72 139 113 75 106 110 108 

109 107 111 76 104 144 145 146 70 69 179 42 36 182 183 214 5 31 

102 116 117 136 83 97 151 65 !53 46 62 174 187 188 28 27 289 12 

121 122 94 93 131 90 60 !58 !59 166 53 55 193 23 195 16 20 204 

132 92 88 87 125 127 54 167 57 160 164 49 19 17 202 201 14 198 

84 137 99 118 134 79 61 47 172 til 44 156 210 26 10 9 191 205 
·---1 

103 77 142 141 74 114 ISO 68 40 39 149 175 6 215 33 184 212 I 

IV v VI 

Fig. 597, made from Fig. 596. Sum = 6sr. 

a cyclic change in the right-hand column of this little table. 

I I with 5 I I I with 4 I 
Thus for 'T' I 2 " 4 , and for "-'' 2 " 6 I· This means 

I 3 " 61 13 " 5 I 
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that a [I], for example, in the second P-plane has its usual 

meaning in that plane, and also acts on the two cells which would 

be the associated cells if the 4th plane were to become the 5th, etc. 

If we extend this scheme, there will be just room to properly dis

tribute the [ · ] 's in the two parallelopipeds which form the right-

6 32 3 34 35 

7 11 27 28 8 

19 14 16 15 23 

18 20 22 21 17 

25 29 10 9 26 

36 5 33 4 2 

Fig. 598. 

555 051 003 002 504 550 

040 014 543 542 011 515 

025 534 032 523 531 020 

530 524 022 033 521 035 

010 541 513 512 044 045 

505 001 552 053 054 500 

300 254 302 203 251 355 

245 311 312 343 214 240 

320 321 233 232 334 225 

335 231 223 2:22 324 330 

215 344 242 313 341 210 

250 204 353 352 201 305 

IV 

1 

30 

24 

13 

12 

31 

!50 

115 

435 

425 

440 

100 

400 

410 

135 

125 

140 

455 

~ 
Fig. 599. 

1T 

104 453 452 

444 142 413 

131 123 122 

121 432 133 

414 112 143 

451 403 402 

401 !53 !52 

144 412 113 

421 422 433 

434 132 423 

114 443 442 

lSI 103 102 

v 
Fig. 6or. 

55 04 52 03 01 so 
40 44 13 12 41 15 

25 31 33 32 24 20 

30 21 23 22 34 35 

10 14 42 43 11 45 

OS 51 02 53 54 00 

Fig. 6oo. 

TIT 

101 405 205 354 252 303 351 200 

441 110 345 241 213 212 314 340 

424 430 230 224 333 332 221 325 

134 420 220 331 323 322 234 235 

411 145 315 211 342 243 244 310 

154 155 350 304 202 253 301 255 

454 105 055 501 502 553 004 050 

141 445 510 511 043 042 544 015 

124 130 520 034 522 023 031 535 

431 120 030 024 533 532 021 525 

Ill 415 545 041 013 012 514 540 

404 450 005 554 052 503 551 000 

VI 

hand upper and left-hand lower quarters of the cube, as shown 

in Fig. 596. 
This scheme produces the cube shown in Fig. 597, which is magic 

on its 36 rows, 36 columns, 36 lines, and on its 4 central great diag-

onals. 
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Fig. 596 is the identical scheme discovered by Firth in I889, 

and was obtained a few months later than the pseudo-skeleton 

shown in Fig. 585. A year or two earlier he had discovered the 

broken reversion for squares of even order, but he never general

ized the method, or conceived the idea of an index-cube. The 

development of the method as here described was worked out by 

the present writer in I894. About the same time Rouse Ball, of 

Trinity College, Cambridge, independently arrived at the method 

of reversions for squares (compare the earlier editions of his 

E r 
A 

' 
H 

c 
0 

0 c 

'Gi-JJ, 
f -

E 

0 H 

TJCl 
A E 

Fig. 6oz. Fig. 603. Fig. 6o-t. 

Fig. 6os, 1st reversion. Fig. 6ob, 2d reversion. Fig. 6o7, 3d reversion. 

A BC D 

Fig. 6o8, 4th reversion. 

M at/J,ematical Recreations, Macmillan), and m the last edition, 

I905, he adopts the idea of an index-square; but he makes no 
application to cubes or higher dimensions. There is reason to 

believe, however, that the idea of reversions by means of an index
square was known to Fermat. In his letter to Mersenne of April 

I, I64o, (ffiuvres de Fermat, Vol. II, p. I93), he gives the square 

of order 6 shown in Fig. 598. This is obtained by applying the 
index (Fig. 599) to the bottom left-hand corner of the natural 
square written from below upward, i. e., with the numbers I to 6 
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in the bottom row, 7 to 12 in the row above this, etc. There is 

nothing surprising in this method of writing the natural square, in 

fact it is suggested by the conventions of Cartesian geometry, with 

which Fermat was familar. There is a much later similar instance: 

Cayley, in r89o, dealing with "Latin squares," writes from below 

upward, although Euler, in his original Memo ire ( r 782), wrote 

I 2 3 4 65 66 67 68 129 130 131 132 193 194 195 196 

248 247 246 245 184 183 182 181 120 119 118 117 56 55 54 53 

252 251 250 249 188 187 186 185 124 123 122 121 60 59 58 57 

13 14 15 16 77 78 79 80 141 142 143 144 205 206 207 208 

17 18 19 20 81 82 83 84 145 146 147 148 209 210 211 212 

232 231 230 229 168 167 166 165 104 103 102 101 40 39 38 37 

236 235 234 233 172 171 170 169 108 107 106 105 44 43 42 41 

29 30 31 32 93 94 95 96 !57 !58 159 160 221 222 223 224 

33 34 35 36 97 98 99 100 161 162 163 164 225 226 227 228 

216 215 214 213 152 151 150 149 88 87 86 85 24 23 22 21 

220 219 218 217 156 155 154 153 92 91 90 89 28 27 26 25 

45 46 47 48 109 110 Ill 112 173 174 175 176 237 238 239 240 

49 50 51 52 113 114 115 116 177 178 179 ISO 241 242 243 244 

200 199 198 197 136 135 134 133 72 71 70 69 8 7 6 5 

204 203 202 201 140 139 138 137 76 75 74 73 12 11 10 9 

61 62 63 64 125 126 127 128 189 190 191 192 253 254 255 256 

Fig. 6o9. 

from above downward. Another square of order 6, given by 

Fermat, in the same place, is made from the same index, but is dis
guised because he uses a "deformed" natural square. 

It is interesting to note that all these reversion magics (unlike 

those made by Thompson's method), are La Hireian, and also that 

the La Hireian scheme can be obtained by turning a single outline 
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on itself. To explain this statement we will translate the square 

in Fig. 576 into the scale whose radix is 6, first decreasing every 

number by unity. This last artifice is merely equivalent to using 

the n2 consecutive numbers from o to n2 - I, instead of from I to 

n2 , and is convenient because it brings the scheme of units and 

the scheme of 6's digits into uniformity. 

I 254 255 4 65 !90 191 68 129 126 127 132 193 62 63 196 

248 11 10 245 184 75 74 181 120 139 138 117 56 203 202 53 

1?s2 7 6 249 188 71 70 185 124 135 134 121 60 199 198 57 

13 242 243 16 77 178 179 80 141 114 liS 144 205 so 51 208 

17 238 239 20 81 174 175 84 14S 110 Ill 148 209 46 47 212 

232 27 26 229 168 91 90 165 104 ISS 154 101 40 219 218 37 

236 23 22 233 172 87 86 169 108 151 ISO 105 44 215 214 41 

29 226 227 32 93 162 163 96 157 98 99 160 221 34 3S 224 

33 222 223 36 97 158 159 100 161 94 9S 164 225 30 31 228 

216 43 42 213 152 107 106 149 88 171 170 85 24 23S 234 21 

220 39 38 217 156 103 102 153 92 167 166 89 28 231 230 25 

45 210 211 48 109 146 147 112 173 82 83 176 237 18 19 240 

49 206 207 52 113 142 143 116 177 78 79 180 241 14 15 244 

200 59 58 197 136 123 122 133 72 187 186 69 8 2S1 2SO 5 

204 55 54 201 140 119 118 137 76 183 182 73 12 247 246 9 

61 194 195 64 125 130 131 28 189 66 67 192 2S3 2 3 256 

l<ig. 6ro. 

If we examine this result as shown in Fig. 6oo we find that 

the scheme for units can be converted into that for the 6's, by 

turning the skeleton through I8oo about the axis AB; that is to 

say, a single outline turned upon itself will produce the magic. 

The same is true of the cube; that is, just as we can obtain 

a La Hireian scheme for a square by turning a single square outline 

once upon itself, so a similar scheme for a cube can be obtained 
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by turning a cubic outline twice upon itself. If we reduce all the 

numbers in Fig. 597 by unity and then "unroll" the cube, we get 

the La Hireian scheme of Fig. 6or in the scale radix 6. 

If now we represent the skeleton of the 62 's: (left-hand) digits 

by Fig. 602, and give this cube the "twist" indicated by Fig. 603, we 

1 254 255 4 65 190 191 68 129 126 127 132 193 62 63 196 

248 11 10 245 184 75 74 181 120 1.39 138 117 56 203 202 53 
-

252 7 6 249 188 71 70 185 124 135 134 121 60 199 198 57 

13 242 243 16 77 178 179 80 141 114 liS 144 205 so 51 208 

224 35 34 221 160 '!9 98 157 96 163 162 93 32 227 226 29 

41 214 215 44 lOS 150 lSI 108 169 86 87 172 233 22 23 236 

37 218 219 40 101 !54 ISS 104 165 90 91 168 229 26 27 232 

212 47 46 209 148 Ill 110 145 84 175 174 81 20 239 238 17 

240 19 18 237 176 83 82 173 112 147 146 109 4S 211 210 45 

25 230 231 28 89 166 167 92 153 102 103 156 217 38 39 220 

21 234 235 24 85 170 171 88 149 106 107 152 213 42 43 216 

228 31 30 225 164 95 94 161 100 !59 !58 97 36 223 222 33 

49 206 207 52 113 142 143 116 177 78 79 180 241 14 IS 244 

200 59 58 197 136 123 122 133 72 187 186 69 8 251 250 5 
-

204 55 54 201 140 119 118 137 76 183 182 73 12 247 246 9 

61 194 195 64 125 130 131 128 189 66 67 192 253 2 3 256 
.. 

hg. 61 I. 

shall get the skeleon of the 6's (middle) digits, and the turn 

suggested by Fig. 604 gives that of the units (right-hand) digits. 

Thus a single outline turned twice upon itself gives the scheme. 

We can construct any crude magic octahedroid* of double-

* DIMENSIONS REGULAR FIGURE 

2 Tetragon (or square 
3 Hexahedron (cube) 
4 Octahedroid 
etc. etc. 

BOUNDARIES 

4 one-dimensional straight lines 
6 two-dimensional squares 
8 three-dimensional cubes 

etc. 
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of-even order, by the method of reversions, as shown with 44 in 

Figs. 6os to 6o8. 
The first three reversions will be easily understood from the 

figures, but the fourth requires some explanation. It actually 

amounts to an interchange between every pair of numbers in asso

ciated cells of the parallelopiped formed by the two central cubical 

I 254 255 4 192 67 66 189 128 131 130 125 193 62 63 196 

248 II 10 245 73 182 183 76 137 118 119 140 56 203 202 53 

252 7 6 249 69 186 187 72 133 122 123 136 60 199 198 57 

13 242 243 16 180 79 78 177 116 143 142 113 205 so 51 208 

224 35 34 221 97 158 159 100 161 94 95 164 32 227 226 29 

41 214 215 44 152 107 106 149 88 171 170 85 233 22 23 236 

37 218 219 40 156 103 102 153 92 167 166 89 229 26 27 232 

212 47 46 209 109 146 147 112 173 82 83 176 20 239 238 17 

240 19 18 237 81 174 175 84 145 110 Ill 148 48 211 210 45 

25 230 231 28 168 91 90 165 104 ISS 154 101 217 38 39 220 

21 234 235 24 172 87 86 169 108 lSI ISO lOS 213 42 43 216 

228 31 30 225 93 162 163 96 157 98 99 160 36 223 222 33 

49 206 207 52 144 115 114 141 80 179 178 77 241 14 15 244 

two 59 58 197 121 134 135 124 185 70 71 188 8 251 250 5 

204 55 54 201 117 138 139 120 181 74 75 184 12 247 246 9 

61 194 195 64 132 127 126 129 68 191 190 65 253 2 3 256 

Fig. 6r2. 

selections. If the reader will use a box or some other "rectangular" 

solid as a model, and numbers the 8 corners, he will find that such 

a change cannot be effected in three-dimensional space by turning 

the parallelopiped as a whole, on the same principle that a right 

hand cannot, by any turn, be converted into a left hand. But such 

a change can be produced by a single turn in 4-dimensional space; 
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in fact this last reversion is made with regard to an axis in the 4th, 

or imaginary direction. The following four figures (609-612) show 

each stage of the process, and if the reader will compare them with 

the results of a like series of reversions made from a different 

aspect of the natural octahedroid, he will find that the "imaginary" 

reversion then becomes a real reversion, while one of the reversions 

which was real becomes imaginary. Fig. 609 is the natural 44 

after the first reversion, magic in columns only; Fig. 6ro is Fig. 

609 after the second reversion, magic in rows and columns; Fig. 

6n is Fig. 6ro after the third reversion, magic in rows, columns 

and lines; and Fig. 612 is Fig. 6r r after the fourth reversion, magic 

XX X XX X X X 
X X XX XX X X 
X X XX X X X X 

XX X X X X XX 
X X XX XX X X 

XX X XX X XX 
XX X X X X XX 

X X XX XX X X 
X X XX XX X X 

XX X X X X XX 
XX X XX X XX 

X X XX XX X X 
XX X X X X XX 

X X X X XX X X 
X X XX XX X X 

XX X XX X XX 

Fig. 613. Skew Reversion for 44• 

Ill rows, columns, lines and i's, = crude magic 44 • The symbol i 
denotes series of cells parallel to the imaginary edge. 

Fig. 612 is magic on its 64 rows, 64 columns, 64 lines, and 64 
i's and on its 8 central hyperdiagonals. Throughout the above opera
tions the columns of squares have been taken as forming the four 
cells of the P 1-aspect ;* the rows of squares taken to form cubes, 

of course, show the P 2-aspect. 

This construction has been introduced merely to accentuate 

the analogy between magics of various dimensions; we might have 

* Since the 4th dimension is the square of the second, two aspects of the 
octahedroid are shown in the presentation plane. The 3d and 4th aspects are 
in H-planes and V-planes. Since there are two P-plane aspects it might appear 
that each would produce a different H-plane and V-plane aspect; but this is 
a delusion. 
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obtained the magic 44 much more rapidly by a method analogous 

to that used for 43 (Fig. 590). We have simply to interchange 

each number in the natural octahedroid occupying a cell marked 

[X] in Fig. 613, with its complementary number lying in the 

associated cell of the associated cube. Fig. 613 is the extended 

skew-reversion scheme from the index-rod OX]. 
All magic octahedroids of double-of-odd order > ro4 can be 

constructed by the index-rod, for just as we construct an index

square from the rod, and an index-cube from the square, so we 

can construct an index-octahedroid from the cube. The magics 64 

and ro4 have not the capacity for construction by the general rule, 
but they may be obtained by scattering the symbols over the whole 

figure as we did with 63 • C. P. 



CHAPTER XIII. 

MAGIC CIRCLES, SPHERES AND STARS. 

MAGIC circles, spheres and stars have been apparently much 
less studied than magic squares and cubes. We cannot say 

that this is because their range of variety and development is limited; 

but it may be that our interest in them has been discouraged, owing 

to the difficulty of showing them clearly on paper, which is espe

cially the case with those of three dimensions. 

It is the aim of the present chapter to give a few examples of 

what might be done in this line, and to explain certain methods of 

construction which are similar in some respects to the methods used 

in constructing magic squares. 

MAGIC CIRCLES. 

The most simple form of magic spheres is embodied in all per

fect dice. It is commonly known that the opposite faces of a die 

contain complementary numbers; that is, 6 is opposite to 1, 5 is 

opposite to 2, and 4 is opposite to 3-the complementaries in each 
case adding to 7--consequently, any band of four numbers encirc
ling the die, gives a summation of 14. This is illustrated in Fig. 614, 

which gives a spherical representation of the die; and if we imagin<' 

this sphere flattened into a plane, we have the diagram shown in 

Fig. 615, which is the simplest form of magic circle. 

Fig. 616 is another construction giving the same results as Fig. 
615; the only difference being in the arrangement of the circles. It 

will be noticed in these two diagrams that any pair of complementary 
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numbers is common to two circles, which is a rule also used in con

structing many of the following diagrams. 

Fig. 617 contains the series I, 2, 3 .... 12 arranged in four circles 

of six numbers each, with totals of 39· Any one of these circles 

laps the other three, making six points of intersection on which are 

placed three pairs of complementary numbers according to the above 

rule. The most simple way of following this rule is to start by pla· 

cing number 1 at any desired point of intersection; then by tracing 

Fig. 614. Fig. 615. Fig. 616. 

Fig. 617. Fig. 618. 

ont the two circles from this point, we find their second point of 
intersection, on which must be placed the complementary number 

of I. Accordingly we locate 2 and its complementary, 3 and its com
plementary, and so on until the diagram is completed. 

Fig. 618 is the same as Fig. 617, differing only in the arrange
ment. of the circles. 

Fig. 619 contains the series r, 2, 3 .... 20 arranged in five circles 

of eight numbers each, with totals of 84. 
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Fig. 620 contains the series r, 2, 3 .... 14 arranged in five circles 

of six numbers each, with totals of 4S· It will be noticed in this 

diagram, that the r and 14 pair is placed at the intersections of 

three circles, but such intersections may exist as long as each circle 

contains the same number of pairs. 

Fig. 6Ig. Fig. 620. 

Fig. 621. 

Fig. 62 I contains the series r, 2, 3 .... 24 arranged in six circles 
of eight numbers each, with totals of roo. 

Fig. 622 contains the series I, 2, 3 .... 30 arranged in six circles 

of ten numbers each, with totals of ISS· Also, if we add together 
any two diametrical lines of four and six numbers respectively, we 

will get totals of rss; but this is only in consequence of the comple
mentaries being diametrically opposite. 
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Pig. 623 contains the series I, 2, 3 ... 40 arranged m eight 

circles of ten numbers each, with totals of 205. 

Fig. 624 contains the series I, 2, 3 .... 8 arranged in eight circles 

of four numbers each, with totals of I8. This diagram involves a 

feature not found in any of the foregoing examples, which is due 

to the arrangement of the circles. It will be noticed that each 

Fig. 622. 

number marks the intersection of four circles, but we find that no 

other point is common to the same four circles, consequently we need 

more than the foregoing rule to meet these conditions. If we place 

the pairs on horizontally opposite points, all but the two large circles 

will contain two pairs of complementaries. The totals of the two 

large circles must be accomplished by adjusting the pairs. This 
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adjustment is made in Fig. 625, which shows the two selections that 

will give totals of 18. 

Fig. 626 contains the series I, 2, 3. . . . 24 arranged in ten 

circles of six numbers each, with totals of 75· This is accomplished 

by placing the pairs on radial lines such that each of the six equal 

circles contains three pairs. ft then only remains to adjust these 

Fig. 623 

pairs to give the constant totals to each of the four concentric circles. 

Their adjustment is shown diagrammatically in Fig. 027, which is 

one of many selections that would suit this case. 

Fig. 628 conta,ins the s~ries r, 2. 3. . . . r 2 arranged in seven 

circles and two diametrical lines of four numbers each with totals 

of 26. 
The large number of tangential points renders this problem 
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Fig. 624. 

IQB z 7 

3 6 z 
4 5 

Fig. 625. 3 

4- 2.1 

ft· 
s 2.0 

6 19 

r·-<r~ 7 18 

=«:~~~ 8 17 

~~) 9 IG 

·~ 
10 IS 

II 14 

IZ 13 

Fig. 626. Fig. 627. 
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quite difficult, and it appears to be solvable only by La· Hireian 

methods. It was derived by adding together the respective num

bers of the two primary diagrams Figs. 629 and 630, and Fig. 630 

was in turn derived from the two primary diagrams Figs. 63I 

and 632. 
We begin first with Fig. 629 by placing four each of the mun·· 

Fig. 6:z8. Fig. 6:z9. 

bers o, 4, and 8 so that we get nine totals amounting to 16. This 
is done by placing the 4's on the non-tangential circle; which leaves 
it an easy matter to place the o's and 8's in their required positions. 

Fig. 630 must then be constructed so as to contain three sets of the 

series I, 2, 3, 4; each set to correspond in position respective to the 

three sets in Fig. 629, and give totals of ro. This could be done by 
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experiment, but their positions are much easier found with the two 

diagrams, Figs. 631 and 632. Fig. 631 contains six o's and six 2's 

giving totals of 4, while Fig. 632 contains six 1's and six 2's giving 

Fig. 63r. Fig. 632. 

Fig. 633. 

totals of 6. It will be noticed in Fig. 629 that the o's form a hori
zontal diamond, the 8's a vertical diamond and the 4's a square, 

which three figures are shown by dotted lines in Figs. 03 I and 632. 



M.'\GIC CIRCLES, SPHERES AND STARS. 

Besides giving the required totals, Figs. 631 and 632 must have their 

numbers so arranged, that we can add together the respective dia

monds and squares, and obtain the series 1, 2, 3, 4 for each diamonu 

and square, which is shown in Fig. 630. Figs. 630 and 629 are then 

added together which gives us the result as shown in Fig. 628. 

This diagram was first designed for a sphere, in which case 

Fig. 634. 

the two diametrical lines and the 5, 6, 7, 8 circle were great circles 

on the sphere and placed at right angles to each other as are the 
three circles in Fig. 614. The six remaining circles were equal and 
had their tangential points resting on the great circles. The dia

grams used here are easier delineated and much easier to under
stand than the sphere would have been. 

Fig. 633 contains the series 1, 2, 3 .... 54 arranged in nine 
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circles of twelve numbers each with totals of 330. The arrange

ment also forms six 3X3 magic squares. 

We begin this figure by placing the numbers I to 9 in magic 

square order, filling any one of the six groups of points; then, 

0 44 48 9l 

I 2 3 4 0 92 44 48 4 40 52 88! 
4- 3 z I 44 46 0 9Z 8 36 56 184 

z. I + 3 48 44 'z 0 12 32 Go 80 

3 + I z. gz 0 48 44 It<. Z8 64 76 

zo u G8 '72 

Fig. 635. Fig. 636. Fig. 637. 

according to the first general rule, we locate the complementaries 

of each of these numbers, forming a second and complementary 

square. We locate the remaining two pairs of squares in the same 

manner. The pairs of squares in the figure are located in the same 

15~'1' 

Fig. 638. Fig.639. 

relati,·e positions as the pairs of numbers in Fig. 616. in which respect 

the two figures are identical. 
Fig. 03-J. contains the series. 1. 2, 3 .... 90 a ranged in tweh·e 

circles of sixteen m~mbers each, \Yith totals of 776. The sum of the 
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sixteen numbers in each of the six squares is also 776. These 

squares possess the features of the ancient Jaina square, and are 

constructed by the La Hireian method as follows. 

The series o, 4, 8, 12 . . . . 92 are arranged in six horizontal 

groups of four numbers, as shown in Fig. 637. by running the series 
down, up, down, and up through the four respective vertical rows. 

The upper horizontal row of Fig. 637 is used to form the primary 

square Fig. 636; likewise, five other squares are formed with the 

remaining groups of Fig. 637. These six squares are each, in turn, 

added to the primary square, Fig. 635, giving the six squares in Fig. 

634. There is no necessary order in the placing of these squares, 
since their summations are equal. 

Figs. 638 and 639 show the convenience of using circles to show 
np the features of magic squares. The two diagrams represent the 

~ame square, and show eighteen summations amounting to 34· 
H. A. S. 

MAGIC SPHERES. 

In constructing the following spheres, a general rule of placing 

complementary numbers diametrically opposite, has been followed, 
in which cases we would term them associated. This conforms with 

a characteristic of magic squares and cubes. 

Fig. 640 is a sphere containing the series 1, 2, 3 .... 26 arranged 

in nine circles of eight numbers each, with totals of 108. 

In this example, it is only necessary to place the pairs at dia

metrically opposite points; because all the circles are great circles, 

which necessitates the diametrically opposite position of any pair 
common to two or more circles. Otherwise we are at liberty to 
place the pairs as desired ; so, in this sphere it was chosen to place 

the series r, 2, 3 .... 9 in magic square form, on the front face, and 

in consequence, we form a complementary square on the rear face. 

Fig. 641 is a sphere containing the series I, 2, 3 .... 26, arranged 
in seyen circles of eight numbers each, with totals of 108. 

This was accomplished by placing the two means of the series 

at the poles, and the eig-ht extremes in diametrically opposite pairs 
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on the central horizontal circle. In order to give the sphere "associ

ated" qualities, as mentioned before, the remaining numbers should 

be placed as shown by diagram in Fig. 642. This shows the two 

selections for the upper and lower horizontal circles. The numbers 

for the upper circle are arranged at random, and the numbers in the 

lower circle are arranged in respect to their complementaries in the 

upper circle. 

Fig.64D. 

Fig. 644 is a sphere containing the series 1,2,3 .... 62 arranged 

in eleven circles of twelve numbers each, with totals of 378. 

This is a modification of the last example and represents tht 
par'lllels and meridians of the earth. Its method of construction 

is also similar, and the selections are clearly shown in Fig. 643. 

Fig. 645 shows two concentric spheres containing the serie~ 

r, 2, 3 .... 12 arranged in six circles of four numbers each, with 
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totals of 26. It also has three diametrical lines running through the 

spheres with totals of 26. 
The method for constructing this is simple, it being only neces

sary to select three pairs of numbers for each sphere and place the 

complementaries diametrically opposite each other. 

Fig. 646 is the same as the last example with the exception that 

Fig. 641. 

two of the circles do not give the constant total of 26; but with this 

sacrifice, however, we are able to get twelve additional summations 
of 26, which are shown by the dotted circles in Figs. 647, 648 and 

649. Fig. 647 shows the vertical receding plane of eight numbers, 
Fig. 648, the horizontal plane; and Fig. 649, the plane parallel to the 
picture, the latter containing the two concentric circles that do not 

give totals of 26. 
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In this example all pairs are placed on radial lines with one 

number in each sphere which satisfies the summations of the twelve 

dotted circles. The selections for the four concentric circles are 

POLES- I • • 62 

2 61 

3 GO 
4 59 

5 58 
G 57 

ARCTIC AND 7 SG 
ANTARCTIC CiRCLES 8 55 

9 54 
53 
51 

51 

I • • 26 13 50 

Z• • 25 14 49 
15 48 

3. • 24 16 47 

4. • 23 17 46 
18 4.5 

5 22 
TROPICS OF CA:\'CER 19 44 

6 21 AND CAPRICORN 43 

42 
7 20 41 

8 19 
23 40 

39 
9 18 38 

10 17 
26. • 37 

Z.1o •3G 
II 16 :28o • 35 

EQUATOR 29o •34 12 15 
30. • 33 

13 • •14 31. •32 

Fig. 64~. Fig. 6~3-

shown in Fig. Gso. Tht> full lines show the selections for Fig. 047 

ami the clotted lines for Fig. 648. 1t is impossible to get constant 
totals for all six concentrw circles. 
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Fig. 651 is a sphere containing the series I, 2, 3· ... 98, ar

ranged in fifteen circles of sixteen numbers each, with totals of 792. 

It contains six 3X3 magic squares, two of which, each form the 

nucleus of a 5 X 5 concentric square. Also, the sum of any two dia

metrically opposite numbers is 99· 
To construct this figure, we must select two complementary 

Fig. 644. 

sets of 25 numbers each, that will form the two concentric squares; 

and four sets of 9 numbers each, to form the remaining squares, the 
four sets to be selected in two complementary pairs. 

This selection is shown in Fig. 652, in which the numbers en

closed in full and dotted circles represent the selection for the front 

and back concentric squares respectively. The numbers marked with 
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Fig. 645. 

Fig. f~7. 

12 

2 

3 10 

4 9 

.5 s 
& 7 

Fig. 649. Fig. 6so. 
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T, B, L and R represent the selections for the top, bottom, left and 

right horizon squares respectively. 

After arranging the numbers in the top horizon square, we 

locate the complementary of each number, diametrically opposite 

and accordingly form the bottom square. The same method is used 

m placing the left and right square. 

The numbers for the front concentric square are duplicated in 

Fig. 6sr. 

Fig. 653. The numbers marked by dot and circle represent the selec

tion for the nucleus square, and the diagram shows the selections 

for the sides of the surrounding panel, the numbers 4, 70, 34 and 40 

forming the corners. 

Dy placing the complementaries of each of the above 25 num

bers, diametrically opposite, we form the rear concentric square. 

After forming the six squares, we find there are twelve num-
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CD [~~: 
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II 88 
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T-42 57-B 

@ ·5~. 

:t!J,' @ 
T-45 54-B 

@ '$3'.• 
It?) @ 36 63 
48 51 
@ :~; 48. • 51 

Fig. 652. Fig. 65+ 
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bers left, which are shown in Fig-. 6:;4. These are used t0 form the 

four horizon triads. Two pairs are placed on the central circle, and 

by selection, as shown in the diagram, we fill in the ,Jther two 

circles with complementary numbers diametrically opposite. Thc 

above selection is such that it forms two groups of 11lHIJbers, each 

with a summation of r98; this being the amount necessary to com

plete the required summations of the horizon circles. 

There are many selections, other than those shown in Fig. 652, 

which could have been taken. A much simpler one would be to 

select the top 25 pairs for the front and back concentric squares. 

f-l. A. S. 

MAGIC STARS. 

'vVe are indebted to ;.rr. Frederick A. ;.rorton. Xewark, N.J., 
for these plain and simple rules for constructing magic stars of all 

orders. 

A five-pointed star being the smallest that can be made, the 

rules will be first applied to this one. 

Choosing for its constant, or summation ( S) == 48, then: 

( 5 x 48) /2 == 120 ~sum of serie;. 

Divide 120 into two parts, say 80 and 40, although many other 

divisions will work out equally well. Next find a series of five 

numbers, the sum of which is one of the above twu numbers. 

Selecting 40. the series 6 + 7 + 8 + 9 + 10 = 40 can be used. These 

numbers must nmY be written in the central pentagon oi the star 

following the direction of the clotted lines. as shown in Fig. 635. 

Find the sum of e\·ery pair of these numbers around the circle 

beginning in this case with 6 + 9 == 15 and copy the sums in a sepa

rate column (A) as shown below: 

8+ 9=15 
7+10==17 
8 -~ 6= 14 
9 t 7==16 

lO + 8= 18 

( A'i 

17+15+16=48 
16+17+15~48 

1 5 + 1 -1- + 19 = 48 
19+16+13=-1-8 
13 + 18 + 1; ~- -1-S 
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Place on each side of 15, numters not previously used in the 
central pentagon, which will make the ~otal of the three numbers 

= 48 or S. 17 and 16 are here selected. Copy the last "1umber of 

the trio ( 16) under the first number ( 17) as shown above, and 

under 16 write the number required to make the sum ot the second 

trio=48 (in this case 15). Write 15 under 16, and proceed as 
before to the end. If proper numbers are selected ,o make the 

i'iUm of the first trio= 48, it will be found that the fint number of 
the first trio will be the same as the last number oi the last trio 

(in this case 17) and this result will indicate that the star will sum 

correctly if the numbers in the first column are written in their 

Fig. 6ss. Fig. 6s6. 

proper order at the points of the star, as shown in Fig. 656. If the 

first and last numbers prove different, a simple operation may b~ 

used to correct the error. When the last number is more than the 
first number, add half the difference between the two numbers to 

the first number and proceed as before, but if the last number is 
less than the first number, then subtract half the difference from 
the first number. One or other of these operations will always 

correct the error. 
For example, if 14 and 19 had been chosen instead of 17 and 

16, the numbers would then run as follows: 

14+ 15 + 19=48 
19+17+12=48 
12+ 14+22=48 

22+ 16+ 10=48 
10+ 18+20=48 
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The difference between the first and last numbers is seen to be 6 

and 20 being more than 14, half of 6 added tc 14 makes 17 which 

is the correct starting number. Again, if 21 ;o nd 12 had been se· 

lected, then : 

Fi:-(. 6.=;7. 

21 + 15+ 12=4X 

12+ 17 + 19=4~ 
19+ 14+ 15=4~ 
15t16t17=48 
17 + 18+ 13=48 

Fig. 6ss. 

Fi:~. i6o. 

The difference between the first and last nl'tmbers i., here 8, and the 

last number being less than the first, half of this difference sub· 
tracted from 21 leaves 17 as before. 

It is obvious that the constant S of a star oi any order may 

be changed almost indefinitely by adding or subtracting a number 

selected so as to avoid the introduction of duplicates. Thus, the 
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constant of the star shown in Fig. 656 may be reduced from 48 to 

40 by subtracting 4 from each of the five inside numbers, or it may 
be increased to 56 by adding 4 to each of the five outside numbers 

and another variant may then be made by using the five inside 

numbers of S = 40, and the five outside numbers of S =56. These 

three variants are shown respectively in Figs. 657, 658 and 659. 

It is also obvious that any pair of five-pointed or other stan 

may be superposed to form a new star, and by rotating one stat 

over the other, four other variants may be made; but in these and 

similar operations duplicate numbers will frequently occur, which 

Fig. 66r. Fig. 662. 

of cour.se will make the variant ineligible although its constant 

must necessarily remain correct. 
Variants may also be made in this and all other orders of 

magic stars, by changing each number therein to its complement 
with some other number that is larger than the highest number 

used in the original star. The highest number in Fig. 656, for example. 

is 19. Choosing 20 as a number on which to base the desired variant 
19 in Fig. 656 is changed to 1, 17 to 3 and so on throttghont, thus 

making the new five-pointed star shown in Fig. 660 with S = 32. 
The above notes on the construction of variants are given in 

detail as they apply to all orders of magic stars and will not need 

repetition. 
The construction of a six-pointed star may now be considered 

Selecting 27 as a constant : 
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( 6 x 27) /2 = 81 =sum of the series. 

Divide 81 into two parts, say 60 and 21, and let the sum of the 

six numbers in the inner hexagon=21, leaving 60 to be divided 
among the outer points. Select a series of six numbers, the sum 

of which is 21, say 1, 2, 3, 4, 5, 6, and arrange these six numbers in 

hexagonal form, so that the sum of each pair of opposite numbers 

I I I 

I 2. .3 4 
.s 

6 7 8 !} 

~ 

II IZ I~ 14 
.:> 

16 17 18 1.9 

Fig. 663. Fig. 664 . 

.s =C:-Z 

I 18 17 4 

!} /Z 13 ~ 

14 7 8 II 

IG 3 z 1.9 

IS =.13+2 

Fig. 66s. Fig. 666. 

=7. Fig. 661 shows that these six inside numbers form part of two 

triangles, made respectively with single and double lines. The 

outside numbers of each of these two triangles must be computed 
separately according to the method used in connection with the 
five-pointed star. Beginning with the two upper numbers in the 
single-lined triangle and adding the couplets together we have: 
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3+1=4 

5+4=9 
6+2=8 

(A) 

12 +4+ 11 =27 

11 +9+ 7 =27 

7 +8+ 12=27 

Writing these sums in a separate column (A) and proceeding as 
before described, the numbers 12, 11, 7 are obtained for the points 

of the single-lined triangle, and in the same manner 13, 8, 9 are 

found for the points of the double-lined triangle, thus completing 

the six-pointed star Fig. 661. 

The next larger star has seven points. Selecting 30 for a con
stant, which is the lowest possible: 

(7 x 30) /2 = 105 =sum of the series. 

Dividing this sum as before into two parts, say 31 and 74, 

seven numbers are found to sum 74, say, 6+8+ 10+ 11 + 12+ 13+ 14 

Fig. 667. Fig. 668. 

= 74, and these numbers are written around the inside heptagon 
as shown in Pig. 662. Adding them together in pairs, their sums are 

written in a column and treated as shown below, thus determining 
the numbers for the points of Pig. 662. 

14+13=27 1 +27 +2 = 30 

10+ 11 =21 2+21 +7 =30 
6+12=18 7 + 18+ 5 = 30 
8 + 14 = 22 5 +22+3 =30 

13+10=23 3+23 +4= 30 

11+ 6= 17 4+ 17 +9=30 
12+ 8=20 <) + 20+ 1 =30 
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The next larger star has eight points and it can be made in 
two different ways, viz., By arranging the numbers in one con

tinuous line throughout as in stars already described having an odd 
number of points, or by making it of two interlocking squares. 

The latter form of this star may be constructed by first making a 
42 with one extra cell on each of its four sdes, as shown in Fig. 663. 

A series of sixteen numbers is then selected which will meet the 

Fig. 66g. 

Fig. 670. Fig. 671. 

conditions shown by italics a, a, a, and b, b, b, in the figure, i. e., 
all differences between row numbers must be the same, and also all 

differences between column numbers, but the two differences must 
be unlike. The constant ( S) of the series when the latter is ar
ranged as a magic 42 must also be some multiple of 4. The series 
is then put into magic formation by the old and well-known rule 
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for making magic squares of the 4th order. The central 2 x 2 

square is now eliminated and the numbers therein transferred to 
the four extra outside cells as indicated by the letters A. B. C. D. 

Finally all numbers are transferred in their order into an eight
pointed star. 

Fig. 672. Fig. 673-

···--·-5•4-7 

Fig. 674. Fig. 675. 

A series of numbers meeting the required conditions is shown 
in Fig. 664, and its arrangement according to the above rules is given 
in Fig. 665, the numbers in which, transferred to an eight-pointed 

star, being shown in Fig. 666, S = 40. The 42 inagic arrangement of 
the series must be made in accordance with Fig. 665, for other magic 

arrangements will often fail to work out, and will never do so in 
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accordance with Fig. 663. The above instructions cover the simplest 

method of making this form of star but it can be constructed in 
many other different ways and also with constants which are not 

evenly divisible by 4. 
Turning now to the construction of the eight-pointed star by 

the continuous line method, inspection of Figs. 666 and 667 will show 

that although the number of points is the same in each star yet the 

arrangement of numbers in their relation to one another in the 

eight quartets is entirely different. 

Fig. 676. 

Choosing a constant of 39 for an example: 

(39x8)/2= 156=sum of series. 

This sum is now divided into two parts, say 36 and 120. The sum 
of the first eight digits being 36, they may be placed around the 
inside octagon so that the sum of each opposite pair of numbers= 9, 
as shown in Fig. 667. Adding them together in pairs, as indicated 

by the connecting lines in the figure, their sums are written in a 

column and treated as before explained, thus giving the correct 
numbers to be arranged around the points of the star Fig. 667. 

These rules for making magic stars of all orders are so simple 
that further examples are deemed unnecessary. Nine-, ten-, eleven-, 

and twelve-pointed stars, made by the methods described, are shown 
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respectively in Figs. 668, 669, 670 and 671. Several other diagrams 
of ingenious and more intricate star patterns made by Mr. Morton 
are also appended for the interest of the reader in Figs. 672 to 681 

inclusive. 

Fig. 677. 

~~48 
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Fig. 679. 

Fig. 68o. 

--5=58 
0--s=z+ 
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--------s=/60 
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--S=4Z 
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Fig. 68r. 

Q--S=40Z 
---S=-576 

o-----S=ZZ6 
-------S=/44 

·-·-·-·-.S=/70 
---S=ZZI 

-··-··--.5=2!43 
-s=34 

--··-·.S=4Z 

W. S. A. 



CHAPTER XIV. 

MAGIC OCT AHEDROIDS. 

MAGIC IN THE FOURTH DIMENSION. 

Definition of terms: Row is a general term; rank denotes a hori
zontal right-to-left row; file a row from front to back; and colum11 
a vertical row in a cube-not used of any horizontal dimension. 

IF n2 numbers of a given series can be grouped so as to form a 

magic square and n such squares be so placed as to constitute a 

magic cube, why may we not go a step further and group n cubes 

in relations of the fourth dimension? In a magic square containing 

h I . 2 h . . n ( n2+ I) . . b t e natura senes I ... n t e summation ts ; m a magtc cu e 

with the series 1. .. 113 it is n ( ns+ I); and in 
2 
an analogous fourth

dimension construction it natur:11y will ·be n ( n4+ I). 
2 

With this idea in mind I have made some experiments, and the 

results are interesting. The analogy with squares and cubes is not 

perfect, for rows of numbers can be arranged side by side to repre

sent a visible square, squares can be piled one upon another to make 
a visible cube, but cubes cannot be so combined in drawing as to 
picture to the eye their higher relations. My expectation a priori 
was that some connection or relation, probably through some form 

of diagonal-of-diagonal, would be found to exist between the cubes 
containing the n4 terms of a series. This particular feature did ap

pear in the cases where n was odd. Here is how it worked out: 

I. When n is odd. 

I. Let n=3, then S=123.-The natural series I .•. 8I was di-
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vided into three sub-series such that the sum of each would be 

one-third the sum of the whole. In dealing with any such series 

when n is odd there will be n sub-series, each starting with one of 

the first n numbers, and the difference between successive terms will 

be n+I, except after a multiple of n, when the difference is I. In 

the present case the three sub-series begin respectively with I, 2, 3, 

and the first is I 5 9 ro I4 I8 I9 23 27 28 32 36 37 4I 45 46 50 54 
55 59 63 64 68 72 73 77 8r. These numbers were arranged in 
three squares constituting a magic cube, and the row of squares 

so formed was flanked on right and left by similar rows formed from 

the other two ~u b-series (see Fig. 682). 

II Ill 

25 38 6o 28 77 18 67 8 48 

33 79 II 72 I so 21 40 62 

65 6 52 23 45 55 35 75 13 

29 78 16 68 9 46 26 39 s8 

70 2 51 19 41 63 31 8o 1:2 

24 43 s6 36 73 14 66 4 53 

6g 7 47 :27 37 59 30 76 17 

20 4:2 61 32 81 10 71 3 49 

34 74 IS 64 5 54 2:2 44 57 

It is not easy-perhaps it is not possible-to make an abso
lutely perfect cube of 3· These are not perfect, yet they have many 

striking features. Taking the three cubes separately we find that 
in each all the "straight" dimensions-rank, file and column-have 

the proper footing, 123. In the middle cube there are two plane 
diagonals having the same summation, and in cubes I and III one 

each. In cube II four cubic diagonals and four diagonals of vertical 
squares are correct; I and III each have one cubic diagonal and one 

vertical-square diagonal. 

So much for the original cubes; now for some combinations. 

The three squares on the diagonal running down from left to right 
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will make a magic cube with rank, file, column, cubic diagonals, 

two plane diagonals and four vertical-square diagonals (37 in all) 

correct. Two other cubes can be formed by starting with the top 

squares of II and III respectively and following the "broken diag

onals" running downward to the right. In each of these S occurs 

at least 28 times (in 9 ranks, 9 files, 9 columns and one cubic diag-
II II IV v 

317 473 6o~ to t6r 192 3-!8 479 510 36 67 223 354 385 536 567 g8 229 26o 4" 442 s9B 104 135 286 

110 136 292 ~8 579 610 II 167 323 454 485 511 42 lg8 329 36o 386 542 73 204 235 261 417 573 79 

423 554 85 236 267 2g8 429 sss Ill 142 173 304 ~6o 611 17 48 179 335 486 517 548 54 210 361 392 

21 T .167 398 529 6o 86 242 273 ~04 56o s86 117 q8 279 435 461 6!7 23 154 310 336 492 523 29 185 

504 35 186 342 ~g8 379 535 61 217 373 254 410 56• 92 2-!8 129 285 ~6 592 12J 4 100 .111 467 623 

6o6 12 t68 324 455 -!&• 512 43 199 330 356 387 543 i-1- 203 231 262 418 574 8o lo6 137 293 449 58o 

299 430 sBr 112 143 174 305 456 612 !8 49 18o 331 487 518 549 55 2o6 362 393 424 555 8! 237 268 

87 243 274 405 556 587 118 '49 28o 431 462 618 24 155 3o6 337 493 524 30 181 212 368 399 530 s6 

38o 531 62 218 37~ 255 4o6 562 93 249 !JO 28! 437 593 124 5 156 312 468 004 505 Jl 187 343 499 

193 349 48o 5o6 37 68 224 355 381 537 568. 99 230 256 412 443 599 IOj IJI 287 318 474 6os 6 162 

175 301 k57 613 '9 so 176 332 488 519 550 51 207 363 394 425 551 82 238 269 300 426 s82 113 144 

s88 119 150 276 432 463 6!9 25 lj[ 3o7 338 494 525 26 182 21,3 369 <OO 526 57 88 244 275 401 557 

2$T 407 563 94 250 !26 282 438 594 125 l 157 313 469 625 501 32 188 344 soo 376 532 63 219 375 

69 225 351 382 538 569 100 226 257 413 444 6oo 101 132 288 319 475 001 7 !63 19.: 350 476 507 38 

482 jiJ 44 200 326 357 388 5~ 75 201 232 263 419 575 76 107 138 294 450 576 607 13 169 325 451 

464 620 21 I 52 3o8 339 495 521 27 183 214 370 396 527 sB 8g 245 271 402 ssB s89 120 •46 277 433 

127 283 439 595 121 2 !58 314 470 621 502 33 18Q 345 496 377 533 64 220 371 252 4o8 564 95 •46 

570 96 227 2j8 414 ~5 596 102 133 28Q J20 47' 002 8 164 IQj 346 477 soB 39 70 221 352 383 539 

358 3SQ 5-t5 7I 202 233 264 .po 571 7i loB 139 295 446 577 6o8 q 170 321 452 -!83 514 45 196 327 

46 '77 3.13 4SQ 520 546 52 2o8 364 395 421 552 83 2J9 270 296 427 583 114 145 171 302 458 6!4 20 

3 I 59 315 460 622 jOJ 34 190 .141 497 378 534 65 216 372 253 409 565 91 247 128 284 441 591 122 

44' 597 103 134 290 316 -172 6o3 9 !65 191 347 478 509 40 66 222 353 384 540 s66 97 288 259 415 

23~ 265 416 Si2 78 109 140 291 447 578 6og IS 166 322 453 484 SIS 41 197 328 359 390 541 72 203 

5-t7 53 20Q 365 391 422 553 84 2-10 266 297 428 s84 liS 141 172 303 459 615 16 47 178 3~ 490 51( 

340 491 522 28 184 215 J66 397 528 59 90 241 2]2 403 559 590 116 147 278 434 465 616 22 153 30! 

Fig. 683. (54 ) 

onal). Various other combinations may be found by taking the 
squares together in horizontal rows and noting how some columns 

and assorted diagonals have the proper summation, but the most 
important and significant are those already pointed out. In all the 

sum 123 occurs over 200 times in this small figure. 

One most interesting fact remains to be noticed. While the 
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three cubes were constructed separately and independently the figure 

formed by combining them is an absolutely perfect square of g, with 

a summation of 369 in rank, file and corner diagonal (besides all 

"broken" diagonals running downward to the right), and a perfect 

balancing of complementary numbers about the center. Any such 

pair, taken with the central number 4I, gives us the familiar sum 123, 

and this serves to bind the whole together in a remarkable manner. 

II Ill IV 

I 255 254 4 248! IO II 245 240 r8 19 237 25 231 230 28 

252 6 7 249 I3 243 242 r6 2t 235 234 24 228 30 31 225 

8 250 251 5 241 IS 14 244 233 23 22 1236 32 226 227 29 

253 3 2 256 12 246 247 9 20 238 239 I7 229 27 26 232 

224 34 35 221 41 215 214 44 49 207 2001 52 200 58 59 197 

37 219 218 40 212 46 47 209 204 54 55 1201 6r 195 194 64 

217 39 38 220 48 210 2II 45 s6 202 203 53 193 63 62 rg6 

36 222 223133 213 43 42 216 205 51 so 2o8 6o rgS 199 57 

192 66 67 189 73 183 182 76 8r 175 174! 84 168 90 91 r6s 

6g 187 186 72 18o 78 79 177 172 86 87 I 169 93 163 162 g6 

r8s 71 70 188 8o 178 179 77 88 170 171 85 161 95 94 164 

68 190 191 6s r8r 75 74 184 173 83 82 176 92 r66 167 8g 

97 159 158 100 152 ro6 107 149 144 II4 liS I 141 121 135 134 124 

156 102 103 153 109 147 146 II2 II7 139 138 120 132 126 127 129 

104 154 155 101 145 III IIO 148 137 II9 II8 140 128 130 131 125 

157 99 g8 r6o I08 ISO 151 105 II6 142 143 II3 133 123 122 136 

Fig. 684. (4•) 

2. Let n = 5, then S = I565.-In Fig. 683 is represented a group 

of 5-cubes each made up of the numbers in a sub-series of the nat

ural series I ... 625. In accordance with the principle stated in a pre

vious paragraph the central sub-series is I 7 I3 I9 25 26 32 ... 625, 

and the other four can easily be discovered by inspection. Each of 

the twenty-five small squares has the summation 1565 in rank, file, 

corner diagonal and broken diagonals, twenty times altogether in 

each square, or 500 times for all. 
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Combining the five squares in col. I we have a cube in which 

all the iS "straight" rows (rank, file and vertical column), all the 
horizontal diagonals and three of the four cubic diagonals foot up 

1565. In cube III all the cubic diagonals are correct. Each cube 
also has seven vertical-square diagonals with the same summation. 

Taking together the squares in horizontal rows we find certain 
diagonals having the same sum, but the columns do noL The five 

squares in either diagonal of the large square, however, combine to 

produce almost perfect cubes, with rank, file, column and cubic 

diagonals all correct, and many diagonals of vertical squares. 

A still more remarkable fact is that the squares in the broken 

diagonals running in either direction also combine to produce cubes 

as nearly perfect as those first considered. Indeed, the great square 

seems to be an enlarged copy of the small squares, and where the 
cells in the small ones unite to produce S the corresponding squares 

in the large figure unite to produce cubes more or less perfect. 

Many other combinations are discoverable, but these are sufficient 

to illustrate the principle, and show the interrelations of the cubes 

and their constituent squares. The summation 1565 occurs in this 

figure not less than 1400 times. 
The plane figure containing the five cubes (or twenty-five 

squares) is itself a perfect square with a summation of 7825 
for every rank, file, corner or broken diagonal. Furthermore all 

complementary pairs are balanced about the center, as in Fig. 682. 

Any square group of four, nine or sixteen of the small squares is 
magic, and if the group of nine is taken at the center it is "perfect." 

It is worthy of notice that all the powers of n above the first lie in 
the middle rank of squares, and that all other multiples of n are 
grouped in regular relations in the other ranks and have the same 
grouping in all the squares of any given rank. The same is true 

of the figure illustrating 7\ which is to be considered next. 

3· Let 11=7, then S=8407.-This is so similar in all its prop
erties to the s-construction just discussed that it hardly needs sep
arate description. It is more nearly perfect in all its parts than the 
54 , having a larger proportion of its vertical-square diagonals cor

rect. Any square group of four, nine, sixteen, twenty-five or thirty 
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I 1295 1294 3 1292 0 127S 20 21 1271\ 23 1273 37 125~ 12SS 39 1251\ 42 

1.2!)0 s 1288 12S7 11 7 25 1271 27 2S 121\8 1272 1254 44 1252 125( 47 4., 

1284 1283 •s 16 '4 1279 Jl 32 •264 .... ,3 12f>S Jfl 1248 1247 51 52 so 1243 

13 '7 1281 12S2 128o IS 1266 1262 34 33 35 12()1 49 53 1245 1246 124~ 5~ 

12 1286 9 10 12&J 12SS 1267 29 1270 ..... 26 30 48 1250 45 46 125,, 124() 

1291 2 4 1293 5 1296 24 1277 1275 22 1274 '9 1255 3S 40 1257 41 126o 

1188 110 Ill 1186 113 1183 127 1169 111\8 129 1166 132 1152 146 '47 1150 149 1147 

115 liS I 117 118 117S 1182 1164 134 1162 1161 '37 '33 '51 1145 '53 '54 1142 1146 

121 122 1174 1173 1175 126 1158 "57 141 142 140 1153 '57 •s8 113S 1137 1139 102 

1176 1172 124 123 125 1171 139 143 1155 1156 1154 144 1140 1136 I6o '59 161 1135 

1177 119 II So 1179 116 120 13S 116o 135 136 1163 1159 1141 •ss 1144 1143 152 •s6 

114 1187 IISS 112 1184 109 1165 128 130 1167 131 1170 •so H5I 1149 14S 114S 145 

217 1079 107S 219 1076 222 1o62 236 2J7 Io6o 239 1057 253 '043 1042 255 10~ 2SS 

1074 224 1072 1071 227 223 241 1055 243• 244 1052 1056 103S 260 1036 1035 263 259 

Io68 Io67 231 232 230 lo63 247 248 104S 1047 '049 252 1032 1031 267 :zr,s 266 1027 

229 233 1o65 Io66 •004 234 1050 1046 250 249 251 10~5 205 2(") 1029 IOJO I02S 270 

22S 1070 225 226 1073 lo69 1051 245 1054 1053 242 246 264 1034 261 202 1037 1033 

1075 21S 220 1077 221 loBo 240 1061 1059 23S 105S 235 1039 254 25(> 1041 257 1044 

86s 431 430 867 42S S70 414 884 88s 41~ 887 409 901 395 394 903 392 9Q6 

426 S72 424 423 875 S71 889 407 891 892 404 4o8 390 9oS 3SS 3S7 911 907 

420 419 S79 88o S7S 4'5 895 &fi 400 399 40' 900 JS4 3S3 915 916 9'4 379 

S77 881 417 41S 416 SS2 402 398 898 897 899 397 913 <)17 381 382 3So 91S 

S76 422 87J S74 425 421 403 '893 400 405 89o 894 912 J86 909 910 389 3SS 

427 866 86S 429 869 432 888 4'3 411 S86 410 88j 391 902 904 393 905 396 

864 434 435 862 437 Ss9 451 S4S 844 453 S42 456 S2S 470 47' S26 473 S2J 

439 ss7 441 442 Ss4 SsS S40 45S 83S S37 461 457 475 821 477 47S S1S S22 

445 446 sso S49 ss• 450 SJ4 S33 465 466 464 1129 4SI 4S2 Sl4 S!J S15 486 

Bs2 848 448 447 449 S47 463 467 831 S32 S30 468 816 Sl2 484 4SJ 48s S!l 

S53 443 ss6 sss 440 444 462 836 459 400 S39 S3S 817 479 S20 Sl9 476 48o 

43S 863 861 436 86o 433 84• 452 454 843 455 8~6 474 S27 825 472 824 469 

756 542 543 754 545 751 559 737 736 sli• 734 564 720 578 579 718 s8• 7'5 

547 749 549 550 746 750 732 s66 730 729 569 s6s s8J 7'3 sss s86 710 7'4 

553 554 742 741 743 sss 726 725 573 574 572 721 s&i 590 700 705 707 594 

744 740 556 555 557 739 57' 575 723 724 722 576 7oS 704 592 59• 593 703 

745 ss• 748 747 548 552 570 728 567 568 73 1 i27 70<) 587 712 711 584 588 

546 755 753 544 752 541 733 56o 562 735 503 738 5S2 7 19 717 5So 716 577' 

Fig. 685, First Part. (6•: S = 3891) 
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1225 7' 70 1227 (,g 12JO 122-J. 74 75 1222 77 12 !<) 1 zo(i <)2 93 1204 95 1201 

()() 1232 (,4 (,3 1235 12'31 7~ 1217 RI 82 1~14 1218 ~7 I 1~9 99 100 11if> 1200 

(>O 5~ 12J<J 12-.j.O 1238 55 ss 86 1210 120() 1211 ~0 103 104 1192 1191 1193 Io8 

1237 12 .. :p 57 s8 s6 1242 1212 12o8 88 87 s~ 1207 11(_)4 I lt)O 106 105 107 118g 

1230 02 1233 1234 6s (, 1213 83 1216 1215 So 84 119S 101 I 198 11 97 g8 102 

rq 122() 1228 (Jl) 1221) 72 78 1223 1221 j(J 1220 73 0 1205 1203 94 1202 91 

!So II 18 \Ill) 178 1121 175 181 [ 115 1114 183 II 12 180 ~~.N 1097 10<)6 201 '094 204 

1123 173 I 125 112() 170 '74 I I 10 !88 llo8 I 107 HJI 187 HXJ2 2o6 '090 Io89 209 205 

ll2l) I IJO J(J(J ,r)s ,r,7 "34 I 10-J. 1103 HJj ICJI) HJ-J. IOl)l) 1o86 I08S 213 214 212 Io8I 

,r,s r(q IIJ2 IIJI 11 33 J()3 llJJ 'W I 101 I !02 I 100 lg8 211 2IS 1o83 Io84 1082 216 

I6<J 1127 172 '7' 1124 1128 lfJ2 1106 18') 'Y" liCK) IIOS 210 Io88 207 2o8 1091 Io87 

I 122 17Y 177 1120 '70 I I 17 !Ill r8z 184 I I IJ ISS 1110 IO<JJ 200 202 '095 203 IOg8 

100<) 287 28(> lOll 284 1014 10)8 290 2<)1 IOQ(> 2~3 1003 990 J08 309 g8S 31! gSs 

2S2 10!0 z8o 279 IOIC) 1015 29S 1001 2 97 298 9g8 1002 3'3 983 3'5 316 g8o 984 

z;r) 275 1023 1024 l022 271 301 302 094 !J93 09S .]o6 3'9 320 976 975 977 324 

1021 1025 273 274 272 1020 996 1)92 304 303 305 901 978 974 322 321 323 973 

1020 278 1017 1018 281 2 77 9Y7 21)1) 1000 999 296 300 979 3 17 982 gSr 314 318 

283 1010 1012 28s lOIJ 288 2(_)-J. 1007 1005 292 1004 289 312 989 987 310 g86 307 

3G1 ~3S 934 3(>3 932 3G6 300 938 939 3S8 941 35S 342 9S6 957 340 9S9 337 

930 368 ~28 <)27 37' 3°7 943 353 945 <J.i(> 3SO 3S4 if> I 33S ¢3 ¢4 332 336 

924 923 375 376 374 9'9 949 <JSO .]46 34S 347 954 ¢7 g68 328 327 329 972 

373 .177 !)21 922 920 378 348 344 952 9SI 9S3 343 330 326 970 969 97' 32S 

372 926 369 370 929 92S 349 947 352 351 944 948 33' ¢s 334 333 962 g66 

93' 3(>2 3(>4 933 3°5 931> 942 359 357 940 356 937 ifl() 34' 339 958 338 9SS 

504 794 N5 502 N7 499 sos 79' 790 507 788 SIO S23 773 772 S25 770 528 

799 497 8o1 802 494 498 786 512 784 783 SIS Sll 768 530 766 765 533 529 

Sos 8o6 4t)O 489 49' 810 780 77<J S19 S20 SI8 77S 762 761 537 538 S36 757 

-J.92 488 8o8 807 80{_) 487 5 1 7 521 777 778 776 S22 S35 S39 7S9 700 7S8 540 

493 803 496 495 8oo 804 516 782 513 514 78S 781 S34 764 53' 532 767 763 

798 SOJ 501 7¢ soo 793 7R7 5or' soS J8!) 509 792 7&.) S24 526 77' 527 774 

612 686 6R7 6!0 ffi9 6o; 613 1>83 682 fits 68o 6!8 (lJI 66s 664 633 662 636 

6gl nos 69.l 694 f>o2 6o6 fq8 ()20 (Ji6 675 (J23 6H) 6(l() 638 6s8 6s7 041 637 

697 698 598 597 599 702 672 671 627 628 (l2() (-1>7 OS4 653 64S 6.~6 644 649 

6oo 596 700 699 701 595 625 629 66q 670 668 (>30 643 647 OSI 652 6so 648 

6ot 695 (JO-t 1>03 692 696 624 674 (121 622 677 673 642 6so 039 640 659 Gss 

fi9o fill WJ 688 6oS (>85 fiN 614 616 681 617 684 661 632 634 663 63S 666 

Fig. 685, Second Part. (64 : S = 3891) 
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six small squares is magic, and if the group of nine or twenty-five 

be taken at the center of the figure it is "perfect." The grouping 

of multiples and powers of n is very similar to that already described 

for s•. 
II. When n is even. 

I. Let 11-4, then S=sq.-The numbers may be arranged m 

Ill 

I 4095 4094 4 5 409I 4090 8 4032 66 67 4029 4028 70 71 4025 

4088 10 II 4o85 4o84 14 IS 4o81 73 4023 4022 76 77 4019 4018 So 

4o8o IS 19 4077 4076 22 23 4073 81 4015 4014 84 85 40II 4010 88 

25 4Q71 4070 28 29 4067 4o66 32 4oo8 go 91 4005 4004 94 95 4001 

4o65 31 JO 4068 4069 27 26 4072 g6 4002 4003 93 92 4oo6 4007 8g 

24 4074 4075 21 20 4078 4079 17 4009 87 86 4012 4013 83 82 401~ 

16 4082 4o83 IJ 12 4086 4o87 9 4017 79 78 4020 4021 75 74 4024 

4o89 7 6 4092 4093 3 2 4096 72 4026 4027 6g 68 4030 4031 6s 

4004 34 35 4Q6I 400o JS 39 4057 97 3999 3998 100 101 3995 3994 104 

4I 4055 4054 44 45 4051 4050 48 3992 Io6 107 3989 3988 110 III 3985 

49 4047 4046 52 53 4043 4042 56 3984 114 115 3981 398o 118 119 3977 

4040 sS 59 4037 4036 62 63 4033 121 3975 3974 124 125 3971 3970 128 

64 4034 4035 61 6o 4038 4039 57 3969 127 126 3972 3973 123 122 3976 

~04I 55 54 4044 4045 51 so 4048 I20 3978 3979 II7 116 3982 3983 113 

4049 47 46 4052 4053 43 42 4056 112 Jg86 3987 109 I08 3990 3991 lOS 

40 40sS 40S9 37 36 4o62 4003 33 3993 103 102 3996 3997 99 98 4000 

II IV 

Fig. 686, 8', First Part (One cube written). 

either of two ways. If we take the diagram for the 4-cube as 

given in Chapter II, page 78, and simply extend it to cover 

the larger numbers involved we shall have a group of four cubes 

in which all the "straight" dimensions have S=s 14, but no diag

onals except the four cubic diagonals. Each horizontal row of 
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squares will produce a cube having exactly the same properties as 

those in the four vertical rows. If the four squares in either diag

onal of the figure be piled together neither vertical columns nor 

cubic diagonals will have the correct summation, but all the diagonals 

of vertical squares in either direction will. Regarding the whole 

group of sixteen squares as a plane square we find it magic, having 

v VII 

3968 130 131 396S 3964 134 13S 3961 193 3903 3902 1¢ 197 3899 3898 200 

137 3959 3958 140 141 39SS 39S4 144 3896 202 203 3893 3892 206 207 3889 

145 3951 3950 148 149 3947 3946 152 3888 210 2II 3885 3884 214 21S 3881 

3944 154 ISS 3941 3940 1s8 159 3937 217 3879 3878 220 22I 3875 3874 224 

I6o 3938 3939 I 57 IS6 3942 3943 I 53 3873 223 222 3876 3877 2I9 2I8 388o 

394S ISI ISO 3948 3949 I47 146 3952 216 3882 3883 2I3 2I2 3886 3887 209 

3953 143 142 3956 39S7 139 I38 3900 208 3890 3891 20S 204 3894 3895 201 

I36 3962 3¢3 133 I32 3¢6 3967 129 3897 I99 IQB 3900 390I I95 I94 3904 

I6I 3935 3934 164 16S 3931 3930 168 3872 226 227 3869 3868 230 23I 3865 

3928 170 171 392S 3924 174 175 3921 233 3863 3862 236 237 3859 38s8 240 

3920 li'S I79 39I7 39I6 I82 I83 3913 241 3855 3854 244 245 38SI 38so 248 

I8S 39II 39IO IBB IB9 3907 3906 I92 u 2SO 2SI 384S 3844 254 25S 384I 

3905 I9I I90 3908 3909 I87 I86 39I2 256 3842 3843 253 252 3846 3847 249 

I84 39I4 39I5 I8I I8o 39I8 39I9 I77 3849 247 246 3852 38S3 243 242 38sf 

I76 3922 3923 I73 I72 3926 3927 I6g 3857 239 238 386o J86I 235 234 3864 

3929 I67 166 3932 3933 I63 162 3936 232 3866 3867 229 228 3870 3871 225 

VI VIII 

Fig. 6&5, 8", Second Part (One cube writen). 

the summation 2056 in every rank, file and corner diagonal, 1028 

in each half-rank or half-file, and 514 in each quarter-rank or 

quarter-file. Furthermore all complementary pairs are balanced about 
the center. 

The alternative arrangement shown in Fig. 684 makes each of the 
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small squares perfect in itself, with every rank, file and corner diag

onal footing up 514 and complementary pairs balanced about the 
center. As in the other arrangement the squares in each vertical 

or horizontal row combine to make cubes whose "straight" dimen

sions all have the right summation. In addition the new form has 

the two plane diagonals of each original square (eight for each 

cube), but sacrifices the four cubic diagonals in each cube. In lieu 

of these we find a complete set of "bent diagonals" ("Franklin") 

like those described for the magic cube of six in Chapter IX. 
If the four squares in either diagonal of the large figure be 

piled up it will be found that neither cubic diagonal nor vertical 

column is correct, but that all diagonals of vertical squares facing 

toward front or back are. Taken as a plane figure the whole group 

makes up a magic square of r6 with the summation 2056 in every 

rank, file or corner diagonal, half that summation in half of each 
of those dimensions, and one-fourth of it in each quarter dimension. 

2. Let 1t=6, then S=389r.-With the natural series I .•. 1296 
squares were constructed which combined to produce the six magic 

cubes of six indicated by the Roman numerals in Figure 685. 
These have all the characteristics of the 6-cube described in Chap

ter IX-ro8 "straight" rows, 12 plane diagonals and 25 "bent" 

diagonals in each cube, with the addition of 32 vertical-square 

diagonals if the squares are piled in a certain order. A seventh 

cube with the same features is made by combining the squares in 

the lowest horizontal row-i. e., the bottom squares of the num

bered cubes. The feature of the cubic bent ·diagonals is found on 
combining any three of the small squares, no matter in what order 
they are taken. In view of the recent discussion of this cube it seems 

unnecessary to give any further account of it now. 

The whole figure, made up as it is of thirty-six magic squares, 

is itself a magic square of 36 with the proper summation (23346) 
for every rank, file and corner diagonal, and the corresponding 
fractional part of that for each half, third or sixth of those dimen
sions. Any square group of four, nine, sixteen or twenty-five of the 

small squares will be magic in all its dimensions. 
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3· Let 11=8, then S=16388.-The numbers I. .. 4096 may be 

arranged in several different ways. If the diagrams in Chap

ter II be adopted we have a group of eight cubes in which 

rank, file, column and cubic diagonal are correct (and in which 

the halves of these dimensions have the half summation), but all 

plane diagonals are irregular. If the plan be adopted of construct
ing the small squares of complementary couplets, as in the 6-cube, 

the plane diagonals are equalized at the cost of certain other features. 
I have used therefore a plan which combines to some extent the ad

vantages of both the others. 

It will be noticed that each of the small squares in Fig. 686 is 

perfect in that it has the summation 16388 for rank, file and corner 

diagonal (also for broken diagonals if each of the separated parts 

contain two, four or six-not an odd number of cells), and in balan

cing complementary couplets. When the eight squares are piled 
one upon the other a cube results in which rank, file, column, the 

plane diagonals of each horizontal square, the four ordinary cubic 

diagonals and 32 cubic bent diagonals all have S=r6388. What is 

still more remarkable, the half of each of the "straight" dimensions 

and of each cubic diagonal has half that sum. Indeed this cube of 

eight can be sliced into eight cubes of 4 in each of which every rank, 

file, column and cubic diagonal has the footing 8194; and each of 
these 4-cubes can be subdivided into eight tiny 2-cubes in each of 

which the eight numbers foot up 16388. 
So much for the features of the single cube here presented. 

As a matter of fact only the one cube has actually been written out. 

The plan of its construction, however, is so simple and the relations 

of m;mbers so uniform in the powers of 8 that it was easy to in
vestigate the properties of the whole 8' scheme without having the 
squares actually before me. I give here the initial number of each 

of the eight squares in each of the eight cubes, leaving it for some 
one possessed of more leisure to write them all out and verify my 
statements as to the intercubical features. It should be remembered 
that in each square the number diagonally opposite the one here 

given is its complement, i. e., the number which added to it will 

giYe the st1m 4097. 
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I II III IV v VI VII VIII 
I 3840 3584 769 3072 1281 1537 2304 

4064 28g 545 3296 1057 2784 2528 1825 
4032 321 577 3264 1089 2752 2496 1857 

97 3744 3488 865 2976 1377 1633 2208 
3968 385 641 3200 II 53 2688 2432 1921 

161 368o 3424 929 2912 1441 !697 2144 
193 3648 3392 961 288o 1473 1729 2II2 

3872 481 737 3104 1249 2592 2336 2017 
----- ----- ----- ----- ----- ----- ----- -----

16388 16388 16388 16388 16388 16388 !6388 16388 

Each of the sixty-four numbers given above will be at the 
upper left-hand corner of a square and its complement at the lower 

right-hand corner. The footings given are for these initial.numbers, 

but the arrangement of numbers in the squares is such that the 

footing will be the same for every one of the sixty-four columns 

in each cube. If the numbers in each horizontal line of the table 

above be added they will be found to have the same sum: conse

quently the squares headed by them must make a cube as nearly 
perfect as the example given in Fig. 686, which is cube I of the table 

above. But the sum of half the numbers in each line is half of 

16388, and hence each of the eight cubes formed by taking the 

squares in the horizontal rows is capable of subdivision into 4-cubes 

and 2-cubes, like our original cube. Vve thus have sixteen cubes, each 

with the characteristics described for the one presented in Fig. 686. 

If we pile the squares lying in the diagonal of our great square 

(starting with I, 289, etc., or 2304, 2528, etc.) we find that its col
umns and cubic diagonals are not correct; but all the diagonals of 

its vertical squares are so, and even here the remarkable feature of 

the half-dimension persists. 
Of course there is nothing to prevent one's going still further 

and examining constructions involving the fifth or even higher pow
ers, but the utility of such research may well be doubted. The purpose 

of this article is to suggest in sketch rather than to discuss exhaus

tively an interesting field of study for some one who may have time 

to develop it. H. M. K. 
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FOUR-FOLD MAGICS.* 

A magic square has two magic directions parallel to its sides 

through any cell-a row and a column ; a magic cube has three magic 

directions parallel to its edges, a row, a column and a "line," the latter 
being measured at right angles to the paper-plane. By analogy, 

if for no other reason, a magic 4-fold should have four magic direc

tions parallel to its linear edges, a row, a column, a line, and an "i." 

[The i is a convenient abbreviation for the imaginary direction, 
after the symbol i = y -I.] It is quite easy to determine by analogy 

how the imaginary direction is to be taken. If we look at a cube, 

set out as so many square sections on a plane, we see that the direc

tions we have chosen to call rows and columns are shown in the 
square sections, and the third direction along a line is found by 

taking any cell in the first square plate, the similarly situated cell 

in the second plate, then that in the third and so on. In an octra

hedroid the rows, columns and lines are given by the several cubical 

sections, viewed as solids, while the fourth or imaginary direction 

is found by starting at any cell in the first cube, passing to the cor

responding cell of the second cube, then to that of the third, and 

so on. 

If we denote each of the nine subsidiaries of order 3 in Fig. 6g7 

by the number in its central cell, and take the three squares 45, I, 

77, in that order, to form the plates of a first cube; 73, 41, 9 to form 

a second cube, and 5, 8r, 37 for a third cube, we get an associated 
octahedroid, which is magic along the four directions parallel to its 
edges and on its 8 central hyperdiagonals. We find the magic sum 

*The subject has been treated before in: 
Frost (A. H.), "The Properties of Nasik Cubes,'' Quarterly Jounwl of 

Mathematics, London, 1878, p. 93· 
"C. P." (C. Planck), "Magic Squares, Cubes, etc.,'' The English Mechanic, 

London, March 16, 1888. 
Arnoux (Gabriel), Arithmetique graphique, Paris, 1894, Gauthier-Villars 

et Fils. 
Planck (C.), The Theory of Path Nasiks, I90.'i- Printed for private circu

lation. There are copies at the British Museum, the Bodleian, Oxford, and the 
University Library, Cambridge. 
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on 9 rows, 9 columns and 18 diagonals, the nine subsidiaries equally 

weighted and magic in rows and columns, and further the square is 

9-ply, that is, the nine numbers in any square section of order 3 
give the magic sum of the great square. 

It will be convenient here to tt~rn aside and examine the eyo

lution of the Nasik idea and the general ana!ogy between th:: figures 

of various dimensions in order that we may determine how the Nasik 

concept ought to be expanded when we apply it in the higher dimen

sions. This method of treatment is suggested by Professor King-

ery's remark, p. 352, "It is not easy-perhaps it is not possible-to 

make an absolutely perfect cube of 3·" If we insist on magic central 

65 6 52 29 78 16 20 42 61 

36 73 14 27 37 59 72 1 so 
22 44 57 67 'g 48 31 80 12 

69 7 47 33 79 11 24 43 56 

28 77 18 19 41 63 64 5 54 

26 39 58 71 3 49 35 75 13 

iO 2 51 34 74 15 25 38 60 

32 81 10 23 45 55 68 9 46 

21 40 62 66 4 53 30 76 17 

Fig. 687. 

diagonals we know that, in the restricted sense, there is only one 

magic square of order 3, but if we reckon reflections and reversions 
as different there are 8. If we insist on magic central great diag

onals in the cube, as by analogy we ought to do, then, in the re

stricted sense, there are just 4 magic cubes of order 3· But each 
of these can be placed on any one of six bases and then viewed from 
any one of four sides, and each view thus obtained can be duplicatell 

by reflection. In the extended sense, therefore, there are 192 magic 
cubes of order 3· None of these, however, has the least claim to 

be considered '"'perfect." This last term has been used with severai 

different meanings by various writers on the subject. From the 
present writer's point of view the Nasik idea, as presently to be d~-



MAGIC OCTAHEDROIDS. 

veloped, ought to stand pre-eminent; next m importance comes 

the ply property, then the adornment of magic subsidiaries, with the 

properties of association, bent diagonals of Franklin, etc., etc., tak

ing subordinate places. 
The lattice idea certainly goes back to prehistoric time, and 

what we now call the rows and columns of a rectangular lattice 

first appealed to man because they disclose contiguous rectilinear 

series of cells, that is sets of cells, whose centers are in a straight 

line, and each of which has linear contact with the next. It must 

soon have been noticed that two other series exist in every square, 

which fulfil the same conditions, only now the contact is punctate 

instead of linear. They are what we call the central diagonals. It 
was not t~ntil the congruent nature of the problem was realized that 

it became apparent that a square lattice has as many diagonals as 

rows and columns together. Y ct the ancient Hindus certainly recog

nized this congruent feature. The eccentric diagonals have been 

called "broken diagonals," but they are really not broken if we re

member that we tacitly assume all space of the dimensions under 

consideration saturated with contiguous replicas of the figure before 

tlS, cells similarly situated in the several replicas being considered 

identical. A. H. Frost* nearly so years ago invented the term "Nasik" 

to embrace that species of square which shows magic summations 

on all its contiguot~s rectilinear series of cells, and later extended 

the idea by analogy to cubes,t and with less success to a figure in 

four dimensions. If the N asik criterion be applied to 3-dimensional 

magics what does it require? We must have 3 magic directions 

through any cell parallel to the edges, (planar contact), 6 such 

11irections in the diagonals of square sections parallel to the faces 
(linear contact), and 4 directions parallel to the great diagonals of 

the ct1be (point contact), a total of 13 magic directions through 
every cell. It has long been known that the smallest square which 

can be nasik is of order 4, or if the square is to be associated, (that 

*Quarterly Journal of Mathematics, London, r865, and 1878, pp. 3~ and 93. 

t The idea of the crude magic cube is, of course, much older: Fermat 
gives a 4' in his letter to Mersenne of the rst of April, 1640. CEuvres de 
Ferm11t, Vol. II, p. 191. 
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is with every pair of complementary numbers occupying cells which 

are equally displaced from the center of the figure in opposite di

rections), then the smallest N asik order is 5· Frost stated definitely* 

that in the case of a cube the smallest Nasik order is 9; Arnouxt was 

of opinion that it would be 8. though he failed to construct such a 

magic. It is only quite recently+ that the present writer has shown 

that the smallest Nasik order in k dimensions is always 2k, (or 

2!~+ I if we require association). 

It is not difficult to perceive that if we push the Nasik analogy 

to higher dimensions the number of magic directions through any 

cell of a k-fold must be t(3k-I), for we require magic directions 

from every cell through each cell of the surrounding little k-fold 

of order 3· In a 4-fold Nasik, therefore, there are 40 contiguous 

rectilinear summations through any cell. But how are we to de

termine these 40 directions and what names are we to assign to the 

magic figures in the 4th and higher dimensions? By far the best 

nomenc:ature for the latter purpose is that invented by Stringham,§ 

who called the regular m-dimensional figure, which has n (m-I)

dimensional boundaries, an m-fold n-heclroid. Thus the square is 

a 2-folc\ tetrahedroicl ( tetragon), the cube a 3-fold hexahedroicl 

(hexahedron) ; then come the 4-fold octahedroid, the s-folcl deca

hedroid, and so on. Of course the 2-folc\ octaheclroicl is the plane 

octagon, the 3-fold tetrahedroid the solid tetrahedron ; but since the 

regular figure in k dimensions which is analogous to the square and 

cube has always 2k (k-I)-climensional boundaries-is in fact a 

k-fold 2!~-hec\roid-the terms octaheclroicl, clecahedroid, etc., as ap

plied to magics, are without ambiguity, and may be appropriately 

used for magics in 4, 5, etc. dimensions, while retaining the familiar 

"square;" "cube," for the lower dimensions. 

To obtain a complete knowledge of these figures, requires a 

study of analytical geometry of the 4th and higher dimensions, but. 

by analogy, on first principles, we can obtain sufficient for our pur

pose. If we had only a linear one-dimensional space at command 

* Quarterly Journal, Vol. XV, p. 110. 

t A rithmetique graphique, Paris, 1894, p. 140. 
:j: Theory of Path N asiks, 1905. 
§American Journal of Mathematics, Vol. III, 188o. 
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we could represent a square of order n in two ways, ("aspects"), 

either by laying the n rows, in order, along our linear dimension, 

or by dealing similarly with the n columns. In the first aspect, ~y 
rows, the cells which form any column cannot appear as contiguous, 

though they actually are so when we represent the figure as a square 

34 74 15 65 6 52 24 43 56 

23 45 55 36 73 14 64 s 54 

66 4 53 22 44 57 35 75 13 

20 42 61 33 79 11 70 2 51 

72 1 so 19 41 63 32 81 10 

31 80 12 71 3 49 21 40 62 

69 7 47 25 38 60 29 78 16 

28 77 18 68 9 46 27 37 59 

26 39 58 30 76 17 67 8 48 

Fig. 688. P,- and P,-aspects. 

69 20 34 7 42 74 47 61 15 69 7 47 28 77 18 26 39 58 

28 72 23 77• 1 45 18 so 55 20 42 61 72 1 so 31 80 12 

26 31 66 39 80 4 58 12 53 34 74 15 23 45 55 66 4 53 

25 33 65 38 79 6 60 11 52 25 38 60 68 9 46 30 76 17 

68 19 36 9 41 73 46 63 14 33 79 11 19 41 63 71 3 49 

30 71 22 76 3 44 17 49 57 65 6 52 36 73 14 22 44 57 

29 70 24 78 2 43 16 51 56 29 78 16 27 37 59 67 8 48 

27 32 64 37 81 s 59 10 54 70 2 51 32 81 10 21 40 62 

67 21 35 8 40 75 48 62 13 24 43 56 64 s 54 35 75 13 

Fig. 689. V-aspect. Fig. 690. H-aspect. 

on a plane. Similarly we can represent a cube on a plane in three 

aspects. Suppose the paper-plane is placed vertically before us and 

the cube is represented by n squares on that plane (P-plane aspect). 

We get a second aspect by taking, in order, the first column of each 

square to form the first square of the new aspect, all the second col-
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umns, in order, to form the second square of the new aspect, and so 

on (V-plane aspect). We obtain a third aspect by dealing simi

larly with the rows (H-plane aspect). Here the "lines," which 

appear as contiguous cells in the V- or H-plane aspects do not so 

appear in the P-plane aspect, though they actually are contiguous 

when we examine the cube as a solid in three dimensions. Now 
consider an octahedroid represented by 11 cubes in a space of three 

dimensions. We get a second aspect by taking the 11 anterior, vertical 

square plates of each cube, in order, to form a first new cube; the 

11 plates immediately behind the anterior plate in each cube to form 

a second new cube, and so on. Evidently we obtain a third aspect, 

in like manner, by slicing each cube into vertical, antero-posterior 

plates, and a fourth aspect by using the horizontal plates. Carrying 

on the same reasoning, it becomes clear that we can represent a 

k-fold of order 11, in k-1 dimensions, by n (k-1)-folds, in k dif

ferent aspects. Thus we can represent a 5-fold decahedroid of 

order n, in 4-dimensional space, by n 4-fold octahedroids, and this in 

5 different ways or aspects. 

Return now to Fig. 687 and the rule which follows it, for form

ing from it the magic octahedroid of order 3· If we decide to 

represent the three cubic sections of the octahedroid by successive 

columns of squares we get Fig. 688. 

If we obtain a second aspect by using the square plates of the 

paper-plane, as explained above, we find that this is equivalent 

to taking the successive rows of squares from Fig. 688 to form our 

three cubes, instead of taking the columns of squares. Thus the 
presentation plane shows two different aspects of an octahedroid: 
this is due to the fact that the fourth dimension is the square of 

the second. Vve may call these aspects P .- and P 2-aspect~. The 

aspect obtained by using antero-posterior vertical planes is shown in 

Fig. 689, that from horizontal planes in Fig. 690. We may call these 

the V- and H-aspects. If we use the rows of squares in Figs. 689 
or 6go we get correct representations of the octahedroid, but these 

are not new aspects, they are merely repetitions of P" for they give 

new views of the same three cubes as shown in P 1 • In the same 
way, if we tt;rned all the P-plane plates of a cube upside clown 
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we should not call that a new aspect of the cube. The aspects 

P 2 , V, H can be obtained from P 1 by turning the octahedroid as a 

whole in 4-dimensional space, just as the V-plane and H-plane 

aspects of a cube can be obtained from the P-plane aspect by 

turning the cube in 3-dimensional space. Fig. 69:), above, is Fig. 

688 turned through a right angle about the plane of xy; we can 

turn about a plane in 4 dimensions just as we turn about a 

straight line in 3 dimensions or about a point in 2 dimensions. It 

will be noticed that in the four aspects each of the 4 directions 

parallel to an edge becomes in turn imaginary, so that it cannot be 

made to appear as a series of contiguous cells in 3-dimensional 

space; yet if we had a 4-dimensional space at command, these four 

directions could all be made to appear as series of contiguous cells. 

There is one point, however, which must not be overlooked. When 

we represent a cube as so many squares, the rows and columns ap

pear as little squares having linear contact, but actually, in the 

cube, the cells are all cubelets having planar contact. Similarly, in 

an octahedroid represented as so many cubes the rows and col

umns appear as cubelets having planar contact, but in the octa

heclroid the cells are really little octahedroids having solid, 3-dimen

sional contact. 

When we examine the above octahedroid (Figs. 688-690) in all 

its aspects we see that there are through every cell 4 different direc

tions parallel to the edges, 12 directions parallel to the diagonals 

of the square faces, and r6 directions parallel to the great diagonals 

of the several cubical sections. There remain for consideration the 

hyperdiagonals, which bear to the octahedroid the same relation that 
the great diagonals bear to a cube. If we represent a cube by squares 
on a plane we can obtain the great diagonals by starting at any 
corner cell of an outside plate, then passing to the next cell of the 

corresponding diagonal of the succeeding plate, and so on. Simi

larly we obtain the hyperdiagonals of the octahedroid by starting 

from any corner cell of an outside cube, passing to the next cell 
on the corresponding great diagonal of the succeeding cube, and so 

on. Evidently there are 8 central hyperdiagonals, for we can start 
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at any one of the 8 corners of one outside cube and end at the oppo

site corner of the other outside cube. There are therefore, through 

any cell, 8 different directions parallel to the central hyperdiagonals. 

With the directions already enumerated this makes a total of 40 

directions through each cell and agrees with the result already stated.* 

Evidently the number of k-dimensional diagonals of a k-fold is 2k-•, 

and if the analogy with the magic square is to be carried through 

then all the central k-dimensional diagonals of a k-fold ought always 

to be magic. 

The smallest octahedroid which can have all these 40 directions 

magic is 16\ and the writer has given one of the 256 square plates 

of this magic and a general formula by which the number occupying 
any specified cell can be determined. But it will be interesting to 

determine how nearly we can approach this ideal in the lower orders. 

The octahedroid of order 3 can be but crude, and practically Fig. 688 

cannot be improved upon. All rows, columns, lines, and "i"s are 

magic, and likewise the 8 central hyper-diagonals. Of course, since 

the figure is associated, all central rectilinear paths are magic, but 
this is of little account and other asymmetrical magic diagonal sum

mations are purely accidental and therefore negligible. 

Turning to the next odd order, 5: Professor Kingery's Fig. 683 

is not a magic octahcdroid as it stands, but a magic can be obtained 

from it by taking the diagonals of subsidiary squares to form the 

5 cubes. Denoting each subsidiary by the number in its central cell, 

we may use 002, 41, 210, etc. for the first cube; 291, 400 etc. for 
the second cube; 85, 149, etc. for the middle cube, etc., etc. But 
few of the plane diagonals through any cell of this octahedroid are 
magic. In fact no octahedroid of lower order than 8 can have all 

its plain diagonals magic ; but by sacrificing this property we can 

obtain a 54 with many more magic properties than the above. 

In Fig. 691 the great square is magic, Nasik and 25-ply: the 25 
subsidiaries are purposely not Nasik, but they are all magic in rows 

* If we call the diagonals in square sections parallel to faces 2-dimensional, 
those parallel to the great diagonals of cubical sections 3-dimensional, etc., etc .. 
then the number of m-dimensional diagonals of a k-fold is 2~~<-•k !/m !(k-m)! 
In fact the number required is the ( m+ 1) th term of the expansion of 
Y2(1+2)k. It will be noticed that this reckons rows, columns etc. as "diag
onals of one dimension." 
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and columns. If we take up the subsidiaries in the way just de

scribed, viz., 513, 221, etc., for the first cube; 205, 413, etc., for the 

second cube, and so on, we get a 5\ which has 20 contiguous recti

linear summations through any cell, viz., the 4 directions parallel 

to the edges and the whole of the 16 three-dimensional diagonals 

parallel to the great diagonals of any cubical section. If the reader 

95 58 271 589 152 478 66 259 597 165 ·IS6 54 267 585 113 499 6l 2SS 593 156 4S2 7S 263 576 169 

178 391 84 297 615 186 379 92 285 623 109 387 80 293 606 182 400 88 276 619 19S 383 96 289 602 

511 20-1 417 110 323 524 212 40S 118 306 507 225 413 101 31 520 208 421 114 302 503 216 409 122 315 

349 537 230 443 6 332 550 238 426 19 345 533 246 439 2 328 541 234 447 IS 336 529 242 435 23 

32 375 563 126 469 45 358 571 139 4S2 28 366 559 147 465 36 354 567 135 473 49 362 555 143 456 

70 258 596 164 477 53 266 584 172 490 61 2S4 592 160 498 74 262 S80 168 481 57 275 588 !51 494 

378 91 284 622 190 386 79 292 610 198 399 87 280 618 181 382 100 288 601 194 395 83 296 614 177 

211 404 117 310 523 224 412 lOS 318 506 207 425 Ill Jot 519 220 408 121 314 502 203 416 109 322 SIS 

549 237 430 18 331 532 250 438 I 344 545 233 446 14 327 528 241 434 22 340 536 229 442 10 34! 

357 575 138 451 44 370 558 146 464 27 353 566 134 472 40 361 554 142 460 48 374 562 130 468 31 

270 583 171 489 52 253 S91 !59 497 65 261 579 167 485 73 274 587 !55 493 56 257 600 163 476 69 

78 291 609 197 390 86 279 617 185 398 99 287 605 193 381 82 300 613 176 394 95 283 621 189 377 

411 104 317 510 223 424 112 305 518 206 407 125 313 SOl 219 420 108 321 514 202 403 116 309 522 215 -
249 437 5 343 531 232 4SO 13 326 544 245 433 21 339 527 228 441 9 347 540 236 429 17 335 548 

557 ISO 463 26 369 570 133 471 39 352 553 141 459 47 365 561 129 467 35 373 574 137 455 43 356 

595 !58 496 64 252 578 166 484 72 265 586 !54 492 60 273 599 162 480 68 256 582 175 488 51 269 

278 616 184 397 90 286 604 192 385 98 299 612 180 393 81 282 625 188 376 94 295 608 196 389 77 

Ill 304 517 210 423 124 312 505 218 406 107 325 513 201 419 120 308 521 214 402 !OJ 316 509 222 415 

449 12 330 543 231 432 25 338 526 244 445 8 346 539 227 428 16 334 547 240 436 4 342 535 248 

132 475 38 351 569 145 458 46 364 552 128 466 34 372 565 136 454 42 360 573 149 ·162 30 368 556 

170 483 71 264 577 153 491 59 272 590 161 479 67 260 598 174 487 55 268 581 !57 500 63 251 594 

603 191 384 97 290 611 179 392 85 298 624 187 380 93 281 607 200 388 76 294 620 183 396 89 277 

311 504 217 410 123 324 512 205 418 106 307 525 213 401 119 320 508 221 414 102 303 516 209. 422 115 

24 337 530 243 431 7 3SO 538 226 444 20 333 546 239 427 3 341 534 247 440 II 329 542 235 448 

457 so 363 551 144 470 33 371 564 127 453 41 359 512 140 461 29 367 560 148 474 37 355 568 131 

Fig. 691. 

will write out the four aspects of the octahedroid, in the way already 

explained, he will be able to verify this statement. As an example, 

the 20 summations through the cell containing the number 325, 

which lies in the first plate of the first cube of the Pcaspect, are here 

shown: 
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CUBICAL DIAGO>IALS 

,--------------~ 
Pt-ASPECT P2·ASPECT V-ASPKCT H ASPECT 

325 325 325 325 325 325 325 325 325 325 325 325 325 325 325 325 325 325 325 325 
513 8 508 512 534 388 607 3 538 392 611 7 533 387 6o8 4 413 103 507 509 
201 466 216 204 143 576 t69 456 126 s89 , s• 469 141 579 t66 458 sot 406 219 218 
419 154 404 416 477 44 451 164 494 31 468 ISI 479 41 454 162 119 214 401 402 

107 612 liZ 108 86 232 13 617 82 228 9 613 87 233 12 6t6 207 517 IIJ III 

Since there are 20 magic summations through each of the 625 
cells and each summation involves 5 cells, the total mmiber of dif

ferent symmetrical magic summations in this octahedroid is 2500. 

This does not include the 8 central hyperdiagonals, which are also 

magic, for this is not a symmetrical property since all the hyper

diagonals are not magic. 

The next odd order, 7, was the one which Frost attacked. 

Glass models of his 7 cubes were for many years to be seen at the 

South Kensington Mt~seum, London, and possibly are still there. 
He does not appear to have completely grasped the analogy between 

magics in 3 and 4 dimensions, and from the account he gives in 

The Quarterly Journal, he evidently assumed that the figure was 

magic on all its plane diagonals. Actually it is magic on all plane 

diagonals only in the P-aspect; in the other 3 aspects it is Nasik in 

one set of planes but only semi-Nasik in the other two sets of planes, 

therefore of the 12 plane diagonals through any cell of the octa

hedroid only 9 are magic.* Frost obtained his figure by direct 
application of the method of paths; the present writer using the 

method of formative square has obtained an example with one ad
ditional plane magic diagonal. It is shown as a great square of order 

49, magic on its 49 rows, 49 columns and 98 diagonals, and 49-ply, that 

is any square bunch of 49 numbers gives the same smn as a row 
or column. The 49 subsidiaries are equally weighted N asiks, magic 
on their 7 rows, 7 columns and 14 diagonals. If the subsidiaries be 
taken up along the Indian paths, as in the previous examples, we 

get 7 cubes forming an octahedroid of order 7· This is magic on 
the 4 directions parallel to the edges, is completely plane Nasik in 

* Probably the reader will have alrealy noticed that although there are 4 
aspects, and 6 plane diagonals appear in each aspect, yet there are only 12 
plane diagonals in all, since, with this method of enumeration, each diagonal 
occurs twice. 
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the P, aGel P "-aspects, and in the other two aspects it is N asik in two 

sets of planes and crude in the third set. Therefore of the 12 plane 

diagonals through any cell 10 are magic. It is practically certain 

that we can go no further in this direction with this order, but by 

giving up the magic plane diagonals we can, as with 54 above, obtain 

a larger m:mber of magic summations on the higher diagonals. 

vVhcn we consider the even orders we find those 2 = (mod 4) 

of little interest. The powerful methods used for the other orders 

are now useless if we insist on using consecutive numbers: we must 

employ other methods. The best methods here are either to use an 

extension of Thompson's method of pseudo-cubes, as employed by 

Mr. Worthington in his construction of 63 (pp. 201-206),* or, best 

of all, to use the method of reversions. 

With orders = o(mod 4) we can give a greater number of ornate 
features than with any other orders. We quote one example be

low (Fig. 692). 

The columns of Fig. 692 give the 4 cubes of an octahedroid of 

order 4, which is crude in plane diagonals, but is magic on every 

other contiguotlS rectilinear path, it has therefore 28 such paths 

through each cell. The 28 magic paths through the cell containing 

the number 155 are displayed below. 

z 
2 CUBICAL DIAGONALS 

;t ~ i : ... r-----------~-----------, 
~ 8 ::; : PrASPJ.:cT P2 -ASPECT V-ASPFCT H-ASPRCT 

ISS ISS ISS ISSIISS ISS ISS ISSIISS ISS ISS ISSIISS ISS 155 ISSIISS 155 ISS ISS 
38 7o 98 101 2 so 242 I94 s 53 245 I97 77 125 113 6s 36 · 33 225 228 
91 171 151 IS4 !OJ 103 IOJ IOJ 106 106 106 106 166 I66 I66 166 86 86 86 86 

230 us 110 Io4 254 2o6 I4 62 248 2oo 8 s6 ,..,6 68 So 128 237 240 48 4S 

HYPERDIAGOSALS 

I ISS ISS ISS ISS ISS ISS ISS 1551 
256 2o8 r6 64 2s3 2os 13 61 
102 102 102 102 102 IC2 102 102 

1 I 49 241 193 4 52 244 I96l 

But this does not exhaust the magic properties, for this figure 
is 4-p\y in every plane section parallel to any face of the octahedroi<l. 

*It was by this method that Firth in the 8o's constructed what was, almost 
certainly, the first correct magic cube of order 6. Mr. Wm·thington's intro
duction of magic central diagonals on all the faces is new. Though, of coursr, 
uot a sj•mmetrical summation, this is a 'iJery pleasing feature. 
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If the reader will examine the figure in its four aspects he will finrl 

that 6 such planes can be drawn through any cell, and since a given 

number is a member of four different 4-ply bundles in each plane, 

it follows that each number is a member of 24 different bundles. 

If we add the 28 rectilinear summations through any cell we sec 

1 128 193 192 254 131 62 67 4 125 196 189 255 130 63 66 

240 145 48 81 19 110 211 174 237 148 45 84 18 Ill 210 175 

49 80 241 144 206 179 14 !IS 52 77 244 141 207 178 IS 114 

224 161 32 97 35 94 227 ISE 221 164 29 100 34 95 226 159 

248 137 56 73 11 118 203 182 245 140 53 76 10 119 202 183 

25 104 217 168 230 ISS 38 91 28 101 220 165 231 !54 39 90 

200 185 8 121 59 70 251 13 197 188 5 124 58 71 250 135 

41 88 233 !52 214 171 22 107 44 85 236 149 215 170 23 106 

13 116 205 !80 242 143 50 79 16 113 208 177 243 142 51 78 

228 !57 36 93 31 98 223 162 225 160 33 96 30 99 222 163 

61 68 253 132 194 191 2 127 64 65 256 129 195 190 3 126 

212 173 20 109 47 82 239 146 209 176 17 112 46 83 238 147 

252 133 60 69 7 122 199 186 249 136 57 72 6 123 198 187 

21 108 213 172 234 !51 42 87 24 !OS 216 169 235 ISO 43 86 

204 181 12 117 55 74 247 138 201 184 9 120 54 75 246 139 

37 92 229 !56 218 167 26 103 40 89 232 !53 219 166 27 102 

Fig. 692. 

that each of the 256 numbers takes part in 52 different summations. 

The total number of different magic summations in the octahedroid 

is therefore 256 ~ 5l = 3328. The six planes parallel to the faces 

through ISS are shown in Fig. 693, and from them the 24 different 

bundles in which ISS is involved can be at once determined. 
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The reader might object that the border cells of a square sectiou 

cannot be involved in 4 bundles of that section ; but this woul< I 

be to overlook the congruent property. The number 107, which 

11 118 203 182 19 110 211 174 131 118 143 122 

230 155 38 91 230 155 38 91 110 155 98 151 

59 70 251 134 31 98 223 162 179 70 191 74 

214 171 22 107 234 151 42 87 94 171 82 167 

25 104 217 168 137 118 140 119 145 110 148 111 

230 155 38 91 104 155 101 154 104 !55 101 154 

28 101 220 165 185 70 188 71 157 98 160 99 

231 154 39 90 88 171 85 170 108 151 105 150 

Fig. 693. 

occupies a corner cell of the first section given above is contained in 

the following bundles: 

1'34159, 
1 ro7 1zr4( 

It is noticeable that the four corner cells of a square form one of its 

4-ply bundles. 

It would have been desirable to indicate the methods by which 

the above examples have been constructed, but exigencies of space 

forbid. The four orders dealt with, 3, 5, 7, 4, were all obtained in 

different ways. Fig. 692 was constructed by direct application, in 

four dimensions, of the method of paths; in fact, it is the octahedroid 

1
2 2 2 I I 
2 2 I 2 

2 I 2 2 

I 2 2 2 4. 

The whole of its magic properties may be deduced by examination 

of the determinant and its adjoint, without any reference to the 

constructed figure. There is therefore nothing empirical about this 

method. 
C. P. 



CHAPTER XV. 

ORNATE MAGIC SQUARES. 

GENERAL RULEFOR CONSTRUCTING ORNATE MAGIC SQUARES 
OF ORDERS = 0 (mod4). 

TAKE a square lattice of order 4m and draw heavy lines at 

every fourth vertical bar and also at every fourth horizontal bar, 

thus dividing the lattice into m2 subsquares of order 4. The "period" 

consists of the 4m natural numbers 1, 2, 3 .... 4m. Choose from 

these any two pairs of complementary numbers, that is, pairs whose 

sum is 4m + 1 and arrange these four numbers, four times repeated, 

as in a Jaina square (first type) in the left-hand square of the top 

row of subsquares in the large lattice. It is essential that the Jaina 

pattern shall contain only one complementary couplet in each of 

its four columns, i. e., if the two pairs are a, a 2 and b, b2 , every 

column must consist entirely of a's, or entirely of b 's. The first 

J a ina type can be obtained by using the paths ( 1, 2) ( 2, 1) and the 

order a, b, a2 b2 four times repeated. This gives the square shown 

in Fig. 694, which fulfils the conditions. Proceed in the same way 

with each of the m subsquares in the top row, using a different 

pair of complementaries in each subsquarc. Since the period 1, 

2, 3. . . . 4m contains 2m complementary pairs and two pairs are 

used for each subsquare, it follows that when the top row of sub

squares is filled up, all the 4m numbers will have been used. 

Now fill all the remaining rows of subsquares in the large 

lattice with replicas of the top row. The outline so constructed can 

always be turned over either of its central diagonals without repe

tition. The resulting square will therefore contain the first ( 4m)" 
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numbers without repetition or omission. and it will always have the 

following magic properties. 

A. The Great Square ..... 

1. is magic on its 4m rows and 4m columns ; 

10 -'1 IS .f"4 12 49 I.J .56 

2.3 4G 18 4-' :u 48 20 41 

so II .55 14 sz .9 S"J 16 

+7 22 42 1.9 45 :u- # 17 
a o, ct, bz I 

26 JS vi .33 28 .33 2.9 -1-0 
a, b, a, b, 

7 62 2 S.9 , 04- -1- .57 
a, o, a,_ z;_. 

.34- 27 .3.9 JO .36 2S .37 .. l.e 
a, 02 a 

I l>, 
6J 6 .58 J 61 8' 6'o I 

Fig. 694. Fig. 695. 

2. is pandiagonal, i. e., magic on its Sm diagonals ; 

3. has Franklin's property of bent diagonals in an extended 

sense; i. e., we can start at any cell in the top row, and proceeding 

downward bend the diagonal at any hcayy horizontal bar. It 

2 J 7 t5 4 I s 8 .J" 48 8' 48 8 48 8 4cf 

7 6 2 J s J>' 4 I 10 4tJ 16' 40 /tf 40 !If 40 

2 J 7 6 4- I .5 J' 48 5' 4-3 s 43 J' 43 8 

7 6 2 J .5 8 4 / .fO ltf .fO 16 40 16' 4o 16' 

2 J 7 G 4- I s J' 24- .32 24- .32 24- .}2 24- .32 

7 6 2 J .5 d" 4 I 0 S6 0 s-6 0 6'6 0 Sf} 

2 J 7 6 4- I .5 8 -'2 24- .32 24- .32 24- .32 2-1-

7 6 z J s 8 4 I .56 0 56 0 sti 0 .56 0 

Fig. 696. Fig. 697. 

matters not how many times we bend, or at which of the heavy 

bars, providing only that when the traverse is completed, the number 

of cells passed over in the one direction (downward to the right) 

shall be exactly equal to the number passed over in the other direc-
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27 46 Ill /06 J .J'$ 1.3.5' .!)4- tf.J 22 75 /.JO 

liZ /0.5 28 4.5' /.36 9.3 -4 .5'7 76 /2.!} 6?- 21 

.34 J.!) 113 .9.9 /0 .51 /-12. 37 70 IS 82 12.3 

117 100 JJ 40 141 38 .9 52 81 124 69 /t!i 

25 44' /09 /OS I 6o /.3.3 :;6 Iii 24 7J /JZ 

IM 104 2.9 -14 /J7 .92 ,j" sti 77 123 tis 20 

J6 J7 /20 .97 /2 4.9 I# ss 72 /J 84 /21 

//0 10/ .J2 41 140 8.!1 8 .J'J 80 /25 68 17 

.30 4J 114- /O.J 6 JS /.Jll ..91 66' /.9 78 1!27 

//0 /07 26 1-n I.H- .!IS .2 S.9 7-1- IJI 62 2.3 

J/ 42 /IS /0:1- 7 5'4 1.3.9 .90 67 /tf 7.9 126' 

/1.9 .98 J,j" .38 /-1-.J 86 I/ 50 S'.J /22 71 /~ 

Fig. 698. 

//.) l/0 I.JI /.38 J 78 2.,., /90 51 .!J-1- /9.5' 171- /9 46 227 221. 

/.JO /,j'.!J //-#- Ill U2 /.!)/ 2 7.9 /.91- /7.5 ,j'(l .95 226' 22.3 /8 47 

26' .9.9 H·2 11-7 I+ 67 254 17.9 6'2 .fJ 200 toJ .30 J,) 2.38 2/1 

1-1-.3 /-1-0 127 98 2S.. 17$ 1.5" 66' 207 /01. 0,) 82 2.39 2/0 J/ J.P. 

Ill/ /07 /J-1- 155 6 75 246 187 .)4 91 1.98 /11 22 4.J ZJO Z/9 

/.J2 157 116 Ia!/ 2# /$9 4- 77 /.!)0 17.3 .J'2 .9.3 228 22/ 20 4S 

/2.3 /0:1. I.J.!J /SV /I 70 251 N2 .>9 86' 20.3 /~ 27 J8 2.3.5 214 

14/ N-8 12S /ClO 25.3 /80 /.J 6'3' 20.5 16'+ 0/ 84 2.37 212 2.9 Jli' 

117 /08 /J..J !.srS ,j" 76' 2-1-.5 /.18 ,j",J 32 /91 172 21 # 22.!1 I.ZO 

U . .!J 100 1/,J 112 241 /.92 / 10 /.!JJ 176 +3 .!Jo 225 zz-+- 17 # 

/2-1- 10/ 140 /-1.9 /2 o.!J 2.5'2 /.!/ 6o as 2o-i- /o.J' 28 J7 2.J6 2/J 

/#- !4S /28 97 2.56 177 /0 6'5 203 /6/ 64- .f/ 2-10 203 J2 JJ 

/1.9 /aD IJ5 /S4- 7 74 24-7 N6 .>5 .90 /.!J.9 170 2.3 42 2.3/ 2/1 

I.JIJ /.fJ /20 /OJ 2-1-8 /8.f 3 7J 200 /09 .s6 89 2J2. 217 24 41 

/22 /(l,J /.38 !.>/ /0 71 :zso !8'.3 .;s n 202 /07 26' J.!J 2.3+ u.S 

1.37 /.S2 /2/ /04- :l-13 vs-<~- .9 71l 20/ /08 S'7 18 /Uo3 2161 25 40 

Fi:~- 6~<:'-
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tion (downward to the left). Similarly we may start at any cell 

in the left-hand column and, proceeding diagonally to the right, 

bend the diagonal at any heavy vertical bar under the same limita

tions. 

It will be noticed that when the order of the square is = 4 

(mod 8), i. e., when m is odd, the central bars are not heavy bars, 

I ~.n 20 j.J.9SI .3 fJH /8 .J97 s fl3G /6 fJ:IS" 7 ~n /4 J9..1 9 .J!I() /2 ~.91 

-?0 ~7.9 2/ .Jii2 J8 .377 2.3 ~ .J6' ~7.> 2S ~69 J~ ~7J 27 J6"4 .J2. .371 2.9 ~JO 

Jrl 2. 417() I!J JS.J 4 ~.9J' 17 f.!s.s 6 f'.96 IS ..JI'7 r f>H /J .Jb /0 J.92. II 

'~() J!J J61 ll2 JN J7 ,J6;, 2~ .J76 JS" ~6"~ 21i -'74 JJ ""7 IZ8 J72. .31 ..16.; .J17 

-?1 fl/2 ,;;;, ..1$"9 "'" M+ .>8 .JSl -'IS f><'6 s6" .JS"S "17 f1n .£4- .JS.J 4.9 .JSO of"L ..IS"/ 

~() J.3.9 61 J22 78 .JJ7 6'J .324 76' f3u 6'".> J2o 79- J.3J 6'7 .J24 72. .J.31 6".9 .JJtJ 

J-?1 -92 J6b SSI J.o., ·M- .JS8 of"7 ~<'s 46 J.% .r.r ..14-7 48 JJ:!! .fJ ~ J"17 J.J:Z of"/ 

340 7.9 .)2/ 6'2 334' 77 ~2.3 I~ .3Jii 75" JUi lf"6' ..1..14- JJ ~27 u JJJ!. 71 ,u!J J() 

I! I .302 /C/O f'1.9 8.J J()4. 98 ~17 as f3o6 9& J/~ 87 .JOJ' .!J+ J/J 1'9 f-? .. 17 .92 J// 

V217 ~.99 /0/ 28.!. rs lt97 /OJ 214 11o 2!1S /OS 2i6 //4- 29..1 /07 21'1 112 2!11 10.9 290 

~01 82 .:J20 .!19 ,J().J 1'4- J/1 97 fJOJ 1'6 JI.S ,_, J()7 I' I J/4 .9J fJ09 ~0 J/2 .91 

~00 //9 21/ /02 ~It /17 2/'J /04 2516' liS 2/'.S /00 Jl# IIJ 21'7 108 292. Ill 219 //0 

Zl 262 190 ~7.9 R.J :11>4- /JI 277 2S" 26"6 t.Jo 27S 127 26"1' I.J+ 27.J 'na 270 /oJ/1. Zll 

6"o 2.S:S 141 242 lSI 2S7 /#J 244 v~ 2S"J I+S 2-16 1.5"4 2SJ /4-7 2,.1 IS2 U'l 1/49 2S"O 

26'1 22. Uo IJ9 ~..., 124 278 IJ7 26"s 126 276 IJ.J 267 121 2~ /JJ 2~ IJo 2711. IJ/ 

ifl6"o l.f.:J 241 NS! !lSI 1.£7 UJ I# 2.5'6 IS"J' 2,..S 1#6 2.S# ISJ 2+7 143 2.5"2 IS/ 249 ISO 

6"1 22 /4'0 2J!J 1/oJ 224- 78 2J7 I~S :1.26 /76 2M 16"7 221 17-+ 2.JJ 16".!1 2J<7 /7.2 :U/ 

f?oo 21.9 II'/ 202. I.:JI 217 IIJ 20/- /.!16 Jl/.S /I.S 2o6 .9# 21.1 11'7 201 1.!12 211 /1.!1 21o 

~Z:u 16"2 240 17.9 228 tM 2JI' 177 22.$" ,,n ~"6" 17.5' !2.t7 IDI 2-'+ 17.1 22.!1 IJO 2J2 /,1/ 

uo /.!1.!1 20/ 11'2 2/1 1.!17 20J 1'4- '2/cJ '.!I.S 2d.S tlt!f Z/4- I.!IJ 2t77 113 :u2 /.!1/ 20.!1 1(!1(7 

Fig. 700. 

and also the number of rows of subsquares ts odd. We cannot 

therefore in these cases get a magic bent diagonal traverse from 
top to bottom of the square, but we may stop at the last heavy bar 

before reaching the bottom of the square, when we shall have a 

sum 4( m- 1) times the mean, or we may carry the diagonal beyond 

the bottom of the square and traverse the top row of subsquares a 
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second time, when the sum will be 4(m+ 1) times the mean. We 

can get in these cases a diagonal traverse 4m times the mean by 

inserting at any point one vertical s:ries of four cells betwe:n any 

two hca\·y bars at:d then c-o:1tinuing diagonally. 
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4. The great square is 4-ply, and therefore 4-symmetrical, 

1. e., we may choose any vertical and any horizontal bar (not 

necessarily heavy bars) and we shall find that any four cells, sym

metrically situated with regard to these two bars as axes, will con

tain numbers whose sum is four times the mean. It follows that 

any 4 m cells which form a symmetrical figure with regard to any 

such axes will contain numbers whose sum is the magic sum of the 

great square. 

B. The Subsquares . .... 
5. are balanced Jaina squares, i. e., each of them has the 36 

summations of a Jaina and in each case the magic sum is four times 
the mean number of the great square. 

6. They have the property of subsidiary minors, i. e., if we 

/. 16 _2./S IJ.4-N.J 1.2. s- 1/.6 3 • .9 -7.1() 

I 2 16 15 /.3 ,,. 4 J /II. II of 6 8 7 .9 /0 

/6 IS I 1!. ..,. J /J 1-1- J G /2- II .!J 10 8 7 

I 2 IIi 1.$ 1.3 /-1· + J 12- II of G 8 7 .9 10 

ld IS I 2 + J 1.3 14- of 6 12 II .9 10 J" 7 

Fig. 702. 

erase any p rows of subsquares, and any p columns of the same 

and draw the remaining rows and columns together, we have a 

square with all the properties of the original great square. 

EXAMPLES 

In every case the J aina pattern quoted above is used. Fig. 695 is 
an example of order 8 and the complementaries have been paired 
thus: 2,7 with 3,6; and 4,5 with 1,8. The La Hireian primaries 
of Fig. 695 are shown in Figs. 696 and 697. 

* * * 
Fig. 698 is an example of an order 12 square in which the pairing 

of the complementaries is 3, 10 with 4, 9; 1, 12 with 5, 8; and 6, 7 
with 2,11. 
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A square of order 16 is shown in Fig. 699. The couplets in this 
square are taken thus : 

8 and 9 with 7 and 10; 1 and 16 with 5 and 12 ; 

4 and 13 with 6 and 11; 2 and 15 with 3 and 14. 

Figs. 700 and 701 show respectively squares of orders 20 and 24 

in which the couplets are taken in numerical order, i. e., for order 

20, 1 and 20 with 2 and 19; 3 and 18 with 4 and 17, etc. 

In Fig. 701 there are 1008 magic diagonal summations. Since we 

I .32 241 Ud /9J 21~ 49 ..,8 177 170 lf.s- 90 //J 1/2. /2.9 /DO 

R_,tt /I.U .2 .J/ so -17 19+ 22.3 61f 9S 118 IJ.S /.30 /S9 II+ Ill 

/If 17 ulf zzs 201 209 If+ JJ /92. tift ltl II /.U .97 IH //1-.$ 

2SS zzd 1.5" II lf'.J J4' 207 2/17 79 1'2. /.91 /02. ,,, I-#~ /27 .91 

/.J 20 2SJ tl28 ti(J,J 212 1ft oJif /19 !If#- 77 ,. 12.1 /0(1 1~1 141 

l:zs-1' 227 14 19 tl'e ,J,$" 2tl6 2/1 71 '" 1.90 ID,J 1~2 1~7 tzlf H 

.,. 29 2# 2.JJ 191 221 .F2. +or /I'd IJJ ~ 9.J ttlf' llzy IJ2 IS7 

2-l-3 2.J8 .3 .30 ,5"/ +If ISS 222 If? .H 179 174 tJI lSI /IS 110 

12 21 2S2 Ztl!J 204 2/J 6'o J7 Ill tlf.s 71i 1.5" /2..f.. /01 1-kl 1-1.!1 

2.{'/ 2.30 II 22 .S9 Jl Za.3 11.1+ 7..5" n 117 llf'lf loiS ISll /Jl.J /6/l 

.; Ill /1.~ Z.J6 197 220 ... , .,..,. Ill 17/l lf'9 .!Ill. 117 /08 IJ.J /stf 

Hlf 2JS If 27 ... .,. 4.3 1.!18 21.9 70 .!II /12 17/ /..J# ISS Ill' 107 

, 25' U-8 2.l.J 200 217 d 41 /1--1- 16'.!1 72. 19 120 /O.S I.JIT /.S.J 

247 2-J+ 7 zlf .5".5" ~2 1.!1.!1 211 71 .!10 /8J IJO I.JS l.r+ 119 ttllf 

.!1 2+ 2# 2.12 201 216 S7 # /IS tFe- 7.1 II 12/ to+ IJ7 /.SZ. 

2.Sd 2.JI 10 2.3 $1 J.9 :td2 2/.S 7-+ 17 tid 16'7 "' '.rl vu /t?d 

Fig. 703. 

can bend at any heavy bar, the number of bent diagonals from top 
to bottom, starting at a giYen cell in the top row, is the same as the 

number of combinations of 6 things 3 at a time, viz., 20. Therefore 

there are 20 x 24 = 480 bent diagonals from top to bottom and 480 
more from side to side. Adding the 48 continuous diagonals we 

get 1008. 
In the foregoing pages the question of magic knight paths has 

not been considered. It is, however, easy for all orders > 8 and = 0 
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(mod 8) to add the knight N asik property without sacrificing any of 

the other features, by a proper choice of the complementary coup

lets for the subsquare outlines. The example shown in Fig. 702 will 

explain. It shows the top row of subsquares in a scheme for order 

16. The numbers above the squares indicate the couplets used, 

the Jaina pattern, Fig. 694, being used throughout. The rule is 

simple: the leading numbers, 1, 13, 12, 8 must sum four times 

the mean of the period, i. e., 34, while of course :10 one of them 

may be a complement of any other. Their complementaries 16, 

4, 5, 9, will then have the same sum, and the second members in 

each square will be similarly related. The square is completed by 

filling the remaining rows with replicas and turning over a central 

diagonal. Fig. 703 is a square of order 16 constructed from the 

outline Fig. 702. It has all the properties of the 162 shown in Fig. 

699 and is also magic on its 64 knight paths. 

The following is an arrangement of the couplets for a square 

of order 24: 

11.24-4.2118.17-5.20110.15-13. d 11.14-16.9122.3-18.7123.2-19.61 

C. P. 

OR~ATE MAGIC SQUARES OF COMPOSITE ODD ORDERS. 

·when we consider these orders in the light of the general rule 

used for orders = 0 (mod 4) it appears at first sight that they 

cannot be made to fulfil all the conditions; but it is not essential 

to the ply property, nor to the balanced magic subsquares that the 

numbers be taken in complementary pairs for the subsquares of the 
outline. All that is necessary is that the groups of numbers chosen 

shall all have the same sum. 

Suppose, as an illustration, we are dealing with order 15. If 

we can arrange the first 15 natural numbers in five balanced 

columns, three in a column, and form five magic outlines of order 3, 

using a different column thrice repeated for each outline, we shall 
have five balanced magic outlines like Fig. 704. These can be ar-
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ranged in the first row of subsquares with replicas in the following 

rows. If we can turn this outline upon itself in some way to avoid 

repetitions, we shall have a magic square which will be 9-ply and 
with magic subsquares. But will it be pan diagonal? 

1. 7 IS' !1. 6 /2 II .9 

7 IS 2 IS I:J 3 .3 I 

IS 2 7 7 J 4- /0 14-

Fig. 704. Fig. 705. 

In the small outlines of 9 cells made from Fig. 704 as a pattern, 

it will be noticed that like numbers must always occur in parallel 

diagonals; therefore if we arrange the five small squares so that 

like numbers always lie along / diagonals, the great outline will 

.2. 7 IS 6' s 1.3 /.2. 4 8 II 10 .3 .9 1/f I 

7 IS 2 s 1.3 t!i + 3 12 10 :J II 1/1- I .9 

IS ,2 7 1.3 6 s 3 12 4 J II /0 I .9 14-

Fig. 7o6. 

be "boxed" and therefore magic in ""- diagonals, but in the / 

diagonals we shall have in every case only five different numbers 

each occurring thrice. The problem is thus reduced to finding a 

2 /2 .9 6 II IS 8 I 1.3 J 7 4 14 s 10 

.9 fj II -2 I~ I IJ J IS tf 14 s /0 7 ./f-

II 2 12 .9 6 .3 IS 8 I IJ 10 7 ./f 1/f J 

12 .9 6 II 2 8 I 1.3 J IS ./f- 14- S' /0 7 

6 /1 2 /2 .9 1.3 J IS 8 I s /0 7 4- /4-

Fig. 707. 

magic rectangle 3 x 5. We therefore construct such a rectangle by 
the method of "Complementary Differences"* as shown in Fig. 705. 

In Fig. 706 we have the five magic outlines constructed from the 

five columns of the rectangle, and placed side by side with like 

* See "The Construction of Magic Squares and Rectangles by the Method 
of Complementary Differences," by W. S. Andrews, pp. 257 ff. 
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numbers always in the/ diagonals, and so disposed that the number 

in any / diagonal is always succeeded (when the diagonal passes 

across into a neighboring square) by the number which succeeds it 

in its row in the rectangle. 

If an associated square is required the magic rectangle must 

be associated and the large rectangle of subsquares must also be 

associated as a whole. It will be noticed that all these conditions 

will be fulfilled in practice if we w~i:e t:1e successive columns of the 

ISS 28' 17/ 125 38 1.51} 20 ~78 /.20 30 loJ 2/ /70 1.3.3 3/ 

44 21/ 114 /4- 181 J.9 224 100 .9 191 .3/ 219 1/.9 I /3.1 

l.!i!i .98 .57 199 68 147 .94 $.3 207 6+ /4-J !02 49 20.3 72 

1.57 .30 167 127 .90 IS2 22 /8(; IJ!Jl. 42- llf'.J 17 /72 /J.f 77 

40 21.3 1/6 /0 /8.J 41 220 ld8 II 190 .3.3 221 liS .J 1.9/ 

NO /OJ $/ 200 7.3 H·l !IS .58 20/ 6s 148' .90 50 20S 66 

164 ;6 174 IJ.(. 76 /.$9 2.9 166 12!J S9 IS/ 24 179 12/ ,r+ 
i-

~H 218' 117 4 /83 42 2N- //.3 /2 IN .38 222 109 8 /.9:2. 

142 /OS 47 202 7S 1.37 .97 00 1.97 07 /50 .92 s:z 21d th 

16o 13 /70 IJO 76" /01 2S 1o.t /J/ 3S 1.£3 20 17.5 /2J JtP 

..35 22J Ill s 1.9.3 .36 21.5 113 (j ISS 4.3 2/tf' 110 IJ 1,!6 

11.9 .9/ 54 20.9 61 #+ IM # 2t» 74 /.36 .9!J S.9 196 6.9 

IS.,_ 2.3 177 124 8.3 162 1.9 /7J I.J2 7.9 ISS 27 16.9 IRS t!7 

J7 22S 107 7 1.9S J2 217 120 2 14'"7 4S 2/2 112 IS 16"2 

/1-S .9.3 stf' 20~ d"J 14D /00 43 200 70 /J8' /01 s.r /.98 71 

Fig. 708. S = r69s 

magic rectangle Fig. 705 along the "' central diagonals of the suc
cessive square outlines in the larger rectangle Fig. 706 and fill in all 

the / diagonals with replicas. If now all the remaining rows of 

subsquares be filled with replicas of the top row it will be found 

that the whole outline cannot be turned over either of its central 

diagonals without repetitions in the magic, but it can be turned 

successfully in its own plane, about its central point through one 

right angle, without repetitions. (This will bring the top row in 

coincid-:nce with the left-hand column, so that the right-hand square 
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in Fig. 706 is turned on its side and lies over the left-hand square.) 

The resulting magic is shown in Fig. 709. It is magic on its 15 rows, 

15 columns, 30 diagonals and 60 knight paths, also 9-ply and asso
ciated. The 25 subsquares of ord~r 3 all sum 339 on their 3 rows 

and 3 columns. (It is easy to see that only one of them can have 

magic central diagonals, for a magic of order 3 can only have this 

property when it is associated, and in this case the mean number 

must occupy the central cell, but there is here only one mean num-

.2 127 210 6 12S 208 12 124-f2oJ II /.:JO 1.93 ~ /J-1- /9b 

~02 IS v22 2.00 /.3 126 /.!1.!1 8 VJ2 20.:> , /J/ 20.!1 I /.29 

VJS :97 7 IJ3 2.1)/ 0 12.¥ 207 .4- /1!.3 206 /0 II! I 2cH M-

J2 'J7 ISO J6 v.rs V48 -If!. vs--+ 14'-J 4-1 160 lt.u .:J9 l.f4 /J6 

'42 !4s IS2 NO 4.3 /.so /J.9 Jl' .ftt /-loS .).3 V6/ /4.9 .J/ /.f"9 

v6's /J7 37 16.3 /41 .JS /SJ' /4'7 M /S.J '46 -?o /SI IH 4+ 

/07 172 6o Ill 170 S3 117 l.f!l .).J 116' 17.S 48 114 173 46 

S2 120 16'7 so 118 171 4.9 //.3 177 s-.r 108 176 $".9 /06 /74 

/,T() 47 1/2 /78 Sl //0 /7.J .s-7 /(}.!/ /tfJ' $"6' //S /(iii S-9- 11.9 

/82 12 7S /J'6 tro 7J /.!U. 7.9 68 /.91 as 6J /8.9 3.9 (!J/ 

67 /.!JS 77 6s I.!J.J J/ 64 138 81 70 18.J 86 74 Is>/ 8/-

.90 62. 18'7 38 66 IrS 8'J 72 134 7K 71 1,90 76 69 ltH 

212 22 10.5 2/6 20 /O.J 222 1.9 .!14 221 I.S' 9.3 21.!1 2.9 .9/ 

97 22.5 17 9S 22.3 21 ~~- :u.r IZ7 /00 ll/J JZ6 IO# 211 24-

JO .!12 2/7 28 .96 2/S 2..3 102 211- /8 IOI 2J!O 16 .!19 tlfl# 

l'Jg. 7J9. ::; = lbg:J 

Ler, viz., 113, therefore only the central subsquare can have magic 

diagonals.) 
In exactly the same manner as above described, by using the 

long rows of the magic rectangle, Fig. 705, instead of the short col

umns, we can construct another ornate magic of order 15. 
Fig. 707 shows the first row of 25-celled subsquares constructed 

from the rows of the rectangle, and using a magic square of order 
5 as pattern. If we fill the two remaining rows of subsquares with 

replicas the outline can be turned over either of its central diagonals. 
The resulting square is shown in Fig. 710. It is magic on 15 rows, 



ORNATE MAGIC SQUARES. 

15 columns, 30 diagonals and 60 knight paths, also 25-ply and asso

ciated. Also the nine subsquares of order 5 are balanced nasiks, 
summing 565 on their 5 rows, 5 columns and 10 diagonals. 

The above method can of course be used when the order is 

the square of an odd number, e. g., orders 9, 25; etc. These have 

previously been dealt with by a simpler method which is not appli

cable when the order is the product of different odd numbers. 

17 /.3:G 1-f.:J 171 s6 ~0 /23 /JI V73 73 22. 124 /04- /70 3~ 

17-¢ 31 26 /22 16"1?. 'ltf6 88 /8 /J.5 ISS 179 so 2.5" 12.7 l.f4-

'J/ V.f2 1!77 ~4- 21 ileJ lttfs 17.3 7tf' 28 IJ() 1-fl 169 39 20 

37 2+ v~ ;lfi il67 8.3 16 /J3 ISJ 130 7.9 2.9 /2.$ 160 172. 

'So 171f 77 27 'I~ ltiJ 16'3 ao 2.3 12/ IS" 1!7.J 32. /.9 f'.J? 
212 12. .39 Ill I.!JI ~2.$ 8 J/ 118 18.3 217 4- 4+ IICI I.:JO 

114 186' ~21 2 42 1otf I.!IJ 2/J IS .38 /1.9 18.5 2120 7 .34-

II .)2 117 I~ 2/tf .J 4S //.J Ill 22.3 /0 .37 /09 '.94- 215 

/.92 2/.!1 6 -?-I 107 188' 1211 1.3 .3.3 120 /8'-9- 2fl/f .,- -1-0 VIZ 

Jtf 1115' 182 222. .9 4J 08 I.!J.f 218 / JS 115" 18'7 214 14-

.!12 2.01 141- Sl 71 HI.$ 2o.J I.Jtf $8 6J .97 1.99 f/19 $0 70 

,...,. 66 10/ 1.97 147 46' 7.3 .9.:J 2/(; /4J J'.9 tis lt70 2f72 ,,, 
206 IJ7 S7 6'.9 .90 1.!18' .fO S.J 6'1 /(/.!J 2ru 142 4.9 74- 9-' 

72. 9.9 20/ 146 47 68 .!J/ 20'8 I.J.f 60 64-- /c.¥ 200 14S S2 

14/ Stf t?e 102 201- 148 4S 7-' .!18 ;.gO 140 ss 6'7 94- 209 

Fig. 710. s = 16gs 

A similar distinction arises in the case of orders = 0 (mod 4) 
previously considered. These were first constructed by a rule which 
applied only to orders of form 2m, e. g., 4, 8, 16, 32, etc., but the 

general rule is effective in every case. 

There are two other ornate squares of order 15, shown in Figs. 

708 and 711, these four forms of ornate squares being numbered in 
ascending order of difficulty in construction. Fig. 708 is constructed 

by using the paths 1
: ~: ~ ~ and taking the period from the continuous 

diagonal of the magic rectangle Fig. 705. 
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Fig. 708 is magic on 15 rows, 15 columns, 30 diagonals, 60 knight 

paths, and is 9-ply, 25-ply and associated. 
The square shown in Fig. 711 has been only recently obtained ; 

for many years the conditions therein fulfilled were believed to be 

impossible. It is magic on 15 rows, 15 columns and 30 diagonals, 

and is 3 x 5 rectangular ply, i. e., any rectangle 3 x 5 with long axis 

horizontal contains numbers whose sum is the magic sum of the 

square. Also the 15 subrrctangles are balanced magics, summing 

J7 S.J 1.91 31 tffJ J2 .9.9 IS~ &s 160 4J" 102 IJ'S 7.9 I.F/ 

'to7 21.9 s .5.9 II~ IJ'O 222 J' 4.!1 106 172 2/.J II .51 1//J' 

1.3.5 27 NJ /.!1.!1 01 127 13' 146 20/ 7.3 /22 24- 140 2(1.9 70 

.!J7 vs.J 36" 1.5"6 4.3 .92 189 J'O 16'?- 40 I .OS 1.92 J'.J IS+ J/ 

212 .9 so 119 I;T. 22J 12 .5"J 109 /Od 217 J sd" /I/ 173 

JO 14-7 20.3 64- /21 2R. /J8 2CJ(j iff() /JJ 17 I# 2(}{; 74 /JO 

137 73' 101 J6' /Q.J IJ'2 84- /SS ,..,,_ /00 1.!1.5 87 /~8 .34- ~/ 

tl S-1- //0 119 22~ IS 57 /I.J 16"9 2/1 7 -?8 1/0 /71 22-' 

I~() 20J 6"8 124- lo 142 /.9,/ 7/ 120 29 I.J7 204- 6'S I.J+ 2S 

42 ISJ 41 .96 I.!IJ 77 1.5".!1 JS 1M /9() .90 /62 .38 .94- (!I 

-97 Ill 170 224 10 (X) Ill 17J 2/-1- / £Z /08 /,16 216 I.J 

2/0 72 /2J' I .!I 1.36 202 li'.J IJI 21 HJ' 1.97 69 12.5 2.9 /1.5 

/S7 JJ 101 I~ J'J' IS~ .J.!J 9.5" 1.94 6'.5" I~ 4:l .!IJ' /84- 76 

107 174- 21.5 14- ss 120 177 2/J 4- -1-6 1/2 1oa- 221 0 .u 
75 IJ2 2.3 1.3.!J 1.!)6 6'7 12.3 26 141 206 62 1~.!1 20 149 2fl.1 

Fig. 7rr. S = ri>!Js 

: :. ~' in their three long rows and 339 m their five short columns. 

This square is not associated, and only half of its knight paths are 

magic. 
The three squares of order 15, shown in Figs. 708, 709, and 

710 are described as magic on their 60 knight paths, but actually 
they are higher Nasiks of Class II, as defined at the end of my 
pamphlet on The Theory of Path Nasiks.* Further, the squares in 

Figs. 709 and 710 have the following additional properties. 

*The Theory of Path Nasilu, by C. Planck, M.A., M.R.C.S., printed by 
A. ]. Lawrence, Rugby, Eng. 
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Referring to the square in Fig. 710 showing subsquares of order 

5 ; if we superpose the diagonals of these subsquares in the manner 

described in my paper on "Fourfold Magics"' (above, page 363, 

last paragraph), we obtain three magic parallelopipeds 5 x 5 x 3. 

Denoting each subsquare by the number in its central cell, the three 

parallelopipeds will be : 

I. 53, 169, 117. 

II. 177, 113, 49. 

III. 109, 57, 173. 

These three together form an octahedroid 5 x 5 x 3 x 3 which is 
associated and magic in each of the four directions parallel to its 

edges. 

If we deal in like manner with Fig. 709 which has subsquares of 

order 3 we obtain five magic parallelopipeds of order 3 x 3 x 5 to

gether forming an associated magic octahedroid of order 3 x 3 x 5 x 5. 
Since the lengths of the edges are the same as those of the octa

hedroid formed from Fig. 710 square, these two four-dimensional 

figures are identical but the distribution of the numbers in their 

ells is not the same. They can however be made completely iden

tical both in form and diEtribution of numbers by a slight change 

in our method of dealing with the square Fig. 709, i. e., by taking 

the square plates to form the parallelopipeds from the knight paths 

im:tead of the diagonals. Using the path (- 1, 2) we get 225, 106, 3, 
188, 43 for the first plates of each parallelopiped, and then using 

( 2, - 1) for the successive plates of each, we obtain the parallelo-

pi peds: 

I. 225, 8, 31, 118, 183 
II. 106, 193, 213, 15, 38 

III. 3, 45, 113, 181, 223 
IV. 188, 211, 13, 33, 120 
v. 43, 108, 195, 218, 1 

This octahedroid lS completely identical with that previously ob-
tained from Fig. 710, as can be easily verified by taking any number 
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at random and writing down the four series of numbers through 

its containing cell parallel to the edges, first in one octahedroid 

and then in the other. The sets so obtained will be found iden

tical. 
C. P. 

THE CONSTRUCTION OF ORNATE MAGIC SQUARES OF ORDERS 
8, 12 AND 16 BY TABLES. 

The following simple method for constructing ornate magic 

squares of the above orders is presented in the belief that it is new 

and original. All squares of orders 4m can be made by this method, 

so it will suffice to explain in detail only the rules for constructing 

squares of order 8. 

- ~ 
~ 

Fig. 712. Fig. 713. 

I. Make a magic rectangle with the first eight digits as shown 

m Fig. 712. This is the only form in which this rectang-1~ can be 

I 

' . 
' I 

' ' o I 

'• ,, 
I 

7 

6 

·: 
I, 
I o 

' ' ' 
' 

8 

; 
' 
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' '' 
'' •' ,I 
•I 

l 

/f 2 

Fig. 7I4. 

J I 

,<, 
'• 

I I 
I' 

' I' 2 2 
' 

J J 

' 
4 4-

s s 
6 6 

7 7 

3 8 

.) 

6 s .J 

.56 41 .32 57 16 /7 40 J' 

ss 42 J/ SJ' IS" 18 .39 7 

.PI 4.3 JO .f".:J 14 /.9 .:JS 6 

,J"J .1/4 2.9 6o /J 20 .J7 s 
.52 4S 2K 61 12. 21 .J6 4 

S/ F/-6 27 62 I/ 22 .JS J 

so 47 26 6.J /0 2.3 J4 2 

4.9 18 25" 64 .9 24- J.3 I 

7 4 2 ·' 
Fig. 715. 

made, i. e., no complementary couplet therein can be inverted 

without destroying the magic feature, but the relative positions of 

the couplets can naturally be shifted without affecting it. 



ORNATE MAGIC SQUARES. 

II. Draw a table diagram such as Fig. 7-14, and write the row 

numbers of the magic rectangle Fig. 712, alternately at the top and 

bottom of the eight columns as shown by dotted lines. 

III. Following the arithmetical order of the numbered columns, 

write in the numbers 1 to 64 downward and upward, thus making 

the table, Fig. 715. 

! I 

0 63 

6 6 

G Go 

4- 4 

0 62 

7 7 

0 .57 

.56 -?I .)2 2.S 4.5' 

10 23 34 .J.9 Ia' 

.5/ 46 27 JO 4.3 

I.J 20 J7 J6 21 

.)3 -14 2.9 23 -95 

II 22 .35 .33 1.9 

.50 47 26 Jl 42 

;6 17 "ic? JJ 24-

Fig. 716. 

f7EE12J 
~ 

Fig. 718. 

~ 
~ 

Fig. 719 . 

?.9 i' 3 I 

IS SJ p 
S4 J J J 

12 Gl ~ 7 

.)2 .5" ,) 2 

1-ft .5.9 6) 6 

5.5 2 2 

.9 6?-8 

I I 

0 .32 

6 JS 

8 62 

7 .34-

0 6J 

4 4 

~ .29 

I 6 ,5' J 

I 43 21 6o 2.9 .52 9 -90 

J.3 16 S.J 2$ 61 20 'II s 
2 47 22 S.9 JO Sl /0 .3.9 

.31 ;.; .H· 27 62 1.9 42 7 

J 46 2.3 .53' .31 so II .:u 

J.S H JS 26 6.3 IS 4.3 6 

4 liS 2?- .57 J2 4.9 12. J7 

J6 1.3 .5'6 25 6?- 17 44 S' 

+ 7 .5" 2 

-
Fig. 717. 

4.5 21 Go zs 56 1.) .36 tY 

-?9 12. .37 tf 41 .20 61 ~ 
14- S5 26 .59 22 47 2 J 

1.9 42 7 .u II so .31 0 
IS .5/f- 27 S,J' 2.3 46 .J 2 

1.? 4.3 6 .J.fl 10 5/ .30 ~ 
4S 2-?- S7 23 J'J 16 JJ 5 

.52 .9 -'10 s 44 17 64 k) 
Fig. 720. 

.1\oTE. A variety of different tables may be made on the above 

principle by changing the progression, and each table will produce 

a different magic square. Any number that will divide n2 (which 

in this case is 64) without remainder may be used as an increment. 

Th"s !n th2 rresent case 2, 4, 8, 16 and 32 are available. \Vhen the 
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I I 106 7-4 1-9.3 75 ~6 J /OJ' 110 /Cl) 73 J-? II! 

~ /29 .j'l/- s6 17 Sf 124- 11!7 S.l! ,['() f.J S7 /Z6 0 
II .JI 7G /C14 1/.J /CJJ 6 J.J 7# NCJ 77 /tl~ ~ 2 

Ci /.32 51 S-2 H SJ' 121 /.J() 49 2.3 ftl 6o /.2.J 0 
J 7 /00 30 1.37 3/ .JO .9 102 //6 /0/ 7-2 2~ /Cl 

~ IJS 4S 62 II 6/ /13' /.J3 46 26 ~7 6.3 /20 0 
.9 25 32 ~B 11.9 .9.9 /2 27 tl-9- I.J+ S.J ,7 /0 4 

Vi 117 66 44 29 -IJ /.J(} 1/S 6p. 3' 6.> ~.f" I.Y 0 
3' 22 3S .9S /R2 -26 IS 24 J'7 /J/ #6 .9+ /J 5 

e Nl -12 6s s 67 112 1.39 40 J2 4/ 6.9 11-9- 8 
7 1.9 ?J' .92 12~ 9.3 /3 21 .90 /23 .1.9 .91 16 6 

@ Ill 72 .33 JS J7 't4e 10~ 70 2 71 J.9 I# 8 

I 8 .9 12 .5 4-

I I 106 74 14.3 7S J6 Ill 72 JJ .,., .37 14-2 12 

2 4 v.:u 77 140 7f JJ //4 69 ~I .)2 40 V.J9 1/ 

J 7 IOC 30 /J7 J'/ :J() 117 tf6 4-4 f?.9 ./}J /36 IC 

10 .97 3'" IJ4. 34 27 120 6.3 47 R6 46 V-'-' .'J 

1.3 .94- s-6 I.JI .!7 24- /2J 6o .fO 2J 49 /.JO J' 

6 16 91 ,/9 12J' 90 2/ 126 57 JJ 20 S2 vzJ 7 

7 /.9 u .92 12S J}J II 12.9 54 JG 17 ss 124 6 

22 B'S" 9S 122 .96 IS I.J2 51 5.9 14 .fJ 121 " 
2.5 32 93 11.9 .9.9 12 /JS /13 62 II 61 113 4 

10 28 7.9 /01 116 102 .!) IJB -?5 6s # 6? /IS J 

II Jl 76 104- 1/.J /OS tP IN 1!i! 6! .f" 67 112 2 

12 J4 7.3 107 //0 /OS J 14+ .}9 71 2 70 109 I 

7 II j 6 2 /0 
_. 

Ftg. /:0.2. 

I 7 8 II 9 " I ~~r·J .9 3' 7 

/2 G .s 2 4 )0 IR 2/10 4- .5 6 

Fig. 723. Fig. 724. 
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addition produces a number larger than 64, the lowest unused num

ber of the series is substituted. For example, if 32 is made the 

increment, the numbers in the columns of the table will run thus: 

because 

1, 33, 2, 34, 3, 35 etc. 

1 + 32 = 33, 

2 + 32 = 34, 

33 + 32 = 65 substitute 2 

34 + 32 = 65 3 etc. 

IV. The table must now be indexed with some arrangement 

of the numbers 1 to 8 under the following conditions: The first 

I 

2 

s 
t5 

7 

r 
9 

I 

8 
I:J 

8 
6 

G 
10 

8 
IS" 
~ 

()~ 
'I J 

I t0i' \;.:J 
/, ;, 12 

8 
'S /, 8 

&~ I 

I 2 J 4 5 6 7 8 9 M N n M H M M 

I /92 97 2?# 41 !52 7.3 2.,.5 1/.J 20,J 17 176 J'.9 232 57 1.36 16 

12./ !J.J .:JZ ltfl ,JJ' 2J.J s6 137 16 177 /12 20.9 -!CI /S.J 7Z iz«a 0 
1.).1 tic 22.9 92 17.3 20 2oJ 116 245 76 /-19 -¥+ 221 100 11.9 4 4 

2S2 69 s6 .37 212 lt?!J 130 /J /40 SJ 236 8'.5" 164- 2.9 196 12S ~ 
6 l.fl 102 2/.!J 46 1-¥7 73 2#-.1 118 20.3 22 171 94- 227 62 /J/ II 

/2.3 /.98 27 166 3.J 2.38 Sl v-?z 1/ /82 /07 .21? JS" lSI 67 2S4 ~ 
V:JO 6.1 226 !IS 170 2.3 202 1/.!1 242 7.!1 /?6 "7 !!II /t7.J IJ'6 7 7 

2SS 66 159 .34 2/.J /06 II.J 10 /-1.3 .Jt7 2.39 32 167 26 1.9.!1 /22 ~ 
IJ5 .>-8 2.JI .90 IJ" /8 207 114 ?47 74 VSI 92 22.J .96- I.!J/ 2 fl. 

2SO 71 15"4 .3.9 210 /I/ 17$ /S /J8 .s.s 2.J#- 37 162 J/ 1.94 127 ~ 
.3 /.90 .9.9 !<'22 4.3 /50 J.S 2-16 1/.S 206 1.9' 174 .91 2.3(1 S!J I.J/f- 14-

126 I .!IS .30 !6.J 86 2.3.5 ,5"4 IJ!J 14- 17.9 1/0 211 .:J8 ISS 70 25/ ~ 
1.32 6; 228 .!J.J 172 21 .204 117 2-(4- 77 1?3 45" 2/Nl 10/ 144 S" .r 

izs.J 68 IS7 J6 2/.J /0$ 1#/ 12 /41 $'2 2.J7 34 16S 23 197 /29 /J -a V8.S 104 217 48 14.5 30 241 /20 201 2-#- 16.9 .96 22S 69- 29 9 

v21 2()() 2.5' 168 ,, 2f-O -9.9 I-I+ .9 18 ... /CJS 216 JJ IGCI 6s 2S6 I 

Fig. 725. 

four digits used must include no complementary couplet, and the 
last four digits must be·selected so as to balance each of the first 

four with its complementary. The straight arithmetical series is 
used in Fig. 715 as it fulfils the above conditions, but any series, 
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such as shown in the subjoined examples, will produce magic 

results, and each arrangement will make a different magic square. 
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3 
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I.J/ 

/.J2 
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I.J6 
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1.91 

/.90 

IIY 
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IJl 

IJ'6 
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64-

6J 

62 

Iii 

6o 

S.!J 

SB 

SJ 

~ 

/J 

.97 224 

98 .22.J 

.'1!1 222 

/00 22/ 

It!/ 2J!tJ 

ltJ2 2/.JI 

IO.J 21.1 

10-?- 217 

22.S 96 

22t, .9S 

227 !H 

2.tJ' .9J 

22.9 .!J2 

2J(; .91 

2.JI .90 

io?Jz 49 

/2 

1 2 3 4 

5 3 7 2 

3 5 1 6 
7 8 5 1 
2 1 4 8 
6 4 8 3 
4 6 2 7 
8 7 6 5 

6 10 16 

H /SZ 7.J 2-f.J /?I 

-?Z IS/ 74 2'1-7 12.2 

4.J ISO 7-f U6 /Z.J 

'/4 11-9 76 2/J 124 

.f..f" 1?8 77 2H 12.f 

46 147 73 21-.J 126 

47 14G 7.9 H2 127 

44 1-f.J 9'0 2"1/ /2.1 

169 2/f 1!(// /20 24.9 

170 I!J 20}. /I.!} 2S'C 

171 22 20.J 1/J 2SI 

/72 21 201- 117 2S2 

17.J 20 20J 116 2S.J 

17-P- 19 Rot /IS 2.5'"1-

17S IS 201 114 2£.5 

/76 17 20J' //.J 2S6 

" IS 

Fig. 726. 

5 6 
6 8 
2 5 
8 2 
1 7 
7 4 

3 1 

4 3 etc. 

4 II 7 

200 .2.) !til J'/ 240 4.9 I# 16 

1.9.9 26 /67 ?2 2.3!1 so /?J I 

I:IJ' 27 166 J'J ll.JJ" Sl ;4;. # 

1.17 2.9 16S ,.,... 2.>7 .)2 141 /.J 

1!16 u lfS4 ,._, 2.36 SJ NO /2 

I:I.J JO 1!6:) .8'6 2JJ .$"-? ;.1.1 1/ 

I.Y4 ,J/ 162 J"7 2-H .F.> /JI 1(1 

/.!JJ .32 161 .u 2.1.3 .$"6 1.37 ., 
72 /.FJ ?0 209 /12 177 /6 J" 

71 /59 .J.!J 210 /II 113 ;.r 7 

JO /SJ .33 211 110 Vl.9 AL 6 

69 /50 .J7 2/2 10.9 130 /.J .r 

68 IJ7 .:JC 2/J /OJ' IJ'I 12 -9-

67 /.FJ' .:JS 21-9 101 112 II .J 

66 /.S.9 .3~ .PIS lo6 /,..J /0 2 

G.f" 160 JJ 216 /O.J IJ',_ 9 / 

.9 S" I-# 2 

The index numbers are written in columns on each side of the 

table, those on one side being in reverse order to those on the 

other side. One set of these numbers may be conveniently written 
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in circles for identification, or any other way of distinguishing the 
similar numbers may be used. 

V. Make another 2 x 4 magic rectangle with a re-arrangement 

I 1.3 6 10 l.f J 12 I' I .,. I.J /2 6 J /0 /.) 

16 9 II ? 2 /?- .f 3 16 .9 ,. .f // ~~ 7 2 

Fig. 728. 

I I.J S" , 7 II 3 /.r 

16 ,. 12 .! 10 6 I~ ~ 

Fig. 729. 

I 16 IJ -? S" IR !I 8 7 10 II 6 .J 14- IS' 2 

I I 1-'6 4.9 22'1 41 176 II.J 2-18 7.3 208 17 /.f2 .97 2.32 .>7 191! 

6 121 R.f6 .3.3 161' n 216 9 VN 4!1 IU /O.f' 2-?-0 2.f' 160 6.f' 2CO 

I ,} 1.32 .; 220 .9J 172 ,, :H4- 117 204 77 /4-S 2/ 224' /CJI /JJ' 6/ 

+ 2S2 12S 164 J7 212 IS /fO IJ /.TO J"J 2.J6 /t7.9 /.fG 2.9 /.96 6.!1 

or 6 1.31 .9+ 21.9 16 171 IIJ UJ 78 2ll.J 21! 117 102 227 61!. 147 

I 2 126 2SI .JJ' /6J J'"6 211 N- I.J.9 J"f 17.9 /10 2.3S JO 1.>.5 70 1.9.f 

I.:J.f 2 22.J .90 1.1.$ ?2 2-17 IN 207 74 lSI /J"' 2.31 91 /.!)/ Sl 

8 2.>S 122 167 .J-1- 21S 12 14.3 10 /J'J J"O 2.39 106 1.>.9 26 V.99 66 

7 I.JO 7 2/J' 9.$" 170 n 2-12 11.9 2(7< 7.9 V-16 2J 226 /OJ /J'6 6.3 

0 2SO 127 /62 J.!J 210 J'J I.J8 ;.r 171 s.r 2.1-9 Ill IS-?- J/ /M 71 

/I J /J-?- .91 222 4.3 17'1 1/.f 2-16 7<f 2t76 1.9 /SO .99 2.30 S9 /.90 

6 12.J 2S4 J.f 166 3.3 21-l II 1-12 J"l 182 /OJ 2.J3 27 1.1"3 tJ7 I .!IS 

J I.J.J " 221 92 IJ.J -14- 2-9.5 116 2o.f_ 76 V'/.9 20 22/J A::lO /19 60 

"" I 2.>.J 12# /6S J6 21.1 ,.,. HI /I!. IS/ S2 2.J7 /01 IS7 21 197 61 

.., .r 12.!1 .96 217 48 /69 120 2-11 80 201 2+ /#.> 10# 22S 6# VN 

2 12tf 24.:1 40 161 88 20.9 16 /.31 .f'6 177 1/2 /!.33 32 /S.J 72 1/.93 

Fig. 730. 

of couplets, such as shown in Fig. 713. Any other arrangement 
that differs from Fig. 712 would, however, answer equally well. 

VI. Draw an 8 x 8 lattice (Fig. 716) and write opposite the 
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alternate cells of the two outside columns the eight numbers in 

Fig-. 713 in their linear order, from the top of the lattice down

ward, and the same numbers (in circles) opposite the remaining 

alternate cells from the bottom of the lattice upward. 

Inspection of Figs. 715 and 716 will assist a clear understand

ing of the above directions. 

The magic square is now made by filling the cells of the lattice 

with the numbers from the table in linear groups of four, according 

I 8 J 6 

i /p .5,7 S,li IJ Ji2 ~ 4.,0 , 
' ' ' 

~" 
' ' ' ' 

2. ;(5: ,.7¥ /~ J:t, -iz ,;'-.9 
:;~: ::;;-: .. ,.,· >·.:: 

s~ '14- fN' Jf' 'ly ~ 

I ;6 37 .J6 17 J2- 41 ~0 

62 .5"/ 6 II 4-0 .JS 22. 27 

J' .9 64- 4-.9 J!-1- 2S .f-8 JJ 
' ' -~~ 2i9 ~0 S,J + /~ .3;7 2'(7 S.!J S4- .3 /4- 4J JS /..9 JO 

6,1 .f",2 s li2 ~" .:J'(j 2'/ is 
' 

2 IS .JS ss 13 .J/ 4-2 .3.9 

112. ' ,.;; _II 4'( J:S: z'2 _27 .5'1-. 
....... : . ;;-;- ~~6 ~?i r ·io' ';f(J 2f ~f 

' ' ' 
j> ~ r;-;.. ~ 2'+ 2~ -# .:J~ 

ol S2 s /2 .f.S Jo 21 26 

7 /0 6J .ro 2J 26" -17 # 

(/)(7 SJ 4- /.3 4-4- J7 20 2..9 

2 7 -? S" 
Fig. 732. 

to their index numbers. The linear groups of four numbers in the 

left-hand half of square are written from left to right and those 

in the right-hand half of square from right to left. 

Another example of an order 8 magic square, including rect

angles and table, is shown in Figs. 717, 718, 719 and 720. The 

progressive increment in the table, Fig. 717, is 32, as referred to 

in a previous paragraph, and the index numbers are written in the 

order shown in the first column of numbers on page 392. 

The magic squares, Figs. 716 and 720, are 4-ply, associated and 

pandiagonal. 

In using the above rules there are at least three different ways 

for producing variations. 
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a. By changing the progression in the table. 

b. By making divisions in the table (as in Fig. 726). 

c. By using different arrangements of couplets in rectangles. 

d. By using different arrangements of index numbers. 

It is therefore evident that the possible number of variants is 

very large, and each of them will possess the same ornate qualities 

as those above described. 

A magic square of order 12 is given in Fig. 721, and the table 

used in its constmction with two 2 x 6 magic rectangles in Figs. 

722, 723 and 724. This square is 4-ply, associated and pandiagonal. 

I I "" 17 .>G .5"7 J2 /II 16 1 ~ 4:0 1r .f,6 .rp- .3-f! 14:1 lp 
I 1 1 1 1 I I • 

Go :Z.!I 44- 1.3 4 J7 2(1 S.!J 

2 .:39 18 s:> 5'8 Jl 42 IS 

S.!l .30 4.3 I+ J .)J' 1.9 s4-

3' .3.3 :Z4 4.!1 64 2.S 49 .9 

61 2.1' 45' 12 .$" .36 2/ .s-z 

7 .3-# 2.J so 6.J 26 47 10 

6z 27 46 /I 6 .,, 22 S/ 

.2 i ~~: I:,_. -if ~: .Jj _ '!~2_ J..s-
~': .. ;_ ·:; .... _ "'::-.:: :----

J s.9· J.-o ;,f:"i- J:?i:"J:_ 3-., ;\9- ;j;{l-
: I I : I I ' I 

4 d<o 2~ .q)+ I:J 4 .,;7 :z:o s.J 
: I I : : : I t 

s d'! :z;.r 4:-' 1:.e .5- .3'.6 2:1 .J;z 
: I I ; : : : I 

6 6:2. _2:7- -?6 it:- .fi . .1~ f-2~ ~:,. 

7 ~- ;t~"i/ j~:;t~~~i=~-;,_,~ 
I j "~ :z4 4~ G4 i,s-4-:8 ~ 6 

Fig. 734-

Fig. 733· 

A magic square of order 16 with its table and rectangles are 

shown in Figs. 725, 726, 727 and 728. In addition to the ornate 

features common to the squares shown in Figs. 716, 720 and 721, 

this square is also knight Nasik. Fig. 725 can readily be changed 

into a balanced, quartered, 4-ply, pandiagonal Franklin magic square 

by one transposition, as shown in Fig. 730, which is indexed by the 

rectangle Fig. 729. By this change it ceases to be associated and 

knight N asik, but acquires other ornate features besides becoming 

a Franklin square. It contains nine magic subsquares of order 

8, each of which is pandiagonal; also, the numbers in the corner 
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~ ~ ~ 

I 12. .J 10 F ~ 

1 2.-1 ;J.J IJ2 2':,> .f.8 /09 /OJ is 7,Z -?'? .Pf 
: : : ;J 2 2,J /J4 IJ/ 26 4:7 II/} lq7 i6 7;1 .J.O 

I 

2 
' ;.; J. 22 .iu (.Jo i7. +tS. Ill (0~ il 70. /2 

:~< ................. ::...:: ;~~;- : ......... :>:: 
'-{6 129 ''f 'ri/ I I:[ /0~ .P.S' .;z· J"r .... ..s' '6(J 

J 

1~7 1~3 
.., :to 1/J /0/ 2'9 4,4- J.J r'o ar a's 

IJ.t 1~7 6 /~ II+ /OJ J,o .,:, .i4- 7:9 .90 s( 
7 It' 1~6 7. ;, vis 102 Jl 4,2 .J...; ~,. .!it a: IS 

: : ;+o I~S 8 ~r 11,6 /0/ .1'2 .ft .i,G i7 9~ 6S' 
i 

I .f./. ;i-~: ,9 /G ;iJ. (05 _..iJ ·1'0 .J7. 76. /J 9:,.. 
'':.<' 

-;r~ J) i~j -~:; 
......... 

10' 'I( i'.(J Jf ,!( 9tl- ;q '7{ 

)( ;+ /~3 /~2 .,:r .3/J 1~9 
9.., ,( 6;2 .i:: 7'?-

I~ /~ I~ 1~1 J.6 J:7 IZO i:7 9'6 Bl 6o .?;J 

10 

II 

;2 

2 II 4 .9 6 7 

~ ~ '---.-/ 

Fig. 735· 

I 2.11 /JJ /.32 2.S .f8 109 lOS 8.) 72. -?.9 ,/4-

1.3,1 127 6 1.9 1/.f /OJ JO 43 .f'-? 7.9 90 67 

12 /J "'"' 12/ .JG J7 120 .97 .96 6/ 60 7J 

IJ.9 /26 7 IS 1/.f' /02 J/ 4-2 s.r 78 9/ 66 

2 2.3 1.3+ /J/ 26 +7 1/0 /07 S& 7/ ..ro 8.J 

/Jl 12.5' ., 20 //J /~ 2.9 44- .,f'J 6"0 6".9 66" 

II 1-1- 1-1-3 122 .3$ .38 1/.9 .98 .9.5' 62 S.9 74-

14-0 /2S , /7 1/6 /CJ/ .32 41 SG 77 .92 GS 

J 22 /J.) /JO 27 46 1// 106 87 70 S7 4'2 

1.36 /2.9 4 21 112 /OS 2J' 4~ S2 J'/ 6".? 69 

/0 IS /~ 12J .]4 J!/ /15' .7.9 » 63 .,f'J' 7.5' 

141 /24 9 /IS 117 /(/(} .JJ +o -'1 7G 9.J G-?-

Fig. 736. 
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cells of any 4 x 4, 8 x 8, 12 x 12 square and the corner cells of the 

great square sum S/4= 514, as do also the corner numbers in any 
2 x 4, 2 x 6, 2 x 8 rectangle etc. 

The "table" method for constmcting ornate magics is not limited 

to the foregoing rules. For a long time the writer endeavored in 

vain to make tables that would be competent to produce Franklin 

I 

2 

J 

s 
G 

7 

8 

.9 

10 

II 

12 

/J 

IS 

16 

..-------.... 
I 16 

I JZ 2?1 2?0 

2 .:JI 242 2» 

J JO l.u" 238 

-f. 2..9 1244- 2.J7 

u 2.16 s 28 

24~ 2.JJ 6 27 

24? 2.14 7 26 

248 2J3 8 zs 

24.9 2.12 9 24 

2S~ 2.31 /0 2.1 

2S. 2JG II 22 

2.S2 22.9 /2 2/ 

IJ flO ZS3 f/21 

/4 1..9 2S4 227 

IS /8 2SJ 21!~ 

/6 17 2S6 226 

2 IS" 
........____., 

..-------.... ...---....., .,---....._ 

J I .f. 7 10 s 12 

JJ G-1- 20!} 201 97 121 14-J I# GS 96 177 176 

.u. GJ 210 207 .91' 127 /-1-6 1-f.J 619 .9S V7J' 17.1 

JS Gfl 2/1 206 .9.9 126 /47 1-/-2 67 9.,. /7.9 17"1 

.16 6/ 2/2 20.f 100 IZ.f 148 Nl 68 93 /80 17.3 

2/J 204 J7 60 1-#9 P/0 /tll 124 /J'I 172 69 ~2 

214 ZO.J .18 .09 ISO IJ.!I /02 /2.J 112 171 70 .9/ 

2/S 202 .1.9 ..7/t IS/ IJB /OJ 122 /8J 170 71 .90 

Z/6 201 4-0 S7 ISZ /J7 104 /21 11"4 16.9 72. 8.9 

217 200 4/ $'6 /S.1 IJ6 /(JS /20 18J 168 7J 8J' 

2/8 /!19 42. ss vs4 /JS /06 1/9 186 /67 74 87 

2/..9 /.93 4.3 S-1- /.fJ /J/1- /07 118 117 161!. 7S 86 

22e /.97 411- SJ VSG /JJ '/08 117 /88 16-J 76 J>.f 

4S Sl! 22/ 1.9G /09 1/6 IS7 /J2 77 J>+ /1'!1 /If}# 

46 S/ 222 /!IS //(J /IS /SB IJI 7J> 4'J 1.90 lie, 

47 so 22.3 /!14- 1/1 114 IS .!I I.JO 7.9 82 /.9/ /62 

48 4.9 2211- /.9.3 112 11.3 160 12~ 80 8'1 /.92 16/ 

4 1.3 8 .9 6 II ........____., ...........__, 
~ 

Fig. 737. 

squares directly without any transpositions, until it occurred to him 

that this might be accomplished by bending the columns of the table. 
This simple device worked out with perfect success, thus adding 
another link to the scheme for making all kinds of the 4m squares 

by this method. The bending of the table columns also leads to the 

construction of a number of other ornate variants, as will be shown 
in examples to follow. 
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Fig. 731 is a table constructed with the straight series 1 to 64. 

the bending of the columns being shown by the dotted lines. As 

in tables previously explained, each column of numbers is started 

and finished following the arithmetical sequence of the numerals 

at the top and bottom of the table, but the four middle numbers of 

each column are bent three spaces out of line either to right or left. 

It will be seen that the column numerals are written in couplets 

I J2 Z"fl 240 .33 6+ 20.9 208 97 28 /4S !4+ 6-Y 96 177 176 

:14-.j 2.36 s 28 ~/3 204 .:J7 60 1-1.9 /4(, 101 12+ /&'/ 172 6.9 .9/l 

/6 17 2.1"6 22.> 48 4.9 21!-l- /.9.3 II.£ 1/.J /60 /2.9 .PO 81 /.92 161 

2S2 22.9 /Z 21 221> 1.97 # SJ IS6 /J.J iloa 117 ltfS 16.f 76 35 

2 J/ 242 ft,J.!J "~ 6J 2/(, 2(}') .98 127 146 1+.3 66 9~ 173 17.1 

Z4d 2.JJ 6 27 2/,. UJ.J Jl .Y.!J ISO 1.38 /OZ. /2.3 132 171 70 9/ 

IS IS 2.YS 226 +7 .so 22.3 194 Ill 1/4- /F9 /.30 79 1"2 /.91 162. 

~SI :l.JO II 22 21.9 1.98 43 J+ /S".S 1.34- 107 Ill l.f7 /66 7.> 86 

J .30 24.3 2.33 JS 62 21/ 206 .9.9 /26 1-17 142 67 .9+ :17.9 17+ 

247 2J4 7 26 2/.f 202 .3.9 S8 IS/ 1.38 /OJ 122 /8.3 /71) 71 90 

/4 1.9 2S4 227 -f-6 Sl 222 19.5 /10 /IS /.S8 /3/ 78 8.3 /.90 ~~ 

!eso 2.JI 10 2.3 lz!J' 1.99 42 .FS 1.5'9 /3.S /06 /1.9 :/J'6 167 7+ n 
+ 2.5 244 2.37 .36 Gl ~12 20.6 /C/O 12.5 /48 /41 tU .93 V.PO 17.3 

248" 2.3.3 8 2S 216 20/ 40 .ST llsz IJT /0"1- /21 184 169 72 89 

/J 20 2SJ 228 4S .s"2 221 196 10.9 1/6 /57 /.32 77 J'".P. VJ's /61 

lz-1'.9 2.32 .9 24 217 zoo 41 .SG /.SJ /.36 II OJ 120 /J'.j /68 7.3 18 

Fig. 733. 

= n + 1, as marked by brackets. The relative positions of these 
couplets may, however, be varied. 

The horizontal lines of the table are indexed with the first eight 

digits in straight series, but either of the series shown on page 3. 
or an equivalent, may be used. 

This form of table differs essentially in one feature from those 

previously described, there being no vertical central division, and 
each complete line of eight numbers is copied into the magic squar,~ 
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as written in the table. A table made in this way with bent columns 

is in fact a square that is magic in its lines and columns but not in 

its diagonals. The re-arrangement of its lines by the index num

bers corrects its diagonals and imparts its ornate features. 

An 8 x 8 lattice is now drawn and indexed on one side with the 

/ 

:z 

" 
+ 

7 

/0 

/I 

/Z 

/J 

/6 

~ /~~ 
I J /6 I? 2 /f- J.f" /;} 

1-- ~~~! s 2ff: 3/ 2.J-I- 27 238 .3 2-f-6 7 Z-12 .Pa ~.J6 2$ 
-~-

6,.J ,o2 .F.!J :Zo-.s :Jr 216 .37 ',uz 61 .201- .f7 20.1 JS" lz;~ J,!J 

..9'S: {70 -·- .9/ 1!-f .G1- /.J'-1- 6.!} J'() .9.3 /72 .J'.9 V76 67 ill2 71 
;-~ 

.9!- r.J2 /0/ ;.;., t-.F /JJ /Z.J l-IZ !1.!1 IS'O /O.J 146 1/2.1 /-I() /2/ 

L-2.9 /20 /JJ --- 1!1-1/..1'.9 /Oil /$J //0 /J/ /It!" /J~ II~ 1/.>7 /OJ /J.J 
:~:: 

111 /-i- /37 71 t-61 : 
88 /6.S I+ /1.9 76 II~ 8'0 163 36 167 

22J ..,2 21.!1 46 /.!IJ .>6 /97 .f2 22/ H 217 4-8 1/.!J.s .f4 V.9.9 ........ ........ - ---
22.5 -2.;.- Z2.9 ".zo· ~.>.J /0 2.f/ 14- 227 :?2 j231 /8 2$J /2 iz-1'.9 

2 lz47 6 2-I.J ,)2 2J.J 21 2J7 ~ 2-15 8 :HI .:JO 2.J.S 26 

64 201 60 20.1 J4 21.5 Jl' 2/1 62 2d.J J7 !,?d7 J6 2/J 40 

.!16 /6.!1 .!JZ /7.3 66 /I'J 70 17..? .9~ 171 .!Jd lq.r 61 /8'/ 72 

.!18 /J/ /02 1-'7 /21 1.]7 /H /4/ /00 /..,.!J /d-9 I+S /2~ /.J.!J /21? 

/.JO //.!1 /J4- 1/5' ItS C. /OJ 1$6 /0.!1 /.]2 117 /.36 //J /.F8 /07 /.F-9 

11.!12 7.3 / S'.P 77 /6~ 87 16~ I.J 1.90 7.F 116 79 16+ S.f 168 

!2z4 41 220 ~ 1.9+ J..; 1$!' .fl 22~ -I.J 21.1' 4-7 /.96 JJ 200 

226 2.J 2.30 1.9 ZJIJ .!1 2.F2 /J 221' 21 lz.12 17 25-9- II 2.F& 

/2 /0 .7 7 /I .!1 6 

Fig. 739. 

24() 

2/0 

17.1' 

/H 

//;l. 

.P2 

..;o 

/6 

2J.1 

ZO.:J 

177 

/-9.1 

II/ 

,1'/ 

..,,!J 

/,F 

J' 

first eight digits, so selected that alternate numbers form couplets 

= n + 1 in each subdivision of the square. 

Finally, the lines from the table (Fig. 731) are transferred to 
the lattice in accordance with the index numbers, and the square 

thus made (Fig. 732) is 4-ply, pandiagonal, and Franklin; also 
each corner subsquare of ord-:r 4 is a magic pandiagonal. 
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NoTE. In some cases the numbers of the indexing couplets are 
more widely separated, as in Fig. 734; while in other cases they 

may be written adjoining each other. In all cases, however, a sym

metrical arrangement of couplets is observed, but their positions, 

as shown in these examples, is an essential feature only in connec
tion with the particular squares illustrated. 

Fig. 733 shows another table in which the columns are bent 

Fig. 740. 

through a space of four columns, which produces the magic square, 
Fig. 734. This square is 4-ply, pandiagonal and knight Nasik. 

Fig. 735 is a table with bent columns from which the square 
of order 12, shown in Fig. 736, is constructed. This square is 4-ply 
and pandiagonal, and it contains nine pandiagonal subsquares of 
order 4, as shown by the heavy bars in the lattice. 

A table and square of order 16 are shown in Figs. 737 and 738. 

The square is 4-ply, pandiagonal and Franklin, and it also possesses 
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many other interesting features. It is composed of 16 subsquares 

of order 4, as shown by the heavy bars, and each subsquare is magic 

and pandiagonal. 
Fig. 739 is a table from which our final example of magic 

square, shown in Figs. 740 and 741, is constructed. The table 

series is made with increments of 32 and the columns are bent as 

marked by the dotted lines. The square is 4-ply (and therefore 

4 symmetrical) quartered, pandiagonal, knight Nasik, Franklin and 

magic in its reflected diagonals. Also, any 9 x 9 square has its 

I 2'18 s 2/14 J/ 234 27 2.3~ .J 2-46 7 2-1.2 2$ 2J6 2.F 2-4() 

i2N 41 22() 4S 1.91 $$ 1.93 Sl 222 4.3 2N 47 1.96 .>.J 2C/(J 49 

129 /2C /J.J 116 /S.9 106 /S.f 110 131 118 I.JS 114· !Sl /OJ' IS.J /12 

.96 /69 92 17.3 tfi(jj /J'J 70 17.9 .!1-/- 171 !10 17J 63 /J'/ 72 177 

226 2J 2.}0 /.9 256 .9 252 /J 2!U 21 2.J2 17 254 II 2SO I.F 

63 202 3.9 206 JJ 216 J7 212 61 204 S7 208 JS 21-? .:3.9 ZIO 

.99 IS/ 102 147 128 /J7 121- HI voo /-1.9 /04 NS 126 /J.9 /22 HJ 

I .!II 74 137 76 Nil 83 16" 34- 13.9 76 13.5 ?o /63 36 167 8:?. 

2 24t 6 24J J2 2J.3 23 :Mj _,_ 24.5 3 241 JO 2.3.:> .26 Z.J9 

f?2J -12 21.!1 46 1..9J SG 1.97 .72 221 44- 217 43 /.!)5 S4- /.9.9 .m 

v.Jc /I .!I /.J.P. 11.7 !GC /(J.f /.fi /0.9 /JR. /17 /.J6 //J /SJ' 107 /J"-f- Ill 

f9s 170 .9/ 174- G.> 134 6.9 /.YO .9.3 /72 B.!J 176 67 /J'"2 71 17<1 

22 2+ 22.!) 20 2.5S /0 2SI 14- 227 22 2.} 18 2SJ 12 24-.9 /6 

64 20/ 60 20.:J ""'" 2/.f J3 2// 62. 20.J .73 207 ..J6 2/J 40 20.!1 

'.97 ISZ 10/ /1-J 127 /J,j' /23 Fl-2 .9.9 /SO /OJ 1-96 125 1./fO /21 1+-f-

1.!12 7.3 /88 77 162 J'7 /66 J'J 1.!10 7.> IJ'6 7.9 16? J'.F 16J'" J'/ 

Fig. 74r. 

corner numbers in arithmetical sequence. Fig. 740 shows it laid 
out in one continuous re-entrant knight's tour. The first number 

of each of the 32 periods of 8 numbers is enclosed in a dotted cell 
and an arrowhead points the direction of progression. The num

bers in each of these periods sum S/2 = 1028, also, the numbers in 

each half period sum S/4 = 514. Although this feature exists in 
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many other squares, it may not be commonly known. Fig. 741 is 

the same square written in the usual way to facilitate the checking 

up of its several ornate qualities. 

F. A. W. 

THE CONSTRUCTION OF ORNATE MAGIC SQUARES OF ORDER 
16 BY MAGIC RECTANGLES. 

In the preceding paper Mr. Woodruff presents a remarkable 

magic of order 16 which is 4-ply, pandiagonal, associated and 

knight Nasik, a combination of ornate properties which has prob

ably never been accomplished before in this order of square, and it 

is constructed moreover by a unique method of his own devising. 

(See Fig. 725.) 

An analysis of :Mr. \Voodruff's magic by the La Hireian plan 

shows its primary to be composed of sundry 2 x 8 rectangles having 

no particular numerical arrangement that indicates intentional de-

c1--r-+_,7-~1--d 
' \ 

~ ct. 

Fig. 742. 

sign. This feature might naturally be expected 111 a square made 

by a new method, but it suggested to the writer that squares similar 

to Mr. Woodruff's in their ornate qualifications might be formed 

by applying the well-known method of magic rectangles on the La 

Hireian principle, as described in the present paper. 

In using 2 x 8 magic rectangles for making ornate squares of 

order 16 by the La Hireian method, it is found that certain rect

angles will produce knight Nasik squares while others will not. By 

inspection of the arrangement of the numbers in any 2 x 8 magic 

rectangle, guided by a simple rule, it may easily be determined if 
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a knight Nasik square will result from its use, and if not, how the 

numbers may be re-arranged to produce Nasik results. 

There are four knight paths through each cell of a square, as 

shown by dotted lines in Fig. 742, and the numbers included in 

each of these paths must obviously sum the magic constant of the 

square to be constructed if the latter is to be knight N asik. 

The La Hireian primary of order 16, shown in Fig. 743, is 

made up of sixteen 2 x 8 magic rectangles, as indicated by the heavy 

I I 8 IJ- 10 .J 6 /.) /2 12 /.J 6 J /0 /S 8 I 

16 .9 2 7 14- II 4- S' ,j- + II 14- 7 2 .9 16 

I 8 IS /0 " 6 /.J 12 12 /J 6 J /0 /S J / 

16 .9 2 7 14 II 4- " ,j" 4- II 14- 7 2 .9 /G 

I 8 IS 10 J 6 1.3 /2 /2 I.J 6 ,) /0 l,j" ,? I 

16 .9 2 7 14 II 4- s s ?- II 14- 7 2 8 16 

I 8 IS 10 " 6 IJ 12 12 1.3 G J 10 IS 3 / 

III .J 2 7 14- II 4- s s 4 II 11- 7 2 .J 16 

I 8 1, 10 J 6 IJ 12 12 IJ 6 J I() IS 3 / 

16 .9 2 7 14- II 4- .5 " 4 II I+ 7 2 .9 16 

I 8 /" 10 J 6 IJ 12 12 1.3 6 ..., IV IS 3 I 

16 .J 2 7 14- II 4 s s 4 II 14 7 2 .!1 16 

I 8 IS 10 J 6 1.3 12 12 IJ 6 .., 10 IS s- I 

16 .9 2 7 14 II 4 s .Y 4- II N 7 2 9 16 

I a- IS 10 J 6 I.J IZ 12 1.3 6 .J 10 1.5 8 I 

16 8 2 7 14 II 1- " .$ 4- II 14 7 2 .9 16 

l'ig. 743-

bars. Starting from any cell in Fig. 743, the snm of the numbers 

included in the complete knight paths, indicated by aa and bb in 

Fig. 742, will sum 136 = S, but the paths cc and dd will sum either 

104 or 168, and therefore this primary is incompetent to produce a 
knight Nasik magic square. 

The knight paths aa and bb are necessarily Nasik, as they 

include the numbers in one or other of the long rows of numbers 

in the magic rectangles which sum 68. The other two knight paths, 
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cc and dd, fail to be Nasik because they include the numbers en

closed in circles in Fig. 743, or their complementaries, and these 

numbers do not sum 68. It therefore follows that in order to 

produce a knight Nasik primary, the magic rectangle from which 

it is formed must show a summation of 68 for the numbers enclosed 

in circles in Fig. 743 and their complementaries. A re-arrangement 

of the couplets in the 2 x 8 magic rectangle, without inverting any 

couplet, is shown in the La Hireian primary square, Fig. 744. By 

II 

' 
IS .3 1.3 12 6 10 3 " 10 6 II!. 1.3 J IS I 

16 £ 14 4 .5" II 1(7 .9 .9 7 II .5 4 14 2 16 

I IS .J /J 12 6 ltl 3 8 10 (} 12 /J .J 15 I 

16 2 14 4 .5" II 7 .9 .9 7 II s -? I-? 2 /6 

I 15 .3 I.J /2 G 10 .f 8 /0 G /.2 1.3 " /.5" I 

16 2 14 4 .5 II 7 .9 9 7 II s 4 # 2 16 

I IJ- J 1.3 12 6 ltl 8 8 /0 6 /Z I.J J IS / 

IO 2 14- 4 5 II 7 9 .9 7 II .5" + /4 2 /o 
I IS .3 1.3 /2 6 ltJ $ 8 10 6" 12 1.3 .3 IS I 

16 2 1-9- 4 5 II 7 .9 .9 7 II .5 .p 14 2 16" 

/ IS .3 IJ 12. 6" /() 8 8 /() 6" /2 /.3 J 15 I 

16 2 /-9- 4- 5 II 7 .9 .9 7 II 5 4- 1?- 2 16" 

I IS J 1.3 12 6 ltJ 8 8 10 6 /2 /.3 J /.f" I 

16 2 N- 4 s II 7 .9 .9 7 II 6- ?- N- 2 /0 

I IS .3 1.3 12 6 10 8 8 /0 6 12 /.3 .3 IS I 

/6 2 14 4- s I/ 7 9 .9 7 1/ s -9- /-4- 2 /d' 

Fig. 744· 

this re-arrangement, the numbers in circles are made to sum 68, 

and the rectangle is therefore competent to produce a knight N asik 

square. A second La Hireian primary (Fig. 745) is made by 

changing the numbers in Fig. 744 to their root numbers and then 
turning this primary around its central point 90a to the right, thus 

changing the horizontal lines in Fig. 744 into the vertical columns 

in Fig. 745. The final magic square, Fig. 746, is constmcted in the 
usual way by adding together the numbers in these two primaries, 
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cell by cell. Like its two primaries, this square is 4-ply, associated, 
pandiagonal and knight N asik. 

If the magic square shown in Fig. 746 is divided into 2 x 8 
rectangles in the same way as Fig. 744 or Fig. 745, these rectangles 
will show the same features in summations as the rectangles of the 
primary squares, i. e., each summation will be S/2. 

Using the natural series 1 to 16 inclusive, it is only possible 

to construct four distinct forms of 2 x 8 magic rectangles, as shown 

in Figs. 747 and 748. The four columns of numbers in Fig. 747 

240 0 2·?0 0 Ud 0 (l~(J 0 Ud 0 uo 0 ?~() 0 2-PO 0 

16 (224 ;6 2:/,P. /6 zu. 115 22# /6 izu /6 21!-l- 16 22# 16 !-<'.t-9-

2d8' .JZ :W,f J2 203 JZ 208 JZ 201 .u zor JZ 201 JZ 20.r JZ 

48 1.92 ?8 1$1. 48 /S/2. ..,.~ /S/2. 44' 1.!12. ?8 !1.92 _,., 1.!12. 4¥ 1.92. 

64 76 6+ 76 64 176 64 /)6 6+ 176 6+ 176 69- !Je 6+ 76 

v6o 8(J /60 8'0 160 8'f7 /60 ro 160 ro 16<1 ro 16(7 4'0 16o 30 

~6 '44 .96 I# .96 14_,. .96 I# .96 IH .96 II-., .!16 ,..,.,.. at> 1-H" 

1/u /12 12J' liZ 123 112 128 112 /2? 1/2 /21 112 128 112. /Ill 1/2 

121' /12. 121 112 /28 112 /28 liZ 123 112 124' 112 128' 1/2 123 112 

.!16 14+ $6 //#- .96 144 $16 14+" .96 I#- .96 IH- .96 144 .96 1-94-

/60 80 160 so 16G 80 160 ¥0 115"0 8(7 /60 4'0 t6o 30 16o To 

6-9- 176 64 176 64- 176 64- 176 64 176 64 176 6# 176 6"# 176 

98 1.92 48 1.!12 /8 1.!12 48 I.!I:Z ?4' 1.92 .,., 1.92 44' 1.92 9.1 IJI:Z 

/ldJ' J2 208 .32 204 JZ //OJ .32 2173 .J2 204 J2 2176' .JZ 206' .5Z 

16 22~ 16 224 16 22,. 16 22/f 16 2U ItS 22~ ItS 22+ ltf 2z,t; 

240 0 24(, 0 24-0 (7 2-1-Q f7 z.fo 0 2.,.0 (7 2-10 0 ... .,(;! 0 

F1g. 745· 

show the selection of numbers in the upper and lower rows of the 

four forms of 2 x 8 rectangles, the numbers in circles being those 
used in the upper rows of the respective rectangles. 

The designs below the rectangles in Fig. 748, Forms I, II, III 

and IV, show the geometric arrangement of the numbers as written 
in the upper and lower lines of same. In the upper row of Form 

III rectangle there is a departure from the column sequence of 
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numbers in order to make it suitable for constructing Nasik magic 

squares, and it is rather curious that this change is required only 
in this one rectangle out of the four. The relative positions of the 

couplets in each form of 2 x 8 rectangle may naturally be re

arranged in a great many different ways without disturbing their 

general magic qualities, although in some cases such re-arrangement 

will upset the magic summation of the numbers in a zig-zag line 

of cells, which, as previously noted, is of vital importance when 

the square is to be knight Nasik. 

~41 IS 2//-J /J ZS.f! 6 250 3 2+3 /0 296 IZ 2S'J J less I 

.32 22tl .30 223 .f!/ 2J.f ZJ ZJJ 2S" 2JI 27 22.9 20 2&1 13 NO 

2d9 47 21/ -?.s" uo ,, Z/3 -90 216 .,.fl Z/-1- 44- 221 J.J" 2ZJ JJ 

M. /94 62 /.:16 SJ ZOJ S"S 20/ .s"7 /.!I.!J .F9 197 $2 206 .So 203 

i!Js I .!II 67 13.!1 76132 7+ /14- 72 V36 70 1<1"3 77 17.9 79 71 

lt76 82 174- 8.,. t6s .9/ 167 ,.9 16.9 37 Ill ?f 16.1- .94- /62 96 

.97 ~53 .99 IS7 /03 /SO 106 IJ""Z 104 IS+ /02 /56 /09 14-7 /// 14& 

V# 1/4 1#2 116 /.JJ /:l.J /.J.f 12/ /.JJ /1.9 /.1.!1 117 /J2 /26 I.JO /U' 

129 121 /.J/ IllS 1#0 118 I.JI /20 IJ6 /1!2 1.34 /1!4 141 /IS /4J /I.J 

/12 146 1/0 148 /0/ IJS /OJ ISJ /O.S IS/ /07 1..,.!1 /00' /JJ .93 /tic 

161 J.> /QJ 9J IJ2 86 IJO 88 /68 .9o 166 9:1! IJJ "" 17.J J/ 

J'(J 178 78 110 6a 187 71 /IS 7J /,fJ 7oS" /8/ 63 /.90 66 /.92 

-99 207 Jl 2(7. 60 1.98 .s.; 200 J6 202 .54 204 0/ /.9$ 6.3 V9J 

22.,. J?- 222 "6 21.3 4.J 2/J "' 2/l .39 21.9 "7 2/2 .,.6 2/0 48 

17 2.39 1.9 2.37 28 /1!.30 26 232 2+ 2.3..,. 22 2.36 2.9 227 J/ 22S 

'2So 2 29'1> /1- 2-1.5 II 2"1-7 .9 249 7 2SI .$ 24-l- I"'- 242 16 

Fig. 746. 

Inspection of these examples will show that the couplet 1-16 

Js common to all four forms, but in every other case there is a 
difference. Thus the couplet 2-15 is only found in Form I, and 

it is inverted in the other three forms. The couplet 3-14 exists 
only in Form II, being elsewhere inverted. The couplet 4--13 is 

seen in Forms III and IV, and is inverted in Forms I and II-and 

so forth. 
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Form I. 

I 2 7 8 II 12. I.J 14 

Form.! F.:>rm II. F.:>rm III. F •rm IV. 
t6 IS 10 .9 6 .5" 4 .3 

0 0 00 7 

® 2 2 ~ 
lj J4 L3 J2 l [ l.J ., 0 " " Frrm II. 

4 4- 0 0 
.f' s s 0 

I " 6 3 IO 12 I.J IS 

16 1/f II .9 7 s 4- z 

6 00 6 

0 7 0 7 

00 8 0 
JO 15 14 lj 12 II IJ 

Fnrm Ill. 

I 6 .9 14 4 7 12 IS 

.9 .9 0 .9 16 II 3 ., 1.3 /0 .s z 

10 @) /0 @) 
@ II II @ 
@ @ @ 12 

15 '4 IJ 12 11 10 

Form IV. 

® 8 /J I.J 

@ 1?- @ ® 
1.5 @ @ 8 

I 4 s 8 10 II 14- IS 

16 /.3 12 9 7 6 " 2 

7 

>OOCX 
/6 16 16 16 10 IS 14 I3 

Fig. 747· Fig. 748. 

I 2 J 21 20 //) 18 IO II 17 ,.t- IL 

2-f- 2-' 22 .,. s 6 7 15 1-f-. 8 9 1.3 

Fig. 749· 
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The above described method will produce knight N asik squares 

of all orders = 0 (mod 8) excepting order 8, but it will not apply 

in this respect to order!\ = 4 (mod 8) . 

Fig. 749 shows a 2 x 12 magic rectangle that may be used 

for a magic square of order 24 covering the knight Nasik property. 

W. S.A. 

PANDIAGONAL-CONCENTRIC MAGIC SQUARES OF ORDERS 4m. 

These squares are composed of a central pandiagonal square 

surrounded by one or more bands of numbers, each band, together 

with its enclosed numbers, forming a pandiagonal magic square. 

The squares described here are of orders 4m and the bands 

or borders are composed of double strings of numbers. The central 

square and bands are constructed simultaneously instead of by the 

4S 28 3,f 22 47 26 _:;3 24 

4!J 8 63 10 .fl F 6/ 12 

.JI 42 17 40 .f!l 44 I!J .Jt! 

3 J4 13 fd I .% IJ J8 

46 27 36 '21., 48 25 34 23 

.fO 7 64- :J ~ J' 62 II 

32 41 1.9 ..J!J 30 4~. 20 37 

4 J3 14 J9 2 J.f" '16:. J7 

Fig. -750. 

usual method of first forming the nucleus square and arranging 

the bands successively around it. 
A square of the 8th order is shown in Fig. 750, both the central 

42 and 82 being pandiagonal. It is 42 ply, i. e., any square group 

of 16 numbers gives a constant total of 8(n2 + 1), where n=the num
ber of cells on the edge of the magic. It is also magic in all of its 

Franklin diagonals; i. e., each diagonal string of numbers bending 
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at right angles on either of the horizontal or vertical center lines 
of the square, as is shown by dotted lines, gives constant totals. 

In any size concentric square of the type here described, all of its 

concentric squares of orders 8m will be found to possess the Frank

lin bent diagonals. 
The analysis of these pandiagonal-concentric squares is best 

illustrated by their La Hireian method of construction, which is 

I 9 7 3 !(4 6 4 6 (7 3 I !!J 

I 9 7 3 0 6 4 6 !0 3 I !!J 

7 3 I ~ :4 6 4 6 I I !J 7 3 

7 3 I !J 14 6 4 6 : I !J 7 3 

i"='\ --- --- I --- ----~<0 --- --- --
2 8 8 -;-0 s s 2 z 8 

z.J 8 8 z rs s s s:@ 2 z 8 

8 z 2 8:s s 
I 

s s:2 8 8 2 

z 8IS 
I 

8 2 .J' .J' s:z 8 8 z 
?'.."'\ --- --- -;-0 -- --- :;-0 --- -- ---

3 7 !J 4 6 I 3 7 

3_.~ 7 !J I 0 4 6 4 K.9 I 3 7 

9 I .3 7 :6 4 6 4 :s 7 f) I 
I 

9 I 3 716 4 6 4 :3 7 9 I 
I 

Fig. 751. 

here explained in connection with the 12th order square. The 

square lattice of the subsidiary square, Fig. 751, is, for convenience 
of construction, divided into square sections of 16 cells each. In 
each of the corner sections (regardless of the size of the square 

to be formed) are placed four 1 's, their position to be as shown in 

Fig. 751. Each of these l's is the initial number of the series 1, 2, 

3, ..... ( n/4) 2 , which must be written in the lattice in natural order, 

each number falling in the same respective cell of a 16-cell section 
as the initial number. Two of these series are indicated in Fig. 751 
by circles enclosing the numbers, and inspection will show that each 

of the remaining series of numbers is written in the lattice in the 
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same manner, though they are in a reversed or reflected order. Any 

size subsidiary square thus filled possesses all the magic features 

of the final square. 

.!1.9 S4 ~ 4.5 

108 9 1:33 18 

63 90 :36 8/ 

(} 117 27 126 

Fig. 752. 

A second subsidiary square of the 4th order is constructed with 

the series 0, (n/4)', Z(n/4)', 3(n/4)', ...... lS.(n/4)', which must 

be so arranged as to produce a pandiagonal magic such as is shown 

100 63 7.!1 48 103 60 76 3/ /(}6 S7 7.J 34 

10.9 18 142 21 112 13 1:39 24 115 12 136 Z7 

70 9:3 :37 90 67 96 40 87 64 99 43 84 

7 120 28 135 4 /23 3/ 132 I /26 34 12!J 

101 GZ 80 47 104 .5.9 77 50 107 JG 74 S.J 

1/0 17 14.3 20 1/.J 14 140 23 1/6 II 1.37 2b 

71 92 38 89 68 95 41 86 G5 98 44 83 

8 1/9 2!J 1.34 5 122 32 13/ 2 125 35 128 

102 61 81 46 /05 J"8 78 49 108 55 75 sz 

Ill 16 144 19 114 13 141 22 117 /0 138 25 

72 91 351 88 69 94 42 8S t56 97 45 82 

9 118 30 133 6 12/ 33 130 3 124 36 127 

Fig. 753. 

in Fig. 752. It is obvious that if this square is pandiagonal, several 

of these squares may be contiguously arranged to form a larger 

square that is pandiagonal and 4"-ply, and also has the concentric 

features previously m:ntioned. 
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Fig. 752 is now added to each section of Fig. 751, cell to cell, 

which will produce the final magic square in Fig. 753. 
With a little practice, any size square of order 4m may be con

structed without the use of subsidiary squares, by writing the numbers 

directly into the square and following the same order of numeral 

procession as shown in Fig. 754. Other processes of direct con-

I ?.U. 6/ 228 5 220 57 232 !J 216 53 236 I.J 2/Z 4.9 Z40 

113 176 77 14~ 117 17Z 73 1.52 12/ IG8 69 /56 125 /64 65 160 

20.5 2o 241 48 201 24 245 44 1.97 26 24:7 40 19.3 .32 253 .36 

1.1.9 10() 129 .96 185 104 133 !JZ 181 10~ 137 88 177 112 14y 84 

2 223 G2 227 6 219 58 231 10 215 54 ~3~ 14_; 211 Jo ~~~ 
114 17.5 78 147 118 171 74 151 122 167 70 15.5 126 1~3 66 15,;1 

Zo6 Iff! 242 47 202 23 2-{-6 4.3 1.98 27 250 .3.9 194 .:JI 254 .J.5 

1.90 9.;1 130 ff'.f 186 10.3 134 !J/ 182 107) 1.38 87 178 Ill 142 8.3 

3 2ZZ 63 226 7 Z/8 59 t'30 II rf14 55 2.!14 15 210 Jl 238 

IIJ 17-f 7.9 14/J 11.9 17() 7.f' 15() 12.3 IG6 71 154 127 162 67 1.58 

2CJ7 18 24.3 46 2CJ3 22 247 42 1!1,;1 .Zb 25l 
/ 

38 1.95 .Ja.J (253, 34 

131' :18 !.JI f'4 i87 ICJZ I.JJ !JO 18.J 106 I.J9 ti6' ?7~ 1/0 143 ~z 

4 ?21 tf-4' ZZ5 8 217 GO 223 12 213 _:fl t'33 IG zo~_ 5Z\ :; t'37 

116 ~7j 80 145 /2(} 169 JG._ 143 124 ~65 72 153 128 161 '68._ 157 

~o:B 17 244 4J t'04 .21 248 41. __ -;oo 25 2.52 37 1.96 29 256 ).J, 

192 97 I.JZ ,;J.J 188 10/ 1.36 8;? 164 /O.f' 1-f() 85 180 /0.!} 144 8! 

Fig. 754-

struction may be discovered by numerous arrangements and com

binations of the subsidiary squares. 
Fig. 754 contains pandiagonal squares of the 4th, 8th, 12th and 

16th orders and is 42-ply. The 8th and 16th order squares are also 

magic in their Franklin bent diagonals. 
These concentric squares involve another magic feature in 

respect to zig-zag strings of numbers. These strings pass from 
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side to side, or from top to bottom, and bend at right angl~s after 
every fourth cell as indicated by the dotted line in Fig. 754. It should 

be noted, however, that in squares of orders 8m + 4 the central four 

numbers of a zig-zag string must run parallel to the side of the 

square, and the string must be symmetrical in respect to the center 

line of the square which divides the string in halves. For example 
in a >:qua:-e of the 20th order, the zig-zag string sho-_t!d b:: of this form 

~ and not of this form ~ 
Irt fact any group or string of numbers in these squares, that 

is symmetrical to the horizontal or vertical center line of the magic 

and is selected in accordance with the magic properties of the 16-

cell subsidiary square, will give the sum [r(n 2 + 1) ]/2, where r= 

the number of cells in the group or string, and n = the number of 

cells in the edge of the magic. One of these strings is exemplified 

in Fig. 754 by the numbers enclosed in circles. 

To explain what is meant above in reference to selecting the 

numbers in accordance with the magic properties of the 16-cell sub

sidiary square, note that the numbers, 27, 107, 214, l66, in the exem

plified string, form a magic row in the small subsidiary square, 70, 

235, 179, 30 and 251, 86, 14, 163 form magic diagonals, and 66, 

159, 255, 34 and 141, 239. 82, 52 form ply groups. 
H· A. S. 
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370, 383, 402, 403, 405, 408; Number 
series in, 137ff; Odd, 1ff, 248ff, 
260n, 383; Oddly-even, 191, 217ff, 
22Sff; of form 4m, 296; of form 
4p + 2, 267ff, 290n; of form 8p + 2, 
277ff; Ornate, 260n, 376ff; Over
lapping, 207; Pan-diagonal, 229ff, 
233, 235, 268, 269, 291, 292, 377, 396, 
401, 402, 410ff; Pure, 232, 236; 
Serrated, 241ff; with predetermined 
summations, 54. 

Magic stars, 5-pointed, 339-342; 6-
pointed, 342-344; 7 -pointed, 344; 8-
pointed, 345-347. 

Map of Ho, The, 122. 
Mathematical Recreations (Rouse 

Ball), 314. 
Mathematical study of magic squares, 

129ff; value of magic squares, 187. 
Mathematics, Quarterlj• Journal of, 

363. 
Mayers, 123. 
Melancholy, Diirer's picture of, 146, 

147. 
Mersenne, 314, 36Sn. 
Method of De Ia Hire, 225 ; of rever

sions, 298, 318; Scheffler's, 14; 
Thompson's, 304, 315, 373. 

Meziriac's (Bachet de) method of 
constructing odd magic squares, 17. 

Morton, Frederic A., 339, 348. 
Moscopulus, 188. 

Nasik Cubes, The Properties of 
(Frost), 363n. 

Nasik idea, Evolution of the, 364. 
Nasik squares, 234, 236, 237f, 242, 255. 

256, 287, 290, 291, 370, 383, 402, 403, 
405, 408; defined, 365; and cubes, 
164; Non-, 370. 

Nasiks, The Theory of Path (C. 
Planck), 273n, 363n, 388. 

Natural squares, 295; Deformed, 315. 
Number series, 137ff. 

Odd magic cubes, 64ff. 
Odd magic squares, 1ff, 248ff, 260n, 

383; Bachet de Mezeriac's method 
of constructing, 17; Breakmoves in, 
7; Examples of breakmoves in, 8; 
General principles of, 7. 

Oddly-even magic squares, 196, 217ff, 
225ff. 

Omar, the astronomer poet, 157. 
Orders of figures, ( o, ro, i, ri) ,79, 

113ff. 
Ornate magics, 260n, 376ff. 

Pan-diagonal magic squares, 227, 229ff, 
233, 235, 268, 269f, 291, 292, 377, 
396, 401, 402, 410ff. 
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Parton, James, 96, 100. 
Path method, 273. 
Pentagram, Magic, 172. 
"Phaedrus" of Plato, 148. 
Philolaus, 148, 157. 
Philosophical Magazine, 175. 
Philosophical Subjects, Letters and 

Papers on (Benjamin Franklin), 89. 
Philosophy, Chinese (Dr.Paul Carus), 

1n; Pythagorean, 148. 
Planck, C., 189, 240, 257, 258, 260n, 

267, 268, 277, 290, 291, 292, 320, 375, 
390; "Magic Squares, Cubes, etc.", 
363n; The Theory of Path Nasiks, 
273n, 363n, 388n. 

Plato, 148ff, 159. 
Platonic school, 157. 
Plutarch, 146, 149, 150, 154, 156n. 
"Politics" of Aristotle, 153. 
Predetermined summations, Magic 

squares with, 54. 
Primary squares, 256, 285, 290, 292; 

Construction by, 13-18, 224, 232. 
Proceedings of the Royal Institution 

of Great Britain, 187. 
"Procreation of the Soul" (Plutarch), 

149, 154, 156n. 
Pseudo-cubes, 306; Method of, 304. 
Pure magic square, 232, 236. 
Pythagoras, vii, 123, 124, 147, 156; 

Harmonic scale, of, 153, 154; Phi
losophy of, 148; School of, 147. 

Pythagorean numbers, 146ff. 

Quarterly Journal of Mathematics, 
365n, 366n, 372. 

Quaternate transposition, Alternation 
by, 109. 

Queen, The, 165. 

Rectangles, Magic, 170. 
Reflections on Magic Squares, 79, 87, 

113ff, 153. 
"Republic" of Plato, 148, 153, 156, 

157, 158. 

Reversions, Method of, 298, 318; 
Theory of, 295ff. 

Royal Institution of Great Britain, 
Proceedings of, 187. 

Savage, D. F., 216, 225. 
Sayles, Harry A., 176, 189, 201, 244, 

247, 283, 294, 331, 339. 
Scheffler, Prof., 14. 
Schilling, Prof., 124. 
Schleiermacher, 151n. 
Schneider, 151n. 
Schubert, Prof. Hermann, 151n. 
Scroll of Loh, The, 122. 
Series, Arithmetical, 291, 393; Magic, 

231 ; Number, 137ff. 
Shuldham, Chas. D., 173. 
Siamese twins, 209. 
Smith, David Eugene, 124, 127. 
"Soul of the World and Nature" 

(Timaeus), 154. 
South Kensington Museum (London), 

164, 372. 
Spheres, Harmony of the, vi. 
State, Number of the, 153. 
Stifelius, 92. 
Stringham, 366. 
Symbols, Magic Squares in, 120f. 

Tetractys, 149, 151. 
Theory of Path Nasiks (C. Planck), 

273n, 366n. 
Thompson's method, 304, 315, 373. 
"Timaeus" of Plato, 148, 149, 154, 

156n. 
Timaeus the Lilcrian, 154. 
Transposition, Alternation by, 106-112. 

Ventres, D. B., 86. 
Verses, Golden, 149. 
Virgil, 124. 

Worthington, John, 189, 206, 373. 

Yang and yin, 122, 123. 
Yih King, 122, 123. 
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DIAGRAMS OF COMPLETED :MAGICS. 

MAGIC SQUARES: 

Order 3: 2, 54, 55, 58, 59, 60, 62, 128, 
159, 164, 284, 304; 

4: 18, 19, 61, 62, 91, 94, 116, 
125, 127, 136, 140, 141, 163, 
166, 173, 179, 180, 181, 182, 
183, 211, 224, 265, 291, 297, 
343, 412; 

5: 2, 4, 11, 12, 15, 16, 17, 46, 
47, 57, 113, 141, 173, 210, 
235, 244, 246, 250, 253, 263, 
289, 291; 

6: 19, 20, 24, 36, 40, so, 51, 
57, 118, 163, 172, 184, 185, 
186, 187, 215, 219, 220, 226, 
228, 238, 264, 265, 269, 270, 
292, 297, 300; 

7: 4, 48, 245, 251; 
8: 25, 27, 28, 43, 52, 90, 97, 

101, 116, 126, 165, 167, 169, 
170, 175, 180, 243, 256, 377, 
391, 396, 410; 

9: 13, 44, 45, 49, 134, 144, 172, 
173, 208, 212, 215, 247; 

10: 30, 53, 221, 222, 228, 272, 
275, 281, 282, 298; 

Order 12: 31, 45, 116, 301, 392, 398, 
412; 

13: 240; 
14: 33, 213, 302; 
15: 214, 386, 387, 388; 
16: 91, 97, 108, 110, 382, 393, 

395, 400, 403, 408, 413; 
20: 379; 
24: 380; 
25: 370; 
27: 150. 

MAGIC CusEs: 
Order 3 : 65, 66, 69, 85, 86, 203, 293, 

352, 364. 
4: 78, 86, 293, 305, 308; 
5: 73, 76, 87; 
6: 191, 197, 202, 205, 305, 312, 

313; 
8: 81, 82. 

10: 310, 311; 
MAGIC 0CTAHEDROIDS : 

Order 3: 352, 367; 
" 4: 315, 316, 317, 318, 354, 374; 

5: 353, 371; 
6: 356-357; 
8: 358-359. 




