
CHAPTER XLI 
 

THE NEWER ‘MATTER’ 
 

The twofold nature of light as a light-wave and as a light-quantum is thus extended 
to electrons and, further, to atoms: their wave-nature is asserting itself more and 
more, theoretically and experimentally, as concurrent with their corpuscular nature. 
(481) A. SOMMERFELD 
 

The concepts of wave amplitude, electric and magnetic field strengths, energy 
density, etc., were originally derived from primitive experiences of daily life, such as 
the observation of water waves or the vibrations of elastic bodies. (215) 

 W. HEISENBERG 
The problem of quantum theory centers on the fact that the particle picture and the 

wave picture are merely two different aspects of one and the same physical reality. 
(215) W. HEISENBERG 
 

To me it seems extraordinarily difficult to tackle problems of the above kind, as 
long as we feel obliged on epistemological grounds to repress intuition in atomic 
dynamics, and to operate only with such abstract ideas as transition probabilities, 
energy levels, etc. (466) E. SCHRODINGER 
 

. . . for visualization, however, we must content ourselves with two incomplete 
analogies—the wave picture and the corpuscular picture. (215) W. HEISENBERG 
 

Not every physicist is an epistemologist, and not everyone must or can be one. 
Special investigation claims a whole man, so does the theory of knowledge. 
(326) E. MACH 

 
The following chapter was written in 1928 and since then the newer quantum 

mechanics has been developed much further, proved enormously fruitful, and has 
been repeatedly supported by experiments. The literature on this subject is steadily 
accumulating, the most important classical memoirs by the originators of this new 
scientific trend have been collected into book form and are now easily accessible. 
There is also a large number of excellent technical, as well as non-technical 
presentations. On reading in December 1932 what I had written in 1928, I find that 
although from some aspects the presentation may be considered unsatisfactory and 
antiquated, yet the epistemological side of the older presentation remains valid. So it 
seems advisable to retain this chapter and add only a few further A  suggestions. 

It is known that practically all creative and constructive physicists, who have 
produced revolutionary and lasting works, were interested in epistemology. There 
are many physicists who know as much physics as an Einstein, for instance, yet 
Einstein remains quite unique and his work is to a large extent responsible for the 
present revolutionary developments of physics. The reason is simple. Einstein has 
corrected a long established epistemological fallacy, which can be expressed in my 
language as the rejection of the structural fallacy of elementalism in a limited yet 
very important field of physics. He also established and applied new fundamental 
epistemological principles, which is another 
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way of saying that he established new standards of evaluation in physics, as for 
instance, that we should never postulate entities which cannot possibly be observed, 
that the ‘laws of nature’ should be formulated in terms of generally invariant 
relations expressed in tensor equations , . 

The weakness of the system of Einstein, resulting in many futile criticisms, lies 
in the fact that he eliminated elementalism in one vital region of physics, but he did 
not formulate the general epistemological principle of non-elementalism, which 
should be applied everywhere, daily life included. This he could not have 
accomplished without a still deeper enquiry into the mechanism of time-binding, 
which produces all science, and which leads to the discovery of the fundamental 
fallacy in the use of the ‘is’ of identity. Only after the elimination of this remainder 
in us of the primitive man, does structure become the only possible link between the 
objective and verbal worlds, and becomes also the only possible content of 
‘knowledge’. ‘Similarity of structure’ then demands the complete and general 
elimination from science and life of any elementalism. 

The strength of the newer quantum mechanics lies in the fact that the younger 
physicists have accepted the new epoch-making einsteinian standards of evaluation 
or epistemological principles; the weakness lies in the fact that the scientists do not 
realize that the fallacy of elementalism is entirely general and vitiates all scientific 
outlooks. No one can produce satisfactory theories, nor evaluate, nor interpret them 
properly as long as he continues to use the few-valued and elementalistic ‘logics’ 
and ‘psychologies’, which are at present always found at the bottom of any 
‘evaluation’ or ‘interpretation’. 

The latest work of Dirac goes very far in the direction of building A  physics by 
establishing his language of transformations, states, observables. , ascribing 
structure to protons, magnetic poles. , but even Dirac does not seem to realize the 
general fundamental A  issues involved. Dirac says: ‘The description which 
quantum mechanics allows us to give is merely a manner of speaking which is of 
value in helping us to deduce and to remember the results of experiments and which 
never leads to wrong conclusions. One should not try to give too much meaning to 
it.’1 (Italics are mine.) The italicized words show that even Dirac does not realize 
fully the mechanism of identification, as otherwise he would not have used these 
words in this form. If we entirely abandon identification, then a theory or a book, 
being verbal, represents nothing else but special language; there is no ‘merely’ about 
that either, structure being the only possible link between the non-verbal and verbal 
worlds. Instead of warning the reader ‘that one should not try to give too much 
meaning to it’, we must simply insist that the only ‘meaning’ should be looked for in 
structure. , the ‘too much meaning’ always indicating inappropriate evaluation and 
ultimately semantic disturbances. 

Current physical literature shows that the main problems of ‘interpretation’ 
depend on the solution of the m.o problems of ‘observation’, ‘reality’, ‘fact’. , and 
border on the scientific solution of the problems of pathological ‘delusions’, 
‘illusions’, and ‘hallucinations’, all of which involve the fundamental issues of the 
elimination of identification. But once the A  issues are structurally formu- 
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lated and applied in practice, they result in a A , non-el, ∞-valued orientation which 
involves the recognition of the multiordinality of terms. , which also solves the 
problems of quantum ‘interpretations’, the details of which I cannot enter into here. 

Originally the quantum writers had an inclination to ascribe ‘physical meaning’ 
to waves. The present tendency of specialists is to regard the waves as ‘purely 
symbolic’, forgetting that experimentally something else besides the symbols ‘bends 
around the corners’. From a A  point of view, when the problems of the 
multiordinality of such terms as ‘observation’, ‘fact’, ‘reality’. , are understood we 
will have to ascribe ‘physical reality’ to the waves, ascribe finer structure to the 
‘electron’, . We would also have to abandon the A ‘particle’-orientation and treat the 
‘electron’, ‘proton’. , in a A , ∞-valued way as minute fields, which under the 
present experimental conditions behave as ‘particles’. This A  field-orientation 
suggests a great many possible interpretations, impossible in the A ‘particle’-
orientation. 

Mathematically, the geometry of ‘space filling’ curves would have to be 
elaborated further so that we would better understand the structure of plenums and 
this knowledge should be applied to physics. 

We should also perform a direct series of experiments with a more elaborate 
Faraday box. A small wooden laboratory should be isolated from the rest of the 
world by every available energetic screen and physical experiments repeated under 
such new dynamic conditions. Technically the winding of, say, a foot thickness of 
insulated wires for different currents would not present any difficulties except for 
the door which should be also in the circuit. The eventual probable results of 
experiments in such a laboratory under different conditions could be calculated in 
advance, and it may be fairly well anticipated that at least significant discrepancies 
between the calculations and actual experiments would appear, throwing new light 
on the structure of the space-time plenum, the eventual connection between 
gravitation and electromagnetism , . Arguments alone will not help in this field and 
only experiments will point the pathway. 

Because of the extensive literature dealing with the new quantum mechanics it 
seems unnecessary to dwell upon it any further, except by expressing the hope that 
some mathematicians and physicists will master the A  ∞-valued orientation and 
will revise the theories now existing. 
 
Section A. Introductory. 

The new researches in the structure of the materials of the universe proceeded 
under unique conditions. On the one hand, since Planck in 1900 originated the 
quantum theory, which earlier elaboration we now call the classical quantum theory, 
the amount of experimental facts pointing in the direction of some quantum theory 
had become very convincing, yet, on the other hand, the lack of a structurally 
satisfactory theory to co-ordinate these new experimental facts was becoming 
distressing. 
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It appeared as though there were either a lack of ‘geniuses’ able to produce the 
required new theories, or the geniuses existed, but were unable to function properly. 
They seemed to suffer from a semantic blockage due to some identification which 
successfully prevented broader and unhampered vision. 

Presently the co-ordinating theories were produced. In the production of the new 
quantum mechanics we see at work the unconscious semantic liberating influence of 
the E  and N  systems which had been developed and which we have already 
analysed. The classical theories had come to a structural impasse, but with the 
advent of younger scientists, who were educated in the theoretical semantic freedom 
of these new systems, the semantic blockage due to ascribing ‘objectivity’ to 
‘matter’, ‘space’, and ‘time’ was removed, creative forces were released, and these 
young scientists proceeded to construct the structural formulations needed. They are 
now rightly hailed as geniuses. 

It is astonishing how these young post-einsteinian scientists of various lands and 
different inclinations produced, independently and practically simultaneously, 
various new quantum theories, using different methods and different mathematical, 
as well as national, languages. When these different theories were studied and 
compared they were found to amount practically to one theory, but expressed by 
different mathematical languages. Now the use of different mathematical languages 
to express one group of experimental facts brings an additional benefit in that it 
gives diversified verbal structural information about the problems at hand. Since 
these developments are very recent and progress has been extremely rapid it is hard 
to keep track of the status of the problem. 

In this account of the newer quantum mechanics I will emphasize only the 
structural and semantic side, treating the different theories as behaviour of their 
respective authors, and as illustrating the issues above mentioned. From this point of 
view, we are not interested in discussing to what extent the given theories are ‘true’ 
or ‘false’, which means no more than similar or dissimilar to the world in structure. 
We are interested directly in those semantic aspects of human behaviour which have 
been neglected. When ‘Smith’ puts a black mark on white paper, it is to be called 
human behaviour, and behaviour unique for man. Our analysis does not involve the 
question of the validity of his doings. But since he did it, let us analyse his doings. 

In speaking about theories as complex and technical as the newer quantum 
mechanics, it is practically impossible to give a satisfactory account in a non-
technical way. Such theories have not yet been worked out thoroughly enough, 
many points are still not clear, and no proper evaluation is possible at present. These 
difficulties are really immaterial to our present purpose, because these theories are 
empirical facts on record, and they throw significant light on human behaviour. It is 
not here proposed to make reflections on the world around us, but to analyse a 
certain linguistic, structural form of human behaviour. 

From the point of view of structure and s.r, the classical quantum mechanics 
would be quite enough for sanity and adjustment; it is enough to realize that the still 
older theories of ‘matter’, ‘space’, and ‘time’ are el, structurally fallacious and 
represent only primitive identifications. 
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The advent of such a crop of geniuses and of several theories expressed quite 
differently, yet nearly equivalent, is an event of deep human semantic significance. 
It helps to understand the working of the human nervous system, and is in accord 
with the present general theory. 

From the point of view of the 
physicist, these new theories are 
a marked structural improvement 
over the classical theory, a fact 
which can best be illustrated by 
a diagram of a special case. In 
Fig. 1, the crosses indicate the 
experimental data, the curves 
indicate the results as predicted 
by the classical theory, by the 
Compton theory, and by the new 
quantum mechanics. It should be 
noticed that the new quantum 
theory appears much more in 
accordance with the 
experimental data than the older 
theories. This fact is of great 
structural and semantic 
importance to us as well as to the 
physicist. 
 
Section B. The nature of the problem. 

At this point we may explain briefly the nature of the problem that was 
demanding solution. 

We have become familiar with the use of co-ordinates. This procedure has been 
generalized and has given rise to ‘generalized co-ordinates’. These are defined as 
arbitrary variables which represent not merely lengths but may also represent 
angles, surfaces, volumes. , though they must be capable of representing the 3n 
orthogonal co-ordinates. If, in a special case, we make the number of generalized 
co-ordinates equal to the number of degrees of freedom which the system has, these 
s generalized co-ordinates can be regarded as independent of each other. If we 
denote by qi the generalized co-ordinate, qi (i = 1 to s), then the orthogonal co-
ordinates of any of the n particles can be represented as definite functions of the 
generalized co-ordinates, so that 
   xh = fh (q1, q2, q3, . . . qs) .   (1) 

We know that kinetic energy is represented by mv2/2 where m represents the 
mass and v the velocity, or the ‘time’ derivative of the ‘space’ travelled. 

If we want to find the value for the energy we must differentiate each of the 3n 
equations (1) with respect to ‘time’, which gives the components of the velocity, 
square them, multiply them by the corresponding masses and add them together to 
find the double value for the energy. 
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For simplicity we will denote the ‘time’ derivatives by the chosen letter, but with 
a dot over it (newtonian method). Thus, 
  xh=∂xh/∂q1 q.1+∂xh/∂q2 q.2+ . . . +∂xh/∂qs qs  (2) 
Squaring (2), we have 

xh2=(∂xh/∂q1)2 q12+(∂xh/∂q2)2 q22+ . . . +(∂xh/∂qs)2 qs2 

 +2(∂xh/∂q1)(∂xh/∂q2)q1q2+2(∂xh/∂q1)(∂xh/∂q3)q1q3+ . . . (3) 
+2(∂xh/∂q2)(∂xh/∂q3)q2q3 + . . . 

The last expression (3) can be simplified: 
   xh2=Σi=1i=s Σk=1k=s (∂xh/∂qi)(∂xh/∂qk) qi qk . (4) 

It is easy to see that if in (4) we put k=i we will have square members, and when 
i≠k, every term will occur twice and so the above abbreviation (4), covers the 
formula (3). 

If we write similar expressions for all of the 3n orthogonal co-ordinates, multiply 
by the corresponding masses and then add them together we obtain twice the value 
for the kinetic energy 2L. 

2L=Σi=1i=s Σk=1k=s cik q.i q.k , where 
cik=Σh=1h=n [(∂xh/∂qi)(∂xh/∂qk)+(∂yh/∂qi)(∂yh/∂qk)+(∂zh/∂qi)(∂zh/∂qk)] . 

The coefficients in the expansion of cik depend only on the values of the generalized 
co-ordinates and are independent of the value of the time-derivatives. The time-
derivatives can be properly called generalized velocities, and we may denote them 
by qi.2 

In establishing formulae for the quantum theory we want to be as general as 
possible and not restrict ourselves to vibrational energy only. But we want to take 
into consideration any arbitrary point-mass, independently of whether we assume 
this point to be charged or not. 

We define the momentum or impulse as the product of the mass and the velocity, 
or, p=mv. If, instead of denoting our co-ordinates by x, y, and z, we use the 
generalized co-ordinates qi, we would have for the magnitude and direction of the 
velocities the time-derivatives of the co-ordinates; namely, qi, where q1=x.=dx/dt, 
q2=y.=dy/dt, . 

If p1, p2, p3, represent the corresponding components of the momentum or 
impulse, then we would have pi=mqi.     (5) 
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We should notice that the dynamical triplet of impulse co-ordinates occurs 
conjointly with the geometrical triplet of the co-ordinates of position. The second 
law of motion tells us that ‘the change in momentum is proportional to the 
impressed force and takes place in the direction in which that force acts’. If we 
assume that the force K is derivable from the potential energy Epot , (a function of 
qi), then we have pi=Ki=-∂Epot/∂qi.  (6) 

The kinetic energy (Ekin) is represented by 
Ekin=m/2 (q12+q22+q32)=(p12+p22+p32)/2m 

where by (5), qi2=pi2/m2. We call the total energy, which is represented as the sum 
of the kinetic and the potential energy, as expressed in terms of the generalized co-
ordinates and momenta, the hamiltonian function H. Then we have: 

H(q, p) =Ekin+Epot , ∂H/∂qi=∂Epot/∂qi , ∂H/∂pi=∂Ekin/∂pi=pi/m. (7) 
From (5), (6), and (7), we get the fundamental equations of motion, 

∂qi/∂t=∂H/∂pi , and ∂pi/∂t=-∂H/∂qi . 
The above hamiltonian, or canonical, form of the equations is remarkable 

because it preserves its form if any arbitrary co-ordinates are introduced; it is 
invariant under the transformation of co-ordinates. The equations hold not only for 
an individual point-mass but also for any arbitrary mechanical system. For arbitrary 
co-ordinates and systems the momentum or impulse p is defined by 

    ∂Ekin/∂qi ,    so that the 
kinetic energy is expressed as a function of the qi's and their derivatives the qi's. 

To help visualization we can construct and consider the p and q as rectangular 
co-ordinates in two dimensions in the phase plane of our system. In this plane the 
sequence of those graph-points that correspond to the successive states of motion of 
the system represent the phase paths or phase-orbits. The characteristic structural 
feature of the quantum theory is that it selects a discrete family of phase-orbits from 
the infinity of possible orbits. 

We next consider a point-mass m that is bound elastically to its position of rest, 
and which can move to either side of the central position only in the direction x=q, 
or its reverse, when experiencing a restoring force. We call such point-mass a linear 
oscillator. If we wish to emphasize that our oscillator is capable only of definite 
vibrations, on account of its elastic attachment, we call it a ‘harmonic oscillator’. If 
the vibration number, or the frequency of the oscillator, which is represented by the 
number of its free vibrations per unit of ‘time’, is denoted by ν, then the vibration is 
represented by x=q=a sin 2πνt. 
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The impulse becomes p=mv=mq=2πνma cos 2πνt. The phase-orbit is represented 
by an ellipse in the p-q-plane and is given by the equation q2/a2+p2/b2=1, where the 
minor axis b = 2πνma. 

In our family of orbits the phase area between two orbits is equal to the quantum 
of action h. Sommerfeld regards h as an elementary region or element of the phase 
area, and considers it as the definition of the Planck quantum of action h. If Wn 
represents the energy of the oscillator when it describes the n-th orbit, then Wn=nhν. 
In these orbits the energy appears as a whole multiple of the elementary quantum of 
energy; ε=hν, and Wn=nε. 

We call stationary states of the oscillator those states which the oscillator may 
pass through without cessation and without loss of energy, or, without radiation. 

When an oscillator retains its stationary state, its energy is constant and its graph 
appears as an ellipse of the family in the phase plane. However, when the energy of 
the oscillator changes and jumps over to a smaller orbit, it emits energy. When it 
passes to a larger orbit it absorbs energy. The emission and absorption of energy 
occurs in multiples of the energy quantum, ε. 

The graphs of the system in the phase plane are restricted to certain ‘quantised’ 
orbits. Between each orbit and its successor there is an elementary region, of area h. 
The n-th orbit, if closed, has as area nh. Or, expressed symbolically, ∫ pdq=nh. This 
integral is called the phase integral and is taken along the n-th orbit. 

The quantum hypothesis can be structurally formulated so that the phase integral 
must be a whole multiple of the quantum of action h. This form of the classical 
quantum postulate is more general than the original formulation of Planck, although 
it includes the latter as a particular case. 

In case of a rotating point-mass, a similar analysis gives us Ekin=pq./2 and when 
ν=q/2π, Ekin=nh/2 q./2π=nhν/2 where ν represents the rotation frequency of the 
rotator, or the number of full revolutions per unit of ‘time’, and takes the place of 
the vibration number of the oscillator. 

In the classical theory, the quantised states were distinguished from all other 
possibilities by the characteristic whole numbers, and so we had a network. In a 
quantum orbit the ‘electron’, if undisturbed, was supposed to move permanently 
without resistance and not to emit radiation. The phase-space, representing the 
manifold of the possible states, including non-stationary states, is crossed, mesh-
like, by the graph curves of the stationary orbits. The size of the meshes is 
determined by Planck’s constant h.3 
 
Section C. Matrices. 

The older quantum mechanics forms an elaborate system, and we have a large 
accumulation of numerical data on record. Some of these data corroborated the older 
theories nicely, but some data were in contradiction to the classical 
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theory. The problem was not to discard the numerical data, which, whatever they 
mean structurally, represent quite solidly established data, but to find new equations 
which would be satisfied by these facts. Now ‘new equations’ really mean 
languages of new structure, and therefore new formulations had to be discovered. 

Dealing with tables which give special theoretical data, it was natural to start 
with a calculus which deals with such numerical special tables. Such a calculus had 
been developed long ago, and was called the matrix calculus. Later on, when 
matrices themselves were treated as complex quantities, and still later, as operators, 
we were enabled to pass to the more developed calculi which use ordinary 
differential equations. The new quantum theories give us a unique case, in which 
several mathematical methods have been used at once and of which the results are 
fairly in accord. 

At this point it is advisable to give a few structural explanations of these 
mathematical notions, including the matrix calculus. If we have two equations of the 
first degree with two variables; namely, a1x+b1y=c1 and a2x+b2y=c2, the solution of 
these equations takes the form: x=(b2c1-b1c2)/(a1b2-a2b1); y=(c2a1-c1a2)/(a1b2-a2b1) 
The common denominator of the two solutions can be written in a two-dimensional 
table 

|a1, b1| 
|a2, b2|     (1) 

which is understood as the product of the upper left-hand number and the lower 
right-hand number, minus the product of the lower left-hand and upper right-hand 
numbers. 

Similarly, the numerators of these solutions can also be represented in the form 
of two-dimensional tables; namely, 

  |c1, b1|     |a1, c1| 
b2c1-b1c2 = |c2, b2| (2) and   c2a1 - c1a2 = |a2, c2|   (3) 
to which the above-mentioned rule applies. Expressions like (1), (2), (3), are called 
determinants of the second order. 

The numbers in the first, second. , horizontal lines are called the first, second. , 
rows, respectively; the vertical lines are called first, second. , columns. 

The above definitions and method can be applied to any number of equations 
with an equal number of variables, and in each case our determinant would have n2 
numbers, n rows and n columns. 

We may use another notation which employs one letter for the coefficients of 
our variables, with indexes or suffixes to indicate that their values are different. Let 
us consider n2 elements in the table: 

|a1,1, a1,2, a1,3, . . . , a1,n| 
|a2,1, a2,2, a2,3, . . . , a2,n| 
| . . . . . . . . | .  (4) 
|an,1, an,2, an,3, . . . , an,n| 

The expression (4) is called a determinant of the n-th order. 
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The notation by suffixes is very convenient and is very much used these days. 
The first suffix denotes the row, the second the column in which the element is 
situated. Usually the comma dividing the two numbers in the index is dropped and 
the coefficients are written simply a11, instead of a1,1. In general the element ai,k , or 
aik , represents the element in row i and column k. 

The elements Iying in the diagonal joining the upper left-hand to the lower right-
hand number are called the principal diagonal. In our example we notice that the 
elements in the diagonal are such that i = k. 

We have definite rules by which we can arrive at the solution of our equations, 
once the coefficients, which are the elements of the determinant, are given. In 
general, the determinants are treated as a functional form. 

If m and n are positive integers, a manifold, or system of mn ordered quantities 
or elements arranged in m horizontal and n vertical rows, will be called a 
rectangular matrix and we may use the notation A = (a(mn)): 

a(11) a(12) a(13) .... 
a(31) a(32) a(33) .... , or (a(nm)). 
........ ........ ........ .... 

The numbers m and n are called the orders of the matrix. If m=n the matrix is called 
a square matrix. Without loss of generality we can treat any rectangular matrix in 
which m≠n as a square matrix by supplementing the missing rows and columns with 
zeros. 

A matrix of the type, 
   1 0 0 0 .... 
   0 1 0 0 .... 
  1 =  0 0 1 0 .... , or (δ(nm)), 
   0 0 0 1 .... 
   .. .. .. .. .... 
where δ(nm) =1 for n=m, and δ(nm)=0 for n≠m, is called a unit matrix. The matrix 
   a(11) 0 0 0 .... 
    0 a(22) 0 0 .... , or (a(nm) δ(nm)), 

    0 0 a(33) 0 .... 
    ...... ...... ...... ...... .... 
is called a diagonal matrix. In the new quantum mechanics a diagonal matrix is 
independent of t and represents a constant of the classical theory. The reverse is not 
necessarily true. The operation of differentiation can be expressed in terms of 
multiplication of matrices with the aid of the unit matrix.4 

Equations in which matrices are equated are called matrix equations. If the 
equations involve only one unknown matrix, which does not occur more than once 
as a factor, such equations are called matrix equations of the first degree. 
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The m scalar equations 
a11x1 +a12x2 + . . . +a1nxn = c1
a21x1 +a22x2 + . . . +a2nxn = c2
. . . . . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . . . . 
am1x1 +am2x2 + . . . +amnxn = cm

are together equivalent to one single matrix equation. There are several ways in 
which the notation can be simplified. 

The difference between a determinant and a matrix is subtle, but important. By a 
determinant we understand, by definition, a certain homogeneous polynomial of the 
n-th degree, in the n2 elements aij. Accordingly, a determinant gives a definite 
number when calculated. 

But in many instances we are interested in the table, or the n2 elements arranged 
in a certain order but not combined into a polynomial. Such an array, or table, is 
called a matrix. Thus, from this point of view, a matrix does not represent a definite 
quantity, but a system of quantities, and so a matrix is not a determinant. 

We can illustrate this difference by an example. If we take a determinant of the 
second order 

| a1, b1| 
| a2, b2| 

and change the rows into columns, or vice versa, thus: 
| a1, a2| 
| b1, b2| 

the value of both determinants will be equal; namely, 
a1b2-a2b1, 

by the definition rule already given; yet the matrices of the two determinants are 
different. 

Although different, a determinant nevertheless defines a matrix, called the 
matrix of the determinant; conversely, a matrix defines a determinant, called the 
determinant of the matrix. 

We have said that a matrix does not represent a quantity, while a determinant 
does. At this stage, and from this point of view, we may say so legitimately. 
However, we might eventually treat a matrix as a quantity also; but for this purpose 
we should have to enlarge the meaning of the term ‘quantity’. 

In our present use of the term ‘quantity’ we mean the real and complex 
quantities of ordinary algebra. 

It may be said that mathematicians have had a peculiar tendency, which has 
proven of great value in the development of mathematics, gradually to extend the 
meaning of terms in order to embrace new notions as they arise. For instance, we 
have enlarged the primitive meaning applied to positive integers to embrace 
negative numbers, which formerly would not have been considered as quantities. 
Similarly, if we here use the ordinary notion of algebraic quantity, then a matrix is 
not a quantity but a system of quantities. The problem is, how shall we enlarge this 
meaning to include the matrices ? 
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Mathematics recognizes that this generalization of mathematical notions is 
extremely useful and legitimate. This structural issue appears to be of very general 
application, as all of us exhibit a tendency towards it. It is a purely mathematical and 
useful tendency in mathematics, but it leads to disastrous results when applied to 
daily-life abstractions, as explained in Part VII. In this connection we should recall 
the difference between the mathematical contentless abstractions and the 
abstractions with physical content, with which we are generally concerned in 
science and life. 

Let us now follow up the method by which a matrix can be considered as a 
quantity. If we have objects of two or more kinds which can be counted or 
measured, and if we consider an aggregate of such objects, say 5 horses, 3 cows and 
2 sheep, we could denote such a complex quantity by the symbol (5,3,2). In this 
case, the first place in our symbol would be reserved for horses, the second for 
cows, and the third for sheep. 

In mathematics, we do not specify horses, or cows, or sheep, but consider sets of 
quantities, and distinguish them by the position which they have in our symbolism. 
We may denote such a complex quantity by a single letter, A=(a,b,c,). (For instance, 
we denote a fraction by a single letter, although a fraction is specified by two 
numbers.) 

In such an instance, we should call a complex quantity equal to another when, 
and only when, the components are respectively equal. And a complex quantity is 
said to vanish only in case all the components vanish. 

Ordinary mathematical operations can be applied to such complex quantities. 
For instance, we may define a sum or difference of two complex quantities 

A'=(a1,b1,c1) and A"=(a2,b2,c2) as 
A'+/-A"=(a1+/-a2,b1+/-b2,c1+/-c2) . , 

a definition which is entirely satisfactory theoretically, and also practically, as can 
be verified from our example. 

From this point of view we may consider a matrix as a complex quantity with 
mn or m2 components. A matrix would then represent a complex quantity, as a 
special case under the general method sketched above. 

We could then define our further operations. A matrix would be said to be zero 
when all elements are equal to zero. Two matrices would be said to be equal when 
they have equal numbers of rows and columns and every element of one is equal to 
the corresponding element of the other. 

By setting up some such rules we could develop a calculus of matrices, and 
matrices would be considered as complex numbers. In general, the algebraic rules 
would be found to be applicable to matrices, which would further justify us in 
treating matrices as complex numbers. 

One of the notable exceptions in our operations would be found in the 
application of the classical operation of multiplication and its dependencies. In 
ordinary algebra and arithmetic, multiplication is what is called ‘commutative’ 
which means that 2 × 3 = 3 × 2 = 6, or a × b = b × a. 

In defining the multiplication of matrices we have no a priori grounds for 
determining why one definition or restriction should be preferable to another. 
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Only practice can show which definition is more workable or more fruitful in 
results. In the matrix calculus the definition of Cayley is generally accepted, as it has 
led to the most workable results. It was based on considerations of the composition 
of linear transformations. 

The definition is approximately as follows: The product ab of two square 
matrices of the n-th order gives a square matrix of the n-th order in which the 
element which lies in the i-th row and j-th column is obtained by multiplying each 
element of the i-th row of a by the corresponding element of the j-th column of b 
and adding the results. 

If we denote by aij and bij the elements in the i-th row and j-th column of a and b 
respectively, then by definition the element (i,j) of our product ab would give, 
   ai1b1j+ai2b2j+ . . . +ainbnj,    (5) 
and the (i,j) element in the matrix ba would be 
   a1jbi1+a2jbi2+ . . . +anjbin.    (6) 

In general, the quantities (5) and (6) are not equal and therefore we see that the 
multiplication of matrices is, in general, not commutative. The order in which we 
perform our multiplication is of importance and ab is not generally equal to ba, (ab 
≠ ba).5 

It should be noticed that the vector calculus has made us familiar with new 
operations which differ from arithmetical operations. For instance, the sum of two 
vectors differs in general from the arithmetical sum and is defined by the law of the 
parallelogram (see Chapter XXXIII). This definition is more general, and the 
arithmetical definition expresses only the particular case in which the vectors have 
one direction. Similarly, the non-commutative law of multiplication corresponds 
more closely to vector multiplication than to arithmetical multiplication. 

We will not go further into the details of the matrix calculus, which is a well-
developed mathematical discipline with a large literature, but will emphasize some 
methodological points of importance. 

One of the main applications of the theory of matrices is found in the subject of 
linear transformations. 

In mathematics, instead of using the given variables, we very often introduce 
new variables which are functions of the old. Such transformations, or change of 
variables, are particularly simple and important when the functions in question are 
homogeneous and linear. 

If x1, x2, . . . , xn represent the original variables, and x'1, . . . , x'n the new 
variables, we have, by definition, the formulae of transformations: 

x'1 =a11x1+ · · · +a1nxn
. . . . . . . . 

x'n =an1x1+ . . . +annxn. 
The square matrix made up of the coefficients is called the matrix of the 
transformation and the determinant is called the determinant of the transformation 
and is completely determined by the matrix. We have already seen the importance of 
linear equations and linear transformations in physics and therefore in 
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the investigation of the world around us. The theory of matrices is connected with 
such transformations, hence the importance of the theory of matrices for physics. 

For our purpose another characteristic of the matrix calculus is of interest and 
that is the fact that in physics we usually have a large number of empirical 
numerical data which enter as coefficients in equations and which can always be put 
in the form of a two-dimensional array of numbers, or a table, which we have just 
called a matrix. 

It appears that every physical quantity, however complicated, can be represented 
by such a table giving the values of the parameters which determine its character. 
From the definition of the term ‘variable’ as any value out of a possible range of 
values, we might treat our variables in two distinct ways, one from the point of view 
of function or operations, the other from the extensional point of view, when the 
function or operations are unknown, although the particular values of the variable 
are given. The matrix calculus takes this last point of view. 

In physical research work we deal for the most part with arrays of numbers or 
unique and specific, mostly asymmetrical, relations which the experiments give us. 
Our usual problem is to find the structure, the function, and the operations which are 
satisfied by the given experimental relations. 

We see that the dual approach to our solutions is due entirely to the definition 
which we have accepted for the variable. We have two issues: Either to find the 
values of the variable which satisfy the given function and operations or, having 
particular values of the variable (experimental), to find the function and operations. 

Obviously every physical quantity can be represented by a matrix, which may be 
a. sequence, and every mathematical theorem can be reduced to a property of 
matrices. Once the proper mathematical theories are worked out it will be always 
possible to pass from one form of representation to the other.6 

In the older mechanics the functions were rather obvious and so the use of the 
matrix calculus was not so imperative. In the newer mechanics, the opposite is the 
case. We have a large amount of numerical experimental relations, but the functions 
and operations connecting these variables are unknown and the problem is to find 
them. From this point of view the matrix calculus represents an extensional calculus, 
a calculus of observation. In using the descriptive term ‘observation’ we must add 
that some objections have been advanced to such a use of the term. The answer is 
that the term ‘observation’, like most of our most important terms, must be 
considered a multiordinal term. Once this is understood the objections to the use of 
the term do not hold. 

There is no limitation as to what the elements of a matrix may represent; they 
may be functions, functions of functions, . 
 
Section D. The operator calculus. 

The use of the operator calculus is interesting, structurally and psycho-logically, 
in that attention is concentrated, not on the numerical quantities, 
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but on the semantic operations of combining them. The calculi used in the newer 
quantum mechanics are peculiar, because, while they retain the numerical data, and 
as far as possible, the classical equations, they alter the operations by which these 
quantities are combined, or the interpretation of the equations. 

As an illustration of such a procedure we can take two different formulae for the 
addition of velocities; one from the classical mechanics, where 
   V13 = V12 + V23 ,     (1) 
and the other, the formula for velocity as given by the Einstein theory; namely, 
   V13=(V12+V23)/(1+V12×V23/c2)   (2) 
In these formulae V12 represents the velocity of body 1 relative to body 2 , . In 
formula (1) the sign ‘+’ symbolizes the ordinary arithmetical operation of addition. 
As we already know, this formula has proven too simple to represent accurately the 
experimental data, and Einstein has replaced it by the more elaborate formula (2). 

The above statement is the usual way of speaking about the modification in 
formulation which has taken place in physics since Einstein. But we could equally 
well say that the formula has not been altered except that the ‘+’ has no longer the 
old meaning and does not now represent the arithmetical operation of addition. Both 
points of view lead ultimately to one value, V13, and the computations are similar in 
both cases. 

We should notice especially the great freedom with which we can treat 
mathematical entities. Our voluntary selection of the point of view becomes 
important. A similar freedom of selection of interpretation appears to a still larger 
extent in all verbal problems, a fact of considerable structural and semantic 
importance in any theory of sanity, as we have already seen. 

Further illustration of this freedom can be seen in the way in which the ordinary 
notion of multiplication is re-interpreted in the operator calculus. Let us denote by q 
and f, two numerical quantities, and qf as their product. But we could view this 
problem differently. We could say that qf results from a semantic operation q 
performed on f, or a semantic operator (q×) acting upon f which transformed f into 
qf. We could denote the operation of multiplying by q or the operator (q×) by a 
single symbol Q. Quite obviously the operator Q is not the number q; in other 
words, the semantic operation of multiplying, say by two, is not the number 2. 

The operation of multiplying integer 1 by integer 2 gives the result 2. Similarly, 
the operation of multiplying 1 by q, or, in our new language, the application of the 
operator Q to the integer 1, gives q. In symbols, Q1=q. If we take any arbitrary 
function f, the result of the operation of Q upon f is 
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written Qf =qf. If we were to follow the operation Q by the differential operation 
d/dx the result would be* : 

d/dx(Qf)=(dq/dx) f + q df/dx=[dq/dx ×]f+Qdf/dx 
But as f is arbitrary, it may be omitted from the equations and the result written in 
the operator form as 

d/dx(Q)-Qd/dx=[dq/dx ×]=dQ/dX 
The symbol dQ/dX, defined by this equation, should be read as ‘the operation of 
multiplying by dq/dx’. Similarly, d(QP)/dX =PdQ/dX+QdP/dX. 

In translating the ordinary equations into the language of operators nothing new 
is introduced. This translation involves only a change of ‘mental’ focus. Instead of 
concentrating our attention on the numerical values we concentrate on the 
operations of combining them. Since the great problems of the quantum mechanics 
consist in finding new methods of computation, or of combining numerical values, 
such a change of attitude may prove to be structurally useful. 

It should be noticed here that once matrices are considered, and treated, as 
quantities, or unique and specific relations, by similar reasoning they can be treated 
as operators. This problem is of fundamental structural and semantic importance 
because in the quantum theory we deal with matrices which have infinite numbers 
of terms and since this complexity presents great technical difficulties it is of 
enormous advantage to be able to pass to some more developed methods of 
calculation. 

At the preliminary stage in the operator calculus we have assumed that 
multiplication was commutative, that QP=PQ; but in the further and more general 
development of the theory, this does not hold. 

In general we must assume in the operator calculus that multiplication is not 
commutative, that QP ≠ PQ. For instance, if Q=(q×) and P=d/dq, the two 
operations are certainly not commutative. Naturally, the validity of 2×2=4 is not 
doubted, but generalized non-commutative multiplication has a definite 
asymmetrical and so structural geometrical interpretation, to be found in the vector 
calculus. When we associate with each numerical quantity its own operation of 
multiplication we thus obtain a more general calculus. Operators may be regarded as 
compound, or built up from the elementary arithmetical operations of addition and 
multiplication. They represent, so to say, functions of these operations.7 

 
* The operator Dx, also written d/dx, is called a differential operator. If applied to a product 
(uv) the results are given by the formula Dz(uv)=uDzv+vDzu. 
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Section E. The new quantum mechanics. 
The main problem of the quantum theory is to determine these functions of the 

operations, so that the solution of certain equations (hamiltonian) may represent the 
experimental facts. The original equations of the new mechanics of Heisenberg, 
Born, and Jordan were frankly founded on an empirical basis. As Dirac puts it, in 
seeking for the new equations, the classical equations were to be retained as far as 
possible and only the operations by which these quantities are combined were to be 
altered. 

To gain this freedom to alter multiplication the data were first interpreted as 
matrices. Then it was found, by Born and Wiener, that the matrices could be 
interpreted as a special kind of operator, which furnished means to calculate the 
matrices. Carl Eckart independently developed a simple operator calculus for the 
solution of the quantum problems. In this present work I follow closely the paper of 
Eckart.7 

The origin of the new quantum mechanics was an epoch-making paper by 
Werner Heisenberg, in July, 1925. The older quantum theory had postulated the 
existence of stationary states of the atom, which were calculated with the aid of the 
older mechanics. In the new mechanics the equations have similar form as in the 
classical theory, but the variables no longer obey the commutative law of 
multiplication. In general pq is not equal to qp, (pq=qp and pq-qp=0 in the classical 
theory) but pq-qp=(h/2πi)1, where h represents the Planck constant, q the 
generalized co-ordinate, p the momentum, 1 stands for the unit matrix, and π and i 
have the usual meaning. The fact that multiplication is not commutative in our 
calculus allows us to give a definite value to the above difference and by 
introducing the Planck constant h, we are enabled to introduce the quantum 
conditions in our calculations. 

The quantum conditions of the older theory led to an algebraic equation. By 
using the classical equation with a non-commutative multiplication law for the 
variables it is possible to perform calculations in the new and wider scheme of 
dynamics. The difference between pq and qp is expressed in terms of the Planck 
constant h. When h is made to approach zero, pq approaches qp, and so we pass to 
the classical mechanics. Thus we see that the classical mechanics appear only as a 
particular case of this more general theory. 

In introducing his theory, Heisenberg pointed out that the older mechanics uses 
quantities which are never observable, and can never be observed, such as, for 
instance, orbital frequencies and amplitudes, or the position and ‘time’ of revolution 
of an ‘electron’. , which, as such, have no physical meaning. He proposes to use 
observable data, such as the frequencies and intensities of the radiations , . Now 
these frequencies are always differences between two terms given by integers. If Tn 
and Tm are two such terms, the observable frequency is theoretically represented by 
νnm=Tn-Tm. Such numbers as νnm characterize the atom as far as it is observable. It 
was natural that such a collection (‘sum’ in this case has no longer any physical 
meaning) of terms could best be represented by a matrix. In the classical theory a 
dynamical quantity was 
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represented structurally by a trigonometrical Fourier series; in the new, it is 
represented by a two-dimensional table of values; that is, by a matrix giving the 
frequencies and the intensities of radiations. 

An important and interesting structural issue now appears. It is that the 
Heisenberg theory gives a new formulation for the hamiltonian equations of motion, 
whereby their form is preserved, yet they are made applicable both to periodic and 
to non-periodic motion. It becomes possible to fuse the classical mechanics with the 
quantum mechanics. The distinction between ‘quantised’ and ‘unquantised’ motion 
loses all meaning, and a fundamental equation, pq—qp=(h/2πi) 1, is formulated 
which is valid for all motion. 

The Heisenberg theory is also characterized by its thoroughly behaviouristic, 
actional, functional, and operational character. The number of unjustifiable 
assumptions is the lowest in existence and most of the identifications are eliminated. 
According to Heisenberg, electrons and atoms do not have the ‘same’ kind of 
‘reality’ as ordinary objects of lower order abstractions. This conclusion, which 
underlies his whole work, is of particular importance structurally. As we know, 
differences in character separate different orders of abstraction and since the 
quantum phenomena belong to a higher order of abstraction they must differ from 
objects which belong to a lower order of abstraction. In this theory the feelings of 
‘space’ and ‘time’ are no longer applicable to the ‘inside’ of the atom—as might be 
expected. 

The distinction between ‘inner’ and ‘outer’ electrons in an atom becomes 
meaningless, since it is impossible to recognize a particular entity among a series of 
similar entities. In accordance with the new ‘space-time’ outlook we gain a physical 
basis for the absolute individuality of some eventual unit. 

Because of its structure, the Heisenberg theory is a very fundamental one and 
there is little doubt that the Heisenberg methods will be elaborated further and will 
be kept as a permanent checking method in physics. A theory which is thoroughly 
behaviouristic, with a minimum of assumptions, will probably remain both a most 
important instrument of research and an inspiration to physicists and 
mathematicians. 

The Heisenberg theory, again, because of its structure and method, does not lend 
itself easily to visualization. This is not against the theory. The pictorial 
representations of lower order abstractions are not to be relied upon. Besides, 
visualization depends on the lower centres and therefore must be represented by a 
macroscopic representation of a continuous (rather than a discrete) character, such 
as waves, . 

If we were to try to describe the Heisenberg theory pictorially, which is 
obviously difficult to do, we would have to give a negative description. We should 
have to say that what we observe must be considered only as radiations from the 
location which the atom was supposed to occupy.8 

There remains but to mention some more characteristics of the Heisenberg 
theory which seem to have very far-reaching structural and semantic bearings 
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This theory appears frankly statistical and introduces fundamental probability 
assumptions. The moment we realize that the human organism is essentially an 
abstracting affair and that the abstracting is performed on different levels, or in 
different orders, it becomes obvious that statistical methods and probability notions 
become fundamental. 

In the earlier days we used to assume that statistical laws were laws with 
exceptions. Such an outlook was conditioned by our dealings with macroscopic 
events. Now, we analyse such macroscopic events in terms of microscopic and sub-
microscopic events, the statistical laws become accurate laws, not for individuals 
but for groups of individuals. Because we abstract in different orders, we deal only 
with statistical data, mass effects of different ‘packets’ of nervous excitement, as is 
best illustrated by different thresholds in different nervous tissues. 

The processes in the higher centres, more remote from the external world, deal 
with a special material, no more with statistical data of ‘packets’ and averages, but 
with what we used to call ‘inferences’, ‘inductions’. , which give only the 
probability of happenings. But as we have already seen, probability has become a 
well-developed structural mathematical discipline, which has not yet made much 
effect upon our primitive-made macroscopic metaphysics and language. It should be 
noticed that the highest activities of the nervous centres are based on statistical data 
furnished by the lower centres. So we see that, to the best of our knowledge about 
ourselves and the world around us, a modern structural and semantic outlook, in 
science or in life, must be based on statistical and probability methods. 

In space-time every point has a date, and therefore in the language of space-time 
all points are different and do not repeat themselves. Such structural outlook is, of 
course, again conditioned, and leads toward the statistical and probability methods. 
The main psycho-logical importance of the new methods is to diminish affective 
tension, which is always wasteful and harmful. Inferences may involve belief. When 
belief is too strong, although this is never justified according to the best modern 
knowledge, we very easily fall into identification, delusions, illusions, and the like. 
It should be emphasized that the last-mentioned pathological states are always 
compound. They involve at least two components. One of these consists of some 
ignorance somewhere; the other of strong affective belief in the ‘truth’ of our 
mistaken notions. The stronger the affective tension is, the more dangerous the 
semantic disturbance becomes. 

The Heisenberg theory has succeeded in formulating (verbal) structural methods 
which are best suited to represent the experimental facts which underlie physics, as 
well as being structurally in accord with the working of the human nervous system. 
That is why I venture to assert that this theory will never be abandoned as a 
checking and research instrument. 

In an hypothetical experiment in the quantum field, we may assume what may be 
called a gamma-ray microscope. If we were to illuminate an ‘electron’ 
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by gamma-rays, the rays would disturb the experiment, and in our fundamental 
equation, pq-qp=(h/2πi) 1, by which the ‘position’ was to be determined, the 
‘momentum’ would thereby be disturbed. This change of ‘momentum’ would be 
greater the shorter the wave-length of the rays used; and the shorter the wave-length 
of the ray, the more accurate the determination of ‘position’ would be. Hence, the 
more exactly a co-ordinate q could be found the less exactly could its momentum p 
be found, and vice versa. 

So we have to introduce corrections for errors, and have to introduce ‘mean 
values’ and ‘probability functions’, which we can develop and compute. Lately, 
Bohr has further developed the probability aspects of the newer quantum mechanics 
but I have not seen this work. Heisenberg introduces ‘probability packets’ which 
correspond to the ‘wave packets’ of Schrödinger. 

It is difficult to speak briefly, and yet in a satisfactory way, about these new 
developments, and particularly difficult to give credit properly to different authors. 
All their works are interwoven and at present they all really work together in spite 
of the fact that historically some of these theories have been developed 
independently. 

What we call today, for the sake of brevity, the Heisenberg theory, because of its 
originator, has been further developed by Heisenberg, Born, Jordan, and others. 
Later, when the wave-mechanics appeared, all the new theories were finally fused 
into a very elaborate and impressive structure. 

Historically, P. A. M. Dirac worked at the theory from a different mathematical 
point of view, utilizing what is called the ‘Poisson bracket’ method. In this treatment 
the difficulties of the matrix calculus were avoided. He introduced dynamical 
variables which he called the q numbers. These do not obey the commutative law of 
multiplication although the c numbers (classical) do. He also considered the 
difference of the non-commutative products xy-yx, where x and y are functions, 
respectively, of the co-ordinates q1 . . . qs, and of the momenta p1 . . . ps of a multiple 
periodic system with s degrees of freedom. 

Dirac has generalized the matrix theory and the Schrödinger equations. His work 
seems to be most important, in physics and mathematics, but it is not possible for us 
to consider it here in any detail.9 

Let us recall once more that there are fundamental differences between the 
different orders of abstraction, and that we all have to abstract in different orders. 
From this point of view it is natural that every theory, even if expressed at present in 
a form which cannot be visualized, like the Heisenberg theory or the original Dirac 
theory, has sooner or later to be expressed in a structural form which can be 
visualized. These problems have really nothing, or at most very little, to do with the 
world around us. They are concerned with the neurological structure which 
produces all theories. 

Theories of a structure such as that of the Heisenberg theory are extremely 
important, as already explained, but in them we lose the help of ‘intuition’. Now 
‘intuition’ (lower centres) has two quite different effects—sometimes it leads us 
astray, but on other occasions it helps greatly. 
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An ‘intuitive’ theory has a creative aspect, but always ought later to be revised 
and scrutinized by non-intuitive means. In fact, because of our nervous structure, we 
should always strive to produce both aspects of theories—strive consciously—for 
thus we facilitate progress. Historically, we can never completely avoid producing 
both types of theories, as they are inherent in our nervous structure and in the 
different orders of abstractions we produce. 

It is precisely in the newer quantum mechanics that a typical example of this 
simple neurological fact is found. The non-intuitive handling of data was introduced 
by Heisenberg: the translation of the matrix calculus into operational and ‘Poisson 
brackets’ methods; and, finally, the new ‘wave mechanics’ of de Broglie, 
Schrödinger, and others, gives us a perfect translation into intuitive methods. 

It should be noticed that according to the old notions such two methods, the 
intuitive and the non-intuitive, were not supposed to be a neurological necessity. We 
still assumed that they were separated ‘absolutely’, and even today in many quarters 
we argue as if they were absolutely separable. If we accept the principle of non-
elementalism, we realize that this distinction is verbal only and that the invention of 
verbal means has little or nothing to do with the world around us, but that it depends 
on human structural ingenuity. 

Investigation of the ordered cyclic nerve currents shows unmistakably that such 
sharp differentiation is unjustifiable; and we must conclude, in accordance with 
historical experience, that translation from one method to the other must be a 
necessity, and so will be accomplished some day in every field. It is true that at 
present the Einstein theory has not been translated with entire success into terms of 
lower order abstractions. This is a task which is facilitated by this present work. The 
newer quantum mechanics gives us an unparalleled example of such translation, and 
hence our main interest should be concentrated on this structural aspect. 

On neurological grounds it seems certain that visualization involves in some way 
the lower nerve centres, which again, by evolutionary necessity, involve 
macroscopic forms of representation. Our macroscopic experience led us to 
geometrical intuitions. These were framed three-dimensionally in ‘absolute 
emptiness’, and were impossible in higher dimensions. The old structure represented 
a static empty ‘space’ in which nothing could happen and which was thus unfit to 
represent this world around us where something is going on everywhere. 

The new structure represents ‘fulness’ or a plenum. We can visualize it as a 
network of intervals or world-lines and then, by the notions of the differential 
calculus, as already explained, we pass easily to the visualization of the many-
dimensional space-time world of Minkowski-Einstein. Now, in such a world, the 
curves are represented by functions, and, vice versa, functions represent curves. 
Thus it is obvious that analytical ‘non-intuitive’ methods have ‘intuitive’ structural 
geometrical counterparts. From this point of view the method of operators 
represents a passing step from the non-intuitive to intuitive 
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methods. As soon as we have functions, we can represent a functional calculus as an 
operational calculus. This involves a more behaviouristic semantic attitude and so 
leads to the possibility of translation of either method into the other. Ultimately 
these are psycho-logical transformations and translations. 

We should not be surprised to find that in the development of the newer 
quantum mechanics the operational calculus plays just such a role. 

Now our older macroscopic experience, which affected our lower nerve centres, 
gave rise to the elementary geometrical structural notions of ‘lines’, ‘surfaces’, 
‘volumes’, . For the building of physics we had to introduce ‘time’, ‘motion’, . In 
older days we did not realize that these give us forms of representation and that it is 
optional with us which forms we will accept as fundamental or use as a starting 
point. 

The old descriptive apparatus posited structurally an absolute and immutable 
‘space’ (emptiness), ‘time’, ‘matter’ out of which we built up a verbal definition for 
‘motion’. The semantic attitude of all of us, scientists included, depended upon 
identification. We ascribed lower-centre significance to higher-centre abstractions. 
We did not discriminate enough between the macroscopic and small scale events. So 
we had ‘geometrical optics’ in which we ‘perceived’ a ray of light (in a dusty room, 
let us say) as a ‘straight line’. Further investigation disclosed that the ‘rays’ on one 
level of abstraction were waves on another, but they were not perceived as waves by 
the lower centres 

But through our lower centres we had acquaintance with some waves, such as in 
water; so representation for waves was developed. A wave-theory still remained 
intuitively workable, even when we dealt with waves which we could not see. Now 
the equations of waves are well known. It is then possible to translate a non-intuitive 
matrix mechanics, when we treat matrices as operators, into a functional calculus 
which has an intuitive geometrical wave representation. 

This is precisely what has happened and now, perhaps for the first time in human 
history, we have all the aspects of a theory being worked out simultaneously, with 
mutual co-operation of all workers and the use of methods which are mutually 
complementary from the neurological side. There seems little risk in predicting that 
because of these neurological factors the newer quantum mechanics will give 
extremely rapid and far-reaching results. When scientists become aware of the 
structural semantic and neurological issues involved, perhaps such achievements 
will be multiplied consciously, instead of being a kind of coincidence. 

Personally, I am convinced that these new achievements are not simply 
coincident. It seems that the abolishment of the old, el, static ‘absolute space’ and 
‘absolute time’ has relieved the younger scientists from a semantic blockage. This 
release was due to the bold stroke of genius of Einstein in refusing to use the vicious 
aristotelian ‘is’ of identity. As soon as we realize that words are not the objective 
levels, we gain an unconscious semantic freedom in handling words, as words. At 
once this freedom is bound to produce many different forms of 
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representation for events, according to the personal make-up of the individual 
workers. And of course these forms can be translated into one another. 
 
Section F. The wave mechanics. 

We have not sufficient space at our disposal to discuss more fully the new wave 
mechanics. I found that short of a small volume, no explanations, readily 
intelligible, could be made. 

In mathematics and physics, which represent the most developed sciences, we 
consciously and unconsciously strive for more and more general formulations. The 
work of Einstein, showing that the classical mechanics was only a particular case of 
a more general mechanics, has given a healthy stimulation to such a fruitful line of 
work. 

As the quantum phenomena could not be accounted for by the old mechanics, it 
was natural that physicists should try schemes of new mechanics which included 
classical mechanics as a particular case. Thus, Sommerfeld, through his methods of 
the application of the Einstein theory to the quantum mechanics and his 
generalizations of phase-space, and his treatment of the relation of wave-optics to 
ray-optics and of the relation of mechanics to ray-optics, came close to the discovery 
of the wave mechanics.10 

The new wave mechanics originated in 1924 in Paris, with the thesis of Louis de 
Broglie, published in 1925, and republished in a book form in 1926. 

The controversy between the corpuscular light theory of Newton (emission 
theory) and the wave theory of Huygens is well known. The emission theory had its 
support in the ‘rectilinear’ propagation of light, which followed from the inertia of 
light particles. Also, it explained the reflection and the refraction. , of light, but 
failed in other respects. It is true that the wave theory also had its weak structural 
spots. In it the ‘rectilinear’ propagation of light remained a complete mystery and it 
completely failed to account for the dispersion of light, until this was explained on 
the electron theory. 

Both theories assumed the periodicity of light phenomena, but the acceptance of 
one theory was generally held to mean the rejection of the other. It did not occur to 
many that both theories might be correct but only partial structural aspects of a more 
general theory. 

With the advent of the quantum theory of Planck (1900) new methods were 
found. In 1905 Einstein propounded his theory of ‘light quanta’ successfully. He 
assumed that radiation occurs in discrete quanta of energy hν, where ν represents 
the frequency. From this point of view the quantum had the characteristic 
discreteness of a corpuscle, and yet the frequency characteristic of a wave. We see 
that the new theory involved a kind of a blend of the two older theories. 

De Broglie generalized still further the above notions. His theory is in a way the 
result of the theory of Einstein. As we already know, Einstein shows the connection 
of mass and energy, so that the conservation of mass becomes also the conservation 
of energy, and vice versa. Starting with these premises de Broglie concluded that if 
any element, in the most general sense, be it an 



electron or proton or light quantum or what not, has energy W, there must be in the 
system a periodic phenomenon of frequency ν, defined by W=hν. From this point of 
view all forms of energy, radiation included, must have an atomic structure and the 
atoms of energy must be grouped around certain points, forming what we call 
‘electrons’, ‘light quanta’, . 

Applying the Lorentz-Einstein transformation, he finds a rather startling fact—
that the frequency associated with any assumed mass m0; namely, ν0=m0c2/h, 
represents no more and no less than a periodic phenomenon, analogous to a 
stationary wave, which spreads around the point of which the mass is a 
singularity.11 

In other words, a ‘mass particle’ at rest is the centre of a pulsation throughout 
the spread, or otherwise it is a singularity of the pulsation. The quantity which 
pulsates is called ψ and ψψ-; is interpreted as the electric density, where ψ- is the 
conjugate of the complex quantity ψ. 

In the Minkowski representation, the above 
astonishing result becomes quite simple, and we can 
see clearly how simultaneous pulsations become 
travelling waves. In Fig. 2, we give a two-
dimensional diagram of space-time. OX0 is the 
‘space’ co-ordinate, OT0 the ‘time’ (ict0) co-
ordinate. ψ1, ψ2, ψ3, represent the traces of the 
surfaces of constant phase which are perpendicular 
to OT0. The Lorentz-Einstein transformation is 
equivalent to the transformation from rectangular 
system X0OT0 to the rectangular system XOT, 
forming an angle θ. In the new system the lines ψ1, 
ψ2, ψ3 . . . , are no longer parallel to the X axis and 
so represent a moving wave front. In this new 
system the ψ-lines represent the moving wave front for different points, P, P'. , on 
one phase line and have different values of t. The smaller the velocity (v) of the 
particle, the smaller the angle θ and the greater the distance PQ travelled by the 
phase in a given ‘time’, P’Q or ∆t, which means the greater the phase velocity u. 

 

The frequency of these pulsations or waves is the ‘total energy of the particle’ 
divided by Planck’s constant, h. In symbols, hν=mc2+potential energy, where 

m =
m0

1 2−β
, β=

v

c
. 

The problem before us is to connect structurally, the waves with two 
observations, one of the radiations, the other of what we call the ‘material particles’. 

Our interest at present lies only in the connection with the latter. According to 
this theory, the ‘region occupied by the particle’ is only a region 
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where a set of ψ-waves, which vary continuously in direction and in frequency in a 
small range, reinforce each other to give a wave-group travelling with what we 
usually call ‘the velocity of the particle’. 

As the waves have different frequencies, they travel with different velocities and 
so we have to face the problem of the dispersing medium, where, according to 
classical theories, the region of reinforcement has a velocity different from that of 
the phase. The ordinary expression for ‘group velocity’ gives, on the wave 
interpretation, the magnitude of the ‘velocity of the particle’.12 

That which, in the classical theories, we called the ‘motion of the particle’ is 
represented by the motion of the region of reinforcement of ψ-waves. The direction 
of motion is represented by the direction of a ray-, or wave-normal. The particular 
ray selected as the position of the ‘path of the particle’ is represented by the ray cut 
in coinciding phase by a set of ψ-waves with slightly varying directions. The 
‘position of the particle’ is given by the small region occupied by the group of 
waves of slightly different frequencies and velocities. 

In this connection we should notice an important point which is necessitated by 
the methods of generalization and of translation from macroscopic to sub-
microscopic events and vice versa. Schrödinger, by formulating the differential 
equations for the ψ-waves, has brought out clearly the important structural point that 
wave mechanics bears a similar relationship to classical mechanics of particles as 
wave-optics bears to ray-optics. 

Here again we have the macroscopic phenomena capable of being treated by 
mathematical methods different from those used for the small-scale phenomena. 

In classical mechanics the state of a system whose co-ordinates were q1 . . . qs, 
and whose momenta were p1 . . . ps, was represented by a point in a 2s-dimensional 
q-spread and the changes in the system were represented by the passage of the point 
along some curve, a ‘ray’, so to say. 

Schrödinger regards the classical mechanics as only an approximation, while 
rigorous treatment must be made by the aid of wave mechanics. 

The large-scale, or macroscopic, mechanical processes correspond to a wave 
signal in the q-spread and can be regarded as a point in comparison with the 
geometrical structure of the path. In small-scale phenomena, such as the atomic 
processes, a rigorous wave formulation must be used. 

This analysis can be carried further and Hamilton knew well and used the 
analogy between mechanics and geometrical optics. The Hamilton variation 
principle, δ∫ Ldt=0, is Fermat’s principle for a wave motion; the Hamilton-Jacobi 
equation expresses Huygens’ principle for wave motion; and the new wave 
mechanics expresses the Kirchhoff analysis of physical optics. As Huygens, 
principle could deal with the problems of physical optics up to a certain point, so the 
Hamilton-Jacobi equations could deal with atomic problems up to a certain point. At 
the exact wave analysis of Kirchhoff was needed to clear up the finer points of 
physical optics, so the new wave mechanics is required for the exact solution of the 
atomic problems.13 

A detailed analysis shows that classical mechanics was associated with 
geometrical optics (ray-optics). Obviously, a more exact system of mechanics 



would be one associated with wave-optics, which would give the classical results in 
all cases where the wave-length was negligible in comparison with the dimensions 
of the path. Schrödinger suggests that a correct extension of the analogy would be to 
regard the wave system as sine-waves. In this connection it should be recollected 
that Fourier has shown that any given form of waves can be represented by the 
superposition of sine-waves, and that therefore a sine-wave (see Chapter XXXII) 
may be considered as a general formulation. 

The ray methods in physics worked only to some extent, that is to say, in the 
cases where the radii of curvature of such rays and the dimensions of the spreads 
were large in comparison with the wave-length. When this is not the case we have to 
consider waves and not rays. Naturally, dealing with atomic dimensions, which-are 
very small, instead of using the paths of the particles or the ψ-rays, we have to use 
the ψ-waves. It appears that this difference was the main, rather puzzling distinction 
between the classical mechanics and the quantum mechanics, between the 
macroscopic theories and the sub-microscopic ones. 

The above realization, and its formulation into a mathematical theory, seems to 
be an important and extremely fruitful generalization, which probably will be 
retained as a method. 

One of the puzzling features of the quantum theory was the structural 
appearance of the whole-number laws of the ‘orbits’. That some such whole-number 
relation is justified seems to be well established, yet it contradicted the older 
‘continuous’ mechanics. A new theory, to be at all satisfactory, should be able to fit 
these whole-number empirical data. The first test of the new wave mechanics, and 
also its first success, was precisely in this field. 

If a ray of the ψ-wave was supposed to run around in a circle for a stationary 
state, the circumference must be a whole multiple of the wave-length, or 

 2πr = nλ = n 
h

mv
, and mvr = n

h

2π
, 

where n is an integer. We see that the quantum condition of the Bohr theory, that the 
angular momentum must be a whole multiple of h/2π, is only the result of the 
requirement that the wave-function ψ shall be single-valued, which is another way 
of saying that the circumference (2πr) must contain a whole number of wave-
lengths. It may be compared perhaps with waves travelling around a circular loop of 
string. If they travelled both ways we would have stationary waves. 

At this point a very important structural feature of the new wave mechanics 
makes its appearance. In the above interpretation the ‘velocity of the electron’ has 
lost its physical meaning, it becomes simply the wave length of the ψ-waves. In the 
wave mechanics, as well as in the matrix mechanics, there is no meaning to the 
older ‘position of an electron on its orbit’. So the wave mechanics again embodies 
the advantages of the matrix mechanics by not postulating entities which can never 
be observed. The whole numbers, as Schrödinger remarks, ‘appear as naturally as 
do “integers” in the theory of vibrating strings’. In the theory of string vibrations 
these whole numbers are determined by certain 
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boundary conditions which have to be satisfied by the solution of a differential 
equation. In the new wave mechanics there is also a differential equation 
representing the Schrödinger wave equation.14 
 
Section G. Structural aspects of the new theories. 

We should notice the important distinction between the two structural types of 
these theories. The extensional matrix theory can hardly be visualized, with all the 
consequent advantages and disadvantages. The wave mechanics can be visualized. 
From what we already know of the structure and working of the nervous system, we 
see that the wave mechanics will have a creative element and the matrix mechanics 
will remain an important checking method. 

At present, all these new theories seemingly have blended or perhaps it would be 
better to say that they have been translated from one language to another and all the 
workers in this field work from all angles. 

It should be mentioned also, that Einstein, Bose, Jordan, and others, work from 
the point of view of statistics, and that these methods, too, are being retranslated and 
connected with the rest of the new theories. 

The new wave mechanics evades the difficulties of the matrix calculus and 
brings the new mechanics within the scope of the highly developed analysis of the 
theory of differential equations. It also enlists the creative aspects of ‘intuition’, 
‘visualization’, . 

Concluding our consideration of the subject, three remarkable aspects of the 
wave mechanics must be referred to. We are already acquainted with the term 
‘action’. It appears that the main point of the passing from the old mechanics to the 
new was the stroke of genius of de Broglie, when he divided action by the 
fundamental constant h with some definite numerical factor which then gives us the 
phase. In the expression for ψ, the energy appears as the ‘time’ component of a 
space-time vector whose ‘space’ components are those of the momentum. When this 
vector is divided by h, its components become the frequency, or the number of 
waves which each axis cuts per centimetre. 

These are the methods by which we can use differential equations, whereby the 
older discontinuities disappear and the particle is represented as a group of 
reinforcing waves.15 

From this point of view we also come to the conclusion that the ‘conservation of 
energy’, which was very valuable in the old days, is perhaps only a gross 
macroscopic generalization and will give place to a newer and more fundamental 
notion of the conservation of frequency or ‘times’.16 

It has been already mentioned that the newer mechanics must be represented in 
accordance with statistical data, probabilities, with due attention paid to the theory 
of errors, . While these requirements have very little to do with the world around us, 
they are unconditionally required by our nervous structure, which is, after all, the 
general author of all our ‘knowledge’ and ‘theories’. Let us be candid about it; there 
is no such thing as ‘knowledge’ outside of a nervous system, and therefore the 
neurological requirements, as already 



mentioned, become paramount. The newer theories brilliantly satisfy this 
requirement. 

As an example, we may perhaps mention an aspect of the wave mechanics 
theory which is not at present settled, but which remains just as interesting. 

Schrödinger shows that in highly excited states a suitably chosen group of waves 
represents a ‘wave packet’, which behaves like a point-mass of the ordinary 
mechanics. It oscillates with frequency ν0 in a rectilinear path. The number and 
breadth of the waves which form the packet vary with the ‘time’, but the width of 
the packet remains constant. The remarkable part about the shape of the curve is that 
it represents the Gauss error curve. 

Heisenberg has shown that 
this result is only accidentally 
true, but for our purpose of 
illustration this is quite enough. 

The newer quantum 
mechanics has shown once more 
the necessity for a re-analysis of 
our fundamental notions. From a 
space-time point of view, which 
seems to be a permanent acquisition of science, since it is a language and method of 
structure closer related to the external world than the older languages and methods, 
it seems beyond dispute that even macroscopic phenomena are the results of 
repeated observation. Now, such a point of view, although it is extremely plausible, 
and close to neurological and physical data, necessitates a complete reconstruction 
of our describing apparatus, which is not adapted to such an outlook. 

The problem of ‘observation’ enters. Bohr suggests, and rightly, that this 
vocabulary is strictly connected with the older ‘causal’ vocabulary. One of the main 
points of the present work is to draw attention to the multiordinal mechanism and 
terms and to show that the analysis of these problems cannot be even attempted 
without first analysing the structure of our languages, of our ‘knowledge’, and the 
neurological and semantic aspects which such analysis involves. 

When this analysis is carried through we see that the problems of ‘continuity’ 
and ‘discontinuity’ lose their absolute character. They become verbal problems, to 
be solved through the ingenuity of some one who will suggest the solutions. 

The newer quantum mechanics give us ample material for work on these 
problems, but they also illustrate a much more general and important problem, 
which is the subject matter of the present book; namely, that all ‘knowledge’ is 
structural, strictly dependent on the nervous structure and functioning, and the 
language we use. ‘Method’ is that aspect of the search for structure which deals with 
the most expedient means for finding structure. Since words are not the things we 
speak about, the study of linguistic structure becomes a most 
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important research method. The more languages (theories) we have for analysis and 
structural comparison, the more glimpses do we get at the structure of the world. 
The newer quantum mechanics give us enormous material of a linguistic, structural, 
and semantic character. 

It is natural that this wisdom can come only from the study of the structure of the 
highest developed languages in existence, which are mathematical languages. If we 
want progress in any line of human endeavour, this progress is always dependent on 
the languages we use, since what we call ‘progress’ is a co-operative affair and 
therefore dependent on means of communications and languages. 

From the point of view of structure, we deal with a world of absolute individuals 
and therefore our languages must be such as to reflect such individuality. We 
already know that this involves an extensional attitude and methods, which 
historically have produced mathematics as the only language which as yet reflects in 
structure the world around us. 

With the newer quantum mechanics, the old ‘discontinuity’ resolves itself into 
an essential individuality, as noticed by Bohr, perfectly foreign to the older theories. 

History proves that we were slow in arriving at that point. Our tragedies began 
when the ‘intensional’ biologist Aristotle took the lead over the ‘extensional’ 
mathematical philosopher Plato, and formulated all the primitive identifications, 
subject-predicativism. , into an imposing system, which for more than two thousand 
years we were not allowed to revise under penalty of persecution. Mathematics was 
not particularly encouraged, but at least, not persecuted, so that it was developed 
into the present day great linguistic system. The theory of function involves 
semantic factors of non-identification. 

The invention of the differential and the integral calculi, represents the two great 
structural and psycho-logical aspects of analysis and differentiation, versus 
synthesis and integration. 

The application of these methods led us to differential geometries, to methods of 
treating ‘fulness’, and to ‘contact’ methods. ‘Fulness’ necessitated geometries of 
higher dimensions, impossible in ‘absolute emptiness’, and so the fusion of 
geometry with physics became possible. The four-dimensional world of Minkowski 
and the theory of Einstein finally achieved this fusion. The next step was the 
invention of the new quantum mechanics, where all these important, nay, all-
important, structural, semantic, and linguistic achievements find their culmination. 
The old primitive metaphysics become too ‘materialistic’ for an enlightened age. 

Without legislating about the ‘truth’ or ‘falsehood’ of the newer mechanics, as a 
matter of human behaviour these theories are the best indications and examples of 
the structure of human ‘knowledge’, which I have attempted to formulate in this 
work as a general theory. 

The A-system was strictly interconnected with primitive-made structural 
assumptions or metaphysics, reflected in the structure of the older languages and in 
the el notions about language, ‘psychology’, ‘logic’, and the pre-scientific
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anthropomorphic astronomy, physics, and other disciplines. Of late, science has 
developed in spite of all handicaps and persecutions, and has begun to depart 
structurally and semantically from the path of aristotelianism and the dark ages. 
Every science has had to build its own language and this fact completely condemns 
the A language, which, it is shocking to notice, we continue to preserve in our daily 
life. 

Should we wonder that we have shown hardly any progress at all in our purely 
human affairs and notions ? We should wonder, rather, that we have been able to 
survive until now—though with needless difficulties and suffering. More wars, 
more revolutions, more insanity, more morons, more struggle and competition, and 
more unhappiness are what we are entitled to expect and predict as the outcome of 
this structurally and semantically impossible situation. 

As the organism works as-a-whole, such things as ‘pure intellect’ or ‘pure 
emotions’ represent structurally el fictions and scientists should realize that their 
professed detached scientific attitude is profoundly and fundamentally unjustified. 
All science has ‘emotional’ components, which play most important roles in life. If 
we live in a modern world, but keep the ‘emotional attitudes’ of primitive bygone 
days, then naturally we are bound to be semantically unbalanced, and cannot be 
adjusted to a fundamentally primitive ‘civilization’ in the midst of great technical 
achievements.* When scientists understand that, then the layman will have a 
different attitude toward science. He will understand that science is not a privilege 
of the few, something without effect upon all and every one. He will realize that 
while he lives in a modern world, made so by science, structural ignorance of the 
fundamentals as discovered by science leaves him with primitive structural 
assumptions or metaphysics, which by necessity build for him a delusional world 
leading to semantic unbalance and ultimately to ‘mental’ and nervous ills. 

From the non-elementalistic point of view, the only escape is to realize that 
ignorance in an adult is, and must be, pathological, because ‘knowledge’ is to be 
considered as a normal characteristic of human nervous tissue. 

A special structural and methodological brief and simplified account of scientific 
achievements, such as I have attempted in this work, must be a part of a theory of 
sanity. Sanity means adjustment and without the minimum of the best structural 
knowledge of each date concerning this world, such adjustment is impossible. 

It is not necessary that the reader should fully understand all technical details of 
a theory, to be aware (instinctive, affective. ,) of the existence of the structural and 
semantic problems and to realize that some of the most competent and skilled 
professionals are working at these theories. Such awareness has great pacifying 
semantic influence; it eliminates the older affective tensions which were due to 
identifications, absolutism, dogmatism, flights into mysticism, and other similar 
pathological disturbances. 

 
* See my Manhood of Humanity (E. P. Dutton, New York). 



A non-aristotelian system must deal with all these structural and semantic issues. 
It is hoped that once a A -system is presented to the public, scientists and laymen 
will become more interested in the structural and semantic issues emphasized here, 
and that new and wider researches will be undertaken. 

History shows that such hopes are not illusory. The greatest men of science have 
always had wide human aims and interests. From the non-elementalistic point of 
view, they probably became productive geniuses because of this broad human urge. 
From the point of view of psychiatry, it is well known that ‘mental’ ills involve 
usually anti-social affective attitudes. When we see men with distinctly anti-social 
tendencies, no matter how they rationalize them, they are invariably ill in some way. 
A fully healthy individual is never anti-social. 

That science should include structural and semantic factors of sanity may be a 
startling notion, but only at first ! In the present analysis this turns out to be, rather 
unexpectedly, a necessity. But on second consideration we should rather expect it. 
Science and mathematics show the working of the ‘human mind’ at its best. 
Accordingly, we can learn from science and mathematics how this ‘human mind’ 
should work, to be at its best. Then we should make an analysis of science and 
mathematics from some wider structural and semantic point of view,—the task 
which has been undertaken in the present work. 

At this early stage it is, of course, of comparatively little importance to what 
extent this analysis turns out to be satisfactory. The main point is that it has been 
originated. If the present author fails, others, perhaps even because of his failure, 
may be stimulated to do it better. The great and vital thing is that it should be done, 
by someone. 
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