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Preface

This text, like its previous four editions, is an introduction to communication sys-
tems written at alevel appropriate for advanced undergraduates and first-year gradu-
ate studentsin electrical or computer engineering.

An initial study of signal transmission and the inherent limitations of physical
systems establishes unifying concepts of communication. Attention is then given to
analog communication systems, random signals and noise, digital systems, and
information theory.

Mathematical techniques and models necessarily play an important role
throughout the book, but aways in the engineering context as means to an end.
Numerous applications have been incorporated for their practical significance and as
illustrations of concepts and design strategies. Some hardware considerations are
also included to justify various communication methods, to stimulate interest, and to
bring out connections with other branches of the field.

PREREQUISITE BACKGROUND

The assumed background is equivalent to the first two or three years of an electrical
or computer engineering curriculum. Essential prerequisites are differential equa-
tions, steady-state and transient circuit analysis, and afirst coursein electronics. Stu-
dents should also have some familiarity with operational amplifiers, digital logic,
and matrix notation. Helpful but not required are prior exposure to linear systems
analysis, Fourier transforms, and probability theory.

CONTENTSAND ORGANIZATION

New features of this fifth edition include (a) the addition of MATLABT examples,
exercises and problems that are available on the book’s website, www.mhhe.com/
carlsoncrilly; (b) new end-of-chapter conceptual questions to reinforce the theory,
provide practical application to what has been covered, and add to the students
problem-solving skills; (c) expanded coverage of wireless communications and an
introduction to radio wave propagation that enables the reader to better appreciate the
challenges of wireless systems; (d) expanded coverage of digital modulation systems
such as the addition of orthogonal frequency division modulation and ultra wideband
systems; (€) expanded coverage of spread spectrum; (f) a discussion of wireless net-
works; and (g) an easy-to-reference list of abbreviations and mathematical symbols.
Following an updated introductory chapter, this text has two chapters dealing
with basic tools. These tools are then applied in the next four chapters to analog com-
munication systems, including sampling and pulse modulation. Probability, random
signals, and noise areintroduced in the following three chapters and applied to analog
systems. An appendix separately covers circuit and system noise. The remaining

TMATLAB is aregistered trademark of MathWorks Inc.

ix



http://www.mhhe.com/

Preface

six chapters are devoted to digital communication and information theory, which
require some knowledge of random signals and include coded pulse modul ation.

All sixteen chapters can be presented in a yearlong undergraduate course with
minimum prerequisites. Or a one-term undergraduate course on analog communica-
tion might consist of material in the first seven chapters. If linear systems and prob-
ability theory are covered in prerequisite courses, then most of the last eight chapters
can be included in a one-term senior/graduate course devoted primarily to digital
communication.

The modular chapter structure allows considerable latitude for other formats.
Asaguide to topic selection, the table of contents indicates the minimum prerequi-
sites for each chapter section.

INSTRUCTIONAL AIDS

Each chapter after the first oneincludes alist of instructional objectivesto guide stu-
dent study. Subsequent chapters also contain several examples and exercises. The
exercises are designed to help students master their grasp of new material presented
in the text, and exercise solutions are given at the back. The examples have been cho-
sen to illuminate concepts and techniques that students often find troublesome.

Problems at the ends of chapters are numbered by text section. They range from
basic manipulations and computations to more advanced analysis and design tasks.
A manual of problem solutionsis available to instructors from the publisher.

Several typographical devices have been incorporated to serve as aids for
students. Specifically,

e Technica termsare printed in boldface type when they first appear.

e Important concepts and theorems that do not involve equations are printed
inside boxes.

e Asterisks (*) after problem numbers indicate that answers are provided at the
back of the book.

e Thesymbol 1 identifies the more challenging problems.

Tables at the back of the book include transform pairs, mathematical relations,
and probability functions for convenient reference.

Communication system engineers use many abbreviations, so in addition to the
index, thereisasection that lists common abbreviations. Also included isalist of the
more commonly used mathematical symbols.

Online Resources

The website that accompanies this text can be found at www.mhhe.com/carlsoncrilly
and features new MATLAB problems as well as material on computer networks
(TCP/IP) and data encryption. The website also includes an annotated bibliography
in the form of a supplementary reading list and the list of references. The complete
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solutions manual, PowerPoint lecture notes, and image library are available online
for instructors. Contact your sales representative for additional information on the
website.

Electronic Textbook Options

This text is offered through CourseSmart for both instructors and students. Course-
Smart is an online resource where students can purchase the complete text online at
almost half the cost of a traditional text. Purchasing the eTextbook allows students to
take advantage of CourseSmart’s web tools for learning, which include full text
search, notes and highlighting, and email tools for sharing notes between classmates.
To learn more about CourseSmart options, contact your sales representative or visit
www.CourseSmart.com.

Xi
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Aﬂenﬂon, the Universe! By kingdoms, right wheell” This prophetic phrase represents the first telegraph message
on record. Samuel F. B. Morse sent it over a 16 km line in 1838. Thus a new era was born: the era of electri-
cal communication.

Now, over a century and a half later, communication engineering has advanced to the point that earthbound TV
viewers waich astronauts working in space. Telephone, radio, and television are integral parts of modern life. Long-
distance circuits span the globe carrying text, data, voice, and images. Computers talk to computers via inferconti-
nental networks, and control virtually every electrical appliance in our homes. Wireless personal communication
devices keep us connected wherever we go. Certainly great sfrides have been made since the days of Morse.
Equally certain, coming decades will usher in many new achievements of communication engineering.

This textbook introduces electrical communication systems, including analysis methods, design principles, and hard-
ware considerations. VWe begin with a descriptive overview that establishes a perspective for the chapters that follow.

1.1 ELEMENTS AND LIMITATIONS
OF COMMUNICATION SYSTEMS

A communication system conveys information from its source to a destination some
distance away. There are so many different applications of communication systems
that we cannot attempt to cover every type, nor can we discuss in detail all the indi-
vidual parts that make up a specific system. A typical system involves numerous
components that run the gamut of electrical engineering—circuits, electronics, elec-
tromagnetics, signal processing, microprocessors, and communication networks, to
name a few of the relevant fields. Moreover, a piece-by-piece treatment would
obscure the essential point that a communication system is an integrated whole that
really does exceed the sum of its parts.

We therefore approach the subject from a more general viewpoint. Recognizing
that all communication systems have the same basic function of information trans-
fer, we’ll seek out and isolate the principles and problems of conveying information
in electrical form. These will be examined in sufficient depth to develop analysis and
design methods suited to a wide range of applications. In short, this text is concerned
with communication links as systems.

Information, Messages, and Signals

Clearly, the concept of information is central to communication. But information is
a loaded word, implying semantic and philosophical notions that defy precise defini-
tion. We avoid these difficulties by dealing instead with the message, defined as the
physical manifestation of information as produced by the source. Whatever form the
message takes, the goal of a communication system is to reproduce at the destination
an acceptable replica of the source message.

There are many kinds of information sources, including machines as well as
people, and messages appear in various forms. Nonetheless, we can identify two dis-
tinct message categories, analog and digital. This distinction, in turn, determines the
criterion for successful communication.
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Input Output
Source Input signal | Communication | signal Output Destination
—] -
transducer system transducer
Figure 1.1-1 Communication system with input and output transducers.

An analog message is a physical quantity that varies with time, usually in a
smooth and continuous fashion. Examples of analog messages are the acoustic pres-
sure produced when you speak, the angular position of an aircraft gyro, or the light
intensity at some point in a television image. Since the information resides in a time-
varying waveform, an analog communication system should deliver this waveform
with a specified degree of fidelity.

A digital message is an ordered sequence of symbols selected from a finite set
of discrete elements. Examples of digital messages are the letters printed on this
page, a listing of hourly temperature readings, or the keys you press on a computer
keyboard. Since the information resides in discrete symbols, a digital communica-
tion system should deliver these symbols with a specified degree of accuracy in a
specified amount of time.

Whether analog or digital, few message sources are inherently electrical. Conse-
quently, most communication systems have input and output transducers as shown
in Fig. 1.1-1. The input transducer converts the message to an electrical signal, say
a voltage or current, and another transducer at the destination converts the output sig-
nal to the desired message form. For instance, the transducers in a voice communi-
cation system could be a microphone at the input and a loudspeaker at the output.
We’ll assume hereafter that suitable transducers exist, and we’ll concentrate primar-
ily on the task of signal transmission. In this context the terms signal and message
will be used interchangeably, since the signal, like the message, is a physical embod-
iment of information.

Elements of a Communication System

Figure 1.1-2 depicts the elements of a communication system, omitting transducers
but including unwanted contaminations. There are three essential parts of any com-
munication system: the transmitter, transmission channel, and receiver. Each part
plays a particular role in signal transmission, as follows.

The transmitter processes the input signal to produce a transmitted signal
suited to the characteristics of the transmission channel. Signal processing for trans-
mission almost always involves modulation and may also include coding.

The transmission channel is the electrical medium that bridges the distance
from source to destination. It may be a pair of wires, a coaxial cable, or a radio wave
or laser beam. Every channel introduces some amount of transmission loss or
attenuation, so the signal power, in general, progressively decreases with increasing
distance.
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Input Transmitted Received Output
signa signa signa signa

Transmission
channel

Source —| Transmitter Receiver —— Destination

|
: Noise, interference, |
! anddistortion |

Figure 1.1-2 Elements of a communication system.

The receiver operates on the output signa from the channel in preparation for
delivery to the transducer at the destination. Receiver operations include amplification,
to compensate for transmission loss, and demodulation and decoding to reverse the
signd processing performed at the transmitter. Filtering is another important function
at the receiver, for reasons discussed next.

Various unwanted undesirable effects crop up in the course of signal transmis-
sion. Attenuation is undesirable since it reduces signal strength at the receiver. More
serious, however, are distortion, interference, and noise, which appear as alterations
of the signal’s waveshape or spectrum. Although such contaminations may occur at
any point, the standard convention is to lump them entirely on the channel, treating
the transmitter and receiver as being ideal. Figure 1.1-2 reflects this convention.
Fig. 1.1-3a isagraph of anideal 1101001 binary sequence as it leaves the transmit-
ter. Note the sharp edges that define the signal’s values. Figures 1.1-3b through d
show the contaminating effects of distortion, interference, and noise respectively.

Distortion is waveform perturbation caused by imperfect response of the sys-
tem to the desired signal itself. Unlike noise and interference, distortion disappears
when the signal isturned off. If the channel has alinear but distorting response, then
distortion may be corrected, or at least reduced, with the help of special filterscalled
equalizers.

Interference is contamination by extraneous signals from human sources—other
transmitters, power lines and machinery, switching circuits, and so on. Interference
occurs most often in radio systems whose receiving antennas usually intercept sev-
eral signals at the same time. Radio-frequency interference (RFI) also appears in
cable systemsiif the transmission wires or receiver circuitry pick up signals radiated
from nearby sources. With the exception of systems that employ code division mul-
tiple access (CDMA), appropriate filtering removes interference to the extent that
the interfering signals occupy different frequency bands than the desired signal.

Noise refers to random and unpredictable electrical signals produced by natural
processes both internal and external to the system. When such random variations
are superimposed on an information-bearing signal, the message may be partialy
corrupted or totally obliterated. Filtering reduces noise contamination, but there
inevitably remains some amount of noise that cannot be eliminated. This noise con-
stitutes one of the fundamental system limitations.
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Figure 1.1-3 Contamination of a signal transmitting a 1101001 sequence: (a) original signal

as it leaves the transmitter, (b) effects of distortion, (c) effects of interference,
(d) effects of noise.

Finally, it should be noted that Fig. 1.1-2 represents one-way, or simplex (SX),
transmission. Two-way communication, of course, requires a transmitter and receiver
at each end. A full-duplex (FDX) system has a channel that allows simultaneous
transmission in both directions. A half-duplex (HDX) system allows transmission in
either direction but not at the same time.

Fundamental Limitations

An engineer faces two general kinds of constraints when designing a communication
system. On the one hand are the technological problems, including such diverse
considerations as hardware availability, economic factors, governmental regulations,
and so on. These are problems of feasibility that can be solved in theory, even though
perfect solutions may not be practical. On the other hand are the fundamental phys-
ical limitations, the laws of nature as they pertain to the task in question. These lim-
itations ultimately dictate what can or cannot be accomplished, irrespective of the
technological problems. Two fundamental limitations of information transmission
by electrical means are bandwidth and noise.

The concept of bandwidth applies to both signals and systems as a measure
of speed. When a signal changes rapidly with time, its frequency content, or
spectrum, extends over a wide range, and we say that the signal has a large band-
width. Similarly, the ability of a system to follow signal variations is reflected in
its usable frequency response, or transmission bandwidth. Now all electrical
systems contain energy-storage elements, and stored energy cannot be changed
instantaneously. Consequently, every communication system has a finite band-
width B that limits the rate of signal variations.

Communication under real-time conditions requires sufficient transmission band-
width to accommodate the signal spectrum; otherwise, severe distortion will result.
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Thus, for example, a bandwidth of several megahertz is needed for a TV video signd,
while the much slower variations of avoicesigna fit into B = 3 kHz. For adigital sig-
nal with r symbols per second, the bandwidth must be B = r/2. In the case of informa-
tion transmission without a real-time constraint, the available bandwidth determines
the maximum signal speed. The time required to transmit a given amount of informa-
tion isthereforeinversely proportiona to B.

Noise imposes a second limitation on information transmission. Why is noise
unavoidable? Rather curiously, the answer comes from kinetic theory. At any tem-
perature above absol ute zero, thermal energy causes microscopic particlesto exhibit
random motion. The random motion of charged particles such as electrons generates
random currents or voltages called thermal noise. There are also other types of
noise, but thermal noise appears in every communication system.

We measure noise relative to an information signal in terms of the signal-to-
noise power ratio S/N (or SNR). Thermal noise power is ordinarily quite small, and
S/N can be so large that the noise goes unnoticed. At lower values of S/N, however,
noise degrades fidelity in analog communication and produces errors in digital
communication. These problems become most severe on long-distance links when
the transmission loss reduces the received signal power down close to the noise level.
Amplification at the receiver is then to no avail, because the noise will be amplified
along with the signal.

Taking both limitations into account, Shannon (1948)" stated that the rate of
information transmission cannot exceed the channel capacity.

C = Blog, (1 + SIN) = 3.32B log, (1 + S/N)

Thisrelationship, known asthe Hartley-Shannon law, setsan upper limit on the per-
formance of a communication system with a given bandwidth and signal-to-noise
ratio. Note, thislaw assumes the noise is random with a gaussian distribution, and the
information is randomly coded.

1.2 MODULATION AND CODING

Modulation and coding are operations performed at the transmitter to achieve effi-
cient and reliable information transmission. So important are these operations that
they deserve further consideration here. Subsequently, we'll devote several chapters
to modulating and coding techniques.

Modulation Methods

Modulation involves two waveforms: a modulating signal that represents the message
and a carrier wave that suits the particular application. A modulator systematically
alters the carrier wave in correspondence with the variations of the modulating signal.

TReferences are indicated in this fashion throughout the text. Complete citations are listed al phabeti-
cally by author in the References at www.mhhe.com/carlsoncrilly.
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(c)

Figure 1.2-1 (a) Modulating signal; (b) sinusoidal carrier with amplitude modulation; (c) pulse-
train carrier with amplitude modulation.

The resulting modulated wave thereby “carries” the message information. We generally
require that modulation be a reversible operation, so the message can be retrieved by the
complementary process of demodulation.

Figure 1.2-1 depicts a portion of an analog modulating signal (part a) and the cor-
responding modulated waveform obtained by varying the amplitude of a sinusoidal
carrier wave (part b). This is the familiar amplitude modulation (AM) used for radio
broadcasting and other applications. A message may also be impressed on a sinusoidal
carrier by frequency modulation (FM) or phase modulation (PM). All methods for
sinusoidal carrier modulation are grouped under the heading of continuous-wave
(CW) modulation.

Incidentally, you act as a CW modulator whenever you speak. The transmission
of voice through air is accomplished by generating carrier tones in the vocal cords
and modulating these tones with muscular actions of the oral cavity. Thus, what the
ear hears as speech is a modulated acoustic wave similar to an AM signal.

Most long-distance transmission systems employ CW modulation with a carrier
frequency much higher than the highest frequency component of the modulating sig-
nal. The spectrum of the modulated signal then consists of a band of frequency com-
ponents clustered around the carrier frequency. Under these conditions, we say that
CW modulation produces frequency translation. In AM broadcasting, for example,
the message spectrum typically runs from 100 Hz to 5 kHz; if the carrier frequency is
600 kHz, then the spectrum of the modulated carrier covers 595-605 kHz.
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Another modulation method, called pulse modulation, has a periodic train of
short pulses as the carrier wave. Figure 1.2-1c shows a waveform with pulse ampli-
tude modulation (PAM). Notice that this PAM wave consists of short samples
extracted from the analog signal at the top of the figure. Sampling is an important
signal-processing technique, and, subject to certain conditions, it’s possible to
reconstruct an entire waveform from periodic samples.

But pulse modulation by itself does not produce the frequency translation needed
for efficient signal transmission. Some transmitters therefore combine pulse and CW
modulation. Other modulation techniques, described shortly, combine pulse modula-
tion with coding.

Modulation Benefits and Applications

The primary purpose of modulation in a communication system is to generate a mod-
ulated signal suited to the characteristics of the transmission channel. Actually, there
are several practical benefits and applications of modulation briefly discussed below.

Modulation for Efficient Transmission ~ Signal transmission over appreciable distance
always involves a traveling electromagnetic wave, with or without a guiding medium.
The efficiency of any particular transmission method depends upon the frequency of
the signal being transmitted. By exploiting the frequency-translation property of CW
modulation, message information can be impressed on a carrier whose frequency has
been selected for the desired transmission method.

As a case in point, efficient line-of-sight ratio propagation requires antennas
whose physical dimensions are at least 1/10 of the signal’s wavelength. Unmodu-
lated transmission of an audio signal containing frequency components down to
100 Hz would thus call for antennas some 300 km long. Modulated transmission at
100 MHz, as in FM broadcasting, allows a practical antenna size of about one meter.
At frequencies below 100 MHz, other propagation modes have better efficiency with
reasonable antenna sizes.

For reference purposes, Fig. 1.2—-2 shows those portions of the electromagnetic
spectrum suited to signal transmission. The figure includes the free-space wavelength,
frequency-band designations, and typical transmission media and propagation modes.
Also indicated are representative applications authorized by the U.S. Federal Commu-
nications Commission (FCC). See http://www.ntia.doc.gov/osmhome/chapO4chart.pdf
for a complete description of U.S. frequency allocations. It should be noted that,
throughout the spectrum, the FCC has authorized industrial, scientific, and medical
(ISM) bands." These bands allow limited power transmission from various wireless
industrial, medical, and experimental transmitting devices as well as unintentional radi-
ators such as microwave ovens, etc. It is understood that ISM users in these bands must
tolerate interference from inputs from other ISM radiators.

TISM bands with center frequencies include 6.789 MHz, 13.560 MHz, 27.120 MHz, 40.68 MHz,
915 MHz, 2.45 GHz, 5.8 GHz, 24.125 GHz, 61.25 GHz, 122.5 GHz, and 245 GHz.
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Wavelength  Frequency Transmission Propagation Representative Frequency
designations media modes applications
—_—
Ultraviolet 10 Hz
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Wideband data
Infrared 104 1z
— ]
- T —
Extra high
frequency Experimental — 100 GHz
(EHF) Navigation
lcm Satellite-satellite
Super high Waveguide Microwave relay
frequency Earth-satellite 10 GHz
(SHF) Line-of-sight Radar
10cm radio Broadband PCS
Ultra high Wireless comm. services
frequency s Cellular, pagers I~ 1GHz
(UHF) Narrowband PCS, GPS signals.
im UHF TV
Very high Mobil, Aeronautical
frequency N N VHE TV and FM - 100 MHz
(VHF) ) )
10m Coaxial Mobile radio
High cable Skywave CB radio
frequency radio Business L 10 MHz
(HF) Amateur radio
100 m \JL/\ Civil defense
Medium .
frequency AM broadcasting - 1 MHz
(MF)
1km RN NN
Low Aeronautical
frequency ) | 100 kHz
(LF) Groundwave Submarine cable
10 km Very | radio Navigation
ery low i i
frec:zency Wire pairs Transoceanic radio | 10 kHz
(VLF)
100 km
Audio Telephone
Telegraph
e S B o kHz
Figure 1.2-2 The electromagnetic spectrum.*

*The U.S. Government's National Institute of Standards and Technology (NIST) broadcasts time
and frequency standards at 60 kHz and 2.5, 5, 10, 15, and 20 MHz.
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Modulation to Overcome Hardware Limitations  The design of a communication sys-
tem may be constrained by the cost and availability of hardware, hardware whose
performance often depends upon the frequencies involved. Modulation permits the
designer to place a signal in some frequency range that avoids hardware limitations.
A particular concern along this line is the question of fractional bandwidth, defined
as absolute bandwidth divided by the center frequency. Hardware costs and compli-
cations are minimized if the fractional bandwidth is kept within 1-10 percent.
Fractional-bandwidth considerations account for the fact that modulation units are
found in receivers as well as in transmitters.

It likewise follows that signals with large bandwidth should be modulated on high-
frequency carriers. Since information rate is proportional to bandwidth, according to
the Hartley-Shannon law, we conclude that a high information rate requires a high
carrier frequency. For instance, a 5 GHz microwave system can accommodate
10,000 times as much information in a given time interval as a 500 kHz radio channel.
Going even higher in the electromagnetic spectrum, one optical laser beam has a
bandwidth potential equivalent to 10 million TV channels.

Modulation to Reduce Noise and Interference A brute-force method for combating
noise and interference is to increase the signal power until it overwhelms the con-
taminations. But increasing power is costly and may damage equipment. (One of the
early transatlantic cables was apparently destroyed by high-voltage rupture in an
effort to obtain a usable received signal.) Fortunately, FM and certain other types of
modulation have the valuable property of suppressing both noise and interference.
This property is called wideband noise reduction because it requires the trans-
mission bandwidth to be much greater than the bandwidth of the modulating signal.
Wideband modulation thus allows the designer to exchange increased bandwidth for
decreased signal power, a trade-off implied by the Hartley-Shannon law. Note that a
higher carrier frequency may be needed to accommodate wideband modulation.

Modulation for Frequency Assignment When you tune a radio or television set to a
particular station, you are selecting one of the many signals being received at that
time. Since each station has a different assigned carrier frequency, the desired signal
can be separated from the others by filtering. Were it not for modulation, only one
station could broadcast in a given area; otherwise, two or more broadcasting stations
would create a hopeless jumble of interference.

Modulation for Multiplexing Multiplexing is the process of combining several signals
for simultaneous transmission on one channel. Frequency-division multiplexing
(FDM) uses CW modulation to put each signal on a different carrier frequency, and a
bank of filters separates the signals at the destination. Time-division multiplexing
(TDM) uses pulse modulation to put samples of different signals in nonoverlapping
time slots. Back in Fig. 1.2-1c, for instance, the gaps between pulses could be filled
with samples from other signals. A switching circuit at the destination then separates
the samples for signal reconstruction. Applications of multiplexing include FM stereo-
phonic broadcasting, cable TV, and long-distance telephone.
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A variation of multiplexing is multiple access (MA). Whereas multiplexing
involves a fixed assignment of the common communications resource (such as fre-
quency spectrum) at the local level, MA involves the remote sharing of the resource.
For example, code-division multiple access (CDMA) assigns a unique code to each
digital cellular user, and the individual transmissions are separated by correlation
between the codes of the desired transmitting and receiving parties. Since CDMA
allows different users to share the same frequency band simultaneously, it provides
another way of increasing communication efficiency.

Coding Methods and Benefits

We’ve described modulation as a signal-processing operation for effective transmis-
sion. Coding is a symbol-processing operation for improved communication
when the information is digital or can be approximated in the form of discrete sym-
bols. Both coding and modulation may be necessary for reliable long-distance digital
transmission.

The operation of encoding transforms a digital message into a new sequence of
symbols. Decoding converts an encoded sequence back to the original message
with, perhaps, a few errors caused by transmission contaminations. Consider a com-
puter or other digital source having M >> 2 symbols. Uncoded transmission of a
message from this source would require M different waveforms, one for each sym-
bol. Alternatively, each symbol could be represented by a binary codeword consist-
ing of K binary digits. Since there are 2K possible codewords made up of K binary
digits, we need K = log, M digits per codeword to encode M source symbols. If the
source produces r symbols per second, the binary code will have Kr digits per sec-
ond, and the transmission bandwidth requirement is K times the bandwidth of an
uncoded signal.

In exchange for increased bandwidth, binary encoding of M-ary source symbols
offers two advantages. First, less complicated hardware is needed to handle a binary
signal composed of just two different waveforms. Second, everything else being
equal, contaminating noise has less effect on a binary signal than it does on a signal
composed of M different waveforms, so there will be fewer errors caused by the
noise. Hence, this coding method is essentially a digital technique for wideband
noise reduction. The exception to the above rule would be if each of the M dif-
ferent waveforms were transmitted on a different frequency, space, or were mutually
orthogonal.

Channel coding is a technique used to introduce controlled redundancy to fur-
ther improve the performance reliability in a noisy channel. Error-control coding
goes further in the direction of wideband noise reduction. By appending extra check
digits to each binary codeword, we can detect, or even correct, most of the errors that
do occur. Error-control coding increases both bandwidth and hardware complexity,
but it pays off in terms of nearly error-free digital communication despite a low
signal-to-noise ratio.

Now, let’s examine the other fundamental system limitation: bandwidth. Many
communication systems rely on the telephone network for transmission. Since the

11
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bandwidth of the transmission system is limited by decades-old design specifica-
tions, in order to increase the data rate, the signal bandwidth must be reduced. High-
speed modems (data modulator/demodulators) are one application requiring such
data reduction. Source-coding techniques take advantage of the statistical knowl-
edge of the source signal to enable efficient encoding. Thus, source coding can be
viewed as the dual of channel coding in that it reduces redundancy to achieve the
desired efficiency.

Finally, the benefits of digital coding can be incorporated in analog communi-
cation with the help of an analog-to-digital conversion method such as pulse-code-
modulation (PCM). A PCM signal is generated by sampling the analog message,
digitizing (quantizing) the sample values, and encoding the sequence of digitized
samples. In view of the reliability, versatility, and efficiency of digital transmission,
PCM has become an important method for analog communication. Furthermore,
when coupled with high-speed microprocessors, PCM makes it possible to substitute
digital signal processing for analog operations.

1.3 ELECTROMAGNETIC WAVE PROPAGATION
OVER WIRELESS CHANNELS

Over 100 years ago, Marconi established the first wireless communication between
North America and Europe. Today, wireless communication is more narrowly defined
to primarily mean the ubiquitous cell phones, wireless computer networks, other
personal communication devices, and wireless sensors.

Like light waves, radio signals by nature only travel in a straight line, and there-
fore propagation beyond line-of-sight (LOS) requires a means of deflecting the
waves. Given that the earth is spherical, the practical distance for LOS communica-
tion is approximately 48 kM, or 30 miles, depending on the terrain and the height of
the antennas, as illustrated in Fig. 1.3—-1. In order to maximize coverage, therefore,
television broadcast antennas and cell-phone base antennas are usually located on
hills, high towers, and/or mountains.

However, there are several effects that enable light as well as electromagnetic
(EM) waves to propagate around obstructions or beyond the earth’s horizon. These
are refraction, diffraction, reflection, and scattering. These mechanisms can be both
useful and troublesome to the radio engineer. For example, before satellite technol-
ogy, international broadcasts and military communications took advantage of the
fact that the ionosphere’s F-layer reflects' short-wave radio signals, as shown in
Fig. 1.3-2. Here signals from Los Angeles (LA) travel 3900 km to New York City
(NY). However, the ability to reach a specific destination using ionospheric reflec-
tion is dependent on the frequency, type of antenna, solar activity, and other phe-
nomena that affect the ionosphere. We also observe that, while our signal of interest
will propagate from LA to NY, it will likely skip over Salt Lake City and Chicago.
Therefore, ionospheric propagation is a relatively unreliable means of radio frequency

TRadio waves actually refract off the ionosphere. See further discussion.
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Figure 1.3-1 Line-of-sight communication and the earth’s curve.
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Figure 1.3-2 Earth’s atmosphere regions and skywave propagation via the E- and F-layers of
the ionosphere. Distances are approximate, and for clarity, the figure is not to
scale.

(RF) communication. Reliability can be improved, however, if we employ frequency
diversity, that is, send the same signal over several different frequencies to increase
the probability that one of them will reach the intended destination. On the other
hand, as shown in Fig. 1.3-3, reflection of radio signals may cause multipath inter-
ference whereby the signal and a delayed version(s) interfere with each other at the
destination. This destructive addition of signals causes signal fading. If you observe
Fig. 1.3-3, the received signal is the sum of three components: the direct one plus
two multipath ones, or simply y(t) = a; X(t) + a, x(t — &) + azx(t — B). Depending
on values of « and B, we can have constructive or destructive interference, and thus
the amplitude of y(t) could be greatly reduced or increased.
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Figure 1.3-3 Multipath interference caused by a signal being reflected off the terrain and a

building.

Signal fading, or attenuation, can also be caused by losses in the medium. Let’s con-
sider the various means by which RF signals can be deflected as well as provide a
brief description of general radio propagation. We draw on material from E. Jordan
and K. Balmain (1971) and the ARRL Handbook’s chapter on radio propagation.

RF Wave Deflection

In addition to waves reflecting from buildings, they can also reflect off of hills, auto-
mobiles, and even airplanes. For example, two stations 900 km apart can communi-
cate via reflection from an airplane whose altitude is 12 km. Of course, this would
only be suitable for experimental systems.

Waves bend by refraction because their velocity changes when passing from
one medium to another with differing indices of refraction. This explains why an
object in water is not located where it appears to be.

Diffraction occurs when the wave front meets a sharp edge and is delayed then
reflected off to the other side, redirecting or bending the rays as shown in Fig. 1.3-4a. In
some cases, the edge doesn’t have to be sharp, and as shown in Figs. 1.3—-4b and c, sig-
nals can be diffracted from a building or mountain. Note Fig. 1.3—4b is another illustra-
tion of multipath caused by diffraction and reflection. At wavelengths above 300 meters
(i.e., below 1 MHz), the earth acts as a diffractor and enables ground-wave propagation.

If the medium contains reflective particles, light or radio waves may be scattered
and thus deflected. A common example is fog’s causing automobile headlight beams
to be scattered. Similarly, meteor showers will leave ionized trails in the earth’s
atmosphere that scatter radio waves and allow non-LOS propagation for signals in the
range of 28-432 MHz. This, along with other propagation mechanisms, can be an
extremely transient phenomenon.

Skywave Propagation

Skywave propagation is where radio waves are deflected in the troposphere or ion-
osphere to enable communication distances that well exceed the optical LOS.
Figure 1.3-2 shows the regions of the earth’s atmosphere including the troposphere
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Figure 1.3-4 Diffraction of waves: (a) optical, (b) off the top of a building, (c) off a hill or the
earth.

and the ionosphere’s D-, E-, and F-layers. Also shown are their approximate respec-
tive distances from the earth’s surface. The troposphere, which is 78 percent nitro-
gen, 21 percent oxygen, and 1 percent other gases, is the layer immediately above
the earth and where we get clouds and weather. Thus its density will vary according
to the air temperature and moisture content. The ionosphere starts at about 70 km
and contains mostly hydrogen and helium gases. The behavior of these layers
depends on solar activity, ionized by the sun’s ultraviolet light, causing an increasing
electron density with altitude. The D-layer (70-80 km) is present only during the day
and, depending on the transmission angle, will strongly absorb radio signals below
about 5-10 MHz. Therefore, signals below these frequencies are propagated beyond
LOS primarily viaground wave. Thisiswhy you hear only local AM broadcast sig-
nals during the day. The E-layer (about 100 km) also exists primarily during the day.
Layers F1 and F2 exist during the day, but at night these combine to form a single
F-layer. The E and F layers, aswell asto alesser extent the troposphere, arethe basis
for skywave propagation.

While the primary mechanism for bending radio waves in the E and F layers
appears to bereflection, it is actually refraction as shown in Fig. 1.3-5. The particu-
lar layer has a refractive index that increases with altitude. This causes the entering
radio wave to be refracted in a downward curvature. The thickness of the layer and
electron density gradient may be such that the curvature is sufficient enough to
refract the wave back to earth.

The geometry and dtitude of the E- and F-layers are such that the maximum
distance of one hop from these layers is 2500 and 4000 km respectively. Note, in
observing Fig. 1.3-2, the distance from LA to NY is 3900 km, and Salt Lake City to
Chicago is 2000 km (E-layer). As Fig. 1.3-6 indicates, multiple hops can occur
between the earth and E- and F-layers, and/or the F- and E-layers. Multiple hops
make it possible for signals to propagate halfway around the earth. Of course, there
issome loss of signal strength with each hop.

15
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Figure 1.3-5 Radio wave refracting off the ionosphere.

Figure 1.3-6 Signal propagation via multi-hop paths.

During the day, and depending on solar activity, the E-layer is capable of deflecting
signals up to 20 MHz. At other times, aurora borealis (or australis), the northern (or
southern) lights, will cause high-energy particles to ionize gasses in the E-layer,
enabling propagation of signals up to 900 MHz. There is also Sporadic E skip, which
enables propagation for frequencies up to 220 MHz or so. The F-layer will enable
deflection of signals up to approximately 20 MHz, but during sunspot activity signals
above 50 MHz have been propagated thousands of miles via the F-layer.

The maximum frequency at which the ionosphere is capable of refracting a per-
pendicular signal back to earth is referred to as the maximum usable frequency
(MUF). However, in reality the signal paths are not perpendicular to the ionosphere,
and thus the ionosphere may refract even higher frequencies since a lower launch
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angle encounters a thicker layer. The MUF will vary depending on solar activity, but
is usually at least 14 MHz, even if for a few hours each day.

Similarly, temperature inversions, moisture, and other weather conditions in the
troposphere may refract or scatter the radio wave. Even under normal circumstances,
because air has a nonhomogenous index of refraction, horizontal waves will have a
downward curvature and thus be capable of traveling just beyond LOS. In any case,
troposphere bending, or tropo scatter, primarily affects signals above 30 MHz. While
this is a short-term effect, there have been cases where 220 and 432 MHz signals
have traveled more than 2500 miles.

We summarize with the following statements with respect to propagation via the
atmosphere: (a) The ionosphere will enable signals below the MUF to propagate
great distances beyond LOS, but may skip over the intended destination; thus, we
have to employ frequency diversity and different antenna angles to increase the prob-
ability of the signal’s reaching its destination. (b) There can be a great variation in
the MUF depending on solar activity. (c) Signal propagation beyond LOS for fre-
quencies above 14-30 MHz is extremely transient and unreliable. This is why we
now use satellites for reliable communications for signals above 30 MHz. (d) While
propagation beyond LOS using the atmosphere as well as other objects is not
dependable, when it does occur it can cause interference between different users as
well as multipath interference. The radio engineer needs to be aware of all of the
mentioned propagation modes and design a system accordingly.
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Traditional telephone communication has been implemented via circuit switching,
as shown in Fig. 1.4-1a, in which a dedicated (or a virtual) line is assigned to con-
nect the source and destination. The Internet, originally designed for efficient and
fast text and data transmission, uses packet switching in which the data stream is
broken up into packets and then routed to the destination via a set of available chan-
nels to be reconstructed at the destination. Fig. 1.4-1b shows how telephone and text
information is sent via packet switching. Packet switching is more efficient than cir-
cuit switching if the data are bursty or intermittent, as is the case with text, but would
not normally be tolerated for voice telephone. With the continued development of
high-speed data routers and with the existing cable television infrastructure, Internet
telephone, or Voice-over-Internet Protocol (MolP), is becoming a viable alternative
to standard telephone circuit switching. In fact, third-generation (3G) wireless
phones will primarily use packet switching.

3G wireless systems, or Universal Mobile Telecommunications Systems (UMTS),
are the successor to the original first- and second-generation (1G and 2G) voice-only
cell-phone systems. 3G is now a global standard for wireless phone networks and
has the following features: (a) voice and data, (b) packet-only switching (some systems
are compatible with circuit switching), (c) code division multiple access (CDMA), (d)
full global roaming, and (e) evolutionary migration from the existing base of 2G sys-
tems. For example, 2.5G cell phone systems are a combination of voice and data. See
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Figure 1.4-1 (a) Standard telephone lines that use circuit switching, (b) Internet telephone

(VoIP) using packet switching and someone else communicating via the
Infernet.

Goodman and Myers (2005) and Ames and Gabor (2000) for more information on 3G

standards.

In addition to packet switching, there has been continued development of better
multiple access methods to enable ways to more efficiently utilize an existing chan-
nel. In the case of wireless or cell phones, this enables lower cost service and more
users per cell without degradation in quality of service (QoS). The traditional meth-
ods include frequency, time, and code division multiple access (FDMA, TDMA, and
CDMA). FDMA and TDMA are covered in Chap. 7, and CDMA, which uses direct
sequence spread spectrum, is covered in Chap. 15. FDMA and TDMA share a chan-
nel via an assigned frequency or time slot respectively. In both of these methods, too
many users on a channel will cause cross-talk such that one user may hear the other’s
conversation in the background. Thus with FDMA and TDMA there is the proverbia
trade-off between interference and economics. This is particularly the case with cell
phones, where we have to set a hard limit on the number of users per cell. This hard
limit prevents additional users from making calls even though some other existing
user will soon be hanging up and releasing the frequency or time slot. On the other
hand, with CDMA an unauthorized listener will hear only noise, and thus when some-
one wants to make a phone call in an aready busy cell area, the additional CDMA
user will temporarily raise the level of background noise since someone else is soon
likely to be hanging up. Therefore, we can set a soft limit to the number of CDMA
users per cell and allow more users per cell. Thisis oneimportant reason why CDMA
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is being used in 3G wireless systems. CDMA also reduces the multipath problem
since the multipath component is treated as another user.

Orthogonal frequency division multiplexing (OFDM) is a variation of fre-
quency division multiplexing (FDM) in which we can reduce interference between
users by selecting a set of carrier frequencies that are orthogonal to each other.
Another application of OFDM is that, instead of sending a message at a high rate
over a single channel, we can send the same message over several channels at a
lower rate; this reduces the problem of multipath. OFDM is covered in Chap. 14 and
is used widely in wireless computer networks such as Wi-Fi and WiMax.

Ultra-wideband (UWB) systems can operate at average power levels below the
ambient levels of existing RF interference, or in other words, the power output of a
UWSB is below such unintentional radiators as computer boards and other digital
logic hardware. Recent Federal Communications Commission (FCC) guidelines
allow for unlicensed UWB operation from approximately 3.1 to 10.6 GHz at power
levels not to exceed —41 dBm. This combined with continued development of UWB
technology will enable greater use of the RF spectrum and thus allow for even more
users and services on the RF spectrum.

Computer networks Wi-Fi (or IEEE 802.11) and WiMax (or IEEE 802.16) are
two wireless computer network systems that have proliferated due to the FCC’s mak-
ing available portions of the 915 MHz, 2.45 GHz, and 5.8-GHz ISM as well as other
UHF and microwave bands available for communication purposes. Wi-Fi technology
is used in local area networks (LANS) such as those used by laptop computers seen in
coffee shops, etc, hence the often-used term “hot spots.” Its range is approximately a
hundred meters. WiMax is a mobile wireless system and often uses the existing cell
phone tower infrastructure and has a range comparable to that of cell phones. WiMax
has been touted as an alternative to wireless phones for data service and can be used as
an alternative to cable to enable Internet access in buildings. In other words, WiMax
can serve as the last mile for broadband connectivity. Note that WiMax, Wi-Fi, and cell
phones all operate on separate frequencies and thus are separate systems.

Software radio, or software-defined radio (SDR), as shown in the receiver of
Fig. 1.4-2a, is another relatively recent development in communication technology
that promises greater flexibility than is possible with standard analog circuit meth-
ods. The signal at the antenna is amplified by a radio frequency (RF) amplifier and
digitized using an analog-to-digital converter (ADC). The ADC’s output is fed to the
digital signal processor (DSP), which does the appropriate demodulation, and so on,
and then to the digital-to-analog converter (DAC), which changes it back to a form
the user can hear. A software radio transmitter would be the inverse. The flexibility
includes varying the parameters of station frequency, filter characteristics, modula-
tion types, gain, and so on, via software control. Note, in many cases, because of
technological hardware limitations particularly in the GHz frequency range, the
equipment is often a hybrid of analog and software radio. Software radios are often
implemented via field programmable gate arrays (FPGASs) wherein the transmitter or
receiver design is first developed in some high-level software language such as
Simulink, converted to VHSIC (very high speed integrated circuits) hardware
description language (VHDL) to be compiled, and then downloaded to the FPGA as
shown in Fig. 1.4-2b.
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Figure 1.4-2 (a) Software radio receiver, (b) software radio receiver implemented via an
FPGA.

1.5 SOCIETAL IMPACT AND HISTORICAL
PERSPECTIVE

The tremendous technological advances of communication systems once again
affirms that “Engineers are the agents of social change’' and are the driving force
behind drastic changesin public policy, whether it be privacy, commerce, or intellec-
tual property. These paradigm changes are al due to the diligence of engineers and
investors who create and devel op the next generation of communications technology.
L et us cite some examples. At one time, telephone service was available only through
landlines and was a government-regulated monopoly. You paid a premium for long
distance and it was priced by the minute. Today, the consumer has the additional
choices of phone service through the Internet, simply Voice-Over-Internet Protocol
(VOIP), and the cell phone. These new technologies have removed the distinction
between local and long distance, and usually both are available for alow, fixed rate
regardless of the amount of time spent using the service, diminishing the role of gov-
ernment utility commissions. Similarly, with digital subscriber lines (DSLs), the

TDaitch, P. B. “Introduction to College Engineering” (Reading, MA: Addison Wesley, 1973), p. 106.
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telephone companies can also provide both standard phone and video services. WiMax
and, to a lesser extent, Wi-Fi technologies are diminishing the need for wired access
to the network. For example, just like cable can now provide a home or business with
video, data, and voice services, WiMax is expected to do the same. What is even more
interesting is that, unlike many cell phone providers that are part of a local telephone
company, WiMax companies are often small independent startups. Some of the moti-
vation for WiMax startups is to provide an alternative to the regulated local phone or
cable company (Andrews et al., 2007). Finally, television via satellite is now available
using dishes less than a meter in diameter, making it possible to receive satellite TV
without running afoul of local zoning restrictions. You can observe on any college
campus that most college students have a wireless phone service that can reach any-
where in the United States at a quality and cost rivaling those of landlines. Phones can
send and receive voice, music, text, and video information. E-commerce sales via
the Internet have forced state governments to rethink their sales tax policies, but at the
same time the VVOIP and cell phone service has provided government another resource
to tax! The ubiquitous cell phone and Internet has made us all available “24/7”” no mat-
ter where we are. An employee who wants to take his or her vacation in some remote
spot to “get away from it all” may now have to politely tell the employer that he or she
does not want to be reached by cell phone and that, since there will be no “hot spots,”
he or she will not be checking email. Internet and digital recording techniques that
make it easier to download music and video content have caused the recording indus-
try to rethink their business model as well as find new ways to protect their copyrights.

However, this upheaval in public policy and societal norms driven by advances in
communication science and technology has really always been the case. The dynamics of
diplomacy drastically changed after the mid 1800s with the laying down of transoceanic
telegraph cables, whereas previously, international diplomacy had been limited by the
speed of ship or ground travel, which could take months. Prior to the telegraph, high-
speed communication was a fast runner or perhaps smoke signals. The advent of wireless
communication allowed for rapid military communications, but it also enabled intercep-
tion, code breaking, and jamming by rival states and thus has affected the outcomes of
wars and diplomacy. It has been said that many national upheavals and revolutions have
been facilitated by citizens’ being able to easily and quickly communicate with outsiders
via Internet or fax. Whether it be by creating the annoyance of a cell phone going off in a
theater or influencing the outcome of a major political conflict, the communications
engineers have had and will continue to have a significant impact on society.

Historical Perspective

The organization of this text is dictated by pedagogical considerations and does not
necessarily reflect the evolution of communication systems. To provide at least some
historical perspective, a chronological outline of electrical communication is pre-
sented in Table 1.5-1. The table lists key inventions, scientific discoveries, and
important papers and the names associated with these events.

Several of the terms in the chronology have been mentioned already, while oth-
ers will be described in later chapters when we discuss the impact and interrelation-
ships of particular events. You may therefore find it helpful to refer back to this table
from time to time.
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Table 1.5-1 A chronology of electrical communication

Year Event

1800-1837 Preliminary developments Volta discovers the primary battery; the mathematical
treatises by Fourier, Cauchy, and Laplace; experiments on electricity and magnetism
by Oersted, Ampere, Faraday, and Henry; Ohm’s law (1826); early telegraph systems
by Gauss, Weber, and Wheatstone.

1838-1866 Telegraphy Morse perfects his system; Steinheil finds that the earth can be used for a
current path; commercial service initiated (1844); multiplexing techniques devised;
William Thomson (Lord Kelvin) calculates the pulse response of atelegraph line
(1855); transatlantic cablesinstalled by Cyrus Field and associates.

1845 Kirchhoff’s circuit laws enunciated.

1864 Maxwell’s equations predict electromagnetic radiation.

1876-1899 Telephony Acoustic transducer perfected by Alexander Graham Bell, after earlier
attempts by Reis; first telephone exchange, in New Haven, with eight lines (1878);
Edison’s carbon-button transducer; cable circuits introduced; Strowger devises auto-
matic step-by-step switching (1887); the theory of cable loading by Heaviside, Pupin,
and Campbell.

1887-1907 Wireless telegraphy Heinrich Hertz verifies Maxwell’s theory; demonstrations by
Marconi and Popov; Marconi patents a complete wireless telegraph system (1897);
the theory of tuning circuits developed by Sir Oliver Lodge; commercial service
begins, including ship-to-shore and transatlantic systems.

1892-1899 Oliver Heaviside's publications on operational calculus, circuits, and electromagnetics.

1904-1920 Communication electronics Lee De Forest invents the Audion (triode) based on
Fleming's diode; basic filter types devised by G. A. Campbell and others; experi-
ments with AM radio broadcasting; transcontinental telephone line with electronic
repeaters completed by the Bell System (1915); multiplexed carrier telephony intro-
duced; E. H. Armstrong perfects the superheterodyne radio receiver (1918); first
commercial broadcasting station, KDKA, Pittsburgh.

1920-1928 Transmission theory Landmark papers on the theory of signal transmission and noise
by J. R. Carson, H. Nyquist, J. B. Johnson, and R. V. L. Hartley.

1923-1938 Television Mechanical image-formation system demonstrated by Baird and Jenkins;
theoretical analysis of bandwidth requirements; Farnsworth and Zworykin propose
electronic systems; vacuum cathode-ray tubes perfected by DuMont and others; field
tests and experimental broadcasting begin.

1927 Federal Communications Commission established.

1931 Teletypewriter service initiated.

1934 H. S. Black develops the negative-feedback amplifier.

1936 Armstrong’s paper states the case for FM radio.

1937 Alec Reeves conceives pulse-code modul ation.

1938-1945 World War 1l Radar and microwave systems devel oped; FM used extensively for mil-
itary communications; improved electronics, hardware, and theory in al areas.

1944-1947 Statistical communication theory Rice develops a mathematical representation of
noise; Weiner, Kolmogoroff, and Kotel’ nikov apply statistical methods to signal
detection. Arthur C. Clarke proposes geosynchronous satellites.

1948-1950 Information theory and coding C. E. Shannon publishes the founding papers of
information theory; Hamming and Golay devise error-correcting codes at AT& T Labs.

1948-1951 Transistor devices invented by Bardeen, Brattain, and Shockley at AT& T Labs.
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Table 1.5-1 A chronology of electrical communication (continued)

Year Event

1950 Time-division multiplexing applied to telephony.

1953 Color TV standards established in the United States.

1955 J. R. Pierce proposes satellite communication systems.

1956 First transoceanic telephone cable (36 voice channels).

1958 Long-distance data transmission system developed for military purposes.

1960 Maiman demonstrates the first laser.

1961 Integrated circuits go into commercial production; stereo FM broadcasts begin in
the U.S.

1962 Satellite communication begins with Telstar I.

1962-1966 High-speed digital communication Data transmission service offered commercially;
Touch-Tone telephone service introduced; wideband channels designed for digital
signaling; pulse-code modulation proves feasible for voice and TV transmission;
major breakthroughs in theory and implementation of digital transmission, including
error-control coding methods by Viterbi and others, and the development of adaptive
equalization by Lucky and coworkers.

1963 Solid-state microwave oscillators perfected by Gunn.

1964 Fully electronic telephone switching system (No. 1 ESS) goes into service.

1965 Mariner IV transmits pictures from Mars to Earth.

1966-1975 Wideband communication systems Cable TV systems; commercial satellite relay
service becomes available; optical links using lasers and fiber optics.

1969 ARPANET created (precursor to Internet).

1971 Intel develops first single-chip microprocessor.

1972 Motorola develops cellular telephone; first live TV broadcast across Atlantic ocean
via satellite.

1980 Compact disc developed by Philips and Sony.

1981 FCC adopts rules creating commercial cellular telephone service; IBM PC is intro-
duced (hard drives introduced two years later).

1982 AT&T agrees to divest 22 local service telephone companies; seven regional Bell
system operating companies formed.

1985 Fax machines widely available in offices.

1985 FCC opens 900 MHz, 2.4 GHz, and 5.8 GHz bands for unlicensed operation. These
eventually were used for Wi-Fi technology/standards for short range, broadband
wireless networks.

1988-1989 Installation of trans-Pacific and trans-Atlantic optical cables for light-wave commu-
nications.

1990-2000 Digital communication systems 2G digital cellular phones; digital subscriber lines
(DSLs); Wi-Fi for wireless local area networks; digital television (DTV) standards
developed; digital pagers.

1994-1995 FCC raises $7.7 billion in auction of frequency spectrum for broadband personal
communication devices.

1997-2000 Wi-Fi (IEEE 802.11) standards published; Wi-Fi products start being used.

1998 Digital television service launched in U.S.

(continued)
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Table 1.5-1 A chronology of electrical communication (continued)

Year Event

2000-present Third-generation (3G) cell phone systems introduced; WiMax (IEEE 802.16) for
mobile and longer, wider-area networks.

2002 FCC permits marketing and operation of products containing ultra-wideband
technology.

2009 All over the air, TV signals will be by digital programming; analog-only TVs will no
longer work.

1.6 PROSPECTUS

This text provides a comprehensive introduction to analog and digital communica-
tions. A review of relevant background material precedes each major topic that is
presented. Each chapter begins with an overview of the subjects covered and a listing
of learning objectives. Throughout the text we rely heavily on mathematical models
to cut to the heart of complex problems. Keep in mind, however, that such models
must be combined with appropriate physical reasoning and engineering judgment.

Chapters 2 and 3 deal with deterministic signals, emphasizing time-domain and
frequency-domain analysis of signal transmission, distortion, and filtering. Included
in Chap. 2 is a brief presentation of the discrete fourier transform (DFT). The DFT is
not only an essential part of signal processing, but its implementation and that of the
inverse DFT enables us to efficiently implement orthogonal frequency division mul-
tiplexing (OFDM). OFDM is covered in Chap. 14. Chapters 4 and 5 discuss the how
and why of various types of CW modulation. Particular topics include modulated
waveforms, transmitters, and transmission bandwidth. Sampling and pulse modula-
tion are covered in Chap. 6. Chapter 7 covers topics in analog modulation systems,
including receiver and multiplexing systems and television. In preparation for a
discussion of the impact of noise on CW modulation systems in Chap. 10, Chaps. 8
and 9 apply probability theory and statistics to the representation of random signals
and noise.

The discussion of digital communication starts in Chap. 11 with baseband
(unmodulated) transmission, so that we can focus on the important concepts of digital
signals and spectra, noise and errors, and synchronization. Chapter 12 then draws
upon previous chapters for the study of coded pulse modulation, including PCM and
digital multiplexing systems. Error control coding is presented in Chap. 13. Chapter
14 describes and analyzes digital transmission systems with CW modulation, culmi-
nating in a performance comparison of various methods. Chapter 15 covers both
spread spectrum-systems, other wireless systems, and a new section on ultra-
wideband systems. Finally, an introduction to information theory in Chap. 16 pro-
vides a retrospective view of digital communication and returns us to the fundamental
Hartley-Shannon law. Because computer networks have become a separate but related
field, the book’s website (www.mhhe.com/Carlson) has a brief section on computer
networks in order to tie together the area of networks with traditional communications
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(i.e., the physical and the upper, or data-transmission protocol, layers). The website
also includes a brief discussion of encryption.

Each chapter contains various exercises designed to clarify and reinforce the
concepts and analytical techniques. You should work these exercises as you come to
them, checking your results with the answers in the back of the book. Also, at the
back of the book, you’ll find tables containing handy summaries of important text
material and mathematical relations pertinent to the exercises and problems at the
end of each chapter. In addition to the end-of-chapter problems, we have added qual-
itative questions that have been designed to help students gain insight for applying
the theory and to provide practical meaning to the formulas. Answers may require
you to use information covered in previous chapters or even in previous courses.
Computer problems have also been added to the book’s website (www.mhhe.com/
Carlson) to reinforce the theory and add to students’ problem-solving skills. Finally,
there is a list of key symbols and abbreviations.

Although we mostly describe communication systems in terms of “black boxes”
with specified properties, we’ll occasionally lift the lid to look at electronic circuits
that carry out particular operations. Such digressions are intended to be illustrative
rather than compose a comprehensive treatment of communication electronics.
Besides discussions of electronics, certain optional or more advanced topics are
interspersed in various chapters and identified by an asterisk (*). These topics may
be omitted without loss of continuity. Other optional material of a supplementary
nature is also contained in the Appendix.

Two types of references have been included. Books and papers cited within
chapters provide further information about specific items. Additional references are
further collected in a supplementary reading list and serve as an annotated bibliogra-
phy for those who wish to pursue subjects in greater depth.

25

1.7 QUESTIONS

1. In the London bombings of July 7, 2005, people near the bomb blast were not
able to communicate via voice with their wireless phones, but could send and
receive text messages. Why?

2. Why are more AM broadcast stations heard at night than during the day, and
why is there so much more interference at night?

3. Why is the upper bit rate on a telephone modem only 56 kbits/s versus a DSL
or cable modem whose speed can be in Mbits/s?

4. Why is bandwidth important?
5. List the means by which several users share a channel.

6. Why can shortwave radio signals go worldwide, whereas AM, FM, and TV
broadcast signals are local?

7. What are FM, AM, UHF and VHF, PCS, CDMA, TDMA, and FDMA?
8. How are data transferred via the Internet versus conventional telephone lines?


http://www.mhhe.com/Carlson
http://www.mhhe.com/Carlson
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10.

11.
12.

13.

14.
15.
16.
17.
18.

19.

20.
21.

What are the primary metrics for analog and digital communications?

Why are wireless phones with their relatively low bandwidth able to receive
pictures, whereas standard television requires relatively high bandwidth?

Why do some AM stations go off the air or reduce their power at sunset?

Provide at least two reasons why satellite repeaters operate above the short-
wave bands.

What object above the atmosphere has been used to reflect radio signals (note:
a satellite retransmits the signal)?

Give a non-radio-wave example of multipath communication.

Why is a high-speed router essential for Internet telephone?

Why do TV signals use high frequencies and voice use low frequencies?
Why do antennas vary in shape and size?

Why do some FM broadcast stations want the FCC to assign them a carrier
frequency at the lower portion of the band (i.e. f, < 92 MHz versus f, >
100 MHz)?

Consider a bandlimited wireless channel. How can we increase the channel
capacity without an increase in bandwidth or signal-to-noise ratio and not
violate the Hartley-Shannon law?

How can we make fire talk?

Define a microsecond, nanosecond, and picosecond in a way that a nontechni-
cal person could understand.
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lectrical communication signals are fime~varying quantities such as voltage or current. Although a signal physically
exists in the time domain, we can also represent it in the frequency domain where we view the signal as con-
sisting of sinusoidal components af various frequencies. This frequency-domain description is called the spectrum.

Spectral analysis, using the Fourier series and transform, is one of the fundamental methods of communication
engineering. It allows us fo treat entire classes of signals that have similar properties in the frequency domain, rather
than getting bogged down in defailed time-domain analysis of individual signals. Furthermore, when coupled with the
frequency-response characteristics of filtlers and other system components, the spectral approach provides valuable
insight for design work.

This chapter therefore is devoted to signals and spectral analysis, giving special attention to the frequency-domain
inferpretation of signal properties. We'll examine line spectra based on the Fourier series expansion of periodic signals,
and continuous spectra based on the Fourier fransform of nonperiodic signals. These two types of specira will ulimately
be merged with the help of the impulse concept.

As the first step in spectral analysis we must write equations representing signals as funcfions of time. But such
equations are only mathematical models of the real world, and imperfect models at that. In fact, a completely faith-
ful description of the simplest physical signal would be quite complicated and impractical for engineering purposes.
Hence, we try to devise models that represent with minimum complexity the significant properties of physical signals.
The study of many different signal models provides us with the background needed to choose appropriate models for
specific applications. In many cases, the models will apply only to particular classes of signals. Throughout the chap-
ter the major classifications of signals will be highlighted for their special properties.

OBJECTIVES

After studying this chapter and working the exercises, you should be able to do each of the following:

1. Sketch and label the one-sided or two-sided line spectrum of a signal consisting of a sum of sinusoids (Sect. 2.1).
2. Calculate the average value, average power, and total energy of a simple signal (Sects. 2.1 and 2.2).

3. Write the expressions for the exponential Fourier series and coefficients, the trigonometric Fourier series, and the
direct and inverse Fourier transform (Sects. 2.1 and 2.2).

Identify the time-domain properties of a signal from its frequency-domain representation and vice versa (Sect. 2.2).

5. Sketch and label the spectrum of a rectangular pulse train, a single rectangular pulse, or a sinc pulse (Sects. 2.1
and 2.2).

6.  State and apply Parseval’s power theorem and Rayleigh’s energy theorem (Sects. 2.1 and 2.2).

7.  State the following transform theorems: superposition, time delay, scale change, frequency translation and modu-
lation, differentiation, and integration (Sect. 2.3).

8.  Use transform theorems to find and sketch the spectrum of a signal defined by time-domain operations (Sect. 2.3).

9.  Setup the convolution integral and simplify it as much as possible when one of the functions is a rectangular pulse
(Sect. 2.4).

10.  State and apply the convolution theorems (Sect. 2.4).
11.  Evaluate or otherwise simplify expressions containing impulses (Sect. 2.5).

12.  Find the spectrum of a signal consisting of constants, steps, impulses, sinusoids, and/or rectangular and triangular
functions (Sect. 2.5).

13.  Determine the discrete Fourier transform (DFT) for a set of signal samples.
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2.1 LINE SPECTRA AND FOURIER SERIES

This section introduces and interprets the frequency domain in terms of rotating pha-
sors. We’ll begin with the line spectrum of a sinusoidal signal. Then we’ll invoke the
Fourier series expansion to obtain the line spectrum of any periodic signal that has
finite average power.

Phasors and Line Spectra

Consider the familiar sinusoidal or AC (alternating-current) waveform v(t) plotted in
Fig. 2.1-1. By convention, we express sinusoids in terms of the cosine function and
write

v(t) = Acos (wet + ¢) (1

where A is the peak value or amplitude and w is the radian frequency. The phase
angle ¢ represents the fact that the peak has been shifted away from the time origin
and occurs at t = —¢/w,. Equation (1) implies that v(t) repeats itself for all time,
with repetition period T, = 27/w,. The reciprocal of the period equals the cyclical
frequency

L _

T70_27T

1>

fo (2)
measured in cycles per second, or hertz (Hz).

Obviously, no real signal goes on forever, but Eqg. (1) could be a reasonable
model for a sinusoidal waveform that lasts a long time compared to the period. In
particular, AC steady-state circuit analysis depends upon the assumption of an eter-
nal sinusoid—usually represented by a complex exponential or phasor. Phasors also
play a major role in the spectral analysis.

The phasor representation of a sinusoidal signal comes from Euler’s theorem

e =cosf * jsing (3)

Figure 2.1-1 A sinusoidal waveform v(t) = A cos (wot +).
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where j £V —-land@isan arbitrary angle. If we let 8 = wgt + ¢, we can write any
sinusoid as the real part of a complex exponential, namely

A cos (wot + ¢p) = ARe [/ ¥)] (4)
= Re [Ael?gi*n!]

This is called a phasor representation because the term inside the brackets may
be viewed as a rotating vector in a complex plane whose axes are the real and imag-
inary parts, as Fig. 2.1-2a illustrates. The phasor has length A, rotates counterclock-
wise at a rate of f, revolutions per second, and at time t = 0 makes an angle ¢ with
respect to the positive real axis.” The projection of the phasor on the real axis equals
the sinusoid in Eq. (4).

Now observe that only three parameters completely specify a phasor: amplitude,
phase angle, and rotational frequency. To describe the same phasor in the frequency
domain, we must associate the corresponding amplitude and phase with the particu-
lar frequency f,. Hence, a suitable frequency-domain description would be the line
spectrum in Fig. 2.1-2b, which consists of two plots: amplitude versus frequency
and phase versus frequency. While this figure appears simple to the point of being
trivial, it does have great conceptual value when extended to more complicated signals.
But before taking that step, four conventions regarding line spectra should be stated.

1. Inall our spectral drawings the independent variable will be cyclical frequency
f hertz, rather than radian frequency w, and any specific frequency such as f, will
be identified by a subscript. (We’ll still use » with or without subscripts as a
shorthand notation for 27rf since that combination occurs so often.)

2. Phase angles will be measured with respect to cosine waves or, equivalently,
with respect to the positive real axis of the phasor diagram. Hence, sine waves
need to be converted to cosines via the identity

sin wt = cos (wt — 90°) (5)
) A
2
E’-
0 N <
K ‘ 0 f f
> 3 0
g A !
2 | o
E 8 ¢
| ZACON N
: f
Real axis A cos (wpt + ¢) 0 fo
(a) (b)
Figure 2.1-2 Representations of A cos (wyt + ¢b): (a) phasor diagram; (b) line spectrum.

The phasor can be represented in 3-D by the right hand rule, where positive time is upward out of the page;
the phasor’s trajectory will appear as a helix rotating counter-clockwise and simultaneously rising out of the
page toward the reader. The time rate of precession is one revolution per period, f; rev/s (P. Ceperley, 2007).
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3. We regard amplitude as always being a positive quantity. When negative signs
appear, they must be absorbed in the phase using

—Acos wt = A cos (wt + 180°) (6)

It does not matter whether you take +180° or —180° since the phasor ends up in
the same place either way.

4. Phase angles usually are expressed in degrees even though other angles such as
wt are inherently in radians. No confusion should result from this mixed nota-
tion since angles expressed in degrees will always carry the appropriate symbol.

To illustrate these conventions and to carry further the idea of line spectrum,
consider the signal

w(t) = 7 — 10 cos (407t — 60°) + 4 sin 1207t

which is sketched in Fig. 2.1-3a. Converting the constant term to a zero frequency or
DC (direct-current) component and applying Egs. (5) and (6) gives the sum of cosines

w(t) = 7 cos 270t + 10 cos (2720t + 120°) + 4 cos (2760t — 90°)

whose spectrum is shown in Fig. 2.1-3b.

Drawings like Fig. 2.1-3b, called one-sided or positive-frequency line spectra,
can be constructed for any linear combination of sinusoids. But another spectral rep-
resentation turns out to be more valuable, even though it involves negative frequen-
cies. We obtain this representation from Eq. (4) by recalling that Re[z] = 3(z + z*),
where z is any complex quantity with complex conjugate z*. Hence, if z = Ae/%el*t
then z* = Ae J%e 1 and Eq. (4) becomes

A i, A .
A Ccos ((Dot + ¢) = Eejd’elmot + Eeflf;[’eflwo'f (7)

so we now have a pair of conjugate phasors.

The corresponding phasor diagram and line spectrum are shown in Fig. 2.1-4.
The phasor diagram consists of two phasors with equal lengths but opposite angles
and directions of rotation. The phasor sum always falls along the real axis to yield A
cos (wot + ¢). The line of spectrum is two-sided since it must include negative fre-
quencies to allow for the opposite rotational directions, and one-half of the original
amplitude is associated with each of the two frequencies =*f,. The amplitude spectrum
has even symmetry while the phase spectrum has odd symmetry because we are
dealing with conjugate phasors. This symmetry appears more vividly in Fig. 2.1-5,
which is the two-sided version of Fig. 2.1-3b.

It should be emphasized that these line spectra, one-sided or two-sided, are just
pictorial ways of representing sinusoidal or phasor time functions. A single line in
the one-sided spectrum represents a real cosine wave, whereas a single line in the
two-sided spectrum represents a complex exponential, and the conjugate term must be
added to get a real cosine wave. Thus, whenever we speak of some frequency inter-
val such as f; to f, in a two-sided spectrum, we should also include the corresponding

31
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negative-frequency interval —f; to —f,. A simple notation for specifying both inter-
valsis f, = |f| = f,.
Finally, note that

The amplitude spectrum in either version conveys more information than the
phase spectrum. Both parts are required to define the time-domain function, but
the amplitude spectrum by itself tells us what frequencies are present and in
what proportion.

Putting this another way, the amplitude spectrum displays the signal’s frequency
content.
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Construct the one-sided and two-sided spectrum of v(t) = —3 — 4 sin 30t.

EXERCISE 2.1-1

Periodic Signals and Average Power

Sinusoids and phasors are members of the general class of periodic signals. These
signals obey the relationship

v(t = mTy) = v(t) —o00 <t < oo (8)

where m is any integer and T, is the fundamental signal period. This equation simply
says that shifting the signal by an integer number of periods to the left or right leaves
the waveform unchanged. Consequently, a periodic signal is fully described by spec-
ifying its behavior over any one period.

The frequency-domain representation of a periodic signal is a line spectrum
obtained by Fourier series expansion. The expansion requires that the signal have
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finite average power. Because average power and other time averages are important
signal properties, we’ll formalize these concepts here.
Given any time function v(t), its average value over all time is defined as

T/2
(v(t)) £ lim iA[ u(t) dt (9)

T—o0
-T/2

The notation (v(t)) represents the averaging operation on the right-hand side, which com-
prises three steps: integrate v(t) to get the net area under the curve from —T/2 =t =T/2;
divide that area by the duration T of the time interval; then let T — oo to encompass all
time. In the case of a periodic signal, Eq. (9) reduces to the average over any interval of
duration T,. Thus

<m»=%fl%mm:éjmom (10

where the shorthand symbol [ stands for an integration from any time t; to t; + To.

If v(t) happens to be the voltage across a resistance R, it produces the current
i(t) = v(t)/R, and we could compute the resulting average power by averaging the
instantaneous power v(b)i(t) = v?(t)/R = Ri?(t). But we don’t necessarily know
whether a given signal is a voltage or current, so let’s normalize power by assuming
henceforth that R = 1 Q. Our definition of the average power associated with an
arbitrary periodic signal then becomes

P o) - 3 | bR er m)

where we have written |v(t)|? instead of v?(t) to allow for the possibility of complex
signal models. In any case, the value of P will be real and nonnegative.

When the integral in Eq. (11) exists and yields 0 < P < oo, the signal v(t) is said
to have well-defined average power, and will be called a periodic power signal.
Almost all periodic signals of practical interest fall in this category. The average
value of a power signal may be positive, negative, or zero.

Some signal averages can be found by inspection, using the physical interpreta-
tion of averaging. As a specific example take the sinusoid

v(t) = Acos (wpt + ¢)
which has

((t)) =0 P=— (12)

You should have no trouble confirming these results if you sketch one period of v(t)
and [v(t)[?.
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Fourier Series

The signal w(t) back in Fig. 2.1-3 was generated by summing a DC term and two
sinusoids. Now we’ll go the other way and decompose periodic signals into sums of
sinusoids or, equivalently, rotating phasors. We invoke the exponential Fourier
series for this purpose.

Let v(t) be a power signal with period T, = 1/f,. Its exponential Fourier series
expansion is

v(t) = >, e n=012.. (13)

n=—oco

The series coefficients are related to v(t) by

1 _
Cn J v(t)e 2™ ot (14)

To TO

S0 ¢, equals the average of the product v(t)e **™ ", Since the coefficients are com-
plex quantities in general, they can be expressed in the polar form

C, = ‘Cn‘ ej arg c,

where arg ¢, stands for the angle of c,. Equation (13) thus expands a periodic power
signal as an infinite sum of phasors, the nth term being

Cy ejZ'lrn fot — ‘Cn‘ gliarg Cne]Z‘ITn fot

The series convergence properties will be discussed after considering its spectral
implications.

Observe that v(t) in Eq. (13) consists of phasors with amplitude |c,| and angle
arg c, at the frequencies nf, = 0, =f,, =2f,, ... Hence, the corresponding frequency-
domain picture is a two-sided line spectrum defined by the series coefficients. We
emphasize the spectral interpretation by writing

c(nfy) 2 Cq

so that |c(nf,)| represents the amplitude spectrum as a function of f, and arg c(nf,)
represents the phase spectrum. Three important spectral properties of periodic
power signals are listed below.

1. All frequencies are integer multiples or harmonics of the fundamental fre-
quency f, = 1/T,. Thus the spectral lines have uniform spacing f;.

2. The DC component equals the average value of the signal, since settingn = 0
in Eq. (14) yields

1

C(O) = ng

J v(t) dt = (v(t)) (15)

35
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Calculated values of ¢(0) may be checked by inspecting v(t)—a wise practice
when the integration gives an ambiguous result.

3. Ifv(t) is a real (noncomplex) function of time, then
C_q = cf = [og] eI 1ea)

which follows from Eq. (14) with n replaced by —n. Hence
le(—nfo)| = [c(nfy)]  arg c(—nfy) = —arg ¢(nf,) (16b)

which means that the amplitude spectrum has even symmetry and the phase
spectrum has odd symmetry.

When dealing with real signals, the property in Eq. (16) allows us to regroup the
exponential series into complex-conjugate pairs, except for c,. Equation (13) then
becomes

o0 (174)
(t) = co + > [2¢,| cos(2@nfet + arg c,)
or n=1
- _ (78
u(t) = ¢ + >, [a, cos 2mnfyt + b, sin 27ft]
-1
“ a, = Re[c]

and b, = Im[c,]. Re[ ] and Im[ ] being the real and imaginary operators respectively.
Equation 17a is the trigonometric Fourier Series and suggests a one-sided
spectrum. Most of the time, however, we’ll use the exponential series and two-sided
spectra.
The sinusoidal terms in Eq. (17) represent a set of orthogonal basis functions.
Functions v,(t) and v,,(t) are orthogonal over an interval from t; to t, if
t

0 n#m
t t)dt = ith K tant.
JU”( Yom(t) {K Nf—m wi a constan

t
Later we will see in Sect. 7.2 (QAM) and 14.5 that a set of users can share a
channel without interfering with each other by using orthogonal carrier signals.

One final comment should be made before taking up an example. The integra-
tion for c, often involves a phasor average in the form

1 T2 j2mrft 1 jmf T jmf T
- e] T t = —— 7 — a7
T L . 0= & ) 18]
1 .
= m sinafT

Since this expression occurs time and again in spectral analysis, we’ll now introduce
the sinc function defined by
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Figure 2.1-6 The function sinc A = (sin 7A)/7A.

N sin wA
TA

sinc A

(19)

where A represents the independent variable. Some authors use the related sampling
function defined as Sa (x) £ (sin x)/x so that sinc A = Sa (7 A). Fig. 2.1-6 shows
that sinc A is an even function of A having its peak at A = 0 and zero crossings at all
other integer values of A, so

sinc A = {1 A=0
0 A= =1, %2, ...

Numerical values of sinc A and sinc? A are given in Table T.4 at the back of the book,
while Table T.3 includes several mathematical relations that you’ll find helpful for
Fourier analysis.
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Rectangular Pulse Train

Consider the periodic train of rectangular pulses in Fig. 2.1-7. Each pulse has height,
or amplitude, A and width, or duration, 7. There are stepwise discontinuities at each
pulse-edge location t = *7/2, and so on, so the values of v(t) are mathematically
undefined at these points of discontinuity. This brings out another possible difference
between a physical signal and its mathematical model, for a physical signal never
makes a perfect stepwise transition. However, the model may still be reasonable if
the actual transition times are quite small compared to the pulse duration.

To calculate the Fourier coefficients, we’ll take the range of integration in
Eq. (14) over the central period —T,/2 =t = T,/2, where

o(t) = {A it < 7/2

>
Thus 0 M 7/2

1 (T2 _ 1 (72 .
Ch=— J v(t)e 2t gt = — j Ae 12m it g
~To/2 To —7/2

EXAMPLE 2.1-1
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u(t)
A
: 1 t
T -2 o0z T
-0 2 2 0
Figure 2.1-7 Rectangular pulse train.
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Multiplying and dividing by t finally gives

Ar .
C, = —sincnfyr (20)
To
which follows from Eg. (19) with A = nf, 7.

The amplitude spectrum obtained from | c(nfy)| = |c,| = Af, 7|sinc nf, 7| is shown
in Fig. 2.1-8a for the case of 7/T, = f, T = 1/4. We construct this plot by drawing the
continuous function Af, |sinc fr| as a dashed curve, which becomes the envelope of
the lines. The spectral lines at = 4f,, + 8f,, and so on, are “missing” since they fall
precisely at multiples of 1/7 where the envelope equals zero. The dc component has
amplitude c¢(0) = Ar/T, which should be recognized as the average value of v(t) by
inspection of Fig. 2.1-7. Incidentally, 7/T, equals the ratio of “on” time to period,
frequently designated as the duty cycle in pulse electronics work.

[e(nfo)|

Afgr
A fyrlsinc fr|

1 —fo 0fg2fy 1 _ 2 3 4
_1 =41 £ S 4
T T T T T

(a)

arg [c( fo)]

- — - - 180° +
: i : i i 2 3 4
| | | | T T T T
0 | | | |
| ! | !
-180° | L _ L _

(b)

Figure 2.1-8 Spectrum of rectangular pulse train with f.r = 1/4. (a) Amplitude; (b) phase.
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The phase spectrum in Fig. 2.1-8b is obtained by observing that c, is always
real but sometimes negative. Hence, arg c(nf;) takes on the values 0° and = 180°,
depending on the sign of sinc nf, 7. Both +180° and —180° were used here to bring
out the odd symmetry of the phase.

Having decomposed the pulse train into its frequency components, let’s build it
back up again. For that purpose, we’ll write out the trigonometric series in Eq. (17),
still taking /T, = f, 7 = 1/4 so ¢, = Al4 and |2c,|= (2A/4) Isinc n/4| =
(2A/arn)|sin 7rn/4|. Thus

A V2A

v(t) = — +

A A
c05wot+;0032w0t+ cos 3wyt + -
Summing terms through the third harmonic gives the approximation of v(t) sketched
in Fig. 2.1-9a. This approximation contains the gross features of the pulse train but
lacks sharp corners. A more accurate approximation shown in Fig. 2.1-9b comprises
all components through the seventh harmonic. Note that the small-amplitude higher
harmonics serve primarily to square up the corners. Also note that the series is con-
verging toward the midpoint value A/2 att = =7/2 where v(t) has discontinuities.
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Sketch the amplitude spectrum of a rectangular pulse train for each of the following
cases: 7 = To/5, 7 = Ty/2, 7 = T,. In the last case the pulse train degenerates into a
constant for all time; how does this show up in the spectrum?

EXERCISE 2.1-2

Convergence Conditions and Gibbs Phenomenon

We’ve seen that a periodic signal can be approximated with a finite number of terms
of its Fourier series. But does the infinite series converge to v(t)? The study of con-
vergence involves subtle mathematical considerations that we’ll not go into here.
Instead, we’ll state without proof some of the important results. Further details are
given by Ziemer, Tranter, and Fannin (1998) or Stark, Tuteur, and Anderson (1988).

The Dirichlet conditions for Fourier series expansion are as follows: If a peri-
odic function v(t) has a finite number of maxima, minima, and discontinuities per
period, and if v(t) is absolutely integrable, so that v(t) has a finite area per period,
then the Fourier series exists and converges uniformly wherever v(t) is continuous.
These conditions are sufficient but not strictly necessary.

An alternative condition is that v(t) be square integrable, so that [v(t)]? has
finite area per period—equivalent to a power signal. Under this condition, the series
converges in the mean such that if

N
UN(t) — 2 c, eerrn fot
n=-N

then

i [ o - oo at = o

0
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Fourier-series reconstruction of a rectangular pulse train.
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In other words, the mean square difference between v(t) and the partial sum vy(t)
vanishes as more terms are included.

Regardless of whether v(t) is absolutely integrable or square integrable, the
series exhibits a behavior known as Gibbs phenomenon at points of discontinuity.
Figure 2.1-10 illustrates this behavior for a stepwise discontinuity at t = t,. The par-
tial sum vy(t) converges to the midpoint at the discontinuity, which seems quite rea-
sonable. However, on each side of the discontinuity, v(t) has oscillatory overshoot
with period T, /2N and peak value of about 9 percent of the step height, independent
of N. Thus, as N — oo, the oscillations collapse into nonvanishing spikes called
“Gibbs ears” above and below the discontinuity as shown in Fig. 2.1-9c. Kamen and
Heck (1997, Chap. 4) provide MATLAB examples to further illustrate Gibbs phe-
nomenon.

Since a real signal must be continuous, Gibbs phenomenon does not occur,
and we’re justified in treating the Fourier series as being identical to v(t). But ideal-
ized signal models like the rectangular pulse train often do have discontinuities.
You therefore need to pay attention to convergence when working with such
models.

Gibbs phenomenon also has implications for the shapes of the filters used
with real signals. An ideal filter that is shaped like a rectangular pulse will result
in discontinuities in the spectrum that will lead to distortions in the time signal.
Another way to view this is that multiplying a signal in the frequency domain by
a rectangular filter results in the time signal being convolved with a sinc
function. Therefore, real applications use other window shapes with better time-
frequency characteristics, such as Hamming or Hanning windows. See Oppen-
heim, Schafer, and Buck (1999) for a more complete discussion on the effects of
window shape.

on(®)

To/2N

A2

fo

Figure 2.1-10 Gibbs phenomenon at a step discontinuity.
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Parseval’s Power Theorem

Parseval’s theorem relates the average power P of a periodic signal to its Fourier
coefficients. To derive the theorem, we start with

p= T% Lv(t)2 dt = Tio L v(tju*(t) dt

Now replace v*(t) by its exponential series

o] * 0
U*(t) — { E Cnej27rn fot:| _ E C:efjbrn fot

n=-—o00 n=-—o0

so that

1 & )
P=— J v(t){ > cxe i fO‘} dt
T, -

n=-—oo

o0

1 _
= > {j v(t)e’z””fﬂdt}c’n‘
T0 To

n=-—o0

and the integral inside the sum equals c,. Thus

(21)

o0 o0
P= Ycer= > lcf

n=—oo n=-—oc0
which is Parseval’s theorem.
The spectral interpretation of this result is extraordinarily simple:

The average power can be found by squaring and adding the heights
|ea|=lc(nfy)| of the amplitude lines.

Observe that Eq. (21) does not involve the phase spectrum, underscoring our prior
comment about the dominant role of the amplitude spectrum relative to a signal’s
frequency content. For further interpretation of Eq. (21) recall that the exponential
Fourier series expands v(t) as a sum of phasors of the form c,e”™ . You can easily
show that the average power of each phasor is

(Jc,el2mht|2) = |c |2 (22)

Therefore, Parseval’s theorem implies superposition of average power, since the
total average power of v(t) is the sum of the average powers of its phasor components.

Several other theorems pertaining to Fourier series could be stated here. How-
ever, they are more conveniently treated as special cases of Fourier transform theo-
rems covered in Sect. 2.3. Table T.2 lists some of the results, along with the Fourier
coefficients for various periodic waveforms encountered in communication systems.
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Use Eq. (21) to calculate P from Fig. 2.1-5.

EXERCISE 2.1-3

2.2 FOURIER TRANSFORMS AND
CONTINUOUS SPECTRA

Now let’s turn from periodic signals that last forever (in theory) to nonperiodic sig-
nals concentrated over relatively short time durations. If a nonperiodic signal has
finite total energy, its frequency-domain representation will be a continuous spec-
trum obtained from the Fourier transform.

Fourier Transforms

Figure 2.2-1 shows two typical nonperiodic signals. The single rectangular pulse
(Fig. 2.2-1a) is strictly timelimited since v(t) is identically zero outside the pulse
duration. The other signal is asymptotically timelimited in the sense that v(t) — 0
ast — = oo. Such signals may also be described loosely as “pulses.” In either case,
if you attempt to average v(t) or [v(t)[? over all time you’ll find that these averages
equal zero. Consequently, instead of talking about average power, a more meaning-
ful property of a nonperiodic signal is its energy.

If v(t) is the voltage across a resistance, the total delivered energy would be
found by integrating the instantaneous power v?(t)/R. We therefore define normal-
ized signal energy as

s [P ()
= | Pt

—0o0

v(t)

—7/2 0 7/2
(a)

Figure 2.2-1
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Some energy calculations can be done by inspection, since E is just the total area
under the curve of |u(t)|%. For instance, the energy of a rectangular pulse as in
Fig. 2.2-1a with amplitude A is simply E = A%r.

When the integral in Eq. (1) exists and yields 0 < E < oo, the signal v(t) is said
to have well-defined energy and is called a nonperiodic energy signal. Almost all
timelimited signals of practical interest fall in this category, which is the essential
condition of spectral analysis using the Fourier transform.

To introduce the Fourier transform, we’ll start with the Fourier series represen-
tation of a periodic power signal

u(t) = i c(nfy)el?m ot (2)

= i {1J U(t)eijnfotdt:|ej2nnth
T

n=-—oco 0
0

where the integral expression for c(nf,) has been written out in full. According to the
Fourier integral theorem there’s a similar representation for a nonperiodic energy
signal that may be viewed as a limiting form of the Fourier series of a signal as the
period goes to infinity. Example 2.1-1 showed that the spectral components of a
pulse train are spaced at intervals of nf, = n/T,, so they become closer together as the
period of the pulse train increased. However, the shape of the spectrum remains
unchanged if the pulse width 7 stays constant. Let the frequency spacing f, = T, !
approach zero (represented in Eq. 3 as df) and the index n approach infinity such that
the product nf, approaches a continuous frequency variable f. Then

o(t) = J [ f v(t)e 2t dt}eiz’f  of (3)
The bracketed term is the Fourier transform of v(t) symbolized by V(f) or #[v(t)]
and defined as

V() = 5] 2 | (e # "

—00

an integration over all time that yields a function of the continuous variable f.
The time function v(t) is recovered from V(f) by the inverse Fourier transform

u(t) = F V()] & JDOV(f)ejZW“ df (5)

—00

an integration over all frequency f. To be more precise, it should be stated that
F Y[ V(f)] converges in the mean to v(t), similar to Fourier series convergence, with
Gibbs phenomenon occurring at discontinuities. But we’ll regard Eqg. (5) as being an
equality for most purposes. A proof that % *[V(f)] = v(t) will be outlined in
Sect. 2.5.
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Equations (4) and (5) constitute the pair of Fourier integrals.™ At first glance,
these integrals seem to be a closed circle of operations. In a given problem, however,
you usually know either V(f) or v(t). If you know V(f), you can find v(t) from Eq.
(5); if you know v(t), you can find V(f) from Eq. (4).

Turning to the frequency-domain picture, a comparison of Egs. (2) and (5) indi-
cates that V(f) plays the same role for nonperiodic signals that c(nf,) plays for peri-
odic signals. Thus, V(f) is the spectrum of the nonperiodic signal v(t). But V(f) is a
continuous function defined for all values of f whereas c(nf,) is defined only for dis-
crete frequencies. Therefore, a nonperiodic signal will have a continuous spectrum
rather than a line spectrum. Again, comparing Egs. (2) and (5) helps explain this
difference: in the periodic case we return to the time domain by summing discrete-
frequency phasors, while in the nonperiodic case we integrate a continuous
frequency function. Three major properties of V(f) are listed below.

1. The Fourier transform is a complex function, so |V(f)| is the amplitude spectrum
of v(t) and arg V(f) is the phase spectrum.

2. The value of V(f) at f = 0 equals the net area of v(t), since

V(0) = foov(t) dt (6)

—00

which compares with the periodic case where ¢(0) equals the average value of v(t).
3. Ifo(t) is real, then

V(=) = V*(f) (7a)
and
V(=H) = M(f)]  argV(—f) = —arg V() 7b)

so again we have even amplitude symmetry and odd phase symmetry. The term
hermitian symmetry describes complex functions that obey Eq. (7).
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Rectangular Pulse

In the last section we found the line spectrum of a rectangular pulse train. Now con-
sider the single rectangular pulse in Fig. 2.2—1a. This is so common a signal model
that it deserves a symbol of its own. Let’s adopt the pictorial notation

A1 <72 (8)
H(ym) = {0 | > 7/2

TOther definitions take w for the frequency variable and therefore include 1/27 or 1/\/ 27 as
multiplying terms.

EXAMPLE 2.2-1
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which stands for a rectangular function with unit amplitude and duration 7 centered
att = 0. Some of the literature uses the expression Rect () instead of IT (). The pulse
in the figure is then written

v(t) = AII(t/7) (9a)
Inserting v(t) in Eq. (4) yields

V(f) = J Ae gt = — sin #rfr
-7/2 7f

= Arsinc fr

so V(0) = Ar, which clearly equals the pulse’s area. The corresponding spectrum,
plotted in Fig. 2.2-2, should be compared with Fig. 2.1-8 to illustrate the similarities
and differences between line spectra and continuous spectra.

Further inspection of Fig. 2.2-2 reveals that the significant portion of the spec-
trum is in the range |f| < 1/7 since |V(f)| << |V(0)| for |f| > 1/7. We therefore may take
1/7 as a measure of the spectral “width.” Now if the pulse duration is reduced (small 7),
the frequency width is increased, whereas increasing the duration reduces the spec-
tral width. Thus, short pulses have broad spectra, and long pulses have narrow
spectra. This phenomenon, called reciprocal spreading, is a general property of all
signals, pulses or not, because high-frequency components are demanded by rapid
time variations while smoother and slower time variations require relatively little
high-frequency content.

V()
At
f
-t 0 1t 2IT 3T 4T
arg V(f)

180° +

f

-1/r 1T 2l 3/ 4/

-180° +

Figure 2.2-2 Rectangular pulse spectrum V(f) = AT sinc fr.
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Symmetric and Causal Signals

When a signal possesses symmetry with respect to the time axis, its transform inte-
gral can be simplified. Of course any signal symmetry depends upon both the wave-
shape and the location of the time origin. But we’re usually free to choose the time
origin since it’s not physically unique—as contrasted with the frequency-domain ori-
gin which has a definite physical meaning.

To develop the time-symmetry properties, we’ll sometimes write  in place of
27rf for notational convenience and expand Eq. (4) using e =127 = cos wt — j sin wt.
Thus, in general

V() = Vo(f) +jVy(T) (10q)
where

V() £ j u(t) cos 2 ft dt (10b)

—00

V() —Jwv(t) sin 277 ft dt

—00

which are the even and odd parts of V(f), regardless of v(t). Incidentally, note that if
v(t) is real, then

Re[V(f)] = Ve(f)  Im[V(f)] = V(f)
so V*(f) = V(f) — jV,(f) = V(—f), as previously asserted in Eq. (7).

When v(t) has time symmetry, we simplify the integrals in Eqg. (10b) by apply-
ing the general relationship

jmw(t) dt = row(t) dt + jo w(t) dt (11)

—00 —00

ZJ w(t) dt  w(t) even
= 0
0 w(t) odd
where w(t) stands for either v(t) cos w tor v(t) sin w t. If v(t) has even symmetry so that
v(—t) = v(t) (124)

then v(t) cos wt is even whereas v(t) sin wt is odd. Hence, V,(f) = 0 and

V() = V(f) = ZJ v(t) cos wt dt (12b)
0

Conversely, if v(t) has odd symmetry so that
v(=t) = —ov(t) (13q)
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then
V() = jV,(f) = —jZJ v(t) sin wt dt (13b)
0

and V (f) = 0.

Equations (12) and (13) further show that the spectrum of a real symmetrical
signal will be either purely real and even or purely imaginary and odd. For instance,
the rectangular pulse in Example 2.2-1 is a real and even time function and its spec-
trum was found to be a real and even frequency function.

Now consider the case of a causal signal, defined by the property that

v(t) =0 t<o0 (14q)

This simply means that the signal “starts” at or after t = 0. Since causality precludes
any time symmetry, the spectrum consists of both real and imaginary parts computed
from

V(f) =j v(t)e 2 dt (14b)
0

This integral bears a resemblance to the Laplace transform commonly used for the
study of transients in linear circuits and systems. Therefore, we should briefly con-
sider the similarities and differences between these two types of transforms.

The unilateral or one-sided Laplace transform is a function of the complex vari-
able s = o + jo defined by

Flo(t)] £ fov(t)est dt

which implies that v(t) = 0 for t < 0. Comparing £[v(t) ] with Eq. (14b) shows that
if v(t) is a causal energy signal, you can get V(f) from the Laplace transform by let-
ting s = jo = j2=f. But a typical table of Laplace transforms includes many
nonenergy signals whose Laplace transforms exist only with o > 0 so that
[u(t)e~|=|v(t)e~°!|— 0 as t — c. Such signals do not have a Fourier transform
because s = o + jw falls outside the frequency domain when o # 0. On the other
hand, the Fourier transform exists for noncausal energy signals that do not have a
Laplace transform. See Kamen and Heck (1997, Chap. 7) for further discussion.

EXAMPLE 2.2-2

Causal Exponential Pulse

Figure 2.2-3a shows a causal waveform that decays exponentially with time con-

stant 1/b, so
(M) = {Aebt t>0 5
v 0 t<0 (15a)
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The spectrum can be obtained from Eq. (14b) or from the Laplace transform
Z[v(t)] = A/(s + b), with the result that

A
VD) = o s ot L

which is a complex function in unrationalized form. Multiplying numerator and
denominator of Eq. (15b) by b — j2#f yields the rationalized expression

b — jomf

) = at

u(t)

(a)

V(P

Alb

0.707

-b/2m 0 b/ 27

arg V(f)
—+ 90°
45°

—45° L__O>

\

-90° L

(b)

Figure 2.2-3 Causal exponential pulse: (a) waveform; (b) spectrum.
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and we see that

W(1) = Re (V1) = 7 oo
27fA
Vo(f) = Im[V(f)] = - 0 + (2nf )2

Conversion to polar form then gives the amplitude and phase spectrum

V() = VW) + VE(T) = ——2

Vb? + (27f)?
_ o(f) 3 2mf
arg V(f) = arctan v(h) - arctan e

which are plotted in Fig. 2.2-3b.

The phase spectrum in this case is a smooth curve that includes all angles from
—90° to +90°. This is due to the signal’s lack of time symmetry. But V(f) still has
hermitian symmetry since v(t) is a real function. Also note that the spectral width is
proportional to b, whereas the time “width” is proportional to the time constant
1/b—another illustration of reciprocal spreading.

EXERCISE 2.2-1

Find and sketch V(f) for the symmetrical decaying exponential v(t) = Ae—°! in
Fig. 2.2-1b. (You must use a definite integral from Table T.3.) Compare your result
with V() in Example 2.2-2. Confirm the reciprocal-spreading effect by calculating the
frequency range such that [V(f)| = (1/2)|V(0)|.

Rayleigh’s Energy Theorem
Rayleigh’s energy theorem is analogous to Parseval’s power theorem. It states that
the energy E of a signal v(t) is related to the spectrum V(f) by

E= rov(f)v*(f)df = ro|v(f)|2 df e

—00 —00

Therefore,

Integrating the square of the amplitude spectrum over all frequency yields the
total energy.
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The value of Eq. (16) lies not so much in computing E, since the time-domain
integration of |v(t)|? often is easier. Rather, it implies that |V(f)|? gives the distribution
of energy in the frequency domain, and therefore may be termed the energy spectral
density. By this we mean that the energy in any differential frequency band df equals
[V(f)? df, an interpretation we’ll further justify in Sect. 3.6. That interpretation, in
turn, lends quantitative support to the notion of spectral width in the sense that most
of the energy of a given signal should be contained in the range of frequencies taken
to be the spectral width.

By way of illustration, Fig. 2.2—4 is the energy spectral density of a rectangular
pulse, whose spectral width was claimed to be |f| < 1/7. The energy in that band is
the shaded area in the figure, namely

1/7 1/7
J V()P df = J (Ar)?sinc? fr df = 0.92A%r
-1/r -1/r

a calculation that requires numerical methods. But the total pulse energy is E =~ A7,
so the asserted spectral width encompasses more than 90 percent of the total energy.

Rayleigh’s theorem is actually a special case of the more general integral rela-
tionship

rov(t)w*(t) dt = J ooV(f)W*(f) df (17)

—00 —00

where v(t) and w(t) are arbitrary energy signals with transforms V(f) and W(f). Equa-
tion (17) yields Eq. (16) if you let w(t) = v(t) and note that > w(t)v*(t)dt = E.
Other applications of Eq. (17) will emerge subsequently.

The proof of Eq. (17) follows the same lines as our derivation of Parseval’s the-
orem. We substitute for w*(t) the inverse transform

w(t) = HOOW(f)eiwt dfr = Joow*(f)eiwt df

—00 —00

V()2

A272

=3/t 2lt -lt 0 s 2/t 37

Figure 2.2-4 Energy spectral density of a rectangular pulse.
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Interchanging the order of time and frequency integrations then gives

va(t)w*(t) dt = ro v(t){ FW*( f)e et df] dt

_ = jz { r:ov(t)elwt dt]W*( f) df

which completes the proof since the bracketed term equals V(f).

The interchange of integral operations illustrated here is a valuable technique in
signal analysis, leading to many useful results. However, you should not apply the tech-
nique willy-nilly without giving some thought to the validity of the interchange. As a
pragmatic guideline, you can assume that the interchange is valid if the results make
sense. If in doubt, test the results with some simple cases having known answers.

EXERCISE 2.2-2

Calculate the energy of a causal exponential pulse by applying Rayleigh’s theorem
to V(f) in Eq. (15b). Then check the result by integrating |v(t)|2.

Duality Theorem

If you reexamine the pair of Fourier integrals, you’ll see that they differ only by the
variable of integration and the sign in the exponent. A fascinating consequence of
this similarity is the duality theorem. The theorem states that if v(t) and V(f) con-
stitute a known transform pair, and if there exists a time function z(t) related to the
function V(f) by

2(t) = V(t) (18a)

then
Flz(t)] = v(-f) (18b)

where v(—f) equals v(t) witht = —f.

Proving the duality theorem hinges upon recognizing that Fourier transforms
are definite integrals whose variables of integration are dummy variables. Therefore,
we may replace f in Eq. (5) with the dummy variable A and write

u(t) = FOV(/\)eiz’”‘ dA

Furthermore, since t is a dummy variable in Eqg. (4) and since z(t) = V(t) in the theorem,

Fz()] = JOO 2(A\)e 7 dA = rov()\)eim(f) A

—00 —00

Comparing these integrals then confirms that &[z(t)] = v(—f).
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Although the statement of duality in Eq. (18) seems somewhat abstract, it turns
out to be a handy way of generating new transform pairs without the labor of inte-
gration. The theorem works best when v(t) is real and even so z(t) will also be real
and even, and Z(f) = #[z(t)] = v(—f) = v(f). The following example should clar-
ify the procedure.

53

Sinc Pulse

A rather strange but important time function in communication theory is the sinc
pulse plotted in Fig. 2.2-5a and defined by

z(t) = Asinc 2Wt (194)
We’ll obtain Z(f) by applying duality to the transform pair
v(t) = BII(t/7) V(f) = Brsincfr

Rewriting Eq. (19a) as
(t) = (ZCV)(ZW) sinc t(2W)

brings out the fact that z(t) = V(t) with = = 2W and B = A/2W. Duality then says that
Flz2(t)] = v(=f) = BII(—f/7) = (A/2W)II(—f/2W) or

A f
Z(f) = 2WH<2W> (19b)

since the rectangle function has even symmetry.

The plot of Z(f), given in Fig. 2.2-5b, shows that the spectrum of a sinc pulse
equals zero for |f| > W. Thus, the spectrum has clearly defined width W, measured in
terms of positive frequency, and we say that Z(f) is bandlimited. Note, however,
that the signal z(t) goes on forever and is only asymptotically timelimited.

EXAMPLE 2.2-3

Find the transform of z(t) = B/[1 + (2wt)?] by applying duality to the result of
Exercise 2.2-1.

EXERCISE 2.2-3

2(t) Z(f)
A AW
- T " ~—f f
ow © 1w -w 0 w
(a) (b)

Figure 2.2-5 A sinc pulse and its bandlimited spectrum.
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Transform Calculations

Except in the case of a very simple waveform, brute-force integration should be
viewed as the method of last resort for transform calculations. Other, more practical
methods are discussed here.
When the signal in question is defined mathematically, you should first consult
a table of Fourier transforms to see if the calculation has been done before. Both
columns of the table may be useful, in view of the duality theorem. A table of
Laplace transforms also has some value, as mentioned in conjunction with Eq. (14).
Besides duality, there are several additional transform theorems covered in
Sect. 2.3. These theorems often help you decompose a complicated waveform into
simpler parts whose transforms are known. Along this same line, you may find it
expedient to approximate a waveform in terms of idealized signal models. Suppose
Z(t) approximates z(t) and magnitude-squared error [z(t) — Z(t)[? is a small quantity. If
Z(f) = F[z(t)] and Z(f) = F[Z(t)] then
[Tz - zmpa= | 2w - 20ra 20

—00 —00

which follows from Rayleigh’s theorem with v(t) = z(t) — Z(t). Thus, the integrated
approximation error has the same value in the time and frequency domains.

The above methods are easily modified for the calculation of Fourier series
coefficients. Specifically, let v(t) be a periodic signal and let z(t) = v(H)IT (1/Ty), a
nonperiodic signal consisting of one period of v(t). If you can obtain

Z(f) = Flo(OTL(t/To)] (21a)

then, from Eq. (14), Sect. 2.1, the coefficients of v(t) are given by

Ch = 1 Z(nfo) (21b)
To
This relationship facilitates the application of transform theorems to Fourier series
calculations.

Finally, if the signal is expressed in numerical form as a set of samples, its trans-
form, as we will see in Sect. 2.6, can be found via numerical calculations. For this
purpose the Discrete Fourier Transform (DFT) and its faster version, the Fast Fourier
Transform is used.

23 TIME AND FREQUENCY RELATIONS

Rayleigh’s theorem and the duality theorem in the previous section helped us draw
useful conclusions about the frequency-domain representation of energy signals.
Now we’ll look at some of the many other theorems associated with Fourier trans-
forms. They are included not just as manipulation exercises but for two very practical
reasons. First, the theorems are invaluable when interpreting spectra, for they express
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relationships between time-domain and frequency-domain operations. Second, we
can build up an extensive catalog of transform pairs by applying the theorems to
known pairs—and such a catalog will be useful as we seek new signal models.

In stating the theorems, we indicate a signal and its transform (or spectrum) by
lowercase and uppercase letters, as in V(f) = F[v(t)]and v(t) = F1[V(f)]. Thisis
also denoted more compactly by v(t) <> V(f). Table T.1 at the back lists the theo-
rems and transform pairs covered here, plus a few others.

Superposition
Superposition applies to the Fourier transform in the following sense. If a; and a, are
constants and

u(t) = awa(t) + au,(t)
then
Flo(t)] = aF[vy(t)] + aF[v,(t) ]

Generalizing to sums with an arbitrary number of terms, we write the superposition
(or linearity) theorem as

;ak v(t) <> ;ak Vi(F) (1)

This theorem simply states that linear combinations in the time domain become lin-
ear combinations in the frequency domain.

Although proof of the theorem is trivial, its importance cannot be overempha-
sized. From a practical viewpoint Eq. (1) greatly facilitates spectral analysis when
the signal in question is a linear combination of functions whose individual spectra
are known. From a theoretical viewpoint it underscores the applicability of the
Fourier transform for the study of linear systems.

Time Delay and Scale Change

Given a time function wv(t), various other waveforms can be generated from it by
modifying the argument of the function. Specifically, replacing t by t — t; produces
the time-delayed signal v(t — ty). The delayed signal has the same shape as v(t) but
shifted ty units to the right along the time axis. In the frequency domain, time delay
causes an added linear phase with slope —27ty, so that

v(t — tg) <> V(f)e 2 2)
If t; is a negative quantity, the signal is advanced in time and the added phase has

positive slope. The amplitude spectrum remains unchanged in either case, since
V(e = v(f)le 2 = |v(f)]
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Proof of the time-delay theorem is accomplished by making the change of vari-
able A = t — t; in the transform integral. Thus, using @ = 2#f for compactness, we
have

Flot —ty)] = Joo u(t — tg)e et dt

—00

= J v(\)e 1At gy

—00

= H v(A)g e d)\]ej“"d
The integral in brackets is just V(f), so F[v(t — ty)] = V(f)e %,

Another time-axis operation is scale change, which produces a horizontally
scaled image of v(t) by replacing t with «t. The scale signal v(«t) will be expanded
if o] < 1 or compressed if |a| > 1; a negative value of « yields time reversal as
well as expansion or compression. These effects may occur during playback of
recorded signals, for instance.

Scale change in the time domain becomes reciprocal scale change in the fre-
quency domain, since

1 f (3)
v(at) <> —V| — a#0
o] “\ e
Hence, compressing a signal expands its spectrum, and vice versa. If « = —1, then
v(—t) <> V(—f) so both the signal and spectrum are reversed.
We’ll prove Eq. (3) for the case a < 0 by writing o = —|«| and making the

change of variable A = —|at. Therefore, t = Mo, dt = —d\/|«, and
+o00
Fo(-lal)] = | o(-lale ot
_ -1

o

J v(A)e JeMedy
+00

1

+0oo
== J v(A)e 2N g
]

—00

f
()
o] "\
Observe how this proof uses the general relationship

j bx()\) d(—A) = —J_bx()\) dA = J_ax()\) dA

a —a -b

Hereafter, the intermediate step will be omitted when this type of manipulation occurs.
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Superposition and Time Delay

The signal in Fig. 2.3-1a has been constructed using two rectangular pulses
v(t) = AII (t/7) such that

Z,(t) = v(t — tg) + (ot — (tg + T)]
Application of the superposition and time-delay theorems yields
Z(f) = V(f)e_jz'”ftd + (_1)V(f)e—j2wf(td+T)

— V( f )[efj27rftd _ efj27rf (tﬁT)]

where V(f) = Ar sinc fr.

The bracketed term in Z,(f) is a particular case of the expression &% + ei2%
which often turns up in Fourier analysis. A more informative version of this expres-
sion is obtained by factoring and using Euler’s theorem, as follows:

e j26, + e j20, — [e i(61—65) + e*j(elfgz)]e §(6:1+65) (4)

B { 2.c0s (6, — 6,)¢ ¢+
~ Lj2sin (6, — 6,)el@+%
The upper result in Eq. (4) corresponds to the upper (+) sign and the lower result to
the lower (—) sign.
In the problem at hand we have 0, = —=ft; and 6, = —of(ty + T), so

0, — 0, = wfT and 0, + 6, = —27rft, where t, = t; + T/2 as marked in Fig. 2.3-1a.
Therefore, after substituting for V(f), we obtain

Z(f) = (Arsincfr)(j2sin=f T e—izwﬂo)

Note that Z,(0) = 0, agreeing with the fact that z,(t) has zero net area.
Ift, = 0and T = 7, z,(t) degenerates to the waveform in Fig. 2.3-1b where

A(0) = ATT (t +:/z) o (t —:/2)

%(0) T2 i T2 7(0)
! i
A | A
T i
| Wl t
0 td tO r -7 T
—A -A
(a) (b)
Figure 2.3-1 Signals in Example 2.3-1.

EXAMPLE 2.3-1
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the spectrum then becomes
Zy(f) = (Arsinc fr)(j2 sin =f 7)
= (j2mf1)Arsinc*f r

This spectrum is purely imaginary because z,(t) has odd symmetry.

EXERCISE 2.3-1

Let v(t) be a real but otherwise arbitrary energy signal. Show that if
2(t) = ao(t) + au(—t)
then
Z(f) = (ag + a,)Ve(f) + j(a, — a)Vy(f)

where V(f) and V(f) are the real and imaginary parts of V(f).

(5q)

(5b)

Frequency Translation and Modulation

Besides generating new transform pairs, duality can be used to generate transform

theorems. In particular, a dual of the time-delay theorem is

v(t)et > V(f — 1) w, = 27f,

(6)

We designate this as frequency translation or complex modulation, since multiply-
ing a time function by e’ causes its spectrum to be translated in frequency by +f..
To see the effects of frequency translation, let v(t) have the bandlimited spec-
trum of Fig. 2.3-2a, where the amplitude and phase are plotted on the same axes
using solid and broken lines, respectively. Also let f, > W. Inspection of the translated

spectrum V(f — f;) in Fig. 2.3-2b reveals the following:

V(f-f)
V()
arg V(f)
\\ ; f
-W 0 . w 0 fo-W
(a) (b)

Figure 2.3-2 Frequency translation of a bandlimited spectrum.
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1. The significant components are concentrated around the frequency f..

2. Though V(f) was bandlimited in W, V (f — f.) has a spectral width of 2W. Trans-
lation has therefore doubled spectral width. Stated another way, the negative-
frequency portion of V(f) now appears at positive frequencies.

3. V(f — 1) is not hermitian but does have symmetry with respect to translated ori-
ginatf =f.

These considerations may appear somewhat academic in view of the fact that
v(t)e™ is not a real time function and cannot occur as a communication signal.
However, signals of the form v(t) cos (wt + ¢) are common—in fact, they are the
basis of carrier modulation—and by direct extension of Eq. (6) we have the follow-
ing modulation theorem:

@ It g i
v(t) cos(wct+¢)<—>7v(f—fc) +7V(f+f0) (7)

In words, multiplying a signal by a sinusoid translates its spectrum up and down in
frequency by f.. All the comments about complex modulation also apply here. In
addition, the resulting spectrum is hermitian, which it must be if v(t) cos (wt + ¢) is
a real function of time. The theorem is easily proved with the aid of Euler’s theorem
and Eq. (6).
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RF Pulse

Consider the finite-duration sinusoid of Fig. 2.3—3a, sometimes referred to as an RF
pulse when f; falls in the radio-frequency band. (See Fig. 1.1-2 for the range of fre-
guencies that supports radio waves.) Since

t
(t) = AH<T> COS w,t

we have immediately
A A
7(f) = %sinc(f — )1 + %sinc(f + 1)

obtained by setting v(t) = AII (t/7) and V(f) = Ar sinc fr in Eq. (7). The resulting
amplitude spectrum is sketched in Fig. 2.3-3b for the case of f, >> 1/7 so the two
translated sinc functions have negligible overlap.

Because this is a sinusoid of finite duration, its spectrum is continuous and con-
tains more than just the frequencies f = =+ f.. Those other frequencies stem from the
fact that z(t) = 0 for |t| > 7/2, and the smaller 7 is, the larger the spectral spread
around = f,— reciprocal spreading, again. On the other hand, had we been dealing
with a sinusoid of infinite duration, the frequency-domain representation would be a
two-sided line spectrum containing only the discrete frequencies = f..

EXAMPLE 2.3-2
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2(t)

1Z()I

W - N«W\/\/\/\rv“ f

1, NS RLA |
(b)

Figure 2.3-3 (a) RF pulse; (b) amplitude spectrum.

Differentiation and Integration

Certain processing techniques involve differentiating or integrating a signal. The
frequency-domain effects of these operations are indicated in the theorems below. A
word of caution, however: The theorems should not be applied before checking to
make sure that the differentiated or integrated signal is Fourier-transformable; the
fact that v(t) has finite energy is not a guarantee that the same holds true for its deriv-

ative or integral.
To derive the differentiation theorem, we replace v(t) by the inverse transform

integral and interchange the order of operations, as follows:

%v(t) - % [ EV( f)eiznt df}

= EV( ) (((jjt eizﬂf‘> df

= Jm[j27rf V(F) e df

—00

Referring back to the definition of the inverse transform reveals that the bracketed
term must be F[dov(t)/dt], so

%U(t) o j2mf V()

and by iteration we get
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n
g 0©) < (32 f)™V(f) (8)
which is the differentiation theorem.

Now suppose we generate another function from v(t) by integrating it over all
past time. We write this operation as fim v(A) dA, where the dummy variable X is
needed to avoid confusion with the independent variable t in the upper limit. The
integration theorem says that if

V(0) = J v(A)daA =0 (9a)
then
' 1
A)dd > — V(f 9b
| v dne v o8
The zero net area condition in Eq. (9a) ensures that the integrated signal goes to zero
ast — oo. (We’ll relax this condition in Sect. 2.5.)
To interpret these theorems, we see that
Differentiation enhances the high-frequency components of a signal, since
|j27fMf)| > [VIf)| for |f| >1/2a. Conversely, integration suppresses the high-
frequency components.
Spectral interpretation thus agrees with the time-domain observation that differenti-
ation accentuates time variations while integration smooths them out.
Triangular Pulse EXAMPLE 2.3-3

The waveform z,(t) in Fig. 2.3-1b has zero net area, and integration produces a
triangular pulse shape. Specifically, let

1 (" A(l - |t|> ‘t| <rT
w(t) =— | z,(A)dr = T
T
—o0 0 it > r

which is sketched in Fig. 2.3-4a. Applying the integration theorem to Z,(f) from
Example 2.3-1, we obtain

11

W(f) = Z,(f) = Arsinc?fr

T j2mt P
as shown in Fig. 2.3-4b. A comparison of this spectrum with Fig. 2.2-2 reveals that
the triangular pulse has less high-frequency content than a rectangular pulse with
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w(t) W(f)
At
A
t f
- 0 4 -t 0 1t
(a) (b)

Figure 2.3-4 A triangular pulse and its spectrum.

amplitude A and duration 7, although they both have area Ar. The difference is
traced to the fact that the triangular pulse is spread over 27 seconds and does not
have the sharp, stepwise time variations of the rectangular shape.

This transform pair can be written more compactly by defining the triangular
function

N I 1t t| <7
A() = T (10)
T 0 |t| > 7
Then w(t) = AA (t/7) and
AA<:) <> Arsinc? fr (11)

Some of the literature uses the expression Tri() instead of A(). It so happens that tri-
angular functions can be generated from rectangular functions by another mathemat-
ical operation, namely, convolution. And convolution happens to be the next item on
our agenda.

EXERCISE 2.3-2

A dual of the differentiation theorem is
1 d"

t U(t)(—)mdf p

V() (12)

Derive this relationship for n = 1 by differentiating the transform integral F[v(t)]
with respect to f.

24 CONVOLUTION

The mathematical operation known as convolution ranks high among the tools used
by communication engineers. Its applications include systems analysis and probabil-
ity theory as well as transform calculations. Here we are concerned with convolu-
tion, specifically in the time and frequency domains.
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Convolution Integral
The convolution of two functions of the same variable, say v(t) and w(t), is defined by

u(t) = w(t) 2 fmdAWWt—A)dA (1)

—00

The notation v(t) * w(t) merely stands for the operation on the right-hand side of
Eqg. (1) and the asterisk (*) has nothing to do with complex conjugation. Equation (1)
is the convolution integral, often denoted v * w when the independent variable is
unambiguous. At other times the notation [v(t)] * [w(t)] is necessary for clarity. Note
carefully that the independent variable here is t, the same as the independent variable
of the functions being convolved; the integration is always performed with respect to a
dummy variable (such as \), and t is a constant insofar as the integration is concerned.

Calculating v(t) = w(t) is no more difficult than ordinary integration when the
two functions are continuous for all t. Often, however, one or both of the functions is
defined in a piecewise fashion, and the graphical interpretation of convolution
becomes especially helpful.

By way of illustration, take the functions in Fig. 2.4-1a where

v(t) = Ae™ 0<t<oo
w(t) = t/T 0<t<T

For the integrand in Eq. (1), v(\) has the same shape as v(t) and

t— A
Wt—A) == 0<t-A<T

But obtaining the picture of w(t — \) as a function of A requires two steps: First, we
reverse w(t) in time and replace t with \ to get w(—N\); second, we shift w(—N\) to the
right by t units to get w[—(\ — t)] = w(t — \) for a given value of t. Fig. 2.4-1b
shows v(\) and w(t — \) with t < 0. The value of t always equals the distance from
the origin of v(\) to the shifted origin of w(—N\) indicated by the dashed line.

As v(t) * w(t) is evaluated for —oo <t < oo, w(t — \) slides from left to right
with respect to v(\), so the convolution integrand changes with t. Specifically, we
see in Fig. 2.4-1b that the functions don’t overlap when t < 0; hence, the integrand
equals zero and

v)*w(t) =0 t<0

When 0 < t < T as in Fig. 2.4-1c, the functions overlap for 0 < A < t, so t
becomes the upper limit of integration and

v(t) *w(t) = j tAeA<t_T)\) dA

A
=?(t—1+e") 0<t<T

63
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u(t) w(t)
A
1.0
t t
0 0 T
(a)
w(t—A) !
| o)
: A
t-T t 0
(b)
w(t—2A)
A
t-T
A
Figure 2.4-1 Graphical interpretation of convolution.

Finally, when't > T as in Fig. 2.4-1d, the functions overlap fort — T < A < tand

t
t—A
v(t) *w(t) = J Ae‘A() dA
T
t—=T
A ~T\a—(t=T)
:?(T—1+e)e t>T

The complete result plotted in Fig. 2.4-2 shows that convolution is a smoothing oper-
ation in the sense that v * w(t) is “smoother” than either of the original functions.
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A .
Z(t-1+et
T( )

_lé(T— 1+eT)e-T)

| t
0 T

Figure 2.4-2 Result of the convolution in Fig. 2.4-1.

Convolution Theorems

The convolution operation satisfies a number of important and useful properties.
They can all be derived from the convolution integral in Eq. (1). In some cases they
are also apparent from graphical analysis. For example, further study of Fig. 2.4-1
should reveal that you get the same result by reversing v and sliding it past w, so
convolution is commutative. This property is listed below along with the
associative and distributive properties.

V*W =W*0D (2q)
vx(W*x2Z) = (v*W)*z (2b)
v (W+2z)=(vxw) + (v*2) (29

All of these can be derived from Eq. (1).
Having defined and examined the convolution operation, we now list the two
convolution theorems:

v(t) = W(t) <> V(F)W(F) 3)

(OW() <> V(F) = W( ) @)

These theorems state that convolution in the time domain becomes multiplication in

the frequency domain, while multiplication in the time domain becomes convolution

in the frequency domain. Both of these relationships are important for future work.
The proof of Eq. (3) uses the time-delay theorem, as follows:

F[v = w(t)] = ro va()\)w(t —A) d)\}e‘j‘"t dt

- fo U(,\){ fo w(t — A)g et dt} dA

- J o [W(F)e ] da

—00
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= H v(A)e I d)\}W(f) = V(f)W(f)
Equation (4) can be proved by writing out the transform of v(t)w(t) and replacing
w(t) by the inversion integral %[ W(f)].
EXAMPLE 2.4.1 Trapezoidal Pulse

To illustrate the convolution theorem—and to obtain yet another transform pair—
let’s convolve the rectangular pulses in Fig. 2.4-3a. This is a relatively simple task
using the graphical interpretation and symmetry considerations. If 7, > 7,, the prob-
lem breaks up into three cases: no overlap, partial overlap, and full overlap.
Fig. 2.4-3b shows v(\) and w(t — \) in one case where there is no overlap and
v(t) » w(t) = 0. For this region

or

There is a corresponding region with no overlap where t — 7,/2 > 7,/2, or
t > (r, + 7,)/2. Combining these together yields the region of no overlap as |t| >
(m, + 1)/2. In the region where there is partial overlap, t + 7,/2 > —7,/2 and
t — 7,/2 < —7,/2, which yields

Tl+72) 71+T2 T, — To

tHs

2

By properties of symmetry the other region of partial overlap can be found to be

2 ’Tl+72) Ty — To Tl+72
Ay dr = AA( —t + <t <
7%A12 A12< > >

u(t) = w(t) = J

t
Finally, the convolution in the region of total overlap is

t+=
v(t) « W(t) = f TZAlAZd)\ = AAT, ] < %
The result is the trapezoidal pulse shown in Fig. 2.4-3c, whose transform will be the
product V()W(f) = (A7, sinc fry) (A,r, sinc fry).
Now let 7, = 7, = 7 so the trapezoidal shape reduces to the triangular pulse
back in Fig. 2.3—-4a with A = A;A,7. Correspondingly, the spectrum becomes (A,
sinc fr) (A,7 sinc fr) = Ar sinc? fr, which agrees with our prior result.
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v(t) w(t)

Ay
Aq
t t
b o
(a)
v(A) w(t-A)
A
Aq
A 1 A
-T2 /2 t—7,/2 U t+7,/2
(b)
o(t) * w(t)
AAgTy
I
| T1— T
T+ T
(c)
Figure 2.4-3 Convolution of rectangular pulses.
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Ideal Lowpass Filter

In Section 2.1 we mentioned the impact of the discontinuities introduced in a signal
as a result of filtering with an ideal filter. We will examine this further by taking the
rectangular function from Example 2.2-1 v(t) = AIl (t/7) whose transform,
V(f) = Ar sinc fr, exists for all values of f. We can lowpass filter this signal at f = 1/7
by multiplying V(f) by the rectangular function

EXAMPLE 2.4-2
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z(t)

Figure 2.4-4

The output function is

2(t) = v(t) = W(t) = w(t) * o(t) = JHZTsinczT)‘d,\

-3

This integral cannot be evaluated in closed form; however, it can be evaluated
numerically using Table T.4 to obtain the result shown in Fig. 2.4-4. Note the simi-
larity to the result in Fig. 2.1-9b.

EXERCISE 2.4-1

Let v(t) = A sinc 2Wt, whose spectrum is bandlimited in W. Use Eq. (4) with
w(t) = v(t) to show that the spectrum of v?(t) will be bandlimited in 2W.

2.5 IMPULSES AND TRANSFORMS IN THE LIMIT

So far we’ve maintained a distinction between two spectral classifications: line spec-
tra that represent periodic power signals and continuous spectra that represent non-
periodic energy signals. But the distinction poses something of a quandary when you
encounter a signal consisting of periodic and nonperiodic terms. We’ll resolve this
quandary here by allowing impulses in the frequency domain for the representation
of discrete frequency components. The underlying notion of transforms in the limit
also permits the spectral representation of time-domain impulses and other signals
whose transforms don’t exist in the usual sense.

Properties of the Unit Impulse

The unit impulse or Dirac delta function §(t) is not a function in the strict mathe-
matical sense. Rather, it belongs to a special class known as generalized functions
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or distributions whose definitions are stated by assignment rules. In particular, the
properties of & (t) will be derived from the defining relationship

g ~fu(0) <0<t
[ o(t) 8(t) dt = {0 otherwise a

1

where v(t) is any ordinary function that’s continuous at t = 0. This rule assigns a
number—either v(0) or 0 — to the expression on the left-hand side. Equation (1) and
all subsequent expressions will also apply to the frequency-domain impulse & (f) by
replacing t with f.

If v(t) = 1in Eq. (1), it then follows that

Jma(t) dt = ré(t) dt =1 (2)

—00 —€

with e being arbitrarily small. We interpret Eq. (2) by saying that 3(t) has unit area
concentrated at the discrete point t = 0 and no net area elsewhere. Carrying this
argument further suggests that

St)=0 t#0 (3)

Equations (2) and (3) are the more familiar definitions of the impulse, and lead to the
common graphical representation. For instance, the picture of A 8 (t — tg) is shown
in Fig. 2.5-1, where the letter A next to the arrowhead means that A & (t — t;) has
area or weight A located at t = t.

Although an impulse does not exist physically, there are numerous conventional
functions that have all the properties of & (t) in the limit as some parameter e goes to
zero. In particular, if the function (t) is such that

Iing J v(t) &.(t) dt = v(0) (4a)
then we say that
Iirrcl) 8.(t) = 8(1) (4b)
A
t
0 ty

Figure 2.5-1 Graphical representation of A (t — ty).
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Two functions satisfying Eq. (4a) are

a0 - m() 5

o(t) = %sincé (6)

which are plotted in Fig. 2.5-2. You can easily show that Eq. (5) satisfies Eq. (4a) by
expanding v(t) in a Maclaurin series prior to integrating. An argument for Eq. (6)
will be given shortly when we consider impulses and transforms.

By definition, the impulse has no mathematical or physical meaning unless it
appears under the operation of integration. Two of the most significant integration
properties are

v(t) *8(t — tg) = v(t — &) 7)

J o) 8(t — t) dt = u(ty) 8)

—00

both of which can derived from Eqg. (1). Equation (7) is a replication operation,
since convolving v(t) with 8 (t — t,) reproduces the entire function v(t) delayed by t;.
In contrast, Eq. (8) is a sampling operation that picks out or samples the value of v(t)
at t = t;—the point where 8 (t — t,) is “located.”

Given the stipulation that any impulse expression must eventually be integrated,
you can use certain nonintegral relations to simplify expressions before integrating.
Two such relations are

v(t) 8(t — t3) = v(ty) O(t — ty) (9q)
S(at) = ’18(t) a#0 (9b)
o
%“( © ) 1 sinc ¢ 1
oo
e 0 € —2€ 2e
A VARV

Figure 2.5-2 Two functions that become impulses as € — 0.
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which are justified by integrating both sides over —oo <t < co. The product relation
in Eq. (9a) simply restates the sampling property. The scale-change relation in Eq.
(9b) says that, relative to the independent variable t, (at) acts like §(t)/|o|. Setting
o« = —1 then brings out the even-symmetry property & (—t) = 3(t).
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Evaluate or simplify each of the following expressions with v(t) = (t — 3)%

(a)rov(t) 8(t + 4) dt; (b) v(t) = 8(t + 4); () v(t) 8(t + 4); (d) v(t) * 5(—t/4).

—00

EXERCISE 2.5-1

Impulses in Frequency

Impulses in frequency represent phasors or constants. In particular, let v(t) = A be a
constant for all time. Although this signal has infinite energy, we can obtain its trans-
form in a limiting sense by considering that

u(t) = vlvimo Asinc 2Wt = A (10q)
Now we already have the transform pair A sinc 2Wt <> (A2W)II( f/2W), so

Flo(t)] = VIViLnO% H(zva) = AS(T) (10b)

which follows from Eq. (5) with e = 2W and t = f. Therefore,
A AS(T) (11)

and the spectrum of a constant in the time domain is an impulse in the frequency
domain at f = 0.

This result agrees with intuition in that a constant signal has no time variation
and its spectral content ought to be confined to f = 0. The impulsive form results
simply because we use integration to return to the time domain, via the inverse trans-
form, and an impulse is required to concentrate the nonzero area at a discrete point in
frequency. Checking this argument mathematically using Eq. (1) gives

FHUAS()] = j AS(f)e?dt = AP = A

—00

which justifies Eq. (11) for our purposes. Note that the impulse has been integrated
to obtain a physical quantity, namely the signal v(t) = A.

As an alternative to the above procedure, we could have begun with a rectangu-
lar pulse, ATI(t/7), and let 7 — oo to get a constant for all time. Then, since
F[AII(t/7)] = Ar sinc fr, agreement with Eq. (11) requires that

lim Arsincfr = A§(f)

T—>00
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Further, this supports the earlier assertion in Eq. (6) that a sinc function becomes an
impulse under appropriate limiting conditions.

To generalize Eq. (11), direct application of the frequency-translation and mod-
ulation theorems yields

Agt 5 A §(f — 1) (12)

Ael® —j¢
A cos (o t + ¢)<—>%5(f —f) +

8(f + 1) (13)

Thus, the spectrum of a single phasor is an impulse at f = f, while the spectrum of a
sinusoid has two impulses, shown in Fig. 2.5-3. Going even further in this direction,
if v(t) is an arbitrary periodic signal whose exponential Fourier series is

[o¢]

u(t) = ) o(nfp)e?™™ (14a)
n=-o0
then its Fourier transform is
V(f) = 2 c(nfy) 8(f — nfy) (14b)

where superposition allows us to transform the sum term by term.

By now it should be obvious from Egs. (11)—(14) that any two-sided line spec-
trum can be converted to a “continuous” spectrum using this rule: convert the spec-
tral lines to impulses whose weights equal the line heights. The phase portion of the
line spectrum is absorbed by letting the impulse weights be complex numbers.
Hence, with the aid of transforms in the limit, we can represent both periodic and
nonperiodic signals by continuous spectra. That strange beast the impulse function
thereby emerges as a key to unifying spectral analysis.

But you may well ask: What’s the difference between the line spectrum and the
“continuous” spectrum of a period signal? Obviously there can be no physical dif-
ference; the difference lies in the mathematical conventions. To return to the time
domain from the line spectrum, we sum the phasors which the lines represent. To
return to the time domain from the continuous spectrum, we integrate the impulses to
get phasors.

Agio Ao

Figure 2.5-3  Spectrum of A cos (wct + ¢).



2.5 Impulses and Transforms in the Limit 73

Impulses and Continuous Spectra EXAMPLE 2.5-1

The sinusoidal waveform in Fig. 2.5-4a has constant frequency f, except for the
interval —1/f, < t < 1/f, where the frequency jumps to 2f.. Such a signal might be
produced by the process of frequency modulation, to be discussed in Chap. 5. Our
interest here is the spectrum, which consists of both impulsive and nonimpulsive
components.

For analysis purposes, we’ll let 7 = 2/f, and decompose v(t) into a sum of three
terms as follows:

v(t) = Acos w.t — AII(t/7) cos w .t + AII(t/7) cos 2w, t

The first two terms represent a cosine wave with a “hole” to make room for an RF
pulse at frequency 2f, represented by the third term. Transforming v(t) term by term
then yields

v(f) =

%[S(f— fo) +8(f+f)]

A
—77 [sinc (f — f,)r + sinc (f + .)7]

A
+ 77 [sinc (f — 2f.)7 + sinc (f + 2f.)7]

where we have drawn upon Eq.(13) and the results of Example 2.3-2. The amplitude
spectrum is sketched in Fig. 2.5-4b, omitting the negative-frequency portion. Note
that |V(f) | is not symmetric about f = f_ because the nonimpulsive component must
include the term at 2f..

u(t)

NCANNAD O\ /L
VA VAVIVAVEAVARV

(a)
V()

A2

; f
0 f; 2f,

(b)

Figure 2.5-4 Waveform and amplitude spectrum in Example 2.5-1.



74

CHAPTER2 @  Signals and Spectra

Step and Signum Functions

We’ve seen that a constant for all time becomes a DC impulse in the frequency
domain. Now consider the unit step function in Fig. 2.5-5a which steps from “off”
to “on” att = 0 and is defined as

1 t>0
u(t) £ {0 (=0 (15)

This function has several uses in Fourier theory, especially with regard to causal sig-
nals since any time function multiplied by u(t) will equal zero for t < 0. However,
the lack of symmetry creates a problem when we seek the transform in the limit,
because limiting operations are equivalent to contour integrations and must be per-
formed in a symmetrical fashion—as we did in Eq. (10). To get around this problem,
we’ll start with the signum function (also called the sign function) plotted in
Fig. 2.5-5b and defined as

snté{+1 t>0 6
g 1 t<o0 16)

which clearly has odd symmetry.
The signum function is a limited case of the energy signal z(t) in Fig. 2.5-6
where v(t) = e u(t) and

o) = oft) — -0 - {

+e ™ >0
—e™  t<o0

u(t)

(a)
sgn t

0

-1

(b)

Figure 2.5-5 (a) Unit step function; (b) signum function.
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Figure 2.5-6

so that z(t) — sgn t if b — 0. Combining the results of Example 2.2-2 and Exercise
2.3-1yields

Fl2(1)] = Z(F) = jovi( ) = T
- AT e aat
Therefore,
: -
fers — - 7
F[sgn t] tl’m Z(f) —
and we have the transform pair
S nt<—>i (17)
g jarf

We then observe from Fig. 2.5-5 that the step and signum functions are related by
ut) =3(sgn t+ 1) =3sgnt + 3

Hence,

1 1
u(t) <_)j277'f + > 8(f) (18)
since F[1/2] = 36(f).

Note that the spectrum of the signum function does not include a DC impulse.
This agrees with the fact that sgn t is an odd function with zero average value when
averaged over all time, as in Eq. (9), Sect. 2.1. In contrast, the average value of the
unit step is <u(t)> = 1/2 so its spectrum includes 3 8(f)—just as the transform of a
periodic signal with average value c(0) would include the DC term c(0) (f).

An impulsive DC term also appears in the integration theorem when the signal
being integrated has nonzero net area. We derive this property by convolving u(t)
with an arbitrary energy signal v(t) to get

u(t) = u(t) = f Oov()\)u(t — ) dA (19)

—00

75



76

CHAPTER2 @  Signals and Spectra

since u(t — A) = 0 for A > t. But from the convolution theorem and Eq. (18)
1 1
F =V(f)| = + 2 &(f
Flo(t) *u(t)] = V( >[ 2t T 2 >}

SO

Jt v(A) d)\<—>j217fV(f) +%V(O) 8(f) (20

—00

where we have used V(f) 8(f) = V(0) d(f). Equation (20) reduces to our previous
statement of the integration theorem when V(0) = 0.

EXERCISE 2.5-2

Apply the modulation theorem to obtain the spectrum of the causal sinusoid
v(t) = Au(t) cos wt.

Impulses in Time
Although the time-domain impulse 3(t) seems a trifle farfetched as a signal model,

we’ll run into meaningful practical applications in subsequent chapters. Equally
important is the value of §(t) as an analytic device. To derive its transform, we let
7 — 0 in the known pair

A H(t) <> Asincfr

T T
which becomes

AS(t) <> A (21)

Hence, the transform of a time impulse has constant amplitude, meaning that its
spectrum contains all frequencies in equal proportion.

You may have noticed that A 8(t) <> A is the dual of A <> A §(f). This dual rela-
tionship embraces the two extremes of reciprocal spreading in that

An impulsive signal with “zero” duration has infinite spectral width, whereas a
constant signal with infinite duration has “zero” spectral width.

Applying the time-delay theorem to Eq. (21) yields the more general pair

AS(t — ty) <> Ae 12 (22)
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It’s a simple matter to confirm the direct transform relationship F[AS(t — ty)] =
Ae12™; consistency therefore requires that F *[Ae 127] = A §(t — ty), which
leads to a significant integral expression for the unit impulse. Specifically, since

00
@*l[e*jZﬂ'ﬂd] — J e*jZﬂ'ftdejZﬂ'ft df

we conclude that
J W df = §(t — ty) (23)

—00

Thus, the integral on the left side may be evaluated in the limiting form of the unit
impulse—a result we’ll put immediately to work in a proof of the Fourier integral
theorem.

Let v(t) be a continuous time function with a well-defined transform
V(f) = F[v(t)]. Our task is to show that the inverse transform does, indeed, equal
v(t). From the definitions of the direct and inverse transforms we can write

FUV(F)] = Jm U""U(A)e_m d)\}ejz’m df

=J v(A)U eiz’T(”)fdf] da

But the bracketed integral equals 3(t — \), from Eq. (23), so

FHUV(F)] = J v(A) 8(t — A) dr = v(t) * 8(t) (24)
Therefore &1 [V(f)] equals v(t), in the same sense that v(t) * §(t) = v(t). A more
rigorous proof, including Gibbs’s phenomena at points of discontinuity, is given by
Papoulis (1962, Chap. 2).
Lastly, we relate the unit impulse to the unit step by means of the integral

Jt S(A — tg) dA = {é :z:: (25)
=u(t — ty)
Differentiating both sides then yields
ot —ty) = %u(t - 1y) (26)

which provides another interpretation of the impulse in terms of the derivative of a
step discontinuity.

Equations (26) and (22), coupled with the differentiation theorem, expedite cer-
tain transform calculations and help us predict a signal’s high-frequency spectral
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rolloff. The method is as follows. Repeatedly differentiate the signal in question until
one or more stepwise discontinuities first appear. The next derivative, say the nth,
then includes an impulse A, 8(t — t,) for each discontinuity of height A, at t = t,, so
dn
@v(t) =w(t) + D) AS(t — t) (27q)
k
where w(t) is a nonimpulsive function. Transforming Eq. (27a) gives
(j2mf)V(f) = W(f) + D A g2 (27b)
k
which can be solved for V(f) if we know W(f) = F [w(t)].
Furthermore, if [W(f)] — 0 as f — <o, the high-frequency behavior of |V(f)| will
be proportional to |f | " and we say that the spectrum has an nth-order rolloff. A
large value of n thus implies that the signal has very little high-frequency content—
an important consideration in the design of many communication systems.
EXAMPLE 2.5-2 Raised Cosine Pulse

Figure 2.5—7a shows a waveform called the raised cosine pulse because

v(t) = ':(1 + C0s T)H(;T)

We’ll use the differentiation method to find the spectrum V(f) and the high-frequency
rolloff. The first three derivatives of v(t) are sketched in Fig. 2.5-7b, and we

see that
du(t) <7T>A ot (t)
dt T ZSmTH 27

which has no discontinuities. However, d?v(t)/dt? is discontinuous att = =7 so

:;v(t) = (j)ggsinfn(;) + <:>225(t + 1) - C)Z/;a(t — 1)

This expression has the same form as Eq. (27a), but we do not immediately know the
transform of the first term.

Fortunately, a comparison of the first and third derivatives reveals that the first
term of d3u(t)/dt® can be written as w(t) = —(w/7)?> du(t)/dt. Therefore,
W(f) = —(m/7)(j27 )V(f) and Eq. (27b) gives

ks

(ot () = —( ) tomtu() + (T ) & o — ey

T
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Figure 2.5-7 Raised cosine pulse. (a) Waveform; (b) derivatives; (c) amplitude spectrum.

Routine manipulations finally produce the result

B jA sin 27 fr _ Arsinc 2fr
2wt + (r/m)A(j2mf)® 1 — (2f7)?

v(f)

whose amplitude spectrum is sketched in Fig. 2.5-7c for f = 0. Note that [V(f)| has
a third-order rolloff (n = 3), whereas a rectangular pulse with |V(f)|=|sinc fr|=
|(sin 7 f)/(7 fr)| would have only a first-order rolloff.
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EXERCISE 2.5-3

Let v(t) = (2At/7)II (t/7). Sketch du(t)/dt and use Eq. (27) to find V(f).

2.6 DISCRETE TIME SIGNALS AND THE DISCRETE
FOURIER TRANSFORM

It will be shown in Sect. 6.1 that if we sample a signal at a rate at least twice its
bandwidth, then it can be completely represented by its samples. Consider a rectan-
gular pulse train that has been sampled at rate f, = 1/T, and is shown in Fig. 2.6-1a.
It is readily observed that the sampling interval is At = T,. The samples can be
expressed as

X(Olokr, = X(KT,) (1a)

Furthermore, if our sampler is a periodic impulse function, we have

x(KT,) = x(t)8(t — kT,) (1)

Then we drop the T to get

x(k) = x(kTs) (1¢

where x(K) is a discrete-time signal, an ordered sequence of numbers, possibly com-
plex, and consists of k = 0, 1, ... N — 1, a total of N points.

It can be shown that because our sampler is a periodic impulse function
d(t — KT,), then we can replace the Fourier transform integral of Eq. (4) of Sect. 2.2
with a summation operator, giving us

N—-1
X(n) = D x(k)e#™Nn =0,1...N (2)
k=0

Alternatively, we can get Eq. (2) by converting the integral of Eq. (4), Sect. 2.2, to a sum-
mation and changing dt — At = T,. Function X(n) is the Discrete Fourier transform
(DFT), written as DFT[x(k)] and consisting of N samples, where each sample is spaced
at a frequency of 1/(NT,) = f,/N Hz. The DFT of the sampled signal of Fig. 2.6-1a is
shown in Fig. 2.6-1b. Note how the DFT spectrum repeats itself every N samples or
every f, Hz. The DFT is computed only for positive N. Note the interval fromn — (n + 1)
represents f, /N Hz, and thus the discrete frequency would then be

n—f, = nf/N (3)

Observe that both x(k) and X(n) are an ordered sequence of numbers and thus can
easily be processed by a computer or some other digital signal processor (DSP).
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Figure 2.6-1 (a) Sampled rectangular pulse train with (b) corresponding N = 16 point
DFT[x(k)]. Also shown is the analog frequency axis.
The corresponding inverse discrete Fourier transform (IDFT) is
13 :
x(k) = IDFT[X(n)] = NEX(n)eJZ’T”k/N k=01...N (4)
n=0

Equations (2) and (4) can be separated into their real and imaginary components giving
Xg(n) = Re[X(n)]and X, (n) = Im[X(n)]

and
Xg(k) = Re[x(k)]and x, (k) = Im[x(k)].

Sect. 6.1 will discuss how x(t) is reconstructed from from X(n) or x(k).

In examining Egs. (2) and (4) we see that the number of complex multiplica-
tions required to do a DFT or IDFT is N2, If we are willing to work with N = 2¥ sam-
ples, where v is an integer, we can use the Cooley-Tukey technique, otherwise
known as the fast Fourier transform (FFT) and inverse FFT (IFFT), and thereby

reduce the number of complex multiplications to > log, N. This technique greatly
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improves the system throughput. Furthermore, as we will see in Sect. 14.5, the archi-
tecture of the IFFT/IFT enables an efficient implementation of orthogonal frequency
multiplexing.

EXAMPLE 2.6-1 Discrete Time Monocycle and lts DFT

Use MATLAB to generate and plot a N = 64-point monocycle pulse centered at
k = 32 and constant a = 100, sampled at f, = 1 Hz, then calculate and plot its DFT.
A monocycle is a derivative of the gaussian function and can be shown to be
t 12
= — o @
x(t) 2 C (5)
Let’s assume the sample interval is 1 second, to reflect the k = 32 point delay, Eq. (6)
becomes (k — 32) -
X(k) = ————= e (w0 6
) =00 o
The DFT calculation produces the real and imaginary components, and therefore its
power spectrum is the magnitude squared or

Puu(n) = X(n)X'(n) = X(n)P

The MATLAB program is shown below. Fig. 2.6-2 is a plot of its sampled signal,
with the real and imaginary components of its DFT.

clear

a=100;

N=64;
% Generate a 64 point monocycle centered at
% n=32.

k=(0:N-1);

for j=1:N

x(j)=(-N/2)/a*exp(-((j-N/2)"2)/a);

end;

x=x/max(x); % normalize x

subplot(4,1,1), stem(k,x);
% Generate its 64 point-DFT, plot real, imaginary and
% magnitude squared

n=(0:N-1);

u=fft(x,N);

xreal=real(u);
ximag=imag(u);
Puu=u.*conj(u)/N;

subplot(4,1,2), stem(n,xreal);

subplot(4,1,3), stem(n,ximag);

subplot(4,1,4), stem(n,Puu);
end
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Figure 2.6-2 Monocycle and its DFT: (a) Monocycle x(k) with T, = 1 s.; (b) Re[X(n)];

(¢) Im[X(n)]; (d) Puuln) =1X(n)12.

Note that k to (k + 1) corresponds to a 1-second interval and n to (n + 1) corre-
sponds to a 1/64 — Hz interval. Therefore, the graphs of x(k) and X(n) span 64 sec-
onds and 64 Hz respectively.
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Derive Eqg. (2). Assume the signal was sampled by an impulse train.

EXERCISE 2.6-1

Convolution Using the DFT
Just as with the continuous-time system, the output of a discrete-time system is the

linear convolution of the input with the system’s impulse response system, or simply

y(k) = x(k) *h(k) = ix(l)h(k -1 7)

1=0

where the lengths of x(k) and h(k) are bounded by N, and N, respectively, the length of
y(K) is bounded by N = (N; + N, — 1), y(k) and x(k) are the sampled versions of y(t)
and x(t) respectively, and *= denotes the linear convolution operator. The system’s
discrete-time impulse response function, h(k), is approximately equal to its analog
counterpart, h(t)."f However, for reasons of brevity, we will not discuss under what con-
ditions they are closely equal. Note that we still have the DFT pair of h(k) <> H(k)
where H(K) is discrete system response.

tFunction h(k) = h(t) if f, >> Nyquist rate. See Ludeman (1986) for more information.
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Xy(n) = DFT[x, (k)] and X, (n) = DFT[x,(k)]

then we have
X1(K) ®Xa(K) <> X1(n)X,(n) (8)

where ® denotes circular convolution. Circular convolution is similar to linear con-
volution, except both functions must be the same length, and the resultant function’s
length can be less than the bound of N, + N, — 1. Furthermore, while the operation
of linear convolution adds to the resultant sequence’s length, with circular convolu-
tion, the new terms will circulate back to the beginning of the sequence.

It is advantageous to use specialized DFT hardware to perform the computa-
tions, particularly as we will see in Sect. 14.5. If we are willing to constrain the
lengths of N; = N, and N = (2N, — 1), then the linear convolution is equal to the cir-
cular convolution,

(k) = x3(k) * xa(k) = x3(k) @ x5(K) (9a)
Y(n) = DFT[xy(k)] X DFT[xy(k)] [9b]
Y(k) = DFT[xy(n) ®%,(n)] (94
and
y(k) = IDFT[Y(n)] (9d)

The lengths of x,(k) and x,(k) can be made equal by appending zeros to the sequence
with the shorter length. Thus, just as the CFT replaces convolution in continuous-
time systems, so can the DFT be used to replace linear convolution for discrete-time
systems. For more information on the the DFT and circular convolution, see Oppen-
heim, Schafer, and Buck (1999).

2.7 QUESTIONS AND PROBLEMS
Questions

1. Why would periodic signals be easier to intercept than nonperiodic ones?

2. Both the H(f) = sinc(fr) and H(f) = sinc?(fr) have low-pass-frequency responses,
and thus could be used to reconstruct a sampled signal. What is their equivalent
operation in the time domain?

3. You have designed a noncommunications product that emits radio frequency
(RF) interference that exceeds the maximum limits set by the FCC. What signal
shapes would most likely be the culprit?



10.

11.

2.7 Questions and Problems

What is the effect on the output pulse width if two identical signals are multi-
pled in the frequency domain?

What is the effect on the output bandwidth if two signals are multiplied in the
time domain?

Why is an ideal filter not realizable?
What is the effect on a signal’s bandwidth if the pulse width is reduced?

Using a numerical example, show that the integration operator obeys the linear-
ity theorem.

Give an example of a nonlinear math function. Justify your result.

Many electrical systems such as resistive networks have a linear relationship
between the input and output voltages. Give an example of a device where volt-
age output is not a linear function of voltage input.

Why is the term nonperiodic energy signal redundant?

Problems
2.1-1 Consider the phasor signal v(t) = Ag%e”2™™, Confirm that Eq. (14)

yields just one nonzero coefficient c,, having the appropriate amplitude
and phase.

2.1-2 If a periodic signal has the even-symmetry property v(—t) = v(t), then

Eq. (14) may be written as

2

o,

To/2
J' v(t) cos (2mnt/T,) dt

0
Use this expression to find ¢, when v(t) = A for |t| < To/4 and v(t) = —A
for To/4 < |t| < To/2. As a preliminary step you should sketch the wave-
form and determine c, directly from (v(t)). Then sketch and label the
spectrum after finding c,.

2.1-3 Do Prob. 2.1-2 with v(t) = A — 2A[t|/T, for |t| < Ty/2.
2.1-4 Do Prob. 2.1-2 with v(t) = A cos (27t/T,) for |t| < T,/2.
2.1-5 If a periodic signal has the odd-symmetry property v(—t) = —v(t), then

Eq. (14) may be written as

2 To/2
C, = —j T J u(t) sin (27nt/T,) dt
00

Use this expression to find ¢, when v(t) = A for 0 < t < Ty/2 and
v(t) = —Afor —Ty/2 <t < 0. As a preliminary step you should sketch
the waveform and determine c, directly from (v(t)) . Then sketch and
label the spectrum after finding c,.
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Do Prob. 2.1-5 with v(t) = A sin(2#7t/T,) for [t| < T,/2.

Consider a periodic signal with the half-wave symmetry property
(v(t=Ty/2) = —v(t)), so the second half of any period looks like the first
half inverted. Show that c, = 0 for all even harmonics.

How many harmonic terms are required in the Fourier series of a peri-
odic square wave with 50 percent duty cycle and amplitude + A to rep-
resent 99 percent of its power?

Use Parseval’s power theorem to calculate the average power in the rec-
tangular pulse train with 7/T, = 1/4 if all frequencies above |f| > 1/r are
removed. Repeat for the cases where all frequencies above |f| > 2/r and
|f| > 1/27 are removed.

Let v(t) be the triangular wave with even symmetry listed in Table T.2,
and let v'(t) be the approximating obtained with the first three nonzero
terms of the trigonometric Fourier series. (a) What percentage of the
total signal power is contained in v’(t)? (b) Sketch v’ (t) for |t| < To/2.
Do Prob. 2.1-10 for the square wave in Table T.2.

Calculate P for the sawtooth wave listed in Table T.2. Then apply Parse-
val’s power theorem to show that the infinite sum 1/1%2 + 1/22 + 1/3? +
- equals 72/6.

Calculate P for the triangular wave listed in Table T.2. Then apply Parse-
val’s power theorem to show that the infinite sum 1/1% + 1/3* + 1/5% +
-+ equals 74/96.

Consider the cosine pulse v(t) = Acos(wt/m)II(t/T). Show that

V(f) = (Ar/2)[sinc(fr — 1/2) + sinc(fr + 1/2)]. Then sketch and label
[V(f)| for f = 0 to verify reciprocal spreading.

Consider the sine pulse v(t) = Asin(2#t/7)I1(t/7). Show that V(f) =
—j(Ar/2)[sinc(fr — 1) — sinc(fr + 1)]. Then sketch and label |V(f)| for
f = 0 to verify reciprocal spreading.

Find V(f) when v(t) = (A — Alt|/7)I1(t/27). Express your result in terms
of the sinc function.

Find V(f) when v(t) = (At/7)T1(t/27). Express your result in terms of the
sinc function.

Given v(t) = TI(t/r) with 7 = 1 ms. Determine f;, such that
1
V(f)| < 30 V(0) forall > f,

Repeat Prob. 2.2-5 for v(t) = A (t/7).

*Indicates answer given in the back of the book.
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Use Rayleigh’s theorem to calculate the energy in the signal
v(t) = sinc2Wt.

Let v(t) be the causal exponential pulse in Example 2.2-2. Use
Rayleigh’s theorem to calculate the percentage of the total energy con-
tained in |[f| < W when W = b/27r and W = 2b/7.

Suppose the left-hand side of Eq. (17) had been written as

J oOw) dt

—00

Find the resulting right-hand side and simplify for the case when v(t) is
real and w(t) = v(t).

Show that F[w’(t)] = W'(—f). Then use Eq. (17) to obtain a frequency-
domain expression for f:ov(t)z(t)dt.

Use the duality theorem to find the Fourier transform of v(t) = sinc2t/r.

Apply duality to the result of Prob. 2.2-1 to find z(t) when
Z(f) = Acos(wfl2W)IT(f/2W).

Apply duality to the result of Prob. 2.2-2 to find z(t) when
Z(f) = —jAsin(afIW)II(fI2W).

Use Eqg. (16) and a known transform pair to show that
J (@ + x*)%dx = 7/4a°
0

Let v(t) be the rectangular pulse in Fig. 2.2-1a. Find and sketch Z(f) for
Z(t) = v(t —T) + v(t + T) taking 7 << T.

Repeat Prob. 2.3-1 for z(t) = v(t — 2T) + 2v(t) + v(t + 2T).
Repeat Prob. 2.3-1 for z(t) = v(t — 2T) — 2v(t) + v(t + 2T).
Sketch v(t) and find V() for

u(t) = AH<t _TT/2> + BH(t__?T/Z>

Sketch v(t) and find V(f) for

u(t) = AH(t ;TZT) + BH(t _ZTZT)

Find Z(f) in terms of V(f) when z(t) = v(at — ty).
Prove Eq. (6).

Consider 100 MHz sine wave functions as an on-off keyed binary sys-
tem such that a logic 1 has a duration of = seconds and is determined by
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a rectangular window. What is the minimum 7 such that the magnitude
of its spectrum at 100.2 MHz will not exceed 1/10 of its maximum value?

Repeat Prob. 2.3-8 for a triangle pulse. Compare this with the
result obtained from Prob. 2.3-8. Which waveform occupies more spec-
trum?

Given a system with input-output relationship of y = f(x) = 2x + 10, is
this system linear?

Do Prob. 2.3-10 with y = f(x) = x2.
Do Prob. 2.3-10 with y = [2xdx.
Convert x(t) = 10cos(207rt+7r/5) to its equivalent time-delayed version.

Signal x,(t) = 10cos(27r X 7 X 109) is transmitted to some destination.
The received signal is xg(t) = 10cos(27r X 7 X 108 X t—a/6). What is
the minimum distance between the source and destination, and what are
the other possible distances?

Two delayed versions of signal x,(t) = 10cos(27 X 7 X 10°) are
received with delays of 10 and 30 us respectively. What are the possible
differences in path lengths?

Use Eg. (7) to obtain the transform pair in Prob. 2.2-1.
Use Eqg. (7) to obtain the transform pair in Prob. 2.2-2.
Use Eq. (7) to find Z(f) when z(t) = Ae ! cos wt.

Use Eq. (7) to find Z(f) when z(t) = Aetsin wt fort = 0 and z(t) = 0 for
t<O.

Use Eqg. (12) to do Prob. 2.2-4.
Use Eq. (12) to find Z(f) when z(t) = Ate bl

Use Eq. (12) to find Z(f) when z(t) = At?e~tfor t = 0 and z(t) = 0 for
t<o.

Consider the gaussian pulse listed in Table T.1. Generate a new trans-
form pair by (a) applying Eq. (8) with n = 1; (b) applying Eq. (12) with
n=1

Using convolution, prove Eq. (7) in Sect. 2.3. You may assume ¢ = 0.

Find and sketch y(t) = v(t) * w(t) when v(t) = t for 0 <t < 2 and
w(t) = Afort > 0. Both signals equal zero outside the specified ranges.

Do Prob. 2.4-2 with w(t) = Afor0 <t < 3.
Do Prob. 2.4-2 with w(t) = Afor0 <t < 1.

Find and sketch y(t) = v(t) = w(t) when v(t) = 2I1(5}), w(t) = A for
t = 4, and w(t) = 0 otherwise.

Do Proh. 2.4-5 with w(t) = e for t > 0 and w(t) = 0 otherwise.
Do Prob. 2.4-5 with w(t) = A(}).

T
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2.7 Questions and Problems

Find y(t) = v(t) = w(t) for v(t) = Ae~2 for t > 0 and w(t) = Be " for
t > 0. Both signals equal zero outside the specified ranges.

Do Prob. 2.4-8 with w(t) = sin 7t for 0 = t = 2, w(t) = 0 otherwise.
(Hint: Express a sinusoid as a sum of exponentials.)

Prove Eg. (2a) from Eq. (2).

Let v(t) and w(t) have even symmetry. Show from Eq. (1) that v(t) * w(t)
will have even symmetry.

Let v(t) and w(t) have odd symmetry. Show from Eq. (1) that v(t) * w(t)
will have odd symmetry.

Find and sketch v(t) * v(t) * v(t) when v(t) = TI(}). You may use the
symmetry property stated in Prob. 2.4-11.

Use Eq. (3) to prove Eq. (2b).

Find and sketch y(t) = v(t) *w(t) when v(t) = sinc 4tand w(t) = 2 sinc 5.
Consider the signal z(t) and its transform Z(f) from Example 2.3-2. Find
z(t) and Z(f) as 7 — 0.

Let v(t) be a periodic signal whose Fourier series coefficients are
denoted by c,(nf,). Use Eq. (14) and an appropriate transform theorem to
express ¢, (nfy) in terms of ¢, (nf,) when w(t) = v(t — ty).

Do Prob. 2.5-2 with w(t) = du(t)/dt.
Do Prob. 2.5-2 with w(t) = v(t) cos mwgt.

Letv(t) = Afor 0 <t < 27 and v(t) = 0 otherwise. Use Eq. (18) to find
V(f). Check your result by writing v(t) in terms of the rectangle function.

Let v(t) = Afor |t| > 7 and v(t) = 0 otherwise. Use Eq. (18) to find V(f).
Check your result by writing v(t) in terms of the rectangle function.

Letv(t) = Afort < —T, and v(t) = —Afort > T, and v(t) = O other-
wise. Use Eq. (18) to find V(f). Check your result by letting T — 0.

Let
w(t) = JI v(A) dA

with v(t) = (1/e)T1(t/e). Sketch w(t) and use Eq. (20) to find W(f). Then
let e — 0 and compare your results with Eq. (18).
Do Prob. 2.5-8 with v(t) = (1/e)e~¢ u(t).

Obtain the transform of the signal in Prob. 2.3-1 by expressing z(t) as
the convolution of v(t) with impulses.

Do Prob. 2.5-10 for the signal in Prob. 2.3-2.
Do Proh. 2.5-10 for the signal in Prob. 2.3-3.
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2.6-6
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2.6-9

e  Signals and Spectra

8
Find and sketch the signal v(t) = ) sin (2at)8(t — 0.5n) using
Eqg. (9a). n=0

10
Find and sketch the signal v(t) = >, cos (2mt)8(t — 0.1n) using
Eq. (9a). n=-10

Show that the DFT of a rectangular pulse is proportional to the terms of
the Fourier coefficients of its periodic version.

A noisy sampled signal is processed using an averaging filter such that
the filter’s output consists of the average of the present and past three
samples. What is H(n) for N = 8?

Repeat Prob. 2.6-2 except that the filter’s output is the weighted average
of the present and past three samples with most significance given to the
present input. The weights are 8/16, 4/16, 3/16, 1/16.

Given an 8-point DFT where Xg(n) = (6,0,0,4,0,4,0,0),
X,(n) = (0,0, —1,0,0,1,0,0), and f, = 160 Hz, (a) calculate x(n), (b) cal-
culate the equivalent x(t), (c) what is the analog frequency resolution, (d)
what is the DC value of its equivalent analog signal?

Calculate the 4-point DFT for x(k) = 3,1,1,0.

What are the minimum values of f, and N to achieve a resolution of 0.01
MHz for a signal x(t) <> X(f) and where W = 20 MHz?

Given x; (k) = (4,2,2,5) and x, (k) = (1,1,3,5,8,0,1), what is the value of
N required so that the circular and linear convolutions are identical?

If your processor can do a multiply in 10 ns, how long will it take to cal-
culate a N = 256 point DFT if you use the standard algorithm? How
about the FFT?

Do Prob. 2.6-8 for N = 4096.
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Signo\ fransmission is the process whereby an electrical waveform gets from one location to another, ideally arriv-
ing without disfortion. In contrast, signal filtlering is an operation that purposefully distorts a waveform by dltering
its spectral content. Nonetheless, most transmission systems and filters have in common the properties of linearity and
time invariance. These properties allow us to model both fransmission and filtering in the time domain in terms of the
impulse response, or in the frequency domain in terms of the frequency response.

This chapter begins with a general consideration of system response in both domains. Then we'll apply our
results fo the analysis of signal transmission and distortion for a variety of media and systems such as fiber optics and
satellites. We'll examine the use of various types of filiers and filtlering in communication systems. Some related
fopics—notably fransmission loss, Hilbert fransforms, and correlation—are also included as starting points for subse-
quent development.

OBJECTIVES

After studying this chapter and working the exercises, you should be able to do each of the following:

1.  State and apply the input—output relations for an LTI system in terms of its impulse response h(t), step response
g(t), or transfer function H(f) (Sect. 3.1).

2. Usefreguency-domain analysisto obtain an exact or approximate expression for the output of a system (Sect. 3.1).
3. Find H(f) from the block diagram of a simple system (Sect. 3.1).

4. Distinguish between amplitude distortion, delay distortion, linear distortion, and nonlinear distortion (Sect. 3.2).
5

Identify the frequency ranges that yield distortionless transmission for a given channel, and find the equalization
needed for distortionless transmission over a specified range (Sect. 3.2).

6. UsedB caculationsto find the signal power in a cable transmission system with amplifiers (Sect. 3.3).

7. Discussthe characteristics of and requirements for transmission over fiber optic and satellite systems (Sect. 3.3).

8.  Identify the characteristics and sketch H(f) and h(t) for an ideal LPF, BPF, or HPF (Sect. 3.4).
9.  Find the 3 dB bandwidth of areal LPF, given H(f) (Sect. 3.4).

10.  State and apply the bandwidth requirements for pulse transmission (Sect. 3.4).

11.  State and apply the properties of the Hilbert transform (Sect. 3.5).

12.  Define the crosscorrelation and auto-correlation functions for power or energy signals, and state their properties
(Sect. 3.6).

13.  State the Wiener-Kinchine theorem and the properties of spectral density functions (Sect. 3.6).

14.  Given H(f) and the input correlation or spectral density function, find the output correlation or spectral density
(Sect. 3.6).

3.1 RESPONSE OF LTI SYSTEMS

Figure 3.1-1 depicts a system inside a “black box” with an external input signal
x(t) and an output signal y(t). In the context of electrical communication, the sys-
tem usually would be a two-port network driven by an applied voltage or current at
the input port, producing another voltage or current at the output port. Energy stor-
age elements and other internal effects may cause the output waveform to look quite
different from the input. But regardless of what’sin the box, the system is character-
ized by an excitation-and-response relationship between input and output.
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Black box
Input Output

X(t) ——=| System —— y(1)

Figure 3.1-1 System showing external input and output.

Here we're concerned with the special but important class of linear time-
invariant systems—or LTI systems for short. We'll develop the input—output rela-
tionship in the time domain using the superposition integral and the system’simpulse
response. Then we'll turn to frequency-domain analysis expressed in terms of the sys-
tem’s transfer function.

Impulse Response and the Superposition Integral

Let Fig. 3.1-1 bean LTI system having no internal stored energy at the time the input
X(t) isapplied. The output y(t) isthen the forced response due entirely to x(t), asrep-
resented by

y(t) = F[x(t)] (1

where F[x(t)] stands for the functional relationship between input and output. The
linear property meansthat Eq. (1) obeysthe principle of superposition. Thus, if

X(t) = Ek‘,ak Xi(t) (2a)

where a, are constants, then

y(t) = X aFx(t)] (2b)
k
The time-invariance property means that the system’s characteristics remain fixed
with time. Thus, atime-shifted input x(t — t4) produces

FIx(t—tg)] = y(t — ty) (3)

so the output is time-shifted but otherwise unchanged.

Most LTI systems consist entirely of lumped-parameter elements (such asresis-
tors capacitors, and inductors), as distinguished from elements with spatially distrib-
uted phenomena (such as transmission lines). Direct analysis of alumped-parameter
system starting with the element equations leads to the input—output relation as a
linear differential equation in the form

n m
d"y(t) R dy(t) d™x(t) ax(t)

a, s alWJraoy(t):bm e + - +bl?+b0X(t) (4)
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where the a’s and b’s are constant coefficients involving the element values. The
number of independent energy-storage elements determines the value of n, known as
the order of the system. Unfortunately, Eq. (4) doesn’t provide us with a direct ex-
pression for y(t).

To obtain an explicit input—output equation, we must first define the system’s
impulse response function

(5)

h(t) 2 F[8(t)

]
which equals the forced response when x(t) = §(t). Now any continuous input sig-
nal can be written as the convolution x(t) = x(t)* 8(t), so

y(t) = F{ ro X(A)8(t — A) dA

—00

- ro X(A)F[8(t — A)] dA

—00

in which the interchange of operationsis allowed by virtue of the system’s linearity.
Now, from the time-invariance property, F[6(t — A)] = h(t — A) and hence

y(t) = JOO Xx(A)h(t — A) da (6a)

—00

= r@ h(A)x(t — A) dA (6b)

—00

where we have drawn upon the commutativity of convolution.

Either form of Eq. (6) is caled the superposition integral. It expresses the
forced response as a convolution of the input x(t) with the impulse response h(t).
System analysis in the time domain therefore requires knowledge of the impulse
response along with the ability to carry out the convolution.

Varioustechniques exist for determining h(t) from adifferential equation or some other
system model. However, you may be more comfortable taking x(t) = u(t) and caculating
the system’s step response

o(t) = Flu(t)] (7a)
from which
_ dg(t)
h(t) = =5, (7b)

This derivative relation between the impul se and step response follows from the gen-
eral convolution property

d dw(t
- w] = v |57
Thus, sinceg(t) = h(t) * u(t) by definition, dg(t)/dt = h(t) * [du(®/df] = h(t) * 8 () = h(t).
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Time Response of a First-Order System

The simple RC circuit in Fig. 3.1-2 has been arranged as a two-port network with
input voltage x(t) and output voltage y(t). The reference voltage polarities are indi-
cated by the +/— notation where the assumed higher potential is indicated by the +
sign. Thiscircuit is afirst-order system governed by the differential equation
RC LI0) +y(t) = x(t)
dt

Similar expressions describe certain transmission lines and cables, so we're particu-
larly interested in the system response.

From either the differential equation or the circuit diagram, the step responseis
readily found to be

g(t) = (1 — e )u(t) (8a)

Interpreted physically, the capacitor starts at zero initial voltage and charges toward
y(co) = 1 with time constant RC when x(t) = u(t). Figure 3.1-3a plots this behav-
ior, while Fig. 3.1-3b shows the corresponding impul se response

1 e YRCu(t) (8b)

") = ge

obtained by differentiating g(t). Note that g(t) and h(t) are causal waveforms since
the input equals zero for t < 0.

The response to an arbitrary input x(t) can now be found by putting Eq. (8b) in
the superposition integral. For instance, take the case of a rectangular pulse applied
at=0,s0x(t) = Afor0 < t < 7. Theconvolution y(t) = h(t) * x(t) dividesinto
three parts, like the example back in Fig. 2.4-1 with the result that

0 t<O0
y(t) =9 A(L — e VR%) o<t<r
A(l _ e—’r/RC)e—(l—'r)/RC t> 7 (9)

as sketched in Fig. 3.1-4 for three values of 7/RC.

+ b—/\,—I—Q +
X(t) C I y(®)

Figure 3.1-2 RC lowpass filter.

EXAMPLE 3.1-1
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a®)

1

0 "R
(b)

Figure 3.1-3 Output of an RC lowpass filter: (a) step response; (b) impulse response.

0
(a)
(c)
Figure 3.1-4 Rectangular pulse response of an RC lowpass filter: (a) 7 >> RC; (b) 7 ~ RC;
(c) r<<RC.
EXERCISE 3.1-1 Let the resistor and the capacitor be interchanged in Fig. 3.1-2. Find the step and

impul se response.

Transfer Functions and Frequency Response

Time-domain analysis becomes increasingly difficult for higher-order systems, and
the mathematical complications tend to obscure significant points. We'll gain a
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different and often clearer view of system response by going to the frequency
domain. Asafirst step in this direction, we define the system transfer function to be
the Fourier transform of the impul se response, namely,

H(f) 2 F[ht)] = Fh(t)eﬂ%ﬂ dt (10)

—00

This definition requires that H(f) exists, at least in alimiting sense. In the case of an
unstable system, h(t) grows with time and H(f) does not exist.
When h(t) isareal time function, H(f) has the hermitian symmetry

H(—f) = H*(f) (11q)

s0 that
[H(—=f)[ = [H(f)|  agH(-f) = —agH(f) (11b)

We'll assume this property holds unless otherwise stated.
The frequency-domain interpretation of the transfer function comes from
y(t) = h* x(t) with aphasor input, say

X(t) = Agelbelamht  —oo <t < 0 (124)

The stipulation that x(t) persists for all time means that we're dealing with steady-
state conditions, like the familiar case of ac steady-state circuit analysis. The steady-
state forced response is

y(t) = J h(A)A, e el2 =4 g

= { J h(A)e 127 f"’\d)\} A, eltx g2t
= H(fy)A, el* g2

where, from Eq. (10), H( f,) equals H(f) with f = f,. Converting H( f,) to polar form
thenyields
y(t) = Ajeivelmd 0o <t < 0 (12b)

in which we have identified the output phasor’s amplitude and angle
A, = [H(f)Ac &y = argH(f) + ¢, (13)
Using conjugate phasors and superposition, you can similarly show that if
x(t) = A, cos (2mfet + &)

then
y(t) = A, cos (27fit + ¢y)

with A, and ¢, asin Eq. (13).
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Since A//A, = |H(fo)| at any frequency f,, we conclude that |H(f)| represents
the system’s amplitude ratio as a function of frequency (sometimes called the
amplitude response or gain). By the same token, arg H(f) represents the phase
shift, since b, — ¢, = arg H(f,). Plots of |H(f )| and arg H(f) versus frequency give
us the frequency-domain representation of the system or, equivaently, the system’s
frequency response. Henceforth, we'll refer to H(f) as either the transfer function or
frequency-response function.

Now let x(t) be any signal with spectrum X(f). Calling upon the convolution the-
orem, we take the transform of y(t) = h(t) * x(t) to obtain

Y(f) = H(F)X(f) (14)

This elegantly simple result constitutes the basis of frequency-domain system analy-
sis. It saysthat

The output spectrum Y(f] equals the input spectrum X(f] multiplied by the trans-
fer function H(f).

The corresponding amplitude and phase spectra are

Y(CE)| = [HCF)IK(F))
agY(f) =agH(f) + agX(f)

which compare with the single-frequency expressionsin Eq. (13). If x(t) isan energy
signal, then y(t) will be an energy signal whose spectral density and total energy are
given by

YCE)I? = [HCE)PX(F)] 2 (15a)

g, = | HOORX(P sh
as follows from Rayleigh’s energy theorem.

Equation (14) sheds new light on the meaning of the system transfer function
and the transform pair h(t) <> H(f). For if we let x(t) be a unit impulse, then
X(f) =1and Y(f) = H(f) — in agreement with the definition y(t) = h(t) when
X(t) = 8(t). From the frequency-domain viewpoint, the “flat” input spectrum
X(f) = 1containsall frequenciesin equal proportion and, consequently, the output
spectrum takes on the shape of the transfer function H(f).

Figure 3.1-5 summarizes our input—output relations in both domains. Clearly,
when H(f) and X(f) are given, the output spectrum Y(f) is much easier to find than the
output signal y(t). In principle, we could compute y(t) from the inverse transform

YO = 5 THOXO] = | HIOX(D e
But thisintegration does not necessarily offer any advantages over time-domain con-
volution. Indeed, the power of frequency-domain system analysislargely depends on
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Input System Output
X(t) h(t) y(t) =h = x(t)
X(f) H(f) Y(f)=H(f)X(F)
Figure 3.1-5 Input-output relations for an LTI system.
staying in that domain and using our knowledge of spectral propertiesto draw infer-
ences about the output signal.

Finally, we point out two ways of determining H(f) that don’t involve h(t). If you
know the differential equation for alumped-parameter system, you can immediately
write down its transfer function as the ratio of polynomials

bu(j27f)™ + -+ + by(j27rf) + b
H(t) = o2 )n fi271) + % 16)
ay(j2mf)" + - + ay(j2af) + a
whose coefficients are the same as those in Eq. (4). Equation (16) follows from
Fourier transformation of Eq. (4).
Alternatively, if you can calculate a system’s steady-state phasor response,
Egs. (12) and (13) show that
y(t) ~
H(f) = —= h t) = j2mft 17
() =3q When xv=e 17
This method corresponds to impedance analysis of electrical circuits, but is equally
valid for any LTI system. Furthermore, Eq. (17) may be viewed as a specia case of
the s domain transfer function H(s) used in conjunction with Laplace transforms.
Sinces = o + jw in general, H(f) is obtained from H(s) simply by letting s = j27f.
These methods assume, of course, that the system is stable.
Frequency Response of a First-Order System EXAMPLE 3.1-2

The RC circuit from Example 3.1-1 has been redrawn in Fig. 3.1-6a with the im-
pedances Zz = R and Z; = ljwC replacing the elements. Since y(t)/x(t) =
Z/(Zc + Zg) when x(t) = el“t, Eq. (17) gives

HOFY = (Yj2mfC) 1
(f) = (1/j2mfC) + R 1+ j2mfRC
— # (]8 )
T 1+(1/B) °
where we have introduced the system parameter
pe 1 (18b)

2wRC
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Identical results would have been obtained from Eq. (16), or from H(f) = F[h(t)].
(In fact, the system’s impul se response has the same form as the causal exponential
pulse discussed in Example 2.2-2.) The amplitude ratio and phase shift are
1 f
H(f)]|= ———  agH(f) = —arctan (18

V1 + (f/B)?

asplotted in Fig. 3.1-6b for f = 0. The hermitian symmetry allows usto omit f < 0
without loss of information.

The amplitude ratio |H(f )| has specia significance relative to any frequency-
selective properties of the system. We cdll this particular system alowpass filter because
it has amost no effect on the amplitude of low-frequency components, say \f | < B,
while it drastically reduces the amplitude of high-frequency components, say | f| >> B.
The parameter B serves as ameasure of the filter's passband or bandwidth.

To illustrate how far you can go with frequency-domain analysis, let the input
X(t) be an arbitrary signal whose spectrum has negligible content for | f| > W. There
are three possible cases to consider, depending on the relative values of B and W:

1. If W < B, asshown in Fig. 3.1-7a, then |H(f )| = 1 and arg H(f) =~ 0 over the
signal’s frequency range | f| < W. Thus, Y(f) = H(f)X(f) = X(f) and y(t) =
x(t) so we have undistorted transmission through the filter.

2. If W= B, asshowninFig. 3.1-7b, then Y(f ) depends on both H(f ) and X(f ). We
can say that the output is distorted, since y(t) will differ significantly from x(t),
but time-domain cal culations would be required to find the actual waveform.

HCE

1.0
P
0.707
+0 Zn < o+
f
X y 0 B
arg H(f)
—O L 4 O —
B
(a) T f
—45° fauad
—90°
(b)

Figure 3.1-6 RC lowpass filter. (a) circuit; (b) transfer function.
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0 W 0 W 0 W
[H(f)l
f
0 0 B
IY(F)l
f f
0 W 0 W 0 W
(a) (b) (c)
Figure 3.1-7 Frequency-domain analysis of a firstorder lowpass filter. (o) B > W;

(b) B~ W; (d B< W.

3. If W > B, as shown in Fig. 3.1-7c, the input spectrum has a nearly constant
value X(0) for | f| < B so Y(f) = X(0)H(f). Thus, y(t) =~ X(0)h(t), and the out-
put signal now looks like the filter's impulse response. Under this condition, we
can reasonably model the input signal as an impulse.

Our previous time-domain analysis with a rectangular input pulse confirms
these conclusions since the nominal spectral width of the pulseisW = 1/7. The case
W << B thus corresponds to 1/7 << 1/27RC or 7/RC >=> 1, and we see in
Fig. 3.1-4a that y(t) = x(t). Conversely, W >=> B corresponds to 7/RC << lasin
Fig. 3.1-4c where y(t) looks more like h(t).

101

Find H(f) when Z, = jwL replaces Z; in Fig. 3.1-6a. Express your result in terms
of the system parameter f, = R/27L, and justify the name “highpass filter” by

sketching |H( f )| versusf.

EXERCISE 3.1-2
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Block-Diagram Analysis

More often than not, acommunication system comprises many interconnected build-
ing blocks or subsystems. Some blocks might be two-port networks with known
transfer functions, while other blocks might be given in terms of their time-domain
operations. Any LTI operation, of course, has an equivalent transfer function. For
reference purposes, Table 3.1-1 lists the transfer functions obtained by applying
transform theorems to four primitive time-domain operations.

Table 3.1-1
Time-Domain Operation Transfer Function
Scalar multiplication y(t) = =Kx(t) H(f) = =K

. . ax(t) )
Differentiation y(t) = e H(f) = jont

' 1

Integration y(t) = wa(/\) da H(f) = 12?
Time delay y(t) = x(t — ty) H(f) = izt

When the subsystems in question are described by individual transfer functions,
it is possible and desirable to lump them together and speak of the overall system
transfer function. The corresponding relations are given below for two blocks con-
nected in parallel, cascade, and feedback. More complicated configurations can be
analyzed by successive application of these basic rules. One essential assumption
must be made, however, namely, that any interaction or loading effects have been ac-
counted for in the individual transfer functions so that they represent the actual re-
sponse of the subsystems in the context of the overall system. (A simple op-amp
voltage follower might be used to provide isolation between blocks and prevent
loading.)

Figure 3.1-8a diagrams two blocks in parallel: both units have the same input
and their outputs are summed to get the system’s output. From superposition it fol-
lowsthat Y(f) = [Hy(f) + Hy(f)]X(f) so the overall transfer functionis

H(f) = Hy(f) + Hy(f) Parallel connection (194)

In the cascade connection, Fig. 3.1-8b, the output of the first unit is the input to the
second, so Y(f) = Hy(f)[Hy(f)X(f) ] and

H(f) = Hy(f)Hy(f) Cascade connection (19b)

The feedback connection, Fig. 3.1-8c, differsfrom the other two in that the output is
sent back through H,(f) and subtracted from the input. Thus,

Y(F) = Hi(O[X(F) — HA)Y(F)]
and rearranging yields Y(f) = {Hy(f)/[1 + Hy(F)Hx(f) ]}X(f) so
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Ha(f) X(f)
Hy(f)
X(f) Y(f) = [Hy(f) + Hx(F)] X(f)
—
Ha(f)
Ha(f) X(f)
(a)
X(f) Ha(f) X(f) Y(f) =Hay(F)Hx(F) X(f)
— Hu(f) Hy(f) F—
(b)
X(f) + _ Hq(f)
@_' Hi(F) = o "
L Ha(f)
Ha(f) Y(f)
c)
Figure 3.1-8 (a) Parallel connection; (b) cascade connection; (c) feedback connection.
H(f) = Hl—(f) Feedback connection (19¢)
1+ Hy(f)HA(F)
This caseis more properly termed the negative feedback connection as distinguished
from positive feedback, where the returned signal is added to the input instead of
subtracted.
Zero-Order Hold EXAMPLE 3.1-3

The zero-order hold system in Fig. 3.1-9a has several applicationsin electrical com-
munication. Here we take it as an instructive exercise of the parallel and cascade re-
lations. But first we need the individual transfer functions, determined as follows:
the upper branch of the paralel section is a straight-through path so, trivially,
H,(f) = 1; the lower branch produces pure time delay of T seconds followed by
sign inversion, and lumping them together gives H,(f) = —e 12T the integrator in
the final block has Hy(f) = 1/j2#f. Figure 3.1-9b is the equivalent block diagram
in terms of these transfer functions.

Having gotten this far, the rest of the work is easy. We combine the parallel
branchesin Hy,(f) = Hy(f) + Hy(f) and use the cascade rule to obtain
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x(t ¥ t
® ' f y(®)
Delay -
T
(a)
Hy(f)=1
X(f) Ha(f) | y(1)
— __1 —
Ha( ) nt
=_e-2nfT
(b)
Figure 3.1-9 Block diagrams of a zero-order hold. (a) Time domain; (b) frequency domain.

H(F) = Hyp(F)Hs(F) = [Hy(f) + Hy(f)]Hs(f)

=[1— —j2afT
R R

JmfT _ o—jnfT
— € € —jmfT

it sinzfT .

j2arf af

= TsincfTe T

Hence we have the unusual result that the amplitude ratio of this system is a sinc
function in frequency!

To confirm thisresult by another route, |et's cal cul ate the impul se response h(t) draw-
ing upon the definition that y(t) = h(t) when x(t) = &(t). Ingpection of Fig. 3.1-9a shows
that theinput to theintegrator thenisx(t) — x(t — T) = 8(t) — 8(t — T), s0

h(t) = jt [8(A) — 8(A — T)]dA = u(t) — u(t — T)

which represents a rectangular pulse starting at t = 0. Rewriting the impulse re-
sponse ash(t) = II[(t — T/2)/T] helps verify the transform relation h(t) <> H(f).

EXERCISE 3.1-3

Let x(t) = AIL(t/7) be applied to the zero-order hold. Use frequency-domain analy-
sistofindy(t)ywhents < T,7 = T,andt > T.

If we have a signal consisting of discrete sample points, we can use a zero-order
hold to interpolate between the points as, we will seein Fig. 6.1-8a. The " zero” denoting
that a Oth order function is used to connect the points. Similarly, asshownin Fig. 6.1-8b,
we can employ afirgt-order hold, or first-order function, to do alinear interpolation.
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3.2 SIGNAL DISTORTION IN TRANSMISSION

A signal transmission system isthe electrical channel between an information source
and destination. These systems range in complexity from a simple pair of wiresto a
sophisticated laser-optics link. But all transmission systems have two physical attrib-
utes of particular concern in communication: internal power dissipation that reduces
the size of the output signal, and energy storage that alters the shape of the output.

Our purpose here is to formulate the conditions for distortionless signal trans-
mission, assuming an LTI system so we can work with its transfer function. Then
we' |l define various types of distortion and address possible techniques for minimiz-
ing their effects.

Distortionless Transmission

Distortionless transmission means that the output signal has the same “shape” as the
input. More precisely, given an input signal x(t), we say that

The output is undistorted if it differs from the input only by a multiplying con-
stant and a finite time delay.

Analytically, we have distortionless transmission if

y(t) = Kx(t — ty) {)

where K and t; are constants.
The properties of a distortionless system are easily found by examining the out-
put spectrum

Y(f) = Fy(t)] = Ke*uX(f)
Now by definition of transfer function, Y(f) = H(f)X(f), so
H(f) = Ke ok (2a)

In words, a system giving distortionless transmission must have constant amplitude
response and negative linear phase shift, so

H(f)| = K|  argH(f) = —27t,f + m180° (2b)

Note that arg H(f) must pass through the origin or intersect at an integer multiple of
+180°. We have added the term =m180° to the phase to account for K being positive
or negative. In the case of zero time delay, the phase is constant at 0 or =180°.

An important and rather obvious qualification to Eq. (2) should be stated imme-
diately. The conditions on H(f) are required only over those frequencies where the
input signal has significant spectral content. To underscore this point, Fig. 3.2-1
shows the energy spectral density of an average voice signal obtained from laboratory
measurements. Since the spectral density is quite smal for f < 200 Hz and



106

CHAPTER3 @  Signa Transmission and Filtering

X(F)PR

: : f
0 200 3200

Figure 3.2-1 Energy spectral density of an average voice signal.

f > 3200 Hz, we conclude that a system satisfying Eq. (2) over 200 =< |f| = 3200
Hz would yield nearly distortion-free voice transmission. Similarly, since the human
ear only processes sounds between about 20 Hz and 20,000 Hz, an audio system that
isdistortion free in thisrange is sufficient.

However, the stringent demands of distortionless transmission can only be satis-
fied approximately in practice, so transmission systems aways produce some
amount of signal distortion. For the purpose of studying distortion effects on various
signals, we'll define three major types of distortion:

1. Amplitude distortion, which occurs when
[H(E)| # [K
2. Delay distortion, which occurs when
agH(f) # —2mt;f = m180°

3. Nonlinear distortion, which occurs when the system includes nonlinear ele-
ments

The first two types can be grouped under the general designation of linear distortion,
described in terms of the transfer function of a linear system. For the third type, the
nonlinearity precludes the existence of a conventional (purely linear) transfer function.

EXAMPLE 3.2-1

Amplitude and Phase Distortion

Suppose a transmission system has the frequency response plotted in Fig. 3.2-2. This
system satisfies Eq. (2) for 20 < |f| = 30 kHz. Otherwise, there’s amplitude distor-
tionfor |f| < 20 kHz and |f| > 50 kHz, and delay distortion for |f| > 30 kHz.
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Figure 3.2-2 Transfer function for Example 3.2—1. (a) Magnitude, (b) phase.

Linear Distortion

Linear distortion includes any amplitude or delay distortion associated with alinear
transmission system. Amplitude distortion is easily described in the frequency do-
main; it means simply that the output frequency components are not in correct pro-
portion. Since thisis caused by \ H(f )\ not being constant with frequency, amplitude
distortion is sometimes called frequency distortion.

The most common forms of amplitude distortion are excess attenuation or en-
hancement of extreme high or low frequenciesin the signal spectrum. Less common,
but equally bothersome, is disproportionate response to a band of frequencies within
the spectrum. While the frequency-domain description is easy, the effectsin the time
domain are far less obvious, except for very ssmple signals. For illustration, a suit-
ably simple test signd is x(t) = cos wgt — 1/3 cos 3wyt + 1/5 cos Swt, a rough
approximation to a square wave sketched in Fig. 3.2-3. If the low-frequency or high-
frequency component is attenuated by one-half, the resulting outputs are as shown in
Fig. 3.24. As expected, loss of the high-frequency term reduces the “ sharpness’ of

the waveform.
14
37 K ;7 R

Figure 3.2-3 Test signal x(f) = cos wot — 1/3 cos 3wot + 1/5 cos Swot.
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(a) (b)

Figure 3.2-4 Test signal with amplitude distortion. (a) Low frequency attenuated; (b) high fre-
quency atfenuated.

Beyond qualitative observations, there's little more we can say about amplitude
distortion without experimental study of specific signal types. Results of such stud-
iesare usually couched in terms of required “flat” frequency response—meaning the
frequency range over which \ H(f )\ must be constant to within a certain tolerance so
that the amplitude distortion is sufficiently small.

We now turn our attention to phase shift and time delay. If the phase shift is not
linear, the various frequency components suffer different amounts of time delay,
and the resulting distortion is termed phase or delay distortion. For an arbitrary
phase shift, the time delay is a function of frequency and can be found by writing
arg H(f ) = —2#fty(f) with al angles expressed in radians. Thus

ty(f) = - A9 H(T)

2 f 3

which isindependent of frequency only if arg H(f) is linear with frequency.

A common area of confusion is constant time delay versus constant phase
shift. Theformer isdesirable and isrequired for distortionless transmission. The lat-
ter, in general, causes distortion. Suppose a system has the constant phase shift 6 not
equal to 0° or = m180°. Then each signal frequency component will be delayed by
012 cycles of its own frequency; thisis the meaning of constant phase shift. But the
time delays will be different, the frequency components will be scrambled in time,
and distortion will result.

That constant phase shift does give distortion is simply illustrated by returning
to the test signal of Fig. 3.2-3 and shifting each component by one-fourth cycle,
0 = —90°. Whereas the input was roughly a square wave, the output will look like the
triangular wave in Fig. 3.2-5. With an arbitrary nonlinear phase shift, the deteriora-
tion of waveshape can be even more severe.

You should &l so note from Fig. 3.2-5 that the peak excursions of the phase-shifted
signal are substantially greater (by about 50 percent) than those of the input test signal.
This is not due to amplitude response, since the output amplitudes of the three fre-
quency components are, in fact, unchanged; rather, it is because the components of the
distorted signa al attain maximum or minimum values at the same time, which was
not true of the input. Conversely, had we started with Fig. 3.2-5 as the test signal, a
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Figure 3.2-5 Test signal with constant phase shift 8 = —90°.

constant phase shift of +90° would yield Fig. 3.2-3 for the output waveform. Thuswe
see that delay distortion alone can result in an increase or decrease of peak values as
well as other waveshape alterations.

Clearly, delay distortion can be critical in pulse fransmission, and much labor is spent
equalizing transmission delay for digital data systems and the like. On the other
hand, an untrained human ear is curiously insensitive fo delay distortion; the wave-
forms of Figs. 3.2-3 and 3.2-5 would sound just about the same when driving a
loudspeaker, the exception being a mastering engineer or musician. Thus, delay
distorfion is seldom of concern in voice and music transmission.

Let’'stake a closer look at the impact of phase delay on a modulated signal. The
transfer function of a channel with aflat or constant frequency response and linear
phase shift can be expressed as

H(f) — Aej(_ZWftg+¢70) — (Aejqbo)e—jZﬂ'ftg (4)
where arg H(f) = —2mft, + ¢, leadsto ty(f) = t; — ¢o/2nf from Eq. (3). If the
input to this bandpass channel is

X(t) = x4(t) coswt — X,(t) Sin et (5)

then by the time-delay property of Fourier transforms, the output will be delayed by t,.
Since e can beincorporated into the sine and cosine terms, the output of the channdl is

y(t) = Axy(t — tg) cos [we(t — ty) + o] — Axy(t — tg) Sin [eq(t — tg) + o]
We observe that arg H(f;) = —wcty + ¢ = — oty so that
y(t) = Axy(t — tg) cos[ax(t — tg)] — AXy(t — tg) Sin [w(t — ty)] (6)

From Eq. (6) we see that the carrier has been delayed by t; and the signals that mod-
ulate the carrier, x; and x,, are delayed by t,. The time delay t, corresponding to the
phase shift in the carrier is called the phase delay of the channel. This delay is aso
sometimes referred to as the carrier delay. The delay between the envelope of the
input signal and that of the received signal, t,, is called the envelope or group delay
of the channel. In general, t; # t,.
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This leads to a set of conditions under which a linear bandpass channel is dis-
tortionless. Asin the general case of distortionless transmission described earlier, the
amplitude response must be constant. For the channel in Eq. (4) this implies
[H(f)| = |Al. In order to recover the original signals x; and x,, the group delay must
be constant. Therefore, from Eq. (4) this implies that t, can be found directly from
the derivative of arg H(f) = 0(f) as

1 do(f)
S 27 df 7
Note that this condition on arg H(f) is less restrictive than in the general case pre-
sented earlier. If ¢, = O then the genera conditions of distortionless transmission
aemetandty = t,.

While Eqg. (4) does describe some channels, many if not most channels are fre-
quency selective, that is, A — A(f) and arg H(f) is not a linear function of frequency.
Theformer is one reason why frequency diversity isemployed in wireless systemsto
enhance reliability.

EXERCISE 3.2-1

Use Eq. (3) to plot ty(f ) from arg H(f) givenin Fig. 3.2-2.

EXERCISE 3.2-2

Using therelationsin Egs. (4) and (5), derive Eqg. (6)

Equalization

Linear distortion—both amplitude and delay—is theoretically curable through the
use of equalization networks. Figure 3.2—6 shows an equalizer He,( ) in cascade with
a distorting transmission channel Hq(f). Since the overal transfer function is
H(f) = Hc(f)He(f) the final output will be distortionless if He(f)He(f) =

Ke % where K and t; are more or less arbitrary constants. Therefore, we require that

Kefjmtd
He(f)

Heo( f) (8)
wherever X(f) # 0.

Rare is the case when an equalizer can be designed to satisfy Eq. (8) exactly—
which iswhy we say that equdlization is a theoretical cure. But excellent approxima-
tions often are possible so that linear distortion can be reduced to a tolerable level.
Probably the oldest equalization technique involves the use of loading coils on twisted-
pair telephone lines. These coils are lumped inductors placed in shunt across the line
every kilometer or so, giving the improved amplitude ratio typicaly illustrated
in Fig. 3.2—7. Other lumped-element circuits have been designed for specific equaliza-
tion tasks.
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Channel Equalizer
x(t t
O ween Heg( ) Yo
Figure 3.2-6 Channel with equalizer for linear distortion.

H(H)I

f, kHz

Figure 3.2-7 Amplitude ratio of a typical telephone line with and without loading coils for
equalization.

More recently, the tapped-delay-line equalizer, or transversal filter, has
emerged as a convenient and flexible device. To illustrate the principle, Fig. 3.2-8
shows adelay line with total time delay 2A having taps at each end and the middle.
Variable A is the symbol’s time duration. The tap outputs are passed through ad-
justable gains, ¢_;, ¢, and ¢;, and summed to form the final output. Thus

y(t) = c_yx(t) + cox(t — A) + cx(t — 2A) (94)
and
Heo(f) = C_y + coe it + cre7io®

= (C_€"* + ¢y + creiot)gier (9b)

Generalizing Eqg. (9b) to the case of a2MA delay line with 2M + 1 tapsyields

M
Heo(f) = < > ey e‘j‘"m)e‘j"’MA (10)
m=—M

which has the form of an exponential Fourier series with frequency periodicity 1/A.
Therefore, given a channel He(f) to be equalized over | f| < W, you can approxi-
mate the right-hand side of Eq. (8) by a Fourier series with frequency periodicity
1/2A = W (thereby determining A), estimate the number of significant terms (which
determines M), and match the tap gains to the series coefficients.

The natural extension of the tapped delay line is the digital filter, the difference
being the input to the digital filter is a sequence of symbols, whereas the transversal
filter has a continuous time input.

In many applications, the tap gains must be readjusted from time to time to com-
pensate for changing channel characteristics. Adjustable equalization is especially
important in switched communication networks, such as atelephone system, sincethe
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Tapped delay line
Input A A —l
Adjustable c @
; 0
gains
@ @ Output
Figure 3.2-8 Transversal filter with three taps.

route between source and destination cannot be determined in advance. Sophisticated
adaptive equalizers have therefore been designed with provision for automatic read-
justment.

Adaptive equalization is usualy implemented with digital circuitry and micro-
processor control, in which case the delay line may be replaced by a shift register or
charge-coupled device (CCD). For fixed (nonadjustable) equalizers, the transversal filter
can be fabricated in an integrated circuit using a surface-acoustic-wave (SAW) device.

You recall that Sect. 1.3 stated that multipath can cause aloss of signal strength
in the channel output. Suppose the two signals of our channel, K; x(t — t;) and
K, X(t — t,) are as shown in Fig. 3.2-9. It is readily observed that the destructive in-
terference between these two signals results in a reduced amplitude channel output
asgiven by y(t) = Kx(t — t;) + Ky x(t — ty).

A wirdesschannel, carrying digital symbols, with multipath can dso introduce delay
spread, causing the smearing of received symbols or pulses. An example of what this
might look like is shown in the pulses of Fig. 1.1-3b. If the delay spread is of sufficient
degree, successive symbols would overlap, causing intersymbol interference (1Sl).
Delay spread is defined as the standard deviation of the multipath channd’s impulse
response duration he (t) and is the arriva time difference between the first and last
reflections (Andrews, Ghosh, & Muhamed, 2007; Nekoogar, 2006). Recall from Sect. 3.1

le(t_tl) p— -
I~ AN P / 7 \\ - / 7
7~ ~.
\\ y // \\\ / \ /// \\\ /
\ / \ / \ / /
\ /// \\\ / \ /// \\\)//y(-t1
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Figure 3.2-9 Destructive inferference of multipath that effects channel output.
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that the narrower a system’s impulse response, the less the input shape is affected;
thus, we want alow ratio of delay spread to symbol duration. A genera rule of thumb
isthat adelay spread of less than 5 or 10 times the symbol width will not be a signif-
icant factor for ISl. The effects of delay spread can be mitigated by reducing the
symbol rate and/or including sufficient guard times between symbols.
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Multipath Distortion

Radio systems sometimes suffer from multipath distortion caused by two (or more)
propagation paths between transmitter and receiver. This can be seen in Chapter 1,
Fig. 1.3-3. Reflections due to mismatched impedance on a cable system produce the
same effect. As a simple example, suppose the channel output is

Y(t) = Kix(t — ty) + Kpx(t — tp)

whose second term corresponds to an echo of thefirstif t, > t;. Then

Hc(f) - Kleijwtl + Kzeijﬂﬁz
= Kie b1 + ke Iob) (11)
wherek = Ky/K;andt; = t, — t,.
If wetake K = K; and ty = t; for simplicity in Eq. (8), the required equalizer
characteristic becomes

1

= m =1 — ke_j‘”to + kze_jzwto 4+ ...

Heo( F)

The binomial expansion has been used here because, in this case, it leads to the form
of Eq. (10) without any Fourier-series calculations. Assuming a small echo, so that
k? << 1, we drop the higher-power terms and rewrite He(f) as

Heg(f) = (€790 — k + kP I@k)glob

Comparison with Egs. (9b) or (10) now revealsthat athree-tap transversal filter will
dothejobifc_; = 1,¢o = —k,c; = k% and A = t,.

EXAMPLE 3.2-2

Sketch [He(f)| and arg He,(f) needed to equalize the frequency response in
Fig. 3.2—2over5 = | f| = 50 kHz. TakeK = 1/4and ty = 1/120 msin Eq. (8).

EXERCISE 3.2-3

Nonlinear Distortion and Companding

A system having nonlinear elements cannot be described by a classical transfer func-
tion. Instead, the instantaneous values of input and output are related by a curve or
functiony(t) = T[x(t)], commonly called the transfer characteristic. Figure 3.2-10
is a representative transfer characteristic; the flattening out of the output for large
input excursions is the familiar saturation-and-cutoff effect of transistor amplifiers.
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y=TI[X]

Figure 3.2-10 Transfer characteristic of a nonlinear device.

WE'Il consider only memoryless devices, for which the transfer characteristic is a
complete description. It should be noted that the transfer function is a purely linear
concept and isonly relevant in linear or linearized systems.

Under small-signal input conditions, it may be possible to linearize the transfer
characteristic in a piecewise fashion, as shown by the thin lines in the figure. The
more general approach is apolynomial approximation to the curve, of the form

y(t) = a;x(t) + a,x%(t) + agx(t) + - (124)

and the higher powers of x(t) in this equation give rise to the nonlinear distortion.
Even though we have no transfer function, the output spectrum can be found, at least
inaformal way, by transforming Eq. (12a). Specificaly, invoking the convolution theorem,

Y(f) = ag X(f) + apX* X(f) + agX* X* X(f) + - (12b)

Now if x(t) is bandlimited in W, the output of a linear network will contain no fre-
quencies beyond | f| < W. But in the nonlinear case, we see that the output includes
X* X(f), which is bandlimited in 2W, X * X+ X(f), which is bandlimited in 3W,
and so on. The nonlinearities have therefore created output frequency components
that were not present in the input. Furthermore, since X * X(f) may contain compo-
nentsfor \ f \ < W, this portion of the spectrum overlapsthat of X(f ). Usingfiltering
techniques, the added components at | f| > W can be removed, but there is no con-
venient way to get rid of the added componentsat | f| < W. These, in fact, constitute
the nonlinear distortion.

A quantitative measure of nonlinear distortion is provided by taking asimple co-
sinewave, x(t) = cos wet, astheinput. Inserting in Eq. (12a) and expanding yields

a, 3a 3a
y(t) — <22+84+ ...) + (a‘l+43+ "') COSa)ot

Q A
+ E+Z+ -] CoS 2wt + -+
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Therefore, the nonlinear distortion appears as harmonics of the input wave. The
amount of second-harmonic distortion is the ratio of the amplitude of this term to
that of the fundamental, or in percent:

a/2 + a, /4 + -

Second-harmonic distortion = X 100%
a; + 3ay/4 + -

Higher-order harmonics are treated similarly. However, their effect is usually much
less, and many can be removed entirely by filtering.

If theinput isasum of two cosine waves, say cos wit + Cos w,t, the output will
include al the harmonics of f; and f,, plus crossproduct terms which yield
f, — f, f, + f,, f, — 2f;, etc. These sum and difference frequencies are designated as
intermodulation distortion. Generdizing theintermodulation effect, if x(t) = x,(t) + x,(t),
then y(t) containsthe cross-product x;(t)x,(t) (and higher-order products, which weignore
here). In the frequency domain x;(t)x,(t) becomes X; * X (f); and even though X(f)
and X,(f) may be separated in frequency, X; = X,(f) can overlap both of them, pro-
ducing one form of crosstalk. Note that nonlinearity is not required for other forms
of crosstalk (e.g., signals traveling over adjacent cables can have crosstalk). This as-
pect of nonlinear distortion is of particular concern in telephone transmission sys-
tems. On the other hand the cross-product term is the desired result when nonlinear
devices are used for modulation purposes.

It isimportant to note the difference between crosstalk and other types of inter-
ference. Crosstalk occurs when one signal crosses over to the frequency band of an-
other signal due to nonlinear distortion in the channel. Picking up a conversation on
a cordless phone or baby monitor occurs because the frequency spectrum allocated
to such devices istoo crowded to accommodate all of the users on separate frequen-
cy carriers. Therefore some “sharing” may occur from time to time. While crosstalk
resulting from nonlinear distortion is now rare in telephone transmission due to ad-
vances in technology, it was amajor problem at one time.

The cross-product term is the desired result when nonlinear devices are used for
modulation purposes. In Sect. 4.3 we will examine how nonlinear devices can be
used to achieve amplitude modulation. In Chap. 5, carefully controlled nonlinear dis-
tortion again appears in both modulation and detection of FM signals.

Although nonlinear distortion has no perfect cure, it can be minimized by care-
ful design. The basic idea is to make sure that the signal does not exceed the linear
operating range of the channel’stransfer characteristic. Ironically, one strategy along
this line utilizes two nonlinear signal processors, a compressor at the input and an
expander at the output, as shownin Fig. 3.2-11.

A compressor has greater amplification at low signal levelsthan at high signd lev-
s, smilar to Fig. 3.2-10, and thereby compresses the range of the input signd. If the
compressed signal falls within the linear range of the channel, the signal at the channel
output is proportional to Te,mg[X(t)] whichisdistorted by the compressor but not the chan-
nel. Idedlly, then, the expander has a characterigtic that perfectly complements the com-
pressor so the expanded output is proportional to Te{ TeumpX(D]} = X(t), as desired.

The joint use of compressing and expanding is called companding (surprise?)
and is of particular value in telephone systems. Besides reducing nonlinear
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Input —| Compressor Channel Expander  —— Output

Figure 3.2-11 Companding system.

distortion, companding tends to compensate for the signal-level difference between
loud and soft talkers. Indeed, the latter is the key advantage of companding com-
pared to the simpler technique of linearly attenuating the signal at the input (to keep
it in the linear range of the channel) and linearly amplifying it at the output. Boyd,
Tang, and Leon (1983) and Wiener and Spina (1980) analyze nonlinear systems
using psuedolinear techniques to facilitate harmonic analysis.

3.3 TRANSMISSION LOSS AND DECIBELS

In addition to any signal distortion, a transmission system also reduces the power
level or “strength” of the output signal. This signal-strength reduction is expressed in
terms of transmission power loss. Although transmission loss can be compensated
by power amplification, the ever-present electrical noise may prevent successful sig-
nal recovery in the face of alarge transmission loss.

This section describes transmission loss encountered on cable and radio com-
munication systems. We'll start with a brief review of the more familiar concept of
power gain, and we' Il introduce decibels as a handy measure of power ratios used by
communication engineers.

Power Gain

Let Fig. 3.3-1 represent an LTI system whose input signal has average power P;,. If
the system is distortionless, the average signal power at the output will be propor-
tional to P;,,. Thus, the system’s power gain is

g = Pout/Pin (1)

a constant parameter not to be confused with our step-response notation g(t). Sys-
tems that include amplification may have very large values of g, so we'll find it con-
venient to express power gain in decibels (dB) defined as

9 = 1010gy0 g 2)

The“B” in dB is capitalized in honor of Alexander Graham Bell who first used log-
arithmic power measurements.

Since the decibel is alogarithmic unit, it converts powers of 10 to products of 10.
For instance, g = 10™ becomes g4z = m X 10 dB. Power gain is always positive, of
course, but negative dB values occur when g = 1.0 = 10° and hence g4 = 0 dB.
Note carefully that O dB corresponds to unity gain (g = 1). Given avaue in dB, the
ratio valueis

g= 10(96/10) (3)
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Pin ———— g —— Pout =09Pis

Figure 3.3-1 LTI system with power gain g.

obtained by inversion of Eq. (2).
While decibels aways represent power ratios, signal power itself may be ex-
pressed in dB if you divide P by one watt or one milliwatt, as follows:

P P
Peew = 10 |0910m Paem = 10 IleOW (4)
Rewriting Eq. (1) as (Po./1 mW) = g(P;,/1 mW) and taking the logarithm of both
sides then yields the dB equation

PoutdBm =0g t F)indBm

Such manipulations have particul ar advantages for the more complicated relations en-
countered subsequently, where multiplication and division become addition and sub-
traction of known dB quantities. Communication engineers usually work with dBm
because the signal powers are quite small at the output of atransmission system.

Now consider a system described by its transfer function H(f). A sinusoidal
input with amplitude A, produces the output amplitude A, = |H(f)A,, and the
normalized signal powers are P, = A2/2 and P, = AZ/2 = |H(f )]?P,. These nor-
malized powers do not necessarily equal the actual powers in Eq. (1). However,
when the system has the same impedance level at input and output, the ratio P,/P,
does equal P,/P;,. Therefore, if H(f) = Ke %, then

g = [H(f)]? = K? (5)

In this case, the power gain also appliesto energy signalsin the sense that E, = gE,.
When the system has unequal input and output impedances, the power (and energy)
gain is proportional to K2

If the system is frequency-selective, Eq. (5) does not hold but [H(f)[? still tells
us how the gain varies as a function of frequency. For a useful measure of frequency
dependence in terms of signal power we take

[H(f)lgs = 1010g,[H(f) 0
which represents the relative gain in dB.
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() Verify that Pggy = Pggw + 30dB. (b) Show that if |H(f )| = —3dB then
[H(f)| = 1/v/2 and |H(f)? = 3. The significance of this result is discussed in the
section on real filters.

EXERCISE 3.3-1
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Transmission Loss and Repeaters

Any passive transmission medium has power loss rather than gain, since Py, < Pj,.
We therefore prefer to work with the transmission loss, or attenuation

L £ 1/g = P/Pay 7
Leg = —9ae = 1010010 Pin/Pou

Hence, Py = Piy/Land Py, = Pin, — Lgs.

In the case of transmission lines, coaxial and fiber-optic cables, and waveguides,
the output power decreases exponentially with distance. We'll write this relation in
the form

Pot = loi(aé/m)Pin

where ¢ is the path length between source and destination and « is the attenuation
coefficient in dB per unit length. Equation (7) then becomes

L = 1099 g =af (8)

showing that the dB loss is proportional to the length. Table 3.3-1 lists some typical
values of « for various transmission media and signal frequencies.

Attenuation values in dB somewhat obscure the dramatic decrease of signal
power with distance. To bring out the implications of Eq. (8) more clearly, suppose
you transmit a signal on a 30 km length of cable having « = 3 dB/km. Then
Lg =3 X 30=090dB,L = 10° and P, = 10" °P,,. Doubling the path length
doubles the attenuation to 180 dB, so that L = 10'® and P, = 108 P,,.. Thislossis
S0 great that you'd need an input power of one megawatt (10° W) to get an output
power of one picowatt (10~ 2 W)!

Table 3.3-1 Typical values of transmission loss
Transmission Medium Frequency Loss dB/km
Open-wire pair (0.3 cm diameter) 1kHz 0.05
Twisted-wire pair (16 gauge) 10 kHz 2
100 kHz 3
300 kHz 6
Coaxial cable (1 cm diameter) 100 kHz 1
1MHz 2
3MHz 4
Coaxial cable (15 cm diameter) 100 MHz 15
Rectangular waveguide (5 X 2.5 cm) 10 GHz 5
Helical waveguide (5 cm diameter) 100 GHz 15
Fiber-optic cable 3.6 X 10 Hz 25
2.4 X 10" Hz 05

1.8 X 10 Hz 0.2
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Large attenuation certainly callsfor amplification to boost the output signal. Asan
example, Fig. 3.3-2 represents a cable transmission system with an output amplifier
and arepeater amplifier inserted near the middle of the path. (Any preamplification at
the input would be absorbed in the value of P;,.) Since power gains multiply in a cas-
cade connection like this,

029
Pou = (gl 0203 g4)Pin = L2 L4 Pin (9q)
153
which becomes the dB equation
Pot = (02 + 94) — (Ly + L3) + Piy (9b)

We've dropped the dB subscripts here for simplicity, but the addition and subtraction
in Eq. (9b) unambiguously identifiesit as a dB equation. Of course, the units of P,
(dBW or dBm) will be the same as those of P;,..

The repeater in Fig. 3.3-2 has been placed near the middle of the path to prevent
the signal power from dropping down into the noise level of the amplifier. Long-haul
cable systems have repeaters spaced every few kilometers for this reason, and a
transcontinental telephone link might include more than 2000 repeaters. The signal-
power analysis of such systems follows the same lines as Eq. (9). The noise analysis
is presented in the Appendix.

Fiber Optics

Optical communication systems have become increasingly popular over the last two
decades with advancesin laser and fiber-optic technol ogies. Because optical systems
use carrier frequencies in the range of 2 X 10 Hz, the transmitted signals can have
much larger bandwidth than is possible with metal cables such as twisted-wire pair
and coaxial cable. We will see in the next chapter that the theoretical maximum
bandwidth for that carrier frequency is on the order of 2 X 10% Hz! While we may
never need that much bandwidth, it is nice to have extraif we need it. We can get ad-
ditional capacity on the channel if we incorporate additional light wavelengths. Sec-
tion 12.5isabrief description of SONET, afiber-optic standard for carrying multiple
broadband signals.

In the 1960s fiber-optic cables were extremely lossy, with losses around 1000
dB/km, and were impractical for commercia use. Today these losses are on the order of
0.2 to 2 dB/km depending on the type of fiber used and the wavelength of the signal.
This is lower than most twisted-wire pair and coaxia cable systems. There are many

: | . |
Pip—» L= 0 ’ [P L3= 0 ’ J4 Pout
Cable Repeater Cable Output
section amplifier section amplifier

Figure 3.3-2 Cable transmission system with a repeater amplifier.
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advantages to using fiber-optic channels in addition to large bandwidth and low loss.
The dielectric waveguide property of the optical fiber makesit less susceptible to inter-
ference from external sources. Since the transmitted signal is light rather than current,
thereisnonexternal electromagnetic field to generate crosstalk and no radiated RF ener-
gy tointerfere with other communication systems. In addition, since moving photons do
not interact, there is no noise generated inside the optical fiber. Fiber-optic channelsare
safer to install and maintain since there is no large current or voltage to worry about.
Furthermore, sinceit isvirtually impossibleto tap into afiber-optic channel without the
user detecting it, they are secure enough for military applications. They are rugged and
flexible, and operate over alarger temperature variation than metal cable. Thesmall size
(about the diameter of a human hair) and weight mean they take up less storage space
and are cheaper to transport. Finaly, they are fabricated from quartz or plastic, which
areplentiful. While the up-front installation costs are higher, it is predicted that the long-
term costs will ultimately be lower than with metal-based cables.

Most fiber-optic communication systems are digital because system limitations
on attaining high-quality analog modulation at low cost makeit impractical. The sys-
tem is a hybrid of electrical and optical components, since the signal sources and
final receivers are still made up of electronics. Optical transmitters use either LEDs
or solid-state lasers to generate light pulses. The choice between these two is driven
by design constraints. LEDs, which produce noncoherent (multiple wavelengths)
light, are rugged, inexpensive, and have low power output (~0.5 mW). Lasers are
much higher in cost and have a shorter lifetime; however they produce coherent (sin-
gle wavelength) light and have a power output of around 5 mW. The receivers are
usualy PIN diodes or avalanche photodiodes (APD), depending on the wavelength
of the transmitted signal. An envelope detector is typically used because it does not
require a coherent light source (see Sect. 4.5). In the remainder of this discussion we
will concentrate our attention on the fiber-optic channel itself.

Fiber-optic cables have a core made of silica glass surrounded by a cladding
layer also made of silica glass. The difference between these two layersis due to ei-
ther differences in the level of doping or their respective processing temperatures.
The cladding can also be made of plastic. There is an outer, thin protective jacket
made of plastic in most cases. In the core the signal traverses the fiber. The cladding
reduces losses by keeping the signal power within the core. There are three main
types of fiber-optic cable: single-mode fibers, multimode step-index fibers, and mul-
timode graded-index fibers. Figure 3.3-3a shows three light rays traversing asingle-
mode fiber. Because the diameter of the core is sufficiently small (~8 wm), thereis
only asingle path for each of the raysto follow as they propagate down the length of
thefiber. The differencein theindex of refraction between the core and cladding lay-
ers causes the light to be reflected back into the channel, and thus the rays follow a
straight path through the fiber. Consequently, each ray of light travels the same dis-
tance in a given period of time, and a pulse input would have essentially the same
shape at the output. Therefore single-mode fibers have the capacity for large trans-
mission bandwidths, which makes them very popular for commercial applications.
However, the small core diameter makesit difficult to align cable section boundaries
and to couple the source to the fiber, and thus losses can occur.
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Figure 3.3-3 (a) Light propagation down a single-mode step-index fiber. (b) Light propaga-

tion down a multimode step-index fiber. (c) Light propagation down a multi-

mode graded-index fiber.

Multimode fibers allow multiple paths through the cable. Because they have a
larger core diameter (~50 um) it is easier to splice and couple the fiber segments,
resulting in less loss. In addition, more light rays at differing angles can enter the
channel. In amultimode step-index fiber there is a step change between the index of
refraction of the core and cladding, as there is with singleemode fibers.
Figure 3.3-3b shows three rays entering a multimode step-index fiber at various an-
gles. Itisclear that the paths of the rayswill be quite different. Ray 1 travels straight
through as in the case of the single-mode fiber. Ray 2 is reflected off of the core-
cladding boundary afew times and thus takes alonger path through the cable. Ray 3,
with multiple reflections, has a much longer path. As Fig. 3.3-3b shows, the angle of
incidence impacts the time to reach the receiver. We can define two terms to describe
this channel delay. The average time difference between the arrivals of the various
rays is termed mean-time delay, and the standard deviation is called the delay
spread. The impact on a narrow pulse would be to broaden the pulse width as the
signal propagates down the channel. If the broadening exceeds the gap between the
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pulses, overlap may result and the pulses will not be distinguishable at the output.
Therefore the maximum bandwidth of the transmitted signal in a multimode step-
index channel is much lower than in the single mode case.

Multimode graded-index fibers give us the best of both worlds in performance.
The large central core has an index of refraction that is not uniform. The refractive
index is greatest at the center and tapers gradually toward the outer edge. As shown
in Fig. 3.3-3c, the rays again propagate along multiple paths; however, because they
are constantly refracted there is a continuous bending of the light rays. The velocity
of the wave isinversely proportional to the refractive index so that those waves far-
thest from the center propagate fastest. The refractive index profile can be designed
so that all of the waves have approximately the same delay when they reach the out-
put. Therefore the lower dispersion permits higher transmission bandwidth. While
the bandwidth of a multimode graded-index fiber islower than that of a single-mode
fiber, the benefits of the larger core diameter are sufficient to make it suitable for
long-distance communication applications.

With all of the fiber types there are several places where losses occur, including
where the fiber meets the transmitter or receiver, where the fiber sections connect to
each other, and within the fiber itself. Attenuation within the fiber results primarily
from absorption losses due to impurities in the silica glass, and scattering losses
due to imperfections in the waveguide. Losses increase exponentially with distance
traversed and also vary with wavelength. There are three wavelength regions where
there are relative minimain the attenuation curve, and they are given in Table 3.3-1.
The smallest amount of loss occurs around 1300 and 1500 nm, so those frequencies
are used most often for long-distance communication systems.

Current commercial applications require repeaters approximately every 40 km.
However, each year brings technology advances, so this spacing continues to in-
crease. Conventional repeater amplifiers convert the light wave to an electrical sig-
nal, amplify it, and convert it back to an optical signal for retransmission. However,
direct light-wave amplifiers are being developed and may be available soon.

Fiber-optic communication systems are quickly becoming the standard for long-
distance telecommunications. Homes and businesses are increasingly wired internally
and externally with optical fibers. Long-distance telephone companies advertise the
clear, quiet channels with claims that listeners can hear a pin drop. Underwater fiber
cables now cover more than two-thirds of the world's circumference and can handle
over 100,000 telephone conversations at onetime. Compare that to thefirst transocean-
ic cable that was atechnological breakthrough in 1956 and carried just 36 voice chan-
nels! While current systems can handle 90 Mbits/sec to 2.5 Ghits/sec, there have been
experimental results as high as 1000 Ghits/sec. At current transmission rates of 64
kbits/sec, this represents 15 million telephone conversations over a single optical fiber.
As capacity continues to expand, we will no doubt find new waysto fill it.

Radio Transmission

Signal transmission by radiowave propagation can reduce the required number of re-
peaters and has the additional advantage of eliminating long cables. Although radio in-
volves modulation processes described in later chapters, it seems appropriate here to
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examine the transmission loss for line-of-sight propagation illustrated in Fig. 3.3-4,
where the radio wave travel s a direct path from transmitting to receiving antenna. This
propagation mode is commonly employed for long-distance communication at fre-
quencies above about 100 MHz.

The free-space loss on aline-of-sight path is due to spherical dispersion of the
energy in the radio wave. Thislossis given by

Al \ 2 Arfe \ 2
L={"x) ~ ¢ (10d)

in which A is the wavelength, f the signal frequency, and ¢ the speed of light. If we
express ¢ in kilometers and f in gigahertz (10° Hz), Eq. (10a) becomes

LdB =924+ 20 |Oglo fGHZ + 20 Ioglo fkm (lOb)

We seethat Lz increases asthe logarithm of €, rather than in direct proportion to path
length. Thus, for instance, doubling the path length increases the lossby only 6 dB. In
the case of terrestrial propagation, signals can also be attenuated due to absorption
and/or scattering by the medium (i.e., air and moisture). Severe weather conditions
can increase the losses. For example, satellite television signals are sometimes not
received during inclement weather. On the other hand, the nonhomogenousness of
the medium makes it possible for radar to detect air turbulence or various other
weather conditions.

Furthermore, directional antennas have a focusing effect that acts like amplifi-
cation in the sense that

_O %R
L

where g and gy represent the antenna gains at the transmitter and receiver. The max-
imum transmitting or receiving gain of an antennawith effective aperture area A, is

Pou

I:)in “ ])

4wA,  AmwA.f?

(12)

where ¢ = 3 X 10° km/s. The value of A, for a horn or dish antenna approximately
equalsits physicd area, and large parabolic dishes may provide gainsin excess of 60 dB.
Thetransmitter power and antennagain can be combined to give usthe effective isotropic
radiated power (EIRP), or EIRP = s.gy.

L

gr W 9r

| ¢ |
| |

Figure 3.3-4 Line-of-sight radio transmission.
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Commercia radio stations often use compression to produce a transmitted signal
that has higher power but doesn’t exceed the system’s linear operating region. As men-
tioned in Sect. 3.2, compression provides greater amplification of low-level signals, and
can raise them above the background noise level. However, since your home radio does
not have a built-in expander to complete the companding process, some audible distor-
tion may be present. To partially cope with this, music production companies often pre-
process the materials sent to radio stations to ensure the integrity of the desired sound.

Satellites employ line-of-sight radio transmission over very long distances.
They have abroad coverage areaand can reach areasthat are not covered by cable or
fiber, including mobile platforms such as ships and planes. Even though fiber-optic
systems are carrying an increasing amount of transoceanic telephone traffic (and
may make satellites obsolete for many applications), satellite relays till handle the
bulk of very long distance telecommunications. Satellite relays also make it possible
to transmit TV signals across the ocean. They have a wide bandwidth of about 500
MHz that can be subdivided for use by individual transponders. Most satellitesarein
geostationary orbit. This means that they are synchronous with Earth’s rotation and
arelocated directly above the equator, and thus they appear stationary in the sky. The
main advantage is that antennas on Earth pointing at the satellite can be fixed.

A typical C-band satellite has an uplink frequency of 6 GHz, a downlink fre-
quency of 4 GHz, and 12 transponders each having a bandwidth of 36 MHz. The ad-
vantages in using this frequency range arethat it allows use of relatively inexpensive
microwave equipment, has low attenuation due to rainfall (the primary atmospheric
cause of signal loss), and has alow sky background noise. However, there can be se-
vere interference from terrestrial microwave systems, so many satellites now use the
Ku-band. The Ku-band frequencies are 14 GHz for uplink and 12 GHz for downlink.
This allows smaller and less expensive antennas. C-band satellites are most com-
monly used for commercial cable TV systems, whereas Ku-band is used for video-
conferencing. A newer service that allows direct broadcast satellites (DBS) for home
television service uses 17 GHz for uplink and 12 GHz for downlink.

By their nature, satellites require multiple users to access them from different
locations at the same time. A variety of multiple access techniques have been devel-
oped, and will be discussed further in a later chapter. Personal communication de-
vices such as cellular phones rely on multiple access techniques such as time
division multiple access (TDMA) and code division multiple access (CDMA). Prop-
agation delay can be a problem over long distances for voice communication, and
may require echo cancellation in the channel.

Current technology allows portable satellite uplink systems to travel to where
news or an event is happening. In fact, all equipment can fit in a van or in several
large trunks that can be shipped on an airplane. See Ippolito (2008) and Tomasi
(1998) for more information on satellite communications (1998, Chap. 18).

EXAMPLE 3.3-1

Satellite Relay System

Figure 3.3-5 shows a simplified transoceanic television system with a satellite relay
serving as arepeater. The satellite isin geostationary orbit and is about 22,300 miles
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Figure 3.3-5 Satellite relay system.

(36,000 km) above the equator. The uplink frequency is 6 GHz, and the downlink
frequency is 4 GHz. Equation (10b) gives an uplink path loss

L, = 924 + 20l0g,, 6 + 2010g;, 3.6 X 10* = 199.1 dB

and adownlink loss

since the distance from the transmitter and receiver towers to the satellite is approxi-
mately the same as the distance from Earth to the satellite. The antennagainsin dB
are given on the drawing with subscripts identifying the various functions—for ex-
ample, ggy Stands for the receiving antenna gain on the uplink from ground to satel-
lite. The satellite has a repeater amplifier that produces a typical output of 18 dBW.
If the transmitter input power is 35 dBW, the power received at the satellite is
35dBW + 55dB — 199.1dB + 20dB = —89.1 dBW. The power output at the
receiver is 18dBW + 16dB — 195.6dB + 51dB = —110.6 dBW. Inverting
Eq. (4) gives

Pog = 107110829 % 1 W =87 x 10 2W

Such minute power levels are typical for satellite systems.
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A 40 km cable system has P;, = 2 W and a repeater with 64 dB gain isinserted 24
km from the input. The cable sections have a = 2.5 dB/km. Use dB equations to
find the signal power at: (a) the repeater’s input; (b) the final outpuit.

EXERCISE 3.3-2
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EXAMPLE 3.3-2

Doppler Shift

You may notice that a passing automobile’s horn will appear to change pitch as it
passes by, particularly when traveling at high speed. This change in frequency is
Doppler shift and can also occur with radio frequencies. If aradiator is approaching
the receiver, the maximum Doppler shift is given by

Af = +fc% (12)

where A f, fc, v, ¢ are the Doppler shift, nominal radiated frequency, the object’s ve-
locity and speed of light, respectively. If the object were moving away from the re-
ceiver, then the sign in Eq. (12) would be negative. If the approaching object were
elevated, creating an approach angle ¢, then Eq. (12) would become

Af:fc%cos¢ (13)

Consider an approaching automobile that is transmitting on a cell-phone frequency
of 825 MHz. As the automobile passes by, from the time of initial observation to
when it passes directly by the observer, the frequency shift is 40 Hz. How fast was
the automabile going?

825 x 10°

Af =40 = ———— v=v = 14.5m/s = 52.4 km/hour
3x 10

3.4 FILTERSAND FILTERING

Virtually every communication system includes one or more filters for the purpose
of separating an information-bearing signal from unwanted contaminations such as
interference, noise, and distortion products. In this section we'll define ideal filters,
describe the differences between real and ideal filters, and examine the effect of fil-
tering on pulsed signals.

Ideal Filters

By definition, an idea filter has the characteristics of distortionless transmission
over one or more specified frequency bands and zero response at all other frequen-
cies. In particular, the transfer function of an ideal bandpass filter (BPF) is

—joty
H(f):{Ke fo=f| =1,

1
0 otherwise m

asplotted in Fig. 3.4-1. The parameters f, and f, are the lower and upper cutoff fre-
quencies, respectively, since they mark the end points of the passband. The filter's

bandwidth is
B = fu - f{

which we measure in terms of the positive-frequency portion of the passband.
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Figure 3.4-1 Transfer function of an ideal bandpass filter.
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Figure 3.4-2 Ideal lowpass filter: () transfer function; (b) impulse response.

In similar fashion, an ideal lowpass filter (LPF) is defined by Eq. (1) with
f, =0, so B = f,, while an ideal highpass filter (HPF) has f, > 0 and f, = occ.
Ideal band-rejection or notch filters provide distortionless transmission over al fre-
quencies except some stopband, say f, < | f| = f,, where H(f) = 0.

But al such filters are physically unrealizable in the sense that their character-
istics cannot be achieved with a finite number of elements. We'll skip the genera
proof of this assertion. Instead, we'll give an instructive plausibility argument based
on the impul se response.

Consider an ideal LPF whose transfer function, shown in Fig. 3.4-2a, can be
written as

. f
= ~Joty —_—
H(f) = Ke H(ZB) (2q)
Itsimpul se response will be
h(t) = F Y H(f)] = 2BK sinc 2B(t — t,) (2b)

which is sketched in Fig. 3.4-2b. Since h(t) is the response to §(t) and h(t) has non-
zero valuesfor t < 0, the output appears before the input is applied. Such afilter is
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said to be anticipatory or noncausal, and the portion of the output appearing before
the input is called a precursor. Without doubt, such behavior is physically impossi-
ble, and hence the filter must be unrealizable. Like results hold for the ideal BPF
and HPF.

Fictitious though they may be, ideal filters have great conceptual value in the
study of communication systems. Furthermore, many real filters come quite close to
ideal behavior.

EXERCISE 3.4-1

Show that the impulse response of an ideal BPF is
h(t) = 2BK sincB(t — ty) cosw (t — ty)

where w, = 7(f, + ).

Bandlimiting and Timelimiting
Earlier we said that asignal v(t) is bandlimited if there exists some constant W such
that

v(fy=0 [f|>W

Hence, the spectrum has no content outside| f\ > W. Similarly, a timelimited sig-
nal is defined by the property that, for the constantst; < t,,

Hence, the signal “starts” att = t; and “ends” at t =< t,. Let’s further examine these
two definitionsin the light of real versusideal filters.

The concepts of ideal filtering and bandlimited signals go hand in hand, since
applying asignal to anideal LPF produces a bandlimited signal at the output. We've
also seen that theimpulse response of anideal LPFisasinc pulselasting for all time.
We now assert that any signal emerging from an ideal LPF will exist for all time.
Consequently, a strictly bandlimited signal cannot be timelimited. Conversely, by
duality, a strictly timelimited signal cannot be bandlimited. Every transform pair
we've encountered supports these assertions, and a general proof is given in Wozen-
craft and Jacobs (1965, App. 5B). Thus,

Perfect bandlimiting and timelimiting are mutually incompatible.

This observation raises concerns about the signal and filter models used in the
study of communication systems. Since a signal cannot be both bandlimited and
timelimited, we should either abandon bandlimited signals (and idea filters) or else
accept signal models that exist for all time. On the one hand, we recognize that any
real signal istimelimited, having starting and ending times. On the other hand, the
concepts of bandlimited spectra and ideal filters are too useful and appealing to be
dismissed entirely.
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The resolution of our dilemma is really not so difficult, requiring but a small
compromise. Although a strictly timelimited signal is not strictly bandlimited, its
spectrum may be negligibly small above some upper frequency limit W. Likewise, a
strictly bandlimited signal may be negligibly small outside a certain time interval
t; =t = t,. Therefore, we will often assume that signals are essentially both ban-
dlimited and timelimited for most practical purposes.

Real Filters

The design of realizablefilters that approach ideal behavior is an advanced topic out-
side the scope of this book. But we should at least look at the major differences be-
tween real and ideal filters to gain some understanding of the approximations
implied by the assumption of an ideal filter. Further information on filter design and
implementation can be found in texts such asVan Valkenburg (1982).

To begin our discussion, Fig. 3.4-3 shows the amplitude ratio of atypical rea
bandpassfilter. Compared with theideal BPF in Fig. 3.4-1, we see a passband where
|H(f)|isrelatively large (but not constant) and stopbands where |H( )| is quite small
(but not zero). The end points of the passband are usually defined by

K
== f=f.f (3)

_ 1
- \/E‘H(f)‘max \/E

so that |H(f)[?> fals no lower than K2/2 for f,<|f|=f, The bandwidth
B = f, — f, is then called the half-power or 3 dB bandwidth. Similarly, the end
points of the stopbands can be taken where \H(f )\ drops to a suitably small value
such as K/10 or K/100.

Between the passband and stopbands are transition regions, shown shaded,
where the filter neither “passes’ nor “rejects’ frequency components. Therefore, ef-
fective signal filtering often depends on having a filter with very narrow transition
regions. We'll pursue this aspect by examining one particular class of filtersin some
detail. Then we'll describe other popular designs.

The simplest of the standard filter types is the nth-order Butterworth LPF,
whose circuit contains n reactive elements (capacitors and inductors). The transfer
function with K = 1 hasthe form

[H(T)]

H(EI

Transition regions

0

Figure 3.4-3 Typical amplitude ratio of a real bandpass filter.
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1
() = 5.G7B)

where B equals the 3 dB bandwidth and P,(jf/B) isacomplex polynomial. The fam-
ily of Butterworth polynomialsis defined by the property

(4q)

[PA(if/B)P = 1+ (/B)”

S0 that

1
H(f)| = —F———= (4b)

V1+ (1/B)?

Consequently, the first n derivatives of |H(f )| equal zero at f = 0 and we say that
[H(f)| is maximally flat. Table 3.4-1 lists the Butterworth polynomials for n = 1
through 4, using the normalized variable p = jf/B.

A first-order Butterworth filter has the same characteristics as an RC lowpass
filter and would be a poor approximation of an ideal L PF. But the approximation im-
proves asyou increase n by adding more elementsto the circuit. For instance, theim-
pulse response of a third-order filter sketched in Fig. 3.4—4a bears obvious
resemblance to that of an ideal LPF—without the precursors, of course. The
frequency-response curves of this filter are plotted in Fig. 3.4—4b. Note that the
phase shift has areasonably linear slope over the passband, implying time delay plus
some delay distortion. Increasing the Butterworth filter's order causes increased
ringing in the filters impul se response.

A clearer picture of the amplitude ratio in the transition region is obtained from a
Bode diagram, constructed by plotting \H(f )] in dB versus f on alogarithmic scale.

\

h(t)

H(E)

Bl 1

(a) (b)

Figure 3.4-4 Third-order Butterworth LPF: (a) impulse response; (b) transfer function.
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Table 3.4-1 Butterworth polynomials

n Pu(p)

1 1+p

2 1+ V2p+p?

3 1 +p)A+p+p?)

4 (1 + 0.765p + p?)(1 + 1.848p + p?)

Figure 3.4-5 showsthe Bode diagram for Butterworth lowpass filterswith various val-
ues of n. If we define the edge of the stopband at |H(f )| = —20 dB, the width of the
transition region whenn = 1is10B — B = 9B but only 1.25B — B = 0.25B when
n = 10. Clearly, |H(f)| approaches the ideal square characteristic in the limit as
n — co. At the same time, however, the dlope of the phase shift (not shown) increases
with n and the delay distortion may become intolerably large.

In situations where potential delay distortion is a major concern, a Bessel-
Thomson filter would be the preferred choice. This class of filters is characterized
by maximally linear phase shift for agiven value of n, but has awider transition re-
gion. At the other extreme, the class of equiripple filters (including Chebyshev and
eliptic filters) provides the sharpest transition for agiven value of n; but thesefilters
have small amplitude ripplesin the passband and significantly nonlinear phase shift.
Equiripple filters would be satisfactory in audio applications, for instance, whereas

0.1B B 108

N
o
|
T

[H(f)los

20+

Figure 3.4-5 Bode diagram for Butterworth LPFs.



132 CHAPTER3 @  Signa Transmission and Filtering

pulse applications might call for the superior transient performance of Bessal-Thomson
filters. See Williams and Taylor (2006) for more information on filter design.

All three filter classes can be implemented with active devices (such as opera-
tional amplifiers) that eliminate the need for bulky inductors. Switched-capacitor
filter designs go even further and eliminate resistors that would take up too much
spacein alarge-scale integrated circuit. All three classes can also be modified to ob-
tain highpass or bandpass filters. However, some practical implementation problems
do arise when you want a bandpass filter with a narrow but reasonably square pass-
band. Specia designs that employ electromechanical phenomena have been devel-
oped for such applications. For example, Fig. 3.4-6 shows the amplitude ratio of a
seventh-order monolithic crystal BPF intended for usein an AM radio.

10+
Mechanical
filter
(7th order)
0.707 +
// \\ T.Une.d
/ N / circuit
— / < (2d order)
= / \
N \
L
/ \
/\/ T T T f, kHz
0 448 455 462

Figure 3.4-6 Amplitude ratio of a mechanical filter.

EXAMPLE 3.4-1 Second-order LPF
The circuit in Fig. 3.4-7 is one implementation of a second-order Butterworth LPF

with

We can obtain an expression for the transfer function as

_ e
ZRC + J(UL

H(f)
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Figure 3.4-7 Second-order Butterworth LPF.

where
_ R/joC R
R R+ 1/jwuC 1+ jwRC

Thus
1

" 1+ jwl/R — o?C

H(f)

2L -1
= [1 +j%f - (277\/LCf)2}
From Table 3.4-1 with p = jf/B, we want
\/f f 27-1
H = [1+3vVog - (1)]

The required relationship between R, L, and C that satisfies the equation can be
found by setting

whichyieldsR = IZL'

m:\f: V22m7VLC

R
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Show that a Butterworth LPF has |H(f )|gs = —20n logy, (f/B) when f > B. Then
find the minimum value of n needed so that [H(f)| = 1/10for f = 2B.

EXERCISE 3.4-2

Signals often become contaminated by interference by some human source. One
exampleisan audio signal that is contaminated by a 60 Hz power source. The obvi-
ous solution is a notch or band reject filter that will reject the 60 Hz component
but pass everything else. However, there is no such thing as an ideal filter, and prac-
tical real notch filters may reject some desirable components in addition to the
60 Hz interference. Let's consider adaptive cancellation as shown in Fig. 3.4-8.
The observed signa consists of the desired signal, x(t), and a 60 Hz interference,
resulting in
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X(t) = y(t) — X (t)

y(t) = x(t) + A, cos(2760t + b))

v

Amplitude Phase
adjust adjust
Xg (t) = Ag cos(27r60t + ¢R)

60 Hz Reference

Figure 3.4-8 Adaptive cancellation filter fo reject 60 Hz interference.

y(t) = x(t) + A, cos(2760t + ¢,)

with A, and ¢, being the interfering signal’s amplitude and phase respectively. We
then create a 60 Hz reference

Xg(t) = Ag cos(27760t + ¢bR)

with Ag and ¢, being the reference signal’s amplitude and phase respectively. We vary Ag
and ¢y such that when we subtract Xz(t) from the origina contaminated signd y(t) the 60
Hz interfering signal is canceled out and we get an estimate of x(t). In other words, vary-
ing our reference signal’s amplitude we such that Az = A, and ¢ = ¢, givesus

X(t) = y(t) = X(t) = x(t)

The varying of the amplitude and phase of the reference signal to get an accurate es-
timate of the desired signal is an iterative process and done as a gradient or some
other optimization process. The theory of adaptive cancellation was originally devel-
oped by B. Widrow (Widrow and Stearns, 1985) and is also employed for echo can-
cellation and other interferences. We will use a similar theory in Chapter 15 to deal
with multipath interference.

Pulse Response and Risetime

A rectangular pulse, or any other signal with an abrupt transition, contains signifi-
cant high-frequency components that will be attenuated or eliminated by a lowpass
filter. Pulse filtering therefore produces a smoothing or smearing effect that must be
studied in the time domain. The study of pulse response undertaken here leads to
useful information about pulse transmission systems.

Let’sbegin with the unit step input signal x(t) = u(t), which could represent the
leading edge of arectangular pulse. In terms of the filter’s impulse response h(t),the
step response will be

t

g(t) £ roh()\)u(t —A)dr = J h()) dA (5)

—00 —00
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sinceu(t — A) = 0for A > t. We saw in Examples 3.1-1 and 3.1-2, for instance,
that afirst-order lowpass filter has

g(t) = (1 — e *™u(t)

where B is the 3 dB bandwidth.

Of course a first-order LPF doesn't severely restrict high-frequency transmis-
sion. So let’s go to the extreme case of an ideal LPF, taking unit gain and zero time
delay for simplicity. From Eq. (2b) we have h(t) = 2B sinc 2Bt and Eg. (5) becomes

t
gt) = J 2B sinc 2BA dA

—00

0 2Bt
= J sincw du + J sinc u du
—00 0
where u = 2BA. The first integral is known to equal 1/2, but the second requires
numerical evaluation. Fortunately, the result can be expressed in terms of the tabulat-
ed sine integral function

0 0/
si(9) 2 J S':[“da:wf sinc u dp )
0 0

which is plotted in Fig. 3.4-9 for 6 > 0 and approaches the value 7/2 as § — cc.
The function is also defined for 6 < 0 by virtue of the odd-symmetry property
Si (—6) = —Si (). Using Eq. (6) in the problem at hand we get

1 1
9(t) =5 + S (2mBY) (7)

obtained by setting 6/7 = 2Bt.

For comparison purposes, Fig. 3.4-10 shows the step response of an ideal LPF
along with that of afirst-order LPF. The ideal L PF completely removes all high fre-
guencies \ f] > B, producing precursors, overshoot, and oscillations in the step re-
sponse. (This behavior isthe same as Gibbs's phenomenon illustrated in Fig. 2.1-10
and in Example 2.4-2.) None of these effects appears in the response of the first-
order LPF, which gradually attenuates but does not eliminate high frequencies. The
step response of a more selective filter—a third-order Butterworth LPF, for exam-
ple—would more nearly resemble atime-delayed version of theideal L PF response.

Before moving on to pulse response per se, there's an important conclusion to be
drawn from Fig. 3.4-10 regarding risetime. Risetimeis ameasure of the “speed” of a
step response, usualy defined as the time interval t, between g(t) = 0.1 and
g(t) = 0.9 and known as the 10-90 percent risetime. The risetime of a first-order
lowpass filter can be computed from g(t) as t, = 0.35/B, while the ideal filter has
t, = 0.44/B. Both values are reasonably close to 0.5/B so we'll use the approximation

1

o~
" 2B

(8)
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Si ()
1.85
7 S S A p— -
1.42
1 1 1 1 0
0 @2 T 2 37
Figure 3.4-9 The sine integral function.
9()
Ideal
1.0 N
094 /2
1st order
0.5
-1
2B + 0.1
1 1 1 t
~ o 1 1
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Figure 3.4-10 Step response of ideal and first-order LPFs.

for the risetime of an arbitrary lowpass filter with bandwidth B.

Our work with step response pays off immediately in the calculation of pulsere-
sponse if we take the input signal to be a unit-height rectangular pulse with duration
7 starting at t = 0. Then we can write

X(t) = u(t) —u(t —7)
and hence
y(t) = g(t) — gt — 7)

which follows from superposition.
Using g(t) from Eq. (7), we obtain the pulse response of an ideal LPF as

y(t) = %{Si (2mBt) — Si [27B(t — 7)1} 9)

which is plotted in Fig. 3.4-11 for three values of the product Br. The response has a
more-or-less rectangular shape when Br = 2, whereas it becomes badly smeared and
spread out if Br < ;. The intermediate case Br = 3 gives a recognizable but not rec-
tangular output pulse. The same conclusions can be drawn from the pulse response of
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Figure 3.4-11 Pulse response of an ideal LPF.

afirst-order lowpassfilter previoudly sketched in Fig. 3.1-3, and similar resultswould
hold for other input pulse shapes and other lowpass filter characteristics.

Now we're in a position to make some general statements about bandwidth re-
quirements for pulse transmission. Reproducing the actual pulse shape requires a

large bandwidth, say 1
B >

Tmin

where 7., represents the smallest output pulse duration. But if we only need to
detect that a pul se has been sent, or perhaps measure the pulse amplitude, we can get
by with the smaller bandwidth

B = 1
- 2T min

(10)

an important and handy rule of thumb.

Equation (10) also gives the condition for distinguishing between, or resolving,
output pulses spaced by 7, or more. Figure 3.4—12 shows the resolution condition
for an ideal lowpass channel with B = 7. A smaller bandwidth or smaller spacing
would result in considerable overlap, making it difficult to identify separate pulses.

Besides pulse detection and resolution, we'll occasionally be concerned with
pulse position measured relative to some reference time. Such measurements have
inherent ambiguity due to the rounded output pulse shape and nonzero risetime of
leading and trailing edges. For a specified minimum risetime, Eq. (8) yields the

bandwidth requirement
Input
/\ /\ K Output

N\

t

Figure 3.4-12 Pulse resolution of an ideal LPF. B = 1/27.
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(11)

another handy rule of thumb.

Throughout the foregoing discussion we've tacitly assumed that the transmis-
sion channel has satisfactory phase-shift characteristics. If not, the resulting delay
distortion could render the channel useless for pulse transmission, regardless of the
bandwidth. Therefore, our bandwidth requirements in Egs. (10) and (11) imply the
additional stipulation of nearly linear phase shift over | f| = B. A phase equalization
network may be needed to achieve this condition.

EXERCISE 3.4-3

A certain signal consists of pulses whose durations range from 10 to 25 us; the puls-
es occur at random times, but a given pulse aways starts at least 30 s after the start-
ing time of the previous pulse. Find the minimum transmission bandwidth required
for pulse detection and resolution, and estimate the resulting risetime at the output.

3.5 QUADRATURE FILTERS AND HILBERT
TRANSFORMS

The Fourier transform serves most of our needs in the study of filtered signals since,
in most cases, we are interested in the separation of signals based on their frequency
content. However, there are times when separating signals on the basis of phase is
more convenient. For these applications we' Il use the Hilbert transform, which we'll
introduce in conjunction with quadrature filtering. In Chap. 4 we will make use of
the Hilbert transform in the study of two important applications: the generation of
single-sideband amplitude modulation and the mathematical representation of band-
pass signals.

A quadrature filter is an alpass network that merely shifts the phase of posi-
tive frequency components by —90° and negative frequency components by +90°.
Since a +90° phase shift is equivalent to multiplying by e 1% = +j, the transfer
function can be written in terms of the signum function as

. =i f>0
Ho(f) = Jsgnf—{ﬂ_ F<0 (1a)
which isplotted in Fig. 3.5-1. The corresponding impulse response is
1
ho(t) = — 1
olt) = — (16

We obtain this result by applying dudity to #[sgnt] = 1/jaf which yields
F[1/jmt] = sgn (—f) = —sgnf, 0 F [ —jsgnf] = j/jmt = 1/mrt.

Now let an arbitrary signal x(t) be the input to a quadrature filter. The output
signal y(t) = x(t) * ho(t) will be defined as the Hilbert transform of x(t), denoted
by X(t). Thus
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Ho(f)

j

Figure 3.5-1 Transfer function of a quadrature phase shifter.

1 1 (™ XA
éx(t)*zf @ ia (2)
mt 7T
Note that Hilbert transformation is a convolution and does not change the domain, so
both x(t) and X(t) are functions of time. Even so, we can easily write the spectrum of

X(t), namely
Fx(®)] = (=isanf)X(f) (3)

since phase shifting produces the output spectrum Hq(f)X(f).

The catalog of Hilbert transform pairsis quite short compared to our Fourier trans-
form catalog, and the Hilbert transform does not even exist for many common signal
models. Mathematically, the trouble comes from potential singularitiesin Eq. (2) when
A =t and the integrand becomes undefined. Physicaly, we see from Eq. (1b) that
ho(t) isnoncausal, which meansthat the quadrature filter isunrealizable—although its
behavior can be approximated over afinite frequency band using areal network.

Although the Hilbert transform operates exclusively in the time domain, it has a
number of useful properties. Those applicable to our interests are discussed here. In
all cases we will assume that the signal x(t) isreal.

1. Asignal x(t) and its Hilbert transform X(t) have the same amplitude spectrum. In
addition, the energy or power in asignal and its Hilbert transform are also equal.
These follow directly from Eq. (3) since|—j sgn f| = 1 for all f.

2. If X(t) isthe Hilbert transform of x(t), then —x(t) isthe Hilbert transform of X(t).
The details of proving this property are left as an exercise; however, it follows
that two successive shifts of 90° result in atotal shift of 180°.

3. Asignal x(t) and its Hilbert transform X(t) are orthogonal . As stated in Sect. 2.1,
this means

J X()X(t) dt = O for energy signals

—00

and

N N L .
TI'_TO o JT X(t)x(t) dt = O for power signals
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EXAMPLE 3.5-1 Hilbert Transform of a Cosine Signal
The simplest and most obvious Hilbert transform pair follows directly from the
phase-shift property of the quadrature filter. Specifically, if theinput is
X(t) = Acos(wet + ¢)
then
- . —jA 4 »
X(f) = —jsgnfX(f) = T[S(f — fo)e!® + 8(f + fy)e ] sgnf
A f —f
= Z—J [8(f — fo)e™ — 8(f + fo)e ™)
andthusX(t) = A sin (ot + ¢).

This transform pair can be used to find the Hilbert transform of any signal that
consists of a sum of sinusoids. However, most other Hilbert transforms involve per-
forming the convolution operationin Eq. (2), asillustrated by the following example.

EXAMPLE 3.5-2 Hilbert Transform of a Rectangular Pulse

Consider the delayed rectangular pulse x(t) = Afu(t) — u(t — 7)]. The Hilbert
transformis
X(t) = AJ L dx
T t—A
0
whose evaluation requires graphical interpretation. Figure 3.5-2a shows the case
0 < t < 7/2 andwe seethat the areas cancel out between A = Oand A = 2t, leaving

X(t) = AJT i _ é[In(—t) —In(t—7)]

7721t—/\_77

A —t A t
=—In{— ) =—1In
T t—17 T T—1

This result aso holds for 7/2 <t < 7, when the areas cancel out between
A=2t—randA = 7. Thereisno areacancellationfort < Oort > 7, and

A A (7 da A t
x(t)=J :In< )
Wot—/\ T t—r

These separate cases can be combined in one expression

(4)

t—17

which isplotted in Fig. 3.5-2b along with x(t).
Theinfinite spikesinX(t) att = Oandt = 7 can be viewed as an extreme man-
ifestation of delay distortion. See Fig. 3.2-5 for comparison.
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()

A X(t) \/]

0 7/2 T

(b)

Figure 3.5-2 Hilbert transform of a rectangular pulse. (a) Convolution; (b) result.
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The inverse Hilbert transform recovers x(t) from X(t). Use spectral analysis to show
that X(t) » (—1/#t) = x(t).

EXERCISE 3.5-1

3.6 CORRELATION AND SPECTRAL DENSITY

This section introduces correlation functions as another approach to signal and sys-
tem analysis. Correlation focuses on time averages and signal power or energy. Tak-
ing the Fourier transform of a correlation function leads to frequency-domain
representation in terms of spectral density functions, equivalent to energy spectral
density in the case of an energy signal. In the case of a power signal, the spectral
density function tells us the power distribution over frequency.

But the signals themselves need not be Fourier transformable. Hence, spectral
density allows usto deal with abroader range of signal models, including the impor-
tant class of random signals. We develop correlation and spectral density here as an-
alytic toolsfor nonrandom signals. You should then feel more comfortable with them
when we get to random signalsin Chap. 9.

Correlation of Power Signals

Let v(t) be apower signal, but not necessarily real nor periodic. Our only stipulation
isthat it must have well-defined average power

P, 2 (Jut)P) = (v(tv*(t)) = 0 )

The time-averaging operation here isinterpreted in the general form

(z(t)) = lim 1JT/Z 2(t) dt

T—oo T 12
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where z(t) is an arbitrary time function. For reference purposes, we note that this op-
eration has the following properties:

(z*(1)) = (z(t))* (2a)
(2(t —ty)) = (z(t))  ayty (2b)
(agz(t) + az5(t)) = ay(za(t)) + ax(zy(t)) (24

WEe'll have frequent use for these propertiesin conjunction with correlation.

If v(t) and w(t) are power signals, the average (v(t)w*(t)) is caled the scalar
product of v(t) and w(t). The scalar product is a number, possibly complex, that
serves as a measure of similarity between the two signals. Schwarz’s inequality re-
lates the scalar product to the signal powers P, and P,,,, in that

(et)w(t))F = RP, 3

You can easily confirm that the equality holds when v(t) = aw(t), with a being an
arbitrary constant. Hence, |(v(t)w*(t))| is maximum when the signals are
proportional. We'll soon define correlation in terms of the scalar product.

First, however, let’s further interpret (v(t)w*(t)) and prove Schwarz's inequali-
ty by considering

z(t) = v(t) — aw(t) (4q)
The average power of z(t) is
P, = (z(t)z*(1)) = ([v(t) — aw(t)][v*(t) — a*w*(1)]) (4b)
= (o(tv*(t)) + aa*(w(t)w*(t)) — a* (v(t)w*(t)) — alv*(w(t))
= P, + aa*P,, — 2Re[a*(v(t)w*(t))]
where Egs. (2a) and (2¢) have been used to expand and combine terms. If a = 1,
then z(t) = v(t) — w(t) and
P, = P, + P, — 2Re (v(t)w*(t))
A large value of the scalar product thus implies similar signals, in the sense that the
difference signal v(t) — w(t) has small average power. Conversely, a small scalar
product impliesdissimilar signalsand P, = P, + P,,.
To prove Schwarz'sinequality from Eq. (4b), leta = (v(t)w* (t))/P, s0
aa*PR, = a* (v(t = |(u( t))/R,
Then P, = P, — [(v(t)w*(t))[>/P, = 0, which reduces to Eg. (3) and completes the

preliminary work.
Now we define the cross-correlation of two power signals as
A

Row(m) = ((t)w*(t — 7)) = (ot + 7)w*(1)) (5)

TAnother definition used by some authors is (v*(t)w(t + 7)), equivalent to interchanging the sub-
scriptson R,,(7) in Eq. (5).
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Thisis a scalar product with the second signal delayed by 7 relative to the first or,
equivalently, the first signal advanced by 7 relative to the second. The relative dis-
placement r isthe independent variable in Eq. (5), the variable t having been washed
out in the time average. General properties of Rvw(r) are

‘RUW(T)‘Z = Pv IDW (6a)
Ru(T) = Riw(—7) (6b)

Equation (6a) simply restates Schwarz's inequality, while Eq. (6b) points out that
Ruu() # Run(T).

We conclude from our previous observationsthat R,,,(7) measures the similarity
between v(t) and w(t — 7) as a function of 7. Cross-correlation is thus a more so-
phisticated measure than the ordinary scalar product since it detects time-shifted
similarities or differences that would be ignored in (v(t)w*(t)).

But suppose we correlate a signal with itself, generating the autocorrelation
function

1>

Ry(7) = Ru(7) = (v(t)o*(t — 7)) = (vt + 7)v*(1)) )

This autocorrelation tells us something about the time variation of v(t), at least in an
averaged sense. If |R,(7)| is large, we infer that v(t — 7) is very similar to v(t) for
that particular value of 7; whereasif |R,(7)|issmall, then v(t) and v(t — 7) must look
quite different.

Properties of the autocorrelation function include

RU(O) =P, (8a)
R,(7)] = R,(0) (8b)
R,(—7) = RX(7) (89

Hence, R,(7) has hermitian symmetry and a maximum value at the origin equal to
the signal power. If v(t) isreal, then R,(7) will bereal and even. If v(t) happensto be
periodic, R,(7) will have the same periodicity.

Lastly, consider the sum or difference signa

z(t) = v(t) = w(t) (9a)
Upon forming its autocorrelation, we find that
R(7) = Ry(7) + Ru(7) = [Run(7) + Run(7)] (9b)
If v(t) and w(t) are uncorrelated for al 7, so
Ro(7) = Ru(7) =0
then R,(7) = R,(7) + R,(7) and setting = = Oyields
P,=P, + P,

Superposition of average power therefore holds for uncorrelated signals.
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EXAMPLE 3.6-1

Correlation of Phasors and Sinusoids

The calculation of correlation functions for phasors and sinusoidal signals is expe-
dited by calling upon Eq. (18), Sect. 2.1, written as

jorta—jost L[ j (01wt
(elteTIed)y = |lim = glleedl gt (10)
T—00 “1/2
= lim sinci(w1 — )T _ {O Wz # @
T—00 2 1 Wy, = Wy

We'll apply this result to the phasor signals

u(t) = Cet w(t) = C,el! (11q)

where C, and C,, are complex constants incorporating the amplitude and phase
angle. The crosscorrelation is

Rou(7) = ([C,e**1][Cye 7))
— CUCJV:’ e ja)w7'<e jwute*jwwt>

_{0 W, F o,

* alw,T _
C,Cxel Wy = W,

(11h)

Hence, the phasors are uncorrelated unless they have identical frequencies. The au-
tocorrelation function is

R,(7) = |C e (119

which drops out of Eqg. (11b) whenw(t) = v(t).
Now it becomes a simple task to show that the sinusoidal signal

z(t) = A cos (wpt + ¢) (124)

has
2
R(T) = > COS wyT (12b)

Clearly, R,(r) is rea, even, and periodic, and has the maximum value
R,(0) = A%/2 = P,. This maximum also occurs whenever w,r equals a multiple of
27 radians, so z(t = 7) = z(t). On the other hand, R,(7) = O when z(t = ) and
z(t) are in phase quadrature.

But notice that the phase angle ¢ does not appear in R,(7), owing to the averag-
ing effect of correlation. This emphasizes the fact that the autocorrelation function
does not uniquely define asignal.

EXERCISE 3.6-1

Derive Eq. (12b) by writing z(t) as a sum of conjugate phasors and applying Egs. (9)
and (11).
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Correlation of Energy Signals

Averaging products of energy signals over all timeyields zero. But we can meaning-
fully speak of the total energy

>

E, J v(t)o*(t)dt =0 (13)

—00

Similarly, the correlation functions for energy signals can be defined as

Ryu(1) £ J Oov(t)w*(t — ) dt (14a)

—00

Ry(T) = Ryy(7) (14b)

Since the integration operation [ fooo z(t) dt has the same mathematical properties as
the time-average operation (z(t)), all of our previous correlation relations hold for
the case of energy signalsif we replace average power P, with total energy E,. Thus,
for instance, we have the property

Ru(7)P = E,E, (15)

asthe energy-signal version of Eq. (6a).

Closer examination of Eq. (14) revealsthat energy-signal correlation isatype of
convolution. For with z(t) = w*(—t) andt = A, theright-hand side of Eq. (14a) be-
comes

J v(M)z(r — A) dA = v(7) * z(7)

—00

and therefore
Ruu(7) = v(7) *» w*(—17) (16)

Likewise, R,(7) = v(7) * v*(—7).
Some additiona relations are obtained in terms of the Fourier transforms
V() = F[uv(t)], etc. Specifically, from Egs. (16) and (17), Sect. 2.2,

RO =&, = | MO

—0o0

o0

Ruw(0) = J T oOw ) dt=J V()W (F) df

—00 —00

Combining these integrals with |R,,,(0)]> = E,E,, = R,(0)R,(0) yields

2

va(f)W*(f)df = JOOV(f)deJOOW(f)Fdf 17

—00 —00 —00

Equation (17) is afrequency-domain statement of Schwarz's inequality. The equali-
ty holds when V(f) and W(f) are proportional.
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EXAMPLE 3.6-2

Pattern Recognition

Cross-correlation can be used in pattern recognition tasks. If the cross-correlation of ob-
jectsA and B is similar to the autocorrelation of A, then B is assumed to match A. Oth-
erwise B does not match A. For example, the autocorrelation of x(t) = TI(t) can be
found from performing the graphical correlationin Eq. (14b) asR,(7) = A(r). If weex-
amine the similarity of y(t) = 2II(t) to x(t) by finding the cross-correlation Ry (1) =
2A(7), we see that R, (7) is just ascaled version of R,(7). Therefore y(t) matches x(t).
However, if we take the cross-correlation of z(t) = u(t) with x(t), we obtain

1 forr < —1/2
RXZ(T) = 1/2_7' for —1/25751/2
0 forr > 1/2

and conclude that z(t) doesn’t match x(t)

This type of graphica correlation is particularly effective for signals that do not
have a closed-form solution. For example, autocorrelation can find the pitch (funda-
mental frequency) of speech signals. The cross-correlation can determineif two speech
samples have the same pitch, and thus may have come from the same individual.

EXERCISE 3.6-2

Leto(t) = A[u(t) — u(t — D)] and w(t) = v(t — t ). Use Eq. (16) with 2(7) = w*(—7)
to sketch R,,(7). Confirm from your sketch that |R,.(7)]* < E,E, and that
|RUW(T)|%naX = EUEW ar = _td'

We next investigate system analysis in the “r domain,” as represented by
Fig. 3.6-1. A signal x(t) having known autocorrelation R,(7) isappliedto an LTI sys-
tem with impulse response h(t), producing the output signal

y(t) = h(t) * x(t) = Jmh(,\) X(t — A) dA

—00

WEe'll show that the input-output cross-correlation function is

Rx(7) = h(7) * Ry(7) = Jooh(/\) Ry(m — A) dA (18)

—00

and that the output autocorrelation function is

Ry(T) = h*(—=7) » Ry(7) = J h*(—w)Ry (1 — ) due (190)

Substituting Eq. (18) into (19a) then gives
Ry(7) = h*(=7) = h(7)  Ry(7) (19b)

Notethat these 7-domain relations are convol utions, sSimilar to the time-domain relation.
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For derivation purposes, let’s assume that x(t) and y(t) are power signals so we
can use the compact time-averaged notation. Obviously, the same results will hold
when x(t) and y(t) are both energy signals. The assumption of a stable system ensures
that y(t) will be the same type of signal as x(t).

Starting with the cross-correlation Ry,(7) = (y(t)x*(t — 7)), weinsert the con-
volution integral h(t) * x(t) for y(t) and interchange the order of operations to get

Ry(T) = J h(A)(x(t — A)x*(t — 7)) dA

—00

X(t) y(t)

Ru(7) Ry(7)

Figure 3.6-1 LTI system.

But since (z(t)) = (z(t + A)) for any A,
XE—=Ax*t—71)) = XE+ A=)t + A1)

= (x(Ox*[t = (= A)])
= RX(T - /\)
Hence,
Ryu(1) = J h(A)R (T — A) dA

Proceeding in the same fashion for Ry(7) = (y(t)y*(t — 7)) wearrive at

R() = | PO - 7 - D)o
in which (y(t)x*(t — 7 — A)) = Ry(7 + A). Equation (19a) follows from the
change of variable w = —A.

Spectral Density Functions

At last we're prepared to discuss spectral density functions. Given a power or ener-
gy signal v(t), its spectral density function G,(f) represents the distribution of
power or energy in the frequency domain and has two essential properties. First, the
areaunder G,(f ) equals the average power or total energy, so

| anu-ro 20
Second, if x(t) is the input to an LTI system with H(f) = F[h(t)], then the input
and output spectral density functions are related by
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Gy(f) = [H(f)]’G,(f) 21)

since| H(f )|2 isthe power or energy gain at any f. These two properties are combined in

R,(0) = JOO|H(f VPG, (F) df (22)

which expresses the output power or energy Ry(0) in terms of the input spectral
density.

Equation (22) leads to aphysical interpretation of spectral density with the help
of Fig. 3.6-2. Here, G,(f) isarbitrary and |H(f )|? acts like a narrowband filter with
unit gain, so

Gy(f oM A
Gy(f): X() C 2 C 2

0 otherwise
If Af issufficiently small, the areaunder G,(f) will be R (0) = G,(f,)Af and
Gu(fe) = Ry(0)/Af

We conclude that at any frequency f = f., G,(f.) equals the signal power or energy
per unit frequency. We further conclude that any spectral density function must be
real and nonnegative for all values of f.

Gu(f)

Figure 3.6-2 Interpretation of spectral density functions.
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But how do you determine G,(f) from v(t)? The Wiener-Kinchine theorem
states that you first calculate the autocorrelation function and then take its Fourier
transform. Thus,

)
<
~—
=
N—
I
&
2
Pl
<
—
s]
N—
I

2 J R,(1)e 12 dr (23q)
where % _ stands for the Fourier transform operation with 7 in place of t. The inverse
transformis

R(r) = 5,160 2 [ eunersean 23h
so we have the Fourier transform pair
R,(1) <> G,(f)

All of our prior transform theorems therefore may be invoked to develop relation-
ships between autocorrelation and spectral density.

If v(t) is an energy signal with V() = F[u(t)], application of Egs. (16) and
(23a) shows that

G,(f) = V()P (24)

and we have the energy spectral density. If v(t) is aperiodic power signal with the
Fourier series expansion

[ee]

u(t) = D c(nfy)el?™ ! (25q)

n=-—oo

the Wiener-Kinchine theorem gives the power spectral density, or power spec-
trum, as

G,(f) = > [e(nfo)|?(f — nfy) (25b)

This power spectrum consists of impulses representing the average phasor power
|c(nf,)[? concentrated at each harmonic frequency f = nf,. Substituting Eq. (25b)
into Eq. (20) then yields a restatement of Parseval’s power theorem. In the special
case of asinusoidal signa

z(t) = A cos (wet + ¢)
we use R,(7) from Eq. (12b) to get
G,(f) = F,[(A%/2) cos 2w fyr]

A? A?
= Z(S(f - fO) + ZS(f + fo)

whichis plotted in Fig. 3.6-3.
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Gy(f)

AZj4 A2/4

—f 0 o

Figure 3.6-3 Power spectrum of z(f) = A cos (wof + ¢).

All of the foregoing cases lend support to the Wiener-Kinchine theorem but do
not constitute a general proof. To prove the theorem, we must confirm that taking
G,(f) = F.[R,(7)] setisfies the propertiesin Egs. (20) and (21). The former imme-
diately follows from the inverse transform in Eq. (23b) with = = 0. Now recall the
output autocorrelation expression

Ry(7) = h*(=7) » h(7) * Ry(7)
Since
F.[h(r)] = H(f)  F[h*(=7)] = H*(f)
the convolution theorem yields
F[Ry(7)] = H*(F)H()F.[Ry(7)]

andthus G,(f) = [H(f)[’G,(f) if wetake F,[R,(1)] = G,(f), etc.

EXAMPLE 3.6-3

Energy Spectral Density Output of an LTI System

The signal x(t) = sinc 10t is input to the system in Fig. 3.6-1 having the transfer
function

f\
H(f) = 3IT( — Je "
(1 =an(})e
We can find the energy spectral density of x(t) from Eq. (24)

f
G(f) = [X(F)P = 1;017(10>

and the corresponding spectral density of the output y(t)
Gy(f) = [H(f)G,(f)

() ()]
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since the amplitudes multiply only in the region where the functions overlap. There
are several ways to find the total energies E, and E,. We know that

E, = J X(t)[?dt = J IX()|2df = J Gy(f) df
5
1 1
= J —df = —
_5 100 10
Or we can find Ry(7) = %, *{G,(f)} = 15 sinc 10t from which E, = R,(0) = .
Similarly,
E, = J ly(t)fdt = J V()P df = J G,(f) df
2
_ f 9 49
_, 100 25
And correspondingly R(7) = %, *{G,(f)} = > sinc 4t which leads to the same re-
sult that E, = Ry(0) = . We can find the output signal y(t) directly from the rela-
tionship
Y(f) = X(f)H(f) = 3 H(f>e‘j4“f
10 4
by doing the same type of multiplication between rectangular functions as we did
earlier for the spectral density. Using the Fourier transform theorems,
y(t) = 2sinc 4t — 2).
Comb Filter EXAMPLE 3.6-4

Consider the comb filter in Fig. 3.6-4a. The impulse responseis
h(t) = 8(t) — 8(t — T)

H(f) =1 - ¢
and
’H(f)‘Z =2 — eijﬂ'fT _ ejZﬂ'fT
= 4sin?2m(f/f)  f.=2/T
The sketch of |H(f)[?in Fig. 3.6-4b explains the name of thisfilter,

If we know the input spectral density, the output density and autocorrelation can
be found from
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H(f)P

. (D=0
L Delay j
T : : : f
—fa O g4 f2 3f44 A,
(a) (b)

Figure 3.6-4 Comb filter.

G,(f) = 4sin? 2w (f/f,)G,(f)

Ry(T) = 9’Tr_l[Gy(f )]

If we also know the input autocorrelation, we can write

Ry(1) = FH{[H(F)P] = Ry(f)
where, using the exponential expression for |H(f)[?,

FH(F)P] = 28(7) = 8(r = T) = 8(r + T)

Therefore,

R(7) = 2R(7) = R(7 — T) = R(7 + T)

and the output power or energy isR,(0) = 2R,(0) — R,(—=T) — R(T).

EXERCISE 3.6-3 Let v(t) be an energy signal. Show that F [v*(—7)] = V*(f). Then derive
G,(f) = |V(f)|? by applying Eq. (23a) to Eq. (16).

3.7 QUESTIONS AND PROBLEMS
Questions
1. Why does fiber have more bandwidth than copper?

2. How can we increase the Q of a bandpass filter without eliminating the parasitic
resistances in the capacitors and/or inductors?

3. How are satellites used for communications?
4, What is multipath, and why isit a problem?



10.
11.

12.

13.
14.

15.

16.

17.

3.7 Questions and Problems

How would you determine responsibility if someone is operating at 28 MHz
and is causing television interference (TV1) for channel 2, which operates from
54 t0 60 MHZz?

What is the cost in signal strength if the receiver antenna uses both horizontal
and vertical polarization to ensure the signal will be received if transmitted
using either polarization?

Section 3.3 demonstrates how a satellite is used to relay signals viaamplifying,
trandlation, and then rebroadcasting. Describe an aternative system(s) to ac-
complish the same goal.

Why do terrestrial television translators have different input and output
frequencies?

Describe a method using square waves to evaluate the fidelity of an audio am-
plifier. Assume the amplifier has alinear phase response. Would triangle waves
be better?

Devise amethod using square waves to eval uate phase distortion of an amplifier.

Why would a satellite with a linear repeater FDMA system have a limit on a
particular user’s effective radiated power (ERP)?

Give some practical examples of electrical networks with ordinary R, L, and/or
C components that are not time-invariant.

Why do some analog systems seem to “age” with time?

At what frequenciesisthe lumped parameter model no longer valid? State some
specific examples why thisis so.

What assumptions are required to enable the validity of the cascade relationship
of Eg. (19b)?

Given a multiplicity of input signals, describe at least two methods, either of
which we can choose at the exclusion of the others.

Whet is the difference between cascode and cascade circuits?

Problems
3.1-1 A given system hasimpul se response h(t) and transfer function H(f). Ob-

3.1-2 Do Prob. 3.1-1 with x(
3.1-3* Do Prob. 3.1-1 with x(

tain expressions for y(t) and Y(f) when x(t) = A[8(t + t;) — 8(t — ty)].
t) = A[8(t + t3) + 6(1)]
)

— AR(t — t,).

3.14 Do Prob. 3.1-1 with x(t) = Au(t — tg).
3.1-5 Justify Eq. (7b) from Eq. (14) with x(t) = u(t).
3.1-6 Find and sketch |H(f )| and arg H(f) for a system described by the differ-

ential equation dy(t)/dt + 4ary(t) = dx(t)/dt + 167x(t).

3.1-7 Do Prob. 3.1-6 with dy(t)/dt + 16ary(t) = dx(t)/dt + 4mx(t).
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3.1-8
3.1-9*

3.1-10

3.1-11

3.1-12

3.1-13

3.1-14

3.1-15

3.1-16

3.1-17

3.1-18*

3.1-19

3.1-20%

3.2-1

e  Signal Transmission and Filtering

Do Prob. 3.1-6 with dy(t) /dt — 4ary(t) = — dx(t)/dt + 4ax(t).

Use frequency-domain analysis to obtain an approximate expression for
y(t) when H(f) = B/(B + jf) and x(t) is such that X(f) =~ 0 for
|| < Wwithw > B.
Use frequency-domain analysis to obtain an approximate expression for
y(t) when H(f) = jf/(B + jf) and x(t) is such that X(f) = O for
|f| > W withw < B.

The input to an RC lowpass filter is x(t) = 2 sinc 4Wt. Plot the energy
ratio E,/E, versus B/W.

Sketch and label the impulse response of the cascade system in
Fig. 3.1-8b when the blocks represent zero-order holds with time delays
T, > T,

Sketch and label the impulse response of the cascade system in
Fig. 3.1-8b when Hy(f) = [1 + j(f/B)]* and the second block repre-
sents a zero-order hold with time delay T > 1/B.

Show how a non-ideal filter can be used to take the time derivative of a
signal.

Given two identical modules to be connected in cascade. Each one by it-
self has avoltage gain A, = 5. Both have input resistances of 100 ohms
and output resistances of 50 ohms. What is the overall voltage gain of
the system when connected in cascade?

What is the power loss or gain when a transmitter with a 75 ohm output
resistance connected to an antenna whose resistance is 300 ohms?

What isthe loss or gain in decibels when a stereo amplifier with a8 ohm
output is connected to a speaker with 4 ohms?

Find the step and impulse response of the feedback system in
Fig. 3.1-8c when Hy(f) isadifferentiator and H,(f) isagain K.

Find the step and impulse response of the feedback system in
Fig. 3.1-8c when Hy(f) isagain K and H,(f ) isadifferentiator.

If H(f) isthe transfer function of a physically realizable system, then h(t)
must be real and causal. As a consequence, for t = 0 show that
h(t) = 4[ H,(f) cos wtdf = 4J Hi(f) cos wt df
0 0

where H,(f) = Re[H(f)]and H;(f) = Im[H(f)].

Given an input x(t) = 10 cos%(t -2)+10 cos%(t — 2), determine
the steady-state output if the system’s frequency response is 5e%.



3.2-2

3.2-3

3.2-4

3.2-5*

3.2-6

3.2-7

3.2-8

3.2-9

3.2-10*

3.2-11

3.2-12

3.2-13

3.7 Questions and Problems

Express your answer in the form of y(t) = Kx(t — t;). How does the
phase term affect the output time delays?

Do Prob. 3.2-1 with a system whose frequency response is 5¢ 7. What
isthe effect of nonlinear phase distortion?

Show that a first-order lowpass system yields essentially distortionless
transmission if x(t) is bandlimited toW << B.

Find and sketch y(t) when thetest signal x(t) = 4 cos wot + § cos 3wt +
2 €0S Swgt, which approximates atriangular wave, is applied to afirst-order
lowpass system with B = 3f,,.

Find and sketch y(t) when the test signal from Prob. 3.2—4 isapplied to a
first-order highpass system with H(f) = jf/(B + jf) and B = 3f.

The signal 2 sinc 40t is to be transmitted over a channel with transfer
function H(f). The output is y(t) = 20 sinc (40t — 200). Find H(f) and
sketch its magnitude and phase over | f| = 30.

Evauatety(f) a f = 0, 0.5, 1, and 2 kHz for afirst-order lowpass sys-
temwithB = 2 kHz.

A channel has the transfer function

f .
4H<>e‘“7f/3° for| f| = 15Hz
40
H(f) = f
4TT| —— Je 2 for|f| > 15H
<4O>e or| f| z

Sketch the phase delay t(f) and group delay t(f). For what values of
doesty(f) = ty(f)?

Consder atransmission chennd with Ho(f) = (1 4+ 2o cos wT)e T, which has
amplitude ripples. (@) Show thet y(t) = ax(t) + x(t — T) + ax(t — 2T), 0
theoutput indudesaleading and trailing echo. (b) Let x(t) = TI(t/7) anda = 3.
Sketchy(t) for 7 = Z and? .

Consider atransmission channel with He(f) = exp[ —j(wT — a Sin wT)],
which has phase ripples. Assume|a| << /2 and use a series expansion
to show that the output includes aleading and trailing echo.

Design a tapped-delay line equalizer for H,(f) in Prob. 3.2-10 with
a = 04.

Design a tapped-delay line equaizer for H(f) in Prob. 3.2-9 with
a = 04.

Supposex(t) = A coswqt isapplied to anonlinear sysemwithy(t) = 2x(t) —3x().
Write y(t) as a sum of cosines. Then evauate the second-harmonic and third-
harmonic digortionwhen A = 1and A = 2
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3.2-14
3.3-1*

3.3-2
3.3-3

3.34

3.3-5
3.3-6*

3.3-7
3.3-8

3.3-9

3.3-10

3.3-11

3.3-12*
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Do Prob. 3.2-13 with y(t) = 5x(t) — 2x%(t) + 4x¥(t).

Let the repeater system in Fig. 3.3-2 have P;, = 0.5 W, o = 2 dB/km,
and atotal path length of 50 km. Find the amplifier gains and the loca-
tion of the repeater so that P,, = 50 mW and the signal power at the
input to each amplifier equals 20w W.

Do Prob. 3.3-1 with P;, = 100 mW and P, = 0.1 W.

A 400 km repeater system consists of m identical cable sections with
a = 0.4 dB/km and m identical amplifiers with 30 dB maximum gain.
Find the required number of sections and the gain per amplifier so that
P ot = 50 mW when P, = 2W.

A 3000 km repeater system consists of m identical fiber-optic cable sec-
tionswith « = 0.5 dB/km and m identical amplifiers. Find the required
number of sections and the gain per amplifier so that P,; = P;, = 5mW
and the input power to each amplifier isat least 67 uW.

Do Prob. 3.34 witha = 2.5 dB/km.

Suppose the radio link in Fig. 3.3-4 has f = 3 GHz, ¢ = 40 km, and
P., = 5W. If both antennas are circular dishes with the same radius r,
find the value of r that yields P, = 2 uW.

Do Prob. 3.3-6 with f = 200 MHz and £ = 10 km.

Theradiolink in Fig. 3.3—4 is used to transmit a metropolitan TV signal
to arural cable company 50 km away. Suppose a radio repeater with a
total gain of g, (including antennas and amplifier) is inserted in the
middle of the path. Obtain the condition on the value of g, so that P is
increased by 20 percent.

A direct broadcast satellite (DBS) system uses 17 GHz for the uplink
and 12 GHz for the downlink. Using the values of the amplifiers from
Example 3.3-1, find P, assuming P;, = 30 dBW.

Given a geostationary satellite with 36,000 km altitude, a downlink fre-
quency of 4 GHz and aground receiver with a1/3 m diameter dish. What
isthe satellite transmitter’'s EIRP in order for a1 pW input to the ground
receiver?

What size antenna dish is required to bounce a signal off the moon and
haveit received back again at the transmitter | ocation? Assume the follow-
ing: Earth to moon distance is 385,000 km, transmitter power is 1000 W,
operating frequency is432 MHz, and 0.25 pW isrequired at the receiver’'s
input. You may also neglect losses due to absorption or multipath.

Given aLEO satellite system with adish gain of 20 dB, orbiting altitude
of 789 km, and download frequency of 1626 MHz, what isthe satellite’s
transmitter output power required so that it is received by a wireless
phone with 1 pW?You may assume the phone's antenna has unity gain.



3.3-13

3.3-14

3.4-1

3.4-2*

3.4-3

3.4-4

3.4-5

3.4-6

3.4-7

3.4-8*

3.4-9

3.4-10¢

3.7 Questions and Problems

Given a LEO satellite with an altitude of 789 km and if f = 1626 MHz,
what is its maximum linear velocity when its output frequency shifts by
1 kHz? State any assumptions.

Wireless cell-phone technology uses a system in which a given area is
divided up into hexagona cells, each cell having a radius of approxi-
mately r. A cell phone is able to communicate with the base tower using
0.5 watts of power. How much less power is required if the radius is
reduced by half?

Find and sketch the impulse response of the ideal HPF defined by
Eqg. (1) with f, = cc.

Find and sketch the impulse response of an idea band-rejection filter
having H(f) = 0 for f, — B/2 < |f| < f, + B/2 and distortionless
transmission for all other frequencies.

Find the minimum value of n such that a Butterworth filter has
IH(f)| = —1dB for | f| < 0.7B. Then calculate |[H(3B)| in dB.

Find the minimum vaue of n such that a Butterworth filter has
IH(f)| = —1dB for | f| < 0.9B. Then calculate|H(3B)| in dB.

The impulse response of a second-order Butterworth LPF is h(t) =
2be "' sin bt u(t) with b = 27B/\/2. Derive this result using a table of
Laplace transforms by taking p = s/27B in Table 3.4-1.

Let R=VL/C in Fig. 34-7. (a) Show that |[H(f) =[1-
(£/f)2 + (f/f)*] 1 with f, = 1/(27/LC). (b) Find the 3 dB band-
width in terms of f,. Then sketch [H( )| and compare with a second-order
Butterworth response.

Show that the 10-90 percent risetime of a first-order LPF equals
1/2.87B.

Use h(t) given in Prob. 3.4-5 to find the step response of a second-order
Butterworth LPF. Then plot g(t) and estimate the risetime in terms of B.

Let x(t) = A sinc 4Wt be applied to an ideal LPF with bandwidth B.
Taking the duration of sinc at to be 7 = 2/a, plot the ratio of output to
input pulse duration as a function of B/W.

The effective bandwidth of an LPF and the effective duration of its
impulse response are defined by

JOO|H(f)df roh(t)dt
MO ) e

Obtain expressions for H(0) and |h(t)| from F[h(t)] and FYH(f)],
respectively. Then show that 7 = 1/2 By;.
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34-11%

3.5-1

3.5-2*

3.5-3
3.5-4

3.5-5*

3.5-6

3.5-7
3.5-8%

3.6-1
3.6-2
3.6-3

3.64
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Let the impulse response of an ideal LPF be truncated to obtain the
causal function

and h(t) = 0 elsewhere. (8) Show by Fourier transformation that

H(f) = ge’j”"d{Si [27(f + B)ty] — S [27(f — B)ty]}

(b) Sketch h(t) and [H(f)| for t; > 1/B and ty = 1/2B.

Let x(t) = 8(t). (@) Find X(t) from Eq. (2) and use your result to confirm
that ¥ [ —jsgnf] = 1/art. (b) Then derive another Hilbert transform
pair from the property X(t)*(—1/art) = x(t).

Use Eq. (3), Sect. 3.1, and the results in Example 3.5-2 to obtain the
Hilbert transform of AII(t/7). Now show that if v(t) = A for al time,
theno(t) = 0.

Use Eq. (3) to show that if x(t) = sinc 2Wt then X(t) = 7Wt sinc® Wt.
Find the Hilbert transform of the signal in Fig. 3.2-3 using the results of
Example 3.5-1.

Find the Hilbert transform of the signal

X(t) = 4 coswgt + § cos3wgt + 7 COS Swyt.

Show that the functions that form the Hilbert transform pair in
Prob. 3.5-3 have the same amplitude spectrum by finding the magnitude
of the Fourier transform of each. (Hint: Express the sinc? term as the
product of a sine function and sinc function.)

Show that [ x(t)X(t)dt = O for x(t) = A cos wyt.

Let the transfer function of a filter be written in the form
H(f) = Hy(f) + jH,(f), asin Eq. (10), Sect. 2.2. If thefilter is physi-
cally realizable, then itsimpulse response must have the causal property
h(t) = 0fort < 0. Hence, we can write h(t) = (1 + sgnt)hg(t) where
he(t) = 3h(|t]) for —co < t < co. Show that F[h,(t)] = H,(f) and
thus causality requiresthat Hy(f) = —H(f).

Prove Eq. (6b).

Prove therelation |x|2 = xx".

Let v(t) be periodic with period T,. Show from Eq. (7) that R,(7) hasthe
same periodicity.

Derive Eq. (8b) by taking w(t) = v(t — 7) in Eq. (3).
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3.7 Questions and Problems

Use the method of pattern recognition demonstrated in Example 3.6-2
to determine whether y(t) = sin 2wt issimilar to x(t) = cos 2wt.

Use Eq. (24) to obtain the spectral density, autocorrelation, and signal
energy whenu(t) = AII[(t — t3)/D].

Do Prob. 3.6-6 withv(t) = Asinc4W(t + t;).

Do Prob. 3.6-7 with v(t) = Ae "u(t).

Use Eqg. (25) to obtain the spectral density, autocorrelation, and signal
power whenv(t) = Ay + A; sin (wgt + ).

Do Prob. 3.6-9 withv(t) = A; cos(wet + ¢1) + Ay Sin Lwet + ¢4).

Obtain the autocorrelation of v(t) = Au(t) from Eq. (7). Use your result
to find the signal power and spectral density.

The energy signal x(t) = I1(10t) isinput to an ideal lowpass filter sys-
tem with K = 3, B = 20, and t; = 0.05, producing the output signal
y(t). Write and simplify an expression for Ry(7).

Given Y(f) = H(f)X(f) where Y(f) and X(f) are either voltages or currents,
prove Gy (f) =|H(f)|2 Gx (f).

What is Ry(7) when x(t) = Acos(wt — 0)?

What is R, (1) when x(t) = Acos(wt —6) and y(t) = Asin(wt — 6)?

Let o(t) = oM+t — D+t — 2+6¢t - 4) and
w(t) = 8()+8(t — 1)+8(t — 3)+48(t — 6). CaculaeR,, () and R, (7).
Do Prob. 3.6-16 assume that the functions are periodic and the lengths
of v(t) and w(t) are 7. What are the periods of R,, (7) and R, (1)?
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he several purposes of modulation were itemized in Chap. 1 along with a qualitative description of the process.

To briefly recapitulate: modulation is the systematic alteration of one waveform, called the carrier, according to the
characteristics of another waveform, the modulating signal or message. The fundamental goal is to produce an
information-bearing modulated wave whose properties are best suited to the given communication fask.

We now embark on a tour of continuous-wave (C\W) modulation systems. The carrier in these systems
is a sinusoidal wave modulated by an analog signal—AM and FM radio being fomiliar examples. The abbreviation
CW dalso refers to on-off keying of a sinusoid, as in radio telegraphy, but that process is more accurately termed
inferrupfed continuous wave [ICWV).

This chapter deals specifically with linear CW modulation, which involves direct frequency translation of the mes-
sage spectrum. Double-sideband modulation (DSB) is precisely that. Minor modifications of the translated spectrum
yield conventional amplitude modulation (AM), single-sideband modulation (SSBJ, or vestigialsideband modulation
(VSBJ. Each of these variations has its own distinct advantages and significant practical applications. Each will be given
due consideration, including such matters as waveforms and spectra, modulation methods, transmitters, and demodu-
lation. The chapter begins with a general discussion of bandpass signals and systems, pertinent to all forms of CW
modulation.

OBJECTIVES

After studying this chapter and working the exercises, you should be able to do each of the following:

1. Given a bandpass signal, find its envelope and phase, in-phase and quadrature components, and lowpass equiva-
lent signal and spectrum (Sect. 4.1).

2.  State and apply the fractional-bandwidth rule of thumb for bandpass systems (Sect. 4.1).

3.  Sketch the waveform and envelope of an AM or DSB signal, and identify the spectral properties of AM, DSB,
SSB, and VSB (Sects. 4.2 and 4.4).

4, Construct the line spectrum and phasor diagram, and find the sideband power and total power of an AM, DSB,
SSB or VSB signal with tone modulation (Sects. 4.2 and 4.4).

5. Distinguish between product, power-law, and balanced modulators, and analyze a modulation system (Sect. 4.3).
6. Identify the characteristics of synchronous, homodyne, and envelope detection (Sect. 4.5).

4.1 BANDPASS SIGNALS AND SYSTEMS

Effective communication over appreciable distance usually requires a high-frequency
sinusoidal carrier. Consequently, by applying the frequency translation (or modula-
tion) property of the Fourier transform from Sect. 2.3 to a bandlimited message sig-
nal, we can see that most long-haul transmission systems have a bandpass frequency
response. The properties are similar to those of abandpassfilter, and any signal trans-
mitted on such a system must have a bandpass spectrum. Our purpose hereisto pres-
ent the characteristics and methods of analysis unique to bandpass systems and
signals. Before plunging into the details, let’s establish some conventions regarding
the message and modul ated signals.

Analog Message Conventions

Whenever possible, our study of analog communication will be couched in terms of
an arbitrary message waveform x(t)—which might stand for a sample function from
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Figure 4.1-1 Message spectrum with bandwidth W.

the ensemble of possible messages produced by an information source. The one
essential condition imposed on x(t) is that it must have a reasonably well-defined
message bandwidth W, so there’s negligible spectral content for | f | > W. Accord-
ingly, Fig. 4.1-1 represents a typical message spectrum X(f) = F[x(t)] assuming
the message is an energy signal.

For mathematical convenience, we'll also scale or normalize al messages to
have a magnitude not exceeding unity, so

Ix(t)| =1 )
This normalization puts an upper limit on the average message power, namely
S,=(x(t) =1 (2)

when we assume x(t) is a deterministic power signal. Both energy-signal and power-
signal models will be used for x(t), depending on which one best suits the circum-
stances at hand.

Occasionaly, analysis with arbitrary x(t) turns out to be difficult if not impossi-
ble. As afall-back position we may then resort to the specific case of sinusoidal or
tone modulation, taking

X(t) = A, Cos wy,t A,=1 f, <W (3)

Tone modulation allows us to work with one-sided line spectra and simplifies power
calculations. Moreover, if you can find the response of the modulation system at a
particular frequency f,, you can infer the response for all frequenciesin the message
band—barring any nonlinearities. To reveal potential nonlinear effects, you must
use multitone modulation such as

X(t) = A; cos wit + A, COS w,t + -

with A; + A, + -+ = 1 to satisfy Eq. (2).
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Modulation of an arbitrary signal

Before we formally discuss bandpass signas and modulation, let’s consider the foll ow-
ing example. Given the message spectrum of Fig. 4.1-1, using the Fourier transform

EXAMPLE 4.1-1
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modulation property we modulate x(t) onto a carrier frequency f, to create the bandpass
signd

_1
2

The message and modulated spectrums are plotted in Fig. 4.1-2. Multiplying the
message by cos 27 f.t in the time domain translates its spectrum to frequency f..
Note how the shape of X(f) is preserved in the graph of X,, (f); the modulated signal
occupies By = 2W Hz of spectrum.

Xpp (1) = X(t) cos 27rfit <> Xy, (F) [X(f =) + X(f+ f)].

Bandpass Signals

We next explore the characteristics unique to bandpass signals and establish some
useful analysistoolsthat will aid our discussions of bandpass transmission. Consider
area energy signal vy,,(t) whose spectrum V,,(f) has the bandpass characteristic
sketched in Fig. 4.1-3a. This spectrum exhibits hermitian symmetry, because vy,(t)
isreal, but V() is not necessarily symmetrical with respect to +f.. We define a
bandpass signal by the frequency domain property

Vi(f) =0 [f| <f —w @)

(| >f, +W

which simply states that the signal has no spectral content outside a band of width
2W centered at f.. The values of f, and W may be somewhat arbitrary, aslong as they
satisfy Eq. (4) withW < f..

The corresponding bandpass waveform in Fig. 4.1-3b looks like a sinusoid at
frequency f, with slowly changing amplitude and phase angle. Formally we write

Vpo(t) = A(t) cos [wt + (t)] (5)

X(f)

e

-W
Modulation
7\ . JAdN
: : f
—f,-W —f, —f, +W 0 f,-W f,  f +W

Figure 4.1-2 Spectrum of a message and its modulated version.
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Vop(F)I
arg Vip(f)

(b)

Figure 4.1-3 Bandpass signal. (a) Spectrum; (b) waveform.

where A(t) is the envelope and ¢(t) is the phase, both functions of time. The enve-
lope, shown as a dashed line, is defined as nonnegative, so that A(t) = 0. Negative
“amplitudes,” when they occur, are absorbed in the phase by adding =180°.

Figure 4.1-4a depicts vy,(t) as acomplex-plane vector whose length equal s A(t)
and whose angle equals ot + ¢(t). But the angular term w.t represents a steady
counterclockwise rotation at f, revolutions per second and can just as well be sup-
pressed, leading to Fig. 4.1-4b. This phasor representation, used regularly hereafter,
relates to Fig. 4.1-4a in the following manner: If you pin the origin of Fig. 4.1-4b
and rotate the entire figure counterclockwise at therate f,, it becomes Fig. 4.1-4a.

Further inspection of Fig. 4.1-4a suggests another way of writing vy,(t). If welet

vi(t) £ AL) cosd(t)  vg(t) = A(t) sin () 6
then
Upp(t) = vi(t) €S wet — vy(t) Sin wt 7)
= Vj(t) cos .t + vy(t) cos (w.t + 90°)

Equation (7) is called the quadrature-carrier description of a bandpass signal, as
distinguished from the envelope-and-phase description in Eq. (5). The functions
vi(t) and v(t) are named the in-phase and quadrature components, respectively.
The quadrature-carrier designation comes about from the fact that the two terms
in Eqg. (V) may be represented by phasors with the second at an angle of +90°
compared to thefirst.
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™ pr(t)
A(t) pr(t)
At) |
L b og(0)
t+ () 1
vl \ e ¥ (1) 3
-
vi(t)
(a) (b)
Figure 4.1-4 (a) Rotating phasor; (b) phasor diagram with rotation suppressed.

While both descriptions of a bandpass signal are useful, the quadrature-carrier
version has advantages for the frequency-domain interpretation. Specifically, Fourier
transformation of Eq. (7) yields

1 J
pr(f) = E[Vi(f - fc) + Vi(f + fc)J + E[Vq(f - fc) - Vq(f + fc)] (8)
where
Vi(f) = Flvi)]  Vo(f) = Flvy(t)]

To obtain Eq. (8) we have used the modul ation theorem from Eq. (7), Sect. 2.3, along
with "% = =+ j. The envelope-and-phase description does not readily convert to
the frequency domain since, from Eq. (6) or Fig. 4.1-4b,

At) = Vui(t) + vi(t) ¢(t) = arctan qu)) 9

which are not Fourier-transformable expressions.
Animmediate implication of EqQ. (8) isthat, in order to satisfy the bandpass con-
ditionin Eq. (4), the in-phase and quadrature functions must be lowpass signals with

Vi(f) =Vg(f) =0 [f[>W

In other words,

Violf) consists of two lowpass spectra that have been translated and, in the
case of V,(f), quadrature phase shifted.

WE'Il capitalize upon this property in the definition of the lowpass equivalent
spectrum

>

Veo(f) = 2[Vi(F) + iVy(f)] (10a)
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_ arg Vep(f)
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Figure 4.1-5 Lowpass equivalent spectrum.
= Vo F + f)u(f + 1) (10b)

As shown in Fig. 4.1-5, V,(f) simply equals the positive-frequency portion of
V() translated down to the origin.

Going from Eqg. (10) to the time domain, we obtain the lowpass equivalent
signal

veplt) = FHVe(F)] = 2[uit) + jug(D)] (Mal

Thus, v,,(t) is afictitious complex signal whose real part equals vi(t) and whose
imaginary part equalszv (t). Alternatively, rectangular-to-polar conversion yields

velt) = 3AM)R (1

where we've drawn on Eq. (9) to writev,,(t) in terms of the envelope and phase func-
tions. The complex nature of the lowpass equivalent signa can be traced back to its
spectrum Vy,( ), which lacks the hermitian symmetry required for the transform of a
real time function. Nonetheless, v,,,(t) does represent areal bandpass signal.

The connection between v,,(t) and vy,,(t) is derived from Egs. (5) and (11b) as
follows:

vpp(t) = Re {A(t)ell T} (12)
= 2Re [z A(t)eltel]
= 2Re[vg(t)e"']

This result expresses the lowpass-to-bandpass transformation in the time domain.
The corresponding frequency-domain transformation is

Vip(F) = Vio(f — o) + VE(—F — 1) (134)

whose first term constitutes the positive-frequency portion of Vj,(f) while the sec-
ond term constitutes the negative-frequency portion. Since we'll deal only with real
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bandpass signal's, we can keep the hermitian symmetry of \f,,(f) in mind and usethe
simpler expression

which follows from Figs. 4.1-3a and 4.1-5.

EXERCISE 4.1-1

Letz(t) = vy(t)e Jod and use 2 Re [z(t)] = z(t) + z* (t) to derive Eq. (13a) from Eq. (12).

Bandpass Transmission

Now we have the tools needed to analyze bandpass transmission represented by
Fig. 4.1-6a where abandpass signal x,,(t) applied to a bandpass system with transfer
function Hy,(f) produces the bandpass output yy,(t). Obviously, you could attempt
direct bandpass analysis via Yy,(f) = Hyy(f)Xo(f). But it's usually easier to work
with the lowpass equivalent spectrarelated by

Yfp(f) = H«‘fp(f ) X(p(f ) (14q)
where
Hep(f) = Hpp(f + f)u(f + fo) (14b)

which isthe lowpass equivalent transfer function.

Equation (14) permits us to replace a bandpass system with the lowpass equiva
lent model in Fig. 4.1-6b. Besides simplifying analysis, the lowpass model provides
valuable insight to bandpass phenomena by analogy with known lowpass relation-
ships. We move back and forth between the bandpass and lowpass models with the
help of our previous results for bandpass signals.

In particular, after finding Y,,(f) from Eq. (14), you can takeits inverse Fourier
transform

Yeot) = F 1 [Yep(F)] = F T [Hep(F)Xeo(F)]

The lowpass-to-bandpass transformation in Eq. (12) then yields the output signal
Yop(t). Or you can get the output quadrature components or envelope and phase
immediately from y,,(t) as

Xop() = Hpp(f)  —— pp(®) X —  Hee(F)  ——=y,(0)

(a) (b)

Figure 4.1-6 (a) Bandpass system; (b) lowpass model.
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Yi(t) = 2Refyg(t)] Yo(t) = 21m [yg(t)] (15)
A1) = 2]y (t)] by(t) = arg [ye(t)]
which follow from Eq. (10). The example below illustrates an important application
of these techniques.
Carrier and Envelope Delay EXAMPLE 4.1-2

Consider a bandpass system having constant amplitude ratio but nonlinear phase
shift 6(f) over its passband. Thus,
pr(f) = Keje(f) f( < |f| < fu
and
Hep(f) = Kelf(Hely(f + f,) fp—f. <f<f,—f

as sketched in Fig. 4.1-7. Assuming the phase nonlinearities are relatively smooth,
we can write the approximation

where

0(f) o 1 do(f)
o, O 1e)

1>

b 20 df  |f=t,

This approximation comes from the first two terms of the Taylor series expansion of
o(f + f.).

To interpret the parameters t, and t;, let the input signal have zero phase so that
Xpp(t) = A(t) cos wt and x(t) = 3A,(t). If the input spectrum X,,(f) falls
entirely within the system’s passband, then, from Eq. (14),

Hpp(f) Hep(F)
[Hpp( )l
. K - K
a0 BCF+f) 70 o(fo)
A0 f N f
0 foof N1, fo=fo [0 fu=fo
(a) (b)

Figure 4.1-7 (a) Bandpass transfer function; (b) lowpass equivalent.
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Yeo(f) = Kej"(”fc)Xep(f) ~ Ke*jZﬂ'(tofc*Hf)X(p(f)
~ Kefjwcto [X€p( f )efj 2ﬂ'ftl]

Recalling the time-delay theorem, we see that the second term correspondsto X ,(t)
delayed by t;. Hence,

Yep(t) = KeTIolox, (t — ;) = Ke e SA(t — 1)

and Eq. (12) yields the bandpass output
ybp(t) = KAx(t - tl) cos wc(t - tO)

Based on this result, we conclude that t, is the carrier delay while t, is the
envelope delay of the system. And since t; is independent of frequency, at least to
the extent of our approximation for 6(f + f;), the envelope has not suffered delay
distortion. Envelope delay is also called the group delay.

WE'Il later describe multiplexing systems in which several bandpass signals at
different carrier frequencies are transmitted over a single channel. Plots of d6/df
versus f are used in this context to evaluate the channel’s delay characteristics. If the
curve is not reasonably flat over a proposed band, phase equalization may be
required to prevent excessive envel ope distortion.

EXERCISE 4.1-2

Suppose a bandpass system has zero phase shift but [Hy,(f)| = Ko + (Ky/f) (f — f;) for
f, <f<f,, where Ko > (K/f)(f, — ). Sketch H,,(f) taking f, < f; and f, > f.. Now
show that if xpp(t) = A.(t) cos ot then the quadrature components of y,(t) are
Ky dA(D)

27f,  dt

Vi(t) = KoA(t)  yq(t) =

provided that X,,(f) falls entirely within the bandpass of the system.

The simplest bandpass system is the parallel resonant or tuned circuit represented
by Fig. 4.1-8a. The voltage transfer function plotted in Fig. 4.1-8b can be written as

1
iQ £
in which the resonant frequency f, and quality factor Q are related to the element
values by

H(f) =

(174q)

1 C
N
° omVie L
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Figure 4.1-8 (a) Tuned circuit; (b) transfer function.

The 3 dB bandwidth between the lower and upper cutoff frequenciesis

B—f —f 0 (17b)
u € Q
Since practical tuned circuitsusually have 10 < Q < 100, the 3 dB bandwidth falls
between 1 and 10 percent of the center-frequency value.

A complete bandpass system consists of the transmission channel plus tuned
amplifiers and coupling devices connected at each end. Hence, the overall frequency
response has a more complicated shape than that of a simple tuned circuit. Nonethe-
less, various physical effects result in aloose but significant connection between the
system’s bandwidth and the carrier frequency f, similar to Eq. (17b).

For instance, the antennas in a radio system produce considerable distortion
unless the frequency range is small compared to f,. Moreover, designing a reason-
ably distortionless bandpass amplifier turns out to be quite difficult if B is either very
large or very small compared to f.. Asarough rule of thumb, the fractional band
width B/f, should be kept within the range

B
0.01 < T <01 (18)

c
Otherwise, the signal distortion may be beyond the scope of practical equalizers.
From Eg. (18) we see that

Large bandwidths require high carrier frequencies.

This observation is underscored by Table 4.1-1, which lists selected carrier frequen-
cies and the corresponding nominal bandwidth B = 0.02f, for different frequency
bands. Larger bandwidths can be achieved, of course, but at substantially greater
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Table 4.1-1 Selected carrier frequencies and nominal bandwidth
Frequency Band Carrier Frequency Bandwidth
Longwave radio 100 kHz 2kHz
Shortwave radio 5MHz 10 kHz
VHF 100 MHz 2MHz
Microwave 5GHz 100 MHz
Millimeterwave 100 GHz 2GHz
Optical 5 X 10* Hz 10 Hz
cost. As afurther consequence of Eq. (18), the terms bandpass and narrowband are
virtually synonymousin signal transmission.

EXAMPLE 4.1-3 Bandpass Pulse Transmission

We found in Sect. 3.4 that transmitting a pulse of duration 7 requires a lowpass
bandwidth B = 1/27. We aso found in Example 2.3-2 that frequency trandation
converts a pulse to a bandpass waveform and doubles its spectral width. Putting these
two observations together, we conclude that bandpass pul se transmission requires

B=1/r

Since Eqg. (18) imposes the additional constraint 0.1f, > B, the carrier frequency
must satisfy

f. > 10/

These relations have long served as useful guidelines in radar work and related
fields. To illustrate, if 7 = 1 us then bandpass transmission requires B = 1 MHz
and f, > 10 MHz.

Bandwidth

At thispoint it isuseful to provide amore quantitative and practical description of the
bandwidth of bandpass signals particularly because bandwidth often is mentioned in
the literature and yet loosely specified. This is often the case when we specify that
some modulation type has a given transmission bandwidth, B;. Unfortunately in real
systems, there isn't just one definition of bandwidth. Before we tackle this subject,
let’s present a problem that could be encountered by an FM broadcast radio engineer.
Asyou might know, the FCC assigns an FM broadcast station a particular carrier fre-
quency between 88.1 to 107.9 MHz, with a transmission bandwidth B; of 200 kHz;
that’s why the digital frequency readout in your FM car radio dial generally displays
frequenciesonly in odd 200 kHz increments (e.g., 95.3, 95.5, . . . etc.). The FM station
isrequired to limit its emissions to within this 200 kHz bandpass. But does this mean
that the station is not allowed to radiate any energy outside the 200 kHz bandwidth?
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Of course not, since anything that is time limited will have unlimited bandwidth, and
there is no such thing as an ideal BPF. And as you will seein Chapter 5, formulas for
FM bandwidth are only approximations. However, the FCC could say that 99% of the
radiated energy has to be confined to the 200 kHz dlot, or that the power level outside
the bandwidth must be at least 50 dB below the maximum level transmitted. The FCC
website with the relevant Code of Federal Regulations (CFR) that pertain to bandwidth
is at http://access.gpo.gov/naralcfriwaisidx_07/47cfr2_07.html (47 CFR 2.202). Let’'s
consider the following definitions of bandwidth:

1. Absolute bandwidth. This is where 100% of the energy is confined between
some frequency range of f, — f,. We can speak of absolute bandwidth if we
have ideal filters and unlimited time signals.

2. 3 dB bandwidth. Thisis also caled the haf-power bandwidth and is the fre-
quency(s) where the signal power startsto decrease by 3dB (3). Thisisshown
inFig. 4.1-8.

3. Noise equivalent bandwidth. Thisis described in Sect. 9.3.

4. Null-to-null bandwidth. Frequency spacing between a signal spectrum’sfirst set
of zero crossings. For example, in the triangle pulse of Fig. 2.3-4, the null-to-
null bandwidth is 2.

5. Occupied bandwidth. Thisis an FCC definition, which states, “ The frequency band-
width such that, below itslower and above its upper frequency limits, the mean pow-
ersradiated are each equal to 0.5 percent of the total mean power radiated by a given
emission” (47 CFR 2.202 &t http://access.gpo.gov/naralcfriwaisidx_07/47cfr2_07.html). In
other words, 99% of the energy is contained in the signal’s bandwidth.

6. Relative power spectrum bandwidth. This is where the level of power outside
the bandwidth limits is reduced to some value relative to its maximum level.
This is usualy specified in negative decibels (dB). For example, consider a
broadcast FM signal with a maximum carrier power of 1000 watts and relative
power spectrum bandwidth of —40 dB (i.e., 1/10,000). Thus we would expect
the station’s power emission to not exceed 0.1 W outside of f., = 100 kHz.

In subsequent sections of this chapter and book, there may be a specific formula for
amodulated signal’s B+, but keep in mind that this value is based on several assump-
tions and is relative to other modulation types.
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4.2 DOUBLE-SIDEBAND AMPLITUDE MODULATION

There are two types of double-sideband amplitude modulation: standard amplitude
modulation (AM) and suppressed-carrier double-sideband modulation (DSB). We'll
examine both types and show that the minor theoretical difference between them has
major repercussionsin practical applications.

AM Signals and Spectra

The unique property of AM is that the envelope of the modulated carrier has the
same shape as the message. If A, denotes the unmodulated carrier amplitude, modu-
lation by x(t) produces the AM signal


http://access.gpo.gov/nara/cfr/waisidx_07/47cfr2_07.html
http://access.gpo.gov/nara/cfr/waisidx_07/47cfr2_07.html
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X(t) = AJ1 + ux(t)] coswt (1)
= A, coswct + Aux(t) coswt

where u isapositive constant called the modulation index. The signal’s envelopeis
then

A(t) = A1 + ux(t)] (2)
Since x,(t) hasno time-varying phase, its in-phase and quadrature components are
Xci(t) = A(t) ch(t) =0

as obtained from Egs. (5) and (6), Sect. 4.1, with ¢(t) = 0. Actually, we should
include a constant carrier phase shift to emphasize that the carrier and message come
from independent and unsynchronized sources. However, putting a constant phasein
Eq. (2) increases the notational complexity without adding to the physical under-
standing.

Figure 4.2—-1 shows part of atypical message and the resulting AM signa with
two values of . The envelope clearly reproduces the shape of x(t) if

> Wad pu=1 (3)

When these conditions are satisfied, the message x(t) is easily extracted from x(t)
by use of asimple envelope detector whose circuitry will be described in Sect. 4.5.

The condition f, >=> W ensures that the carrier oscillates rapidly compared to
the time variation of x(t); otherwise, an envelope could not be visualized. The con-
dition u = 1 ensuresthat A1 + wx(t)] does not go negative. With 100 percent
modulation (u = 1), the envelope varies between Ay, = 0 and A, = 2A..
Overmodulation (u > 1), causes phase reversals and envelope distortion illus-
trated by Fig. 4.2—1c.

Going to the frequency domain, Fourier transformation of Eq. (2) yields

X(f) =%Acb‘(f—fc) +%ACX(f—fC) f>0 @)
where we've written out only the positive-frequency half of X (f). The negative-
frequency half will be the hermitian image of Eq. (4) since x(t) is area bandpass
signal. Both halves of X(f) are sketched in Fig. 4.2-2 with X(f) from Fig. 4.1-1.
The AM spectrum consists of carrier-frequency impulses and symmetrical side
bands centered at +f.. The presence of upper sidebands and lower sidebands
accounts for the name double-sideband amplitude modulation. It also accounts for
the AM transmission bandwidth

B, = 2W (5)

Note that AM requires twice the bandwidth needed to transmit x(t) at baseband
without modul ation.
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Amax = Ac (1+p)
Amin=Ac (L-p)

(b)

Figure 4.2-1 AM waveforms: (a) message; (b) AM wave with u < 1; (c) AM wave with > 1.
X(f)
Carrier
Lower Upper
sideband sideband
- f
0 fo-W N fo+w
‘ 2W

Figure 4.2-2 AM spectrum.

Transmission bandwidth is an important consideration for the comparison of mod-
ulation systems. Another important consideration is the average transmitted power

Sr = (K(1))
Upon expanding x2(¢) from Eq. (2), we have

Sr = 3AXL + 2ux(t) + u(t)) + 3AX[1 + px(t)]? cos 2w, t)
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whose second term averages to zero under the condition f, >=>> W. Thus, if
(x(t)) = 0and (x(t)) = S, then

Sy = SAYL + u%S,) o

The assumption that the message has zero average value (or no dc component) anti-
cipates the conclusion from Sect. 4.5 that ordinary AM is not practical for transmit-
ting signals with significant low-frequency content.

We bring out the interpretation of Eq. (6) by putting it in the form

ST = PC + 2PSb
where

P, = %Ag Py = %AEMZSX = %MZSX Pe (7)
The term P, represents the unmodulated carrier power, since S; = P, when u = 0;
the term Py, represents the power per sideband since, when u # 0, S; consists of the
power in the carrier plus two symmetric sidebands. The modulation constraint
|ux(t)| = 1requiresthat u?S, = 1, 0P, = 3P, and

Pe=S; = 2Py = %ST Py =351 (8)

ENT

Consequently, at least 50 percent (and often close to 2/3) of the total transmitted
power resides in a carrier term that’s independent of x(t) and thus conveys no mes-
sage information.

DSB Signals and Spectra

The “wasted” carrier power in amplitude modulation can be eliminated by setting
n = 1and suppressing the unmodulated carrier-frequency component. The resulting
modul ated wave becomes

X(t) = AX(t) cos wt (9)

which is called double-sideband-suppressed-carrier modulation—or DSB for
short. (The abbreviations DSB-SC and DSSC are also used.) The transform of
Eq. (9) issimply

X(f) =3AX(f—f) >0

and the DSB spectrum looks like an AM spectrum without the unmodul ated carrier
impulses. The transmission bandwidth thus remains unchanged at B; = 2W.

Although DSB and AM are quite similar in the frequency domain, the time-
domain picture is another story. Asillustrated by Fig. 4.2—3 the DSB envelope and
phase are

0 X(t) > 0

+180° x(t) < 0 1o

AO = AL o0 - {
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x(t)

Phase reversal

Figure 4.2-3 DSB waveforms.

The envel ope here takes the shape of |x(t)], rather than x(t), and the modul ated wave
undergoes aphase reversal whenever x(t) crosses zero. Full recovery of the message
requires knowledge of these phase reversals, and could not be accomplished by an
envel ope detector. Suppressed-carrier DSB thus involves more than just “ amplitude”
modulation and, as we'll see in Sect. 4.5, calls for a more sophisticated demodula-
tion process.

However, carrier suppression does put al of the average transmitted power into
the information-bearing sidebands. Thus

Sy = 2P, = 3AZS, (11)

which holds even when x(t) includes a DC component. From Egs. (11) and (8) we
see that DSB makes better use of the total average power available from a given
transmitter. Practical transmitters also impose a limit on the peak envelope power
A2_.. We'll take account of this peak-power limitation by examining the ratio
Puy/ A Under maximum modulation conditions. Using Eq. (11) with A, = A, for
DSB and using Eq. (7) with A, = 2A. for AM, we find that

s,/4 DSB

Poy/A2 = 12
s/ A {&MG AM withp = 1 h2)

Hence, if AZ,, isfixed and other factors are equal, a DSB transmitter produces four
times the sideband power of an AM transmitter.

The foregoing considerations suggest a trade-off between power efficiency and
demodulation methods.

DSB conserves power but requires complicated demodulation circuitry,
whereas AM requires increased power to permit simple envelope detection.
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EXAMPLE 4.2-1

Consider aradio transmitter rated for S; = 3 kW and A2, = 8 kW. Let the modu-
lating signal be atone with A, = 1so0 S, = A2/2 = 3. If the modulation is DSB,
the maximum possible power per sideband equals the lesser of the two values deter-
mined from Egs. (11) and (12). Thus

Py = 351 = L5KW Py = §A2,, = 1.0kW

which givesthe upper limit Py, = 1.0 kW.

If the modulation is AM with w =1, then EQq. (12) requires that
Py, = A2./32 = 0.25 kW. To check on the average-power limitation, we note from
Eq. (7) that Py, = P,/4 so St = P, + 2Py, = 6Py, and Py = S;/6 = 0.5 kW.
Hence, the peak power limit again dominates and the maximum sideband power is
Py, = 0.25 kW. Since transmission range is proportional to Py,, the AM path length
would be only 25 percent of the DSB path length with the same transmitter.

EXERCISE 4.2-1

Let the modulating signal be a square wave that switches periodically between
X(t) = +1and x(t) = —1. Sketch x(t) when the modulation isAM with u = 0.5,
AM with u = 1, and DSB. Indicate the envelopes by dashed lines.

EXERCISE 4.2-2

Suppose a voice signa has |X(t) | = 1 and S, = 1/5. Calculate the values of S;
and A2, needed to get P, = 10 W for DSB and for AM with u = 1.

Tone Modulation and Phasor Analysis
Setting x(t) = A, €os w,t in Eq. (9) gives the tone-modulated DSB waveform

X(t) = A A, COS wpt COS wt (13q)

AA AA
=%cos(wc—wm)t+ Lt

oS (w, + wpy)t

where we have used the trigonometric expansion for the product of cosines. Similar
expansion of Eq. (2) yields the tone-modulated AM wave

A A

A A
x(t) = A, cos wgt + CT Dl

™ C0S (w, — wy)t + 5 " oS (0, + wp)t (13b)
Figure 4.2—4 shows the positive-frequency line spectra obtained from Egs. (13a)
and (13b).

It followsfrom Fig. 4.2—4 that tone-modulated DSB or AM can be viewed as a
sum of ordinary phasors, one for each spectral line. This viewpoint prompts the use
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Figure 4.2-4 Line spectra for tone modulation. (a) DSB; (b) AM.

of phasor analysis to find the envel ope-and-phase or quadrature-carrier terms. Pha-
sor analysis is especially helpful for studying the effects of transmission distortion,
interference, and so on, as demonstrated in the example below.
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AM and Phasor Analysis

Let's take the case of tone-modulated AM with wA,, = 3 for convenience. The pha-
sor diagram is constructed in Fig. 4.2-5a by adding the sideband phasors to the tip
of the horizontal carrier phasor. Since the carrier frequency is f;, the sideband pha-
sorsat f, = f,, rotate with speeds of =f, relative to the carrier phasor. The resultant
of the sideband phasors is seen to be collinear with the carrier, and the phasor sum
equals the envelope A,(1 + 5 cos wyt).

But suppose a transmission channel completely removes the lower sideband, so
we get the diagram in Fig. 4.2-5b. Now the envel ope becomes

A(t) = [(A. + 3A, cos wpt)? + (BA, Sin wpt)?]Y2

= A VE + 2 cos wpt

from which the envelope distortion can be determined. Also note that the transmis-
sion amplitude distortion has produced atime-varying phase &(t).

EXAMPLE 4.2-2

Draw the phasor diagram for tone-modulated DSB with A,, = 1. Then find A(t) and
¢(t) when the amplitude of the lower sideband is cut in half.

EXERCISE 4.2-3

4.3 MODULATORSAND TRANSMITTERS

The sidebands of an AM or DSB signal contain new frequencies that were not pres-
ent in the carrier or message. The modulator must therefore be a time-varying or
nonlinear system, because LTI systems never produce new frequency components.
This section describes the operating principles of modulators and transmitters that
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Figure 4.2-5 Phasor diagrams for Example 4.2-2.

employ product, square-law, or switching devices. Detailed circuit designs are given
in the references cited in the Supplementary Reading.

Product Modulators

Figure 4.3-1a is the block diagram of a product modulator for AM based on
the equation X (t) = A, cos ot + uX(t)A; cos w.t. The schematic diagram in
Fig. 4.3-1b implements this modulator with an analog multiplier and an op-amp
summer. Of course, a DSB product modulator needs only the multiplier to produce
X(t) = X(t)A, cos w.t. In either case, the crucia operation is multiplying two ana-
log signals.

Analog multiplication can be carried out electronically in a number of different
ways. One popular integrated-circuit design isthe variable transconductance mul-
tiplier illustrated by Fig. 4.3-2. Here, input voltage v, is applied to a differential
amplifier whose gain depends on the transconductance of the transistors which, in
turn, varies with the total emitter current. Input v, controls the emitter current by
means of a voltage-to-current converter, so the differential output equals Kv,v,.
Other circuits achieve multiplication directly with Hall-effect devices, or indirectly
with log amplifiers and antilog amplifiers arranged to produce antilog (log v, +
log v,) = v,v,. However, most analog multipliers are limited to low power levelsand
relatively low frequencies.

Square-Law and Balanced Modulators

Signal multiplication at higher frequencies can be accomplished by the square-law
modulator diagrammed in Fig. 4.3-3a. The circuit realization in Fig. 4.3-3b uses a
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Multiplier
px() CO—=C—=x0
A cosw,t
(a)
X(t) o——
x Xe(t)
'
@)
(b)
Figure 4.3-1 (a) Product modulator for AM; (b) schematic diagram with analog multiplier.
+
+
Vou = Kvyvp
U1
U2
Figure 4.3-2 Circuit for variable transconductance multiplier.

field-effect transistor as the nonlinear element and aparallel RLC circuit asthefilter.
We assume the nonlinear element approximates the square-law transfer curve

Vot = 8yVjn + a2Ui2n
Thus, with v;,(t) = x(t) + cos wt,
) 2a,
Vou(t) = aX(t) + ax*(t) + a, cos’w.t + a,| 1 + a—x(t) COS w,t (1)
1

The last term is the desired AM wave, with A, = a; and u = 2a,/a,, provided it
can be separated from the rest.
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Figure 4.3-3 (a) Squarelaw modulator; (b) FET circuit realization.

As to the feasihility of separation, Fig. 4.3-4 shows the spectrum
Voul ) = F[va (1)] taking X(f) asin Fig. 4.1-1. Note that the x(t) term in Eq. (1)
becomes X * X(f ), which is bandlimited in 2W. Therefore, if f, > 3W, thereis no
spectral overlapping and the required separation can be accomplished by a bandpass
filter of bandwidth By = 2W centered at f.. Also note that the carrier-frequency
impulse disappears and we have a DSB wave if a; = 0—corresponding to the per-
fect square-law curve vy, = a, va.

Unfortunately, perfect square-law devices are rare, so high-frequency DSB is
obtained in practice using two AM modulators arranged in a balanced configuration
to cancel out the carrier. Figure 4.3-5 shows such a balanced modulator in block-
diagram form. Assuming the AM modulators are identical, save for the reversed sign
of oneinput, the outputs are A,[1 + 3x(t)] cos ot and A1 — 3x(t)] cos wt. Sub-
tracting one from the other yields x (t) = x(t)A. cos wt, as required. Hence, a bal-
anced modulator is a multiplier. You should observe that if the message has a dc
term, that component is not canceled out in the modulator, even though it appears at
the carrier frequency in the modulated wave.

Another modulator that is commonly used for generating DSB signals is the
ring modulator shown in Fig. 4.3-6. A square-wave carrier c(t) with frequency f,
causes the diodes to switch on and off. When c(t) > 0, the top and bottom diodes
are switched on, while the two inner diodes in the cross-arm section are off. In this
case, vo = X(t). Conversely, when c(t) < 0O, the inner diodes are switched on and
the top and bottom diodes are off, resulting in vy, = —X(t). Functionally, the ring



4.3 Modulators and Transmitters

Yad(f)
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Figure 4.3-4 Spectral components in Eq. (1).
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Figure 4.3-5 Balanced modulator.
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Figure 4.3-6 Ring modulator.

modulator can be thought of as multiplying x(t) and c(t). However because c(t) isa
periodic function, it can be represented by a Fourier series expansion. Thus

4 4 4
Voul(t) = ;x(t) Coswit — gx(t) cos 3wt + gx(t) cos 5wt — -

Observe that the DSB signal can be obtained by passing v,(t) through a bandpass
filter having bandwidth 2W centered at f.. This modulator is often referred to as a
double-balanced modulator sinceit is balanced with respect to both x(t) and c(t).

A balanced modulator using switching circuits is discussed in Example 6.1-1
regarding bipolar choppers. Other circuit realizations can be found in the literature.
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EXERCISE 4.3-1

Suppose the AM modulators in Fig. 4.3-5 are constructed with identical nonlinear
elements having vy = aw;, + awi + awd. Take vy, = *=x(t) + A, cos ot and
show that the AM signals have second-harmonic distortion but, nonethel ess, the final
output is undistorted DSB.

Switching Modulators

In view of the heavy filtering required, square-law modulators are used primarily for
low-level modulation, i.e., at power levelslower than the transmitted value. Substantial
linear amplification is then necessary to bring the power up to S;. But RF power
amplifiers of the required linearity are not without problems of their own, and it often
is better to employ high-level modulation if S;isto belarge.

Efficient high-level modulators are arranged so that undesired modulation prod-
ucts never fully develop and need not be filtered out. This is usually accomplished
with the aid of a switching device, whose detailed analysis is postponed to Chap. 6.
However, the basic operation of the supply-voltage modulated class C amplifier is
readily understood from itsidealized equivalent circuit and waveformsin Fig. 4.3-7.

The active device, typically atransistor, serves as a switch driven at the carrier
frequency, closing briefly every 1/f. seconds. The RLC load, called a tank circuit,
is tuned to resonate at f,, so the switching action causes the tank circuit to “ring”
sinusoidally. The steady-state load voltage in absence of modulation is then
v(t) = V cos w.t. Adding the message to the supply voltage, say via transformer,

-+
X(®) Tank
Active device circuit

1:N e — N
e
V — -[ U(t)
1 G
(a)
u(t)
T V + Nx(t)
1 / P
I t
(b)
Figure 4.3-7 Class C amplifier with supply-voltage modulation: (a) equivalent circuit; (b) out-

put waveform.
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Figure 4.3-8 AM transmitter with high-level modulation.

givesu(t) = [V + Nx(t)] cos w.t, whereN isthe transformer turnsratio. If V and N
are correctly proportioned, the desired modulation has been accomplished without
appreciable generation of undesired components.

A complete AM transmitter is diagrammed in Fig. 4.3-8 for the case of high-
level modulation. The carrier wave is generated by a crystal-controlled oscillator to
ensure stability of the carrier frequency. Because high-level modulation demands
husky input signals, both the carrier and message are amplified before modulation.
The modulated signal isthen delivered directly to the antenna.

4.4 SUPPRESSED-SIDEBAND
AMPLITUDE MODULATION

Conventional amplitude modulation is wasteful of both transmission power and band-
width. Suppressing the carrier reduces the transmission power. Suppressing one side-
band, in whole or part, reduces transmission bandwidth and leads to single-sideband
modulation (SSB) or vestigia-sideband modulation (V SB) discussed in this section.

SSB Signals and Spectra

The upper and lower sidebands of DSB are uniquely related by symmetry about
the carrier frequency, so either one contains all the message information. Hence,
transmission bandwidth can be cut in half if one sideband is suppressed along with
the carrier.

Figure 4.4-1a presents a conceptua approach to single-sideband modulation.
Here, the DSB signal from a balanced modulator is applied to a sideband filter that
suppresses one sideband. If the filter removes the lower sideband, the output spec-
trum X,(f ) consists of the upper sideband alone, asillustrated by Fig. 4.4-1b. We'll
label this a USSB spectrum to distinguish it from the LSSB spectrum containing
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Figure 4.4-1 Single-sideband modulation: (a) modulator; (b) USSB spectrum; (c) LSSB

spectrum.

*USSB is also USB, and LSSB is also LSB

just the lower sideband, as illustrated by Fig. 4.4-1c. The resulting signal in either
case has

Br =W S; =Py =3A%S, )

which follow directly from our DSB results.

Although SSB is readily visualized in the frequency domain, the time-domain
description is not immediately obvious—save for the special case of tone modula-
tion. By referring back to the DSB line spectrum in Fig. 4.2-4a, we see that remov-
ing one sideband line leaves only the other line. Hence,

Xo(t) = 3AA C0S (W, + wp)t (2)

in which the upper sign stands for USSB and the lower for LSSB, a convention
employed hereafter. Note that the frequency of atone-modulated SSB wave is offset
from f, by =f, and the envelope is a constant proportional to A,. Obvioudly, enve-
lope detection won't work for SSB.

To analyze SSB with an arbitrary message x(t), we'll draw upon the fact that the
sideband filter in Fig. 4.4-1a is a bandpass system with a bandpass DSB input
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Figure 4.4-2 Ideal sideband filters and lowpass equivalents: (a) USSB; (b) LSSB.

Xpp(t) = AcX(t) cos w,t and abandpass SSB output y,,,(t) = X.(t). Hence, we'll find
X (t) by applying the equivalent lowpass method from Sect. 4.1. Since x,,(t) has no
quadrature component, the lowpass equivalent input is simply

Xep(t) = 2AX()  Xep(F) = 3 AX(F)
The bandpass filter transfer function for USSB is plotted in Fig. 4.4—2a aong with
the equivalent lowpass function

Hepo(f) = Hypp(f + f)u(f + ) = u(f) —u(f — W)
The corresponding transfer functions for LSSB are plotted in Fig. 4.4-2b, where
Hep(f) = u(f+ W) —u(f)

Both lowpass transfer functions can be represented by

Hpo(f) =31 £sonf)  [fl=W (3)

You should confirm for yourself that this rather strange expression doesinclude both
parts of Fig. 4.4-2.

Multiplying Hg,(f) and Xg(f) yields the lowpass equivalent spectrum for
either USSB or LSSB, namely

Yoo f) = 2AL1 = sgnf)X(F) = ZALX(F) = (sgnf)X(f)]

Now recall that (—j sgnf)X(f) = F[X(t)], where X(t) is the Hilbert transform of
x(t) defined in Sect. 3.5. Therefore, ¥ [ (sgn f)X(f)] = jX(t) and

Yeolt) = ZA[X(1) + JX(1)]
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Finally, we perform the lowpass-to-bandpass transformation X (t) = yp(t) =
2 Rely,(t)e’!] to obtain
X(1) = FA[X(t) coswt F X(t) sin w t] (4)
Thisisour desired result for the SSB waveform in terms of an arbitrary message x(t).
Closer examination reveals that Eq. (4) has the form of a quadrature-carrier
expression. Hence, the in-phase and quadrature components are
Xa(t) = 3AX(1)  Xegt) = £3AX()
while the SSB envelopeis
A(t) = A VXA(L) + XA(t) (5)
The complexity of Egs. (4) and (5) makesit adifficult task to sketch SSB waveforms
or to determine the peak envelope power. Instead, we must infer time-domain prop-
erties from simplified cases such as tone modulation or pulse modulation.
EXAMPLE 4.4-1 SSB with Pulse Modulation

Whenever the SSB modulating signal has abrupt transitions, the Hilbert transform
X(t) contains sharp peaks. These peaks then appear in the envelope A(t), giving rise
to the effect known as envelope horns. To demonstrate this effect, let’s take the rec-
tangular pulse x(t) = u(t) — u(t — 7) so we can use X(t) found in Example 3.5-2.
The resulting SSB envelope plotted in Fig. 4.4-3 exhibitsinfinite peaksat t = 0 and
t = 7, the instants when x(t) has stepwise discontinuities. Clearly, a transmitter
couldn’t handle the peak envelope power needed for these infinite horns. Also note
the smears in A(t) before and after each peak.
We thus conclude that

SSB is not appropriate for pulse transmission, digital data, or similar applico-
tions, and more suitable modulating signals (such as audio waveforms) should
still be lowpass filtered before modulation in order to smooth out any abrupt
transitions that might cause excessive horns or smearing.

EXERCISE 4.4-1

Show that Egs. (4) and (5) agree with Eq. (2) when x(t) = A,, €0S w, t SOX(t) =
AnSinop,t

SSB Generation

Our conceptual SSB generation system (Fig. 4.4-1a) calls for the idedl filter func-
tions in Fig. 4.4-2. But a perfect cutoff at f = f, cannot be synthesized, so ared
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Figure 4.4-3 Envelope of SSB with pulse modulation.
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Figure 4.4-4 (a) Message spectrum with zero-frequency hole; (b) practical sideband filter.

sideband filter will either pass a portion of the undesired sideband or attenuate a por-
tion of the desired sideband. (The former is tantamount to vestigial-sideband modu-
lation.) Fortunately, many modulating signals of practical interest have little or no
low-frequency content, their spectra having “holes’ at zero frequency as shown in
Fig. 4.4-4a. Such spectra are typical of audio signals (voice and music), for exam-
ple. After translation by the balanced modulator, the zero-frequency hole appears as
a vacant space centered about the carrier frequency into which the transition region
of apractical sideband filter can be fitted. Figure 4.4-4b illustrates this point.

Asarule of thumb, the width 28 of the transition region cannot be much smaller
than 1 percent of the nominal cutoff frequency, which imposesthe limit f, < 200p.
Since 28 is constrained by the width of the spectral hole and f, should equal f, it
may not be possible to obtain a sufficiently high carrier frequency with a given mes-
sage spectrum. For these cases the modulation process can be carried out in two (or
more) steps using the system in Fig. 4.4-5 (see Prob. 4.4-5).
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Figure 4.4-5 Two-step SSB generation.
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Figure 4.4-6 Phase-shift method for SSB generation.

Another method for SSB generation is based on writing Eq. (4) in the form

X(t) = %x(t) cosw,t * %i(t) cos (w.t — 90°) (6)
This expression suggests that an SSB signal consists of two DSB waveforms with
quadrature carriers and modulating signals x(t) and X(t). Figure 4.4-6 diagrams a
system that implements Eq. (6) and produces either USSB or L SSB, depending upon
the sign at the summer. This system, known as the phase-shift method, bypasses the
need for sideband filters. Instead, the DSB sidebands are phased such that they can-
cel out ononesideof f, and add on the other side to create a single-sideband output.

However, the quadrature phase shifter Hq(f) is itself an unrealizable network
that can only be approximated — usually with the help of additional but identical
phase networks in both branches of Fig. 4.4—6. Approximation imperfections gener-
ally cause low-frequency signal distortion, and the phase-shift system works best
with message spectra of the typein Fig. 4.4-4a. A third method for SSB generation,
Weaver's method, which avoids both sideband filters and quadrature phase shiftersis
considered in Example 4.4-2.

EXAMPLE 4.4-2

Weaver’s SSB Modulator

Consider the modulator in Fig. 4.4—7 taking x(t) = cos 27 f, t with f,, < W. Then
X(t) = vy = v, wherev, isthesignal from the upper part of theloop and v, isfrom
the lower part. Taking these separately, the input to the upper LPF is
cos 27 f, t cos 2r 5. The output of LPF1 is multiplied by cos2m(f, = 9,
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Figure 4.4-7 Weaver’s SSB modulator.

resulting in v, = 3[ cos2m(f, = ¥ — W + f )t + cos2m(f, + ¥ + % — f)t).
The input to the lower LPF is cos 27 f,,t sin 277 %t . The output of LPF2 is multi-
plied by sin2m(f, + ¥)t, resulting in v, =3 cos2m(f, + ¥ — % + 1)
t— cos2m(f,+ % +% —f)t]. Taking the upper signs, x(t) =2 X 3cos
2u(f,+ % =W+ f,)t= 3 cos (o, + wy)t, which corresponds to USSB. Similarly,
we achieve L SSB by taking the lower signs, resulting in x (t) = 3 cos (0, — wp)t.
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Take x(t) = cos w,,t in Fig. 4.4—6 and confirm the sideband cancellation by sketch-
ing line spectra at appropriate points.

EXERCISE 4.4-2

VSB Signals and Spectra

Consider a modulating signal of very large bandwidth having significant low-fre-
guency content. Principal examples are analog television video, facsimile, and high-
speed data signals. Bandwidth conservation argues for the use of SSB, but practical
SSB systems have poor low-frequency response. On the other hand, DSB works quite
well for low message frequencies but the transmission bandwidth is twice that of
SSB. Clearly, acompromise modulation scheme is desired; that compromiseisV SB.

V' SB is derived by filtering DSB (or AM) in such afashion that one sideband is
passed amost completely while just a trace, or vestige, of the other sideband is
included. The key to VSB isthe sideband filter, atypical transfer function being that
of Fig. 4.4-8a While the exact shape of the response is not crucial, it must have odd
symmetry about the carrier frequency and arelative response of 1/2 at f,. Therefore,
taking the upper sideband case, we have

H(f) =u(f—f) —Hg(f—1f) f>0 (74d)
where
Ho(—f) = —Hg(f) and  Hxf)=0 [f|>8 (7b)
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H(f)

Figure 4.4-8 VSB filter characteristics.

as shown in Fig. 4.4-8b.

The VSB filter is thus a practical sideband filter with transition width 2.
Because the width of the partial sideband is one-half the filter transition width, the
transmission bandwidth is

Br=W+8~W ®)

However, in some applications the vestigial filter symmetry is achieved primarily at
the receiver, so the transmission bandwidth must be slightly larger than W + B.

When B << W, which is usually true, the VSB spectrum looks essentialy like
an SSB spectrum. The similarity also holdsin the time domain, and aV SB waveform
can be expressed as amodification of Eq. (4). Specificaly,

Xo(t) = 3A[X(t) cosw.t — X,(t) SN w,t] (9a)
where x,(t) isthe quadrature message component defined by

Xq(t) = X(t) + Xg(t) (9b)
with
B .
Xg(t) = jzj Hg(f)X(f)el" df (9¢)
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If B << W, VSB approximates SSB and x4(t) =~ 0; conversely, for large 8, VSB
approximates DSB and X(t) + x(t) = 0. The transmitted power Sy is not easy to
determine exactly, but is bounded by

3AZS, = S; = 3AZ%S, (10)

depending on the vestige width .

Finally, suppose an AM wave is applied to avestigial sideband filter. This mod-
ulation scheme, termed VSB plus carrier (VSB + C), is used for television video
transmission. The unsuppressed carrier allows for envelope detection, as in AM,
while retaining the bandwidth conservation of suppressed sideband. Distortionless
envelope modulation actually requires symmetric sidebands, but VSB + C can
deliver afair approximation.

To analyze the envelope of VSB + C, we incorporate a carrier term and modu-
lation index w in Eg. (9) which becomes

X(t) = A{[1 + ux(t)] cos wet — uXy(t) sin w,t} (11)

The in-phase and quadrature components are then

Xei(t) = A1+ ux(t)]  Xeg(t) = AcpXq(t)
so the envelopeis A(t) = [xZ(t) + x3(t) ]2 or
) 12) 12
At) = AJ1 + ,ux(t)]{l + {%} } (12

Hence, if w isnot too large and B not too small, then |ux,(t)| << 1and

At) = AJL + px(t)]

asdesired. Empirical studieswith typical signals are needed to find values for u and
B that provide a suitable compromise between the conflicting requirements of distor-
tionless envelope modulation, power efficiency, and bandwidth conservation.
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4.5 FREQUENCY CONVERSION AND DEMODULATION

Linear CW modulation—be it AM, DSB, SSB, or V SB—produces upward transla-
tion of the message spectrum. Demodulation therefore implies downward frequency
translation in order to recover the message from the modulated wave. Demodul ators
that perform this operation fall into the two broad categories of synchronous detec-
tors and envelope detectors.

Frequency translation, or conversion, is also used to shift amodulated signal to
a new carrier frequency (up or down) for amplification or other processing. Thus,
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translation is afundamental concept in linear modulation systems and includes mod-
ulation and detection as special cases. Before examining detectors, we'll look briefly
at the general process of frequency conversion.

Frequency Conversion

Frequency conversion starts with multiplication by a sinusoid. Consider, for exam-
ple, the DSB wave x(t) cos w,t. Multiplying by cos w,t, we get

X(t) €OS it COS w, t = 3xX(t) COS (w; + wy)t + 3X(t) €oS (w; — wp)t (1)

The product consists of the sum and difference frequencies, f, + f, and |f, — f,],
each modulated by x(t). We write |f, — f,| for clarity, since cos(w, — w;)t =
cos (w, — wy)t. Assuming f, # f,, multiplication has trandated the signal spectrato
two new carrier frequencies. With appropriate filtering, the signal is up-converted or
down-converted. Devices that carry out this operation are called frequency convert-
ers or mixers. The operation itself istermed heterodyning or mixing.

Figure 4.5-1 diagrams the essential components of a frequency converter.
Implementation of the multiplier follows the same line as the modul ator circuits dis-
cussed in Sect. 4.3. Converter applications include beat-frequency oscillators, regen-
erative frequency dividers, speech scramblers, and spectrum analyzers, in addition to
their rolesin transmitters and receivers.

EXAMPLE 4.5-1

Satellite Transponder

Figure 4.5-2 represents a simplified transponder in a satellite relay that provides
two-way communication between two ground stations. Different carrier frequencies,
6 GHz and 4 GHz, are used on the uplink and downlink to prevent self-oscillation
dueto positive feedback from the transmitting side to the receiving side. A frequency
converter trandates the spectrum of the amplified uplink signal to the passband of
the downlink amplifier.

EXERCISE 4.5-1

Sketch the spectrum of Eq. (1) for f, < f,,f, = f;, and f, > f;, taking X(f) asin
Fig. 4.1-1.

Multiplier

Input —»@—» Filter |—»

Oscillator

Figure 4.5-1 Frequency converter.
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2 GHz
4 GHz a a 6 GHz
Figure 4.5-2 Satellite fransponder with frequency conversion.
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sync
........... Ao Coswt

Figure 4.5-3 Synchronous product detection.

Synchronous Detection

All types of linear modulation can be detected by the product demodulator of
Fig. 4.5-3. The incoming signa is first multiplied with alocally generated sinusoid
and then lowpass-filtered, the filter bandwidth being the same as the message band-
width W or somewhat larger. It is assumed that the local oscillator (LO) is exactly
synchronized with the carrier, in both phase and frequency, accounting for the name
synchronous or coherent detection.

For purposes of analysis, we'll write the input signal in the generalized form

X(t) = [K¢ + K, X(t)] cos ot — K, X,(t) Sin w,t (2)
which can represent any type of linear modulation with proper identification of
Ke K, and x4(t)—i.e., take K, = O for suppressed carrier, x,(t) = O for double
sideband, and so on. Thefilter input is thus the product

X(t)ALo COS w, t
A .
= f {[Ke + K, x(©)] + [Ke + K, x(t)] €08 2wt — K, X4(t) Sin 20t}

Since f, > W, the double-frequency terms are rejected by the lowpassfilter, leaving
only the leading term

yo(t) = Kp[Kc + K, x(t)] (3)

where K, is the detection constant. The DC component K K, corresponds to the
translated carrier if present in the modulated wave. This can be removed from the
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Figure 4.5-4 VSB spectra. (a) Message; (b) modulated signal; (c) frequency-translated signal
before lowpass filtering.

output by ablocking capacitor or transformer—which also removes any DC term in
X(t) as well. With this minor qualification we can say that the message has been fully
recovered from X(t).

Although perfectly correct, the above manipulations fail to bring out what goes
on in the demodulation of VSB. Thisis best seen in the frequency domain with the
message spectrum taken to be constant over W (Fig. 4.5-4a) so the modulated spec-
trum takes the form of Fig. 4.5-4b. The downward-translated spectrum at the filter
input will then be as shown in Fig. 4.5-4c. Again, high-frequency terms are elimi-
nated by filtering, while the down-converted sidebands overlap around zero fre-
guency. Recalling the symmetry property of the vestigia filter, we find that the
portion removed from the upper sideband is exactly restored by the corresponding
vestige of the lower sideband, so X(f) has been reconstructed at the output and the
detected signal is proportional to x(t).

Theoretically, product demodulation borders on the trivial; in practice, it can be
rather tricky. The crux of the problem is synchronization—synchronizing an oscil-
lator to a sinusoid that is not even present in the incoming signal if carrier is sup-
pressed. To facilitate the matter, suppressed-carrier systems may have a small
amount of carrier reinserted in x(t) a the transmitter. This pilot carrier is picked
off at the receiver by anarrow bandpass filter, amplified, and used in place of an LO.
The system, shown in Fig. 4.5-5, is called homodyne detection. (Actualy, the
amplified pilot more often serves to synchronize a separate oscillator rather than
being used directly.)

A variety of other techniques are possible for synchronization, including phase-
locked loops (to be covered in Sect. 7.3) or the use of highly stable, crystal-
controlled oscillators at transmitter and receiver. Nonetheless, some degree of
asynchronism must be expected in synchronous detectors. It isthereforeimportant to
investigate the effects of phase and frequency drift in various applications. Thiswe'll
do for DSB and SSB in terms of tone modulation.



4.5 Frequency Conversion and Demodulation

X(t) + pilot carrier

) LPF —

Pilot |
filter |

Amp

Figure 4.5-5 Homodyne detection.

Let the local oscillator wave be cos (w.t + o't + ¢'), where o’ and ¢’ repre-
sent slowly drifting frequency and phase errors compared to the carrier. For double
sideband with tone modulation, the detected signal becomes

yo(t) = Kp €os oy, t cos (o't + ¢') (4)

K
?D [cos(w, + o' )t + cos(w, — w')t] ¢' =0

Kp €oS wy, t cos ¢’ w =0

Similarly, for single sideband with x.(t) = cos(w, * wy)t, we get
Yo(t) = Kp €os [w, t + (w't + ¢')] (5)

_ {KD cos (wy, ¥ ')t ' =0
Kp cos (wnt + ¢') w =0

All of the foregoing expressions come from simple trigonometric expansions.

Clearly, in both DSB and SSB, afrequency drift that's not small compared to W
will substantially alter the detected tone. The effect is more severein DSB since apair
of tones, f, + f"and f,, — f’, isproduced. If f’ << f,, this sounds like warbling or
the beat note heard when two musical instruments play in unison but dightly out of
tune. While only one tone is produced with SSB, this too can be disturbing, particu-
larly for music transmission. Toillustrate, the major triad chord consists of three notes
whose frequencies are related as the integers 4, 5, and 6. Frequency error in detection
shifts each note by the same absolute amount, destroying the harmonic relationship
and giving the music an East Asian flavor. (Note that the effect is not like playing
recorded music at the wrong speed, which preserves the frequency ratios.) For voice
transmission, subjective listener tests have shown that frequency drifts of less than
+10 Hz aretolerable, otherwise, everyone sounds rather like Donald Duck.

Asto phase drift, again DSB is more sensitive, for if ¢’ = +90° (LO and carrier
in quadrature), the detected signal vanishes entirely. With slowly varying ¢', we get
an apparent fading effect. Phase drift in SSB appears asdelay distortion, the extreme
case being when ¢’ = =90° and the demodulated signal becomes X(t). However, as

197



198

CHAPTER4 @  Linear CW Modulation

was remarked before, the human ear can tolerate sizeable delay distortion, so phase
drift isnot so serious in voice-signal SSB systems.
To summarize,

Phase and frequency synchronization requirements are rather modest for voice
transmission via SSB. But in data, facsimile, and video systems with suppressed
carrier, careful synchronization is a necessity. Consequently, television broad-
casting employs VSB + C rather than suppressed-carrier VSB.

Envelope Detection

Very little has been said here about synchronous demodulation of AM for the smple
reason that it's almost never used. True, synchronous detectors work for AM, but as
we will seein Sect. 10.2, synchronous detectors are best for weak signal reception.
However, in most cases, the envelope detector is much ssimpler and more suitable.
Because the envel ope of an AM wave has the same shape as the message, independ-
ent of carrier frequency and phase, demodulation can be accomplished by extracting
the envel ope with no worries about synchronization.

Envelope detection can only demodulate signals with a carrier.

Generally speaking, this means that the envelope detector will demodulate only
AM signals or, in the case of suppressed carrier systems (i.e., DSB, SSB), when a
carrier isinserted into the signal at the receiver end, as shown in Fig. 4.5-7.

A simplified envelope detector and its waveforms are shown in Fig. 4.5-6,
where the diode is assumed to be piecewise-linear. |n absence of further circuitry, the
voltage v would be just the half-rectified version of the input v;,,. But R;C, actsas a
lowpass filter, responding only to variationsin the peaks of v;, provided that

W <<

<
R.C; f ©

Thus, as noted earlier, we need f, => W so the envelope is clearly defined. Under
these conditions, C; discharges only dightly between carrier peaks, and v approxi-
mates the envel ope of v;,. More sophisticated filtering produces further improvement
if needed. Finally, R,C, acts as a DC block to remove the bias of the unmodulated
carrier component. Since the DC block distorts low-frequency message components,
conventional envelope detectors are inadequate for signals with important low-
frequency content.

The voltage v may also be filtered to remove the envelope variations and pro-
duce a DC voltage proportional to the carrier amplitude. This voltage in turn is fed
back to earlier stages of the receiver for automatic volume control (AVC) to com-
pensate for fading. Despite the nonlinear element, Fig. 4.5-6 is termed a linear
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(b)

Figure 4.5-6 Envelope detection: (a) circuit; (b) waveforms.

envelope detector; the output is linearly proportional to the input envel ope. Power-
law diodes can also be used, but then v will include terms of the form v2, v3, and so
on, and there may be appreciable second-harmonic distortion unless . << 1

Some DSB and SSB demodul ators empl oy the method of envelope reconstruc-
tion diagrammed in Fig. 4.5-7. The addition of alarge, locally generated carrier to
the incoming signal reconstructs the envelope for recovery by an envelope detector.
This method eliminates signal multiplication but does not get around the synchro-
nization problem, for the local carrier must be as well synchronized asthe LO in a
product demodul ator.

¥.(t < ) Envelope
0 detector

Figure 4.5-7 Envelope reconstruction for suppressed-carrier modulation.
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EXERCISE 4.5-2

Let theinput in Fig. 4.5-7 be SSB with tone modulation, and let the LO have a phase
error ¢’ but no frequency error. Use a phasor diagram to obtain an expression for the
resulting envelope. Then show that A(t) = Ao + 3 A; Ap COS (wpt = ¢') if
Ao = AA,.

EXERCISE 4.5-3

Envelope detection of suppressed carrier signals

Write a MATLAB program that emulates the envelope detector of Fig. 4.5-6a to
have it detect a 100 percent modulated AM signal and then aDSB signal. Show why
it is not suitable for detection of DSB signals. Use a single-tone message and plot
the message, modulated signal, and the envel ope detector output.

4.6 QUESTIONS AND PROBLEMS

Questions

1. Some areas of the world have atax on radios and televisions. How would you
determine if a particular homeowner isin compliance without entering his or
her property or tracking his or her purchases?

2. Why are TV and cell-phone signals assigned the VHF and UHF frequencies,
whereas AM broadcasters assigned the low-frequency bands?

3. Anoscillator circuit's frequency can be governed by either asingle crystal or a
RLC BPF network. List the pros and cons of each type.

4. In addition to what is already described in Sects. 4.5 and 7.3, describe at least
one way to synchronize the receiver’s product detector local oscillator to the
sender’s carrier frequency.

5. Which modulation type(s) is (are) suitable for transmitting messages with low
frequency or DC content?

6. What modulation type is highly prone to interception and why?
7. Describewhy f, < 100B as specified in Sect. 4.1, Eq. (18).

8. List at least one reason why atransmitter’s carrier frequency would vary over a
relatively short time period.

9. The product detector’s LO has a 500 Hz error while detecting an AM signal.
What will the receiver’s output sound like? What if the receiver islistening to a
DSB or SSB signal?

10. Given the condition in question 9, describe a mechanical analogy.
11. Why are class C amplifiers not suitable for DSB or SSB applications?
12. Under what conditions can aclass C amplifier be used for AM?
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13. Why isthetank circuit used in Fig. 4.3-7?
14. What difficulty is there with practical multiplier circuits?

15. Why would germanium diodes be preferred over silicon diodes for envelope
detectors?

16. Why would it be difficult to modulate and demodulate an ordinary light source
versus a laser source?

17. Why isthe parallel RC LPF for the envel ope detector in Fig. 4.5-6, used instead
of the series RC LPF of Fig. 3.1-2?

18. What two benefits do we gain from increasing the order of afilter?

Problems
4.1-1 Use aphasor diagram to obtain expressions for vj(t), v4(t), A(t), and ¢(t)
when vy,(t) = vy(t) cos ot + v,(t) cos (w.t + a). Then simplify A(t)
and ¢(t) assuming |v,(t)] << |v4(t)].
4.1-2 Do Prob. 4.1-1 with
Upp(t) = v4(t) €os (w, — wp)t + v,(t) Cos (w, + wp)t
4.1-3 Let v;(t) and vy(t) in Eq. (7) be lowpass signals with energy E; and E,,
respectively, and bandwidth W < f.. (a) Use Eq. (17), Sect. 2.2, to prove
that
J pr(t)dt =0
(b) Now show that the bandpass signal energy equals (E; + E,)/2.
4.1-4* Find v(t), vi(t) and vy(t) when f, = 1200 Hz and
{1 900=|f]< 1300
Vie(T) = {0 otherwise
4.1-5 Do Prob. 4.1-4 with
1 1100 = |f| < 1200
Vip(f) =41/2 1200 = | f| < 1350
0 otherwise
4.1-6 Let vy,(t) = 2z(t) cos [(we + wp)t + a]. Findvi(t) and vy(t) to obtain
vep(t) = 2(t) expj(Fwpt + a)
4.1-7 Derive Eq. (17b) by obtaining expressions for f, and f, from Eq. (17a).
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4.1-8

4.1-9

4.1-10*

4.1-11

4.1-12%

4.1-13%

4.1-14

4.1-15

4.1-16

4.1-17*

4.1-18
4.2-1

® Linear CW Modulation

Let f = (1 + 8)fy in Eq. (17a) and assume that |§| << 1. Derive the
handy approximation

H(f) = 1/[1 + j2Q(f — fo)/fo]
which holdsfor f > Oand |f — fo| << fo.

A stagger-tuned bandpass system centered a f=f, has
H(f) = 2Hy(f)H,(f), where Hy(f) is given by Eq. (17a) with
fo =1f. — b and Q = fy/2b while H,(f) is given by Eqg. (17a) with
fo = f. + band Q = fy/2b. Usethe approximation in Prob. 4.1-8 to plot
[H(f)| for f. — 2b < f < f, + 2b and compare it with a simple tuned
circuit having f, = f.and B = 2bV/2,

Use lowpass time-domain analysis to find and sketch y,,(t) when
Xpp(t) = A c0s wt u(t) and Hyy(f) = 1/[1 + j2(f — f;)/B] for f > 0,
which corresponds to the tuned-circuit approximation in Prob. 4.1-8.

Do Prob. 4.1-10 with Hy,(f) = II[(f — f,)/BJe ™% for f > 0, which
corresponds to an ideal BPF. Hint: See Eq. (9), Sect. 3.4.

The bandpass signd in Prob. 4.1-6 has z(t) = 2u(t) and is applied to an
ideal BPF with unit gain, zero time delay, and bandwidth B centered at f..
Use lowpass frequency-domain analysisto obtain an approximation for the
bandpass output signal when B << f,,.

Consider a BPF with bandwidth B centered at f., unit gain, and parabolic
phase shift (f) = (f — f,)?/b for f > 0. Obtain a quadrature-carrier
approximation for the output signa when |b| >> (B/2)? and x,(t)
= 2(t) cos w.t, where z(t) has a bandlimited lowpass spectrum with
w =%

Design a notch filter circuit using C = 300 pf that will block a trouble-
some 1080 kHz signal from entering your receiver’s input. State any
assumptions.

Restate the following signal so it isin quadrature carrier form:

y(t) = 20 cos 2710t cos(271000t) + cos 271010t.
Given thecircuit of Fig. 4.1-8, what is the bandwidth if R = 1000() and
C = 300 pf?IsL relevant and if not, why not?

What is the null-to-null bandwidth of an AM signal with a single-tone
message whose duration is 10 ms and whose frequency is 1 kHz?

Do Prob 4.1-17 for arelative bandwidth of — 21 dB.

Let x(t) = cos 27f,tu(t) with f, << f.. Sketch x,(t) and indicate the
envel ope when the modulation isAM with u < 1, AM withn > 1, and
DSB. Identify locations where any phase reversals occur.
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4.2-3*
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4.2-7
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4.2-9
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4.2-11*

4.2-12
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4.6 Questions and Problems

Do Prob. 4.2-1 with x(t) = 0.5u(t) — 1.5u(t — T) with T >> 1/f..

If x(t) = cos 200, find By and S; for the AM modulated signal assum-
ing A, = 10 and u = 0.6. Repeat for DSB transmission.

The signa x(t) = sinc? 40t is to be transmitted using AM with . < 1.
Sketch the double-sided spectrum of x(t) and find B;.

Calculate the transmitted power of an AM wave with 100 percent tone
modulation and peak envelope power 32 kW.

Consider aradio transmitter rated for 4 kW peak envelope power. Find
the maximum allowable value of u for AM with tone modulation and

Consider a50 MHz DSB system that was originally a 100 percent AMed
with SX = 0.5. The DSB signal hasS; = 1000 W and carrier suppression
is — 40 dB. Assuming the signal is radiating from a directional antenna
with g = 10 dB, how does the information power compare to the carrier
power at adistance of 1.6 km?

Consider aAM broadcast station that will be transmitting music. What
order of LPF is required on the audio section to ensure that signals out-
side By = 10 kHz will be reduced by 40 dB, but that voice signals will
not be attenuated by more than 3 dB?

The multitone modulating signal x(t) = 3K(cos8xt + 2 cos 20mt) is
input to an AM transmitter with w = 1 and f, = 1000. Find K so that
X(t) is properly normalized, draw the positive-frequency line spectrum of
the modulated wave, and cal culate the upper bound on 2P, /S;.

Do Prob. 4.2-9 with x(t) = 2K(cos 8=t + 1) cos 207t.

Thesignal x(t) = 4 sin 5t istransmitted by DSB. What range of carrier
frequencies can be used?

The signal in Prob. 4.2-11 is transmitted by AM with w = 1. Draw the
phasor diagram. What is the minimum amplitude of the carrier such that
phase reversals don’t occur?

The signal x(t) = cos 2740t + 3 cos 290t is transmitted using DSB.
Sketch the positive-frequency line spectrum and the phasor diagram.

The signal x(t) = 3 cos 27770t + 3 cos 27120t is input to the square-law
modulator system given in Fig. 4.3-3a with a carrier frequency of 10 kHz.
Assumeu,,, = av;, + a3 (a) Givethe center frequency and bandwidth
of the filter such that this system will produce a standard AM signal, and
(b) determine values of a, and a, such that A, = 10and u = 3.

A modulation system with nonlinear elements produces the signal
(1) = aK?(v(t) + A cos wit)? — b(v(t) — A cos wt)% If the carrier
has frequency f. and v(t) = x(t), show that an appropriate choice of K
produces DSB modulation without filtering. Draw a block diagram of
the modulation system.
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4.3-3

4.3-4

4.3-5

4.3-6

4.3-7*

4.4-1
4.4-2

4.4-3

4.4-4

4.4-5

4.4-6

4.4-7*

® Linear CW Modulation

Find K and v(t) so that the modulation system from Prob. 4.3-2 pro-
duces AM without filtering. Draw a block diagram of the modulation
system.

A modulator similar to the onein Fig. 4.3-3a has anonlinear element of
the form vy, = aw;, + agvd. Sketch V ,(f) for the input signal in
Fig. 4.1-1. Find the parameters of the oscillator and BPF to produce a
DSB signal with carrier frequency f..

Design in block-diagram form an AM modulator using the nonlinear ele-
ment from Prob. 4.3—4 and a frequency doubler. Carefully label all com-
ponents and find a required condition on f, in terms of W to realize this
system.

Find the output signal in Fig. 4.3-5 when the AM modul ators are unbal-
anced, so that one nonlinear element has v, = av;, + a3 + ags,
while the other hasv,,, = by, + bv? + bgd.

The signal x(t) = 20sinc®400t is input to the ring modulator in
Fig. 4.3-6. Sketch the spectrum of v, and find the range of values of f,
that can be used to transmit this signal.

Derive Eq. (4) from y(t).
Take the transform of Eq. (4) to obtain the SSB spectrum

X(f) = 2AL[L = sgn(f — f)IX(f = )
+[1 % sgn(f + f)IX(F + f)}.

Confirm that the expression for X.(f) in Prob. 4.4-2 agrees with Figs.
4.4-1b and 4.4-1c.

Find the SSB envelope when x(t) = coswpt + § €0s 3w,t which
approximates a triangular wave. Sketch A(t) taking A, = 81 and com-
pare with x(t).

The system in Fig. 4.4-5 produces USSB with f, = f; + f, when the
lower cutoff frequency of the first BPF equals f; and the lower cutoff
frequency of the second BPF equals f,. Demonstrate the system’s opera-
tion by taking X(f) asin Fig. 4.4—4a and sketching spectra at appropriate
points. How should the system be modified to produce L SSB?

Suppose the system in Fig. 4.4-5 is designed for USSB as described in
Prob. 4.4-5. Let x(t) be a typical voice signal, so X(f) has negligible
content outside 200 < | f | < 3200 Hz. Sketch the spectra at appropri-
ate points to find the maximum permitted value of f, when the transition
regions of the BPFs must satisfy 28 = 0.01f,.

The signal x(t) = cos27100t + 3 cos 27200t + 2 cos 27400t is
input to an LSSB amplitude modulation system with a carrier frequency
of 10 kHz. Sketch the double-sided spectrum of the transmitted signal.
Find the transmitted power S; and bandwidth By.
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4.4-9

4.4-10

4.4-11

4.4-12

4.4-13

4.4-14*

4.4-15

4.5-1

4.5-2

4.5-3

4.5-4

4.6 Questions and Problems

Draw the block diagram of a system that would generate the LSSB sig-
nal in Prob. 4.4-7, giving exact values for filter cutoff frequencies and
oscillators. Make sure your filters meet the fractional bandwidth rule.

Consider a message with x(t) = cos 271000t + 3 cos 2771500t
+ 2 cos 2771800t and Ac = 10. Sketch the positive output spectra if the
modul ation were 100 percent modulated AM, DSB, LSSB, and USSB.

Show mathematically how a product detector can be used to detect a
USSB signal.

Suppose the carrier phase shift in Fig. 4.4—6 is actually —90° + 6§,
where & is a small angular error. Obtain approximate expressions for
X.(t) and A(t) at the output.

Obtain an approximate expression for x.(t) at the output in Fig. 4.4-6
when x(t) = cosw,t and the quadrature phase shifter has
IHo(fo)| = 1 — € and arg Hy(f,) = —90° + 8, where € and & are
small errors. Write your answer as a sum of two sinusoids.

The tone signal x(t) = A, cos 2= f,tisinput to aVSB + C modulator.
The resulting transmitted signal is

x(t) = A, cos 2 fit + 3aA, A, cos[2m(f, + f)t]
+3(1 — a)Ay A, cos [2m(f, — f)t].

Sketch the phasor diagram assuming a > 3. Find the quadrature com-
ponent Xg(t).

Obtain an expression for VSB with tone modulation taking f,, < B so
theVSB filter hasH(f, = f,) = 0.5 = a. Then show that x(t) reduces
to DSB whena = 0 or SSB whena = *=0.5.

Obtain an expression for VSB with tone modulation taking f, > B.
Construct the phasor diagram and find A(t).

Given a bandpass amplifier centered at 66 MHz, design a television
transponder that receives a signal on Channel 11 (199.25 MHz) and
transmits it on Channel 4 (67.25 MHz). Use only one oscillator.

Do Proh. 4.5-1 with the received signal on Channel 44 (651.25 MHZz)
and the transmitted signal on Channel 22 (519.25 MHz).

The system in Fig. 4.4-5 becomes a scrambler when the first BPF passes
only the upper sideband, the second oscillator frequency is, and the second
BPFisreplaced by an LPFwith B = W. Sketch the output spectrum taking
X(f) asin Fig. 4.4-4a, and explain why this output would be unintelligible
when x(t) isavoice signal. How can the output signa be unscrambled?

Take x(t) asin Eq. (2) and find the output of a synchronous detector
whose local oscillator produces 2 cos (w.t + ¢), where ¢ is a constant
phase error. Then write separate answers for AM, DSB, SSB, and VVSB
by appropriate substitution of the modulation parameters.

205



206

CHAPTER 4
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4.5-6

4.5-7

4.5-8

4.5-9

4.5-10

4.5-11

4.5-12

® Linear CW Modulation

The transmitted signal in Prob. 4.4-13 is demodulated using envelope
detection. Assuming 0 = a = 1, what values of a minimize and maxi-
mize the distortion at the output of the envelope detector?

The signa x(t) = 2 cos 4t is transmitted by DSB. Sketch the output
signal if envelope detection is used for demodulation.

Design a system whereby a 7 MHz LSSB signal is converted to a 50
MHz USSB one. Justify your design by sketching the output spectra
from the various stages of your system.

Consider a DSB signal where the message consists of *+ 1s. Design a
demodulator using anonlinear element in theform of vy, = a,v;, + a3
without using a local oscillator. Express the solution in block diagram
form and justify your answer by describing the signal output of each
block.

Design and AM demodulator using a nonlinear element in the form of
Vo = a1Vi, + a,v2 without using alocal oscillator or multiplier. Express
the solution in block diagram form and justify your answer by describing
the signal output of each block. You may assume [x(t) << 1.

You wish to send a sequence of zeros and ones by turning on and off the
carrier. Thus, x,(t) = m(t) cos 27 ft with m(t) = 0 or 1. Show how
either an envelope or product detector can be used to detect your signal.

Suppose the DSB waveform from Prob. 4.5-6 is demodulated using a
synchronous detector that has a square wave with a fundamental fre-
quency of f, asthelocal oscillator. Will the detector properly demodul ate
the signal ? Will the same be trueif periodic signals other than the square
wave are substituted for the oscillator?

Sketch a half-rectified AM wave having tone modulation with uA, = 1
and f,, = W. Use your sketch to determine upper and lower limits on the
time constant R,C, of the envelope detector in Fig. 4.5-6. From these
limits find the minimum practical value of f./W.



chapter

5

Angle CW Modulation

CHAPTER OUTLINE

5.1 Phase and Frequency Modulation

PM and FM Signals Narrowband PM and FM  Tone Modulation  Multitone and Periodic Modulation
5.2 Transmission Bandwidth and Distortion

Transmission Bandwidth Estimates Linear Distortion Nonlinear Distortion and Limiters
5.3  Generation and Detection of FM and PM

Direct FM andVCOs Phase Modulators and Indirect FM  Triangular-Wave FM  Frequency Detection
5.4  Interference

Interfering Sinusoids Deemphasis and Preemphasis Filtering FM Capture Effect

207




208 CHAPTER5 @  Angle CW Modulation

wo properties of linear CVWW modulation bear repetition at the outset of this chapter: the modulated spectrum is

basically the translated message spectrum and the fransmission bandwidth never exceeds twice the message
bandwidth. A third property, derived in Chap. 10, is that the destination signalfo-noise ratio [S/Np is no better
than baseband transmission and can be improved only by increasing the transmitted power. Angle or exponential
modulation differs on all three counts.

In confrast to linear modulation, angle modulation is a nonlinear process; therefore, it should come as no surprise
that the modulated spectrum is not related in a simple fashion to the message spectrum. Moreover, it turns out that the
fransmission bandwidth is usually much greater than twice the message bandwidth. Compensating for the bandwidth
liability is the fact that exponential modulation can provide increased signaHo-noise rafios without increased transmitted
power. Exponential modulation thus allows you to frade bandwidlth for power in the design of a communication sysfem.
Moreover, unlike linear modulation, in which the message information resides in the signal's amplitude, with angle mod-
ulation, the message information resides where the signal crosses the fime axis or the zero crossings.

We begin our study of angle modulation by defining the two basic types, phase modulation (PM) and frequency
modulation [FM). We'll examine signals and spectra, investigate the transmission bandwidth and disfortion problem,
and describe typical hardware for generation and defection. The analysis of inferference at the end of the chapter brings
out the value of FM for radio broadcasting and sets the stage for our consideration of noise in Chap. 10.

OBJECTIVES

After studying this chapter and working the exercises, you should be able to do each of the following:

Find the instantaneous phase and frequency of a signal with exponential modulation (Sect. 5.1).

Construct the line spectrum and phasor diagram for FM or PM with tone modulation (Sect. 5.1).

Estimate the bandwidth required for FM or PM transmission (Sect. 5.2).

Identify the effects of distortion, limiting, and frequency multiplication on an FM or PM signal (Sect. 5.2).
Design an FM generator and detector appropriate for an application (Sect. 5.3).

Use aphasor diagram to analyze interference in AM, FM, and PM (Sect. 5.4).

S o

5.1 PHASE AND FREQUENCY MODULATION

This section introduces the concepts of instantaneous phase and frequency for the
definition of PM and FM signals. Then, since the nonlinear nature of exponential
modulation precludes spectral analysisin general terms, we must work instead with
the spectra resulting from particular cases such as narrowband modulation and tone
modulation.

PM and FM Signals

Consider a CW signal with constant envel ope but time-varying phase, so
X(t) = A; cos[wt + &(1)] (1)
Upon defining the total instantaneous angle

0(t) = wt + B(t)
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we can express X(t) as

X(t) = A, cosfy(t) = A, Re[e% ]

Hence, if 6.(t) contains the message information x(t), we have a process that may be
termed either angle modulation or exponential modulation. We'll use the latter
name because it emphasizes the nonlinear relationship between x(t) and x(t).

As to the specific dependence of 6.(t) on x(t), phase modulation (PM) is
defined by

B(t) £ gux(t)  py = 180° 2)
S0 that
X(t) = A, cos[wt + dp X(t)] 3)

These equations state that the instantaneous phase varies directly with the modul at-
ing signal. The constant ¢, represents the maximum phase shift produced by x(t),
since we're still keeping our normalization convention [x(t)| = 1. The upper bound
b, = 180° (or 7r radians) limits ¢(t) to the range +180° and prevents phase ambigu-
ities—after all, in the relative time series there’'s no physical distinction between
angles of +270 and —90°, for instance. The bound on ¢, is analogousto the restric-
tionu = 1in AM, and ¢, can justly be called the phase modulation index, or the
phase deviation.

The rotating-phasor diagram in Fig. 5.1-1 helpsinterpret phase modulation and
leads to the definition of frequency modulation. The total angle 6.(t) consists of the
constant rotational term wt plus ¢(t), which corresponds to angular shifts relative to
the dashed line. Consequently, the phasor’s instantaneous rate of rotation in cycles
per second or Hz will be

1. 1 .
f(t) = o 0ut) =+ 5 () “

in which the dot notation stands for the time derivative, that is, $(t) = de(t)/dt, and
so on. We call f(t) the instantaneous frequency of x.(t). Although f(t) is measured in
hertz, it should not be equated with spectral frequency. Spectral frequency f is the
independent variable of the frequency domain, whereas instantaneous frequency f(t)
is atime-dependent property of waveforms with exponential modulation.

N (1)

PO\ oty

,/’\ wct

Figure 5.1-1 Rotating-phasor representation of exponential modulation.
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In the case of frequency modulation (FM), the instantaneous frequency of the
modul ated wave is defined to be

ft) 21, +fxt) f, <f 5)

so f(t) varies in proportion with the modulating signal. The proportionality constant
f,, called the frequency deviation, represents the maximum shift of f(t) relative to
the carrier frequency f.. The upper bound f, < f, simply ensures that f(t) > 0. How-
ever, we usualy want fy, << f; in order to preserve the bandpass nature of x(t).

Equations (4) and (5) show that an FM wave has ¢(t) = 27f, x(t), and integra-
tion yields the phase modulation

o(t) = ZWfAJ X(A) dA + (to) t=t, (6a)

0

If ty is taken such that ¢(t;) = O, we can drop the lower limit of integration and use
the informal expression

t
$(t) = 2waJ x(A) dA (6b)
The FM waveform is then written as
t
X(t) = A cos {wct + 27TfAJ X(A) d/\} (7)

But it must be assumed that the message has no DC component so the above inte-
grals do not diverge when t — . Physically, aDC termin x(t) would produce a con-
stant carrier-frequency shift equal to fo(x(t)).

A comparison of Egs. (3) and (7) implies little difference between PM and FM,
the essential distinction being the integration of the message in FM. Moreover,
nomenclature notwithstanding, both FM and PM have both time-varying phase and
frequency, as underscored by Table 5.1-1. These relations clearly indicate that, with
the help of integrating and differentiating networks, a phase modulator can produce
frequency modulation and vice versa. In fact, in the case of tone modulation it's
nearly impossible visually to distinguish FM and PM waves.

On the other hand, a comparison of angle modulation with linear modulation
reveal s some pronounced differences. For one thing,

The amplitude of an angle-modulated wave is constant.

Therefore, regardless of the message x(t), the average transmitted power is
Sr=3A (®)
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Table 5.1-1 Comparison of PM and FM

Instantaneous phase ¢(t) Instantaneous frequency f(t)
1 ;
P $ax(t) fot o - daX()
T
t

For another, the zero crossings of an exponentially modul ated wave are not periodic,
though they do follow the equations for the phase as above, whereas they are aways
periodic in linear modulation. Indeed, because of the constant-amplitude property of
FM and PM, it can be said that

The message resides in the zero crossings alone, providing the carrier frequency
is large.

Finally, since exponential modulation is a nonlinear process,

The modulated wave does not resemble the message waveform.

Figure5.1-2 illustrates some of these points by showing typical AM, FM, and PM
waves. As amental exercise you may wish to check these waveforms against the cor-
responding modulating signals. For FM and PM this is most easily done by consider-
ing the instantaneous frequency rather than by substituting x(t) in Egs. (3) and (7).
Again, note from Fig. 5.1-2 that the message information for a PM or FM signal
resides in the carrier’s zero crossings versus in the amplitude of the AM signal.

Despite the many similarities of PM and FM, frequency modulation turns out to
have superior noise-reduction properties and thus will receive most of our attention.
To gain a qualitative appreciation of FM noise reduction, suppose a demodulator
simply extracts the instantaneous frequency f(t) = f, + fux(t) from x.(t). The demod-
ulated output is then proportiona to the frequency deviation f,, which can be
increased without increasing the transmitted power S;. If the noise level remains
constant, increased signal output is equivalent to reduced noise. However, noise
reduction does require increased transmission bandwidth to accommodate large fre-
guency deviations.

Ironically, frequency modulation was first conceived as a means of bandwidth
reduction, the argument going somewhat as follows: If, instead of modulating the
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Moda N\ /N
odulating \/

signa

AR AR AfaaAf
A AR
SR WA

Figure 5.1-2 lllustrative AM, FM, and PM waveforms.

carrier amplitude, we modulate the frequency by swinging it over a range of, say,
+50 Hz, then the transmission bandwidth will be 100 Hz regardless of the message
bandwidth. Aswe' Il soon see, this argument has a serious flaw, for it ignoresthe dis-
tinction between instantaneous and spectral frequency. Carson (1922) recognized
the fallacy of the bandwidth-reduction notion and cleared the air on that score.
Unfortunately, he and many others also felt that exponential modulation had no
advantages over linear modulation with respect to noise. It took some time to over-
come this belief but, thanks to Armstrong (1936), the merits of exponential modula-
tion were finaly appreciated. Before we can understand them quantitatively, we
must address the problem of spectral analysis.

EXERCISE 5.1-1

Suppose FM had been defined in direct analogy to AM by writing x.(t) = A, coS w(t) t
with w (t) = w1 + ux(t)]. Demonstrate the physical impossibility of this definition by
finding f(t) when x(t) = cos wt.

Narrowband PM and FM

Our spectral analysis of exponential modulation starts with the quadrature-carrier
version of Eq. (1), namely

Xo(t) = Xgi(t) COS et — Xq(t) SN it (9)
where

Xci(t) = Ac COS(,‘b(t) = Ac 1- %(bz(t) + - (10)
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Kalt) = AcSIn (1) = A 9(1) — 3 0 + -

Now we impose the simplifying condition

lp(t)| << Lrad (11q)
S0 that

Xi(t) = A Xeq(t) = Ach(t) (11b)

Then it becomes an easy task to find the spectrum x.(f) of the modulated wave in
terms of an arbitrary message spectrum X(f).
Specificaly, the transforms of Egs. (9) and (11b) yield
x(f) = %ACS(I‘ )+ JEAan F—f) >0 (124)
in which
daX(f) PM

ifX(0)/F M 124

O(f) = Fo(H)] = {

The FM expression comes from the integration theorem applied to ¢(t) in Eq. (6).
Based on Eq. (12), we conclude that if x(t) has message bandwidth W << f,,, then
X:(t) will be a bandpass signal with bandwidth 2W. But this conclusion holds only
under the conditions of Eq. (11). For larger values of |¢(t)], the terms ¢2(t), H3(t), . . .
cannot beignored in Eq. (10) and will increase the bandwidth of x.(t). Hence, Egs. (11)
and (12) describe the specia case of narrowband phase or frequency modulation
(NBPM or NBFM), which approximatesan AM signal with alarge corner component.

213

NBFM Spectra

An informative illustration of Eq. (12) is provided by taking x(t) = sinc 2Wt, so
X(f) = (2w) I1(f/2W). The resulting NBPM and NBFM spectra are depicted in
Fig. 5.1-3. Both spectra have carrier-frequency impulses and bandwidth 2W. How-
ever, the lower sideband in NBFM is 180° out of phase (represented by the negative
sign), whereas both NBPM sidebands have a 90° phase shift (represented by j).
Except for the phase shift, the NBPM spectrum looks just like an AM spectrum with
the same modulating signal.

EXAMPLE 5.1-1

Use the second-order approximations x(t) =~ A1 — 3 ¢%(t)] and Xeq(t) = Acp(t) to
find and sketch the components of the PM spectrum when x(t) = sinc 2Wt.

EXERCISE 5.1-2

Tone Modulation

The study of FM and PM with single-tone modulation can be carried out jointly by the
simple expedient of alowing a90° difference in the modulating tones. For if we take
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A2
jAc d)A
4w
f
0 v fo-W  f,  f+W
(a)
A2
Ac fA Ac fA
4w 2 4w 2
As f
0 fo-W  f,  f+W
(b)

Figure 5.1-3 Narrowband modulated spectra with x{f)f = 5 sinc 2WHt. (a) PM: (b) FM.

X(t) = {Amsinwmt PM
A,cosw,t FM

then Egs. (2) and (6) both give

o(t) = Bsinwyt (13q)
where

g2 {¢AAm PM (13b)

(An/fn)fs  FM

The parameter 8 serves as the modulation index for PM or FM with tone modula-
tion. This parameter equals the maximum phase deviation and is proportiona to
the tone amplitude A, in both cases. Note, however, that 8 for FM is inversaly pro-
portional to the tone frequency f,,, since the integration of cos w,,t yields (Sin wt)/wpy,.
Narrowband tone modulation requires 8 << 1, and Eq. (9) simplifiesto

X(t) = A;coswt — AB Sin w,t Sin wt

AB AB

5 Cos (we — o)t + ?cos (0 + wp)t (14)

~ A, COSw.t —

The corresponding line spectrum and phasor diagram are shown in Fig. 5.1-4.
Observe how the phase reversal of the lower sideband line produces a component
perpendicular or quadrature to the carrier phasor. This quadrature relationship is
precisely what's needed to create phase or frequency modulation instead of ampli-
tude modulation.
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Ac \
SN pA
AB Py (4
fo— Tt I 2 \ $(1) ? fm % fn
0—A f x
I ¢ +1, ¢
_AB
2
(a) (b)
Figure 5.1-4 NBFM with tone modulation: (a) line spectrum; (b) phasor diagram.

Now, to determine the line spectrum with an arbitrary value of the modulation
index, we drop the narrowband approximation and write

X(t) = A[cos ¢(t) cosmct — sin ¢(t) sin wt] (15)

= AJcos (B sinwyt) coswt — sin (B Sin wyt) Sin o]

Then we use the fact that, even though x.(t) is not necessarily periodic, the terms
cos (B sin w,t) and sin (B sin w,t) are periodic and each can be expanded as a
trigonometric Fourier series with fy = f,,. Indeed, a well-known result from applied
mathematics states that

o0

cos(Bsinwyt) = Jo(B) + D, 234(B) cOSnwpt (16)
sin(Bsinwyt) = > 2J3,(B) Sin Nyt

where n is positive and

éz:L-TJ g iBsinA-m) 4y (17)

—T

In(B)

The coefficients J,(8) are Bessel functions of thefirst kind, of order n and argument 3.
With the aid of Eq. (17), you should encounter little difficulty in deriving the
trigonometric expansions given in Eq. (16).

Substituting Eqg. (16) into Eq. (15) and expanding products of sines and cosines
finally yields

X(t) = AJdy(B) cos wt (18q)

+ A 3,(B)[C0S (@, + Nan)t — €08 (@, — Nap)t]
n odd

+ i A Ji(B)[cos (w, + Nwy)t + cos(w, — Nwy)t]

neven
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Alternatively, taking advantage of the property that J_,(8) = (—1)"J,(B), we get the
more compact but |ess informative expression

X(t) = A. D Ji(B) cos(w, + Nyt (18b)
In either form, Eq. (18) is the mathematical representation for a constant-amplitude
wave whose instantaneous frequency varies sinusoidally. A phasor interpretation, to
be given shortly, will shed more light on the matter.
Examining Eq. (18), we see that

The FM spectrum consists of a carrierfrequency line plus an infinite number of
sideband lines at frequencies f, = nf,. All lines are equally spaced by the mod-
ulating frequency, and the odd-order lower sideband lines are reversed in
phase or inverted relative to the unmodulated carrier. In a positive-frequency
line spectrum, any apparent negative frequencies (f. + nf, < O) must be fold-
ed back to the positive values |f, + nf,|.

A typical spectrum isillustrated in Fig. 5.1-5. Note that negative frequency compo-
nents will be negligible as long as pf,, << f.. In general, the relative amplitude of a
lineat f, + nf,, isgiven by J.,(8), so before we can say more about the spectrum, we
must examine the behavior of Bessel functions.

Figure 5.1-6a shows a few Bessel functions of various order plotted versus the
argument B. Several important properties emerge from this plot.

1. Therelative amplitude of the carrier line Jo(B) varies with the modulation index
and hence depends on the modulating signal. Thus, in contrast to linear modul a-
tion, the carrier-frequency component of an FM wave “contains’ part of the
message information. Nonethel ess, there will be spectrain which the carrier line
has zero amplitude since Jo(8) = 0 when 8 = 2.4, 5.5, and so on.

Jo(B)
J1(B)
J2(B) | J2(B) J3(B)
1 1 I f
! fC fC + fm
—J3(B)
fo + 2f,
-41(8)

Figure 5.1-5 Line spectrum of FM with single-tone modulation.
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2. The number of sideband lines having appreciable relative amplitude aso
depends on B. With B8 << 1 only J, and J; are significant, so the spectrum will
consist of carrier and two sideband linesasin Fig. 5.1-4a. Butif 8 > 1, there
will be many sideband lines, giving a spectrum quite unlike linear modulation.

3. Large B implies a large bandwidth to accommodate the extensive sideband
structure, agreeing with the physical interpretation of large frequency deviation.

Some of the above points are better illustrated by Fig. 5.1-6b, which gives J,(8)
as afunction of n/gB for various fixed values of 8. These curves represent the “ enve-
lope” of the sideband lines if we multiply the horizontal axis by gf,, to obtain theline

(a)

n/p

(b)

Figure 5.1-6 Plots of Bessel functions: (a) fixed order n, variable argument 8; (b) fixed argu-
ment B, variable order n.
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Table 5.1-2 Selected values of J,(8)

n J,(0.1)  J.,(0.2) Jn(0.5) Jy(1.0)  J.(20) J,(5.0) Jn(10) n
0 1.00 0.99 0.94 0.77 0.22 —0.18 -0.25 0
1 0.05 0.10 0.24 0.44 0.58 —0.33 0.04 1
2 0.03 0.11 0.35 0.05 0.25 2
3 0.02 0.13 0.36 0.06 3
4 0.03 0.39 —0.22 4
5 0.26 -0.23 5
6 0.13 —0.01 6
7 0.05 0.22 7
8 0.02 0.32 8
9 0.29 9
10 0.21 10
11 0.12 11
12 0.06 12
13 0.03 13
14 0.01 14

position nf,, relative to f.. Observein particular that al J,,(8) decay monotonically for
n/B > 1landthat|J.(8)| << 1if |n/g| >> 1. Table5.1-2lists selected values of J,(B),
rounded off at the second decimal place. Blanksin the table correspond to conditions
where |J,(8)| < 0.01.

Line spectra drawn from the data in Table 5.1-2 are shown in Fig. 5.1-7, omit-
ting the sign inversions. Part (a) of the figure has B increasing with f,, held fixed, and
applies to FM and PM. Part (b) applies only to FM and illustrates the effect of
increasing B by decreasing f,, with A, f, held fixed. The dashed lines help bring out
the concentration of significant sideband lines within the range f, = Bf, as B8
becomes large.

For the phasor interpretation of x.(t) in Eq. (18), we first return to the narrow-
band approximation and Fig. 5.1-4. The envelope and phase constructed from the
carrier and first pair of sideband lines are seen to be

2 2 2
At) = \/Af + <2§Acsin wmt> ~ A{l + BZ - %COSZwmt]

(B/2)A; Sin wpt

(1) xarctan{z A } =~ Bsinw,t

Thus the phase variation is approximately as desired, but there is an additional
amplitude variation at twice the tone frequency. To cancel out the latter we should
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Figure 5.1-7 Single-tone-modulated line spectra: (a) FM or PM with £, fixed; (b) FM with
Anfy fixed.

include the second-order pair of sideband linesthat rotate at = 2f,, relative to the car-
rier and whose resultant is collinear with the carrier. While the second-order pair vir-
tually wipes out the undesired amplitude modulation, it also distorts ¢(t). The phase
distortion is then corrected by adding the third-order pair, which again introduces
amplitude modulation, and so on ad infinitum.

When al spectral lines are included, the odd-order pairs have a resultant in
quadrature with the carrier that provides the desired frequency modulation plus
unwanted amplitude modulation. The resultant of the even-order pairs, being
collinear with the carrier, corrects for the amplitude variations. The net effect isthen
as illustrated in Fig. 5.1-8. The tip of the resultant sweeps through a circular arc
reflecting the constant amplitude A..
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Tone Modulation With NBFM

The narrowband FM signal x.(t) = 100 cos [27 5000t + 0.05 sin 27r 200t] istrans-
mitted. To find the instantaneous frequency f(t) we take the derivative of 6(t)

1 .
f(t) = = 6(t
(t) =5 0(t)
1
= 5 [2m 5000 + 0.05(2 200) cos 2 2001]
ar

= 5000 + 10 cos2m 200t

EXAMPLE 5.1-2
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From f(t) we determine that f, = 5000 Hz, f, = 10, and x(t) = cos 27 200t. There
are two ways to find 8. For NBFM with tone modulation we know that
d(t) = B sinw,t. Since x.(t) = A, cos[wt + ¢(t)], we can seethat 8 = 0.05. Alter-
natively we can calculate

From f(t) we find that A,f, = 10 and f,, = 200 so that 8 = 10/200 = 0.05 just as
we found earlier. The line spectrum has the form of Fig. 5.1-4a with A, = 100 and
sidelobes A8 /2 = 2.5. The minor distortion from the narrowband approximation shows
up in the transmitted power. From the line spectrum we get S = 3(—2.5)2 +
3(100)2 + 3(2.5)? = 5006.25 versus S; = 3 A2 = $(100)? = 5000 when there are
enough sidelobes so that there is no amplitude distortion.

EXERCISE 5.1-3

Consider tone-modulated FM with A, = 100, A,, f, = 8 kHz, and f,, = 4 kHz. Draw
the line spectrum for f, = 30 kHz and for f, = 11kHz.

Multitone and Periodic Modulation

The Fourier seriestechnique used to arrive at Eq. (18) also can be applied to the case
of FM with multitone modulation. For instance, suppose that x(t) = A; cos w,t +
A, cos w,t, where f; and f, are not harmonically related. The modulated wave isfirst
written as

X(t) = A(cosay CoSa, — Sin @y SiNa,) COS wt

Even-order

Odd-order sidebands

sidebands

Figure 5.1-8 FM phasor diagram for arbitrary 3.
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—(Sina; COSa, + COSa; SN ay) SN wt]

where a; = B; Sin w;t, B; = A;fy/f;, and so on. Terms of the form cos a4, Sin ¢4, and
so on, are then expanded according to Eq. (16), and after some routine manipulations
we arrive at the compact result

x(® = A S S 3B In(B2) COS (@, + Ny + M)t 19)

n=—00 M=—00

Thistechnique can be extended to include three or more nonharmonic tones; the pro-
cedure is straightforward but tedious.

To interpret Eq. (19) in the frequency domain, the spectral lines can be divided
into four categories: (1) the carrier line of amplitude A, Jo(81) Jo(B2); (2) sideband
linesat f, = nf; duetof; alone; (3) sideband lines at f, = mf, due to the f, tone alone;
and (4) sideband lines at f, = nf;, = mf, which appear to be beat-frequency modula-
tion at the sum and difference frequencies of the modulating tones and their
harmonics. (This last category would not occur in linear modulation where simple
superposition of sideband linesistherule.) A double-tone FM spectrum showing the
various types of spectral linesis given in Fig. 5.1-9 for f; << f, and 8; > B,. Under
these conditions there exists the curious property that each sideband line at f, = mf,
looks like another FM carrier with tone modulation of frequency f;.

When the tone frequencies are harmonically related—meaning that x(t) is a
periodic waveform—then ¢(t) is periodic and so is e}V, The latter can be expanded
in an exponential Fourier series with coefficients

1 .
C, = TJ expjlé(t) — nwg t] dt (20q)
0 To
Therefore
x(t) = A, Re{ _E cnek“’c*”‘”ﬂ’)‘] (20b)

and A |c,| equals the magnitude of the spectral lineat f = f, + nf,.

f.— 2f, f.-1, f. fo+ fy o+ 2f,
foof, fo+ fy

Figure 5.1-9 Double-tone FM line spectrum with f; < £ and 31 > (3,.
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EXAMPLE 5.1-3

f(t)

FM With Pulse-Train Modulation

Let x(t) be a unit-amplitude rectangular pulse-train modulating function with period
To, pulse duration 7, and duty cycle d = 7/T,. After removing the DC component
<X(t§> = d, the instantaneous frequency of the resulting FM wave is as shown in
Fig. 5.1-10a. The time origin is chosen such that ¢(t) plotted in Fig. 5.1-10b has a
peak value ¢, = 27 fy7 at t = 0. We've aso taken the constant of integration such
that ¢(t) = 0. Thus

da(1 + t/7) —7<t<0

¢(t):{ da[1 — t/(To — 7)] 0<t<Ty—r

which defines the range of integration for Eq. (20a).
The evaluation of ¢, isanontrivial exercise involving exponential integrals and
trigonometric relations. The final result can be written as

. [sin (B — n)d N (1 -d)snaz(B — n)d i+
n (B — n) (B — n)d + an
Bd

= msinc (B — n)d ej”(ﬁ*”)d

wherewe've let
B = faTo = fy/To

which plays arole similar to the modulation index for single-tone modulation.

Figure 5.1-10c plots the magnitude line spectrum for the caseof d = 3, B = 4,

and A, = 1. Note the absence of symmetry here and the peaking around f = f, — 3 f,

fo+ (L-d)f,

$(®)

081
06| fa
0.4} fo

bp=2mfyT
N T I I I I I I
| t 0 f

Figure 5.1-10

U
-

0

To-7 To fc—%fA f, fc+%fA

(b) (c)

FM with pulserain modulation: (a) instantaneous frequency; (b) phase; () line spectrum for d = 3.
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and f = f, + 3 f,, the two values taken on by the instantaneous frequency. The fact
that the spectrum contains other frequencies as well underscores the difference
between spectral frequency and instantaneous frequency. The same remarks apply for
the continuous spectrum of FM with asingle modul ating pul se—demonstrated by our
resultsin Example 2.5-1.

223

5.2 TRANSMISSION BANDWIDTH AND DISTORTION

The spectrum of asignal with exponential modulation hasinfinite extent, in general.
Hence, generation and transmission of pure FM requires infinite bandwidth, whether
or not the message is bandlimited. But practical FM systems having finite bandwidth
do exist and perform quite well. Their success depends upon the fact that, suffi-
ciently far away from the carrier frequency, the spectral components are quite small
and may be discarded. True, omitting any portion of the spectrum will cause
distortion in the demodulated signal; but the distortion can be minimized by keeping
all significant spectral components.

We'll formulate in this section estimates of transmission bandwidth require-
ments by drawing upon results from Sect. 5.1. Then we'll look at distortion pro-
duced by linear and nonlinear systems. Topics encountered in passing include the
concept of wideband FM and that important piece of FM hardware known as a
limiter. We'll concentrate primarily on FM, but minor modifications make the
analyses applicable to PM.

Transmission Bandwidth Estimates

Determination of FM transmission bandwidth boils down to the question: How
much of the modulated signal spectrum is significant? Of course, significance stan-
dards are not absolute, being contingent upon the amount of distortion that can be
tolerated in a specific application. However, rule-of-thumb criteria based on studies
of tone modulation have met with considerable success and lead to useful approxi-
mate relations. Our discussion of FM bandwidth requirements therefore begins with
the significant sideband lines for tone modul ation.

Figure 5.1-6 indicated that J,(8) falls off rapidly for |n/g| > 1, particularly if
B >> 1. Assuming that the modulation index 8 is large, we can say that |J,(8)| is
significant only for |n| = 8 = A,, fu/f,,. Therefore, all significant lines are contained
in the frequency range f, = B f,, = f, £ A,, f, a conclusion agreeing with intuitive
reasoning. On the other hand, suppose the modulation index is small; then all side-
band lines are small compared to the carrier, since Jo(8) =>> J,.o(8) when g << 1.
But we must retain at least the first-order sideband pair, else there would be no fre-
quency modulation at all. Hence, for small B, the significant sideband lines are con-
tained in f, = f,.

To put the above observations on a quantitative footing, all sideband lines hav-
ing relative amplitude |J,(8)| > e are defined as being significant, where e ranges
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from 0.01 to 0.1 according to the application. Then, if [Jy(8)| > € and |3y + 1(8)| > e,
there are M significant sideband pairs and 2M + 1 significant lines all told. The
bandwidth is thus written as

B = 2M(B)f, M(B) =1 (1)

since the lines are spaced by f,, and M depends on the modulation index 8. The con-
dition M(B) = 1 has been included in Eq. (1) to account for the fact that B cannot be
less than 2f,,.

Figure 5.2—1 shows M as a continuous function of 8 for e = 0.01 and 0.1.
Experimental studies indicate that the former is often overly conservative, while the
latter may result in small but noticeable distortion. Values of M between these two
bounds are acceptable for most purposes and will be used hereafter.

But the bandwidth B is not the transmission bandwidth By; rather it's the mini-
mum bandwidth necessary for modulation by atone of specified amplitude and fre-
guency. To estimate By, we should cal cul ate the maximum bandwidth required when
the tone parameters are constrained by A, = 1 and f,, = W. For this purpose, the
dashed linein Fig. 5.2—1 depicts the approximation

M(B) =B + 2 (2)

which falls midway between the solid lines for 8 = 2. Inserting Eq. (2) into Eq. (1)
gives

AmfA
B~ 28+ 2)f,=2 2= 2(Afy + 2F,)

m

20

15 /4 §%
”
7’
4
/|
10 2
,/
1
4) e=01
/B+2
2 /
1 /
0.2 05 1 15 2 5 10 15 20
B (or D)

Figure 5.2-1 The number of significant sideband pairs as a function of B (or D).
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Now, bearing in mind that f, is a property of the modulator, what tone produces the
maximum bandwidth? Clearly, it is the maximum-amplitude—-maximum-frequency
tone having A, = 1 and f,, = W. The worst-case tone-modulation bandwidth is then

By~ 2(f, + 2W)  if B > 2

Note carefully that the corresponding modulation index 8 = f,/W is not the maxi-
mum value of B but rather the value which, combined with the maximum modul at-
ing frequency, yields the maximum bandwidth. Any other tone having A,, < 1 or
f, < W will require less bandwidth even though 8 may be larger.

Finally, consider a reasonably smooth but otherwise arbitrary modulating sig-
nal having the message bandwidth W and satisfying the normalization convention
[x(t)| = 1. We'll estimate B; directly from the worst-case tone-modulation analysis,
assuming that any component in x(t) of smaller amplitude or frequency will require
a smaller bandwidth than B. Admittedly, this procedure ignores the fact that super-
position is not applicable to exponential modulation. However, our investigation of
multitone spectra has shown that the beat-frequency sideband pairs are contained
primarily within the bandwidth of the dominating tone alone, as illustrated by
Fig. 5.1-9.

Therefore, extrapolating tone modulation to an arbitrary modulating signal, we
define the deviation ratio

f
w

1>

D (3)

which equals the maximum deviation divided by the maximum modulating fre-
quency, analogous to the modulation index of worst-case tone modulation. The
transmission bandwidth required for x(t) is then

B; = 2M(D)W (4)

where D istreated just like B to find M(D), say from Fig. 5.2—1.
Lacking appropriate curves or tables for M(D), there are several approximations
to By that can be invoked. With extreme values of the deviation ratio we find that

5 _{2DW=2fA D> 1
T low D1

paralleling our results for tone modulation with 8 very large or very small. Both of
these approximations are combined in the convenient relation
D>1
Br=2(fy + W) = 2(D + 1)W D < 1 (5)
known as Carson’s rule. Perversely, the mgjority of actua FM systems have
2 < D < 10, for which Carson’s rule somewhat underestimates the transmission
bandwidth. A better approximation for equipment design is then

Br=~2(f, +2W)=2D +2)W D > 2 (6)
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which would be used, for example, to determine the 3 dB bandwidths of FM ampli-
fiers. Note that Carson’s rule overestimates B; for some applications using the nar-
rowband approximation. The bandwidth of the transmitted signal in Example 5.1-2
is400 Hz, whereas Eq. (5) estimates By = 420 Hz.

Physically, the deviation ratio represents the maximum phase deviation of an
FM wave under worst-case bandwidth conditions. Our FM bandwidth expressions
therefore apply to phase modulation if we replace D with the maximum phase devi-
ation ¢, of the PM wave. Accordingly, the transmission bandwidth for PM with arbi-
trary x(t) is estimated to be

Br = 2M(¢0)W  M(¢y) =1 (7a)
or
B =~ 2(¢ + L)W (7h)

which is the approximation equivalent to Carson’s rule. These expressions differ
from the FM casein that ¢, isindependent of W.

You should review our various approximations and their conditions of validity.
In deference to most of the literature, we'll usually take By as given by Carson’srule
in Egs. (5) and (7b). But when the modulating signal has discontinuities—a rectan-
gular pulsetrain, for instance—the bandwidth estimates becomeinvalid and we must
resort to brute-force spectral analysis.

EXAMPLE 5.2-1

Commercial FM Bandwidth

Commercial FM broadcast stations in the United States are limited to a maximum
frequency deviation of 75 kHz, and modulating frequencies typically cover 30 Hz to
15 kHz. Letting W = 15 kHz, the deviation ratio is D = 75 kHz/15 kHz = 5 and
Eq. (6) yields By = 2(5 + 2) X 15 kHz = 210 kHz. High-quality FM radios have
bandwidths of at least 200 kHz. Carson’s rule in EqQ. (5) underestimates the band-
width, giving By = 180 kHz.

If asingle modulating tonehas A, = 1 and f,, = 15 kHz, then 8 = 5, M(B) = 7,
and Eq. (1) showsthat B = 210 kHz. A lower-frequency tone, say 3 kHz, would result
in alarger modulation index (8 = 25), agreater number of significant sideband pairs
(M = 27), but asmaller bandwidth sinceB = 2 X 27 X 3kHz = 162 kHz.

EXERCISE 5.2-1

Calculate B;/W for D = 0.3, 3, and 30 using Egs. (5) and (6) where applicable.

Linear Distortion

The analysis of distortion produced in an FM or PM wave by alinear network is an
exceedingly knotty problem—so much so that several different approachesto it have
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been devised, none of them easy. Panter (1965) devotes three chapters to the subject
and serves as areference guide. Since we're limited here to afew pages, we can only
view the “tip of the iceberg.” Nonetheless, we'll gain some valuable insights regard-
ing linear distortion of FM and PM.

Figure 5.2-2 represents an angle-modulated bandpass signal x.(t) applied to a
linear system with transfer function H(f), producing the output y.(t). The constant-
amplitude property of x.(t) allows us to write the lowpass equivalent input

Xep(t) = 3 ALY (8)
where ¢(t) contains the message information. In terms of X,(f), the lowpass equiva-
lent output spectrum is

Yo(f) = H(f + fou(f + f)X(f) (9)
L owpass-to-bandpass transformation finally gives the output as
ye(t) = 2 Re [y,(t)e] (10)

While this method appears simple on paper, the calculations of X,(f) = F[x(t)]
and y,(t) = F[Y,(f)] generally prove to be major stumbling blocks. Computer-
aided numerical techniques are then necessary.

One of the few cases for which Egs. (8)—(10) yield closed-form results is the
transfer function plotted in Fig. 5.2-3. The gain |H(f)| equals K, at f, and increases
(or decreases) linearly with slope K,/f,; the phase-shift curve corresponds to carrier

X(t) ——=  H(f)  ——y(t)

Figure 5.2-2 Angle modulation applied to a linear system.

H(f) (Amplitude)
IH(T)) o
\ Ko ’
|
|
oV T f
S~
-2t
agH()” omet i
(Phase)

Figure 5.2-3 Transfer function of system in Fig. 5.2-2.
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delay t, and group delay t;, as discussed in Example 4.1-1. The lowpass equivalent
of H(f) is

K .
H(f + f)u(f+f) = (KO + ]ff)e‘ﬂ”(tofcﬂl”

c

and Eq. (9) becomes

- i Ki _
Yep(f) = Ke o to[xep(f)efﬂrrtlf] + 71 e o t°[(j27T f)xep(f)eszwtlf]

Joe

Invoking the time-delay and differentiation theorems for [ Y ,,(f)] we see that

ot Ki oot
Yep(t) = Ko ox(t — ;) + T g% Xt — 1)
C

where

) af1 .. i e
Xfp(t - tl) = dt{zAceW(t tl):| = EAcd)(t - tl)ejqﬁ(t W

obtained from Eq. (8).
Inserting these expressionsinto Eq. (10) gives the output signal

Ye(t) = A(t) cos[a(t — to) + (t — t))] (1)
which has atime-varying amplitude

At) = A{KO + % bt — tl)} [11b)

In the case of an FM input, ¢(t) = 27f, x(t) so

Kifa
fe

Equation (12) has the same form as the envel ope of an AM wave with u = K; f,/Kq f..
We thus conclude that [H(f)| in Fig. 5.2-3 produces FM-to-AM conversion, along
with the carrier delay t, and group delay t; produced by arg H(f). In practice the AM
variations are minimized by the use of alimiter and filter in the FM receiver, as will
be shown shortly. (By the way, a second look at Example 4.2-2 reveal s that amplitude
distortion of an AM wave can produce AM-to-PM conversion.)

FM-to-AM conversion does not present an insurmountable problem for FM or
PM transmission, as long as ¢(t) suffers no ill effects other than time delay. We
therefore ignore the amplitude distortion from any reasonably smooth gain curve.
But delay distortion from a nonlinear phase-shift curve can be quite severe and must
be equalized in order to preserve the message information.

A simplified approach to phase-distortion effectsis provided by the quasi-static
approximation which assumes that the instantaneous frequency of an FM wave with
f, => W varies so slowly compared to /W that x,(t) looks more or less like an

Alt) = A{KO + X(t — tl)} (12)
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ordinary sinusoid at frequency f(t) = f. + fy x(t). For if the system’s response to a
carrier-frequency sinusoid is

ye(t) = AJH(f,)| cos[wt + arg H(f;)]

and if x,(t) has aslowly changing instantaneous frequency f(t), then

Ye(t) = AJH[f(t)]| cos {wt + ¢(t) + arg H[F(1)]} (13)
It can be shown that this approximation requires the condition

1 d2H(f)

H) 07 e = 7

max (14)

| (1))

inwhich |$(t)| = 4 %,W for tone-modulated FM with f,, = W. If H(f) representsa
single-tuned bandpass filter with 3 dB bandwidth B, then the second term in Eq. (14)
equals 8/B? and the condition becomes 4f,W/B? << 1 which is satisfied by the trans-
mission bandwidth requirement B = B;.

Now suppose that Eq. (14) holds and the system has a nonlinear phase shift such
as arg H(f) = af? where « is a constant. Upon substituting f(t) = f, + ¢(t)/27
we get

af a

42

agH[f()] = af?+ —d(t) + —5 o4t

c
o

Thus, the total phase in Eq. (13) will be distorted by the addition of ¢(t) and ¢(t).
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Let |H(f)|= 1 and arg H(f) = —2at,(f — f.). Show that Egs. (11) and (13) give the
same result with ¢(t) = B sin w,t provided that w,t; << 7.

EXERCISE 5.2-2

Nonlinear Distortion and Limiters

Amplitude distortion of an FM wave produces FM-to-AM conversion. Here we'll
show that the resulting AM can be eliminated through the use of controlled
nonlinear distortion and filtering.

For purposes of analysis, let theinput signal in Fig. 5.2—4 be

vin(t) = A(t) cosb(t)

where6.(t) = ot + ¢(t) and A(t) isthe amplitude. The nonlinear element is assumed
to be memoryless—meaning no energy storage—so the input and output are related
by an instantaneous nonlinear transfer characteristic vy, = T[v;n]. We'Il also assume
for convenience that T[O] = 0.

Although v;,(t) is not necessarily periodic in time, it may be viewed as a
periodic function of 6, with period 27r. (Try to visualize plotting v;, versus 6, with
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Nonlinear element

Vin(t) —>C>— Vout(t) =T [vin(0)]

Figure 5.2-4 Nonlinear system to reduce envelope variations (AM).

time held fixed.) Likewise, the output is a periodic function of 6. and can be
expanded in the trigonometric Fourier series

Vou = 2, |23,/ cos(n6, + arga,)
n=1 (154)

where

1 .
a, = j T [vin]e ™do,
2m ), (15b)

Thetimevariablet does not appear explicitly here, but v, dependsont viathetime-
variation of 6.. Additionally, the coefficients a, may be functions of time when the
amplitude of v;, hastime variations.

But we'll first consider the case of an undistorted FM input, so A(t) equals the
constant A, and all the a, are constants. Hence, writing out Eq. (15a) term by term
with t explicitly included, we have

vou(t) = [2a,| cos[w .t + o(t) + argay] (16)

+ |2a,| cos [2w .t + 24(t) + arga,]

This expression reveals that the nonlinear distortion produces additional FM waves
at harmonics of the carrier frequency, the nth harmonic having constant amplitude
|2a,,| and phase modulation n¢(t) plus a constant phase shift arg a,..

If these waves don’'t overlap in the frequency domain, the undistorted input
can be recovered by applying the distorted output to a bandpass filter. Thus, we
say that FM enjoys considerable immunity from the effects of memoryless nonlin-
ear distortion.

Now let’s return to FM with unwanted amplitude variations A(t). Those varia-
tions can be flattened out by an ideal hard limiter or clipper whose transfer char-
acteristic is plotted in Fig. 5.2-5a. Figure 5.2-5b shows a clipper circuit that uses a
comparator or high-gain operational amplifier such that any input voltages greater
or less than zero cause the output to reach either the positive or negative power sup-
ply rails.

The clipper output looks essentially like asquare wave, since T[v;,] = Vo, sgnv;,
and

{ + V, vy, > 0
U =
out -V, vin<O
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Uout
+V, + —+
Vin +
— VY = f
(a) (b)
Figure 5.2-5 Hard limiter: (a) transfer characteristic; (b) circuit realization with Zener diodes.

The coefficients are then found from Eg. (15b) to be

2Vy/mmn n=159,...
a, = —2Vy/mn n=3711,...
0 n=246,...

which are independent of time because the amplitude A(t) = 0 does not affect the
sign of v;,. Therefore,

Voul(t) = %cos[wct + ¢t)] — % cos [3wct + 3p(t)] + - (17)
and bandpass filtering yields a constant-amplitude FM wave if the components of
vou(t) have no spectral overlap. Incidentally, this analysis lends support to the previ-
ous statement that the message information resides entirely in the zero-crossings of
an FM or PM wave.

Figure 5.2-6 summarizes our results. The limiter plus BPF in part a removes
unwanted amplitude variations from an AM or PM wave, and would be used in a
receiver. The nonlinear element in part b distorts a constant-amplitude wave, but the
BPF passes only the undistorted term at the nth harmonic. This combination acts as
afrequency multiplier if n > 1, and isused in certain types of transmitters.

A cos gt + H(0)] -+ ST 2 cosfact+ o)
(a)

A, cos[wgt + ()] /||/ a?';i -~ [2a,] cos [nwt + ne(t) + arg a,]
(b)

Figure 5.2-6 Nonlinear processing circuits: (a) amplitude limiter; (b) frequency multiplier.
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EXAMPLE 5.2-1

FM Limiter

Consider the FM waveformin Fig. 5.2—7a. Figure 5.2—7b isthe version that has been
corrupted by additive noise. We input the signal of Fig. 5.2—7b to the limiter of
Fig. 5.2-5, which outputs the square-wave signal shown in Fig. 5.2—7c. Although the
square wave has some glitches, the amplitude variations have largely been removed.
We then input the square-wave signal to a bandpass filter, giving us a “cleaned up”
FM signal as shown in Fig. 5.2—7d. The filter not only removes the high-frequency
components of the square wave but also *“ smooths out” the glitches. While the result-
ant signal in Fig. 5.2—7d may have some slight distortion, as compared to the origi-
na signal in Fig. 5.2—7a, most of the noise of Fig. 5.2—7b has been removed.

o MAAA A

o HHHHAEIEH

A WAWAWA VA [N\ N ¢
YAAVAAVAR VA4 —/ U U\

Figure 5.2-7 FM signal processing using a hard limiter: (a) FM signal without noise; (b) FM
signal corrupted by noise; (c) output from limiter; (d) output from bandpass filter.

5.3 GENERATION AND DETECTION OF FM AND PM

The operating principles of several methods for the generation and detection of
exponential modulation are presented in this section. Other FM and PM systems that
involve phase-locked loops will be mentioned in Sect. 7.3. Additional methods and
information regarding specific circuit designs can be found in the radio electronics
texts cited at the back of the book.

When considering equipment for angle modulation, you should keep in mind
that the instantaneous phase or frequency varies linearly with the message wave-
form. Devices are thus required that produce or are sensitive to phase or frequency
variationin alinear fashion. Such characteristics can be approximated in a variety of
ways, but it is sometimes difficult to obtain a suitably linear relationship over awide
operating range.

On the other hand, the constant-amplitude property of angle modulation is a def-
inite advantage from the hardware viewpoint. For one thing, the designer need not
worry about excessive power dissipation or high-voltage breakdown due to extreme
envelope peaks. For another, the relative immunity to nonlinear distortion allowsthe
use of nonlinear electronic devices that would hopelessly distort a signal with linear
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modulation. Consequently, considerable latitude is possible in the design and selec-
tion of equipment. As a case in point, the microwave repeater links of long-distance
telephone communications employ FM primarily because the wideband linear
amplifiers required for amplitude modulation are unavailable or too inefficient at
microwave frequencies.

Direct FM and VCOs

Conceptualy, direct FM is straightforward and requires nothing more than a voltage-
controlled oscillator (V CO) whose oscillation frequency has alinear dependence on
applied voltage. It's possible to modulate a conventional tuned-circuit oscillator by
introducing a variable-reactance element as part of the LC parallel resonant circuit.
If the equivalent capacitance has a time dependence of the form

C(t) = Co — CX(t)

and if Cx(t) is “small enough” and “slow enough,” then the oscillator produces
X:(t) = A. cos (t) where

. 1 1 C —Y2
%) = Vicw) \/Lco[1 G X(t)}

Letting w, = 1/V'LC, and assuming |(C/Co)x(t)] << 1, the binomial series expan-
sion gives f,(t) = w[1 + (C/2C,)x(t)], or

t
0,(t) = 2mft + 2m < ch X(A)dA (1)
2C,
which constitutes frequency modulation with f, = (C/2C)f.. Since |x(t)| = 1, the
approximation is good to within 1 percent when C/C, < 0.013 so the attainable fre-
quency deviation is limited by

C
fy = 27(:0 f. = 0.006 f, (2)

This limitation quantifies our meaning of Cx(t) being “small” and seldom imposes a
design hardship. Similarly, the usual condition W << f, ensures that Cx(t) is “slow
enough.”

Figure 5.3-1 shows a tuned-circuit oscillator with a varactor diode biased to get
Cx(t). The input transformer, RF choke (RFC), and DC block serve to isolate the
low-frequency, high-frequency, and DC voltages. The major disadvantage with this
type of circuit is that the carrier frequency tends to drift and must be stabilized by
rather elaborate feedback frequency control. For this reason, many older FM trans-
mitters are of the indirect type.

Linear integrated-circuit (IC) voltage-controlled oscillators can generate a direct
FM output waveform that is relatively stable and accurate. However, in order to
operate, IC VCOs require several additional external components to function.
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Tuned
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Figure 5.3-1 VCO circuit with varactor diode for variable reactance.

Because of their low output power, they are most suitable for applications such as
cordless telephones. Figure 5.3-2 shows the schematic diagram for a direct FM
transmitter using the Motorola MC1376, an 8-pin IC FM modulator. The MC1376
operates with carrier frequencies between 1.4 and 14 MHz. TheVCO isfairly linear
between 2 and 4 volts and can produce a peak frequency deviation of approximately
150 kHz. Higher power outputs can be achieved by utilizing an auxiliary transistor
connected to a 12-V power supply.

Phase Modulators and Indirect FM

Although we seldom transmit a PM wave, we're still interested in phase modulators
because (1) the implementationisrelatively easy; (2) the carrier can be supplied by a
stable frequency source, such as a crystal-controlled oscillator; and (3) integrating
the input signal to a phase modulator produces a frequency-modulated output.

Figure 5.3-3 depicts a narrowband phase modulator derived from the approxima:
tion X (t) = A, cos wt — A.pax(t) sin wt—see Egs. (9) and (11), Sect. 5.1. The evident
simplicity of this modulator depends upon the approximation condition uf |¢,x(t)]
<< 1 radian, and phase deviations greater than 10° result in distorted modulation.

Antenna

E
270 pF 1 K
_T_ 33 uH ! VCO
- 6 ; MPS 6601
i |
0001 uF | |
X(t) o o ; 3
Lowk MC1376 L

Figure 5.3-2 Schematic diagram of IC VCO direct FM generator utilizing the Motorola
MC1376.
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Figure 5.3-3 Narrowband phase modulator.

Larger phase shifts can be achieved by the switching-circuit modulator in
Fig. 5.34. The typical waveforms shown in Fig. 5.3-4 help explain the operation.
The modulating signal and a sawtooth wave at twice the carrier frequency are
applied to a comparator. The comparator’s output voltage goes high whenever x(t)
exceeds the sawtooth wave, and the flip-flop switches states at each rising edge of a
comparator pulse. The flip-flop thus produces a phase-modulated square wave (like
the output of ahard limiter), and bandpass filtering yields x.(t).

Now consider the indirect FM transmitter diagrammed in Fig. 5.3-5. The inte-
grator and phase modulator constitute a narrowband frequency modulator that gen-
erates an initial NBFM signal with instantaneous frequency

ba
fi(t) = f. + ——=x(t
A1) = T, + 5= X(t)
Comparator
x(t)
Flip- || I
flop BPF x(0
2f,

Comparator —
output _I_ |_ —l _I_
Fipflop — ! ‘ ‘
output
$>0 _.| —]— $=0 J— |._ $<0
- |
f, Uf,
(b)

Figure 5.3-4 Switching-circuit phase modulator: (a) schematic diagram (b) waveforms.
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Narrowband frequency modulator

L fy(t) [ Frequency| T _ f(t) | RF
% msgﬁor : multiplier —»@ power (1)

xn amp

é fC1 fLo

Figure 5.3-5 Indirect FM transmitter.

where T is the integrator’s proportionality constant. The initial frequency deviation
therefore equals ¢,/2nT and must be increased to the desired value f, by a
frequency multiplier.
The frequency multiplier produces n-fold multiplication of instantaneous fre-
quency, so
(1) = nfy(t) = nf, + fux(0) (3

_ [ s
fa = n(m)

Typical frequency multipliers consist of a chain of doublers and triplers, each unit
constructed as shown in Fig. 5.2—6b. Note that this multiplication is a subtle process,
affecting the range of frequency variation but not the rate. Frequency multiplication
of atone-modulated signal, for instance, increases the carrier frequency and modula-
tion index but not the modulation frequency, so the amplitude of the sideband linesis
altered while the line spacing remains the same. (Compare the spectrain Fig. 5.1-7a
withg = 5and 8 = 10.)

The amount of multiplication required to get f, usually resultsin nf; being much
higher than the desired carrier frequency. Hence, Fig. 5.3-5 includes a frequency
converter that translates the spectrum intact down to f, = |nf; £ f, | and the final
instantaneous frequency becomes f(t) = f, + fux(t). (The frequency conversion may
actually be performed in the middle of the multiplier chain to keep the frequencies at
reasonable values.) The last system component is a power amplifier, since al of the
previous operations must be carried out at low power levels. Note the similarity to
the ring modulator discussed in Sect. 4.3 that is used to generate DSB signals.

where

EXAMPLE 5.3-1

Indirect FM

The indirect FM system originaly designed by Armstrong employed a narrowband
phase modulator in the form of Fig. 5.3-3 and produced a minute initial frequency
deviation. As an illustration with representative numbers, suppose that ¢/2m T =
15 Hz (which ensures negligible modulation distortion) and that f, = 200 kHz
(which falls near the lower limit of practica crystal-oscillator circuits). A broadcast



5.3 Generation and Detection of FM and PM

FM output with f,=75 kHz requires frequency multiplication by the factor
n = 75,000 -+ 15 = 5000. This could be achieved with a chain of four triplers and six
doublers, son = 3* X 26 = 5184. But nf, =~ 5000 X 200 kHz = 1000 MHz, and a
down-converter with f o = 900 MHz is needed to put f, in the FM band of
88-108 MHz.
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Show that the phase at the output of Fig. 5.3-3 is given by

d(t) = dax(t) — % ¢ix3(t) + % d)ng(t) 4+ .. @)
Hence, ¢(t) contains odd-harmonic distortion unless ¢, is quite small.

EXERCISE 5.3-1

Triangular-Wave FM

Triangular-wave FM is amodern and rather novel method for frequency modulation
that overcomes the inherent problems of conventional VCOs and indirect FM sys-
tems. The method generates virtually distortionless modulation at carrier frequencies
up to 30 MHz, and is particularly well suited for instrumentation applications.

WE Il define triangular FM by working backwards from x.(t) = A, cos 6.(t) with

O(t) = wct + ¢(t) — ¢(0)

where the initial phase shift —¢(0) has been included so that 6,(0) = 0. This phase
shift does not affect the instantaneous frequency

f(t) = iéc(t) = f, + fx(t)

Expressed in terms of 6.(t), a unit-amplitude triangular FM signal is
2
Xp(t) = P arcsin [cos 0(t) ] (50)

which defines a triangular waveform when ¢(t) = 0. Even with ¢(t), # 0, Eq. (5a)
represents a periodic triangular function of 6., as plotted in Fig. 5.3-6a. Thus,

2
1—;(9C 0<b.<m
Xy = 5 (5b)
—3+;9c T <6, <2rm

and so forth for 6, > 27r.
Figure 5.3-6b shows the block diagram of a system that produces x, (t) from the
voltage

o(t) = —0(t) = 4T + fax(1)]
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= 4T, +fax(0)] 7
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Figure 5.3-6 Triangular-wave FM: (a) waveform; (b) modulation system.

which isreadily derived from the message waveform x(t). The system consists of an
analog inverter, an integrator, and a Schmitt trigger controlling an electronic switch.
The trigger puts the switch in the upper position whenever x,(t) increasesto +1 and
puts the switch in the lower position whenever x,(t) decreasesto — 1.

Suppose the system starts operating at t = 0 with x,(0) = +1 and the switch in
the upper position. Then, for 0 >t > t,,

Xt = 1- ftvm ah=1- 2[00 - 0,0)]

2
- = <t<
1 - 04(t) o<t<y

s0 X, (t) traces out the downward ramp in Fig. 5.3-6a until timet, when x,(t;) = —1,
corresponding to 6.(t;) = 7. Now the trigger throws the switch to the lower position

and

Xa(t) = =1+ Jtv()\)d)\ = -1+ %[OC(t) — 0(t1)]

2
=-3+-46() tn<t<g

S0 X, (t) traces out the upward ramp in Fig. 5.3-6a. The upward ramp continues until
timet, when 0.(t,) = 27 and x,(t,) = +1. The switch then triggers back to the upper
position, and the operating cycle goes on periodically for t > t,.
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A sinusoidal FM wave is obtained from x, () using a nonlinear waveshaper with
transfer characteristics T[x,(t)] = A. sin [(7/2)x,(t)], which performs the inverse of
Eq. (5a). Or x,(t) can be applied to a hard limiter to produce square-wave FM. A
laboratory test generator might have al three outputs available.

Frequency Detection

A frequency detector, often called adiscriminator, produces an output voltage that
should vary linearly with the instantaneous frequency of the input. There are perhaps
as many different circuit designs for frequency detection as there are designers who
have considered the problem. However, almost every circuit fallsinto one of the fol-
lowing four operational categories:

FM-to-AM conversion

Phase-shift discrimination

Zero-crossing detection

Frequency feedback

A w NP

WE'Il look at illustrative examples from the first three categories, postponing fre-
quency feedback to Sect. 7.3. Analog phase detection is not discussed here because
it's seldom needed in practice and, if needed, can be accomplished by integrating the
output of afrequency detector.

Any device or circuit whose output equals the time derivative of the input pro-
duces FM-to-AM conversion. To be more specific, let x(t) = A, cos 6.(t) with
0,(t) = 2m[f, + fx(t)]; then

X(t) = _Acéc(t) sin 0(t)
= 2mAf, + fx(©)] Sin [6(t) + 180°] A

Hence, an envelope detector with input X(t) yields an output proportional to
f(t) = f, + fax(b).

Figure 5.3—-7a diagrams a conceptual frequency detector based on Eq. (6). Thedia
gram includes a limiter at the input to remove any spurious amplitude variations from
X.(t) before they reach the envel ope detector. It also includes a DC block to remove the
constant carrier-frequency offset from the output signa. Typica waveforms are
sketched in Fig. 5.3—7b taking the case of tone modulation. A LPF has been included
after the limiter to remove waveform discontinuities and thereby fecilitate differentia-
tion. However with slope detection, filtering and differentiation occur in the same stage.

For actual hardware implementation of FM-to-AM conversion, we draw upon the
fact that an ideal differentiator has |H(f )| = 2=f. Slightly above or below resonance,
the transfer function of an ordinary tuned circuit shown in Fig. 5.3-8a approximates
the desired linear amplitude response over a small frequency range. Thus, for
instance, adetuned AM receiver will roughly demodulate FM viaslope detection.

Extended linearity is achieved by the balanced discriminator circuit in
Fig. 5.3-8b. A balanced discriminator includes two resonant circuits, one tuned
above f, and the other below, and the output equals the difference of the two
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Figure 5.3-7 (a) Frequency detector with limiter and FM-to-AM conversion; (b) waveforms.

envelopes. The resulting frequency-to-voltage characteristic takes the form of the
well-known S curvein Fig. 5.3-8c. No DC block is needed, since the carrier-frequency
offset cancels out, and the circuit has good performance at low modulating frequen-
cies. The balanced configuration easily adapts to the microwave band, with resonant
cavities serving as tuned circuits and crystal diodes for envelope detectors.

Phase-shift discriminators involve circuits with linear phase response, in con-
trast to the linear amplitude response of slope detection. The underlying principle
comes from an approximation for time differentiation, namely

1

T

o(t) = —[v(t) — vt — ty)] (7)

providing that t; is small compared to the variation of v(t). Now an FM wave has
o(t) = 2mfax(t) s

d(t) — ¢t — tr) = tip(t) = 2arfy ty X(1) (8)
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[H(F)  Slope
approximation

fo> 1.

%o(t) Kx(t)

fo< fe
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(c)

Figure 5.3-8 (a) Slope detfection with a tuned circuit; (b) balanced discriminator circuit;

(c) frequency-to-voltage characteristic.

The term ¢(t — t;) can be obtained with the help of a delay line or, equivalently, a
linear phase-shift network.

Figure 5.3-9 represents a phase-shift discriminator built with a network having
group delay t; and carrier delay t, such that w.t, = 90°—which accounts for the
name quadrature detector. From Eq. (11), Sect. 5.2, the phase-shifted signal is pro-
portional to cogwt — 90° + ¢(t — t))] = sin[wt + ¢(t — t;)]. Multiplication by
cos [w.t + ¢(t)] followed by lowpass filtering yields an output proportional to

sinfé(t) — ¢t — t)] = $(t) — d(t — 1)
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Figure 5.3-9 Phase-shift discriminator or quadrature detector.

assuming t; is small enough that |p(t) — ¢(t — t,)|<< 7. Therefore,

yo(t) = Kpfax(t)

where the detection constant Ky, includest;. Despite these approximations, aquadra-
ture detector provides better linearity than a balanced discriminator and is often
found in high-quality receivers.

Other phase-shift circuit realizations include the Foster-Seely discriminator
and the popular ratio detector. The latter is particularly ingenious and economical,
for it combines the operations of limiting and demodulation into one unit. See
Tomasi (1998, Chap. 7) for further details.

Lastly, Fig. 5.3-10 gives the diagram and waveforms for a ssimplified zero-
crossing detector. The sguare-wave FM signal from a hard limiter triggers a
monostable pulse generator, which produces a short pulse of fixed amplitude A and
duration 7 at each upward (or downward) zero crossing of the FM wave. If weinvoke
the quasi-static viewpoint and consider atime interval T such that W << U/T < f,,
the monostable output v(t) looks like a rectangular pulse train with nearly constant
period 1/f(t). Thus, there are n; = Tf(t) pulsesin thisinterval, and continually inte-
grating v(t) over the past T seconds yields

1{ b(A) dA = = Ar =~ Arf(t)
Tt*T T o i

which becomes yp(t) = Kp fox(t) after the DC block.

Commercial zero-crossing detectors may have better than 0.1 percent linearity
and operate at center frequencies from 1 Hz to 10 MHz. A divide-by-ten counter
inserted after the hard limiter extends the range up to 100 MHz.

Today most FM communication devices utilize linear integrated circuits for FM
detection. Their reliability, small size, and ease of design have fueled the growth of
portable two-way FM and cellular radio communications systems. Phase-locked
loops and FM detection will be discussed in Sect. 7.3.

EXERCISE 5.3-2

Given adelay line with time delay t, << 1/f,, devise a frequency detector based on
Egs. (6) and (7).
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Figure 5.3-10 Zero-crossing detector: (a) diagram; (b) waveforms.
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5.4 INTERFERENCE

Interference refers to the contamination of an information-bearing signal by another
similar signal, usually from a human source. This occurs in radio communication
when the receiving antenna picks up two or more signals in the same frequency
band. Interference may also result from multipath propagation, or from electromag-
netic coupling between transmission cables. Regardless of the cause, severe interfer-
ence prevents successful recovery of the message information.

Our study of interference begins with the simple but nonetheless informative
case of interfering sinusoids, representing unmodulated carrier waves. This simpli-
fied case helps bring out the differences between interference effects in AM, FM,
and PM. Then we'll see how the technique of deemphasis filtering improves FM
performance in the face of interference. We conclude with a brief examination of the
FM capture effect.

Interfering Sinusoids
Consider areceiver tuned to some carrier frequency f.. Let the total received sig-
nal be

v(t) = A.cosw,t + A;cos[(w, + wj)t + ¢;]

The first term represents the desired signal as an unmodulated carrier, while the sec-
ond term is an interfering carrier with amplitude A;, frequency f, + f;, and relative
phase angle ¢;.

To put v(t) in the envelope-and-phase form v(t) = A,(t) cos [wt + ¢, (1)], we'll
introduce

pEAA O = ot + & )
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Figure 5.4-1 Phasor diagram of interfering carriers.

Hence, A; = pA, and the phasor construction in Fig. 5.4-1 gives

A,(t) = A, V1 + p? + 2p cosby(t)
psind(t)

b (t) = arctanm (2)

These expressions show that interfering sinusoids produce both amplitude and phase

modulation. In fact, if p << 1 then
A,(t) = Af1 + pcos(wit + ¢;)] (3)

b,(t) = psin(wt + ¢)

which looks like tone modulation at frequency f; with AM modulation index u = p
and FM or PM modulation index 8 = p. At the other extreme, if p => 1then

Ay(t) = A[1+ p icos(wit + )]
d)v(t) = wit + ¢i

so the envelope still has tone modulation but the phase corresponds to a shifted car-
rier frequency f, + f; plus the constant ¢;.

Next we investigate what happens when v(t) is applied to an idea envelope,
phase, or frequency demodulator with detection constant K. We'll take the weak
interference case (p << 1) and use the approximation in Eq. (3) with ¢; = 0. Thus,
the demodulated output is

Kp (1 + p coswit) AM
Kp pf; cos w;t FM

provided that |f;| = W—otherwise, the lowpass filter at the output of the demodulator
would reject |fi| > W. The constant term in the AM result would be removed if the
demodulator includes a DC block. As written, this result also holds for synchronous
detection in DSB and SSB systems since we've assumed ¢; = 0. The multiplicative
factor f, in the FM result comes from the instantaneous frequency deviation ¢ 1)/ 2,

Equation (4) revealsthat weak interferencein alinear modulation system or phase
modulation system produces a spurious output tone with amplitude proportional
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Figure 5.4-2 Amplitude of demodulated interference from a carrier at frequency £, + f.

to p = A/A., independent of f;. But the tone amplitude is proportional to pf; in an FM
system. Consequently, FM will be less vulnerable to interference from a cochannel
signal having the same carrier frequency, so f; = 0, and more vulnerable to adjacent-
channel interference (f; # 0). Figure 5.4-2 illustrates this difference in the form of a
plot of demodulated interference amplitude versus [f;|. (The crossover point would cor-
respond to |f||= 1 Hz if all three detector constants had the same numerical value.)

The analysis of demodulated interference becomes a much more difficult task
with arbitrary values of p and/or modulated carriers. We'll return to that problem
after exploring the implications of Fig. 5.4-2.
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LetA; = A, s0p = linEq. (2). Take ¢; = 0 and use trigonometric identities to show
that
Al(t) = 2Ac[cos(wit/2)] ¢, () = wit/2

Then sketch the demodulated output waveform for envelope, phase, and frequency
detection assuming f; << W.

EXERCISE 5.4-1

Deemphasis and Preemphasis Filtering

The fact that detected FM interference is most severe at large values of |fi| suggests a
method for improving system performance with selective postdetection filtering,
called deemphasis filtering. Suppose the demodulator is followed by alowpass fil-
ter having an amplitude ratio that begins to decrease gradually below W; this will
deemphasize the high-frequency portion of the message band and thereby reduce the
more serious interference. A sharp-cutoff (ideal) lowpass filter is still required to
remove any residual components above W, so the complete demodulator consists of
afrequency detector, deemphasis filter, and lowpassfilter, asin Fig. 5.4-3.

Obviously deemphasis filtering also attenuates the high-frequency components
of the message itself, causing distortion of the output signal unless corrective meas-
ures are taken. But it's a simple matter to compensate for deemphasis distortion by
predistorting or preemphasizing the modulating signal at the transmitter before
modulation. The preemphasis and deemphasis filter characteristics should be
related by
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Figure 5.4-3 Complete FM demodulator.
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to yield net undistorted transmission. In essence,

We preemphasize the message before modulation (where the interference is
absent) so we can deemphasize the inferference relative to the message after
demodulation.

Preemphasis/deemphasis filtering offers potential advantages whenever unde-
sired contaminations tend to predominate at certain portions of the message band.
For instance, the Dolby system for tape recording dynamically adjusts the amount of
preemphasis/deemphasis in inverse proportion to the high-frequency signal content;
see Stremler (1990, App. F) for details. However, littleis gained from deemphasizing
phase modul ation or linear modul ation because the demodul ated interference ampli-
tude does not depend on the frequency.

The FM deemphasisfilter is usually a simple first-order network having

1 |f] < Bg

1
“de(”:{“’(Bdeﬂ = B]f ] > By, 6

where the 3 dB bandwidth B, is considerably less than the message bandwidth W.
Since the interference amplitude increases linearly with [f;| in the absence of filter-
ing, the deemphasized interference response is [Hg(f)| X [fi|, as sketched in
Fig. 5.4-4. Note that, like PM, this becomes constant for |f]| >> By, Therefore, FM
can be superior to PM for both adjacent-channel and cochannel interference.

At the transmitting end, the corresponding preemphasis filter function should be

1 |f] <Bg

CURES COIR = > 8. g
de

which haslittle effect on the lower message frequencies. At higher frequencies, how-
ever, thefilter acts as adifferentiator, the output spectrum being proportional to f X(f)
for [f| > Bg. But differentiating a signal before frequency modulation is equiva-
lent to phase modulation! Hence, preemphasized FM is actually a combination of



5.4 Interference

FM
N
S PM
L
FM with deemphasis

1 W [fi
0 Bge

Amplitude

Figure 5.4-4 Demodulated inferference amplitude with FM deemphasis filtering.

FM and PM, combining the advantages of both with respect to interference. As
might be expected, thisturns out to be equally effective for reducing noise, aswill be
discussed in more detail in Chap. 10.

Referring to H,(f) as given above, we see that the amplitude of the maximum
modulating frequency is increased by a factor of W/B,,, which means that the fre-
guency deviation isincreased by this same factor. Generally speaking, the increased
deviation requires agreater transmission bandwidth, so the preemphasis-deemphasis
improvement is not without price. Fortunately, many modulating signals of interest,
particularly audio signals, have relatively less energy in the high-frequency end of
the message band, and therefore the higher frequency components do not generally
develop maximum deviation, the transmission bandwidth being dictated by lower
components of larger amplitude. Adding high-frequency preemphasistendsto equal-
ize the message spectrum so that all components require the same bandwidth. Under
this condition, the transmission bandwidth need not be increased.
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Deemphasis and Preemphasis

Typical deemphasis and preemphasis networks for commercial FM in North Amer-
icaare shownin Fig. 5.4-5 along with their Bode diagrams. The RC time constant in
both circuits equals 75 us, so By = /27 RC = 2.1 kHz. The preemphasis filter has
an upper break frequency at f, = (R + r)/27 RrC, usually chosen to be well above
the audio range, say f, = 30 kHz.

EXAMPLE 5.4-1

Suppose an audio signal is modeled as a sum of tones with low-frequency amplitudes
A, = 1for f, = 1 kHz and high-frequency amplitudes A,, = 1 kHz/f,, for f,, > 1 kHz.
Use Egs. (1) and (2), Sect. 5.2 to estimate the bandwidth required for asingle tone at
fm = 15 kHz whose amplitude has been preemphasized by [H,.(f)| given in Eq. (7)
with By = 2 kHz. Assumef, = 75 kHz and compare your result with B; = 210 kHz.

EXERCISE 5.4-2

FM Capture Effect

Capture effect is a phenomenon that takes place in FM systems when two signals
have nearly equal amplitudes at the receiver. Small variations of relative amplitude
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(b)

Figure 5.4-5 (a) Deemphaisis filter; (b) preemphasis filter.

then cause the stronger of the two to dominate the situation, suddenly displacing the
other signal at the demodulated output. You may have heard the annoying results
when listening to adistant FM station with co-channel interference.

For areasonably tractable analysis of capture effect, we'll consider an unmodu-
lated carrier with modulated cochannel interference (f; = 0). The resultant phase
¢, (t) isthen given by Eq. (2) with 6,(t) = ¢;(t), where ¢;(t) denotes the phase modu-
lation of the interfering signal. Thus, if Ky = 1 for simplicity, the demodulated sig-
nal becomes

dt 1+ pcoseit) (8a)

where

s PP+ pcos
1+ p? + 2p cos ¢;

a(p! d’l) (ab)

The presence of ¢(t) in Eq. (8a) indicates potentialy intelligible interference (or
crosstalk) to the extent that a(p, ¢;) remains constant with time. After all, if p > 1
thena (p, ¢;) = Land yp(t) = &(t).

But capture effect occurs when A; = A, so p = 1 and Eq. (8b) does not imme-
diately smplify. Instead, we note that

p/(1+ p) ¢ =0, £ 2m, ...
ap ) =L+ ) b= w2 £ 3m2, .
-p/(1 = p) ¢, ==xm, + 3m, ...

and we resort to plots of a(p, ¢;) versus ¢; as shown in Fig. 5.4—6a. Except for the
negative spikes, these plots approach a (p, ¢;) = 05 as p — 1, and thus



5.5 Questions and Problems

05 |
5 4
o
0 —~ : / ¢
21 4+
p=05
s 1t g 37
S N 5
N 51 =075 T
11
3+ 0 —
02 04 06 08 10
(a) (b)
Figure 5.4-6 Interference levels due to capture effect. (a) As a function of relative phase,

(b) as a function of amplitude ratio.

yo(t) = 0.5 ¢;(t). For p < 1, the strength of the demodulated interference essentially
depends on the peak-to-peak value

apy = a(p, 0) — alp, m) = 2p/(1 — p?)

which isplotted versus p in Fig. 5.4—6b. This knee-shaped curve revealsthat if trans-
mission fading causes p to vary around a nominal value of about 0.7, the interference
amost disappears when p < 0.7 whereas it takes over and “captures’ the output
when p > 0.7 (the capture ratio being about 3 dB).

Panter (1965, Chap. 11) presents a detailed analysis of FM interference, includ-
ing waveforms that result when both carriers are modul ated.
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Questions

1. Why are there so many background “whistles’ heard during nighttime AM
broadcast reception? Describe all possible reasons.

2. Why would FM reception have a higher received signa power than a comparable
AM reception? List al reasons.

3. Describewhy FM is superior to linear modul ation systems with respect to battery
life and power efficiency.

4. What are the possible causes of power line interference?

5. What linear modulation scheme would result in less of the nighttime background
“whistle” interference? Why?

6. At what distances would multipath cause interference to AM, DSB, or SSB, etc.,
communication?
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10.
11.

12,

13.

14.

15.

Why is SSB and DSB preferred, and AM or NBFM signals, whilelegal, aredis-
couraged for crowded Ham radio bands?

What linear modulation detection method is preferred for immunity to
interference?

What is the main practical problem with implementing the slope and balanced
discriminator?
Under what conditions will DSB give the same output as PSK?

List several reasons why FM has superior destination signal strength for the
same transmitter output power as that of DSB or SSB.

Why is it possible to use nonlinear amplifiers such as class C to amplify FM
signals?

If aclass C amplifier is employed with an FM transmitter, what else is needed
to ensure the output is confined to the assigned carrier frequency? Why?

You have a shortwave AM receiver that receives an NBFM voice signal at some
carrier frequency f.. However, you notice that, while the signal strength is max-
imized when the receiver is tuned to the carrier frequency, the voice message is
best received when you tune to some frequency afew kHz from f.. Explain why.

What is the purpose of the LPF in the FM detector in Fig. 5.3-7a?

Problems
5.1-1 Sketch and label ¢(t) and f(t) for PM and FM when x(t) = AA (t/7). Take

¢(—») = 0inthe FM case.

5.1-2 Do Prob. 5.1-1 with x(t) = Acos(sr t/T)I1 (t/27).

5.1-3 Do Prob. 5.1-1 with x(t) =

> fort> 4.
t°— 16

5.1-4* A frequency-sweep generator produces a sinusoidal output whose

instantaneous frequency increases linearly fromf, att = Otof,att = T.
Write 6 (t) for0=t=T.

5.1-5 Besides PM and FM, two other possible forms of exponential modula-

tion are phase-integral modulation, with ¢(t) = K dx(t)/dt, and phase-
acceleration modulation, with

f () =1 + Kjtx()\)d/\

Add these to Table 5.1-1 and find the maximum values of ¢(t) and f(t)
for al four types when x(t) = cos 27 f;, t.

5.1-6 Use Eq. (16) to obtain Eq. (18a) from Eq. (15).
5.1-7* Derive Eq. (16) by finding the exponential Fourier series of the complex

periodic function exp (j B Sin wyt).



5.1-8

5.1-9

5.1-10*

5.1-11

5.1-12

5.1-13

5.1-14
5.1-15

5.1-16
5.1-17

5.1-18

5.2-1

5.2-2

5.5 Questions and Problems

Tone modulation is applied simultaneously to a frequency modulator and a
phase modulator and the two output spectra are identical. Describe how
these two spectra will change when (a) the tone amplitude is increased or
decreased; (b) the tone frequency is increased or decreased; (c) the tone
amplitude and frequency areincreased or decreased in the same proportion.

Consider atone-modulated FM or PM wave with f, = 10 kHz, B = 2.0,
A, = 100, and f, = 30 kHz. (a) Write an expression for f(t). (b) Draw the
line spectrum and show therefrom that S; < AZ/2.

Do Prob. 5.1-9 with f,, = 20 kHz and f, = 40 kHz, in which case
S > A?/2.

Derive amathematical expression to show how the information power of

an FM signal is proportional to = A? f 3S, and compare thisto the infor-
mation power of aDSB signal.

Show that the FM carrier’s amplitude is nonlinear with respect to mes-
sage amplitude.

Construct phasor diagrams for tone-modulated FM with A, = 10 and
B = 0.5when w,t = 0, /4, and /2. Calculate A and ¢ from each dia-
gram and compare with the theoretical values.

Do Prob. 5.1-13 with 8 = 1.0.

A tone-modulated FM signal with 8 = 1.0 and f,, = 100 Hz isapplied to
anideal BPF with B = 250 Hz centered at f, = 500. Draw the line spec-
trum, phasor diagram, and envelope of the output signal.

Do Prob. 5.1-15 with 8 = 5.0.

One implementation of a music synthesizer exploits the harmonic struc-
ture of FM tone modulation. The violin note C, has a frequency of
fo = 405 Hz with harmonics at integer multiples of f, when played with
a bow. Construct a system using FM tone modulation and frequency
converters to synthesize this note with f, and three harmonics.

Consider FM with periodic square-wave modulation defined by x(t) = 1
forO<t<Ty2andx(t) = —1for —Ty/2 <t < 0. (a) Take¢ (0) = 0
and plot ¢ (t) for —Ty/2 <t < Ty/2. Then use Eq. (20a) to obtain

1 n -+ . n-— .
& =3 eJ”B[sinc(ZB) ™2 + sinc( B) e"””/z}

where B8 = f,T,. (b) Sketch the resulting magnitude line spectrum when
Bisalargeinteger.

A message has W = 15 kHz. Estimate the FM transmission bandwidth
forfy, = 0.1, 0.5, 1, 5, 10, 50, 100, and 500 kHz.

Do Prob. 5.2-1 with W = 5 kHz.
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5.2-3

5.2-4
5.2-5

5.2-6

5.2-7*

5.2-8

5.2-9

5.2-10

5.2-11*

5.2-12

5.2-13

5.2-14

5.2-15

e Angle CW Modulation

What is the maximum frequency deviation for a FM system where
W = 3kHz and By = 30 kHz?

Do Prob. 5.2-3 with B; = 10 kHz?

AnFM system hasf, = 10kHz. Use Table 9.4-1 and Fig. 5.2-1 to estimate
the bandwidth for: (a) barely intelligible voice transmission; (b) telephone-
quality voice transmission: (c) high-fidelity audio transmission.

A video signal with W = 5 MHz is to be transmitted via FM with
fy = 25 MHz. Find the minimum carrier frequency consistent with frac-
tional bandwidth considerations. Compare your results with transmis-
sion via DSB amplitude modul ation.

Your new wireless headphones use infrared FM transmission and have a
frequency response of 30-15,000 Hz. Find B; and f, consistent with
fractional bandwidth considerations, assuming f, = 5 X 10* Hz.

A commercid FM radio station aternates between music and tak
show/call-in formats. The broadcasted CD music isbandlimited to 15 kHz
based on convention. Assuming D = 5 is used for both music and voice,
what percentage of the available transmission bandwidth is used during
the talk show if wetake W = 5 kHz for voice signals?

An FM system with f, = 30 kHz has been designed for W = 10 kHz.
Approximately what percentage of By is occupied when the modulating
signal is a unit-amplitude tone at f,, = 0.1, 1.0, or 5.0 kHz? Repeat your
calculations for aPM system with ¢, = 3 rad.

Consider phase-integral and phase-acceleration modulation defined in
Prob. 5.1-5. Investigate the bandwidth requirements for tone modula-
tion, and obtain transmission bandwidth estimates. Discuss your results.

Thetransfer function of asingle-tuned BPFisH(f) = 1/[1 + j2Q (f — f.)/f]
over the positive-frequency passhand. Use Eg. (10) to obtain an expression
for the output signal and its instantaneous phase when the input is an
NBPM signal.

Use Eq. (10) to obtain an expression for the output signal and its ampli-
tude when an FM signal is distorted by a system having H(f) = K, —
Ky(f — f.)® over the positive-frequency passband.

Use Eq. (13) to obtain an expression for the output signal and its instan-
taneous frequency when an FM signal is distorted by a system having
[Hf)|= 1 and arg H(f) = ay(f — f) + a5(f — f.)° over the positive-
frequency passband.

An FM signa is applied to the BPF in Prob. 52-11. Let
a = 2Qf,/f. < 1 and use Eg. (13) to obtain an approximate expression
for the output signal and its instantaneous frequency.

Let the input to the system in Fig. 5.2-6a be an FM signal with
D = f,/W and spurious amplitude variations. Sketch the spectrum at the
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5.2-17*

5.3-1

5.3-2

5.3-3

5.3-4

5.3-5*

5.3-6

5.3-7

5.3-8

5.5 Questions and Problems

output of the limiter and show that successful operation requires
fa < (f, — W)/2.

The input to the system in Fig. 5.2-6b is an FM signal with D = f,/W
and the BPF is centered at 3f,, corresponding to a frequency tripler.
Sketch the spectrum at the filter’s input and obtain a condition on f, in
terms of f, and W that ensures successful operation.

Do Prob. 5.2-16 with the BPF centered at 4f,, corresponding to a fre-
quency quadrupler.

The equivalent tuning capacitancein Fig. 5.3-1isC(t) = C, + C,(t) where
C,(t) = C,/VVg + x(t)/N. Show that C(t) = C, — C,(t) with 1 percent
accuracy if NVg = 300/4. Then show that the corresponding limitation on

the frequency deviationisf, < f./300.

Thedirect FM generator in Fig. 5.3-2 isused for aremote-controlled toy
car. Find the range of allowable valuesfor W so that B satisfies the frac-
tional bandwidth requirements, assuming the maximum frequency devi-
ation of 150 kHz is used.

Confirm that x.(t) = A, cos 6.(t) is a solution of the integrodifferential
equation %(t) = —6,(t) [0,(t) X (t) dt. Then draw the block diagram of
adirect FM generator based on this relationship.

Suppose an FM detector receives the transmitted signal that was gener-
ated by the phase modulator in Fig. 5.3—-3. Describe the distortion in the
output message signal. (Hint: Consider the relationship between the
message signal amplitude and frequency, and the modulation index.)

An audio message signal is transmitted using frequency modulation.
Describe the distortion on the output message signal if itisreceived by a
PM detector. (Hint: Consider the relationship between the message sig-
nal amplitude and frequency, and the modulation index.)

Design a wireless stereo speaker system using indirect FM. Assuming
W = 15kHz, D =5, f.1 = 500 kHz, f, = 915 MHz, and /27 T < 20,
determine the number of triplers needed in your multiplier stage, and
find the value of f, 5 heeded to design your system.

The audio portion of a television transmitter is an indirect FM system
havingW = 10kHz, D = 2.5, and f, = 4.5 MHz. Devise ablock diagram
of this system with ¢,/27 T < 20 Hz and f, = 200 kHz. Use the shortest
possible multiplier chain consisting of frequency triplers and doublers,
and locate the down-converter such that no frequency exceeds 100 MHz.

A signd withW = 4 kHz istransmitted using indirect FM withf, = 1 MHz
and fy = 12 kHz. If ¢,/27r T < 100 and f,1 = 10 kHz, how many dou-
blers will be needed to achieve the desired output parameters? Draw the
block diagram of the system indicating the value and location of the
local oscillator such that no frequency exceeds 10 MHz.
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5.3-10
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5.3-12

5.3-13

5.3-14

5.4-1

5.4-2

54-3
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Suppose the phase modulator in Fig. 5.3-5 is implemented as in
Fig. 5.3-3. Take x(t) = A, cos w,t and let B = (pu/27 T)(Au/fr)-
(a) Show that if B << 1, then

fi(t) = f, + Bf, [coswyt + (B8/2)? cos 3wpt]

(b) Obtain a condition on ¢ /27 T so the third-harmonic distortion does
not exceed 1 percent when A, = 1 and 30 Hz = f,, = 15 kHz, asin FM
broadcasting.

Let theinput to Fig. 5.3-7a be an FM signa with f, << f, and let the differ-
entiator be implemented by a tuned circuit with H(f) = 1[1 + j(2Q/fy)
(f — fp)] for f = f,. Usethe quasi-static method to show that yp(t) = Kp fy X(t)
when f, = f, + b provided that f, << b << {y/2Q.

Let the input to Fig. 5.3—-7a be an FM signal with f, << f; and let the dif-
ferentiator be implemented by a first-order lowpass filter with B = f.. Use
quasi-static analysis to show that yp(t) = —K fux(t) + K, fax¥(t).
Then take x(t) = cos w,,t and obtain a condition on f,/f, so the second-
harmonic distortion isless than 1%.

The tuned circuits in Fig. 5.3-8b have transfer functions of the form
H(f) = U[1 + j(2Q/fy)(f — fg] for f = fy). Let the two center frequencies
bef, = f, = b with f, = b <<f.. Use quasi-static analysisto show that if
both circuits have (2Q/f))b = a << 1, then yp(t) = Kx(t) — Kux3(t)
where Ky/K; << 1.

You have been given an NBFM exciter with f, = 7 MHz, W = 2.5 kHz,
and f, = 1.25 kHz. Using a series of frequency doublers and triplers and
possibly a heterodyne stage, design a converter that will enableaWBFM
signal with f, = 220 MHz, and f, = 15 kHz. Justify your results.

Given a NBFM exciter with f, = 8 MHz, W = 3 kHz, f, = 0.3 kHz,
using frequency triplers and heterodyning units, design an FM system
with f, = 869-894 MHz and B; = 30 kHz.

Obtain an approximate expression for the output of an amplitude
demodulator when the input is an AM signal with 100 percent modula-
tion plus an interfering signal A1 + xi(t)] cos [(w, + w)t + ¢;] with
p = A/A, << 1. Isthe demodulated interference intelligible?

Obtain an approximate expression for the output of a phase demodulator
when the input is an NBPM signal with 100 percent modulation plus an
interfering signal A; cos [(w, + o)t + ¢i(t)] with p = AJA, <K< 1. Isthe
demodulated interference intelligible?

Investigate the performance of envelope detection versus synchronous
detection of AM in the presence of multipath propagation, so that
v(t) = x(t) + ax(t — t) with &®> < 1. Consider the special cases
oty = 72 and wty = .
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5.5 Questions and Problems

You are talking on your cordless phone, which uses amplitude modula-
tion, when someone turns on a motorized appliance, causing static on
the phone. You switch to your new FM cordless phone, and the cal is
clear. Explain.

In World War Il they first used preemphasis/deemphasis in amplitude
modul ation for mobile communications to make the high-frequency por-
tion of speech signals more intelligible. Assuming that the amplitude of
the speech spectrum is bandlimited to 3.5 kHz and rolls off at about 6 dB
per decade (factor of 10 on a log-frequency scale) above 500 Hz, draw
the Bode diagrams of the preemphasis and deemphasis filters so that the
message signal has a flattened spectrum prior to transmission. Discuss
the impact on the transmitted power for DSB versus standard AM with
pn=1

Preemphasisfilters can also be used in hearing aid applications. Suppose a
child has a hearing | oss that gets worse at high frequencies. A preemphasis
filter can be designed to be the approximate inverse of the high-frequency
deemphasisthat takes placeinthe ear. In anoisy classroomiit is often help-
ful to have the teacher speak into a microphone and have the signal trans-
mitted by FM to areceiver that the child iswearing. Isit better to have the
preemphasis filter at the microphone end prior to FM transmission or at
the receiver worn by the child? Discuss your answer in terms of transmit-
ted power, transmitted bandwidth, and susceptibility to interference.

A message signal x(t) has an energy or power spectrum that satisfies the
condition

Gx(f) = (Bde/f )ZGmax ’f‘ > Bde

where G, isthe maximum of G,(f) in |f|< Bge. If the preemphasis filter
in Eq. (7) is applied to x(t) before FM transmission, will the transmitted
bandwidth be increased?

Equation (8) also holds for the case of unmodulated adjacent-channel
interference if we let ¢;(t) = w;t. Sketch the resulting demodulated
waveform when p = 0.4, 0.8, and 1.2.

If the amplitude of an interfering sinusoid and the amplitude of the sinu-
soid of interest are approximately equal, p = A/A. = 1 and Eq. (8b)
appears to reduce to a(p, ¢;) = 12 for al ¢;, resulting in cross talk.
However, large spikes will appear at the demodulator output when
¢;= = m. Showthatif ¢ = mandp = 1 * ¢, then a(p, m) > + © as
€ — 0. Conversely, show that if p isdlightly lessthan 1 and ¢; = 7 = €,
then a (p, ;) > — ©ase — 0.

Develop an expression for the demodulated signal when an FM signal
with instantaneous phase ¢(t) has interference from an unmodulated
adjacent-channel carrier. Write your result in terms of ¢(t), p = A/A,
and 6;(t) = wit + ¢;.
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Given f, = 50 MHz, what multipath distance(s) would cause the
received signal to be attenuated by 10 dB? State any assumptions.

Do Prob. 5.4-11 for f, = 850 MHz.

Given an indoor environment of no morethan 10 m X 10m X 3 m, what
is the minimum or maximum carrier frequency required such that multi-
path interference will not exceed 3 dB?

A cell phone operating at 825 MHz has a power output of S;. Dueto mul-
tipath interference losses, it is received at the destination with a 6 dB
power reduction. Let's assume no other losses and the receiver and trans-
mitter locations are fixed. (a) What is the relative time delay between the
two paths? (b) To reduce the multipath loss, it has been decided to employ
frequency diversity such that we periodically hop to a second carrier fre-
quency of 850 MHz. What is the power of the 850 MHz received signal
relative to its transmitted power? I's there any improvement?



chapter

6

Sampling and Pulse Modulation

CHAPTER OUTLINE

6.1 Sampling Theory and Practice

Chopper Sampling Ideal Sampling and Reconstruction  Practical Sampling and Aliasing
6.2  Pulse-Amplitude Modulation

Flat-top Sampling and PAM
6.3  Pulse-Time Modulation

Pulse-Duration and Pulse-Position Modulation PPM Spectral Analysis

257




258 CHAPTER 6 @  Sampling and Pulse Modulation

Experimemol data and mathematical functions are frequently displayed as continuous curves, even though a finite
number of discrete points was used to construct the graphs. If these points, or samples, have sufficiently close spac-
ing, a smooth curve drawn through them allows us to interpolate intermediate values fo any reasonable degree of
accuracy. It can therefore be said that the continuous curve is adequately described by the sample points alone.

In similar fashion, an electric signal satisfying certain requirements can be reproduced from an appropriate set of
instantaneous samples. Sampling therefore makes it possible to transmit a message in the form of pulse modulation,
rather than a continuous signal. Usually the pulses are quite short compared to the time between them, so a pulse-
modulated wave has the property of being “off” most of the time.

This property of pulse modulation offers two potential advantages over CW modulation. First, the transmitted
power can be concentrated into short bursts instead of being generated continuously. The system designer then has
greater latitude for equipment selection, and may choose devices such as lasers and high-power microwave tubes
that operate only on a pulsed basis. Second, the time inferval between pulses can be filed with sample values from
other signals, a process called time-division multiplexing (TDM).

But pulse modulation has the disadvantage of requiring very large transmission bandwidth compared fo the mes-
sage bandwidth. Consequently, the methods of analog pulse modulation discussed in this chapter are used primarily
as message processing for TDM and/or prior to CVWW modulation. Digital or coded pulse modulation has additional
advantages that compensate for the increased bandwidth, as we'll see in Chapter 12. As we will see in Chapter 15,
pulse modulation is the basis for ulfra-wideband (UWWB) radio.

OBJECTIVES

After studying this chapter and working the exercises, you should be able to do each of the following:

-

Draw the spectrum of a sampled signal (Sect. 6.1).

2. Define the minimum sampling frequency to adequately represent a signal given the maximum value of aiasing
error, message bandwidth, LPF characteristics, and so forth (Sect. 6.1).

3. Know what is meant by the Nyquist rate and know where it applies (Sect. 6.1).

4. Describe the implications of practical sampling versus ideal sampling (Sect. 6.1).

5. Reconstruct asignal from its samples using an ideal LPF (Sect. 6.1).

6. Explain the operation of pulse-amplitude modulation, pul se-duration modulation, and pul se-position modulation;

sketch their time domain waveforms; and calculate their respective bandwidths (Sects. 6.2 and 6.3).

6.1 SAMPLING THEORY AND PRACTICE

The theory of sampling presented here sets forth the conditions for signal sampling
and reconstruction from sample values. We' Il also examine practical implementation
of the theory and some related applications.

Chopper Sampling

A simple but highly informative approach to sampling theory comes from the
switching operation of Fig. 6.1-1a. The switch periodically shifts between two con-
tactsat arate of f, = L/T, Hz, dwelling on the input signal contact for = seconds and
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on the grounded contact for the remainder of each period. The output x,(t) then con-
sists of short segmentsfor the input x(t), as shownin Fig. 6.1-1b. Figure 6.1-1c isan
electronic version of Fig. 6.1-1a; the output voltage equals the input voltage except
when the clock signal forward-biases the diodes and thereby clamps the output to
zero. This operation, variously called single-ended or unipolar chopping, is not
instantaneous sampling in the strict sense. Nonetheless, x(t) will be designated the
sampled wave and f, the sampling frequency.

We now ask: Are the sampled segments sufficient to describe the original input
signal and, if so, how can x(t) beretrieved from x,(t)? The answer to this question lies
in the frequency domain, in the spectrum of the sampled wave.

As afirst step toward finding the spectrum, we introduce a switching function
s(t) such that

xs(t) = x(t)s(t) ()
Thus the sampling operation becomes multiplication by s(t), as indicated schemati-
cally in Fig. 6.1-2a, where s(t) is nothing more than the periodic pulse train of

Fig. 6.1-2b. Since s(t) is periodic, it can be written as a Fourier series. Using the
results of Example 2.1-1 we have

st) = > frsincnfr 2t = ¢y + > 2¢, cosnwgt 2)

n=-o0 n=1

where

¢, = fir sincnfr w, = 21T

O O
EI— Clock —IJ

(c)

Figure 6.1-1  Switching sampler: (a) functional diagram; (b) waveforms; (c) circuit realization
with diode bridge.
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s(t)

X(t) _>®_> x(t) = x()s(t) I
T —»| | —
T _ IJD—EL—t

e

s(t) Ts

(a) (b)

Figure 6.1-2 Sampling as multiplication: (a) functional diagram; (b) switching function.

Combining Eqg. (2) with Eq. (1) yields the term-by-term expansion
Xs(t) = o x(t) + 2cx(t) coswgt + 2¢, x(t) cos 2wt + -+ (3)

Thus, if the input message spectrum is X(f) = F[x(t)], the output spectrumis
X(F) = co X(f) + c[X(f = f) + X(f + f)]
+ o[ X(f — 2f) + X(f + 21)] @

which follows directly from the modulation theorem.

While Eq. (4) appears rather messy, the spectrum of a sampled wave is readily
sketched if the input signal is assumed to be bandlimited. Figure 6.1-3 shows a con-
venient X(f) and the corresponding X,(f) for two cases, f, > 2W and f; < 2W. Thisfig-
ure reveal s something quite surprising: The sampling operation has |eft the message
spectrum intact, merely repeating it periodically in the frequency domain with a
spacing of f,. We also note that the first term of Eq. (4) is precisely the message spec-
trum, attenuated by the duty cycle ¢, = fr = 7/T..

If sampling preserves the message spectrum, it should be possible to recover or
reconstruct x(t) from the sampled wave x,(t). The reconstruction technique is not at
all obvious from the time-domain relationsin Egs. (1) and (3). But referring again to
Fig. 6.1-3, we see that X(f) can be separated from X,(f) by lowpass filtering, pro-
vided that the spectral sidebands don’t overlap. And if X(f) aoneis filtered from
X4(f), we have recovered x(t). Two conditions obviously are necessary to prevent
overlapping spectral bands. the message must be bandlimited, and the sampling fre-
guency must be sufficiently great that f, — W = W. Thus we require

X(f)=0 [f|>W

and

1
ff=2W or T, = T (5a)

If the sampled signal is sinusoidal, its frequency spectrum will consist of impulses
and equality of Eq. (5a) does not hold, and we thus require
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1
f>2W o T, < W (Sinusoidal signals) (5b)

The minimum sampling frequency f; = 2W, or in the case of sinusoidal signals
f, = 2W", iscalled the Nyquist rate. To further make the point that the equality of
Eqg. (5a) doesnot hold, if sample frequency isf, = 2W it is possible for the sine wave
to be sampled at its zero crossings; thus, the samples would be equal to zero, and
reconstruction would not be possible. When Eq. (5) is satisfied and x,(t) isfiltered by
anidea LPF, the output signal will be proportional to x(t); thus message reconstruc-
tion from the sampled signal has been achieved. The exact value of the filter band-
width B is unimportant as long as

W<B<f—-W (6)

so thefilter passes X(f) and rejects all higher componentsin Fig. 6.1-3b. Sampling at
fs > 2W creates aguard band into which the transition region of a practical LPF can
befitted. On the other hand, if we examine Fig. 6.1-3c, asignal that is undersampled
will cause spectral overlapping of the message, or aliasing, and thus result in signif-
icant reconstruction errors.

X(f)

-W o W
(a)
Xs(f)

Guard band

o (Wi 2
fow
(c)
Figure 6.1-3 Spectra for switching sampling: (a) message; (b) properly sampled message,

f, > 2W; (c) undersampled aliased message, f, < 2W.
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This analysis has shown that if a bandlimited signal is sampled at a frequency
greater than the Nyquist rate, it can be completely reconstructed from the sampled
wave. Reconstruction is accomplished by lowpass filtering. These conclusions may
be difficult to believe at first exposure; they certainly test our faith in spectral analy-
sis. Nonetheless, they are quite correct.

Finally, it should be pointed out that our results are independent of the sample-
pulse duration, save as it appears in the duty cycle. If 7 is made very small, x,(t)
approaches a string of instantaneous sample points, which corresponds to ideal sam-
pling. We'll pursue ideal sampling theory after a brief look at the bipolar chopper,
whichhast = T,/2.

EXAMPLE 6.1-1

Bipolar Choppers

Figure 6.1-4a depicts the circuit and waveforms for a bipolar chopper. The
equivalent switching function isasquare wave dternating between s(t) = +1and —1.
From the series expansion of s(t) we get

4 4 4
X(t) = P X(t) cos wgt — 3. X(t) cos 3wt + gx(t) cosSawgt — -+ (7)

whose spectrum is sketched in Fig. 6.1-4b for f = 0. Note that X,(f) contains no DC
component and only the odd harmonics of f,. Clearly, we can’'t recover x(t) by
lowpass filtering. Instead, the practical applications of bipolar choppers involve
bandpass filtering.

If we apply x,(t) to a BPF centered at some odd harmonic nf,, the output will be
proportional to x(t) cos nwst—a double-sideband suppressed-carrier waveform.

X
fs (1) X(t)
X(t) o—eo ‘2<Q—o .
‘l>j T
2 —

(a)
Xs(F)I
| /\ AN : f
0 fs 3fs 5f,
(b)

Figure 6.1-4 Bipolar chopper: (a) circuit and waveforms; (b) spectrum.
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Thus, a bipolar chopper serves as a balanced modulator. It also serves as a
synchronous detector when the input is a DSB or SSB signal and the output is
lowpass filtered. These properties are combined in the chopper-stabilized ampli-
fier, which makes possible DC and low-frequency amplification using a high-gain
AC amplifier. Additionally, Prob. 6.1-4 indicates how abipolar chopper can be mod-
ified to produce the baseband multiplexed signal for FM stereo.

Ideal Sampling and Reconstruction

By definition, ideal sampling is instantaneous sampling. The switching device of
Fig. 6.1-1a yields instantaneous values only if = — 0; but then f;r — 0, and so does
X,(t). Conceptually, we overcome this difficulty by multiplying x(t) by /7 so that, as
7 — 0 and 1/t — <o, the sampled wave becomes a train of impulses whose areas
equal the instantaneous sample values of the input signal. Formally, we write the rec-

tangular pulsetrain as
> t — KT,
s(t) = > H( S)

k=-00 T

from which we define the ideal sampling function

s5(t) £ Iimls(t) = > 8t — kT, (8)

=0T K= —00

The ideal sampled wave isthen

X(t)ss(t) (9a)

k=—00 (9[‘))

since x(t) 6(t —kT) = x(KT,) 8(t —KT,).

To obtain the corresponding spectrum Xs(f) = ZF[x;(t)] we note that
(Ur)x4(t) = x5(t) as T — 0 and, likewise, (1/7)X,(f) — Xs(f). But each coefficient in
Eq. (4) hasthe property ¢,/ = f; sinc nf;r = f, when 7 = 0. Therefore,

Xs(f) = fX(F) + f[X(Ff = f5) + X(f +f)] + -~

=f, D X(f — nfy) (10)
n=-o00
which isillustrated in Fig. 6.1-5 for the message spectrum of Fig. 6.1-3a, taking
fs > 2W. We see that X,(f) is periodic in frequency with period f,, a crucia
observation in the study of sampled-data systems.
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Xs(f)

Figure 6.1-5 Spectrum of ideally sampled message.

Somewhat parenthetically, we can also develop an expression for Sy(f) =
F[ss(1)] as follows. From Eq. (9a) and the convolution theorem, X,(f) = X(f) » Ss(f)
whereas Eq. (10) is equivalent to

X,(f) = X(t) = | 3\ £,8(f - nt,)

n=-—oo

Therefore, we conclude that

S,(1) = 1, >, 8(f — nf,) o)

n=-—o00
so the spectrum of a periodic string of unit-weight impulses in the time domain is a
periodic string of impulses in the frequency domain with spacing f; = 1/T,; in both
domains we have a function that looks like the uprights in a picket fence.

Returning to the main subject and Fig. 6.1-5, it's immediately apparent that if
we invoke the same conditions as before—x(t) bandlimited in W and f, = 2W—then
afilter of suitable bandwidth will reconstruct x(t) from the ideal sampled wave.
Specifically, for an ideal LPF of gain K, time delay t;, and bandwidth B, the transfer
function is

H(f) = KH<2fB>e—iwtd
so filtering x,(t) produces the output spectrum
Y(f) = H(f)X5(f) = KEX(f)e Ik
assuming B satisfies Eq. (6). The output time function isthen
y(t) = FHY(F)] = Kfx(t — ty) (12)

which isthe original signal amplified by Kf, and delayed by t,.
Further confidence in the sampling process can be gained by examining recon-
struction in the time domain. The impulse response of the LPF is

h(t) = 2BK sinc 2B(t — ty)
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And since the input xs(t) is a train of weighted impulses, the output is a train of
weighted impulse responses, namely,

y(t) = h(t) = x;(t) = X x(KTh(t — kT,) (13)
k
= 2BK i x(KT,) sinc 2B(t — t, — kT,)

k=—00

Now suppose for simplicity that B = /2, K = 1/f, and t; = 0, so

y(t) = E X(kTs) Smc(fst - k)
k

We can then carry out the reconstruction process graphically, as shownin Fig. 6.1-6.
Clearly the correct values are reconstructed at the sampling instantst = kT, for all
sinc functions are zero at these times save one, and that one yields x(kT,). Between
sampling instants x(t) is interpolated by summing the precursors and postcursors
from all the sinc functions. For this reason the LPF is often called an interpolation
filter, and itsimpulse response is called the interpolation function.

The above results are well summarized by stating the important theorem of
uniform (periodic) sampling. While there are many variations of this theorem, the
following form is best suited to our purposes.

If a signal contains no frequency components for |fl = W, it is completely
described by instantaneous sample values uniformly spaced in time with period
T, = 1/2W. If a signal has been sampled at the Nyquist rate or greater
(. = 2W) and the sample values are represented as weighted im-pulses, the
signal can be exactly reconstructed from its samples by an ideal LPF of band-
width B, where W =B = f - W.

Another way to express the theorem comes from Egs. (12) and (13) withK = T, and
ty = 0. Then y(t) = x(t) and

X(t) = 2BT, i x(KT,) sinc 2B(t — kT;) (14)

k=—00

X(3Ty) y(B) = x(t)
X(3Ty) sinc (fst—3)

Figure 6.1-6 Ideal reconstruction.
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provided T, = 1/2W and B satisfies Eq. (6). Therefore, just as a periodic signal is
completely described by its Fourier series coefficients, a bandlimited signal is com-
pletely described by its instantaneous sample values whether or not the signal actu-
ally is sampled.

EXERCISE 6.1-1

Consider a sampling pulse train of the general form
Sp(t) = 2 p(t — KT;) (154)

whose pulse type p(t) equals zero for [t| > T,/2 but is otherwise arbitrary. Use an
exponential Fourier series and Eq. (21), Sect. 2.2, to show that

Sy(f) =1 i P(nf) 8(f — nf) (15b)

n=-—o0

where P(f) = F[p(t)]. Then let p(t) = 4(t) to obtain Eq. (11).

Practical Sampling and Aliasing
Practical sampling differs from ideal sampling in three obvious aspects:

1. The sampled wave consists of pulses having finite amplitude and duration,
rather than impul ses.

2. Practical reconstruction filters are not ideal filters.

3. The messages to be sampled are timelimited signals whose spectra are not and
cannot be strictly bandlimited.

The first two differences may present minor problems, while the third leads to the
more troublesome effect known as aliasing.

Regarding pulse-shape effects, our investigation of the unipolar chopper and the
results of Exercise 6.1-1 correctly imply that almost any pulse shape p(t) will do
when sampling takes the form of amultiplication operation x(t)s,(t). Another opera-
tion produces flat-top sampling described in the next section. This type of sampling
may require equalization, but it does not alter our conclusion that pulse shapes are
relatively inconsequential.

Regarding practical reconstruction filters, we consider the typical filter response
superimposed in a sampled-wave spectrum in Fig. 6.1-7. As we said earlier, recon-
struction can be done by interpolating between samples. The ideal LPF does a per-
fect interpolation. With practical systems, we can reconstruct the signal using a
zero-order hold (ZOH) with

y(t) = EX(kTs)H<t_T:(TS> (16)

k
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Filter response

Figure 6.1-7 Practical reconstruction filter.

or afirst-order hold (FOH) which performs alinear interpolation using

y(t) = EX(kTS)A(t _TkTS> (17)

S

The reconstruction process for each of these is shown in Fig. 6.1-8. Both the ZOH
and FOH functions are lowpass filters with transfer function magnitudes of
[Hzou(MI=[Te sinc (Ty)| and [Heon ()] = [LV1 + (27 fT)? sincX(fT,)|, respec-
tively. See Problems 6.1-11 and 6.1-12 for more insight.

If thefilter is reasonably flat over the message band, its output will consist of x(t)
plus spurious frequency components at |f| > f, — W outside the message band. In
audio systems, these components would sound like high-frequency hissing or “noise.”
However, they are considerably attenuated and their strength is proportional to x(t), so
they disappear when x(t) = 0. When x(t) # 0, the message tends to mask their pres-
ence and render them more tolerable. The combination of careful filter design and an
adequate guard band created by taking f, > 2W makes practical reconstruction filter-
ing nearly equivalent to ideal reconstruction. In the case of ZOH and FOH recon-
struction, their frequency response shape sinc(fT,) and sinc? (fT,) will distort the
spectra of x(t). We call this aperture error, which can be minimized by either
increasing the sampling rate or compensating with the appropriate inverse filter.

Xeon (1)

KT,
(a) (b)

Figure 6.1-8 Signal reconstruction from samples using (a) ZOH, (b) FOH.
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Regarding the timelimited nature of real signals, a message spectrum like
Fig. 6.1-9a may be viewed as a bandlimited spectrum if the frequency content above
W issmall and presumably unimportant for conveying the information. When such a
message is sampled, there will be unavoidable overlapping of spectral components
asshown in Fig. 6.1-9b. In reconstruction, frequencies originally outside the normal
message band will appear at the filter output in the form of much lower frequencies.
Thus, for example, f; > W becomesf, —f, < W, asindicated in the figure.

This phenomenon of downward frequency translation is given the descriptive
name of aliasing. The aliasing effect is far more serious than spurious frequencies
passed by nonideal reconstruction filters, for the latter fall outside the message band,
whereas aliased components fall within the message band. Aliasing is combated by
filtering the message as much as possible before sampling and, if necessary, sam-
pling at higher than the Nyquist rate. This is often done when the antialiasing filter
does not have a sharp cutoff characteristic, asisthe case of RC filters. Let's consider
abroadband signal whose message content has a bandwidth of W but is corrupted by
other frequency components such as noise. This signal is filtered using the simple
first-order RC LPF antialiasing filter that has bandwidth B = 1/27RC with W << B
and is shown in Fig. 6.1-9a. It is then sampled to produce the spectra shown in
Fig. 6.1-9b. The shaded arearepresents the aliased components that have spilled into
the filter's passband. Observe that the shaded area decreases if f increases or if we
employ a more ideal LPF. Assuming reconstruction is done with the first-order
Butterworth L PF, the maximum percent aliasing error in the passhand is

IXCE

w
(a)
Xs(F)I

1.0

0.707

(b)

Figure 6.1-9 Message spectrum: (a) output of RC filter; (b) after sampling. Shaded area
represents aliasing spillover into passband.
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1/0.707
Error% = /— X 100% (18)

V1+ (f,/B)°

with f, = f; — B and the 0.707 factor is due to the filter’s gain at its half-power
frequency, B. See Ifeachor and Jervis (1993).
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Oversampling

When using VLS| technology for digital signal processing (DSP) of analog signals,
we must first sample the signal. Because sharp analog filters are relatively expensive
relative to digital filters, we use the most feasible RC LPF and then oversample the
signal at several times its Nyquist rate. We follow with a digital filter to reduce
frequency components above the information bandwidth W. We then reduce the effective
sampling frequency to its Nyquist rate using a process called downsampling. Both the
digital filtering and downsampling processes are readily done with VL SI technol ogy.
Let's say the maximum values of R and C we can put on a chip are 10 kQ and
100 pF, respectively, and we want to sample a telephone quality voice such that the
aliased componentswill be at least 30 dB below the desired signal. Using Eq. (18) with

1 1
B = =
27RC 27 X 10* X 1002

= 159 kHz
we get

1/0.707
5% = X 100%.
V1 + (f,/159 kHz)?

Solving yields f, = 4.49 MHz, and therefore the sampling frequency is
f, = f, + B = 4.65 MHz. With our RC LPF, and f, = 4.49 MHz, any aliased compo-
nents at 159 kHz will be no more than 5 percent of the signal level at the half-power
frequency. Of course the level of aliasing will be considerably less than 5 percent at
frequencies below the telephone bandwidth of 3.2 kHz.

EXAMPLE 6.1-2

Sampling Oscilloscopes

A practical application of aliasing occurs in the sampling oscilloscope, which
exploits undersampling to display high-speed periodic waveforms that would other-
wise be beyond the capability of the electronics. To illustrate the principle, consider
the periodic waveform x(t) with period T, = 1/f, in Fig. 6.1-10a. If we use a sam-
pling interval T, dlightly greater than T, and interpolate the sample points, we get
the expanded waveform y(t) = X(at) shown as a dashed curve. The corresponding
sampling frequency is

f=(1-a)f, O0<a<l

EXAMPLE 6.1-3
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X(t) y(t) = x(at)

(b)

I ‘I IMI IHI ;

~+,0f, f 2f,
(c)

Figure 6.1-10 (a) Periodic waveform with undersampling; (b) spectrum of x{1); (c) spectrum of
yi) = x{at), a<1.

I‘ ‘I IMI
—,

—2f,

so f, < f, and even the fundamental frequency of x(t) will be undersampled. Now
let’s find out if and how this system actually works by going to the frequency
domain.

We assume that x(t) has been prefiltered to remove any frequency components
higher than the mth harmonic. Figure 6.1-10b shows a typical two-sided line spec-
trum of x(t), taking m = 2 for simplicity. Since sampling translates all frequency
components up and down by nf,, the fundamental will appear in the spectrum of the
sampled signal at

=f, = £[f, — | = xaf,

aswell asat =f, and at f, = nf, = (1 + n)f, = nf,. Similar transglations applied to the
DC component and second harmonic yield the spectrum in Fig. 6.1-10c, which
contains acompressed image of the original spectrum centered at each multiple of f;.
Therefore, a lowpass filter with B = /2 will construct y(t) = X(at) from x,(t)
provided that

<
2m + 1

which prevents spectral overlap.
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Demonstrate the aliasing effect for yourself by making a careful sketch of cos 2710t
and cos 27770t for 0 = t =< 5. Put both sketches on the same set of axes and find the
samplevaluesatt = 0,4, &, . . . , &5, Which corresponds to f, = 80. Also, convince
yourself that no other waveform bandlimited in 10 < W < 40 can be interpolated

from the sample values of cos 27710t

EXERCISE 6.1-2

Upsampling

It is sometimes the case with instrumentation and other systems that a signal cannot
be sampled much above the Nyquist rate, and yet, in applications that use adaptive
filter algorithms, we need more samples than are obtained by sampling at the
Nyquist rate. Instead of going to the additional expense of increasing the sampling
frequency, we obtain the additional samples by interpolating between the original
samples. This process called upsampling. Upsampling by linear interpolation is
shown in Fig. 6.1-11. Figure 6.1-11a shows the original sampled signal, and
Figure 6.1-11b shows the upsampled version obtained by linearly interpolation
between each set of samples, thus increasing the effective sampling rate by a factor
of 2, or f = 2f,. The following should be noted: (a) Since it is assumed that the
original signal was sampled at the Nyquist rate, the upsampled signal obtained with
ideal interpolation has no more or less information than the original sampled
version. (b) New samples obtained by linear interpolation may have errors due to the
non-ideal nature of linear interpolation, and therefore, higher order interpolation will
give more accurate samples. Note the similarity of upsampling and reconstruction.
See Oppenheim, Schafer, and Buck (1999) for more information on upsampling.

x(K) xX'(k)
X(t) \ X(t) \
¥ upsampling : : :
= I I I
T Tsm| 0 |
I I I
I I I
———— tk . LK
k  k+l k+2 k+3 K k+2 k'+4 k'+6
(a) (b)
Figure 6.1-11 Upsampling by linear interpolation: (a) original signal and its version sampled

at £; (b) upsampled version with effective sample rate of f; = 2f;.

EXAMPLE 6.1-4

Show how we can achieve ideal interpolation and thus errorless upsampling by
taking the sampled signal’s DFT and zero padding in the discrete frequency domain.

EXERCISE 6.1-3
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6.2 PULSE-AMPLITUDE MODULATION

If a message waveform is adequately described by periodic sample values, it can be
transmitted using analog pulse modulation wherein the sample values modulate the
amplitude of a pulse train. This process is called pulse-amplitude modulation
(PAM). An example of a message waveform and corresponding PAM signal are
shownin Fig. 6.2-1.

As Fig. 6.2-1 indicates, the pulse amplitude varies in direct proportion to the
sample values of x(t). For clarity, the pulses are shown as rectangular and their dura-
tions have been grossly exaggerated. Actual modulated waves would also be delayed
dlightly compared to the message because the pulses can’t be generated before the
sampling instances.

It should be evident from the waveform that a PAM signal has significant DC
content and that the bandwidth required to preserve the pulse shape far exceeds the
message bandwidth. Consequently you seldom encounter a single-channel commu-
nication system with PAM or, for that matter, other analog pul se-modulated meth-
ods. Nevertheless, analog pulse modulation deserves attention for its major rolesin
time-division multiplexing, data telemetry, and instrumentation systems.

Flat-Top Sampling and PAM

Although a PAM wave could be obtained from a chopper circuit, a more popular
method employs the sample-and-hold (S/H) technique. This operation produces flat-
top pulses, asin Fig. 6.2—1, rather than curved-top chopper pulses. We therefore begin
here with the properties of flat-top sampling, i.e., zero-order hold (ZOH) technique.

A rudimentary S/H circuit consists of two FET switches and a capacitor, con-
nected as shown in Fig. 6.2—2a. A gate pulse at G1 briefly closes the sampling switch
and the capacitor holds the sampled voltage until discharged by a pulse applied to
G2. (Commercial integrated-circuit S/H units have further refinements, including
isolating op-amps at input and output). Periodic gating of the sample-and-hold
circuit generates the sampled wave

Xp(t) = EX(kTs)p(t — KTy) (1)

Figure 6.2-1 PAM waveform obtained by the S/H technique.
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