

As systems analysis and design is becoming increasingly concerned with the organization as a
whole, systems analysts need to concern themselves with organization design as well as systems
design.

This book takes a unique look at systems analysis and design by using an approach that pro-
vides learners with a critical personal framework. This enables the reader to develop a personal
method for critically considering and developing a knowledge and practice of systems analysis and
design by contrasting the real world with the systems world, thus differentiating it from existing
systems analysis books.

Each chapter of this book begins by highlighting what can be learned by completion of
the chapter and ends with a critical skills development section that contains activities, tasks and
discussion questions. Chapters include:

• systems analysis and design in concept and action;

• structured data modelling;

• making systems analysis and design inclusive.

Although the discussion and examples in this text are drawn primarily from business informa-
tion systems, the lessons apply to both government and healthcare information systems and to
systems development in general.

Critical Systems Analysis and Design makes a complex area of study accessible and relevant and as
such is an indispensable textbook for both advanced students and professionals concerned with
the innovation of information systems.

Nandish V. Patel is Deputy Director of Studies on The Brunel MBA programme at Brunel
University, Uxbridge.

0

0

0

0

Critical Systems Analysis
and Design

Critical Systems Analysis
and Design

A persona l f ramework approach

Nandish V. Patel

111

0

11

0111

0

0

11p

First published 2005
by Routledge
2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN

Simultaneously published in the USA and Canada
by Routledge
270 Madison Ave, New York, NY 10016

Routledge is an imprint of the Taylor & Francis Group

© 2005 Nandish V. Patel

All rights reserved. No part of this book may be reprinted or reproduced or
utilized in any form or by any electronic, mechanical, or other means, now
known or hereafter invented, including photocopying and recording, or in any
information storage or retrieval system, without permission in writing from the
publishers.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data
Patel, Nandish V., 1959–

Critical systems analysis and design: a personal framework approach/
Nandish V. Patel.

p. cm.
Includes bibliographical references and index.

1. Management information systems. 2. Knowledge management.
3. Systems analysis. 4. System design. 5. Problem solving.
6. Critical thinking. I. Title.
HD30.213.P383 2005
658.4′038′011–dc22 2004011363

ISBN 0–415–33215–X (hbk)
ISBN 0–415–33216–8 (pbk)

4149P CRITICAL-PT final/gk 27/10/04 4:19 pm Page iv

This edition published in the Taylor & Francis e-Library, 2005.

ISBN 0-203-40097-6 Master e-book ISBN

ISBN 0-203-67097-3 (Adobe eReader Format)

"To purchase your own copy of this or any of Taylor & Francis or Routledge's
collection of thousands of eBooks please go to www.eBookstore.tandf.co.uk.”

My darling daughter Risha
(which means knowledgeable)
for a brighter future

111

0

11

0111

0

0

11p

List of illustrations viii

Preface xi

Abbreviations xv

Introduction xvi

Part I
Foundations for critical learning and
teaching 1

1 The PAC cycle 3

2 Critical knowledge and practice

framework 28

Part II
IS, projects and application domains 53

3 Systems analysis and design in concept

and action 55

4 Systems project management 93

5 Systems analyst 118

Part III
Systems analysis 135

6 Requirements: the system to be (or not) 137

7 Structured data modelling 154

8 Structured process modelling 171

9 Object modelling 195

Part IV
Systems design 215

10 Interface, input and output design 217

11 Systems design 225

Part V
Criticality, paradigms and IS
development 241

12 Social action 243

13 Critical reflection 252

14 Ways of thinking and acting 263

Part VI
The future of IS development 273

15 Making systems analysis and design

inclusive 275

Glossary 283

Index 288

111

0

11

0111

0

0

11p

vii

Contents

Figures

0.1 Chapter map in the context of
criticality xx

1.1 The PAC cycle 4
2.1 Critical knowledge and

practice framework 30
2.2 The system concept 40
2.3 The SDLC – an example of a

populated critical framework 47
3.1 Data, information and

knowledge in technological
and business contexts 57

3.2 Systems development life
cycle in the context of business
organizations 60

3.3 Structured IS modelling
techniques within SDLC
phases 71

3.4 Object-oriented techniques
within SDLC phases 73

3.5 SSADM phases, techniques
and tools, and deliverables 76

3.6 Critical framework: the
ontology of the SDLC 80

4.1 The precedence network 104
4.2 Capability Maturity Model for

software 107
4.3 Critical framework: systems

project management 110

5.1 Role of the systems analyst 122
5.2 Critical framework: systems

analyst and the SDLC 128
6.1 Critical framework: peoples’

knowledge of systems
requirements in the real world 145

7.1 Naming entity type
relationships 161

7.2 Critical framework: systems
ontology based on logical data
modelling 165

7.3 Teaching allocation relationship 169
8.1 DFD notation 173
8.2 DFD context diagram for a PC

inventory system 175
8.3 Level 1 DFD for PC inventory

system 176
8.4 Entity life history form 177
8.5 Decision tables 180
8.6 Schematic decision tree 181
8.7 Student module condonement

logic 181
8.8 Action diagram 181
8.9 SSADM data flow diagram

notation 182
8.10 Critical framework: systems

ontology and process
capture 183

viii

Illustrations

8.11 Critical framework: perfect and
unambiguous logical modelling 186

8.12 Critical framework: whose
process models? 189

8.13 Critical framework: ambiguity
and imperfection in the real
world of human problems 191

9.1 Generalization–specialization
pattern 197

9.2 Gen–spec example for
insurance policy 198

9.3 A diagrammatic representation
of an object 199

9.4 An example object for car
insurance 199

9.5 Insurance policy object 199
9.6 Class template 200
9.7 Home contents insurance

policy class 200
9.8 Polymorphic class and

subclasses 201
9.9 UML notation for use case

diagram 203
9.10 Use case example for

processing an insurance policy 203
9.11 Use case script for online

purchase 204
9.12 Description of a service in

structured English 204
9.13 UML diagram types and

diagrams 205
9.14 Components of a class model 207
9.15 Critical framework: object-

orientation 209
10.1 An interface class 220
10.2 Critical framework: human

machine interaction systems
ontology 221

11.1 Structured systems design
documents 227

11.2 Nassi-Schneiderman diagrams 229
11.3 Collaboration diagram for

insurance claim 231

11.4 Package diagram 231
11.5 Deployment diagram 233
11.6 Critical framework: ontology

and systems design 235
12.1 Technical factors, social

action and IS 244
12.2 Critical framework: social

action 248
13.1 Improving the critical

framework 256
14.1 Paradigmatic critical

framework 268
14.2 Critical thinking and

paradigms 269
15.1 Deferred systems and

organization 278
15.2 Critical framework: inclusive

systems analysis and design 280

Tables

1.1 An objectivist PCF 15
1.2 A subjectivist PCF 16
1.3 A praxis PCF 17
1.4 Critical thinking skills 18
1.5 Repertory grid technique 22
1.6 An assumed analyst’s repertory

grid 23
1.7 Visual focusing (A) 23
1.8 Visual focusing (B) 23
1.9 Agreement scores 23
1.10 Similar elements 24
1.11 Similar-dissimilar personal

constructs 24
3.1 Structured systems analysis and

design techniques 70
3.2 Constituents of the application

domain 88
3.3 Personal constructs for

systems 89
4.1 Drivers for IT/IS investment 96
4.2 System project roles and

responsibilities 97

111

0

11

0111

0

0

11p

ix

..Illustrations

4.3 Project planning techniques 101
4.4 Elements of a precedence

network 105
4.5 Personal constructs for

project management 113
5.1 Qualities of systems analysts 119
5.2 Systems analysis techniques 124
5.3 Systems analyst skills 130
5.4 Personal constructs for systems

analysts 132
6.1 Issues in requirements

analysis 147
6.2 Database model types used in

Information Systems 149
6.3 Personal constructs for system

requirements 150
7.1 Entity type, attributes,

values 160
7.2 Entity relationship types 161
7.3 Relational data structure

normalization 162
7.4 Logical database records based

on entity definitions 163
7.5 Personal constructs for

data, information and
knowledge 167

8.1 Definitions of DFD symbol
notations and DFD drawing
rules 174

8.2 Structured English 179
8.3 SSADM technical products 182
8.4 Personal constructs for process

modelling 192
9.1 Personal constructs for object

modelling 212
10.1 Personal constructs for

human–computer interaction 223
11.1 Personal constructs for system

design 238
12.1 Personal constructs for

organization 250
13.1 Personal constructs for

criticality 259
13.2 Questioning structured systems 260
13.3 Questioning object-oriented

systems 261
13.4 Comparative analysis of

systems ontology with the messy
world 261

14.1 Personal constructs for praxis 270
15.1 Personal constructs for future-

orientation 281

x

Illustrations..

The purpose of this book is to redress the gap of
criticality in systems analysis and design. The
developmentofcriticality in learners is the ration-
ale that underpins programme specifications at
universities, and increasingly it is the preferred
attribute of professional employees in com-
panies. Criticality is important in systems analy-
sis because its scope has vastly increased since
the 1960s. Then, it was concerned with the
design of Information Systems (IS) for local or
departmental functions. It now covers the whole
organization in system projects involving busi-
ness process redesign, eCommerce, eBusiness,
and knowledge management systems. Systems
analysts are now not just systems designers, they
are part of a team involved in organization
design too.

IS is an important subject in academic cur-
ricula in undergraduate and postgraduate pro-
grammes at universities. Learners are exposed
to how technical analysis is conducted, how to
use formal notations to develop systems models
and designs, and how developed systems models
and designs are implemented using Information
Technology (IT). The emphasis is on providing
comprehensive knowledge and the develop-
ment of necessary problem-solving skills for
learners to become practitioners. This empha-
sis has resulted in an absence of criticality in the
subject, which for university degree pro-

grammes in business schools and computing
departments is probably a significant weakness.
Learners and practitioners need to reflect criti-
cally on the problem of IS development encom-
passing organization design, in particular
systems analysis and design. Such criticality is
necessary in postgraduate programmes and in
workplaces where critical thinking is often the
impetus for innovation.

Teachers are concerned about the divergence
between textbook knowledge of IS and systems
analysis and design and its practice in organ-
izations. The formal approaches that constitute
knowledge seem at odds with the domains in
which they are applied, namely organizations
and people. Organizations, and the people who
work in them, make it difficult for practitioners
to deploy formal IS methodologies or systems
analysis and design techniques and tools as
intended by their authors and inventors. Often
practitioners resign themselves to the fact and
stop using formal methodologies, techniques
and tools. This is regrettable because formalism
and ontological knowledge of systems can make
real contributions to practice. Teachers are
aware that what they teach their learners in the
classroom seems to lack relevance to actual prac-
tice in software development companies and in
business organizations that develop and use IS.
Yet the problem remains. Teaching knowledge

111

0

11

0111

0

0

11p

xi

Preface

is fundamental to understand the vitally revolu-
tionary phenomenon that IS and IT constitutes
in the twenty-first-century organization.

To bridge the relevance gap between know-
ledge and practice it is possible to present know-
ledge to learners in a stimulating and interesting
manner. A Personal Critical Framework (PCF)
approach will incite learners, and practitioners,
to think critically about how they internalize the
taught knowledge and how they would put it
into practice. The author’s ten years of reflec-
tive teaching practice and innovations in peda-
gogy has resulted in an exciting way of teaching
that appeals to learners. Taking a Holistic
Approach to Learning and Teaching Inter-
action (Patel, 2003) can make the subject mater-
ial interesting and relevant to learners’ personal
and professional development, and most impor-
tantly to their notions of the self and their
appreciation of the role of knowledge in per-
sonal and working lives. The Holistic Approach
has been shared with colleagues and nationally
at conferences on learning and teaching.
Learners and colleagues have applauded it,
and learners are satisfied with their levels of
performance and knowledge insights achieved.

In the Holistic Approach, learning and
teaching interaction is defined as the social
context in which a learner, who is seeking to
improve the self, is taught specific discipline
knowledge by a knowledgeable teacher whose
aim is to disseminate discipline knowledge and
improve the quality of life of the learner by
developing him or her into a critical learner.
The Holistic Approach seeks to develop critical,
confident, and independent learners capable of
action in their professions, and in society gen-
erally. The task of the holistic teacher is to
enable critical learners to direct themselves and
to devise ways of enabling learners to do that.

The purpose of the Holistic Approach is to
develop critical thinking skills in learners and
practitioners. Cognitive critical thinking skills

are difficult to develop in a practical subject
like systems analysis and design. The Holistic
Approach makes use of PCF to enable learners
to relate taught material to the actions they per-
form or would perform. The Holistic Approach,
PCF and a Critical Framework for studying
and analysing the taught material are combined
to provide a set of cognitive tools for learners
and teachers that engender critical thinking.

The pedagogy of this textbook is termed
critical learning in which the learner is regarded
as a critical learner. The traits of a critical learner
are criticality, confidence, and independence.
The critical learner is an individual who has to
act eventually in real situations. Such purpose-
ful action requires critical faculties that enable
individuals to make decisions about the action,
based on knowledge that they learn to assess for
its validity in practice. Confidence is required
to act. The holistic teacher’s task is to provide
such confidence by developing independent
learners. This independent trait of the critical
learner reflects that the individual is responsible
for their action. A critical learner can only be
independent if they are confident, and confi-
dence only develops if learners are taught to be
reflexive. This textbook introduces the devel-
opment of a PCF as a device to structure know-
ledge and purposeful action that is based on
critical thought. The development of a PCF and
its critical evaluation can lead to confidence and
independence in action.

As Barnett argues:

The challenges facing the university in developing
critique-in-action are, in part, concerned with the
ontological questions of what it means to be a self in
the world, and about the relationship of the self to
the world of work.

(Barnett, 1997: 129)

Barnett’s comments have a resonance with the
notion of praxis. Praxis is the art of acting in

xii

Preface..

given conditions in order to change them. It is
precisely this kind of situation that systems
analysts and developers of IS encounter.
Action in existing situations with given condi-
tions requires critical thinking. The Holistic
Approach is intended to develop critical learn-
ers who will be capable of such critical praxis. It
has been conceptualized as a result of the suc-
cess of the author’s teaching of IS with this
approach and appreciative learners’ favourable
comments.

This textbook is aimed at postgraduate
learners undertaking a Master of Science or
Master of Business Administration degree. Its
purpose is to develop critical learners capable
of making judgements on how to use the exist-
ing knowledge on IS development in practical
work. It can also be used at level three of
undergraduate programmes. The traits of criti-
cality, confidence, and independence of a
critical learner enable an individual to act in
real situations in relation to the discipline know-
ledge taught. The basis of the teaching
approach is praxis – our body of knowledge
arises from the very problems that we need to
solve to make progress. Knowledge that arises
from practice is in turn used to improve per-
sonal effectiveness. The discussion and exam-
ples in the text are from business IS, though the
lessons apply to both government and health-
care IS and to systems development in general.

I am grateful to all my learners who have
been exposed to my pedagogical approach to

learning critically about IS and practice. They
have been, and continue to be, learners on
postgraduate programmes in IS and Systems
Project Management. Many masters and
MBA candidates have taken my modules on
IS development. They encouraged me to con-
tinue using the Holistic Approach because of
the benefits they have derived as practitioners.
In particular, graduate trainees on a day-release
company-based programme in Information
Management have encouraged me to continue
developing the approach. All my learners
have contributed to my learning on how to
teach an essentially problem-solving subject
from a critical perspective, and I am pleased
and gratified that I have been able to contribute
to even highly experienced practitioners too:

Nandish,

May I just say that I enjoyed your lectures a great
deal, having worked in IT for 30 years, I understood
and appreciated what you were saying and also
learned a lot, it was a lecture that I always looked
forward to attending!

Best regards

Acknowledgements

I am grateful to Jacqueline Curthoys, Francesca
Poynter and Rachel Crookes at Routledge. I
would like to thank them especially for their
kind consideration.

111

0

11

0111

0

0

11p

xiii

..Preface

111

0

11

0111

0

0

11p

xv

ASD Agile Software Development
BPR Business Process Re-engineering
CASE Computer-Aided Software

Engineering
CMM Capability Maturity Model for

software development
CoCoMo Constructive Cost Model
COTS Commercial-Off-The-Shelf

Software
DBMS Database Management System
ETHICS Ethical and Technical

Implementation of Computer
Systems

IS Information System
IT Information Technology
JAD Joint Application Development
JSD Jackson Systems Development
JSP Jackson Structured Programming

NCC National Computing Centre
NIMSAD Normative Information Model-

Based Systems analysis and
Design

OSS Open Source Software
PCF Personal Critical Framework
RAD Rapid Application Development
SDLC Systems Development Life Cycle
SPICE Software Process Improvement

and Capability Determinations
SSADM Structured Systems Analysis and

Design Methodology
SSM Soft Systems Methodology
STRADIS Structured Analysis, Design and

Implementation of Information
System

UML Unified Modelling Language
XP eXtreme Programming

Abbreviations

How to use the book

The aim of this book is to admit learners and
practitioners into systems analysis and design.
Admission into a subject is called vishay prevasha

in the Indian Sanskrit language. It means to
provide learners themselves with critical facul-
ties for acquiring and developing knowledge in
a discipline. The book is not a technically com-
plete text on how to undertake systems analysis
and design. Rather, only material sufficient
to form the basis for developing criticality is
introduced.

Criticality is explored in this textbook
through: transformatory critique, refashioning
of traditions, reflexive criticality and critical
skills, after Barnett (1997). It is to be distin-
guished from the notion of simply being taught
knowledge. The central theme of the textbook
is the development of a PCF, either for learn-
ers or practitioners. Learners and practitioners
can think critically about knowledge and per-
sonal action and develop personal constructs
based on critical thought. The PCF is to be
developed on the basis of critical understanding
of knowledge and practice. It should form a set
of related cognitive constructs derived through
reflective study or reflective practical experi-
ence, or both. The value of a PCF is to antici-
pate or determine future action and, based on

personal experience, it is to be continually
revised. It serves to enable learners to develop
individually methods for critical reflection on
knowledge and practice.

The PCF and the Critical Knowledge and
Practice Framework provide the lenses for crit-
ically studying systems analysis and design.
They provide the critical focus. These frame-
works serve to encourage learners and practi-
tioners to reflect critically on the notion of
systems, methods, techniques and tools and
engender reflective and critical discussion
aimed at the development of a PCF.

To develop a PCF each chapter serves
three purposes. It presents sufficient material to
begin thinking on a specific topic. The material
is then related to the Critical Knowledge and
Practice Framework designed to enable reflec-
tion. The PCF is then developed through ques-
tions, exercises, and activities on the basis of the
reflective study of the material presented and
other readings. This section in each chapter is on
how the Critical Knowledge and Practice
Framework can be used to develop the concep-
tual and praxis elements of a PCF. Systems
analysis and design concepts and analysts’ prac-
tice based on conceptual and technical know-
ledge need to be subjected to criticality. The
section enables critical evaluation and develop-
ment of professionalism. Analysts can assess its

xvi

Introduction

value in individual and professional terms. In
particular, they can consider the impact of know-
ledge on practice.

Student-centred learning

This textbook can be used in conjunction with
the student-centred approach to learning and
teaching. As with criticality, student-centred
learning requires learners to take responsibility
for learning, but it also requires them to be
involved in its delivery. It reinforces the trans-
fer of ownership of knowledge from the teacher
to learners. It is particularly relevant to post-
graduate learning and teaching, where it can
draw on learners’ experiential knowledge.

The Systems Development Life Cycle
(SDLC) is introduced. Learners should be
encouraged to do simple, uncomplicated exer-
cises to familiarize themselves with the tech-
niques, tools and methods. Readings of relevant
research papers and cases then lead learners to
recognize and question premises and assump-
tions made by the various approaches, SDLC,
methodologies, techniques and tools. Question-
ing leads to the development of a critical per-
spective on the various problems in structured
and object-oriented analyses. Learners can then
be encouraged to think how improvements in
knowledge and practice can be made in the
light of the critical reflection.

Teachers’ own seminar exercises, cases,
research papers, and seminar discussions can be
used to involve learners in the delivery. The
teacher can introduce topics via a short inter-
active lecture and then facilitate seminar dis-
cussion. The discussion can be based on cases
and research papers. Learners should be
encouraged to lead discussions in small groups,
which then report to the plenary. The plenary
discussion itself will result in a synthesis of
learners’ contribution to the delivery.

After reading the Delphi Report’s definition
of critical thinking, self-examination and self-
correction, learners should attempt the PCF
development section in each chapter. Its pur-
pose is to encourage critical reflection. It con-
tains questions encouraging critical reflection,
individual and group discussion exercises, and
activities that lead to the development, and sub-
sequent enhancement, of personal constructs.
The PCF is thus progressively developed in each
chapter.

As there are no right or wrong answers for a
particular systems analysis problem no solutions
are provided. The teacher can determine when
to make use of the student-centred material and
provide guidelines to learners on acceptable res-
olutions. References to research publications in
the textbook are not reproduced but a full refer-
ence is provided in the further reading sections.

The teacher is encouraged to think of similar
activities to those presented in the PCF devel-
opment sections. Given the interpretive nature
of many of the questions and activities in the
PCF development sections no model answers
are provided. Teachers should use their discre-
tion to judge what constitutes an appropriate
response by learners. The author is available to
discuss the development of teachers’ initiatives
and learners’ responses via the textbook’s
associated website.

Supporting web resources

Additional material on the holistic approach
to teaching and learning is available at www.
routledge.com/textbooks/0415332168.
Teachers’ activities in developing PCF are:

• Introduce concepts of systems analysis and
design and present methods, techniques and
tools.

• Use the Critical Framework to develop
critical thinking. Relate real and practical

111

0

11

0111

0

0

11p

xvii

..Introduction

problems in applying systems analysis and
design in the real world, and seek pragmatic
resolution of the problems.

• Encourage learners to develop a PCF con-
sisting of personal constructs. Personal con-
structs may be derived from practice or
taught material, or from both sources. A
PCF should include a list of problems and
issues in systems analysis and design, com-
piled by individuals, groups or the teacher.

• Formulate questions designed to make learn-
ers think about clients, systemic problems,
social factors, organizational problems, com-
munications problems, knowledge gaps, and
other problems and issues. Relate these to
learners’ PCF by using exercises, discussions
and activities in the PCF development
sections, thus progressively enhancing
PCF.

• Develop their own activities for learners that
encourage them to think of how to resolve
practical problems in systems analysis and
design, ranging from assumptions about
organizations, people, IT and IS, covering
conceptual deficiencies, difficulties with
implementing techniques, and using tools in
real contexts.

• Develop activities that encourage learners to
relate their resolutions of practical problems
to PCF development and to question the
effectiveness of their resolutions in terms of
the PCF.

Selective chapter readings

A chapter map is given in Figure 0.1. Excepting
Part I, the remainder of the book is organized
to reflect the phases of the SDLC. This does
not justify the SDLC but recognizes the clear
conceptual distinctions prevalent in research
and practice.

Chapters in Part I are essential reading
because they provide the foundation for devel-

oping skills in critical thinking and the devel-
opment of a PCF. Once the notions of a PCF
and the Critical Framework are understood,
other chapters may be read as required. The
selective reading of other chapters can then lead
to the development of certain elements of a
PCF. Teachers are encouraged to read the sup-
plementary account of the Holistic Approach,
available at www.routledge.com/textbooks/
0415332168 because it explains the pedagogy
underpinning the approach to learning and
teaching adopted in this book.

Chapter 1 explains the PAC cycle. Teachers
and learners should read it. It details the com-
ponents of a PCF and discusses how it should
be developed. It relates a PCF to action and dis-
cusses the development of critical selves through
action.

Chapter 2 explains the Critical Framework.
Teachers and learners should read it. It details
the components of the Critical Framework and
explains how to apply them to study critically
topics in systems analysis and design. The
Critical Framework is a set of constructs to
enable criticality.

Part II covers conceptual foundations,
project management and systems analysts. A
reading of the chapters will develop the intel-
lectual and conceptual elements of a PCF. This
coverage is required because criticality assumes
conceptual understanding and argument.

Chapter 3 introduces fundamental concepts
and discusses their effect on analysts’ actions.
The SDLC, structured and object-oriented
systems analysis and design, and methodologies
are covered. A reading of this chapter will lead
to the development of fundamental and essen-
tial personal constructs in analysis and design
for a PCF.

Chapter 4 examines systems project man-
agement. It covers how an IS is selected for
development, formulating a business case for
its development, and project management

xviii

Introduction..

issues and techniques. Project management as
planned action is elaborated. A reading of this
chapter will provide the basis for developing
reflexive critical thinking and critical skills, and
enhancement of the elements in a PCF.

Chapter 5 discusses the role of systems ana-
lysts. The qualities and skills required, their
tasks, and the techniques and tools available to
them are covered. The working relationship
between systems analysts and stakeholders and
developers is discussed. A reading of this chap-
ter will enable systems analysts to think critically
of ‘the self’, and contribute to considering all the
elements in a PCF.

Part III focuses on systems analysis. A read-
ing of the chapters will enable a critical consider-
ation of the instrument elements of PCF. These
chapters are included because the development
of reflexive criticality and critical skills assumes
familiarity with the instruments of practice.

Chapter 6 explains the importance of under-
standing and developing knowledge of what
a new IS is required to do, or system require-
ments. Structured and object-oriented tech-
niques and alternatives are presented and criti-
cally discussed. Chapter 7 introduces structured
data modelling techniques. It focuses on logical
data modelling, entities, relationships, normal-
ization and documentation. Chapter 8 intro-
duces structured process modelling, covering
data flow diagrams and business logic modelling
techniques. It also details SSADM technical
products. Chapter 9 introduces object-oriented
analysis, covering object modelling and UML
diagrams.

Part IV focuses on systems design. A reading
of the chapters in this part will enable a critical
consideration of the design instrumental ele-
ments of a PCF. Similar to the previous part,
the chapters in this part contribute to reflexive
criticality and critical skills.

Chapter 10 examines user interface, input
and output design. Chapter 11 considers system

and data design, and covers change manage-
ment because of its importance in introducing
IS in an organization. A reading of these chap-
ters will enable an appreciation of the system
level design issues and contribute to the per-
sonal constructs and instrument elements of
PCF.

Part V relates the social context of systems
analysis and design. It develops a critical per-
spective through critical reflection of the previ-
ous chapters and paradigmatic analysis. A
reading of the chapters in this part will enable
critical consideration of the intellectual and
conceptual elements of PCF. The development
of transformatory critique and the possibility of
refashioning traditions assume knowledge of
what constitutes knowledge and how it is
acquired.

Chapter 12 considers social theory, organi-
zational and political factors that are not
covered in structured and object-oriented
analyses. Chapter 13 is a critical reflection of
the previous chapters in terms of human and
organizational factors. A reading of these chap-
ters will contribute significantly to the ethics,
assumptions of reality, personal constructs and
instrument elements of PCF.

Chapter 14 synthesizes knowledge and
action to deepen the knowledge element and
enable reflection on praxis in PCF. It considers
criticality in terms of refashioning traditions. It
provides a paradigmatic analysis of alternative
and emerging knowledge on systems analysis
and design. A reading of this chapter will con-
tribute to acquiring knowledge of assumptions
of reality, personal constructs and instrument
elements of PCF.

Chapter 15 takes a future-oriented perspec-
tive. A reading of this chapter will provide
knowledge of how emerging approaches are
making paradigmatic shifts to make systems
analysis and design inclusive of social and orga-
nizational factors. It gives brief accounts of new

111

0

11

0111

0

0

11p

xix

..Introduction

C
ha

p
te

r
2:

C
rit

ic
al

 k
no

w
le

d
ge

an
d

 p
ra

ct
ic

e
fr

am
ew

or
k

C
ha

p
te

r
15

:
M

ak
in

g
sy

st
em

s
an

al
ys

is
 a

nd
d

es
ig

n
in

cl
us

iv
e

C
ha

p
te

r
3:

S
ys

te
m

s
an

al
ys

is
an

d
 d

es
ig

n
in

co
nc

ep
t

an
d

 a
ct

io
n

C
ha

p
te

r
6:

R
eq

ui
re

m
en

ts
:

th
e

sy
st

em
 t

o
b

e
(o

r
no

t)

C
ha

p
te

r
7:

S
tr

uc
tu

re
d

d
at

a
m

od
el

lin
g

C
ha

p
te

r
4:

S
ys

te
m

s
m

an
ag

em
en

t

C
ha

p
te

r
14

:
W

ay
s

of
 t

hi
nk

in
g

an
d

 a
ct

in
g

C
ha

p
te

r
10

:
In

te
rf

ac
e,

 in
p

ut
an

d
 o

ut
p

ut
 d

es
ig

n

C
ha

p
te

r
5:

S
ys

te
m

s
an

al
ys

t

C
ha

p
te

r
1:

Th
e

PA
C

cy
cl

e

C
ha

p
te

r
9:

O
b

je
ct

m
od

el
lin

g

C
ha

p
te

r
12

:
S

oc
ia

l
ac

tio
n

C
ha

p
te

r
13

:
C

rit
ic

al
re

fle
ct

io
n

C
ha

p
te

r
11

:
S

ys
te

m
s

d
es

ig
n

C
ha

p
te

r
8:

S
tr

uc
tu

re
d

 p
ro

ce
ss

m
od

el
lin

g

R
ef

as
hi

o
ni

ng
o

f
Tr

ad
it

io
n

Tr
an

sf
o

rm
at

o
ry

C
ri

ti
q

ue

R
ef

le
xi

ve
C

ri
ti

ca
lit

y

C
ri

ti
ca

l S
ki

lls

P
R

A
C

TI
C

E—
K

N
O

W
LE

D
G

E

Fi
gu

re
 0

.1
C

ha
pt

er
 m

ap
 i

n
th

e
co

nt
ex

t
of

 c
ri

ti
ca

lit
y

and emerging approaches. Since a PCF is
designed to facilitate how learners and practi-
tioners anticipate action, this chapter is import-
ant for anticipating future developments in
knowledge and practice of systems analysis and
design.

Each chapter has a section for the develop-
ment of a PCF. It contains activities, questions,
and tasks that will help to objectify and define
personal constructs related to the three major
themes and six sub-themes of the Critical
Framework. They will help start thinking on a
PCF. It can be used to evaluate personal con-
structs related to knowledge and practice for
inclusion into a PCF. Where the questions or
activities require reference to an organization,
it may be the university where you study or the
company where you work. Some activities are
alternatives and so do not need to be repeated,
though using alternative methods to objectify a
PCF can lead to more clarity. For all the activ-
ities in the PCF development in each chapter
refer to the illustrative PCF in section 1.7 and
use the Delphi Report cognitive skills given in
Table 1.4 in section 1.8.1.

The Critical Framework figures in each
chapter contain much critical information. It is
not all discussed or commented upon but
selectively addressed. Teachers, learners, and
practitioners should study each figure and
investigate and critically discuss the points rele-
vant to their interests. The pragmatic resolution
component is left with question marks in some
chapters to prompt learners to think about their
own solutions to the problems depicted.

The chapters are mapped in Figure 0.1 in the
context of the critical themes explored. Each
concentric circle names the type of criticality
covered in the relevant chapters placed in the
relevant concentric circle. In accordance with
the purpose of this textbook, the chapters are
evenly distributed around the themes of trans-
formatory critique and refashioning of traditions

for critiques of knowledge, and reflexivity and
critical skills for critiques of praxis.

The placing of the chapters within the criti-
cal themes is not exact. For instance, all the
chapters contain a PCF development section
that spans all the critical themes. Chapter 5 on
systems analysts should actually be rooted in the
core transformatory critique and stretch out
through refashioning of traditions and reflexiv-
ity to the development of critical skills in the
discipline knowledge.

The ‘practice–knowledge’ bi-directional
arrow indicates that praxis is informed by
knowledge and that knowledge is informed
by praxis. Deep transformatory critique, the
inner concentric circle, can have radical effects
on practice, the outer concentric circle. Deep
critical skills, the outer concentric circle, can
have radical effects on knowledge, the inner
concentric circle. In the outward direction,
transformatory critique and refashioning of
traditions in knowledge inform practice, and in
the inward direction critical skills and reflexivity
in practice inform knowledge.

Learning outcomes

The outcomes of working through the chapters
should be critically aware learners and reflexive
practitioners. They will be able to:

• Appreciate transformatory critique, refash-
ioning of traditions, reflexive criticality and
critical skills as kinds of criticality of know-
ledge and practice.

• Develop cognitive critical skills in inter-
pretation, analysis, evaluation, inference,
explanation and self-regulation.

• Deploy the Critical Framework to identify,
question, and critically think of premises and
assumptions in systems ontology – structured
and object-oriented analyses and design, and
other approaches.

111

0

11

0111

0

0

11p

xxi

..Introduction

• Apply cognitive critical skills to develop,
amend and revise continually a PCF.

• Deploy the Critical Framework to consider
critically the application of methods, tech-
niques, and tools in real situations and
develop pragmatic resolution for practical
application problems.

These learning outcomes will lead to the devel-
opment of a PCF underpinned by critical
thinking and criticality of knowledge and prac-
tice. They specify the prerequisite cognitive
skills required to develop critical thinking and
seek to develop deeper and different kinds of
criticality.

xxii

Introduction..

Part I provides the foundational development for a PCF perspective. It is the pedagogical
basis for developing criticality. The contents of a PCF determine how it is used to anticipate
action, and how critical thinking is applied to studied and experiential knowledge. This is called
the PAC cycle and it is elaborated in Chapters 1 and 2. The PAC cycle enables the structuring
of critical thought.

Criticality is only possible if a suitable framework for analysis and evaluation is devised.
Criticality requires a critical lens through which systems analysis and design can be examined.
Chapter 2 sets out such a Critical Framework used throughout the textbook. In it systems
analysis and design is interpreted as human action that can be improved through critical
thought. The framework suggests cognitive processes for acquiring, understanding, and assim-
ilating knowledge and its application. It is the requisite lens for developing critical thought and
also the basis for insights into how to develop and sustain a PCF for personal effectiveness.

The value of a PCF is its criticality. It is the critical consideration of systems analysis and
design and subsequent inclusion in PCF that provides substance. Chapter 2 also explains what
a PCF is, how to develop one, and why a PCF is necessary for improving understanding and
practice. The question of how to understand something, and assimilate it into a PCF, is
addressed in terms of personal cognition and personal constructs.

111

0

11

0111

0

0

11p

1

Part I

Foundations for critical learning
and teaching

1.2 Introduction

Critical systems ontology is the interpretation,
analysis, evaluation, inference, explanation,
questioning and critical study of systems. It is
the notion that current ontological knowledge
of systems can be improved, and that it can be
‘other than it is’ to be practically effective. It is
enabled through a Personal Critical Frame-
work, Action, and Criticality or the PAC cycle.
The PAC cycle is proposed as a method
for systems analysts to develop criticality and
critical thought. It is termed a ‘cycle’ because
criticality is a continuous activity. Practitioners
need to develop the habit of reflecting on what
they do, how they do it, and crucially, why they
do it in order to improve practice. These
are the preconditions for developing criticality,
and require cognitive skills in interpretation,
analysis, evaluation, inference, explanation and

self-regulation. Learners too need to develop
these cognitive skills. They can benefit from
learning to reflect on knowledge and develop
deeper understanding of systems analysis, sys-
tems design, its techniques, tools and methods.

The PAC cycle is illustrated in Figure 1.1.
Readers are encouraged to develop a PCF
marked as (1) in the figure, enactment of the
PCF (2), and reflect critically on the effect of the
enactment on achieving desired aims (3). A PCF
is a qualitative approach to knowledge forma-
tion in which personal constructs are
unique to an individual. The cycle is completed
when criticality leads to the revision or amend-
ment of personal constructs and the PCF.

An initial PCF can be formed either through
critical study or reflective practice. It is com-
posed of personal constructs on systems analysis
and design and the relations between them that

111

0

11

0111

0

0

11p

3

Chapter 1

The PAC cycle

1.1 Learning outcomes

To engage in the PAC cycle, after completing this chapter you should be able to:

• Develop, revise and amend a PCF based on criticality.
• Apply critical cognitive skills to a PCF.
• Relate a PCF to personal action and effectiveness.
• Interpret formal and practical knowledge in terms of transformatory critique,

refashioning of traditions, reflexive practice and critical skills.

a systems analyst deems relevant to anticipate real-

ity. It is this focus on anticipating reality that
makes a PCF relevant for analysts because the
development of an IS is such an anticipation of
reality. Systems analysis and design is practical
and the analysts’ actions shape actual IS. The
PCF is then enacted in actual IS development
situations. The analyst critically considers the
effects of the actions in the actual situation to
enhance or revise the PCF. The process of form-
ing personal constructs, using them to anticipate
events, and revising them is continuous.

The PAC cycle is a cognitive device to assess
and improve personal effectiveness and success.
Personal effectiveness is the basis for develop-
ing professionalism. Assessing personal effec-
tiveness itself requires an objectified process.
Objectification is the basis for improving know-
ledge and understanding practice. Objectified
experiential and learnt knowledge is an import-

ant part of the PAC cycle. It is necessary for the
development of personal constructs and a PCF,
reflection on ones actions to develop knowledge
further, and the application of criticality to a
PCF.

1.3 Personal Critical Framework

A PCF is a significant element of knowledge
and professional development. It brings train-
ing and education in systems analysis and
design together on the basis of the self and the
self’s need for knowledge to anticipate experi-
ence. A framework is: ‘typically a mixture of
pre-suppositions of correctness, of what is valu-
able, and of validity. The framework is not
purely cognitive; it is not even mainly cognitive.
It is invested with values, emotion, commit-
ment, and professional and social identity’
(Barnett, 1997).

4

Part I Foundations for critical learning and teaching..

Server Workstation

Data

Personal Critical Framework

Executive stakeholder Project manager

Systems analyst

Organization
and people

Actual start Actual finish

17/06/0318/05/03
Requirements analysis

Company mission
statement

The real world of
human problems

Fuzzy
Messy

Unpredictable
Complex

Organization
People

C
rit

ic
al

 s
tu

d
y

R
ef

le
xi

ve
p

ra
ct

ic
e

The PAC cycle

Develop initial Personal Critical Framework through

Enactment of
personal framework

KNOWLEDGE
ACTION

CRITICALITY

Transformatory critique
Refashioning of

traditions
Reflexivity

Critical skills

Information Systems
Information Technology

Th
in

ki
ng

 s
ki

lls
,

co
gn

iti
ve

 c
rit

ic
al

Personal constructs

(1)

(3)

(2)

Plans
Contingencies

Phenomenology
Meaning

Social
Political

Techniques and tools

Problem
Problem resolution

Figure 1.1 The PAC cycle

A PCF is an objectified tool for critical reflec-
tion on the self, knowledge, and practice, and
it is open to revision, amendment and update.
While training in systems analysis and design
leads to specific and prescribed behaviour, edu-
cation results in an awareness of the processes
that lead to acquiring knowledge, and cognitive
and practical skills. Education engenders
personal reflection on these processes.

The practice-orientation of systems analysis
and design requires learners themselves to dis-
cover ownership of knowledge. Generating
ownership is the major aim of a PCF. As indi-
viduals have selves, the self is central in the
development of a PCF. It is vital for making
learning and knowledge relevant and meaning-
ful. Knowledge is gathered and interpreted by
the self. Learning that is divorced from the self
usually lacks relevance when action is required.

A PCF enables criticality in systems analysis
and design. An analyst develops a PCF to
improve understanding of knowledge and prac-
tice. Its purpose is to improve the self through
knowledge and individual action. Knowledge
that is devoid of the self creates a vacuity. The
self provides ownership and responsibility. In the
absence of the self, learnt or experiential know-
ledge lacks meaning. Such insipid knowledge
then bares no relation to actual practice.

1.3.1 Objectifying a Personal Critical
Framework

Objectification results in reflection on how
knowledge is acquired and used by the self in
practice. The process of objectifying knowledge
to develop a PCF requires making personal
constructs explicit on what constitutes know-
ledge, how it is acquired, and how it is accepted
as valid. Cognitive skills are needed to objectify
a PCF and for critically evaluating objectified
knowledge. Interpretation, analysis, evaluation,
inference, explanation and self-regulation pro-

pounded by the Delphi Report (Facione, 1990)
serve as requisite cognitive skills to develop a
PCF and engage in the PAC cycle.

Objectifying personal knowledge is initially
difficult, especially for practitioners immersed in
practice. Difficulties in objectifying a PCF arise
because of unfamiliarity with reflection. The
process of objectifying personal constructs and
the relationships between them includes action,
reflection, writing, diagramming and discussion.
An individual can begin to identify personal
constructs through these activities. Objectifica-
tion may be individual and then discussed with
a mentor or trusted colleague, or it may be done
in a group. Objectified personal constructs and
their relations can then form the foundation
for a PCF.

Action Practice is the deployment of know-
ledge to achieve specific goals. It results in expe-
riential knowledge. Analysts gather and use
relevant knowledge for practice. For example,
an analyst acquires knowledge of techniques to
use to determine system requirements for a new
IS. Chosen techniques will be enacted to
analyse system requirements.

Reflection Reflection is the process of crit-
ical thinking on practice to improve profession-
alism, and the self. Analysts evaluate and
critically assess practice to determine its effec-
tiveness. Practice is scrutinized to understand
what was done, how it was done, and whether
it achieved predetermined objectives. For
example, an analyst reflecting on the effective-
ness of interviewing clients for functional
requirements may assess how the interview
was conducted and whether it was suitable for
establishing functional requirements.

Writing Making a record or writing is a
method for externalizing knowledge and experi-
ence. It can be recorded as notes or critical eval-
uations of practice. For instance, an analyst
reflecting on a project to develop a decision
support system can record personal activities in

111

0

11

0111

0

0

11p

5

..Chapter 1 The PAC cycle

the project. The objectified writing can serve as
a record for critical analysis of practice and its
effectiveness.

Diagramming Drawing diagrams is a
method for making a graphical representation
of knowledge, concepts, techniques and activi-
ties. A diagram provides an overall perspective
on knowledge and action. The objectified
diagram can be used to further reflect on
practice and how to make it more effective.

Discussion The reflection, written records
and diagrams can be discussed with trusted col-
leagues or teachers. They constitute objectified
material for further critical understanding of
practice through other peoples’ perspectives.
Other peoples’ perspectives help to critically
assess, question and evaluate practice and
knowledge.

1.3.2 Knowledge and practice elements

A PCF has knowledge and practice elements.
Knowledge and practice is conceptually demar-
cated in the PCF but in practice they can be
accumulated separately or jointly. A learner
with no practical experience will initially accu-
mulate only knowledge. A practitioner can
accumulate knowledge through practical ex-
perience and contribute to the development of
practice simultaneously.

The knowledge element is required to under-
stand theory and relate it to practice. Theory is
an account or explanation of observed phe-
nomena. A theoretical explanation improves
understanding, provides explanatory knowledge
and informs practice. It consists of ideas that
explain the nature of something, its causes that
made it possible and how it functions.

It is difficult to find theory in systems analy-
sis and design, but there are paradigms of think-
ing and acting that seek to explain systems
analysis and design, and how it should be
performed. Such knowledge is accumulated

through formal learning or from practical
experience. Such paradigms can contribute to
personal explanations of why and how things
work. On a personal level a paradigm consists
of objectified ideas, concepts, techniques and
methods that form personal understanding of
systems analysis and design. Theoretical and
paradigmatic understanding can be used to
enhance and improve personal constructs or
redefine relations between elements in a PCF.

Praxis is the practical side of a discipline or
profession and it provides practical knowledge.
Practice can be conducted in the absence
of clear knowledge or understanding of the
reasons for acting in a particular manner. It can
benefit from clear explanations for acting in a
particular manner. Reflexive praxis or reflexive
practice can lead to practical knowledge based
on critical thinking. Analysts who reflect
critically on practice and knowledge can revise
and amend personal constructs accordingly.
Reflexive practice can be combined with theor-
etical or paradigmatic explanations to develop
deeper knowledge and understanding.

Professionalism, though, needs to combine
the knowledge and practice elements in a PCF.
Objectifying knowledge and practice personal
constructs can improve understanding of prac-
tice. Practice can be developed with clear
explanations for acting in a particular manner.
Most practitioners are content doing their work
and do not attempt to explain or understand
what underpins practice. A practitioner may
find that object modelling does not work well
but be unable to explain why it does not work
in practice. Reflexive practice can help to
explain the method’s shortcomings by under-
standing systems ontology. An analyst may
be trained to elicit system requirements using
structured techniques and may unquestioningly
deploy them. The analyst’s understanding of
the effectiveness of the techniques would
improve with knowledge of assumptions made

6

Part I Foundations for critical learning and teaching..

about actual situations, explanation for con-
ducting requirements in the first place, and why
structured techniques should be used.

Learners especially need to develop the prac-
tice element of a PCF. They are best placed to
benefit from the knowledge element and use it to
consider how they might act in actual situations.
They can be encouraged to develop practice per-
sonal constructs through scenarios or cases
to determine how they would act. A learner’s ini-
tial PCF can be used as a guide to praxis when
they begin practice, which should be revised
subsequently on the basis of reflexive practice.

1.4 Personal effectiveness through
a Personal Critical Framework

A PCF is useful for determining the success or
effectiveness of practice. The achievement of an
objective is a practical measure of success. A
PCF can be used to improve personal effec-
tiveness and to determine, through critical
reflection, which personal constructs and rela-
tions lead to effective practice. It enables prac-
titioners to know how to do things better and
learners to understand the reasons for particular
action. It can be used to:

• decide how to act in actual situations;
• determine knowledge and critical areas for

its improvement;
• explore strengths, develop them further, and

exploit them;
• identify weaknesses and take action to

improve them.

An objectified PCF can improve the effective-
ness of practice. It can be used to determine the
efficacy of one’s action. It can be the basis for
critically reflecting on and understanding one’s
action, resulting in some personal constructs
being revised, others replaced, or new ones
introduced.

1.4.1 Reinforcing and stopping action

A PCF can be used to explain why certain
actions should be repeated and why others
should be stopped. Action that leads to success
can obviously be repeated. An explanation of
why it is successful can be deduced from a PCF.
The explanation will enhance knowledge of
practice and deepen understanding. For exam-
ple, when a method or technique works well in
practice it is beneficial to know and understand
why and how it works. Developing an under-
standing of how it works in theory can provide
deeper knowledge of its value in practice.

Practice that results in lack of desired levels
of success or even failure needs to be stopped.
The problems with personal constructs can be
identified and amended or entire personal con-
structs replaced. Simply stopping the action will
not improve knowledge or practice. It is vital for
professional development to know why certain
actions should not be repeated. Stopping action
without understanding the reasons for failure
may lead to future similar failures.

Explaining practice is important for develop-
ing a PCF that contains relevant personal con-
structs. Actual practice consists of implicit or
explicit rules, procedures and assumptions of
which a practitioner may not be cognizant.
Explaining successful practice will objectify them
and develop knowledge that will contribute to
better understanding of practice.

Practice of systems analysis and design is an
important source for developing criticality.
Reflecting on learnt knowledge and practice is
important, but reflecting critically adds value.
The relation between a PCF and practice is
processual and interpretive rather than static
and prescriptive. An analyst constructs a PCF
processually, as they engage in actual situations.
Taking action on the basis of a PCF will either
lead to success or not. Successful action should
reinforce a PCF and unsuccessful action should
lead to revisions.

111

0

11

0111

0

0

11p

7

..Chapter 1 The PAC cycle

1.4.2 Understanding human action

Analysts’ action underpin PCF development.
Objectification of personal constructs related to
human action in a PCF, and its use to reflect
on action, can improve effectiveness. The utility
of knowledge for particular action determines
the level of success achievable. Effective action
is determined by knowledge of how to act. To
understand human action and its effectiveness,
researchers and practitioners probe questions
concerning the combination of knowledge and
practice that leads to effective action and how
effectiveness can be improved.

There are two significant strands of research
that develop knowledge of human action:
planned action and situated action.
Planned action is based on human rationality
and its capability for achieving desired objec-
tives. It is closely linked to developments in sci-
entific knowledge and the scientific method. A
plan epitomizes human action as rational action
(Simon, 1957). A plan is an instrument for
achieving desired aims and it explicates activi-
ties, rules and procedures to achieve objectives.
It assumes that it is possible to control events in
actual situations.

Planned action is crystallized as ‘methodol-
ogy’ in IS development. An IS development
methodology is a detailed plan of how to
develop IS. It prescribes systems analysis and
design activities for analysts, project managers,
and software programmers. Systems project
management too epitomizes the planned man-
agement of IS development. Systems analysis
and design methods and techniques are simi-
larly based on planned action. A plan prescribes
actions but is incapable of dealing with anom-
alies not accounted for in the plan in the real
situation. Individuals and groups need to
respond to the situations they encounter not
accounted for in plans. It is proposed here that
they do so as situated action in context.

Situated action is human intention and
action informed by context and utilizes embod-
ied skills (Suchman, 1994). It is characterized
as the setting of objectives and seeking to
achieve them. The process of achieving objec-
tives and the actions taken, depend on and are
determined by the context and situational
factors.

Situated action has had no influence on
systems analysis and design, but analysts need
to be aware of it when objectifying personal
constructs. Situated action raises questions con-
cerning structured and object-oriented systems
ontology. If the ontological assumptions under-
pinning situated action are valid, then action
that is informed by context and utilizes embod-
ied skills, logically cannot be extracted from its
context, as required in structured and object-
oriented systems ontology. Systems ontology
needs to account for such action. Analysts need
to be aware of situated action when developing
personal constructs, and when resolving systems
modelling problems pragmatically. Recent
developments in Agile Software Development
(ASD) seem to be taking account of situated
action.

1.5 Components of Personal
Critical Frameworks

A PCF should include the knowledge and prac-
tice elements detailed above, and the five essen-
tial components explained in this section. They
are required to ensure that a PCF reflects
the knowledge and practice elements. The five
components are: ethics, assumptions of reality,
personal constructs, instruments, and relations
between components. Other components spe-
cific to individuals or organizations may also
be included. For example, an analyst working
for a charitable organization may want to
include morality as a component, or one

8

Part I Foundations for critical learning and teaching..

working for the government may want to
include public service as a component.

1.5.1 Ethics

Ethics is the values component of a PCF.
Ethical practice is concerned with making
judgements concerning right and wrong behav-
iour. The purpose of professionalism is to
achieve formal objectives, but professionalism
that is void of ethical practice often leads to
undesirable, illegal, and even immoral practice.
Professional bodies in computing and IS
provide an ethical code for their members.

IS change the way people work and affect
peoples’ working lives. Analysts’ systems design
decisions bind people into working in certain
ways, for instance they determine whether
people have rewarding working relations. Such
design decisions are particularly sensitive in
organizations that deal with human healthcare.
Researchers have considered the effect of ana-
lysts’ design decisions on people. The Ethical
and Technical Implementation of Computer
Systems (ETHICS) methodology was devel-
oped to encourage ethical behaviour. The
British Computing Society have specialist inter-
est groups on ethics. Its Ethics Expert Panel: ‘is
responsible for providing advice and guidance
on ethical issues associated with the develop-
ment, operation and use of computerised
Information Systems (IS).’

The Panel is linked to the International
Federation of Information Processing (IFIP)
interest group on ethics. IFIP ensures that
clients are assured of the professional standard
of work of IS professionals. It seeks to provide
a code of ethics that: ‘acknowledges the profes-
sional responsibilities of practitioners to society
at large, members of the public, employers,
contracting parties and fellow practitioners’.

Analysts need to ethicize personal action and
objectify a personal code of ethical behaviour.

Analysts’ systems design decisions will affect the
aims of the organization and the people
working in it. Potentially compromised design
decisions need to be ethically resolved. They
have conflicting demands on them that need to
be resolved ethically. These include:

• The tension between thinking in technical
terms to comply with the constraints of IT
and the needs of the organization and people.

• Potential conflict of interests of paymasters
with personal ethics.

• Client contact that may compromise per-
sonal ethics and professionalism.

• Behaving as qualified experts who have
knowledge of designing IS.

1.5.2 Assumptions of reality

Analysts’ assumptions of actual situations they
work in constitute the ontological component of
a PCF. Ontology is knowledge of the nature
of a thing, for example organization, people, IS
and IT. Such knowledge is based on assump-
tions, which will be reflected in analysts’ per-
sonal constructs of these things, and underpin
personal practice. As a PCF consists of personal
constructs of reality, practitioners and learners
need to objectify personal assumptions of reality
– which include ideas, notions, concepts and
expected behaviours – and relate them to
personal constructs.

Analysts make assumptions about organiza-
tion and people and combine them with actual
knowledge to enable practice. As it is not possi-
ble for analysts to know the nature of something
in its totality, any action will be underpinned
by assumptions and the expected effect of the
action. Objectifying and understanding these
assumptions and expectations results in better
knowledge and effective practice. Ironically,
assumptions that underpin practice form the
practical basis of a PCF.

111

0

11

0111

0

0

11p

9

..Chapter 1 The PAC cycle

Objectivism

There are two distinct and mutually exclusive
fundamental assumptions an analyst can make.
One, that a thing is a fact independent of the
analyst’s experience and that it exists separately
of him- or herself. This is called objectivism.
Such an analyst would be called an objectivist.
Objectivists make the assumption that reality
can be known and that methods for studying
reality result in objective knowledge, or know-
ledge that is independent of human bias. The
process of acquiring objective knowledge is
the scientific method used by natural scien-
tists. Objectivists in social science are called
positivists.

Objectivist analysts assume that system ‘facts’
can be established and that factual knowledge
can be used to design systems and ‘control’
events. They assume that systems analysis and
design can result in an objective and factual
understanding of current IS and the objective
design of new IS. Structured and object-oriented
systems ontology assumes this kind of objectivist
view of people, organization, IS and IT.

Subjectivism

The other assumption is that a thing is insepa-
rable from the analyst’s experience. Such
an analyst would be called a subjectivist. Sub-
jectivists in social science are called interpretivists.
Interpretivists assume that knowledge is socially
constructed. They make the assumption that
people socially construct reality, and that
methods for studying reality should lead to
knowledge that includes an account of peoples’
experience of reality.

An analyst’s decision on one of these assump-
tions about reality has implications for the kinds
of personal constructs of knowledge and practice
developed. An analyst who assumes there are
‘facts out there’ has to develop practice that is
detached and objective. The analyst will be

detached from the organization and people
wanting a system, and make design decisions
objectively. Such an analyst cannot become
involved in the internal politics of the organiza-
tion or be biased towards particular stakehold-
ers. In contrast, an analyst who assumes reality
to be subjective has to behave as an involved
member of an organization. The analyst will
influence the politics of a new IS development,
and possibly be biased towards particular stake-
holders, or even pursue personal goals.

Researchers are divided into those who
believe IS to be objective and those who believe
it to be subjective. Objectivists dominate in
systems analysis and design, in particular prac-
titioners. Much of the critique on IS develop-
ment practice stems from the premise of
objectivity. For example, Multiview is a frame-
work rather than a methodology, but it acknow-
ledges subjectivism by including Soft Systems
Methodology (SSM) analysis techniques.

1.5.3 Personal constructs

The individual basis for a PCF is Personal
Construct Theory, in which a construct is a way
of perceiving, construing, or interpreting events
(Kelly, 2000a). Individuals seek to anticipate
experience or events, and significantly have the
‘freedom to choose’ what meaning they attach
to their experiences. To do so, they develop a
coherent set of personal constructs that are used
to interpret and explain events. The theory is
based on the principle of ‘constructive alterna-
tivism’, the view that reality does not directly
reveal itself to individuals and that each indi-
vidual construes reality as personal inventions.
So, individual analysts will construct images of
organization, people, IS, and IT that differ from
other analysts’ constructions. A personal con-
struct system is a set of personal constructs and
the relations between them that provides the
unity in the experience of individuals.

10

Part I Foundations for critical learning and teaching..

Personal constructs are necessary because
reality cannot be directly known. Individuals
experience reality and then develop construc-
tions to help them anticipate it. This view is not
the same as the subjectivists’ view of reality, as
personal constructs are open to measurements
whereas interpretive knowledge is not. Personal
constructs can be elicited and relations between
them assessed using the repertory grid
technique. Personal constructs are:

• Created as interpretations of personal
experience and then used as a model of
reality.

• Used to understand personal and other
peoples’ action (understand or make sense of
reality).

• Used to repeat, anticipate or predict future
personal experience.

• A personal method of acquiring knowledge
of reality (a personal epistemology).

• Used to assess the effectiveness of personal
action (based on trial and error).

Examples of personal construct types are:
social, institutional, knowledge and belief con-
structs. Knowledge and belief constructs are
especially important, because analysts’ own
understanding of what they regard as knowledge
and how it is applied to practical problems are
central. By surfacing personal constructs ana-
lysts’ can begin to see themselves in the process
of knowledge formation, questioning, learning,
and critical thinking.

Personal constructs in turn determine action.
Personal constructs are subject to revision and
personal construct systems change over time. So
analysts’ experience can be construed differ-
ently. Examples of personal constructs are
‘structure’ from structured systems ontology
and ‘class’ or ‘object’ from object-orientation.
Another is the notion that system requirements
can be elicited from clients or that IS can be

modelled. A recent example is ‘agile’ from agile
programming. Analysts trained in structured
methods create personal constructs that support
the ‘structured’ perspective. They may learn
object-oriented analysis in time and so will need
to revise their personal constructs to support the
‘object’ perspective.

Personal constructs underpin PCF because
they enable an analyst to elicit a personal con-
struction system or identity (self-character-
ization). Analysts should objectify personal
constructs or a personal construct system to
develop a PCF. Personal constructs create pro-
fessional and personal identity. Objectified
personal constructs help analysts to understand
knowledge and how it underpins personal
action. Analysts experience formal education,
training and practice, which is the source for
construing personal constructs on systems
analysis and design, data, information, know-
ledge, organization, people, IS and IT.
Experience from these sources leads to personal
constructs designed to anticipate further experi-
ence – practice.

The objectification of personal constructs
will enable practitioners, learners, and the
teacher, to relate them to systems analysis
and design. It leads to deeper knowledge and
understanding of human action and reality.
Importantly, the objectification process is a way
of enabling learners to take ownership of learn-
ing and development of a PCF based on know-
ledge through experience (including practical
knowledge) and knowledge acquired through
the intellect. The result is the development
of a personal critical systems ontology
through increased complexity and definition of
construction systems.

1.5.4 Instruments

Analysts need to objectify the knowledge under-
pinning the instruments of choice to accomplish

111

0

11

0111

0

0

11p

11

..Chapter 1 The PAC cycle

objectives in practice. Instruments determine
whether the practice is successful or not. The
methods, techniques and tools of systems analy-
sis and design form the technical or instrumental
component of a PCF. Authors differentiate the
terms ‘method’, ‘technique’ and ‘tool’ variously.
They are collectively termed ‘instruments’ here.
An instrument is an agency in the achievement
of an objective. It embodies the individual’s,
community of practice, and society’s knowledge
regarding particular problems and how those
problems can be resolved. Structured and
object-oriented analyses consist of such instru-
ments to address the problem of developing IS.

Analysts need to explain why certain instru-
ments are preferred and how the chosen
instruments address the problem. Assumptions
underpinning instruments need to be uncovered
and justified in terms of the problem. Experi-
enced analysts will draw on practical knowledge
to explain choices. Learners or novices will
base explanations on learnt knowledge. Such
explanations will enable informed evaluation of
personal effectiveness in practice and clarify
assumptions made about particular instruments
to assess the relevance of those assumptions.

Objectification will further knowledge of
how to improve the instruments, their use and
selection. Instrument design and choices are
determined fundamentally by assumptions
analysts make. If an analyst assumes that
organization and people exist as independent
reality then structured systems analysis and
design methods, techniques, and tools will be
chosen. If it is assumed that reality is socially
constructed, and that the analyst is part of it,
then other suitable techniques will be required.

1.5.5 Relations between components

A PCF is only effective when relations between
its components are defined. Analysts need to
objectify the relations between PCF compo-

nents to define how personal constructs are
applied in practice or how they are used to
anticipate experience – deliver required IS.
Relations between components integrate them
into a practical PCF for developing knowledge
and practice. Relationships between compo-
nents, and how components are affected by
other components, need to be explained and
justified to ensure the effectiveness of a PCF and
subsequent practice based on it.

Objectification may be difficult because the
actual relations may not be apparent. Often
praxis consists of assumed relations that are
hidden and enacted automatically in actual sit-
uations. Practitioners interested in delivering
results do not reflect on what they do and how
they behave in actual situations. Objectifying
the validity of particular practice, for example
consulting people whose jobs may be threat-
ened by a new IS, is difficult for practitioners
because such acts are secondary to the actual
task of developing an IS.

The integrative basis of a PCF is clear defi-
nitions of relations between components.
Relational definitions are essential to improve
understanding and the further development of
personal constructs in a PCF. They enable
further critical thought on whether the relations
are appropriate in terms of ethics or assump-
tions of reality. For example, an analyst needs
to define how personal ethical code relates to
organization and people, to personal constructs,
or to instruments. The analyst may consider it
unethical to impose on clients a way of work-
ing required in a new IS. The system design
would then need to be discussed with clients to
determine their preferences.

1.6 Logical and reasonable personal
frameworks

The validity of a PCF depends on its content.
It needs to be appropriate for making sense

12

Part I Foundations for critical learning and teaching..

of systems analysis and design and practising
it. Appropriate content can be assured by
checking personal constructs for logicality and
reasonableness. Personal constructs need to
be reasonable and corroborated by evidence.
An analyst cannot expect to determine what
a new IS is required to do through observa-
tion alone for example. It is unreasonable
to expect observation alone to provide an
unambiguous and complete set of system
requirements.

1.6.1 Evidence-based reasoning and
action

Reasoning requires thinking rationally and log-
ically about a problem, and involves rational
argument and deductive or inductive logic. It
alone is not sufficient to develop a practical
PCF, evidence is necessary. Evidence-based
reasoning results in a valid and practical PCF.
Evidence is the experiences that analysts
acquire from learnt knowledge and practice.
Learners or novices should draw on learnt
knowledge as authority or evidence. Such evi-
dence can be objectified in personal constructs
and critically appraised for both.

Evidence-based reasoning leads to evidence-
based practice. Evidence-based reasoning is
possible whether analysts decide on objectivist
or subjectivist systems ontology. Both rely on
the experiences of the individual to develop
knowledge of reality. The reason for including
certain instruments or particular ethics should
be traceable to evidence in practice or a body
of knowledge for validity. Personal constructs
derive their validity from the experiences of
individuals, and how these experiences are con-
strued to anticipate further experiences.
Developing a PCF on the basis of evidence-
based reasoning ensures that further practice is
itself based on evidence.

1.6.2 Think and act or act and think?

Action to resolve organizational problems can
be interpreted in two ways. One, think ratio-
nally first about a problem to decide how to act
and then follow it through into action, coined
here as ‘think and act’. A plan is a good
example of this kind of action. It draws on ratio-
nal thinking to detail prescribed action. The
SDLC and structured systems analysis and
design are examples. An IS methodology is a
particular example of such a plan. The use of
systems analysis and design instruments also
requires first thinking through what to do and
then implementing them.

The other interpretation is to engage with
the problem first and then think during its res-
olution, and afterwards, about how it was
solved, coined here as ‘act and think’. The
action and thinking of the action can be simul-
taneous. Many inventors state that they solve
problems by engaging with them and think
through the difficulties as they arise. Analysts
too recognize that IS problems are resolved iter-
atively. ASD is an emerging pertinent example
of the act and think strategy.

The think and act strategy is dominant in
IS development. In actual practice system
project plans are developed or a methodology
espoused, but implementing them proves prob-
lematical in actual situations. The result is prac-
titioners continually adjusting plans to reflect
actuality. The act and think strategy has the
advantage of making sense of the real situation
in actual time and basing decisions on how to
act on such an understanding. It is less likely to
be used in practice, especially in a business
context, because it does not afford knowledge
of what needs to be done and how it should be
done.

Analysts need to reflect on how they resolve
problems. The choice of the think and act or act
and think strategy for resolving problems should

111

0

11

0111

0

0

11p

13

..Chapter 1 The PAC cycle

be based on evidence. It will determine personal
constructs associated with problem resolution
and determine what other personal constructs
are used and how they are related in a PCF.
Models for resolving difficult, complex, real-life
problems exist to help individuals to move from
the individual level to the organizational level.
Action Science for example is the study of such
complex problem-solving in organizations.

1.7 Example Personal Critical
Frameworks

Analysts should endeavour to begin building a
PCF. Three are illustrated in this section. The
illustrations serve to show how components in
a PCF might be composed and related. They
should not form the basis for composing your
PCF. They are not meant to be actual exem-
plars. In actuality, a practitioner’s PCF will
consist of experiential and studied knowledge
and will probably include a richer and wider
variety of experiential personal constructs. A
learner or novice analyst’s PCF will contain for-
mally learnt personal constructs, whether
through training or educational programmes.

The form of a PCF can be text, tables, dia-
grams or a combination. The author’s PCF for
teaching practice is a combination of a diagram
and related text to describe and explain the
process of learning and teaching (Patel, 2003).
Its five main personal constructs are: learning
and teaching instruments, discipline knowledge,
personal and professional development, the self,
and knowledge. The learning and teaching con-
struct concurs with professional teaching
bodies. The constructs were objectified as part
of reflective and critical practice spanning ten
years. The relations between these personal
constructs are explained in text form. The
author makes use of this PCF to inform prac-
tice and to improve it on the basis of evidence
from learners of its effectiveness. It is continu-

ously checked in practice with learners to assess
its efficacy, and new ways of teaching devised
to develop each of the elements in learners.

Three ideal-type PCF are illustrated in
tabular form for brevity. The illustrations are in
‘pure’ form, meaning that actual PCF will have
many ‘grey’ areas where practice and know-
ledge cannot be neatly compartmentalized as
objectivist or subjectivist. One ideal-type is
based on an objectivist view of reality, the
second is based on a subjectivist view, and the
third is simply a personal framework, it is based
on an imagined analyst who is unaware of
objectivism or subjectivism. The PCF is pre-
sented in the first person to make the process of
objectification easier.

1.7.1 Objectivist Personal Critical
Framework

For an analyst who regards reality as objective
entities, a PCF may be objectified as Table 1.1.
It consists of the five components of a PCF and
a textual description of each component.

The description column in Table 1.1 con-
tains the relation sub-element in each compo-
nent to describe how components relate to each
other. The overall relation component is still
required to provide a rationale for the whole
PCF. The descriptions are minimal and the
relations need further elaboration. The PCF
reflects practical and theoretical knowledge of
systems analysis and design based on objective
systems ontology.

1.7.2 Subjectivist Personal Critical
Framework

For an analyst who regards reality as subjective
entities, a PCF may be objectified as Table 1.2.
It consists of the five components and a textual
description of each component. The analyst will

14

Part I Foundations for critical learning and teaching..

regard organization and people as meanings
and IS and IT as interpretations that are
socially constructed, and the analyst personally
as involved in that social construction.

Table 1.2 contains brief descriptions. The
PCF reflects practical and theoretical know-
ledge of an interpreted reality. The PCF reflects
practical and theoretical knowledge of systems

analysis and design based on subjective systems
ontology.

1.7.3 A Personal Critical Framework

For an analyst with no awareness of objectivism
or subjectivism, a PCF may be objectified as
Table 1.3. It contains the five components of a

111

0

11

0111

0

0

11p

15

..Chapter 1 The PAC cycle

Table 1.1 An objectivist Personal Critical Framework

PCF component Description

Ethics As I am detached from the organization and people for whom I develop IS, I am
not concerned with judgements about what is appropriate or inappropriate action. I
leave ethical decisions to managers who tell me what to do.

Relations: As I am detached, my personal ethics does not affect the way I interact
with people. I am a professional. Ethics is based on how I personally see reality.

Assumptions I can give an accurate account of organizations, people, IS amd IT and
of reality record this knowledge as facts. Reality can be decomposed to determine elemental

facts, which I can use to decide what action I should take. I am detached from the
organization and people, which exist separately from me. Knowledge is objective.

Relations: Instruments can be designed to extract objective system requirements. I
am a detached professional. An IS is objective.

Personal I can identify and objectify these personal constructs: professionalism;
constructs problem-solving; Information System; Information Technology; organization;

workers; organizational work; organizational politics; rationalism; perfect
knowledge.

I am detached from the problems I solve and I am a rational person, capable of
solving organizational and IS problems rationally. I am not affected by
organizational politics. System requirements can be known and elicited, people in
the organization should be able to tell me what they require the system to do. I am
a professional person with expertise and I know what systems can do better than
workers.

Relations: My personal constructs are based on how I see reality. I can apply
instruments to organizations to achieve goals. I can use them to extract system
requirements and design systems.

Instruments I can use my objective knowledge of reality to design and use instruments to solve
organizational, informational and knowledge problems. Structured systems analysis
techniques can be used to elicit, analyse and model systems.

Relations: The design and use of my instruments is based on my detached and
objective perception of reality.

Relations My view of reality enables me to remain detached. My ethics is detached from
between the problem domain – organization and people. My view of organizations
components is that they can be ‘engineered’ using instruments designed on the basis of an

objective knowledge of organizations and people. I am capable of objectively
deploying instruments. My personal constructs reflect objective reality.

PCF and a textual description of each compo-
nent. The analyst’s view of reality will probably
be based on personal experience and knowledge
gleaned from it.

The PCF reflects mostly practical know-
ledge. There is a paucity of theoretical or con-
ceptual knowledge. The ‘family’ personal
construct appears in Table 1.3. Given the holis-
tic approach of PCFs this is normal.

1.7.4 Your personal framework

The reader should develop progressively a PCF
by completing the PCF development section in
each chapter. Your PCF should be continuously
revised as you learn and begin to objectify per-
sonal constructs. The sources for your personal
constructs will be knowledge or experience from
training, formal education and practice.

16

Part I Foundations for critical learning and teaching..

Table 1.2 A subjectivist Personal Critical Framework

PCF component Description

Ethics As I am part of the organization, I should behave ethically. I am attached to the
organization and am concerned about what is good and bad behaviour. I want
to design IS in agreement with people. I am sensitive to design decisions that
lead to job loss or reducing skills.

Relations: My ethical code is related to my personal constructs about
organization and people, and other personal constructs.

Assumptions of I alone am unable to account for reality as it is socially constructed. Reality
reality is holistic and cannot be compartmentalized or decomposed. I am part of the

organization and one of the people in it. I help to create the meanings
underpinning the organization. I can help people to identify their information
and knowledge problems and facilitate them to determine what they need from
an IS.

Relations: Instruments can be designed to elicit agreed requirements. My
personal constructs are affected by my experiences.

Personal constructs I can identify and objectify these personal constructs: professionalism; problem-
solving; Information System; Information Technology; organization; workers;
organizational work; organizational politics; personal involvement and
attachment; meaning; interpretation; imperfect knowledge; limitations; social
change; collaboration.

I have limited rationality and knowledge, as do other people in the organization.
People cannot know exactly what they require a system to do. Requirements are
socially constructed and I, as a professional, act as a facilitator.

Relations: My personal constructs are based on my view of reality. I can
interact with people to understand what they want through instruments.

Instruments I can design methods, techniques and tools to help people design appropriate IS.
The instruments should be accessible to people and they should be involved in
using them to design IS.

Relations: The instruments I use are based on my view of reality. I apply them
in agreement with people.

Relations between I am part of reality or organization and people. My ethics shape my
components personal constructs and determine the use of instruments.

A PCF is to be revised. It should grow in
knowledge and understanding. You should
revise and amend your personal constructs by
critically evaluating your knowledge. As you
apply your PCF or reflect on it you will develop
better understanding of how your knowledge
and practice are related, and amend your PCF
accordingly.

You should use your PCF to reflect deeply
on the efficacy of personal action and its effec-
tiveness. As an example, an analyst who has
established a set of requirements from clients for
a new IS may find that the interviewing tech-
niques used failed to capture some functional
requirements that only arise in the context of
clients’ work. The analyst should question the
efficacy of the interviewing technique for con-

textual requirements capture, and think of alter-
native ways of capturing such requirements.
You should base your reflection of knowledge
and practice on criticality.

1.8 Criticality

Criticality is concerned with making judge-
ments on the basis of critical thought. In prag-
matic terms, criticality requires questioning and
assessing or interpreting a current situation and
reflecting on how it could be better. It results
in doing something differently. It is not suffi-
cient for practitioners to simply reflect on what
they do, how they do it, and on the results of
their actions. Reflective thinking supposes crit-
icality. Reflective and critical analysts make

111

0

11

0111

0

0

11p

17

..Chapter 1 The PAC cycle

Table 1.3 A praxis Personal Critical Framework

PCF component Description

Ethics I simply do my job. The organization is too big for me to do any harm to it. I
will stay out of harm’s way. I can give value to the business by doing good work.

Relations: My personal constructs inform my ethics and I can only do the work
that my instruments allow.

Assumptions of I believe I can create IS to help people do their work and business to be
reality effective. As I am unable to understand the whole organization, I only focus on

a particular problem. I work in a team but the team seems disjointed, and I am
only responsible for what I do. I believe the idea of teams does not work for me.

Relations: The instruments I use enable me to do my work. My personal
experience helps me to understand what I can do.

Personal I can identify and objectify these personal constructs: professionalism;
constructs value-added; problem-solving; Information System; Information Technology;

organization; workers; organizational work; organizational politics; personal
involvement and attachment; knowledge; limitations; family.

Relations: I can use my technical skills to give value to the business. I use
instruments as intended.

Instruments I use instruments to help me solve problems with which I am concerned. They
suffice, they could be improved but I don’t know how.

Relations: The instruments are sufficient for me to do my work. They need to
reflect the constraints of the work I do.

Relations between I am one person in the organization. I cannot know everything that happens.
components Others provide the instruments I use. My personal constructs are light, I am

only concerned with doing my job.

judgements on what constitutes appropriate
knowledge and practice to achieve objectives.
Such reflection requires criticality to make a
difference to practice and the accumulation of
relevant knowledge.

Systems analysts should reflect deeply on
knowledge and practice and analytically evalu-
ate the efficacy of concepts and instruments.
Such evaluation should lead to improvements
in knowledge and practice. Criticality can be
developed from formal learning or through
reflexive practice.

A PCF should be based on being critical. Being
critical of personal knowledge and actions should
provide relevance to objectified components of
a PCF. The objectified components should be
subjected to further critical thinking.

1.8.1 Critical thinking

Critical thinking is essentially a cognitive act
that benefits individuals and organizations.
Understanding and developing critical thinking
requires personal effort aided by formal educa-
tion. The Delphi Report provides a list of cog-
nitive skills and sub-skills needed to develop
critical thinking (Facione, 1990). PCF develop-
ment requires these cognitive skills elaborated
in Table 1.4. They will enable analysts to reflect
critically on knowledge and practice.

Critical cognitive skills are required to ini-
tially compose, and enable continuous revision
of, a PCF. To compose a PCF initial reflec-
tive thinking is required to determine rele-
vant assumptions about reality, ethical issues,

18

Part I Foundations for critical learning and teaching..

Table 1.4 Critical thinking skills

Cognitive skill Description

Interpretation To comprehend and express the meaning or significance of a wide variety of
experiences, situations, data, events, judgements, conventions, beliefs, rules,
procedures or criteria.

Analysis To identify the intended and actual inferential relationships among statements,
questions, concepts, descriptions or other forms of representation intended to
express belief, judgements, experiences, reasons, information or opinions.

Evaluation To assess the credibility of statements or other representations which are accounts
or descriptions of a person’s perception, experience, situation, judgement, belief or
opinion; and to assess the logical strength of the actual or intend inferential
relationships among statements, descriptions, questions or other forms of
representations.

Inference To identify and secure elements needed to draw reasonable conclusions; to form
conjectures and hypotheses; to consider relevant information and to educe the
consequences flowing from data, statements, principles, evidence, judgements,
beliefs, opinions, concepts, descriptions, questions or other forms of
representation.

Explanation To state the results of one’s reasoning; to justify that reasoning in terms of the
evidential, conceptual, methodological, criteriological and contextual considerations
upon which one’s results were based; and to present one’s reasoning in the form of
cogent arguments.

Self-regulation Self-consciously to monitor one’s cognitive activities, the elements used in those
activities, and the results educed, particularly by applying skills in analysis and
evaluation to one’s own inferential judgements with a view toward questioning,
confirming, validating or correcting either one’s reasoning or one’s results.

instruments for practice, personal constructs
and relationships between constructs. Once a
PCF is composed, it needs to be continuously
revised to reflect advances in knowledge in
systems analysis, development of new tech-
niques, and experiences from practice. Such
revisions require critical thinking to justify new
personal constructs or to justify retention or
amendment of existing ones.

The Delphi Report defines a critical thinker:

To the experts, a good critical thinker, the paradigm
case, is habitually disposed to engage in, and to
encourage others to engage in, critical judgement.
She is able to make such judgements in a wide range
of contexts and for a wide variety of purposes.
Although perhaps not always uppermost in mind, the
rational justification for cultivating those affective dis-
positions which characterise the paradigm critical
thinker are soundly grounded in CT’s personal and
civic value. CT is known to contribute to the fair-
minded analysis and resolution of questions. CT is a
powerful tool in the search for knowledge. CT can
help people overcome the blind, sophistic, or irra-
tional defence of intellectually defective or biased
opinions. CT promotes rational autonomy, intellec-
tual freedom and the objective, reasoned and evi-
dence based investigation of a very wide range of
personal and social issues and concerns.

(p. 13)

Self-regulation is crucial for developing and
continuously revising a PCF. The Delphi
Report states two associated sub-skills: self-
examination and self-correction (Facione,
1990). Self-examination entails activities like
reflecting on ‘one’s own reasoning’ or ‘motiva-
tions, values, attitudes and interests’, being
‘objective’, judge ‘deficiencies in one’s know-
ledge’, being ‘unbiased and fair-minded’, and
‘respectful of the truth’.

Barnett (1997) defines criticality as: ‘a human
disposition of engagement where it is recognised

that the object of attention could be other than
it is.’ There are three forms of criticality in rela-
tion to its three domains of expression: ‘critical

reason, critical self-reflection, and critical action’
(p. 179 italics in the original). He provides ways
of being critical in the form of a schema for crit-
ical being and identifies four levels of criticality:

Transformatory critique At the know-
ledge dimension, in transformatory critique
knowledge itself is reframed. For example,
practitioners in the field collectively developed
and accepted knowledge of structured systems
analysis that departed from traditional systems
analysis. Recently, there has been collective
reconstruction of knowledge as object-oriented
systems analysis and design, as deficiencies in
knowledge of the structured approach are
identified.

Refashioning of traditions In refashion-
ing of traditions critical thought is applied to
‘malleable traditions of thought’. For example,
practitioners and professional bodies in the field
developed mutual understanding of the roles of
developers as central in IS development.
Gradually the role of ‘users’ as participants in
IS development was recognized. Transforma-
tory critique and refashioning of traditions may
be considered as higher levels of criticality
requiring intellectual insights aimed at redefin-
ing accepted knowledge.

Reflexivity Reflexivity is critical thinking
based on one’s experience and understanding
of situations. It is reflective practice. For
example, experience of structured systems mod-
elling may reveal weaknesses in separating data
and process models. The analyst may adapt
practice by using object-oriented systems mod-
elling to create integrated or encapsulated data
and process models. Here criticality results in
adaptations to and flexibility in practice.

Critical skills Critical skill is the fourth
form where ‘discipline-specific critical skills’ are

111

0

11

0111

0

0

11p

19

..Chapter 1 The PAC cycle

developed. For example, analysts need to
develop systemic problem-solving or modelling
skills. The development of discipline-specific
critical skills is termed ‘means-end instrumen-
talism’. Reflexivity and critical skills are
regarded as personal-oriented criticality. This is
termed ‘critical reason’.

The four levels of criticality are applied to
three dimensions: knowledge, the self and the
world. The need for criticality arises from
doubting the effectiveness of certain systems
analysis and design concepts, instruments, or
from reflecting on ineffective practice. It may
arise from making an assessment of personal
practice that leads to critical observations of
applied knowledge or professionalism. There
are various ways of being critical of praxis.
Question the efficacy of certain instruments or
doubt the usefulness of a particular approach to
systems analysis. Trying different approaches
and instruments leads to critical observa-
tions about their effectiveness. While these
forms of criticality are important for the
development of a PCF, Barnett’s three forms
of criticality provide the foundations for its
development. Critical reason, critical action,
and critical self-reflection are necessary to
develop a PCF.

1.9 A critical learning journey

The analogy of a journey is used in learning to
indicate what knowledge the learner will
acquire. Learning can be likened to a journey
that has a starting point and an end point. The
learner begins with a starting state of mind and
through the study of the discipline gains and
appreciates knowledge that will create a differ-
ent state of mind. In this textbook the learner’s
starting state of mind is the desire to acquire
knowledge of systems analysis and design that
leads to personal effectiveness. The end point is
the development of criticality and critical think-
ing cognitive skills and their application to

knowledge and practice to develop a PCF for
personal effectiveness.

The journey’s fundamental milestone will be
transformatory critique in the self-dimension
that leads to the ‘reconstruction of self’. The
task of the actual reconstruction of the self is left
to learners and practitioners as they develop a
PCF to objectify personal knowledge and to
reconstruct it on the basis of criticality. Analysts
can reconstruct the self by understanding the
role of the self in learning, objectifying personal
knowledge and reflecting on practice.

The journey’s practical prominent milestone
will be transformatory critique in the world-
dimension that leads to ‘critique in action’ or
‘collective reconstruction’. Chapter 2 is a frame-
work for critically appraising systemic know-
ledge and practice. Analysts can draw on it
to develop the components of a PCF. The col-
lective reconstruction of knowledge is exempli-
fied in Part V in terms of critique of systems
analysis and design. This critique will enable
analysts to understand deeply assumptions of
reality and personal constructs. An alternative
term paradigm shift for transformatory critique
in Chapter 14 is illustrated in terms of IS devel-
opment knowledge. A cursory example of
transformatory critique here is the creation
of knowledge in ‘agile’ IS development and
associated agile systems analysis techniques.

During the journey, analysts will tread trad-
itions to draw on refashioning of traditions in
the self-dimension to develop the self within
traditions, as covered in Parts II, III and IV.
This coverage will include reflexivity in the self-
dimension that leads to ‘reflection on one’s own
projects’. It will also include critical skills in the
self-dimension that leads to ‘self-monitoring to
given standards’, termed ‘critical self-reflection’.
This coverage will enable analysts to develop
their assumptions of reality, personal constructs
and instrumental elements of a PCF.

20

Part I Foundations for critical learning and teaching..

The learning journey will expose analysts to
the problem of developing IS, in particular
to systems analysis and design. It will show how
structured and object-oriented methods are
used to analyse and design IS, and how
they presume and make assumptions about
what constitutes knowledge of the problem
domain – the workplace, the organization,
people – where IT is to be applied.

The end point of the journey is developed
criticality. The critical perspective on structured
and object-oriented systems ontology will focus
on the assumptions they make about organiza-
tion, people, and the work they do, and on what
analysts and designers can know about them.
The adequacy and efficacy of the instruments
used to analyse and design IS will be ques-
tioned. This critical perspective will reveal that
some assumptions of the problem domain and
the efficacy of instruments used are debatable.
It will reveal the limits of knowledge that
analysts can establish about the design domain
and raise awareness of what is still problema-
tical in IS.

At the end of the journey your PCF should
contain understanding and appreciation that
knowledge and practice is progressive, and that
your PCF should be similarly progressive. A
final PCF is a dead PCF. Your PCF should be
richer for understanding that some researchers
and analysts regard the problem domain as
‘objective facts’ that can be established and used
to develop IS. Others regard it as a complex
mix of subjective, social and organizational
issues that need to be understood and incorpo-
rated in systems analysis and design. It should
recognize that the methods, techniques and
tools in structured and object-oriented analyses
have limits, and that there are political, organi-
zational and cultural obstacles for analysts to
overcome if they are to deliver relevant systems
models and designs.

1.10 Personal Critical Framework
development

1.10.1 Repertory grid technique

Personal constructs should be elicited using the
repertory grid, a technique to make learning
more relevant to individual needs. The tech-
nique is used to elicit and analyse knowledge,
and can be used for self-help as in a PCF devel-
opment. Its use should challenge beliefs and
self-images of the self that are not tested but
held to be ‘true’. True learning happens when
the self is somehow affected.

The repertory grid technique consists of com-
piling a table with a left-hand column and a
right-hand column that contain polar opposite
concepts, and up to 21 other columns containing
the concepts, ideas or objects related to systems
analysis and systems design. It is not necessary to
have 21 columns. Use a word processor table or
spreadsheet for marking out the grid.

The personal constructs on the horizontal
bar are suggestions only. You may add more or
change them to suit your ideas on systems
analysis and design. Compile your own ele-
ments and polar opposites to make it personally
relevant. The right and left bars show the two
ends of a pole. Make out cards for each of the
concepts, ideas and objects that make up the
columns – personal constructs. Table 1.5 illus-
trates the technique and an elaborate grid is
shown in section 5.9.1, Table 5.4.

Each concept, idea and object that makes up
the 21 columns is also written on a separate
card. Working with a peer (the tester), complete
the grid to reveal your personal constructs.
Groups of three cards are shown by the tester
to the individual whose personal constructs are
to be elicited, and the tester asks the same ques-
tion each time: ‘How are two of these similar
and the third different?’ For example, for the
rational–emergent polar dimension in the first

111

0

11

0111

0

0

11p

21

..Chapter 1 The PAC cycle

row, the three cards shown are organization,
project team and interviewing. Mark a stroke
for each card dealt and for the odd one out (the
one identified as different) mark with a cross-
stroke.

Your answers will be your personal ‘con-
structs’ for systems analysis, or a dimension
along which you have divided up knowledge
and experience. Once the grid is complete it is
to be analysed using one of many ranking
methods to reveal which are the core personal
constructs that you use to construct and antici-
pate events in the real world. The personal con-
structs will indicate how you have divided up
your knowledge and experiences of systems
analysis and design.

You can then evaluate the usefulness and
validity of these objectified personal constructs
for your PCF. You can decide whether the
personal constructs you identified form the
foundation for professionalism, or which
systems ontology you prefer, or help you decide
which instruments to use.

Types of repertory grid are available. The
one used in this book is visual. It can be
analysed using a visual technique. Table 1.5 is
reproduced in Table 1.6 to demonstrate how to
analyse the content of a completed repertory
grid. Table 1.6 shows the elements (in columns)
and constructs (in rows) and the completed
tick/cross by an assumed analyst.

To analyse the completed grid the method
of visual focusing is used. In a separate new
table of three columns, the pattern in the
first element ‘systems analysis’ from the com-
pleted grid is copied into the first column of
the new table. This column is then compared
in turn with each other element. For example,
the ‘Systems analyst’ element is compared
with the ‘users’ element first, then with the
‘Organization’ element, and so on, in turn.
Each time there is an agreement, defined as
either two ticks matching or two crosses match-
ing, ‘1’ is recorded in the third total column.
The column-by-column comparison results in
various strips as shown in Tables 1.7 and 1.8.
The maximum agreement score is 5, which is
the number of constructs in the grid and the
minimum is zero.

When all the possible pairs of elements have
been so analysed they are then drawn as a
matrix. (All the pairs are not reproduced here.)
It is not necessary to use the original element
names, they can be coded as E1, E2, etc. for
ease. The pattern that emerges is the significant
understanding of personal constructs. The
matrix with the agreement scores for all the
pairs might look like Table 1.9.

This analysis reveals elements and their asso-
ciated meaning for a person. To discover the
significant elements, Table 1.9 is then initially
analysed along the rows to find the matching

22

Part I Foundations for critical learning and teaching..

Table 1.5 Repertory grid technique

Pole 1 Systems Organization Workers Project Interviewing Pole 2
analyst team

Rational � ✗ � Emergent

Efficient � ✗ Problematic

Objective � ✗ Subjective

Diplomatic ✗ � Authoritative

Ethical ✗ ✗ Unethical

higher numbers. The project team and users
elements are in agreement, with each scoring 5.
Where elements are in agreement they share
significant meaning for the supposed analyst. It
means that 5 out of 5 times the supposed analyst
agrees on these two elements as equally valid or
important. The analyst sees no difference.

The significance of these numbers becomes
apparent when they are considered in the
context of an actual or supposed problem.
Suppose that the analyst is engaged in gather-
ing system requirements information in an
organization. He or she does not differentiate
between the project team and users, because

111

0

11

0111

0

0

11p

23

..Chapter 1 The PAC cycle

Table 1.9 Agreement scores

Systems analyst Organization Users Project team Interviewing

Systems analyst ✗ 3 2 5 3

Organization ✗ 3 2 4

Users ✗ 5 3

Project team ✗ 2

Interviewing ✗

Table 1.6 An assumed analyst’s repertory grid

Pole 1 Systems Organization Users Project Interviewing Pole 2
analyst team

Rational � � � ✗ � Emergent

Efficient ✗ ✗ ✗ � � Problematic

Objective � � � ✗ � Subjective

Diplomatic ✗ ✗ � � � Authoritative

Ethical � � ✗ � ✗ Unethical

Table 1.7 Visual focusing (A)

Systems analyst Users Total

� � = 1

✗ ✗ = 1

� � = 1

✗ ✗ = 1

� � = 1

Total 5

Table 1.8 Visual focusing (B)

Systems analyst Organization Total

� � = 1

✗ ✗ = 1

� � = 1

✗ � = 0

� ✗ = 0

Total 3

5 out of 5 times they are given the same rat-
ing by the analyst. There is also an agreement
score of 3 out of 6 between users and inter-
viewing.

The analyst can use the repertory grid results
to evaluate the impact of these meaning on
practice. The analyst can assess whether the
equivalence afforded to users and project team
is practical. The analyst’s project team and
users elements is significant because in practice
the analyst will behave equally towards users
and the project team, which may cause diffi-
culties when system project priorities clash with
users’ priorities. Such reflection will result in
additional personal constructs, which can be
added to the repertory grid and scored.

To decipher the significance of elements they
are rearranged with similar elements replaced
together in a different matrix, as shown in
Table 1.10. This grid shows the similarity
between elements and constructs in terms of
how near they are in physical space – placed
adjacent to each other.

The users and project team are placed
together (first two columns) because they are in
total agreement. The systems analyst and

organization elements are nearly in agreement
so they are placed together. The interviewing
and instruments elements are similarly placed
together because they are nearly in total agree-
ment. The significance of the precise re-sorting
depends on the analyst’s concern. If only simi-
larities are sought rather then exact matches the
re-sorting does not have to be exact. If exact
matches between particular elements are sought
then only those need to be placed together
exactly.

A similar ordering of constructs can be
arranged. For example, the diplomatic–
authoritative and ethical–unethical constructs
can be compared as in Table 1.11

This shows that there is lack of agreement
between diplomacy and ethical behaviour
because on three scores they do not match.
This result suggests that the supposed systems
analyst is influenced in diplomacy by ethics. A
matrix for all the personal constructs can
be constructed and analysed. Further references
for understanding and compiling a personal
construct system are given in section 1.10.3.
Use the references to seek further guidance on
analysing a repertory grid.

24

Part I Foundations for critical learning and teaching..

Table 1.10 Similar elements

Pole 1 Users Project Interviewing Instruments Systems Organization Pole 2
team analyst

Rational � � � � � � Emergent

Objective � � ✗ � ✗ � Subjective

Efficient ✗ ✗ � � ✗ ✗ Problematic

Diplomatic � � � � � � Authoritative

Ethical ✗ ✗ ✗ � � � Unethical

Table 1.11 Similar–dissimilar personal constructs

Diplomatic � � � � � � Authoritative

Ethical ✗ ✗ ✗ � � � Unethical

It is assumed that readers will attempt some
kind of personal construct elicitation. If the
repertory grid technique is not used the per-
sonal constructs can be ‘conceptual’ and a PCF
can still be developed using any of the activities
A to E below, and similar activities in other
chapters. It is the PCF that is more important
than a correct method for eliciting personal
constructs.

Activity A

For this activity refer to the internet sources for
personal construct theory detailed in section
1.10.3 and further reading in section 1.10.4.
Copy Table 1.5 onto a spreadsheet and add
your own ideas for personal constructs
(columns) and polar opposites (rows). Using the
repertory grid technique determine your per-
sonal constructs. Work with someone to help
you deal the cards and fill in the grid. Discuss
with your colleague or peer whether the results
surprise you or confirm your understanding of
systems analysis. Evaluate whether the personal
constructs you identified are appropriate for the
successful achievement of the work you do?

Activity B

This activity provides a staged approach to
starting to think about a PCF. It makes use of
writing and diagramming as expression. You
may want to complete the following:

• Identify and write down concepts, phrases,
words and things you do in practice.

• If you have not yet practised systems analysis,
identify and write down concepts, phrases,
words and things you would do in practice.

• Draw a diagram placing these items into
boxes, rectangles and triangles, etc.

• Draw arrows, lines and other connectors to
show how these items are related to each
other.

• Analyse the diagram to assess whether it
accurately describes what you do or what
you would do.

Activity C

Develop a tabular PCF similar to the illustra-
tions in section 1.7 to describe your approach
to systems analysis. Use the Delphi Report cog-
nitive skills to think about your ethics, assump-
tions of reality, personal constructs, and the
instruments you use to achieve goals. Describe
the relations between these elements.

Activity D

Find a trusted colleague or peer and discuss
your ideas on the five components of the PCF.
Make notes of your ideas as you discuss them.
Elaborate your ideas in textual prose.

Activity E

Either draw a diagram of how you act to com-
plete an assignment or draw a diagram of how
you acted in an IS development project. Begin
by jotting down words that come to your mind.
Organize these words into a logical order to
describe your knowledge and practice and then
illustrate them in a diagram.

1.10.2 Experiences, evidence and
criticality

Activity A

Barnett’s schema for criticality consists of trans-
formatory critique, refashioning of traditions,
reflexivity and critical skills.

• Describe one example either from personal
life experience or practice for each type.

• Describe an example of reflexivity in your
practice.

• Make a list of critical skills an analyst would
need to develop to improve practice.

111

0

11

0111

0

0

11p

25

..Chapter 1 The PAC cycle

Activity B

In groups of two or more, individually write 300
words on your interpretation of systems analy-
sis and design. Share your text with the group
and discuss how they interpret your views. Is
your interpretation a shared view or different?
In either case discuss the importance of inter-
pretation and shared knowledge in understand-
ing and establishing knowledge.

Activity C

For all the activities in the previous section and
this section, identify the elements that are based
on evidence of systems analysis and design.
What kind of problems might arise from non-
evidence-based reasoning in practice? How is
the validity of critical observation improved
with evidence?

26

Part I Foundations for critical learning and teaching..

1.10.3 Internet sources

Critical thinking

Definitions of critical thinking can be found at: http://www.philosophy.unimelb.edu.au/reason/
critical/pages/definitions.html (accessed 24 April 2003).

The Education for Thinking Project examines the development of thinking and learning skills as
a goal of education. This site contains a series of short ‘meditations’ on thinking, knowledge, argu-
ment, etc. from one of the world’s leading psychologists of critical thinking. http://www.
tc.edu/centers/eft/ (accessed 24 April 2003).

To explore software for critical thinking see: http://www.philosophy.unimelb.edu.au/
reason/critical/pages/software.html (accessed 24 April 2003).

Ethics

Search www.bcs.org for the ethical code it prescribes for its members. Think about how you would
include it into your ethical practice.

For an internationally accepted source for ethics and professionalism surf IFIP’s SIG
9.2.2 ‘Framework on the Ethics of Computing’ http://www.ifip.or.at/ (accessed 21 May 2003).

Personal constructs

Surf http://www.brint.com/PCT.htm for an easy to read overview of personal constructs
(accessed 21 May 2003).

For a brief overview of how personal constructs are established using the repertory grid technique
see: Atherton, J. S. (2002) Learning and Teaching: Personal Construct Psychology [Online] UK: Available
at http://www.dmu.ac.uk/~jamesa/learning/personal.htm (accessed 21 May 2003).

For a business application of the repertory grid technique see: http://www.enquirewithin.
co.nz/BUS_APP/business.htm (accessed 21 May 2003).

For an elaboration of the role of criticality in education see: Barnett, R. (1997) Higher Education: a

Critical Business, Buckingham: Oxford University Press.

For the development of critical thinking in learners see the Delphi Report: Facione, P. A. (1990)
Critical Thinking: a Statement of Expert Consensus for Purposes of Educational Assessment and Instruction,
Millbrae: Santa Clara University, pp. 1–19.

An elaboration of the holistic approach to learning and teaching, upon which this book is based,
can be found in: Patel, N. V. (2003) ‘A Holistic Approach to Learning and Teaching Interaction:
Factors in the Development of Critical Learners’, International Journal of Educational Management,
17(6): 243–247.

A rather old edition but the original contains a fuller elaboration of the repertory grid technique
and how to interpret the hidden meanings within it, is: Thomas, L. F. and Harri-Augstein, E. S.
(1985) Self-Organised Learning, Foundations of a Conversational Science of Psychology, London: Routledge
& Kegan Paul.

111

0

11

0111

0

0

11p

27

..Chapter 1 The PAC cycle

1.10.4 Further reading

2.2 Introduction

Structured systems analysis and design is here
termed ‘structured systems ontology’ and object-
oriented systems analysis and design is termed
‘object systems ontology’. They are two current
dominant strands in systems analysis and design.
They seem partial and unsatisfactory because
organizations and analysts experience a variety
of problems applying them in practice. Large
organizations experience problems in develop-
ing and managing inflexible IT and IS that pose
a significant overhead cost to business opera-
tions. Problems arise in determining what IS to

select for development and how to develop
them, determining system functionality, or
keeping developed IS relevant to organizational
needs. Consequently, analysts need to approach
knowledge and practice with a reflexive per-
spective. They work in an environment where
the complexity of IS is increasing but improve-
ments in knowledge and practice is lagging
significantly.

Professional analysts can be trained to apply
instruments to develop IS. Trained analysts’ suc-
cesses will be limited to smaller IS and may not
be scalable to larger IS and organizations. While
training provides knowledge of how to apply

28

Chapter 2

Critical knowledge and practice
framework

2.1 Learning outcomes

To engage in the PAC cycle, after completing this chapter you should be able to:

• Interpret the Critical Knowledge and Practice Framework (Critical Framework for
short) to critique, evaluate and analyse knowledge of systems analysis and design.

• Apply the Critical Framework to interpret the application of formalism in systems
analysis and design to actual IS problems.

• Interpret the major themes and sub-themes in the Critical Framework to evaluate
critically knowledge and practice.

• Explain how the Critical Framework relates to the development of the components of
a PCF.

• Use the Critical Framework for ‘self-regulation’ in terms of the Delphi Report’s
cognitive critical thinking skills.

instruments, it is incapable of engendering criti-
cality. The ever-increasing complex problem of
developing IS in organizations requires trained
and educated professionals. Analysts interact with
professional accountants, marketers, business
executives and other business professionals, so
they need to learn to understand business prob-
lems such as ‘efficiency drives’, ‘quality improve-
ment’ and ‘competitiveness’. Simple training is
insufficient in this kind of environment.

A Critical Framework is elaborated in this
chapter to engender a critical perspective. A
critical perspective means to learn to regard
(personal) knowledge and practice as progressive
rather than established. It is used throughout the
chapters to develop criticality. Criticality is nec-
essary to understand systems ontology, instru-
ments, the business context, and determine how
to proceed within it. It is an important attribute
of a reflective practitioner who has to deal with
ever-increasing IS problems.

2.3 Human action and criticality

Computer-based IS are required to manage
data, information and knowledge in modern
business organizations. The development of IS
is a human activity that encompasses organ-
ization, people, IS and IT.

The quality and delivery of a developed IS is
likely to improve if analysts develop a critical
perspective. Systems analysis and systems design
are key activities that determine the success of
the development. Analysts’ actions are central
and critical in the development process.
Their knowledge and understanding of systems
analysis and design and the organizational prob-
lem to be solved determine the actions they
themselves take.

Such human action is based on knowledge
and understanding of the actual situation and
knowledge of systems analysis and design. Both
depend on ontological knowledge. Such onto-
logical knowledge contains an explanation of

the actual situation that determines what action
is taken. For example, if human intelligence is
understood and explained as genetic inheri-
tance, then there would be an absence of edu-
cational policy actions designed to develop
intelligence in children. If the genetic inheri-
tance explanation for intelligence is accepted
uncritically then it can lead to major disadvan-
tages for people who do not have the ‘intelli-
gent’ genes. Similarly, if systems analysis and
design is accepted as objective it will determine
how an analyst acts.

Analysts need to think critically about know-
ledge and how it informs practice. Unquestioned
acceptance of systems ontology will result in rote
practice, and lead to developed IS lacking qual-
ity and relevance. Critical evaluation of know-
ledge and its practical validity to achieve desired
objectives will improve action and lead to the
design of the most appropriate IS.

2.3.1 Systems analysts, knowledge and
practice

The Critical Framework is formulated to enable
criticality. Analysts need to develop cognitive
skills to evaluate a variety of issues and develop
critique. Issues range from deficiencies in know-
ledge, grey areas in practice, and adequacy of
instruments. Such issues can be evaluated by
developing critical thinking skills.

Critique is developed by uncovering and
questioning assumptions about reality made in
methodologies and systems ontology. The
Critical Framework is a point of reference to
develop significant critique. Its purpose is to:

• contribute to the development of PCF;
• enable the development of critique;
• engender reflexivity;
• improve knowledge, practice and under-

standing of context and instruments;
• critically understand and critically apply

instruments.

111

0

11

0111

0

0

11p

29

..Chapter 2 Critical knowledge and practice framework

2.3.2 The critical knowledge and
practice framework

The Critical Framework, shown in Figure 2.1,
is thematic. Analysts can use the themes to crit-
ically scrutinize knowledge, conceptual under-
pinnings, methods, instruments and practice.
The Critical Framework is a set of themes,
ideas, concepts, and learning tools arranged in
three layers to develop critical thinking. The
thick arrows indicate the logical moves from
one theme to the next and what is required to
make the move.

The first layer of the Critical Framework
consists of three major themes and six sub-
themes through which knowledge and practice
can be explored. The major themes are systems
ontology, the real world of human problems,
and pragmatic resolution, and the six sub-
themes provide analytic foci for critically
exploring the major themes. The major themes
depict the object of study (real world of human
problems), the nature of the object and how it
is studied (systems ontology), and pragmatic
actions required to analyse and design IS (prag-
matic resolution). The combined major themes

30

Part I Foundations for critical learning and teaching..

Apply formal
methods

Real world of
human problems

(Messy world)

Organizations,
people,

data, information,
knowledge,

Information Systems,
Information Technology

Systems
ontology

Formalism

Pragmatic
resolution

???

Interpret formalisms
in practice

Develop knowledge
Determine a pragmatic
resolution to problems
with formal methods

Resolve
problems

Transformation of
traditions reflexivityTransformatory critique Critical skills

Figure 2.1 Critical knowledge and practice framework

and the sub-themes provide a critical lens for
analysts to examine knowledge and practice.
They enable analysts to think critically and
should be referred to in enacting the PAC cycle
to interpret and analytically evaluate knowledge
and practice to include in a PCF.

The second layer explains the rational for
each major theme. The systems ontology theme
is to develop formal knowledge of systems or
formalism, including theory. Such knowledge
may be objective or subjective. This theme is
knowledge oriented. The real world of human
problems theme is to understand the applica-
tion of formalism and its effectiveness in orga-
nizational context. The pragmatic resolution
theme is to resolve contextual problems with the
application of formalism to real problems. The
human problems and pragmatic resolution
themes are practice-oriented.

The third layer correlates the type of criti-
cality that might normally be associated with
each of the three major themes. Transformatory
critique is associated with the development of
knowledge of systems ontology. Reflexivity and
refashioning of traditions criticality is associated
with practice, the human problems theme.
Critical skills are associated with resolving prac-
tical problems with applying formalism, the
pragmatic resolution theme. The critical think-
ing skills in Table 1.4 (section 1.8.1) are required
in, and common to, all three themes.

The first layer of the Critical Framework is
underpinned with six sub-themes. They provide
the foci for analysts to interpret and evaluate
knowledge, practice, and know-how. The sub-
themes are:

• Reality and knowledge, of organization and
people, and IS and IT.

• Theoretical, conceptual, and formal know-
ledge of systems.

• Pragmatism, or practical knowledge of
systems analysis and design.

• Planned action and plans.
• Situated action, and situations and context.
• Methods for acquiring knowledge.

Reality and knowledge IS researchers
seek to develop knowledge of IT and IS and its
use in organization and society. Their aim is to
develop valid knowledge that is established
through agreed methods of inquiry. Knowledge
from research is referred to as ‘knowledge
claim’. Knowledge is also established through
praxis or practical experience.

Analysts need to evaluate this kind of know-
ledge. As they work in or for organizations, they
need to understand them, develop knowledge
of people who work in them, and how they
want to use IS and IT. Analysts should inter-
pret and evaluate knowledge claims concerning
these issues, and uncover assumptions under-
pinning the knowledge claims to assess reliabil-
ity and validity.

Knowledge needs to be critically examined
to uncover assumptions that may not be
valid. Researchers and practitioners make
certain assumptions when developing know-
ledge because the subject of study cannot be
known in its totality. These assumptions may
weaken the reliability of the knowledge claim
or its effectiveness for practical purposes.

Theoretical and conceptual know-
ledge Theory is concerned with providing
explanations of observed phenomena. The
explanations can be conjectural and abstract or
based on empirical data gathered by research.
Sometimes theoretical explanations can be
speculative. For example, organization theory is
concerned with describing and explaining what
organizations are and how they work, it seeks
to understand and explain people in organized
activity.

There is no substantive theory of systems
analysis and design pertinent to IS. There is
conceptual knowledge and formalism, but

111

0

11

0111

0

0

11p

31

..Chapter 2 Critical knowledge and practice framework

formalism does not provide explanation. So
researchers draw on organization theory,
systems theory, social theory, communication
theory, and information and situation theory.
They do so to understand the role of informa-
tion, knowledge, IS and IT in organizations and
its effect on people.

This is a fundamental sub-theme for devel-
oping critical thinking. Concepts and instru-
ments in systems analysis and thinking stem
from theoretic explanations of organization,
people, IS and IT. As practice is affected by
such knowledge it is necessary to consider con-
ceptual knowledge and formalism critically.

Pragmatism The actual achievement of
an objective is a pragmatic process focusing on
the practical rather than the conceptual or for-
malism. IS development is a pragmatic activity
and systems analysis and design is concerned
with practical action – the analysis of human
problems, development of systems models and
their implementation.

The actual application of formalism in
context requires critical thinking. This sub-
theme is related to actual practice of systems
analysis and design. Pragmatic behaviour is con-
textually rich. Analysts come to know details
about work, workflows, processes, business data,
information and knowledge, people and com-
munications, and many other elements of organ-
ization in context. They need such detailed
knowledge because they have to develop systems
analysis and design systems models in such a
contextually rich setting. Contextual, pragmatic
knowledge helps analyst to find ways of resolv-
ing problems with formalism, or practical know-
ledge, when applied in context.

Planned action A plan is a rational, con-
ceptual construct detailing and prescribing
human behaviour designed to achieve objec-
tives. Plans epitomize human action as rational
action. They contain predetermined activities
that specifically prescribe behaviour and

describe desired outcomes. Planned action is
closely linked to developments in science and
the scientific method. It is crystallized as
‘methodology’ in IS development. This sub-
theme covers IS methodologies, methods,
techniques and tools.

Planned action is contextually poor because
it cannot foresee the actual situation in which
the plan will be implemented. The SDLC,
structured systems analysis and design
(SSADM), and IS methodologies are examples
of planned action. They are together here
termed the structured systems ontology. Object-
orientation and object-oriented analysis is
not entirely planned action because it is flexible
in how it is carried out. It is termed here as
object-oriented systems ontology. This sub-
theme is a central source for critically analysing
the efficacy of systems analysis and design based
on planned action.

Situated action Situated action is human
intention that cannot be explicated in terms
of rules and procedures. It is informed by con-
text and utilizes ‘embodied skills’ (Suchman,
1994). Unlike planned action, situated action
cannot be detailed or described in advance of
action.

Situated action is a comparative critical
thinking sub-theme. It can be compared with
planned action to understand how analysts
could act. Situated action makes use of contex-
tual and situational information and draws on
embodied skills. Arguably, systems ontology
needs to incorporate situated action.

Knowledge of action as situated action is
not discussed much in IS methodologies and
systems analysis and design. It can be said to be
emerging in methodologies, and in some IS
development approaches like ASD and JAD.

Methods of knowing This sub-theme is to
evaluate analytically methods for acquiring
knowledge on the nature of organizations and
people, IS and IT, and how to analyse and

32

Part I Foundations for critical learning and teaching..

design IS. Deciding what IS to build, deter-
mining system functionality, deciding on user
interfaces design, determining data inputs,
process and outputs, is all dependent on the
methods used to acquire knowledge. Knowledge
to develop a new IS can be regarded as ‘objec-
tive fact’ or as ‘interpretation’. Analysts should
understand both forms of knowledge, and
interpret and evaluate a personal position.

This sub-theme is important for the develop-
ment of criticality in analysts. Analysts are con-
cerned with the systematic attempt to shape the
future in a coherent way – ‘praxeology’. To
shape the future it is necessary to acquire know-
ledge about the nature of the subject acted upon.
The nature of something is called its ‘ontology’.
How we know something, such as how organ-
izations work or the relation between informa-
tion and people, is called ‘epistemology’ – or how
to acquire knowledge. Analysts are particularly
concerned with pragmatic action and how they
act is based on the kinds of epistemology and
ontology they accept as valid and reliable.

This sub-theme is difficult to relate specifi-
cally to systems analysis and design or IS
methodologies because their inventors do not
explicitly state how they acquire knowledge or
the nature of their subject. SSM, which is advo-
cated for systems analysis, is based on ‘systems
thinking’. Its underlying method of knowing is
interpretation based on ‘holism’. To establish
‘objective facts’ for systems models other
methodologies use ‘reductionism’.

2.3.3 The ontology of systems

Transformatory critique is applied to systems
ontology. Systems ontology is the knowledge
theme in the Critical Framework. Systems
ontology is knowledge of the nature of systems.
System ontological knowledge covers the prob-
lem of defining, describing and explaining IS
in terms of the capacity and limits of IT, and

how humans interact with it. Ontological
system knowledge underpins how the IS devel-
opment problem is framed and resolved, and
underpins pragmatic response. This theme can
be extended to cover practical knowledge on
how an IS is selected for development, what
systems analysis and design conceptual know-
ledge is generated, and what approach and
instruments to use.

Systems analysis and design can be
explained in terms of systems ontology. The dif-
ferent approaches, methods, techniques and
tools are based on various explicit or implicit
ontological assumptions. This theme is to make
explicit the systems ontology, its assumptions,
account for how it is constructed and formal-
ized, enable comparative analysis of systems
ontology and facilitate the inclusion of an
appropriate systems ontology in a PCF.

Ontology is the philosophical study of the
nature of being. It has implications for know-
ledge and practice of systems analysis and
design. The systems ontology theme is con-
cerned with the nature or knowledge of systems.
The nature of systems can be regarded as purely
technological or a combination of the social
and technological. Whichever systems ontology
is accepted it contains assumptions about
organizations, people, IT, and IS and the
interrelations between them.

Philosophy is an important issue in systems
ontology. Software programming methods and
IS methodologies, including systems analysis and
design approaches, have ‘philosophical’ basis,
which may not be obvious to analysts. It needs to
be made explicit. Philosophical underpinnings
are important because of implications for prac-
tice in real situations. For instance, object-ori-
ented programming is based on a philosophy that
characterizes organizations and people in terms
of ‘classes’ or ‘objects’ that have ‘attributes’ and
provide ‘services’ to other related objects. It influ-
ences analysts’ perceptions of reality.

111

0

11

0111

0

0

11p

33

..Chapter 2 Critical knowledge and practice framework

Ontological knowledge is acquired with
formal research methods and from the reflec-
tions of experienced practitioners. Formal
methods of inquiry are termed epistemology.
Some formal methods of inquiry describe and
explain systems ontology as objective. These
methods lead to practice that makes analysts
detached and independent of the human prob-
lems they seek to resolve. Other formal methods
lead to knowledge that makes analysts inclusive
and subjected to the human problems they seek
to resolve.

Epistemology in social science that leads to
objective knowledge is termed positivism.
Positivism acquires knowledge about organ-
izations and society by reducing the problem
down into manageable, observable and measur-
able elements. Reducing the problem into
manageable elements is called reductionism.
Scientists use it to develop scientific knowledge.
Reductionism as a problem-solving strategy
is also used in systems analysis and design,
particularly in structured systems ontology.

Epistemology in social science that leads to
subjective knowledge is termed phenomenol-
ogy. It acquires knowledge about organizations
and people by understanding peoples’ interpre-
tations and perceptions of their actions.
Understanding the problem in terms of people’s
experiences and their interpretations is called
interpretivism. There is marginal recognition
of interpretivism as a problem-solving strategy
in systems analysis and design, though NIMSAD
is normative, and Open Source Software (OSS)
and ASD may be construed as interpretivism.
Interpretivism is an accepted method for
research in IS. Positivism and interpretivism are
used to acquire IS knowledge and instruments
for IS development. These epistemologies have
resulted in knowledge of the problems in, and
investigation of, IS development.

Structured systems ontology is based on
human rational capability. Rationality is the use

of reason and logic to think on a problem and
its resolution. It has resulted in formalism in
systems analysis and design. One form of ratio-
nality is planned action. In organizations plans
underpin IS strategy, systems analysis, systems
design, governance and management mechan-
isms. Planners and plans assume an organiza-
tion is a rational and optimizing entity, and that
once developed, plans can be implemented to
achieve stated objectives. Structured systems
ontology assumes objective knowledge and
relies on rational planning. Rationalism under-
pins its instruments, but they pose practical
problems in practice and are insufficient for
developing complex organizational IS. The
SDLC and systems project management
similarly rely on rational behaviour.

Systems ontology based on interpretivism
views reality as humans’ interpretations. It cen-
tralizes individuals and the meanings they
attach to their actions. Reality is socially con-
structed in interpretive systems ontology. SSM
and situated action are examples of interpretive
systems ontology. The use of stories in ASD
acknowledges interpretive systems ontology.

Systems ontology is a representation of real
situations. It develops knowledge of and struc-
tures problems in IS, but the actual problems
exist in the real world of human problems.

2.3.4 Real world of human problems

Refashioning of traditions and reflexivity criti-
cally is applied to the real world of human
problems. The real world of human problems
is the first practice theme in the Critical
Framework. A human problem is any organ-
ized effort to achieve an objective. Business and
technical problems combined constitute actual
human problems. Business problems range
from strategic issues on competitiveness to oper-
ational issues on business process efficiencies
or cost reduction.

34

Part I Foundations for critical learning and teaching..

The application of IT to resolve business
problems is a separate technical problem. IT is
applied on the basis of ontological system know-
ledge. Systems ontology provides the formalism
and instrumental means to apply IT. The actual
application of IT underpinned with system
ontological knowledge is problematic. Actual
organizational business context and technical
problems differ from an assumed systems ontol-
ogy or formalism. For example, in contrast to
optimum solutions based on complete informa-
tion proposed in structured systems ontology, in
actual situations organizations seek non-
optimum solutions to problems and do so with
limited available information. People have
intentions and are capable of influencing plans.
Organization and organizing do not easily
succumb to the application of formalism.
Uncertainty in real situations and decision-
making affect the application of formalism.

Analysts’ apply systems analysis and systems
design formalism in practice. They are con-
cerned with determining how to respond to
actual problems by applying ontological and
technical system knowledge. Interpretation is
significant in the application of knowledge
because of varying perceptions of individual or
groups of analysts. Formalism encounters prob-
lems when applied to actual situations, which in
turn necessitates understanding organizations
ontologically, and leads to revisions in systems
ontology or partial deployment of formalism.

Similarly, the resolution of the technical
problem necessitates analysts to understand the
business and organizational context. Analysts
have to interact with people and appreciate
issues in business strategy, competition and
business process improvement. They have to
understand organizational interaction and
communication designed to achieve tasks and
objectives. People pose particular problems
when applying instruments and require under-
standing:

• How human purpose is established and its
dynamism.

• Organization and communication and its
dynamism.

• Human interpretation and meaning attached
to actions and the results of actions.

• Social aspects of human interaction and
communication.

• Political aspects of human interaction and
power relationships in organizations.

Real situations are referred to as the ‘messy
world’ in the Critical Framework. The descrip-
tion of real situations as ‘untidy’ or ‘messy’
is used to compare actual human problems
with how they are characterized, and the
solutions proffered, in systems ontology, or for-
malism. This messy world is not susceptible
to the direct translation of rational formalism
of systems analysis and design. The applica-
tion of structured and object-oriented systems
analysis and design in the messy world is
problematical.

The messy world theme enables critical eval-
uation of formalism in the context of actual
problems in organizations and in relation to
people. For example, the use of questionnaires
to elicit requirements for a new IS may raise
suspicion in people who are required to com-
plete them. The suspicion may lead to refusal
to comply or at worst result in sabotage. The
development of a PCF requires an understand-
ing of these organizational, people and appli-
cation problems. Novice analysts need to be
aware of them and experienced analysts need
to reflect critically on them to develop relevant
personal constructs.

2.3.5 The pragmatic resolution

The development of critical skills is realized in
pragmatic situations to enable critical thinking
on praxis. The pragmatic resolution theme is

111

0

11

0111

0

0

11p

35

..Chapter 2 Critical knowledge and practice framework

concerned with developing practical knowledge
of applying formalism in real situations. It is the
second practice theme. Its purpose is to encour-
age analysts to overcome practically the prob-
lems with applying formalism in organizations
and in relation to people, and to develop critical
skills.

Adjustments to system ontological know-
ledge and the application of instruments are
often necessary in practice. Changes to instru-
ments or prescribed application processes need
to be made to achieve required objectives.
Innovative ways have to be found to interact
with people to apply the prescribed formalism.
Ironically, the changes and innovations made
to apply formalism in actual context may be
characterized as situated action.

Practical knowledge is a prerequisite of pro-
fessionalism. Analysts need to make decisions on
how to resolve problems with applying formal-
ism practically in actual situations. Pragmatic
solutions to application problems are necessary
and may result in amending or adjusting for-
malism and how it is applied. Changes to how
instruments are applied can be based on clearer
understanding of the problems in the messy
world.

Critical understanding of formalism, planned
action and situated action sub-themes can result
from the pragmatic context. For example, the
questionnaire technique may be part of an ana-
lyst’s plan to elicit requirements. Its actual
implementation may create anxiety in people
for fear of change. So the analyst should be
prepared to think of an alternative that does
not cause anxiety to people who’s work is being
analysed. Another example is an analyst com-
municating gathered system requirements as
E–R or DFD diagrams to ‘users’, who fail to
provide intelligible comments because they do
not understand the diagrams. The analyst can
resolve the problem pragmatically by develop-
ing prototype user interfaces to show to users.

‘Seeing’ the system will help users to make
useful comments.

2.3.6 Comments on the Critical
Framework

The Critical Framework is necessarily laden
with the author’s subjective values phenomeno-
logical ontological position. The choice of
themes and sub-themes is personal, but they do
reflect the discourse in the wider literature on
systems analysis and design and IS. The issues
they raise are pertinent to knowledge and prac-
tice. It is assumed that the major themes and
sub-themes in the Critical Framework will be
sufficient to develop criticality.

The Critical Framework is to be used to
improve personal knowledge and practice. It is
not proposed (at present) as a model for critical
systems ontology in the field. It offers scope and
a framework for criticality because it is arguable
whether systems analysis and design can be
practised objectively. It is plausible to argue that
it is phenomenological, as many analysts make
choices based on familiarity or successful prior
use of formalism or instruments. Such epistemo-
logical positions and counter positions pose a
validity issue for positivist researchers.

The Critical Framework will enable critical
analysis and evaluation of various issues. It
enables fundamental assumptions made in
systems ontology to be revealed, analysed and
evaluated in terms of actual situations and prag-
matic application. Systems analysis and design
derives its system formalism from systems theory,
systems thinking, and positivism. The major
themes will enable critical consideration of
the knowledge value and practicality of notions
like ‘structured’, ‘objects’, and ‘engineering
systems’. In particular, the Critical Framework
will enable interpretation, analysis, explanation
and evaluation of:

36

Part I Foundations for critical learning and teaching..

• Philosophies and assumptions underpinning
structured and object-oriented systems ontol-
ogy.

• Formalisms like the SDLC and its applica-
tion.

• Structured and object-oriented systems
analysis and design (and other approaches
like prototyping and JAD).

It will also enable:

• Personal inferences to be drawn for devel-
oping a PCF.

• ‘Self-Regulation’ because the Critical
Framework acts as a device to ‘monitor cog-
nitive activities, the elements used in those
activities, and the results educed’ (Facione,
1990).

The primary purpose of the Critical Frame-
work is to develop critical learners and practi-
tioners. It facilitates criticality in two ways. One,
it will enable a critique of ontological system
knowledge. It is an aid for making critical
observations on knowledge and practice, pre-
paring project managers and analysts, and
developing reflective and critical skills in them
when selecting and implementing formalism
in practice. Two, it will enable critical thinking
on IS projects, requirements analysis and sys-
tem specification, data and process model-
ling, object modelling, user interface and data
design, system interfaces. Both these levels
of criticality will inform the development of
a PCF.

2.3.7 From the particular to the general

Human action in actual situations is unique and
particular. Ideally, each situation requires its
own particular response suitable to it only. In
small system projects a unique response is fea-
sible, but in larger projects practitioners draw

on established generalized knowledge. The
systems ontology theme constitutes such gener-
alized knowledge to facilitate criticality. It is
possible to be critical of individual situations,
but not of all particular situations and experi-
ences. The latter is possible with generalized
knowledge.

Though human action is particular, it is
informed by, and often predicated on, general-
ized knowledge. Analysts infer generalized
knowledge from particular instances. Similarly,
IS researchers draw general inferences from
samples of empirical data. Generalized know-
ledge of human action, social factors, organiza-
tion, people, systems, IS and IT should be
interpreted and analytically evaluated in terms
of the Critical Framework. The following
three sections is an outline of such generalized
knowledge.

2.4 Social and technical factors

Knowledge of organization itself is complex.
Knowledge of organizational application of IT
for IS to achieve objectives is a higher order of
complexity. Organizational application of IT is
the context for systems analysis and design.
Analysts need to appreciate and understand this
complexity.

The combination of organizational social
factors and technological technical factors
makes systems analysis and design uniquely
problematical. The social factors require ana-
lysts to consider how humans organize them-
selves in a collective to determine purpose and
strive to achieve it, how people communicate,
cooperate, and interpret their actions in organ-
izations, and what meanings people attach to
information and knowledge. The technical
factors include systemic knowledge, IS method-
ologies, formal methods, instruments, choice of
software and hardware, problem-solving and
other skills of analysts, programmers and

111

0

11

0111

0

0

11p

37

..Chapter 2 Critical knowledge and practice framework

project managers. A significant element of the
technical decisions made concern assessment of
the suitability and capability of the available IT
to produce required IS.

The dichotomy between social and technical
factors is useful when analytically evaluating
formalism. Some formalisms account for only
social or technical factors, others consider both.
For example, Information Engineering and
early versions of SSADM are orientated
towards developing technically optimal systems
models. Others have developed a socio-
technical perspective. The ETHICS method-
ology is the seminal socio-technical perspective.
It is based on the notion that both social and
technical factors need to be understood to
develop effective, socially responsible IS.

2.5 Human action

Human action can be categorized and ex-
plained as the planned action and situated
action ideal types. Both types provide theoreti-
cal, conceptual and generalized knowledge of
human action. IS methodologies and formalism
in systems analysis and design is interpreted
here as planned action. In contrast, situated
action emphasizes the context and situation,
and explains how humans use certain ‘embod-
ied’ knowledge that arises in situations. It can
be used to counter-argue planned action and
explain many of the problems that arise in
applying formalism in practice.

Planned action and situated action sub-
themes are intellectual traditions to explain
human action. They need to be critically con-
sidered in systems analysis and design and can
be analytically evaluated in terms of the systems
ontology theme. They proffer descriptions and
explanations of human action, which need to
be analysed and their basic assumptions raised
and discussed.

2.5.1 Planned action

In planned action people and organizations are
characterized as rational and goal-oriented.
Planned action is action that is predetermined
with expected outcomes to achieve known
objectives and enacted in actual situations to
realize the expected outcomes. A plan is a
formal instrument of organizational systems
strategy that details what IT to apply and how
IS should be developed. Formal plans are
central in business organizations. Their scope is
wide, covering plans of business strategy, IS and
IT strategy, and systems project management.
Planned action assumes it is possible to plan
and control organized human activity, and do
so rationally.

Systems analysis and design draws on
planned action. IS methodologies are detailed
plans of how to define and develop IS. Systems
project management epitomize planned man-
agement of IS development. Planned action of
this kind characterizes organization, people,
information and knowledge, as entities that can
be analysed, objectified and modelled with pre-
cision rationally. Structured and object-oriented
instruments attempt precisely such planned,
rational systems modelling and design.

The generic structured SDLC is character-
ized here as planned action. It supports the
view that planning IS development will result
in successful and relevant IS. It prescribes
planned stages for systems developers to follow
systematically and is composed of staged activ-
ities and detailed activities in each stage. The
focus of the activities is the completion of
the technical tasks of systems analysis, systems
design, testing and implementation. Structured,
and to some extent object-oriented, systems
ontology assume that planned action can lead
to successful IS development, and relevant and
required IS.

38

Part I Foundations for critical learning and teaching..

2.5.2 Situated action

Situated action is not explicit in any formalism
in systems analysis and design or methodology.
Nevertheless, it is a significant sub-theme within
systems ontology and human problem themes
that can be the basis of action and explanation.
eXtreme Programming (XP) may be inter-
preted as drawing on situated action to elicit
system requirements. It uses ‘stories’ recounted
by people to understand system requirements.
Such stories are necessarily situated.

In situated action, organization and people
are characterized as goal-oriented, but contex-
tual, and situated. They draw on situational
knowledge and embodied skills to achieve goals.
When problems arise in pursuing goals, they
draw on any relevant knowledge, situated
factors, and embodied skills to overcome them.

Systems analysis and design can be inter-
preted in terms of situated action. The inter-
pretation can explain problems with applying
formalism or lead to better formalism sensitive
to context. Analysts can draw on embodied skills
and situated knowledge to resolve problems with
applying formalism to actual situations.

2.6 Systems theory

Systems theory is used to inform human action.
The system concept is an intellectual tool for
rigorous and thorough problem definition and
problem resolution. It enables human problems
from actual situations to be abstracted in system
terms for reasoning and resolution. Systemic
features facilitate such problem framing and
resolution. They are:

• Purposeful activity or goals.
• The whole is greater than the sum of the

parts.
• Predictability of systems processes and rela-

tions between the subsystems.

• The distinction system enables between the
system and its environment.

• Related to the latter, is the notion of open
and closed system.

A system consists of a set of interrelated ele-
ments or components that has a purpose and
the system is greater than the sum total of its
parts. It has a boundary that defines and dis-
tinguishes the system from its environment with
which it communicates inputs and outputs.
Processes in the system transform inputs into
outputs. A system can have subsystems with the
same characteristics. The system is coherent
because it has structure and processes, which
are maintained by feedback and control. A
system can be open, meaning that its elements
interact freely with its environment, or closed
if the interaction with the environment is
controlled by the set boundary.

An example system is shown in Figure 2.2.
The system is set in the environment with which
it communicates inputs and outputs. Its purpose
is determined by events in the environment. It
contains subsystems that communicate with
each other, and the subsystems and the com-
munication compose the processes that trans-
form the inputs into the required outputs.
Feedback from the environment on the effec-
tiveness of the outputs is used to adjust the
inputs and processes to ensure the required
outputs are produced. Control, shown as echo
waves, pervades the whole system and is used
to direct the processes towards the goal.

Systems theory has influenced how the
problem of IS development is defined, struc-
tured and resolved. As in Figure 2.2, in its most
fundamental form it informs the view of IS as
a systemic entity with inputs, subsystems, rela-
tions, processes, outputs, a system boundary,
and a system environment. Earliest applications
of computers to business organization mirror
these system elements. Structured systems

111

0

11

0111

0

0

11p

39

..Chapter 2 Critical knowledge and practice framework

analysis with its focus on data processing is
strongly informed by systems theory.

2.6.1 Systems thinking

Systems thinking draws on systems theory. It is
applied to characterize organizational problems
in systemic terms. An organizational prob-
lem, for instance improving the management
efficiency of a NHS Trust, can be interpreted
in systemic terms as consisting of purposeful
behaviour, with elements that communicate
with each other and with the environment to
achieve specific purpose. This type of system is
termed a human activity system. A human activ-
ity system has purposeful control where decision
makers make choices about the system.

The systemic attribute of the whole being
greater than the sum of the parts is signifi-
cant. The combination of the elements and
subsystems produces an ontologically different
entity, the system. This is termed the emer-
gent property of system. This means that
the whole cannot be understood simply by
explaining its parts. The emergent property
of systems is significant for understanding
human activity. Systems thinking has several
uses:

Method of enquiry Systems thinking is a
method for acquiring knowledge. It is a formal
interpretive method for understanding, prob-
lematizing, and solving human problems.
Systems thinking is used to develop knowledge

40

Part I Foundations for critical learning and teaching..

Subsystem A

Subsystem C

Subsystem D

Subsystem E

System
Inputs Outputs

Processes

Feedback

Control
C

ontrol

C
ontrol

C
ontrolSubsystem BSubsystem BSubsystem B

System environment

System boundary

Figure 2.2 The system concept

and understanding of organizations and people,
and its proponents recommend its use in con-
ceptualizing IS and in IS development.

Conceptualize real world problems
Systems thinking can be used to think about
real situations and human problems. Complex
organization problems can be interpreted in
systemic terms that would otherwise be impos-
sible to conceptualize. They can be conceptu-
alized as wholes with interrelated subsystems
that have emergent properties, and purposes
that are achieved through feedback and control
mechanisms.

Analysis technique It can also be used as
a method or technique to analyse organiza-
tional problems that would otherwise be diffi-
cult to do. Systems thinking is used to develop
an appreciation of real world problems and to
conduct an analysis of subsystems, constraints,
and explore solutions.

Management method Systems thinking
can be used as a method to inform manage-
ment practice. It can be used to conceptualize
and analyse quite complex organizational prob-
lems, and through systemic analysis provide
management with clearer understanding of
problems and possible solution actions.

Systems thinking is normally used to struc-
ture problems in organizations and bring to
the surface how people perceive these problems.
It can be applied to IS to structure thinking.
The emergent property of systems is clear in IS,
since the combination of the constituent parts
of an IS produce an Information System that is
different in nature from its compositional parts.
It is ontologically different. Modelling these
components in systemic terms will depict the
elements, interrelations, the boundary and
the system’s environment. The various compo-
nents that constitute an IS can then be inter-
preted in systemic terms to organize ideas and
concepts about organization and people, data,
information, IT and IS.

The descriptive and analytical capability of
systems thinking is useful for systems analysis
and design. It can be used to describe the actual
situation and perform an analysis of it in sys-
temic terms. Various systems analysis and
design formalism in IS methodologies make use
of systems thinking. For example, in Multiview
the SSM ‘rich picture’ technique is used. A rich
picture is used to develop an appreciation of the
problem as perceived by people in the organ-
ization. In Multiview it is proposed as a systems
analysis technique to help determine system
requirements.

2.6.2 Organization, people and systems
thinking

Organizations use IT to process business data
to produce information and knowledge. They
capture, process, store and manage data for
several reasons:

• Legal requirements: compile statutory
accounts, reports for shareholders.

• Improve organizational efficiency and effec-
tiveness: reduce costs or improve business
processes.

• Determine business strategy: executives
develop business strategies to compete with
other businesses.

• Provide information for decision-making:
increase or decrease production, make an
investment in capital machinery.

• Organizational knowledge: manage
organizational knowledge and build know-
ledge bases for innovative product design.

Analysts need to appreciate organizations
and what IT and IS can contribute. Organ-
izations exist in business, government, health-
care and other human interests like charities.
An organization is defined as having goals, a
boundary and human activity. It is composed of

111

0

11

0111

0

0

11p

41

..Chapter 2 Critical knowledge and practice framework

people collaborating, sharing and communicat-
ing to achieve set goals. The goal may be to pro-
duce an aircraft or car, or to provide a financial
service, or to retail goods.

IT is used to ‘transform’ organization, in
particular business processes. Production
processes or management processes can be
improved to produce better products or services
by applying IT innovatively. Transforming
business processes with IT though is a complex
task. Systems thinking can be used to describe
and analyse organizational uses of IS. It can be
used to understand conceptually:

• How people in organizations communicate
with each other, what information they
share, process or exchange.

• How various departments, sections, groups
(elements in systems thinking) communicate
information to achieve organizational goals.

• How to demarcate a particular area of the
organization (draw a boundary in systems
thinking).

• How to determine what external factors
affect the organization (determine how the
elements interact with the environment in
system terms).

The conceptual knowledge can then be used to
manage the actual problem. Understanding the
nature of organizations is an element of the sys-
tems ontology theme and a significant factor in
applying systems analysis and design formalism.

Systems theory and systems thinking has fun-
damental implications for the systems ontology
theme. Systems theory regards people as the
source of problems in the system and it is con-
cerned with responsibility, or moral and ethical
issues. It creates a systemic view of organization,
people, information, and IS. It separates know-
ledge about work from the subject or individ-
ual and it is concerned with how we gain

knowledge, or epistemological issues. This is
regarded as valuable in systems thinking
because such knowledge can then be stored and
processed and used to improve organizational
efficiency and effectiveness.

2.7 Focus on criticality in systems
analysis and design

Analysts need to develop a critical disposition
because of the centrality of their role. They
have an important multi-purpose role. The core
of their work is the creation of systems models
for which they communicate with people for
whom the system is to be developed. Analysts
communicate the systems models to systems
designers and software programmers.

This core work of investigation and creation
of systems models constitutes systems analysis
and design. Their design decisions affect people,
workflow patterns, business processes and
information provided to managers. The ideas
for these creative systems models come from
investigation of organization and people and
the resultant understanding of system require-
ments. The purpose of the Critical Framework
is to engender criticality and adduction of per-
sonal constructs. The emphasis on the personal
approach is to enable knowledge and practice
to be developed for practical application.

Criticality in the field of systems analysis and
design has lead to improvements in conceptual
knowledge and instruments. It has progressed
systems analysis from ‘art’ to ‘structured’
and from ‘object-orientation’ to ‘eXtreme Pro-
gramming’. Critical thinking resulted in system-
atic ‘problem-solving’ and produced methods to
structure an IS problem and solve it. It resulted
in the concept of systems analysis and design
as a rational process, where perfect knowledge
is assumed, and depicted the role of analysts as
rational problem-solver.

42

Part I Foundations for critical learning and teaching..

2.7.1 Systems analysts, problem-solving
and creativity

A critical disposition is important because ana-
lysts’ work is future-oriented. Analysts examine
current problem situations to determine a better
future organization. A critical disposition is
required to:

• think of innovative strategic and operational
systems;

• use IT creatively;
• improve approaches, methods and tech-

niques;
• improve problem-solving techniques.

IT is a fundamental prerequisite for modern
information and knowledge management in
organizations. It has created the modern notions
of ‘data’ and ‘information’, and it is import-
ant for organizational knowledge management.
Computer network technology, especially the
internet, enables knowledge to be managed elec-
tronically and enables eCommerce. So analysts
need to develop methods to think of innovative
strategic and operational systems. A critical dis-
position can engender creative uses of IT. Their
work requires creatively addressing business and
technical problems. At a strategic level com-
panies now expect IT to deliver innovative busi-
ness processes and eCommerce. IT has enabled
radical innovations in strategic IS, and recently
in BPR and knowledge management. A strate-
gic IS is difficult to innovate because it should
be inimitable, and its precursor is often an
operational system that has the potential to be
strategically important.

Analysts require two types of problem-
solving skills: business problem resolution and
technical problem-solving. Criticality is import-
ant in both types. It is required to define the
business problem because it affects the organ-
ization. It determines how the available

resources will be deployed and whether the
resultant IS will benefit the organization.
Analysts work with business analysts to define
the business problem. Strategic business prob-
lems concerning competition require IT to be
applied creatively. IT, the internet and commu-
nication technologies are combined to enable
companies to create new business models.
A business model is a set of interrelated busi-
ness ideas on how to produce products or
services better than competitors to the satisfac-
tion of customers. To create business models
existing ways of working and organizing need
to be analysed and radical new designs created.
Systems analysts need to base systems models
on business models that give an organization a
competitive advantage or improve efficiency.

Analysts need to ensure that IS complement
innovation policies. Business organizations have
innovation policies for products, services,
organization of the production of goods and
provision of services. Analysts should critically
assess whether structured and object-oriented
systems ontology engenders innovative think-
ing. Significantly, they should evaluate whether
the systems ontology they assume is relevant in
practice.

Technical problem-solving requires system-
atic or logical thinking. To solve systemic prob-
lems analysts first need to define or structure
problems as clearly as possible. They need to
consider issues internal to the organization and
external issues, like competitors and techno-
logical know-how. If definition of the problem
is inappropriate or completely misses real busi-
ness needs the resultant IS will be of little use,
resulting in obsolete investment. Analysts
should evaluate available problem-solving
strategies to choose the most appropriate. One
strategy is breaking the problem down into
manageable components and solving the com-
ponents separately. Another is holism in which

111

0

11

0111

0

0

11p

43

..Chapter 2 Critical knowledge and practice framework

the problem is modelled as a whole. These skills
are needed for systems modelling.

Problem-solving has an element of creativ-
ity. Analysts need to develop lateral thinking
skills. What can be done with IT and how IS
problems can be solved should not be con-
strained by existing knowledge and practice.
Creativity in problem definition and its resolu-
tion may involve brainstorming and role-play
which may result in radically different ideas.
Electronic devices and other tools can be used
in the creative process. For example, video
recordings can be made of system requirements
elicitation to facilitate better analysis.

2.8 Relating the Critical Framework
to Personal Critical Framework

The Critical Framework is the basis for devel-
oping a PCF. The three major themes and six
sub-themes in the Critical Framework provide
substance for the PAC cycle activities that lead
to the development of personal constructs and
their continuous revision.

2.8.1 Objectification of personal
constructs

The Critical Framework themes enable analysts
to objectify relevant personal constructs and to
evaluate them critically. The themes enable ana-
lysts to explain personal constructs in the context
of knowledge and practice. Personal constructs
are shaped by systems ontology knowledge and
practical application of formalism in actual situ-
ations, or human problems theme.

Personal constructs need to be objectified
and relations between them explained to
improve understanding and personal effective-
ness. Implicit personal constructs will not be
understood and may lead to personal action
that is ineffective. Such action is never
explained. The Critical Framework provides

the basis for the objectification of relevant per-
sonal constructs by exploration of its themes
critically in relation to knowledge and practice.

2.8.2 Critical evaluation of personal
constructs

Critical thinking needs to be applied to the
Critical Framework themes. Objectified per-
sonal constructs can be reflected upon and deci-
sions regarding inclusion in a PCF can be made
on the basis of the themes. This process can aid
analysts to objectify and evaluate personal
constructs critically rather than accept them
uncritically and implicitly.

The process of objectifying personal con-
structs and assessing their relevance once objec-
tified requires critical thinking. The Critical
Framework is a cognitive device to aid analysts
to analytically evaluate personal constructs. It
combines cognitive critical thinking skills, the
three major themes and the six sub-themes, and
Barnett’s (1997) three criticality types to provide
a framework to develop criticality.

The Critical Framework and PCF comple-
ment one another. The Critical Framework is to
be used to develop personal constructs on struc-
tured and object-oriented analyses and systems
ontology generally. It will develop analysts’
reflexivity skills to:

• Bring to the surface problem definitions,
premises and assumptions made in struc-
tured and object-oriented analyses.

• Enable critical reflection that leads to a per-
sonal interpretation of structured and object-
oriented analyses.

• Enable analysis of structured and object-
oriented analyses through the three major
themes and six sub-themes.

• Provide a basis to evaluate the validity and
reliability of structured and object-oriented

44

Part I Foundations for critical learning and teaching..

analyses, its instruments, and analysts’
related personal constructs.

• Facilitate discussion and provide a context,
especially in terms of human problems, in
which to compare structured and object-
oriented analyses and other approaches.

• Support the development of evidence-based
critical thought and reasoned comments and
opinions based on experiences and readings.

The Critical Framework enables thematic crit-
ical thinking on practical IS development
problems. Its critical perspective is required
to improve effectiveness of project team
members, especially analysts and project man-
agers, and gives them the confidence to evalu-
ate approaches and techniques for particular IS
projects.

2.8.3 Requirements: an example
objectification

An example of the process of objectifying per-
sonal constructs is an analyst who uses ques-
tionnaires to elicit system requirements. The
analyst diligently prepares a questionnaire by
reading widely to gain knowledge on question-
naires, and identifies the right people to probe
by examining the organization chart and speak-
ing to managers of departments. The question-
naire is then administered to these people with
equal diligence. The resulting system require-
ments information is disappointing because
the analyst is unable to clearly identify the new
IS functions.

In this situation the Critical Framework can
be used for reflexive questioning and develop-
ment of personal constructs. The following
questions and sub-themes may be explored: (a)
What assumptions are made about peoples’
knowledge of requirements and the practical
application of the questionnaire? This covers
the three major themes. (b) Is the questionnaire

an appropriate method to capture what people
know? This covers the method of inquiry sub-
theme. (c) Are there situational factors that need
to be investigated too? This covers the situated
action sub-theme.

The analyst can use knowledge from the
practical experience to probe these themes to
revise personal constructs and determine an
appropriate pragmatic resolution. The analyst
should begin the objectification process by
asking questions:

• Why did I choose questionnaires to elicit
requirements?

• What evidence is there that questionnaires
are successful?

• Can people relate to questionnaires or did it
distance people?

• How do questionnaires relate to my other
personal constructs about people’s knowledge
and their ability to communicate it?

2.9 Applying the Critical
Framework

An example application of the Critical
Framework will illustrate its relevance. It will
demonstrate how it can be used to think criti-
cally of knowledge and practice, and how it is
related to developing a PCF.

The example application is on ‘data’ and
‘information’. They form a significant contri-
bution to knowledge and practice in IS devel-
opment. They are investigated during systems
analysis and systems design. To enable analysts
to understand how to objectify personal con-
structs related to data and information, the
Critical Framework needs to be populated with
knowledge and practice on data and informa-
tion. An outline example of data and informa-
tion in terms of the Critical Framework is
shown in Figure 2.3. Performing the following
activities populates the Critical Framework:

111

0

11

0111

0

0

11p

45

..Chapter 2 Critical knowledge and practice framework

• Examine the knowledge base of the concept,
method, technique, tool or methodology.

• Explore its practical relevance for human
problem resolution.

• Determine a pragmatic resolution to practi-
cal application problems.

• Underpin the above with criticality.

2.9.1 Considering major themes

The first layer of the Critical Framework in
Figure 2.3 illustrates how the systems ontology
theme is populated with ontological knowledge
of data and information. Following the arrow
across, they are an interpretation of organiza-
tion and communication issues in the real world
of human problems. Formalism related to data
and information is applied in an actual situa-
tion. Following the second arrow across, prob-
lems with application of formalism are resolved
pragmatically.

The second layer is the rationale, assump-
tions and knowledge on data and information.
An example in the second layer, first column,
shows data is transformed into information by
processing. Through application to practice or
reflective study, the second column of the
second layer, analysts can evaluate validity of
information as processed data and assess
whether it confirms their interpretation, know-
ledge or experiences. The validity of the
assumption and practicality of instruments
based on it are then resolved pragmatically, as
shown in the third column.

The third layer engenders the three types of
criticality. The first column in the third layer is
then used to develop a critique of systems ontol-
ogy by asking relevant questions based on extant
knowledge and practical experience. For exam-
ple, is information objective, or is it interpreted.
This is transformatory critique. The second col-
umn in the third layer is populated with ques-
tions concerning practice to engender reflexive

criticality. For example, what is the role of
‘meaning’ in information, or does an analyst
need to be objective, and how can this be
realized in the messy world. This is reflexivity.
The third column in the third layer is populated
with questions concerning the pragmatic reso-
lution of application problems. It engenders
critical skills to enable the task to be accom-
plished. For example, to resolve the problem of
interpreted information, develop ways of help-
ing people to objectify what they already know
and incorporate into requirements analysis.

2.9.2 Other issues

Analysts can use the Critical Framework to
interpret other issues:

• the term ‘Information System’;
• the idea of ‘system’;
• information flows in organization.

The term ‘Information System’ itself is debated
academically. Many monologues on what it
means have been written. Some focus on the
sub-term ‘information’ and others on ‘system’.
An Information System may be regarded as an
objective or interpreted entity. As structured
and object-oriented analyses assumes an objec-
tivist ontology, an IS may be accepted as an
objective entity. An analyst’s personal construct
may assume either ontology, but the choice of
the one will negate the other, and the choice
can be made by critically evaluating both
through the themes of the Critical Framework.

Similarly, the use of the term ‘system’
generates much academic debate. Some
researchers in systems thinking argue that
systems need to be central to research and prac-
tice in IS development. Other researchers
focus on the human and social factors in IS.
The social context, namely organization and
people, of IS development has resulted in

46

Part I Foundations for critical learning and teaching..

111

0

11

0111

0

0

11p

47

..Chapter 2 Critical knowledge and practice framework

Apply formal
methods

Real world of
human problems

(Messy world)

Organizations, people,
Information Systems,

Information Technology

Systems
ontology

SDLC

SDLC assumes that
human behaviour is

rational and information
is available

Formalism,
system,

sub-systems,
control,

coordinated
behaviour,

‘user’

Fixed,
optimal,

predictable,
efficient,
effective,

measurable,
engineered

(systems and
information)

Pragmatic
resolution

Problems with optimum
and change

???

Interpret formalisms in
practice

Apply assumption of
rational humans and

organizations –
does it work?

Develop knowledge

Objective epistemology
assumes human and

organizational behaviour
is rational or economic

perfect knowledge

Determine a pragmatic
resolution to problems
with formal methods

Resolve
problems

Transformation of
traditions reflexivity

What is rationality?
Objectivity is important,

but how can it be realized
in the messy world?

Can ‘users’ be involved
in development?

Transformatory critique

Is the world objective?
Are humans rational?

Is organizational
behaviour rational?

Is perfect knowledge
available?

Critical skills

Use the Delphi technique
to be objective, help
people to objectify

requirements

Figure 2.3 The SDLC – an example of a populated critical framework

socio-technical methodology. The human ele-
ment of IS has resulted in researchers exam-
ining information as phenomenological or
interpreted.

Structured and object-oriented systems
analyses are used commercially to develop IS,
though some business organizations do not
make use of methodologies. For these organ-
izations, the lack of contextual analysis in struc-
tured techniques makes them unsuitable. The
context of IS development is important and
analysts need to consider appropriate personal
constructs to account for it.

2.10 Personal Critical Framework
development

2.10.1 Education and training

Questions

1 How often do you reflect on knowledge that
you possess or you practice? What is the
topic of your reflection? What mechanisms
do you use to reflect? How does reflection
improve your knowledge or professional
practice?

2 Define training. Why is training not suited
for reflection? How does it differ from edu-
cation?

3 How can the Delphi Report’s set of cogni-
tive skills be used to think critically about
systems analysis and design?

Activity A

To paraphrase the education psychologist
Skinner, education is what survives after what
has been learnt has been forgotten. Make a list
of facts or themes you remember from your first
university degree or earlier formal study to
ascertain what you remember. You may find
you have forgotten the details. If memory is not
a good measure of education, then what do you

think should be used? Address this question and
then revisit the Delphi Report’s cognitive skills
for critical thinking. Now make a list of cogni-
tive capabilities that you think are the benefits
of an education. What kind of critical cognitive
capabilities have you identified?

Activity B

• Write down the attributes that you think
describe you as ‘educated’.

• Make a list of the attributes that someone
trained in systems analysis and design might
posses.

• Compare (1) with (2). Select your preference
and explain why.

2.10.2 Fundamental elements of
Information Technology

Question

Discuss how IT can be used to develop IS that:
(a) improve operational efficiency, (b) provide
information for decision-making and (c) give
organizations a strategic advantage.

Activity A

Identify an IS in your organization. What data
does it require as inputs to produce informa-
tion as outputs? Who in the organization uses the
information and for what organizational purpose
is it used? How do you think the IS helps people
who use it to interpret events in the organization?
How does the IS contribute to making their work
more efficient or productive?

Tasks

• Differentiate between data, information, and
knowledge in terms of IT.

• In a group, determine a code of ethical
behaviour for systems analysts.

48

Part I Foundations for critical learning and teaching..

2.10.3 Systems thinking

Questions

1 Evaluate the theoretic view of organization as
consisting of a purpose, boundary and activ-
ities. Discuss its value for systems analysis.

2 Critically discuss whether the system concept
makes unique human problem situations
homogenous.

Activity A

Choose an organization you are familiar with,
your place of study or work:

• What is its boundary?
• What is its purpose?
• What are its main activities?
• How did you ascertain each of the above?

Discuss whether a formal method would
improve the process?

Activity B

Suppose you were required to develop an IS
for supply chain management for a wholesaler
of pharmaceutical products. Make whatever
assumptions you think necessary:

• What is the purpose of the IS?
• Define its boundary?
• What inputs would be required from its

environment?
• What outputs would the system generate?
• What would be the main activities (processes)

required to generate the outputs?

Activity C

Systems theory has influenced approaches to IS
development. In its most fundamental form it
has led to the view of an IS as a systemic entity
with a boundary, environment, inputs, sub-

systems, relations, processes, control, feedback
and outputs.

• Choose an IS you are familiar with, for
example a student record system or a payroll
system. Describe it in systemic terms as in
Figure 2.2.

• Discuss whether a systemic ontology is suffi-
cient. What other factors do analysts need to
consider.

• What aspects of the organization and people
are not present in the systemic model? How
would the success of the IS be affected if
these aspects were absent?

2.10.4 Problem solving and reasoning

Questions

1 What particular interfaces between an IS
and its application domain are difficult to
design and implement?

2 Critically evaluate the interpretation of
systems analysis and design as a problem-
solving activity in system theoretical terms.

3 Explain what you understand by the term
‘problem-solving’. What is the role of logic
in it?

4 Explain the differences between data,
information and knowledge in your organ-
ization. Make a list of data, information and
knowledge that your organization requires to
conduct its business.

5 Explain what is meant by ‘description’,
‘analysis’, and ‘criticality’. Which adds more
value to problem-solving?

6 What is your understanding of the following
terms used in problem-solving:
• task definition
• information-seeking strategies
• location and access
• use of information

111

0

11

0111

0

0

11p

49

..Chapter 2 Critical knowledge and practice framework

• synthesis
• evaluation.

Activity A

Identify an information management issue in
your organization. Define it as an IS problem.
Think creatively about how IT can be used to
manage the problem.

Activity B

How would you characterize the problem of IS
development? Apply systems theory to charac-
terize the problem. Evaluate whether system
theoretic characterization adds value to under-
standing the problem. Does systems theory
enable making inferences on the role of IT in
organization?

Activity C

Various techniques can be used for problem-
solving. Brainstorming and role-play are two
examples. Brainstorming is used to do some
initial thinking on a problem. It consists of a
group of people objectifying whatever comes
into their minds, despite its relevance, and
someone recording the ideas on a whiteboard.
Apply the brainstorming technique to the
problem of developing a website for an organ-
ization. Analyse the feasibility of the resultant
ideas.

Activity D

Compare ‘trial and error’ problem-solving, also
called ‘exponential learning’ with formal
problem-solving (for example top-down decom-
position in systems analysis). Why might trail
and error be more appropriate in a social
context? How can formal problem-solving
support trail and error?

2.10.5 Systems ontology

Activity A

Identify a management information need, for
example information on students at a university
or information on customer purchasing habits
in a company.

Characterize the information need in system
terms.

• Identify the activities in the system.
• Determine the inputs and outputs.
• Determine the control mechanism.
• Describe feedback mechanisms.
• What is the value added by characterizing

the information need problem in system
terms?

• What elements of the real situation are
missing in the system interpretation? What
might be the effect on the information need
if the problem is resolved in their absence?

2.10.6 Plans and situated action

Activity A

Identify any task you were required to complete.
Describe the task and how you completed it.
Include in your description your approach and:

• Any previous knowledge that you brought to
bear on the task.

• Gaps in your knowledge to complete the task
successfully.

• New knowledge that you had to develop in
the situation.

• Discuss whether you would categorize your
action to complete the task as planned action
or situated action.

Activity B

Based on the result from Activity A, if you only
used planned action, make a list of activities that

50

Part I Foundations for critical learning and teaching..

you did to complete the task that might be con-
strued as situated action. If your activities were
dominated with planned action or situated
action explain why it is so.

2.10.7 Applying the critical framework

Question

Discuss ‘criticality’ in systems analysis and
design in terms of transformatory critique,

refashioning of traditions, reflexive criticality
and critical skills.

Activity A

Using the three major themes and six-sub
themes of the Critical Framework, describe what
you understand by the term ‘system’. Use the
three columns and three-layer layout in Figure
2.3 to plot your knowledge of system. How might
you use the system concept in your PCF?

111

0

11

0111

0

0

11p

51

..Chapter 2 Critical knowledge and practice framework

2.10.9 Further reading

Checkland’s work is seminal in systems thinking. See: Checkland, P. (1999) Systems Thinking, Systems

Practice, Chichester: Wiley.

For the relevance of systems thinking for IS see: Checkland, P. and Hollwell, S. (1998) Information,

Systems, and Information Systems, Chichester: Wiley.

The seminal work on situated action is by Suchman, L. (1994) Plans and Situated Actions, Cambridge:
Cambridge University Press.

For recent developments in situated contextual factors in software development see the insightful
work by Dourish, P. (2001) Where the Action Is: Foundations for Embodied Interaction, Cambridge, MA:
Bradford Book, MIT Press.

2.10.8 Internet sources

The Journal of Vocational Education and Training at http://www.triangle.co.uk/vae/ publishes research
on the development of practice and theory in work-related education (accessed 25 March 2004).

For tutors and learners the Information Technology Fundamentals site at http://elearning.asu.
edu/itf is a valuable resource covering computer hardware and networking (accessed 25 March
2004).

The Thinking Page at http://www.thinking.net covers systems thinking, creativity and other
psychological aspects (accessed 25 March 2004).

Pegasus Communication inc. at http://pegasuscom.com/aboutst.html provides purchasable
resources on systems thinking (accessed 25 March 2005).

Three vital issues in IS development are considered in Part II on the basis of the PCF and
Critical Framework developed in Part I. They are:

• The conceptual basis for systems analysis and design.
• The use of system projects to develop IS.
• The IS application or problem domain.

The first two issues are important because they form the knowledge and basis for practice.
The third issue is important because the application domain determines what a new IS will
become and affects how the system project is managed. These issues need to be critically
considered because they contribute to the success of an IS.

The SDLC, making a business case for a new IS, and the role of analysts will be covered
in Part II. The focus of formalism in the SDLC is on the structured expression of informa-
tion. The SDLC, role of analysts and development of business cases are formalisms in IS devel-
opment. Understanding the role of formalism in IS development will enhance the development
of PCF. Analysts can determine the value of formalism in a PCF through critical evaluation.
Validity and effectiveness issues in formalism will be explored.

The conceptual basis of systems analysis and design is covered in Chapter 3. In terms of
criticality, it contributes to the development of reflexive criticality. The SDLC, structured and
object-orientation concepts, instruments and IS methodologies, are covered in Chapter 4. In
terms of the Critical Framework, analysts need to evaluate the effectiveness of current know-
ledge for practice. They need to interpret and analytically evaluate current knowledge so that
it can be incorporated into a PCF.

An IS is usually developed as a project. Project management concepts and techniques are
covered in Chapter 4. Systems project management is analysed in terms of planned action.
Making a business case for an IS is covered in Chapter 4. In terms of criticality, it contributes
to the development of reflexive criticality. Business organizations invest in IT and IS because
it can reduce operating costs and improve organizational effectiveness. Significantly, IT can
provide strategic advantages over rival companies. Making a business case is a fundamental
practical element of IS development.

111

0

11

0111

0

0

11p

53

Part II

IS, projects and
application domains

The important role of analysts is covered in Chapter 5. In terms of criticality it contributes
to the development of refashioning of traditions and critical skills. Systems analysts have a
central role in IS development. They conduct three vital stages in the SDLC: the feasibility
study, systems analysis, and systems design, and contribute to making the business case too.

54

Part II IS, projects and application domains..

111

0

11

0111

0

0

11p

55

Chapter 3

Systems analysis and design
in concept and action

3.1 Learning outcomes

After completing this chapter you should be able to:

• Explain the SDLC, evaluate its generalizability and describe the role of systems
analysis and design in it.

• Interpret and evaluate structured and object-oriented systems analysis concepts and
instruments.

• Interpret and analyse problem-solving strategies used in systems analysis and design.
• Describe ontological characteristics of IS methodologies.
• Apply reflexive criticality to the conceptual basis of personal practice in systems

analysis and design.

Knowledge and practice arise from practitioners’ experiences and investigations by
researchers. Practitioners codify their knowledge and disseminate it as practical know-
ledge. IS researchers conduct empirical research to discover ontological and applied
knowledge and disseminate it as generalizable knowledge. Interpretive IS researchers do
not seek generalizable knowledge.

IS is a complex socio-technical phenomenon because it encompasses social and technical
factors. Whether it can be theoretically explained challenges researchers. They debate
whether IS can be called a discipline and the possibility of formal theory is keenly discussed.
Presently, there are no formal theories of IS, though some researchers attempt to develop
theory. Whether theories of systems analysis and design are possible is also open to question.

In the absence of theories, systems analysis and design has concepts, methods, tech-
niques and tools, methodologies and frameworks that constitute knowledge. They are the
result of reflective practice and research to develop knowledge, especially generalizable
knowledge. In this chapter the SDLC, structured and object-orientation concepts,
methods, techniques and tools, and IS methodologies are introduced and critically dis-
cussed. They underpin and constitute knowledge of systems analysis and design, which
translates into practice in whole or in parts.

3.2 Introduction

Systems analysis and design is central in IS
development, eCommerce systems, eBusiness
and knowledge management systems. Its prime
aim is to develop systems models to inform the
design and implementation of suites of software
programs that constitute a system. Systems
analysis focuses on determining what a new IS
is required to do. Analysts investigate, under-
stand, and develop organizational knowledge
about business areas where IT is to be applied
and develop systems models. Systems models
are used to determine appropriate suites of soft-
ware programs to write and their functions.

Systems analysis and design knowledge and
practice has evolved. Practitioners have intro-
duced new ideas, concepts and instruments to
resolve pragmatic problems as they have
encountered them. Researchers have studied IS
development and the IS field and contributed
epistemological and ontological knowledge.
Early knowledge and practice may be described
as traditional or informal, where the aim of
practitioners was to produce an IS but the
means were not clearly articulated, objectified
or codified.

The prevalent current ideas and concepts are
structured systems analysis and struc-
tured systems design and object-oriented
analysis and design. Structured analysis and
design was introduced in the early 1970s because
traditional knowledge and practice did not meet
business needs, and IS were more expensive than
budgeted and took longer to develop then
expected. Some reflective practitioners began to
think that structure in the process was needed to
improve the quality and success of IS. They
introduced structured systems analysis and struc-
tured systems design methods, techniques and
tools. They defined clearly roles for organiza-
tional employees, project managers, systems

analysts and designers, and software program-
mers. This added structure to the process, but
despite structuring the process, the quality and
success of IS remained problematical.

The concept of object-orientation in soft-
ware programming appeared around 1990. It
addressed the problems of quality and pro-
duction of software programs. The idea logi-
cally spread to systems analysis and design.
Consequently, object-oriented systems analysis
and design emerged as an alternative to
structured analysis and design.

3.2.1 Data, information and knowledge

Organizations generate data, information
and knowledge from their activities. IT is now a
significant means to make them into resources
and assets. Its algorithmic processing capacity
contributes to the notion of information assets.
Figure 3.1 depicts the roles of IT and humans
in transforming data into information, and
information into knowledge. IT is used to cap-
ture, store, process, analyse, structure and sort
data to produce information. Organizations can
regard information and knowledge as assets
because they can be stored and retrieved from
databases and knowledge bases.

IT enables the creation of information assets
and knowledge assets. An asset in business is
normally used to produce a product or service.
Data on customers can be processed to yield
information assets for marketing products or
services. It can be processed to generate know-
ledge on customers’ purchasing habits. Their
value is reflected in their status as resources or
assets, similar to human or capital resources.
Organizations use them to become more effi-
cient and effective, and to create competitive
advantage over rivals. Information resource is
now as equally important as human or capital
resources.

56

Part II IS, projects and application domains..

Data and information is distinguishable in
IT terms. In IS data is converted into informa-
tion by software algorithms that process the
data for specific purposes, shown by the first
horizontal arrow in Figure 3.1. Data is
unprocessed information. Data is captured,
stored, and processed by digital computers
and information is the result of processed data.
A software algorithm is the sequence in a
computer program for processing data. Data
processing involves the analysis, structuring and
sorting of data to provide information.

In human terms data becomes information
when a human interprets data for a specific
purpose, shown as the second column in Figure
3.1. For example, railway companies produce

train timetables detailing the routes and times
for trains. Train timetables are data. When
someone wants to travel to a specific place they
would use the timetable to plan a journey. A
person processes the timetable for information
about their journey. After determining their
destination they would look-up their starting
point and trace it to the destination to provide
information about the departure and arrival
times of the trains.

Figure 3.1 illustrates the case of improving
customer service, shown in the third layer, the
business rational for using IT. In the first
column, data on customers is collected. It is
then used to develop models of customer behav-
iour, the second column. This is information.

111

0

11

0111

0

0

11p

57

..Chapter 3 Systems analysis and design in concept and action

Information and internet
technology

InformationData Knowledge
Process, analyse,

structure, sort,
store

Process, analyse,
structure, sort,

store

Human
role

Managers,
business
analysts,
systems
analysts

Business
rational

Customer
service

Add
meaning,
interpret

Apply
(use for specific

purpose, predict)

Generate,
collect

Develop models
of customer
behaviour

Generate
knowledge about

the customer

Apply knowledge
of customer
behaviour to

improve product
or service

Figure 3.1 Data, information and knowledge in technological and business contexts

The third column shows that knowledge is then
applied to improve products or services to
provide better customer service. When informa-
tion is applied in a certain way to achieve a goal
it constitutes knowledge. For example, apply-
ing information about customer behaviour in
terms of customer relationship management is
knowledge.

The role of humans, managers, business
analysts and systems analysts in organizations is
shown in the first column in the second layer in
Figure 3.1. They address the significant
problem of determining what IS are required.
They determine what data to collect to produce
information for organizational processes, tasks
and decision-making relevant to improve cus-
tomer service. In the second column humans,
business people, interpret the information to
add meaning to it. In the third column they
apply information to the specific purpose of
improving customer service.

Analysts aid managers to determine what
data to collect and how it should be processed
to provide relevant information. The processing
capacity of IT enables organizations to re-
design organization and business processes to
produce quality products and services, and
transform organizations, through computer
networks, into networked organizations.

The role of IT is shown in the top layer. It
can capture the required data and process it
to produce information on customer service
improvement. This is shown as a process of con-
verting data into information and, through
application, to knowledge. An IS is the combi-
nation of all three layers. The role of IT for
managing organizational knowledge is similar
to managing information. The same functions
of collection, storage, processing, analysis, struc-
turing and sorting are applied to knowledge
possessed by individuals or groups to produce,
store and retrieve organizational knowledge.

3.2.2 Application domains, problem
domains and Information Systems

In IS development a specific business area
targeted for the application of IT is called
an application domain. The application
domain consists of people, peoples’ intention
and purpose, the work they do and the con-
straints of their work, how and who they col-
laborate and communicate with, the business or
task objectives they need to fulfil, products or
services they seek to make or provide and the
physical resources like documents and files.

The range of application domains or busi-
ness problems for which IT is used to create
IS is wide. Organizations apply IT to specific
business problems, business decision-making,
business processes or whole organization. It is
applied to major business functions ranging
from customer billing, payroll, stock control,
accounting and financial planning to human
resource management and knowledge manage-
ment. It is vital to business marketing and is
used to enable electronic customer relationships
management and enterprise resource planning.
In eBusiness, IT and the internet are combined
to design networked organization.

Analysts investigate the application domain.
The information needs of people in the appli-
cation domain are called system requirements.
System requirements are rooted in the applica-
tion domain and new IS need to be designed to
satisfy the requirements. Analysts’ task is to
acquire knowledge and understanding of the
application domain to establish the system
requirements, which are passed to software pro-
grammers who write the actual programs for
the IS.

The application domain seen from the per-
spective of systems analysts and IS developers
is called a problem domain. It is so called
because systems developers seek to define it in
order to provide a computer-based ‘solution’. It

58

Part II IS, projects and application domains..

is the specific articulation or framing of a
problem in the application domain for which a
new IS is required. Framing the IS problem is
a critical task for analysts and it affects the selec-
tion of instruments for IS development. The
framed problem provides project managers
with information to determine what resources
will be required and to develop work break-
down and product breakdown structures.

Various systems ontology characterize the
problem domain differently. The adequacy of
this characterization is the issue critically
explored in the systems ontology theme of the
Critical Framework. The very characterization
of the application domain as the ‘problem
domain’, for which a ‘solution’ is needed, is
accepted system ontological knowledge by prac-
titioners. It is part of structured and object-
oriented systems ontology. Such a characteri-
zation in turn affects how an IS is conceptual-
ized and developed.

3.3 Systems development life cycle

A new IS is the product of articulating the busi-
ness problem, understanding the application
domain and framing the IS problem. The
generic SDLC is applied to understand appli-
cation domains and define IS problems and
develop IS. The ‘life’ metaphor is to indicate
that a computer system has a beginning, middle
and an end. Each of the stages in the SDLC
consists of the ‘life’ of IS development. Once an
IS is developed, people will normally want dif-
ferent information, and the process of develop-
ment would begin again. Hence the term
‘cycle’.

The SDLC influences thinking on how to
develop IS and consists of phases of IS devel-
opment, shown in Figure 3.2. It is a systematic
method to solve the problem of IS develop-
ment, consisting of the following phases:

• feasibility study
• systems investigation
• systems analysis
• systems design
• implementation
• post-implementation review, evaluation and

maintenance.

The SDLC seeks to address the problem of ful-
filling the system requirements of the applica-
tion domain. The SDLC is shown in Figure 3.2
in the context of an example business problem,
namely improving customer service, the top
layer. The phases of the SDLC are shown as
rectangle boxes below it and demarcated in
terms of the business problem.

The feasibility study and systems investiga-
tion phases identify and define the business
problem and provide alternative IT or non-
IT solutions. The systems analysis and systems
design phases are concerned with making
improvements to the business problem. The
implementation and maintenance phase is con-
cerned with developing a new IS. The final
review and evaluation stage is concerned with
assessing whether a new IS adds value. Activi-
ties in the SDLC phases and some deliverables
of each phase are shown as rounded rectangles
below the SDLC phase.

The SDLC is regarded as generalizable to all
organizations. It was designed as a general solu-
tion for any organization intending to develop
IS. It is supposed to work even when analysts
may be unfamiliar with the organization and
lack experience of its processes, culture and peo-
ple. All the SDLC phases are normally required
to develop an IS. A system project normally
encompasses the SDLC phases. IS development
methodologies reflect the SDLC phases in vary-
ing degrees. Some methodologies emphasize
certain phases more than other phases.

The SDLC contains systems analysis, systems
design and implementation as major phases.

111

0

11

0111

0

0

11p

59

..Chapter 3 Systems analysis and design in concept and action

Fe
as

ib
ili

ty
st

ud
y:

d
et

ai
le

d
 s

tu
d

y
of

 t
he

b
us

in
es

s
p

ro
b

le
m

 a
nd

p
ot

en
tia

l
so

lu
tio

ns

S
ys

te
m

s
d

es
ig

n
S

ys
te

m
s

an
al

ys
is

Im
p

le
m

en
ta

tio
n

m
ai

nt
en

an
ce

P
os

t-
im

p
le

m
en

ta
tio

n
re

vi
ew

S
ys

te
m

s
in

ve
st

ig
at

io
n

Fe
as

ib
ili

ty
 r

ep
o

rt
E

xa
m

in
e

ex
is

tin
g

sy
st

em
 r

eq
ui

re
m

en
ts

;
id

en
tif

ie
s

ne
w

re
q

ui
re

m
en

ts
;

su
gg

es
ts

 a
lte

rn
at

iv
e

so
lu

tio
ns

;
re

co
m

m
en

d
s

a
so

lu
tio

n

N
ew

 s
ys

te
m

W
rit

e
an

d
 t

es
t

ne
w

co
m

p
ut

er
 p

ro
gr

am
su

ite
s;

 p
ur

ch
as

e
ha

rd
w

ar
e/

 s
of

tw
ar

e;
en

su
re

 q
ua

lit
y

st
an

d
ar

d
s;

 w
rit

e
sy

st
em

d
oc

um
en

ta
tio

n;
 in

st
al

l
an

d
 r

un
 n

ew
 s

ys
te

m
(p

ilo
t,

 c
ut

ov
er

,
p

ar
al

le
l r

un
)

D
ev

el
o

p
 in

it
ia

l
sy

st
em

 d
es

ig
ns

in
co

rp
or

at
e

m
an

ua
l

as
p

ec
ts

 o
f s

ys
te

m
;

d
es

ig
n

in
te

rf
ac

es
;

d
es

ig
n

d
at

a
in

p
ut

s
an

d
 o

ut
p

ut
s;

 d
es

ig
n

p
ro

ce
ss

es

In
ve

st
ig

at
e

cu
rr

en
t

p
ro

b
le

m
s

es
ta

b
lis

h
re

as
on

s
fo

r
p

ro
b

le
m

s;
 e

st
ab

lis
h

re
q

ui
re

m
en

ts
 fo

r
im

p
ro

ve
d

 s
ys

te
m

;
d

ev
el

op
 c

ur
re

nt
lo

gi
ca

l m
od

el
s

an
d

ne
w

 lo
gi

ca
l m

od
el

s
of

 n
ew

 s
ys

te
m

;
d

es
ig

n
in

fo
rm

at
io

n
re

q
ui

re
m

en
ts

R
ev

ie
w

 a
nd

ev
al

ua
te

 r
ep

o
rt

D
et

er
m

in
e

ch
an

ge
s

re
q

ui
re

d
; a

ss
es

s
w

he
th

er
re

q
ui

re
m

en
ts

 a
re

m
et

: i
s

th
e

b
us

in
es

s
p

ro
b

le
m

 a
d

d
re

ss
ed

?

D
et

ai
le

d
in

ve
st

ig
at

io
n

o
f

re
q

ui
re

m
en

ts
E

xa
m

in
e

b
us

in
es

s
p

ro
b

le
m

; e
xa

m
in

e
ex

is
tin

g
sy

st
em

;
es

ta
b

lis
h

ne
w

re
q

ui
re

m
en

ts
;

id
en

tif
y

co
ns

tr
ai

nt
s

an
d

 e
xc

ep
tio

n
co

nd
iti

on
s;

 e
xa

m
in

e
or

ga
ni

za
tio

n
ch

ar
ts

,
gr

id
 c

ha
rt

s,
d

is
cu

ss
io

n
re

co
rd

s

B
us

in
es

s
op

p
or

tu
ni

ty
 o

r
p

ro
b

le
m

:
d

is
sa

tis
fie

d
 c

us
to

m
er

s
Im

p
ro

ve
 c

us
to

m
er

 s
er

vi
ce

N
ew

 c
us

to
m

er
se

rv
ic

e
sy

st
em

A
d

d
ed

 v
al

ue
to

 b
us

in
es

s?
B

us
in

es
s

p
ro

b
le

m

S
D

LC

S
D

LC
ac

ti
vi

ti
es

an
d

d
el

iv
er

ab
le

s

Fi
gu

re
 3

.2
S

ys
te

m
s

de
ve

lo
pm

en
t

lif
e

cy
cl

e
in

 t
he

 c
on

te
xt

 o
f

bu
si

ne
ss

 o
rg

an
is

at
io

ns

The activity of systems analysis and design, and
consequently the role of analysts, is an import-
ant and central feature in it. Although these
phases are shown as part of the SDLC, they
can be practised using various systems analysis
and design methods. Among them are the
traditional, structured and object-oriented
methods.

3.3.1 Feasibility study

Analysts conduct the feasibility study. The
problem domains vary from operational issues
to matters concerning business strategy.
Operational issues include poor customer
service, such as complaints from customers that
their orders are not fulfilled, or the costs of pro-
ducing an item are too high. They may be to
do with improving efficiency of business or
management processes or ensuring the effec-
tiveness of certain activities. Strategic issues
include the re-design of business processes to
make greater and better use of IT, the devel-
opment of knowledge management systems to
manage organizational knowledge, or net-
working collaborative work, all to improve
competitiveness.

Analysts assess the problem domain – the
work people do, whether manually or with
current IS – with respect to the current busi-
ness problem to produce a feasibility report.
The assessment is to define and understand
current problems and whether the current
situation is acceptable or requires improving.
The report contains a statement of the new
needs, whether IT-based or manual, of the
organization, people and the business.

The feasibility study is to determine whether
it is both feasible and beneficial to produce a
computer-based IS for a particular business
problem. Activities to produce the feasibility
study are to determine and define the business
problem and assess the contribution that a

computer-based system, or other alternative,
would make. Analysts interact and communi-
cate with managers and other employees to
investigate the problem domain. Existing work-
flows and processes, associated decisions and
the information available is analysed. An initial
assessment of system requirements is made.

The problem domain is investigated with
the aid of systems analysis instruments. Systems
analysts use interviews, document and process
analysis and observation. Managers may be
interviewed and the documents they use ana-
lysed. People whose work will be affected by a
new IS may be observed and records of the
observation made. Analysts would normally
wish to include senior managers, supervisors,
clerks and systems developers.

Analysts investigate alternatives available,
the costs to resolve the current business prob-
lems, and determine the benefits that can be
obtained from each of the alternatives. Based
on this evaluation, they would recommend a
solution to management decision-makers. The
next phase would ensue if senior management
decides to proceed with the project.

3.3.2 Systems investigation

The purpose of the systems investigation phase
is to determine requirements of the current and
new IS. It is a systematic and detailed investi-
gation of the problem domain. The analyst
would normally use probing and searching
techniques to establish the requirements. These
include interviews, observation and examina-
tion of documents used in the feasibility study
phase.

Analysts interview and record the responses
of people in the problem domain who perceive
the business problem and who will use a new
IS. Organizational issues that impinge on the
problem domain would be examined too, for
example re-designing workflows or processes.

111

0

11

0111

0

0

11p

61

..Chapter 3 Systems analysis and design in concept and action

3.3.3 Systems analysis

In the systems analysis phase, analysts conduct
a thorough and detailed investigation of the
current system and the new IS based on the
previous two phases. Analysis is concerned with
providing a set of system requirements. This is
achieved by developing systems models to:

• understand how business tasks are done and
how current work is organized;

• define the data to be captured;
• determine the functions of the new IS to

produce required information.

Systems modelling activities focus on under-
standing the present way work is done to develop
new systems models. The systems models
are often very different from existing workflow
patterns. If there is an existing IS, applied
models are identified and an assessment is made
of how they are used. Analysts would need to
consult people whose work and processes are to
be modelled. Managers would also be consulted
to help verify the systems models.

Systems models are developed with a mod-
elling notation or language. A modelling nota-
tion is a formal set of symbols with precise
meanings to represent the current and new
IS. Modelling notations help to objectify the
problem domain and facilitate communication
between analysts themselves, and with clients
and software programmers.

3.3.4 Systems design

Analysts design a new IS based on the informa-
tion gathered in the previous phases. Systems
design activities are concerned with the design
of user interfaces, inputs, outputs and interfaces
with other systems. The designs may be
improvements in existing IS or radically new
designs that redefine organization workflows
and processes. The computer hardware equip-

ment required to implement a new IS is iden-
tified and evaluated. Relevant software needs
like databases are determined.

System security and integrity issues would be
foremost in the minds of designers. The designs
would be in the form of diagrammatic models.
Systems design models would be developed
using a modelling notation or language to
represent the inputs, functionality and outputs.
The notation would normally be consistent with
that used in the systems analysis phase.

The systems models would be normally
shown to relevant people affected by a new IS.
Their comments would be considered, though
major changes to the designed systems models
would be resisted because of time and cost
considerations.

3.3.5 Implementation

The implementation stage is concerned with
activities to implement the systems design
models from the analysis and design phases.
They are implemented using IT identified in
the systems design phase. Analysts are involved
in determining the computer hardware and
software required to implement the designed
system. They work closely with the project
manager, software programmers, database
administrators and people in the organization.
They are a conduit between software program-
mers and people, and work with software
programmers to implement the systems models.

In addition to computer hardware and soft-
ware considerations in the previous phase, data-
base software and programming languages,
where necessary, need to be evaluated, pur-
chased and installed. Software programs need
to be written and tested, and suites of programs
need to be integrated to check the integrity of
the system. Documentation on how to operate
the new IS and guide maintenance would have
to be written, normally by technical writers.

62

Part II IS, projects and application domains..

3.3.6 Post implementation evaluation

Once the IS has been developed and is opera-
tional, analysts normally conduct an evaluation
of it to assess whether it meets the predetermined
business needs. The evaluation is to ensure that
the specified requirements of the problem
domain are being fulfilled by the new IS.

The length of time it takes to develop an IS is
usually problematical. As business organizations
need to respond to competitors and markets, it is
possible that the evaluation would reveal the
need for changes or enhancements to the devel-
oped system, which the analyst would have to
suggest and for which revised systems design
be developed. The project manager would need
to ensure appropriate staffing to perform cor-
rective or enhancement maintenance, and that
ongoing maintenance is adequately resourced.

3.4 The traditional approach

Practical IS development and systems analysis is
concerned with solving problems: how to select
an IS project for development, how business
information needs can be established, finding
ways of designing proposed IS or developing
data and process models, and then converting
the designed models into implementations.

The traditional approach preceded the
SDLC. Systems analysis had no clear concep-
tual basis or a central concept on which prac-
tice was based. It relied on the knowledge and
skills of experienced and competent practition-
ers. The business problem and the IS problem
were investigated and studied simultaneously.
There was no clear temporal or phased progress
between analysis, design and implementation
demarcated.

Systems analysis and design consisted of ad
hoc use of techniques and entailed the design
of a suite of computer programs and data struc-
tures. There was no, or limited, involvement of

people with the result that requirements gath-
ering was inadequate. The analyst’s task was to
specify the data structures and detail how they
were to be manipulated and stored on magnetic
media. Programs were designed and imple-
mented as and when they were specified, and
analysis conducted concurrently.

Practitioners would make no distinction
between the analysis of the problem domain
and the design of the system. Though it does
not contain phases similar to the SDLC, the tra-
ditional approach normally included require-
ments analysis, requirements specification, and
high-level design. It does not include many of
the other phases in the SDLC nor does it
produce the deliverables shown in the SDLC
Figure 3.2.

3.5 The structured concept

Since the first application of a computer to busi-
ness in the 1950s, researchers and practitioners
have addressed the knowledge and practice
elements differently. Early practitioners in the
traditional approach conceptualized IS devel-
opment as writing computer software programs.
It was seen as a ‘craft’, and software program-
mers were thought to be creative, introverted
professionals. The analyst would provide a
system design and specification and the software
programmer would write the required systems
programs.

The resultant software products in the tradi-
tional approach lacked quality, failed to meet
user requirements, cost more than was expected
and were delivered later than required.
Reflective practitioners began to question the
‘craft’ analogy, and proposed a ‘systematic’
approach. Craft-based programming practices
such as the ‘GoTo’ statements were challenged.
‘The software crises’ was coined to depict these
problems, and researchers and practitioners col-
laborated to improve the process of developing

111

0

11

0111

0

0

11p

63

..Chapter 3 Systems analysis and design in concept and action

software. The debate was broadened to include
the engineering metaphor to improve soft-
ware production. The major outcome of this
debate was the idea of formulating and using
systematic and structured methods to develop
software culminating in the SDLC.

Structure is the central concept on which
practice is based in structured systems analysis
and structured design. It complements the
SDLC. In the structured approach the term
users refers to people who will use the devel-
oped IS. The structured concept emerged
from software programmers’ search to improve
the quality of software for IS, which led to
the notion of structure in software programs.
Practitioners who wanted to improve the success
of IS development introduced the structured
concept in systems analysis and systems design.
Its purpose is to organize or ‘structure’ know-
ledge of system requirements through functional
decomposition, rather than trust the process
solely to experienced and knowledgeable prac-
titioners, as in the traditional approach.

3.5.1 The structured concept

The central premise in structured systems
analysis and design is that greater structure and
formalism based on the scientific method or the
engineering metaphor improves the success of
IS. The structured knowledge is then used to
inform practitioners’ action. It aims to produce
concise, unambiguous system specification and
reduce data redundancy. This is achieved by
making the IS development process thorough,
formal and precise. Software programmers can
then use the system specification to implement
required system functionality.

Concise system specification System
specifications were produced in the traditional
approach. The difference in the structured
approach is that the system specification is
based on a formal notation language. A

notation language enables precise and concise
definition of the current and new IS in terms of
notation that is common and communicable. It
is used to make systems models and draw up
designs.

Unambiguous specification The tradi-
tional approach would often result in unclear or
ambiguous system specification. Ambiguous sys-
tem specification meant that software program-
mers often misinterpreted system requirements
and implemented unwanted system functionality
or missed required functionality. A prime cause
of ambiguity in system specification is lack of
communication between analysts and users.
Formal notation languages are intended to facil-
itate the communication and so enable the
production of unambiguous system specification.

Nonredundant The traditional approach
would often lead to systems design and imple-
mentation that had much redundant data
that produced inefficient use of computers.
Inefficient use of computer processing and
data storage made it costly to use computers.
Formalism was introduced to reduce data
redundancy by objectifying data, data stores,
dataflows and processes, usually in diagram-
matic systems models. Analysis of the objecti-
fied data reveals data duplications that can then
be removed.

Thorough As the traditional approach
relied on the experience and knowledge of IS
practitioners, they made decisions about when
to seek further information on the business
problem and how to design and write the code.
This practice led to arbitrary decisions about
the problem domain and system functionality.
Through formal notation languages and their
systematic usage, the structured approach aims
to reduce arbitrary systems design decisions and
make systems analysis and design a thorough
process.

The benefits claimed of structured analy-
sis are that it produces a nonredundant,

64

Part II IS, projects and application domains..

unambiguous and complete specification, and a
specification that is maintainable. Its aim is to
produce a formal document normally called the
system requirement document. This document
consists of clients’ requirements, alternative
solutions available and costs, and the analyst’s
recommendation for the most appropriate
solution.

Formalism underpins structured systems
analysis and design. Formalism in structured
systems analysis makes analysts’ tasks formal,
prescribed and official. It is based on notation
languages to develop systems models of a new
IS. Structured analysis makes use of diagram-
matic notations, and structured English, to
provide a common communication medium be-
tween analysts and users, and between users and
software programmers and database admin-
istrators. To develop systems models analysts
have to consult people whose work is to be
modelled, so formalism ‘forces’ communication
between analysts and people.

As structured systems analysis and design
closely reflects the SDLC, it seeks to determine
what the current organizational processes or
systems do and specify what a new IS should
do, and who will benefit from it.

Logical and physical systems models
of the current system and a new IS are drawn in
structured systems analysis and design. A logical
systems model is a description of the actual situ-
ation – problem domain – in terms of data and
processes. Logical models are separated from the
physical computer implementation because they
contain no references to the means (physical
things) for achieving the result. A physical sys-
tems model is a description of the means for
achieving the required result – computer imple-
mented data and processes in a system.

The problem domain in structured analysis
is characterized as business transactions data,
dataflows, relations between data, processes and
business logic. These form the basic units of

analysis. Analysts develop current systems and
new system logical and physical models of these
units. Logical and physical models are pro-
duced of:

• data in entity-relationship diagrams;
• process flows in data flow diagrams;
• logic processes in process descriptions.

The purpose of structured systems design is to
create a blueprint for a new IS that satisfies the
requirements recorded in the system require-
ments document, resulting from the systems
analysis phase. Structured systems design will
result in systematic documentation of inputs,
outputs, interfaces and systems processes. The
systems design models are used as a communi-
cation tool between analysts and software
programmers.

Roles are created for people in structured
analysis and design. It demarcates roles for
people and describes the responsibilities for
each role as part of structuring the process of
IS development. The formalism in structured
analysis encourages people in the problem
domain to be recognized during systems analy-
sis. The important roles are:

• project manager
• systems analyst
• user.

The project manager is responsible for planning
the development of the IS, allocating human
resources to the planned tasks and for monitor-
ing and controlling the system project. The pro-
ject manager allocates appropriate resources,
including analysts, to enable users and analysts
to work together to determine system require-
ments and specification. The project mana-
ger is the main communication channel with
sponsors of the project and senior business
managers.

111

0

11

0111

0

0

11p

65

..Chapter 3 Systems analysis and design in concept and action

The analyst’s task is to investigate the prob-
lem domain to establish system requirements.
They work closely with users to understand what
current IS do and what a new IS is required to
do. Both current IS and a new IS are docu-
mented. Analysts develop a complete specifica-
tion of a new IS by keeping a catalogue of data,
its flow, and the transformations that happen to
data, as data and process models. These analy-
sis systems models are used as a communication
tool between the analyst and users to check
correct requirements are recorded. Analysts
make use of instruments based on structured
formalism to establish a system specification,
which is then converted to modular structure
charts during systems design. These structure
charts are then transformed into structured
programs in the implementation phase.

Users are involved during systems analysis to
enable analysts to gather knowledge on the
problem domain. They are encouraged to take
an active interest in changing the current
system, and it is assumed they are open to
change. They are also assumed to be accessible
and available to analysts for interviews and
discussions to ascertain system requirements
and discuss developed systems models. Users
are involved because it is assumed that they
know, and can communicate, system require-
ments and details of the business problem to be
analysed. It is further assumed that they can
help to define clear and objective goals for a
new IS.

3.6 The object-oriented concept

Structure certainly improved IS development,
but critical practitioners recognized that it could
be better. Object-orientation in systems analysis
and design emerged from efforts to improve
software programming in the early 1980s. Its
initial focus was on the design of software pro-
gramming languages to resolve coding or

programming inefficiencies. So object-oriented
systems analysis and design has links with object-
oriented programming languages like Smalltalk.

Object-orientation is a set of concepts and
ideas on how to develop complex software
systems and IS, it is collectively called object
technology. Software objects are a representa-
tion of things, actual or conceptual, in real
situations – human problems. The things or
objects may be conceptual or actual – business
invoices or product orders, files, records,
processes, suppliers, products or customers.

Object-orientation has spread to all the
SDLC stages. Object technology is significant
for IS development and it is now a promin-
ent approach to systems analysis and design.
‘Object’ is the central concept on which prac-
tice is based and encompasses the systems
analysis, systems design and systems implemen-
tation phases of the SDLC. Practitioners have
developed object-oriented systems analysis and
design methodologies and instruments. These
include Object-Oriented Analysis (OOA),
Object Modelling Technology (OMT), Objec-
tory, and Booch and Coad’s object-oriented
methodology. Object-oriented systems analysis
and design is practised using instruments devel-
oped by many practitioners. Among them are
dynamic and static object-oriented models,
state-transition diagrams, case scenarios and
Unified Modelling Language (UML).

3.6.1 Object-oriented systems analysis

An object-oriented system is a set of related and
interacting objects organized into classes.
Object-oriented systems analysis involves the
development of integrated systems models
that encompass functional, informational and
behavioural views of a new IS.

In object-oriented systems analysis and design
the problem domain is characterized as consist-
ing of objects, relations, patterns, responsibilities

66

Part II IS, projects and application domains..

and scenarios. The data, relationships and pro-
cesses in the problem domain are integrated into
one class model. Analysts’ tasks are to:

• find class-and-object
• identify structures
• identify subjects
• define attributes
• define services.

Analysts’ investigate the problem domain to
identify relevant objects, patterns, responsibili-
ties and scenarios descriptive of a required new
IS. Analysts identify and name relevant objects
and their responsibilities. An object’s responsi-
bility is its attributes, relationships with other
objects and the services it provides to other
objects. An object can be business transactions,
data or things that are relevant to completing
business objectives. It is an item for which data
needs to be processed in a new IS. Analysts
consult with people, or users, to define data
objects, their attributes, and the way in which
the objects need to be interrogated or changed.
Objects do not have to be created anew. Skilled
analysts are capable of software reuse, making
use of existing objects from a library of objects.

Encapsulation is an important concept in
object systems ontology. Encapsulation is gath-
ering of data and operations in an object. An
object contains both the data and instructions
on what needs to be done to process the data,
or its operations. Analysts conduct an object
structure analysis to analyse the structure of the
object types and an object behaviour analysis of
the object types to define operations for objects.

As in structured analysis, project managers,
users and analysts are involved in object-
oriented analysis. Formalism is central in
object-oriented analysis too. Object systems
models are created with object notation lan-
guages and these models are used to communi-
cate with users and systems designers. As one

integrated systems class model is created, which
contains analysis and design models, it makes
communication between analysts, users and
software programmers simpler. The same class
model is progressively built through analysis,
design, coding, testing and implementation.

3.7 Methods, techniques and tools

Methods, techniques, and tools – or instruments
– are embodiments of system knowledge.
Knowledge of organizations, people, applica-
tion domains, IT, IS and design is represented
in the instruments used to develop IS. Instru-
ments available to investigate problem domains
and to create systems models depend on know-
ledge and understanding of what constitutes IS.
Automation, decision support and BPR exem-
plify such knowledge, which has progressively
determined how IT is applied to organizations.
Recent applications are eCommerce, eBusiness
and the internet.

Practical system knowledge is acquired by
developing conceptual and theoretical know-
ledge. In the absence of substantive theory in
systems analysis and design, conceptual expla-
nations determine practice. Concepts for phe-
nomena like organizations and IS determine
how managers or analysts act. They also deter-
mine the kinds of instruments devised to enable
practice. Concepts like hierarchical or flat struc-
ture in organization theory and automation or
decision support in IS have influenced the
design of organization and IS with appropriate
instruments.

An example of the relation between concep-
tual knowledge and its practical embodiment in
systems analysis and design is systems theory
(section 2.6). The ideas of interrelated elements,
communication and boundaries in systems
theory have influenced systems modelling tech-
niques in structured and object-oriented
systems analyses.

111

0

11

0111

0

0

11p

67

..Chapter 3 Systems analysis and design in concept and action

3.7.1 Problem solving strategies

Behaviourist theories use previous experiences
as the unit of analysis to explain how people
frame and solve problems, such theories are
classified as reproductive. It proposes that
people draw on previous experience to solve a
problem. The weakness in this explanation is
that previous experience can be a hindrance to
finding a solution in certain situations and
people could ‘fixate’ around such experience.

The Gestalt theory of problem solving arose
because of weaknesses in behaviourist theories.
Gestalt theorists argue that people solve prob-
lems through insight and structuring. The
problem is first structured or framed and insight
is important in the process. Such theories are
classified as productive.

Another problem-solving strategy is the
General Problem Solver Model. It is based on
the argument that there is a ‘space’ of problem
solving, in which a problem has various states.
The problem-solver uses heuristics to frame the
problem and explore a solution.

IS problems can be divided into the two cat-
egories of business problems and systems prob-
lems. The various problem-solving strategies
are used to address both types of problems.
Systems analysts help organizations and people
to identify, describe, understand and define
business problems related to the application of
IT. They work with business analysts whose job
is to identify, investigate and resolve business
problems. An example business problem is dis-
satisfied customers or poor quality products.
Often the initial business problem is experi-
enced or identified by people in the business
area and analysts work with business analysts to
improve the situation.

IS problems are concerned with how IT can
be applied to business problems. A business
organization can benefit from supporting or
integrated IS. For example, IT can be applied

to the problem of improving customer service.
Databases and relevant systems models can be
designed to capture and process data on cus-
tomer behaviour, and information on customer
behaviour can be provided to business decision
makers.

Problem-solving is systems analysts’ major
task. Problem-solving is rooted in systems theory
and science. In science and systems theory a
boundary is drawn around the problem and
separate elements identified to solve the prob-
lem. Separating out elements makes it easier
to solve individual elements, which are then
combined to solve the problem. This process
is called reductionism, a process of isolating a
problem and breaking it down into simpler ele-
ments that can each be analysed separately.

IS development is a problem-solving activ-
ity. At a high level, the SDLC is an IS problem-
solving method and methodologies are detailed
planned approaches to solving the problem of
developing an IS. The SDLC phases can be
compared with reductionism because the prob-
lem is broken down into separate phases and
each phase is progressively resolved.

Different systems ontology advocates partic-
ular problem-solving strategies. Structured sys-
tems ontology emphasizes the functions a new
IS needs to perform, and consequently focuses
problem-solving on identifying functions from
the problem domain. Object-oriented systems
ontology focuses on identifying classes, objects
and patterns. The Information Engineering
methodology focuses on the information re-
quired by business people, and so the focus is on
the information or data in the problem domain.

The details of IS problems are addressed in
the phases of the SDCL. They concern decid-
ing what systems models to design and how to
design them. Formalism is used to solve system
level problems. A formal problem-solving
strategy may be distinguished from an ad hoc

68

Part II IS, projects and application domains..

approach that may lack a structure and vary
each time a similar problem arises. Most
formalism consists of diagramming techniques
that express and structure knowledge about the
problem domain as graphical systems models.

The formal problem-solving strategy used in
structured systems ontology is functional decom-
position. It is based on scientific reductionism.
Functional decomposition requires breaking a
problem down into smaller manageable prob-
lems or components and solving each compo-
nent of the problem separately. The separate
solutions are then combined to provide a com-
plete solution for the whole problem. Functional
decomposition results in treating business trans-
action data and business processes separately to
develop data and process systems models.

The formal problem-solving strategy used
in object systems ontology is classification
theory. It regards the problem domain as con-
sisting of human experience that can be classi-
fied as objects and relations identified between
the set of objects or classes. The objects have
attributes and provide services to other objects,
both of which need to be identified. This is a
holistic view of the problem domain that treats
business transaction data and business processes
as integrated and leads to the development
of an integrated systems class model. In object-
oriented analysis classes, their definitions and
attributes are relatively stable over time. A class
once identified usually remains constant in
systems class model.

3.7.2 Notation languages

Problem-solving strategies rely on notation lan-
guages to express, structure and manage the
process of solving problems. Notations are for-
malism and are used in systems analysis and
design to develop systems models. A notation
language is a set of defined symbols to describe

and represent an IS problem. Some notations
cover both business and IS problems. Problem-
solving in systems analysis depends on the
power of notation languages to represent busi-
ness problems.

The development of an IS involves organ-
izations, people and IT. These elements cannot
be described precisely in a natural language like
English. A notation language is used to repre-
sent the problem domain as systems models. Its
prime purpose is to describe and represent the
problem domain and to enable manipulation of
the notation symbols to determine an appro-
priate resolution of the problem. Analysts can
manipulate the symbols until a desired solution
or required systems models are found.

The utility of a notation language is deter-
mined by how well it can express (describe) the
problem domain and how accurately it can rep-
resent it. Its power is in its notation symbols and
in how they can be manipulated to resolve a
problem. The symbols should be sufficient
enough to capture or represent elements of real
situations that interest the analyst and simple to
use. The manipulability of symbols also should
be sufficient to arrange the symbols to achieve
a desired solution.

Notation symbols and their manipulability
determine the kinds of IS problems that can be
addressed. Improvements in notation languages
enable more complex IS problems to be solved.
An example early notation is a flowchart, used
to design computer programs and extended to
systems analysis. Flowcharts are limited to solv-
ing logically sequential problems. In IS reliant
on databases the entity relationship notation is
used to develop database models.

Data flow diagrams and process models in
structured analysis separate out the elements of
a problem according to functional decompos-
ition, whereas a problem domain is treated
holistically in object-oriented notations. In

111

0

11

0111

0

0

11p

69

..Chapter 3 Systems analysis and design in concept and action

object-oriented analysis notation languages
focus on an integrated or holistic problem-
solving strategy. The data and process in the
problem domain are viewed as a whole, and
the problem is resolved holistically by develop-
ing an integrated systems class model. The UML
is an example of an object-oriented notation.

3.7.3 Techniques and tools

Instruments make it possible to develop systems
models. Techniques are used to develop systems
models and tools are used to support the
process. Prior to computer-based tools becom-
ing available systems models were developed
manually with pencil, paper and notation
templates. Both structured and object-oriented
systems analyses provide techniques to develop
systems models and computer-based tools to
support the process.

Structured techniques and tools

The practitioner-originators of structured
analysis aimed to provide a systematic and
structured method for developing IS. They
developed diagramming techniques for IS mod-
elling and tools to support the development of
stipulated systems models. Figure 3.3 shows the
deployment of techniques within the SDLC.
Many of the structured techniques are incor-
porated into the SDLC. It provides structured
systems modelling techniques across its major
phases.

Cost benefit analysis used during feasibility
study addresses business problems that assess
the benefits of investing in IT and development
of IS, though it originates in financial account-
ing practices. The entity relationship modelling
technique is significant during the requirements
analysis phase. It is used to identify things in the
problem domain for which data needs to be

captured, stored and processed. Consequently,
related techniques like entity/event modelling
and entity life histories are used to check for
completeness and correctness of entities.

SSADM modules are feasibility study,
requirements analysis, requirements specifica-
tion, logical system specification and physical
design. Each module contains a number of
stages. The components of SSADM are: struc-
tures, techniques and documentation. Structure
is concerned with systematic and staged activ-
ities, and the inputs and outputs required to
perform them. Techniques is concerned with
how the staged activities are to be performed.
Documentation is concerned with presenting
the products of the activities. SSADM makes
use of three techniques, logical data model-
ling, data flow modelling and entity/event
modelling. The systems models produced pro-
vide three interdependent views of the problem
domain. The different systems models are
checked to ensure consistency, accuracy and
completeness.

There are other structured techniques, listed
in Table 3.1, that can be used to execute
SSADM phases or used as part of other IS
methodologies.

70

Part II IS, projects and application domains..

Table 3.1 Structured systems analysis and design
techniques

Structured techniques

Data dictionaries

Decision tables/trees

Structured English

User/user role modelling

Function definition

Relational data analysis

Logical database process design

Update and enquiry update process models

111

0

11

0111

0

0

11p

Fe
as

ib
ili

ty
st

ud
y:

d
et

ai
le

d
st

ud
y

of
 t

he
b

us
in

es
s

p
ro

b
le

m
 a

nd
p

ot
en

tia
l

so
lu

tio
ns

S
ys

te
m

s
an

al
ys

is
S

ys
te

m
s

d
es

ig
n

Im
p

le
m

en
ta

tio
n

an
d

m
ai

nt
en

an
ce

S
ys

te
m

s
in

ve
st

ig
at

io
n

B
us

in
es

s
m

od
el

s;
m

an
ua

l s
ys

te
m

s
flo

w
ch

ar
ts

; c
os

t
b

en
ef

it
an

al
ys

is

Th
es

e
te

ch
ni

q
ue

s
su

p
p

or
t

se
ni

or
b

us
in

es
s

m
an

ag
er

’s
d

ec
is

io
n-

m
ak

in
g

on
 a

 p
ro

p
os

ed
ne

w
 IS

.

In
te

rf
ac

es
; l

og
ic

al
d

ia
lo

gu
e

d
es

ig
n;

st
ru

ct
ur

e
ch

ar
ts

Th
es

e
te

ch
ni

q
ue

s
sp

ec
ify

 h
ow

 t
he

d
at

a
ne

ed
s

to
 b

e
p

ro
ce

ss
ed

 b
y

th
e

ne
w

 IS
.T

he
y

d
et

ai
l t

he
 p

hy
si

ca
l

m
ea

ns
 fo

r
p

ro
ce

ss
in

g
th

e
ca

p
tu

re
d

 d
at

a.

E
nt

ity
-r

el
at

io
ns

hi
p

 m
od

el
lin

g;
en

tit
y/

ev
en

t
m

od
el

lin
g;

 e
nt

ity
 li

fe
hi

st
or

ie
s;

 d
at

af
lo

w
 d

ia
gr

am
s

Th
es

e
te

ch
ni

q
ue

s
id

en
tif

y
th

in
gs

 in
 t

he
p

ro
b

le
m

 d
om

ai
n

fo
r

w
hi

ch
 d

at
a

ne
ed

s
to

 b
e

ca
p

tu
re

d
, s

to
re

d
 a

nd
 p

ro
ce

ss
ed

.

B
us

in
es

s
op

p
or

tu
ni

ty
 o

r
p

ro
b

le
m

:
d

is
sa

tis
fie

d
 c

us
to

m
er

s
Im

p
ro

ve
 c

us
to

m
er

 s
er

vi
ce

N
ew

 c
us

to
m

er
se

rv
ic

e
sy

st
em

A
d

d
ed

 v
al

ue
 t

o
b

us
in

es
s?

B
us

in
es

s
p

ro
b

le
m

S
D

LC

S
tr

uc
tu

re
d

te
ch

ni
q

ue
s

an
d

 t
o

o
ls

P
os

t-
im

p
le

m
en

ta
tio

n
re

vi
ew

Fi
gu

re
 3

.3
S

tr
uc

tu
re

d
IS

 m
od

el
lin

g
te

ch
ni

qu
es

 w
it

hi
n

S
D

L
C

 p
ha

se
s

71

Structured tools

Computer-Aided Software Engineering (CASE)
tools are used to support the development of
software. They were designed either to support
specific steps in software programming or to act
as generic support tools that could be chosen as
required. They support analysts to build correct
and integrated systems models. Correctness
here refers to complying with the technical
stipulations of structured notations for systems
modelling. They are mostly used for require-
ments specification.

Horizontal integration CASE tools are used
to integrate the use of tools within the same
SDLC phase, for example within systems analy-
sis or systems design. Such integration enables
models to share data and to be validated for
accuracy. Horizontally integrated CASE tools
are available for entity relationship modelling
and dataflow diagramming. Database design
and business process design tools are examples
of vertical integration CASE tools. Vertical inte-
gration is the use of CASE tools to integrate
adjacent SDLC phases, for example analysis
and design.

A data dictionary is a fundamental concept
in structured analysis. It records all textual and
numeric information about a system that
cannot be captured in system diagrams. Some
CASE tools integrate data dictionaries with dia-
grams to make checks for consistency easier.
The quality of CASE tools to support SSADM
has been questioned, but there are diagram
editors and consistency checkers to improve
quality of systems models.

Object-oriented techniques and tools

Object-oriented analysis and design provides
techniques or strategies for finding objects in the
problem domain. Object-oriented techniques
are provided for many of the SDLC phases, as
shown in Figure 3.4. The use case technique is

used to develop a high level model of the system
and its functional uses. The object class diagram
is developed for both the existing system and
new IS.

Two techniques that are easy to understand
intuitively make use of nouns and verbs in
systems modelling. Analysts’ search for nouns
or noun phrases in the Noun Phrase Strategy.
Nouns or noun phrases identify an object for
which data needs to be processed and opera-
tions need to be coded. Example objects using
nouns are ‘invoice’, ‘department’ or ‘manager’.
Analysts’ search for verbs or verb phrases in the
Class-Responsibility-Collaboration (CRC) strat-
egy. Verbs or verb phrases describe what the
object does, for example ‘compute’, ‘dispense
cash’ or ‘print statement’.

There are other object-oriented techniques
that can be used to execute SSADM phases
or used as part of other IS methodologies.
These are: sequence diagrams, transition dia-
grams, event flow diagrams and collaboration
diagrams.

Object-oriented tools

Object-oriented tools are fundamentally differ-
ent because they need to reflect a richer onto-
logical knowledge of the problem domain.
Compared with structured tools, object-oriented
tools need to be capable of modelling semantics
in the problem domain. Object-oriented con-
cepts such as object, attributes and services
enable detailed semantics to be captured, so
tools need to be capable of facilitating it.

There are horizontal integration and verti-
cal integration CASE tools for object-oriented
analysis. They range from tools for browsers,
debugging, configuration management and
GUI builders. Comments about CASE tools
made in the section on structured CASE tools
also apply to object-orientation. The utility of
all tools is reduced after a certain point.

72

Part II IS, projects and application domains..

111

0

11

0111

0

0

11p

Fe
as

ib
ili

ty
st

ud
y:

D
et

ai
le

d
st

ud
y

of
th

e
b

us
in

es
s

p
ro

b
le

m
 a

nd
p

ot
en

tia
l

so
lu

tio
ns

S
ys

te
m

s
an

al
ys

is
S

ys
te

m
s

d
es

ig
n

Im
p

le
m

en
ta

tio
n

an
d

m
ai

nt
en

an
ce

P
os

t-
im

p
le

m
en

ta
tio

n
re

vi
ew

S
ys

te
m

s
in

ve
st

ig
at

io
n

O
b

je
ct

 c
la

ss
d

ia
gr

am
 o

f n
ew

sy
st

em

C
A

S
E

 t
oo

ls
:

R
at

io
na

l R
os

e,
p

ac
ka

ge
s,

su
b

sy
st

em
s,

m
od

el
s

C
la

ss
 d

ia
gr

am
 a

nd
 o

b
je

ct
 d

ia
gr

am
,

ob
je

ct
 c

la
ss

 d
ia

gr
am

 o
f

ex
is

tin
g

sy
st

em
, c

om
p

on
en

t
d

ia
gr

am
,

d
ep

lo
ym

en
t

d
ia

gr
am

U
se

 c
as

e
m

od
el

, s
ce

na
rio

, a
nd

 u
se

 c
as

e
sc

rip
ts

; h
eu

ris
tic

 o
b

je
ct

 id
en

tif
ic

at
io

n

S
eq

ue
nc

e
d

ia
gr

am
, a

ct
iv

ity
 d

ia
gr

am
,

co
lla

b
or

at
io

n
d

ia
gr

am
, s

ta
te

ch
ar

t
d

ia
gr

am

S
tr

uc
tu

re
d

 E
ng

lis
h,

 d
ec

is
io

n
ta

b
le

s,
 d

ec
is

io
n

tr
ee

s,
 s

ta
te

-t
ra

ns
iti

on
d

ia
gr

am
s

B
us

in
es

s
op

p
or

tu
ni

ty
 o

r
p

ro
b

le
m

:
d

is
sa

tis
fie

d
 c

us
to

m
er

s
Im

p
ro

ve
 c

us
to

m
er

 s
er

vi
ce

N
ew

 c
us

to
m

er
se

rv
ic

e
sy

st
em

A
d

d
ed

 v
al

ue
 t

o
b

us
in

es
s?

B
us

in
es

s
p

ro
b

le
m

S
D

LC

O
b

je
ct

-o
ri

en
te

d
te

ch
ni

q
ue

s
an

d
 t

o
o

ls

Fi
gu

re
 3

.4
O

bj
ec

t-
or

ie
nt

ed
 t

ec
hn

iq
ue

s
w

it
hi

n
S

D
L

C
 p

ha
se

s

Rational Rose is a CASE tool to support object
systems modelling. It is used within UML.

CASE tools do not necessarily produce good
systems models. The tools do improve the accu-
racy and validity of systems models produced.
Good systems models depend on the thorough-
ness of the problem domain investigation.

3.8 IS methodologies

An IS methodology enables the articulation of
an IS problem and provides a staged process for
IS development. A basic premise of methodolo-
gies is that by following the stipulated stages the
problem domain system requirements can be
fulfilled. There are numerous methodologies
available all seeking to achieve this goal. The
authors of methodologies are the government or
its agencies, practising consultants or companies
who develop bespoke methodologies.

The British government’s use of IT led it
to sponsor the development of SSADM in
conjunction with the National Computing
Centre (NCC). Practising consultants devel-
oped various methodologies including Jackson
System Development (JSD), Structured Ana-
lysis, Design and Implementation of Inform-
ation System (STRADIS), Yourdon System
Method, Information Engineering, and Coad’s
object-oriented methodology. STRADIS and
Yourdon System Method use the functional
decomposition problem-solving method, the
latter focuses on data structures.

A methodology is underpinned by certain
beliefs and knowledge held by the methodology
authors about human problems and systems
ontology. A consideration of these beliefs is
important for criticality and practical use of a
methodology. Project managers need to under-
stand the systems ontology of a methodology and
decide whether it is appropriate for the project.
Analysts need to evaluate whether they agree
with the assumptions made and the consequent

systems ontology, and whether it is appropriate
for undertaking analysis.

A methodology normally contains all the
SDLC phases, though some methodologies
omit the implementation phase and others do
not make stringent demarcations. The charac-
teristics of a methodology are similar to a plan,
hence methodologies are referred to as detailed
plans for developing IS. The significant formal
part of a methodology is that it contains sys-
tematic, often sequential, phases and that each
phase delivers specific documents for the next
phase and the overall successful development of
a new IS. The result of each phase or output is
referred to as a deliverable.

All methodologies have a systems analysis and
systems design element. This may be a concrete
phase such as in SSADM or a quick process inte-
grated with actual coding of computer programs
as in ASD. In practical terms a methodology is a
collection or package of techniques and tools for
systems analysis and systems design, and it also
prescribes systems implementation.

Methodologies may be categorized as data-
centric, process-centric, or object-oriented.
Some methodologies focus systems analysis
on data. Other methodologies focus systems
analysis on processes and information. Object-
oriented methodologies focus systems analysis
on identifying objects and their attributes, espe-
cially relationships. Systems models in data-
centric and process-centric methodologies need
to be checked and integrated to provide a con-
sistent systems model. The systems class model
in object-oriented methodologies is inherently
integrated.

Methodologies are normally executed within
systems projects. In business a project is the
pooling of required resources to achieve pre-
determined objectives within predefined finan-
cial resource and time constraints. The
development of an IS is referred to as a systems
development project or simply system project.

74

Part II IS, projects and application domains..

A system project provides a structure for both
the work to be done and the products to be
delivered. Project management techniques and
tools are useful for organizing the work
required. The structure in projects is the result
of plans formulated to identify work to be done,
provide a schedule of the work, and to monitor
and control the progress of the project.

3.8.1 Structured systems analysis and
design method

SSADM is the UK government’s preferred
methodology. It was developed as a govern-
ment initiative to seek efficiencies in IS projects
in the public sector, particularly to control cost
overruns. Software vendors are required to use
it when tendering for government contracts.
SSADM focuses on data in the problem domain
and the requirements of a new IS to develop
data models and databases. It contains elabo-
rate standards to which systems documentation
must comply.

The SSADM life cycle is shown in Figure
3.5, techniques and tools used to produce deliv-
erables are shown below the phases. SSADM
epitomizes the structured approach. Its main
phases closely follow the SDLC phases and
make use of structured techniques and tools for
systems analysis and design. Both contain the
feasibility study, systems analysis and systems
design phases, but SSADM does not have the
implementation of the designed system and its
post-implementation evaluation phases.

SSADM is based on the structure concept.
It stipulates tight rules and guidelines to which
project managers have to adhere. It does not
provide systems project management tech-
niques, so project managers use techniques
drawn from the Project Management In
Changing Environments (PRINCE) method.

SSADM concentrates on systems analysis
and design. It focuses on the analysts’ activities

required to complete a feasibility study, require-
ments analysis, requirements specification and
logical systems design. Systems analysis and
design in SSADM is achieved with the aid of
formalism and CASE tools.

A thorough or rigorous systems analysis and
design is achieved on the basis of the ‘three-
views’ of the system propounded in SSADM.
The three views are: (a) the data in the system,
(b) the business events to which the system must
respond and (c) user defined functions of the
system. Systems analysts are required to cross-
reference analysis and design between these
three views of the system to check the integrity
of systems models. A significant criticism of
SSADM is that it produces much documenta-
tion, and configuration management of docu-
ments becomes problematic.

3.8.2 Jackson System Development

Many companies use JSD. It is a structured
systems analysis and design methodology that
complements Jackson Structured Programming
(JSP). JSP is widely used in practice too. The
problem-solving strategy used in JSD is the
top-down decomposition of the problem into
sub-problems that are individually and sepa-
rately solvable. Companies have adopted ver-
sions of JSD that include the main phases of
the SDLC.

The notion of an entity is important in JSD.
An entity is something that exists in the real
world, which needs to be reflected in a new IS.
In JSD an entity is defined as something that is
unique and performs an action or it is affected
by action over time. For example, a customer
is an entity that places an order at a certain
time, or an invoice is generated when an order
has been fulfilled. JSD contain six steps:

• entity action
• entity structure

111

0

11

0111

0

0

11p

75

..Chapter 3 Systems analysis and design in concept and action

Fe
as

ib
ili

ty
S

tu
d

y:
D

et
ai

le
d

 s
tu

d
y

of
 t

he
b

us
in

es
s

p
ro

b
le

m
 a

nd
p

ot
en

tia
l

so
lu

tio
ns

S
el

ec
te

d
b

us
in

es
s

sy
st

em
 o

p
tio

n
re

q
ui

re
m

en
t

sp
ec

ifi
ca

tio
n

Lo
gi

ca
l a

nd
p

hy
si

ca
l

sy
st

em
s

d
es

ig
n

R
eq

ui
re

m
en

ts
an

al
ys

is

Te
rm

s
of

re
fe

re
nc

e;
 d

ef
in

e
p

ro
b

le
m

; s
el

ec
t

an
d

 r
ev

ie
w

op
tio

ns
; f

ea
si

b
ili

ty
re

p
or

t

D
ef

in
e

an
d

 s
el

ec
t

te
ch

ni
ca

l s
ys

te
m

op
tio

n;
 d

ef
in

e
p

hy
si

ca
l s

ys
te

m
;

d
ef

in
e

us
er

in
te

rf
ac

es
; d

ef
in

e
up

d
at

e
an

d
en

q
ui

ry
;

p
ro

ce
ss

es
; l

og
ic

al
d

es
ig

n

D
ef

in
e

sc
op

e;
in

ve
st

ig
at

e
cu

rr
en

t
sy

st
em

s;
 d

ev
el

op
lo

gi
ca

l m
od

el
;

d
ef

in
e

an
d

 s
el

ec
t

IS
 o

p
tio

ns
; d

ef
in

e
re

q
ui

re
m

en
ts

;
us

er
s

ch
ec

k
an

al
ys

is

B
us

in
es

s
op

p
or

tu
ni

ty
 o

r
p

ro
b

le
m

:
d

is
sa

tis
fie

d
 c

us
to

m
er

s
Im

p
ro

ve
 c

us
to

m
er

 s
er

vi
ce

N
ew

 c
us

to
m

er
se

rv
ic

e
sy

st
em

A
d

d
ed

 v
al

ue
 t

o
b

us
in

es
s?

S
S

A
D

M
 d

oe
s

no
t

co
nt

ai
n

im
p

le
m

en
ta

tio
n

an
d

 e
va

lu
at

io
n

p
ha

se
s

D
ef

in
e

sy
st

em
p

ro
ce

ss
in

g;
d

ev
el

op
 d

at
a

m
od

el
; d

ev
el

op
sp

ec
ifi

ca
tio

n;
p

ro
to

ty
p

e;
es

ta
b

lis
h

sy
st

em
ob

je
ct

iv
es

;
re

q
ui

re
m

en
ts

sp
ec

ifi
ca

tio
n;

us
er

s
ch

ec
k

sp
ec

ifi
ca

tio
n

B
us

in
es

s
p

ro
b

le
m

S
S

A
D

M

T
ec

hn
iq

ue
s

an
d

 t
o

o
ls

Fi
gu

re
 3

.5
S

S
A

D
M

 p
ha

se
s,

 t
ec

hn
iq

ue
s

an
d

to
ol

s,
 a

nd
 d

el
iv

er
ab

le
s

• initial model
• function
• system timing
• implementation.

The development of systems models is
significant in JSD. Entities are identified and
modelled to show how they affect other entities
or how they themselves are affected. The focus
on entities is claimed to produce a flexible IS
that can be readily enhanced or amended to
meet changing business needs. Systems analysis
and design is regarded as an extension of soft-
ware development that leads onto JSP.

Project managers do not have a significant
role in JSD because of its emphasis on system
level analysis and design. The identification of
entities and development of models is under-
taken by analysts who use formal structured
diagramming techniques to develop systems
models. The diagramming techniques are:
JSD structure diagram, JSD system specifica-
tion diagram, JSD structure text and systems
implementation diagram.

3.8.3 Open Source Software

OSS is not a methodology like SSADM or JSD.
It is included here because it is being recognized
as an acceptable method for developing soft-
ware, both for government and commercial
companies.

OSS is software whose source code is open
to the public. It is often developed by voluntary
efforts and is usually available at no charge. It
is used under a licence defined by the Open
Source Initiative (OSI), which prevents the
open source produced software from being
redistributed under licenses that contravene the
OSI ethos. OSS is now a significant source for
industrial-strength software for many kinds of
software applications ranging from the Linus

operating system to the Oracle and Informix
database systems, and Word Perfect and Corel
word-processing package and office suite.

It is not clear whether OSS is a methodology.
The importance of OSS is recognized by the
UK government that initially encouraged the
development of SSADM, which subsequently
become a benchmark. The UK government’s
e-Government Interoperability Framework
(e-GIF) mandates open standards and specifica-
tions. The UK government’s policy on OSS
includes the use of OSS solutions in IT pro-
curements. It will only use products for inter-
operable systems that support the OSI in future
systems applications. Government supported
research and development will also make use of
OSS as the default software. OSS is a funda-
mental change in the way software is developed
and the UK government is developing policies
to recognize its importance in the marketplace
and for government contracts. The European
Commission (EC) too promotes the use of OSS
in the public sector and e-government best
practice.

The role of project managers and systems
analysts in OSS is unclear. Though the roles of
project managers and systems analysts in OSS
will not be redundant, it is unclear what pre-
cisely they would do. Software programmers
develop most open source software. They
become intensely interested in the actual pro-
gramming problem, sometimes because they
themselves make use of the software product
and would like to make improvements to it for
personal use. The use of OSS in an organiza-
tion would certainly require analysis of the
problem domain.

3.8.4 Coad’s object-oriented
methodology

Coad’s object-oriented methodology focuses on
data, behaviour and functions of objects. The

111

0

11

0111

0

0

11p

77

..Chapter 3 Systems analysis and design in concept and action

aim is to develop one integrated class systems
model of function, information and behaviour.
A single integrated class systems model does not
require ‘balancing’ or other elaborate checking
across models, as required in structured analy-
sis. The purpose of the integrated class model
is to develop consistent and accurate systems
models. Coad’s object-oriented methodology
consists of four activities:

• Identify system purpose and features.
• Identify model component’s objects and pat-

terns, for each of the model components:
– problem domain;
– human interaction;
– data management;
– system interaction.

• Establish object responsibilities.
• Define service scenarios.

The purpose of identifying objects and patterns
in the problem domain and the system is to find
data objects and define the behaviour of the
objects. The purpose of the third activity is to
establish object responsibilities by identifying
the functions required of the system and the
data objects that need to be captured, processed
or stored, and the behaviour needed to com-
plete the responsibilities and services of the
identified objects. The purpose of the fourth
activity is to determine the services to be
provided by the objects.

Project managers have flexibility to deter-
mine how the methodology should be prac-
ticed. It allows parallelism, substitution and
omission. A project manager can perform the
activities in parallel if the problem domain
permits. The sequence in which activities are
performed may be changed or substituted by
the project manager when the problem domain
permits. The project manager may decide to
omit one or more of the activities if the problem
domain permits.

Analysts’ task is to execute the four activities.
Whether the activities are completed in the
sequence stated in the methodology depends on
the project manager’s decisions concerning par-
allelism, substitution and omission. An analyst
using an object-oriented methodology needs to
be able to understand how to identify objects
and the role of the one integrated class systems
model.

3.8.5 Prototyping

Prototyping is a popular Rapid Application
Development (RAD) approach. Prototyping is
a methodology but it does not make stringent
demarcations in the process of IS development.
It does not divide the process into discrete
phases based on the SDLC. The aim of proto-
typing is to reduce the phases and the time it
takes to develop an IS, and to involve closely
clients in development. By not demarcating the
process into phases prototyping seeks to reduce
the time it takes to develop a system.

Prototyping actively involves clients in the
problem domain to elicit system requirements.
A system is developed quickly and installed for
use in the problem domain. People’s usage of
the system generates evaluation and feedback
on the system’s functionality, user interfaces and
information for developers. Developers use this
feedback to enhance the prototype system.

Prototyping varies the SDLC phases moving
from analysis, to building, and seeking clients
comments on developed prototypes. There are
a variety of prototyping strategies:

• Incremental prototyping where the proto-
type eventually becomes the operational
system.

• Throwaway prototyping where the system is
a mock-up to obtain feedback.

• Cooperative prototyping involves clients
actively in the design of the prototype.

78

Part II IS, projects and application domains..

The role of systems analysts is to determine an
initial set of system requirements and work with
software programmers to develop a prototype.
Clients are not usually consulted on the initial
requirements and are not involved in the design
of the initial prototype. Analysts then work with
clients to evaluate the system by performing
certain tasks with the prototype system. The
results of the evaluation are recorded as part of
the requirements document and used to
enhance the prototype.

The role of project managers in prototyping
varies depending on the size of the prototype
and type of prototyping strategy adopted. They
perform the normal systems project manage-
ment tasks if the prototype is organization-wide.

3.9 Interpreting concept and action
in the Critical Framework

IS knowledge and IS development knowledge
are continuously progressing. There is no formal
theoretical knowledge on IS development. The
SDLC is the fundamental conceptual and
formal body of knowledge. It prescribes how to
develop an IS. It constitutes a formalistic
approach to IS development. Notions of opti-
mality and the universal application of instru-
ments underpin its systems ontology. The SLDC
is the basis for most research and practice in IS
development. SSADM, and other methodolo-
gies, are based on the SDLC.

The Critical Framework can be used to
analyse critically concepts and practice in
systems analysis and design. Fundamental con-
cepts like the SDLC, structured analysis and
object-orientation, and methodologies, consti-
tute knowledge. The actual practice or imple-
mentation of this knowledge can be analytically
evaluated with the Critical Framework.

Figure 3.6 is the Critical Framework popu-
lated with critical reflection on the conceptual
basis and practice of systems analysis and design.
As the bottom layer shows, many questions con-

cerning the four themes of criticality arise from
assumptions of objective and rational human
behaviour in systems ontology. These questions
relate to transformatory critique, refashioning of
traditions, reflexivity and critical skills.

For example, in terms of reflexivity, analysts
use the term ‘users’ or ‘user organization’. The
term has implications for knowledge and prac-
tice. Some researchers do not consider it to be
an appropriate term to describe people in
organizations. For many decades the term fore-
closed ‘users’ to participate in IS development.
It also had to be qualified because of techno-
logical development in ‘end-user computing’
that enables people in organizations to develop
IS themselves. Patel (2003) has coined the
term ‘action developers’ to describe people in
organizations capable of tailoring IS to their
particular needs.

The SDLC seeks optimal solutions. Critical
evaluation of the SDLC systems ontology
reveals that optimality assumes perfect informa-
tion will be available to make decisions about
the human problem. Such information is rarely
available in practice. Similarly, instruments are
underpinned by ontological assumptions. The
SDLC assumption of rational organization and
humans leads to instruments that produce
systems models that are optimal and measur-
able. An optimum situation is where the best
possible results are achieved, which is usually
deflected by other factors in the ‘messy world’.

To internalize knowledge and develop prac-
tice of the SDLC, analysts would need to accept
certain kinds of personal constructs. Based on
knowledge from the systems ontology theme,
they need personal constructs that fit the objec-
tivist ontology of the SDLC. For example, an
analyst would need to develop an ‘objective’ pre-
disposition given the SDLC’s assumption that the
world is objective. So, an analyst would need to
be detached and impartial, and analyse an actual
situation with detachment and impartiality.

111

0

11

0111

0

0

11p

79

..Chapter 3 Systems analysis and design in concept and action

The actual inclusion of the objectivity per-
sonal construct in a PCF should be based on
critically evaluating its relevance for practice.
The actual situation will reveal that people have
self-interest and egos that will make them

behave in a subjective and partisan manner.
Analysts too need to question their self-interests
and biases. A series of questions will arise that
will lead to evaluating critically the objectiv-
ity personal construct and its validity in real

80

Part II IS, projects and application domains..

Apply formal
methods

Real world of
human problems

(Messy world)

Organizations, people;
information systems,

information technology

Systems
ontology

SDLC

SDLC assumes that
human behaviour is

rational and information
is available

Formalism, system,
sub-systems, control,

coordinated behaviour,
‘user’

Fixed, optimal,
predictable, efficient,
effective, measurable,

engineered (systems and
information)

Pragmatic
resolution

Problems with optimum
and change

???

Interpret formalisms in
practice

Apply assumption of
rational humans and

organizations –
does it work?

Develop knowledge

Objective epistemology
assumes human and

organizational behaviour
is rational or economic

perfect knowledge

Determine a pragmatic
resolution to problems
with formal methods

Resolve
problems

Transformation of
traditions reflexivity

What is rationality?
Objectivity is important,

but how can it be realized
in the messy world?

Can ‘users’ be involved
in development?

Transformatory critique

Is the world objective?
Are humans rational?

Is organizational
behaviour rational?

Is perfect knowledge
available?

Critical skills

Use the Delphi technique
to be objective; help
people to objectivity

Figure 3.6 Critical framework: the ontology of the SDLC

situations. These may include: How is the
analyst to be objective in such a situation? If a
systems analyst makes a design decision that is
not favoured by some people, will they lose
interest in the IS development? The analyst
would then evaluate whether to include the
objectivity personal construct in a PCF, or
whether it should be practiced selectively.

3.9.1 Considering sub-themes

The SDLC can be further analysed and evalu-
ated in terms of planned action and situated
action sub-themes. Objectification of personal
constructs can be made clearer by considering
these sub-themes to understand the SDLC
systems ontology and its relevance in real situ-
ations. The analyst can then consider whether
to develop personal constructs based on
planned action or situated action.

Systems ontology knowledge is often couched
in planning terminology in IS development.
Knowledge about IS development problems and
of how to overcome them is devised as appro-
priate instruments deployed in the context of
plans or methodologies. The SDLC may be
characterized as planned action, since it has sys-
tematic phases: requirements analysis, data and
process modelling, and data and interface
designs, determining system functionality, and
actually implementing the designs using IT.

The requirement for an analyst to be objec-
tive necessitates planning, for example when
eliciting requirements. The analyst’s plan of
activities may not be possible to implement in
an actual situation. There may be limits on how
much time people can give or required docu-
ments may not be available. The analyst’s plan
would then need to be changed, however re-
planning may result in a similar situation.
Alternatively, the analyst could choose to take
situated action. People who are accessible can
be interviewed and documents that are
available can be studied.

3.9.2 Objectivity and modelling

The SDLC, structured and object-oriented
systems ontology assumes an objective problem
domain in which analysts themselves can
behave rationally. Objectivity is a problemat-
ical assumption in systems ontology. It has
implications for both knowledge development
and praxis. The premise that humans behave
rationally leads to the expectation that analysts
are capable of applying rational instruments in
an objective and detached manner.

Analysts expect people in organizations to
behave rationally because of their training in
structured or object-oriented methods. They
often find that people do not meet their expec-
tation, which ironically leads them to seek short-
comings in the people or application domain
rather than reflect on and evaluate their
assumed knowledge.

Analysts can analytically evaluate the SDLC
systems ontology to develop personal constructs
on objectivity, and the design of objective,
unambiguous and complete systems models
required in structured analysis. Analysts would
then evaluate whether to include objective sys-
tems modelling personal construct in their PCF.

A model is an abstract representation to
describe and explain reality – organization,
people, IS and IT. It is used to understand
actual human problem situations. The devel-
opment of systems models is central in the
SDLC, in which the tenet of objectivity affects
the type of systems models developed. Its objec-
tive systems ontology assumes that an analyst
can create objective, unambiguous and com-
plete systems models. Analysts are expected to
remain detached and impartial in the process
of designing systems models.

The fundamental premise of the SDLC,
structured, and object-oriented analyses is that
human behaviour in organizations is economic
or rational. This basic premise encounters prob-
lems when it is applied in real human problems.

111

0

11

0111

0

0

11p

81

..Chapter 3 Systems analysis and design in concept and action

Human behaviour normally, but especially in
an organizational setting, is influenced by social
and political factors that question the premise
of rational behaviour. Such analytical evalua-
tion and interpretation of knowledge and prac-
tice in terms of the Critical Framework will
enable an appreciation that the actual practice
of IS development is not a wholly rational,
objective phenomenon.

3.9.3 Pragmatism

During the 1990s the new IS conceptions were
based on Business Process Re-engineering
(BPR). Analysts in consultation with people
developed systems models of existing organiza-
tion, processes and workflows. They were then
analysed to create alternative, radically differ-
ent process models that took advantage of IT.
Analysts and business analysts questioned and
analysed business processes to seek out ineffi-
ciencies and improve effectiveness. The new
systems models aimed to redesign or ‘re-engi-
neer’ organization and improve productivity.

Systems models are created with formal
notations and diagramming techniques. The
assertion that notations provide a common lan-
guage with which analysts can communicate
with each other, and with project managers,
software programmers or database administra-
tors. The models created with formal notations
are also used to communicate with people.
These assertions can be evaluated. In structured
systems analysis the models are of data and
processes, and in object-oriented analysis the
models depict classes and relations. Complex
systems models are difficult for users to under-
stand, and even analysts find them difficult to
interpret. Such confused models are subse-
quently implemented using IT.

Authors of methodologies do not attempt to
explain and elaborate assumed systems ontology
or epistemology. Analysts can learn much about
praxis from them, but little on how to develop

criticality. The questions that arise in develop-
ing a new IS require critical thinking. The
SDLC, structured methods, and object-oriented
methods and IS methodologies are some
responses to these questions but they are mostly
prescriptive. Though the knowledge may be
technically sound, its usefulness in practice
depends on its application limits in real human
problem situations, where organizations and
people matter the most.

There is a close relation between writing
computer programs and performing systems
analysis and design. Problems in software devel-
opment have led to solutions that have found
relevance in systems ontology. Knowledge on
how to develop computer programs has influ-
enced knowledge on how to conduct systems
analysis and design. Structured programming
know-how resulted in structured analysis and
design. The emergence of object-oriented pro-
gramming has led to object-oriented systems
analysis and design. The recent interest in agile
or eXtreme programming is driving a method-
ological systems analysis and design. This
synergy may be regarded as inherent because
systems analysis and design is conducted to
inform software development.

Structured methods, techniques and tools
arose from the problems that the US military
and space exploration organizations encoun-
tered in applying digital computers to achieve
their aims. Military and space software devel-
opers looked to engineers to learn how to
produce robust software, of good quality and
reliability and acceptable to clients. Adopting
the engineering analogy lead to the term soft-
ware engineering to describe the disciplined
development of software. The engineering
analogy has persisted ever since in software
development and was extended to developers of
commercial software applications.

Knowledge of systems analysis and design
has to be enacted in real situations. Despite the

82

Part II IS, projects and application domains..

progress in IS concepts, instruments and
methodologies, the perennial IS development
problems of unmet requirements and cost over-
runs still persist. Reflective analysts need to
explain why the problems still exist. Arguments
for further progress or better adherence to stan-
dards do not resolve or explain the problems.
Better knowledge and understanding of organ-
ization and people, IT and IS, and how these
relate in the application domain is needed.
Better elaboration of systems ontology is
needed. An explanation of how these relate to
ontological understanding of organizations and
people is required. Inclusive epistemologies,
capable of investigating organization and
people, need to be accepted.

Mechanistic conceptions and definitions of
data and information are simplistic for devel-
oping appropriate systems ontology for IS.
Human experience of data and information
is phenomenological, which IT is presently
unable to reflect. Organizational knowledge
and knowledge management in particular pose
significant problems. Knowledge management
systems based on algorithmic conceptions of
knowledge have been unable to facilitate or
improve knowledge generation and sharing.
The notion of semantic data and information,
particularly reflected in XML for the web,
provide the necessary human dimension
required to contextualize information. Similar
conceptions are necessary in systems analysis
and design.

3.9.4 Planned action and situated action

The planned action and situated action sub-
themes are particularly relevant for critically
evaluating concepts and practice. It is informa-
tive to consider analytically the SDLC, struc-
tured and object-oriented systems ontology,
methodologies and problem-solving in terms of
planned action and situated action.

Figure 3.6 illustrates the practical problems
when objectivity underpins systems ontology.
Objectivity and rationality suggests a planned
and predictable reality. Planned action is the
basis of structured systems analysis and design
and in some versions of object-oriented systems
analysis and design. Entities in structured analy-
sis and objects in object-oriented analysis are
presumed to exist, and analysts’ task is to dis-
cover them to develop systems models.
Characterizing systems analysis and design as
such objective, planned action is questionable
because it negates contexts, and it negates
emergent organization – things organizations
and people have to respond to that cannot be
planned or predicted.

Project managers deploy methodologies as
project plans that detail the resources required
and the work to be done. So it is possible to
label IS development as planned action. To
develop a critical perspective planned action
and situated action will be differentiated in the
context of knowledge and practice.

The SDLC

The SDLC is structured IS development. It
consists of conceptions of IS and instruments
for systems modelling. Its basic premise is that
humans and organizations behave rationally.
This premise translates into a planning per-
spective, with systematic phases in the SDLC
characterized as a form of planned action.
Project managers develop sophisticated plans
detailing systems analysis, design and program-
ming work packages and the resources required
to complete them.

Though the SDLC is shown in Figure 3.2 as
sequential, phased activities, it has various ver-
sions. These versions have resulted from
addressing gaps in a prevalent version. The
‘waterfall model’ version was added because in
practice developers need to go back to previous
phases. An ‘iterative’ version was developed to

111

0

11

0111

0

0

11p

83

..Chapter 3 Systems analysis and design in concept and action

enable developers to work across two or more
phases to fill informational gaps in previous
phases. A ‘spiral’ version was developed to
diffuse risk analysis and enable verification and
testing throughout the phases. In previous ver-
sions risk was not considered or verification and
testing were carried out too late to contribute
to successful completion.

Analysts are expected to deploy the SDLC
objectively and systematically within project
plans. The premise of objectivity has led to the
design of instruments that fail to recognize the
non-rational aspects of human and organiza-
tional behaviour – namely, politics, culture,
limits on knowledge and communication gaps.
The actual practice of systems analysis requires
analysts to consider situated factors. Analysts
have to account for the limitations of people’s
ability to state system requirements. They have
to consider whether people are capable of envi-
sioning a new IS or how it might relate to the
work they do. These are situated factors that
cannot be accounted for in plans.

Techniques and tools

It is assumed in structured and object-oriented
systems ontology that instruments enable the
development of correct systems models. Proponents
of structured techniques and tools make various
claims. For example, that instruments provide
better project control and communication, they
meet people’s requirements and can cater for
changing requirements.

CASE tools are used to document systems
analysis and design activity and function as com-
munication aids. They are used to communicate
systems models between analysts and program-
mers and project managers. Contentiously, it is
also claimed that CASE tools are useful to com-
municate between analysts and user too. There
is no verification of this claim.

Though CASE tools are meant to achieve
correctness of systems models, the consistency

and accuracy of integrated models has not been
achieved. Use of vertical CASE tools in struc-
tured methodologies that separate data and func-
tion modelling has not led to successful technical
validation of integrated models. Object-oriented
CASE tools have not matched developments in
structured methods and techniques.

Instruments alone are not sufficient for devel-
oping appropriate systems models. The formal-
ism in structured analysis and design encourages
people in the problem domain to be acknow-
ledged in systems analysis. They are encouraged
to participate in the development process but
they have severe technical limitations. Prime
among them is lack of knowledge to read tech-
nical systems diagrams or systems models.

Appropriate systems design is the result of
thorough investigation and the validity of the
assumptions made of the problem domain.
Limitations can be determined by examining
ontological assumptions. Structured and object-
oriented analyses have techniques and tools that
assume an objective problem domain that can
be impartially investigated. Often analysts find
people have interests and attach subjective
meaning to the work they do which makes the
instruments ineffective.

Methodologies

A methodology is normally more than simple
packaging of instruments for developing IS.
Critical analysis reveals that methodologies
contain philosophical assumptions and ontolog-
ical beliefs that influence the type of IS and
instruments developed. Methodologies harbour
assumptions about the nature of systems, instru-
ments, IS, people and organizations that heavily
influences conceptions of IS and how IS are
developed. They prescribe the role of potential
users. Significantly, they embody hidden epis-
temological method which affects the contribu-
tions the IS makes to the achievement of human
and organizational purpose.

84

Part II IS, projects and application domains..

Structured and object-oriented methodolo-
gies assume ‘things of interest’ pre-exist. Ana-
lysts have to simply identify them for systems
modelling. JSD and Coad’s object-oriented
methodology presume that entities and objects
exist in human problems. The analysts’ task is
to establish objectively what these entities are
and develop systems models. They are required
to identify entities and objects from people,
business processes, and documents and to estab-
lish their importance and relevance for systems
modelling. The actual process though is more
involved. Analysts have to rely on people, who
have subjective interests, in the organization to
name entities and objects and to establish their
importance and relevance. This reliance reveals
the social dimension of IS, and necessitates con-
sideration of power relations in organizations,
and in IS development.

A methodology is packaged as a set of instruc-
tions for practitioners. JSD or Coad’s object-
orientation methods prescribe to IS developers
how to develop IS. The phases of SSADM pre-
scribe what project managers and systems ana-
lysts should do. Significantly, methodological
prescriptions cause analysts to expect organ-
izations and people to behave in prescribed
ways. Actual implementation of methodological
prescriptions tests the objectivity and planning
assumptions and the prescribed expectations.
Consequently, most practitioners do not deploy
a methodology because it binds them to planned
action that contradicts the problem domain.
They find that the actual behaviour of people
and events in the organization are not suscepti-
ble to objective and systematic analysis, and the
expectations raised by methodology remain
unfulfilled.

At the core of a methodology is the belief
that the required or intended future can be
created. Systems analysis and design is con-
cerned with creating a socio-technological

future, where work and organization depend on
or are integrated with IT and IS. The future is
often concerned with strategic thinking.
Consequently, systems analysis has strategic sig-
nificance. Most thinking and action on the
future is based on planning.

Planning itself is problematical, but the
assumptions underpinning development of a
future with plans are more problematical to rec-
oncile with actual situations – human problems.
Planning assumes it is possible to predict the
future in that the planned future can be real-
ized. There are obvious limitations to human
capability to predict. Another assumption in
planning is that the actual conditions under
which the plan is to be executed will remain
constant, or as explicitly or implicitly assumed
in the plan, to be successfully implemented.
Actual conditions invariably do not comply
with assumptions of the plan. So project man-
agers have to continually adjust budgets,
resources and timescales accordingly.

Some methodologists propose methodology
as a form of inquiry or epistemology. For them
a methodology is a method for investigating the
problem domain to discover knowledge. The
techniques and tools used for modelling act as
instruments for investigating the problem
domain and recording findings. Analysts should
critically evaluate epistemological assumptions
in systems ontology to understand their effect
on knowledge and practice. Structured analysis
and design affects organization by delivering IS
based on objectivity. A new IS affects the very
organization for which it is developed. The
future and the present organization are intri-
cately tied. This effect is most prominent in
BPR and eCommerce.

Problem-solving

Both structured and object-oriented systems
ontology assume that IS development problems

111

0

11

0111

0

0

11p

85

..Chapter 3 Systems analysis and design in concept and action

can be addressed objectively. Consequently,
they characterize problem-solving as reduc-
tionism – the decomposition of a problem into
smaller, manageable elements. The decomposi-
tion of a problem leads to compartmentaliza-
tion of organization and people’s work, whereas
organization is designed to function as a whole.

Objective systems ontology separates out
people from the actual problem domain. Mean-
ings that people attach to their actions are not
modelled in structured or object-oriented sys-
tem ontology. In structured systems ontology
detached analysts carry out the identification of
entities, and though entities can be people, as in
customer or employee, the actual customer or
employee is not consulted for their subjective
perception. Similarly, in object-oriented analysis
objects can be customers or employees but the
actual people are not consulted for their views.
The development of use case models in object-
oriented analysis, though modelling the users,
does not involve the actual people, or consider
the meanings they attach to information.

Problem-solving in IS development largely
ignores the social context. IS may be defined as
a medium of social communication in organ-
ization. People rely on information to attach
importance to their action. Trial and error type
of problem-solving, also called ‘exponential
learning’, is often used in social contexts. It is
supported by prior formal analysis. Structured
and object-oriented systems ontology does not
recognize such social contexts and problem-
solving strategies.

Problem-solving cannot be de-contextualized
from politics. Project managers, analysts, pro-
grammers and users’ roles depicted in structured
systems ontology are simplistic. Stakeholder
research in organizational initiatives and inno-
vations reveals political factors in IS develop-
ment. Stakeholders are individuals or groups
who have a particular interest in what happens
in the organization. Structured and object-

oriented systems ontology do not explicitly
recognize stakeholder politics in IS develop-
ment. Critical theory assumes politics and con-
flict in systems ontology, but it is not recognized
in dominant problem-solving strategies used in
practice.

When the above issues are factored into IS
development, objective problem-solving or
planned action becomes problematical in prac-
tice. Structured and object-oriented systems
ontology make assumptions about organization
and people that need to be critically evaluated.
In structured systems ontology terminology,
‘users’ are involved so that systems analysts can
establish knowledge about the ‘problem
domain’. Users are needed to define clear and
objective goals for a new IS. They assume that
a clear communication channel is open between
users and IS developers. Assumptions on
users capability to be objective, have complete
knowledge of their situations, and be able to
articulate it are not tested.

Structured and object-oriented systems
ontology assume that users know and can
communicate details of the business problem.
In structured systems ontology, users are en-
couraged to take an active interest in changing
the current system and are assumed to be open
to change. They are also assumed to be accessi-
ble and available to systems analysts for inter-
views and discussions on developed systems
models. Peoples’ interest, resistance or fear is
not explicitly considered in structured or object-
oriented systems modelling.

3.9.5 Information Systems and the
application domain

System ontological knowledge lacks both under-
standing and formal knowledge on how to deal
with complex application domains. Analysts
need personal constructs and techniques to
understand the application domain. Such

86

Part II IS, projects and application domains..

knowledge will supplement analysts’ technical
knowledge, design relevant IS, and devise
effective instruments.

A system-centric perspective on systems
analysis and design fails to acknowledge organ-
ization and people – the application domain.
Its systems ontology focuses on the ‘system’ to
be developed, rather than the human, social,
political and organizational factors. Con-
sequently, its instruments are designed to
model systemic knowledge only. Structured
and object-oriented systems ontology are both
system-centric because prescribed instruments
focus on the functionality of a new IS.

Analysts need to consider personal con-
structs to account for socially constructed real-
ities and evaluate whether structured and
object-oriented systems ontology are capable of
dealing with it. Structured and object-oriented
analyses define IS in systemic, technical terms.
They assumed that such definitions are not only
technically correct, but presume that they are
socially relevant. These assumptions are only
internally validated in systems ontology because
of the assumption of an objective reality.
Technical definitions based on an assumed
objective reality do not consider what an IS
means to people and organizations from a social
or individual perspective. There is no attempt
at externally validating correctness or relevance.

A technical definition is different from a
social perspective. Objective technical defini-
tions do not admit a socially constructed reality.
They do not allow that reality, or IS, can be
constructed subjectively by people. In socially
constructed realities, definitions of data, infor-
mation and knowledge depend on what people
make of them. Structured systems ontology
does not allow for subjective meaning in IS.
Object systems ontology implicitly is capable of
enabling subjectively constructed realities, but
methodologies like Coad’s object-oriented
method do not provide explicit instruments to

develop systems models of socially constructed
realities.

The systems ontology for both structured and
object-oriented analyses does not sufficiently
account for the multifarious application domain.
Its assumptions need to be analytically evaluated.
The term ‘problem domain’ itself indicates a sys-
tem-centric perspective of IS. It is the label to
describe individuals, groups, human collabora-
tion and communication, and information, orga-
nizational knowledge, and much more, where
IT is to be applied. A system-centric perspective
neglects the relation between the computer-
based IS and the human organization. Many of
the limitations and problems with structured
systems ontology arise because the rich applica-
tion domain is not sufficiently reflected in the
available systems analysis instruments.

The application domain is composed of
many factors that make it difficult for analysts
to deploy systemic instruments. Table 3.2 shows
some of the constituents of the application
domain. Each of these factors, and others, pose
problems for system-centric analysis and design.

Understanding the relationship between a
new IS and its environment is critical for its suc-
cessful development. It is more critical for IS
usage. The complex application domain
depicted in Table 3.2 is not adequately factored
into systems project management, the software
development process, the project plan and its
execution or the type of system required.
Analysts should conduct an analytical assess-
ment of why IS may lack relevance for ‘users’
in terms of systems ontology and its application
in real situations.

People in organizations work and communi-
cate with each other in a social context, in
which information is exchanged to enable organ-
izational tasks to be completed. Politics, power
and informal dealings are characteristic of
the work and communication. These factors
are not accounted for in structured and

111

0

11

0111

0

0

11p

87

..Chapter 3 Systems analysis and design in concept and action

objected-oriented systems ontology. Power, pol-
itics and informal dealings are not considered
in the planning phase of systems project man-
agement, which assumes a sanitized problem
domain. The application domain is composed
of stakeholders who have an interest in a new
IS. They range from high-ranking senior

managers to departmental managers whose
processes are affected by a new IS development.

An analyst is also a constituent of the appli-
cation domain. The premise of analysts’ ratio-
nal behaviour in objective systems ontology
becomes weaker when it is realized that systems
analysts’ have a powerful role relative to the role

88

Part II IS, projects and application domains..

Table 3.2 Constituents of the application domain

Constituents of the Description Effect on Information System
application domain

Individuals People in the organization Individuals use IS to complete
employed to work to achieve work tasks and organizational
business objectives. processes.

Groups People in the organization who Groups use IS to coordinate
work together to achieve business collaborative work and to
objectives. communicate information.

Business Individuals or groups who make Demands on IS for information
decision-making decisions concerning strategy or and knowledge to enable

resources. decision-making.

Business processes Sets of activities that combine IS transform, enable and
individuals, groups and IS designed support business processes.
to achieve business objectives.

Organization Individuals, groups, goals and There is a bi-directional
boundary within which business relationship between organization
processes are designed to achieve and IS. Organization affects
business objectives. types of IS and their functionality

and IS affect organization design.

Social context Social, cultural and political IS (system) is expected to
factors in the organization. The function in the social context.
human element of IS.

Business The postures and moves of rival New demands on information
competition firms to gain larger share of the and knowledge, and IT

market. support for business processes
and radical strategic change.

Stakeholders Individuals or groups with an Powerful stakeholders can
interest in a new IS development influence IS development. If
project. neglected they can reduce its

chances of success.

Systems analysts Individuals and groups who Analysts determine the scope
investigate all the above to design and functionality of IS.
IS that add value.

IT infrastructure Other IS that process data, Necessitate interfaces and
(computer systems, information and knowledge. interoperability with other IS.
internet)

of potential users in IS development based on
the SDLC and related methodologies. Their
power stems from their technical knowledge.
Potential users of IS are not capable of under-
standing technical knowledge and cannot enter
into a meaningful dialogue, perhaps arising
from conflict with analysts.

There is no attempt at formal modelling in
structured systems analysis of the application
domain as discussed above. It focuses on data
and processes. In object-oriented analysis, mod-
elling notation is available to model potential
users of a new IS. Use case models are devel-
oped to show potential users and their func-
tional interaction with the IS, but the social
depth of such modelling is superficial.

3.10 Personal Critical Framework
development

3.10.1 Personal constructs for systems

Activity A

Table 3.3 is a sample repertory grid for systems
ontology. Reproduce the grid on a spreadsheet
and add further columns and their polar oppo-
sites that you consider relevant. To objectify
personal constructs in systems, complete the

grid by following the details on how to use a
repertory grid in section 1.10.1.

3.10.2 Planned and situated action

Questions

1 Discuss whether the SDLC can be charac-
terized as planned action.

2 Evaluate the value that the situated action
concept can add to systems analysis and
design.

3.10.3 IS development

Questions

1 Appraise the role of standards in IS devel-
opment. What practical relevance do stan-
dards have, as provided in SSADM for
example?

2 Critically discuss whether adding ‘structure’
to the IS development process bridges the
knowledge and communications gap between
analysts and users.

3 Select a methodology and critically evaluate
its future enhancement strategy – how it can
be adapted for future needs. Do systems
models based on the methodology provide
for flexibility once implemented?

111

0

11

0111

0

0

11p

89

Table 3.3 Personal constructs for systems

Pole 1 Method Technique Tools Methodology Problem Problem- Pole 2
domain solving

Formal Informal

Boundary No boundary

Control No control

Structure Unstructured

Problem Solution

Practical Unpractical

..Chapter 3 Systems analysis and design in concept and action

Activity A

• Consider the systems ontology and real
world of human problems components of the
Critical Framework.

• Identify an IS familiar to you and examine
its systems ontology.

• Describe the actual situation in which it is
used. What aspects of the actual situation are
not reflected in the systems ontology?

• How is the effectiveness of the system
affected by lacking factors you identified in
the actual situation?

3.10.4 Conceptual basis of systems
analysis and design

Questions

1 Discuss whether the assertion that structured
techniques tend to lack context is valid.
Detail reasons why you think they are preva-
lent in practice.

2 Evaluate the relevance for practitioners of
alternative methodologies, for example
ETHICS, that cater for the social context
of IS.

3 Appraise the relevance of the concept of
‘structure’ in SSADM and ‘object’ in Coad’s
object-oriented methodology for real human
problem situations.

Activity A

Work with your peers to compare the tradi-
tional, structured and object-orientation con-
cepts for IS development. Discuss which
approach you would include in your PCF.
What assumptions of organization, people, and
IS developers, including analysts, does the
approach you select make?

3.10.5 Systems ontology

Question

You may want to read Chapter 9. Compare
structured system and object-oriented tech-
niques and tools and analyse how they:

• characterize the problem domain;
• differ on what they consider of interest in the

problem domain;
• apply, effectively, the techniques;
• explain which set of techniques you would

use.

Activity A

Structured systems ontology. In structured
systems analysis and design the problem
domain is assumed to be composed of business
transactions data, dataflows, relations between
data, and processes. These form the basic units
of analysis. Either individually or in groups:

• Select a system that is familiar to you – a
student records system or a mobile-phone
billing system.

• Make a list of factors in the application
domain of the system you have chosen that
would not be accounted for by structured
systems ontology.

• In developing systems models how would
you cater for these factors?

Activity B

Object-oriented systems ontology. In object-
oriented systems analysis and design, an ana-
lyst’s task is to identify relevant objects, patterns,
responsibilities and scenarios for a new IS.
Objects can be transactions data, things and
people for which data needs to be processed.
Individually or in groups:

90

Part II IS, projects and application domains..

• Select a system that is familiar to you – a
bank personal current account system or
online shopping system.

• Make a list of factors in the application
domain of the system that would not be
accounted for by object-oriented analysis.

• How would you account for these factors in
a class systems model?

3.10.6 Notation languages

For this sub-section you may want to refer to
Chapters 7, 8 and 9.

Questions

1 Detail three critical flaws that you think exist
in a structured notation language of your
choice. How would you overcome these
when developing systems models?

2 Detail three critical flaws that you think exist
in an object-oriented notation language of
your choice. How would you overcome these
when developing systems models?

Activity A

Choose either an object-oriented or structured
notation language you would use to conduct
systems analysis. How did you decide which
notation language to use? Make a list with two
columns, one for aspects of the notation lan-
guage that are sufficient for describing the
problem domain and the other for aspects of
the problem domain that the notation language
does not cater. Identify and discuss the assump-
tions of the notation language in terms of its
systems ontology.

Activity B

Individually or in groups, choose a structured or
object-oriented notation language (you may use
the selection from Activity A). Discuss among

yourselves whether the notation language is suf-
ficient to describe a problem domain. Make a
list of its limitations and discuss how you would
overcome them in practice.

Activity C

Notation languages are problem-solving devices.
How important is it to enable refinement of the
notation language for effective systems analysis
and design? Individually or in groups, choose a
structured or object-oriented notation language
(you may use the selection from Activity A) and
recommend at least three refinements to make it
more effective in practice.

3.10.7 IS methodologies

Questions

Choose one or more from the selection below
and discuss:

1 JSD is oriented towards software systems and
not organization and people.

2 The author of JSD regards systems analysis
and design as an extension of JSP.

3 JSD is highly structured which means that
organization and people issues are not con-
sidered.

4 JSD does not consider project selection, cost
justification, requirements analysis, project
management, user interface and procedure
design or user participation.

Activity A

Choose a methodology to include in your PCF.
Make a list with two columns, one for aspects
of the methodology that are sufficient for devel-
oping an IS and the other for aspects of the
problem domain that the methodology does not
cater. Discuss the systems ontology it assumes.

111

0

11

0111

0

0

11p

91

..Chapter 3 Systems analysis and design in concept and action

Activity B

A methodology may be regarded as a tool for
gathering knowledge for IS development.
Methodologies like JSD and Coad’s object-
oriented methodology assume objective know-

ledge. In groups, choose one methodology and
discuss how it develops knowledge about IS and
the problem domain that analysts can use to
develop systems models. Discuss whether it is
necessary to make the distinction between
objective and subjective system knowledge.

92

Part II IS, projects and application domains..

3.10.9 Further reading

For seminal work of socio-technical approaches to Information System development see:
Mumford, E. (1983) Designing Human Information Computer Systems for New Technology, The ETHICS

Method, Manchester: Manchester Business School.

A revised and updated edition is: Mumford, E. (1993) ‘The Participation of User in IS Design:
an Account of the Origin, Evolution, and Use of the ETHICS Method’, in Douglas, S. and
Namoka, A. (eds) Participatory Design, Principles and Practice, London: Lawrence Erlbaum Associates,
pp. 257–270.

Eva, M. (1994) SSADM Version 4: a User’s Guide (2nd edn), London: MacGrawHill.

For the original work on combining Soft System Methodology and the SDLC to account for the
application domain see: Wood-Harper, A. T. and Avison, D. E. (1990) Multiview: an Exploration in

Information System Development, Oxford: Blackwell Scientific.

3.10.8 Internet sources

Details of the object-oriented CASE tool Rational Rose can be found at http://www.
rational.com.

Search the web for CASE tools for structured and object-oriented analyses. Choose CASE tools
for systems analysis and justify your choice in terms of IS development, systems ontology, problem-
solving and fit with methodologies. The Oracle site at http://www.oracle.com is a good source
for information on CASE tools.

4.2 Introduction

Systems project management is the systematic
management of a process of technological and
organizational change. It is central in IS devel-
opment because it brings together the people,
process and technology required for IS devel-

opment. A system project has predetermined
objectives, limited monetary budget, finite
human resources and predetermined comple-
tion date. Consequently, project managers
require broad knowledge in project manage-
ment techniques and tools, the psychology of
teams and organizational change management.

111

0

11

0111

0

0

11p

93

Chapter 4

Systems project management

4.1 Learning outcomes

After completing this chapter you should be able to:

• Explain the key elements of a system project and the ways in which projects can be
organized to relate to business objectives and strategy.

• Evaluate and select appropriate systems project management techniques for each
phase of a project, justify their appropriateness, and apply them to practical
situations.

• Evaluate and critique the limitations of traditional systems project management in
the context of modern business organization and emerging approaches to IS
development.

• Critique the major assumptions of systems project management and explain (a) why
they may be inappropriate in the context of IS development and (b) how the state-of-
the-art might be improved.

• Formulate a business case for a new IS development project.

These learning outcomes will provide knowledge of systems project management and
enable you to be critical of system projects and project management. Practitioners develop
an IS as systems project management in business contexts, in which systems analysis,
design and systems analysts have a significant role.

This chapter will cover the phases and basic
techniques of project management. It will
present knowledge of project management and
discuss the issues and challenges that project
managers encounter in practice. The manage-
ment aspect covers planning, monitoring and
controlling the process of software develop-
ment. An understanding of traditional systems
project management provides basic knowledge
of the phases of project management. Whether
projects should form the foundation of IS devel-
opment will be critically considered in terms of
the Critical Framework. Assumptions on plan-
ning that underpin systems project manage-
ment will be critically considered to contribute
to PCF development.

4.3 IS development project

A business project is a programme of business
or organizational change management. It is a
device used to innovate a product or service, or
make significant change to organizational struc-
ture and processes. A project is used to organ-
ize and coordinate human effort to achieve
specific objectives that the business thinks will
result in a superior product or service to com-
pete with other firms. The innovation and intro-
duction of a new product to the market, the
merger of two companies and restructuring a
company are examples of business projects.
Businesses often need to change strategic direc-
tion or operational organization, usually in
response to markets or competitors. This in-
volves large expenditure of time and human and
monetary resources that need to be managed
efficiently to ensure successful completion.

A system project encompasses the conceptu-
alization, analysis, design, implementation and
delivery of an IS. It assumes an objective reality
and rational human behaviour. An IS is nor-
mally developed as a business-cum-software
development project, drawing on business

project management knowledge. Software
developers use the business project concept, its
techniques and tools, to develop IS because the
process of developing software can be disci-
plined and standardized. System projects
provide the discipline required to conceive and
manage IS development within financial and
temporal limits, and usually as part of a business
change programme.

A system project is used to define and man-
age business and organizational change involv-
ing IT and IS. A system project has specific
objectives that define the required system out-
come. A timescale is determined in which the
specific objectives need to be completed, this is
known as the start date and end date of the pro-
ject. Project managers, systems analysts and pro-
grammer resources are allocated to make the
planned change happen. The elements and
characteristics of a system project are:

• Setting of specific objectives to define a
project.

• A specific timescale that defines start date
and end date for a project.

• Specific and finite resources allocated to
achieve project objectives.

• No significant prior experience of similar
projects.

• Management of allocated resources to
achieve project objectives.

A system project enables a business through dis-
ciplined management to complete major orga-
nizational change programmes involving IT
and development of IS within allocated time
and resource constraints. System projects are
used to plan, monitor and control systematically
the activities of analysts, programmers and
others involved. Time and monetary resource
constraints, including human resources, can be
organized better and managed as a system
project. System projects can be small with one

94

Part II IS, projects and application domains..

to two people and lasting less than one person
year, medium with four to ten people and
lasting one to twenty person years, anything
more than that is a large system project.

As a significant element of an IS is software,
its quality determines the efficiency and effec-
tiveness of the delivered IS. System projects are
used to meet and improve quality standards.
Software needs to be of a certain standard to
ensure it is fit for purpose and meets the
requirements of its users. Standards are nor-
mally set by formal bodies to ensure superior
quality is achieved. Examples of standards and
standards bodies for software development
are Constructive Cost Model (CoCoMo),
Capability Maturity Model (CMM) and
SPICE. These standards are designed to
improve the software development process and
consequently the resultant software system.

Systems project managers need sophisticated
technical and management skills. Software
development skills need to be complemented
with knowledge and the skilful practice of
project management. They need to put into
practice interpersonal and communication skills
in the context of organization, organization
culture, stakeholders and politics to realize
project objectives successfully. Systems project
managers are required to produce systematic
and detailed plans of how software will be pro-
duced. They are responsible for monitoring
the successful completion of planned activities,
and taking appropriate action to control any
deviances from the project plan. These are
management activities in the project and con-
stitute a significant part of project managers’
work involving the allocation of financial and
human resources.

4.3.1 Plans and projects

In systems project management, planning is the
formal basis for decision-making, organizing

and allocating resources. The resources used in
IS development are systematically planned and
allocated to predetermined tasks or work pack-
ages designed to achieve project objectives.
Techniques are available to plan the work to be
done, estimate and schedule budgets and work,
monitor and control the work in progress, assess
and manage risk and ensure quality standards
are met.

Objective systems ontology, for example the
SDLC and SSADM, has a natural synergy with
projects and rational planning. The phases of
the SDLC or SSADM are executed within the
bounds of a project’s time and resources limi-
tations. Project management techniques and
tools enable actual planning of tasks to deter-
mine software requirements and development.
Start-to-end or end-to-end work planning
techniques are used to organize and manage
available resources.

4.4 The business case

Monetary investment in IT and IS is determined
on the basis of the value it will add to a company.
A proposal for a new IS is normally assessed as a
business case, focusing on its contribution to
achieving business strategy and objectives.
Senior management are interested in determin-
ing benefits of investing. Some considerations
include reducing operating costs, improving
quality of goods or services, better customer
relationship management and improving in-
formation and knowledge for operational and
decision-making purposes. These considerations
and others are shown in Table 4.1.

In the SDLC a business case for an IS is made
in the feasibility phase. Analysts are involved in
identifying and selecting IS to develop. They
have a significant role in formulating a business
case and work with project managers to identify
business areas that would benefit from the
application of IT. They determine strategies

111

0

11

0111

0

0

11p

95

..Chapter 4 Systems project management

and frameworks for identifying candidate sys-
tem projects and evaluate them by selecting
appropriate techniques.

4.4.1 Types of Information Systems

The type of system project is determined by the
type of IS to be developed. Analysts work on
different types of IS development projects. The
types are based on what they contribute to
improvements in managerial decisions, automa-
tion of operations and procedures, or definition
of new business models. The types in business
organizations include:

• eCommerce systems;
• Knowledge Management systems;
• Enterprise Resource Planning systems;
• Supply Chain Management systems;
• Customer Relationship Management systems.
• Decisions Support systems (including Execu-

tive IS);
• Accounting and Financial Management

systems;
• Expert systems.

Analysts involvement in formulating a busi-
ness case will normally depend on particular
types of IS. They may work alone or in groups

to make a business case for decision support
systems or functional accounting systems. They
would normally work with managers and senior
executives to make a business case for customer
relationship management systems or knowledge
management systems.

eCommerce systems require a special busi-
ness case, which is normally supported with a
business model. Business analysts, executives
and analysts work together to define a business
model, often radically different from existing
operations and business processes. Business ana-
lysts contribute knowledge of business and oper-
ational issues and systems analysts contribute
knowledge of IT to the business modelling
process.

4.5 Project management

Project management is the planning and organ-
ization of resources to achieve project objec-
tives. A typical system project requires the
management of scope, timescales and resources.
They are related because an increase in work –
scope – necessitates more resources and time.
Project managers plan and organize resources
and work into distinct phases. Each phase makes
a particular contribution to the completion
of a project.

96

Part II IS, projects and application domains..

Table 4.1 Drivers for IT/IS investment

Reasons for IT/IS investment

Reduce operating costs

Improve operational efficiency and productivity

Modernize or innovate operations

Improve competitiveness

Provide superior quality information for operational and executive decision making

Introduce a new business model, for example the internet and eCommerce

Improve knowledge management

4.5.1 Prime project roles and
responsibilities

A project has roles and responsibilities, exam-
ples are shown in Table 4.2. A project manager
is responsible for all the resources available to
the project, including human and financial
resources, and works closely with senior systems
analysts and senior systems designers to deter-
mine allocation of budget, systems analysts,
designers and software programmers.

The role of users and stakeholders is signifi-
cant because it affects the success of a new IS.
They are not responsible for determining
system requirements, but for analysts they are
the prime source for gathering system require-
ments. Their representatives on a system
project form part of the user groups that work
closely with the project manager and analysts.

Project managers need a variety of skills. The
ability to plan, monitor and control a project
are basic necessary skills. Beyond basic skills, a
project manager needs to be aware of the
context of the project and how people and

events in it affect the project. For example, a
contextual factor like additional system require-
ments will have an impact on the available
resources. A skilled project manager develops
an awareness of how the context affects a
project and is capable of negotiating and
managing resources accordingly.

Additional skills are required dependent on
the uniqueness or originality of the project, its
size, complexity and how it relates to the busi-
ness and the market in which the business oper-
ates. An IS that has not been developed before
will necessarily be more difficult to develop
because it is not possible to rely on prior know-
ledge. A large IS compared with a small one
will be more difficult to develop because the
planned change will be more widespread, and
it will require the skilful management of greater
resources. The type of IS will determine how
complex it is to develop. IS that are integrated
into the business will require additional systems
design features. Each of these factors also has a
significant impact on whether a project is
regarded a success or a failure.

111

0

11

0111

0

0

11p

97

Table 4.2 System project roles and responsibilities

Project role Responsibility

Sponsor or project champion The person or group who want the project to proceed. They
provide the project aims and objectives, and organize other
necessary organizational support.

Project manager The person or group responsible for managing the available
project resources.

Potential users and stakeholders People who will make use of the developed system. They will be
involved in determining what the system is required to do and in
testing modules of the system.

Senior systems analyst An experienced systems analyst who works closely with the
project manager to ensure the systems analysis work is completed
to the required quality standard.

Senior systems designer An experienced software designer who works closely with the
project manager and senior systems analyst to ensure that
systems designs are implemented.

..Chapter 4 Systems project management

4.5.2 Project stakeholders and
stakeholder analysis

A stakeholder is any person, group or organ-
ization, internal or external to the organization,
that has an interest in the IS to be developed.
Example stakeholders are the project sponsor,
banks providing capital, suppliers and contract
organizations, the client organization, analysis
and design groups and individuals.

Obvious stakeholders can be identified rela-
tively easily depending on the type of IS to be
developed. A project sponsor or groups whose
work will be affected by the system are obvious
stakeholders. For more complex IS other stake-
holders may not be so obvious. A project man-
ager needs to conduct careful and detailed stake-
holder analysis to ensure success. Stakeholder
analysis is particularly significant for projects that
are important for achieving business strategy
and objectives. It involves the identification of
stakeholders and stakeholder mapping.

To identify stakeholders, who may be criti-
cal for the success of a project, a project
manager needs to conduct a formal stakeholder
analysis. It will reveal the relative importance,
influence, power and impact of stakeholders.
This will involve examining values, beliefs and
assumptions held by various stakeholders and
how they attempt to influence each other to
determine project outcomes.

Formal matrices for stakeholder analysis are
available. Some of these metrics measure vari-
ables such as the power, predictability or inter-
est of stakeholders. A project manager would use
the metrics to understand key stakeholders and
assess their importance for the success of a pro-
ject. This can help project managers to deter-
mine what management approach to deploy and
decide where to focus political effort.

People whose work will be affected by a new
IS will be interested in knowing how their jobs
will change. They may be fearful that a new IS

will make their jobs redundant or that job role
may be made trivial or uninteresting. Managers
of departments or sections will be interested in
knowing how a new IS will help them achieve
departmental objectives. They will want to
know whether it will produce efficiency gains
and cost reductions.

A project manager and other IS developers
are also stakeholders. An unsuccessful project
will mar a project manager’s record, so project
managers will be interested in achieving suc-
cessful completion of a project. Software pro-
grammers will be interested in developing
working computer programs from given system
requirements.

Systems analysts themselves will be inter-
ested in developing relevant systems models
that meet the approval of managers and people
whose work will be affected. Analysts work with
different project stakeholders on various aspects
of a project. They work closely with managers
and people whose work will be affected by a
new IS to elicit requirements. They communi-
cate developed systems models to software
programmers.

4.5.3 Human factors and teams

Human factors in the project team are the
project manager, senior analysts, senior design-
ers, software programmers, systems analysts,
and systems designers and other technical and
managerial people. (For their roles and respon-
sibilities see section 4.5.1.) Human factors
include relationships with project sponsors and
champions and their psychological character-
istics. These aspects are important because
they determine how individuals work in a
project team and the effectiveness of teams.
Appropriate individual and group or social
psychological characteristics are important for
an effective team. Human factors encompass
leadership, motivation, and teams.

98

Part II IS, projects and application domains..

Leadership

A project manager’s role as manager and leader
is critical in determining success. A project
manager has to manage both the resources
available and lead a project team to achieve
project objectives. Management involves plan-
ning, monitoring and controlling of resources,
but leadership requires motivating and inspir-
ing team members to want to complete a
project successfully. The ability to influence
team members and stakeholders is a critical
skill. Combined with competence in manage-
ment, leadership ability and political skills are
factors that influence others to respect the
project manager and commit themselves to
success.

The action-centred leadership model and
the situational model of leadership are formal
models of leadership. The action-centred model
proposes that a leader’s effectiveness in a team
depends on three factors: the need to achieve
the task, the need for team maintenance, and
the individual needs of team members. Rather
than make the distinction between management
and leadership, the action-centred model
focuses on the interrelationships between the
three functions of task, team coherence, and
individual needs, and the project manager’s
ability to satisfy them.

The situational model of leadership focuses
on the tasks to be completed and relationships
to be formed and maintained. It is a behav-
ioural model that integrates well the manage-
ment and leadership behaviour of a project
manager. Task behaviour is concerned with
how well a project manager (the leader) is able
to set goals and define roles for team members,
and provide direction to individuals and groups.
Direction is critical for success. Relationship
behaviour is concerned with how well the
leader communicates, listens and provides
support for the team and individual members.

Encouraging individuals and the team is a
significant aspect of relationship behaviour. The
model defines four levels of individual and team
development based on the permutations of indi-
vidual team members’ competence and willing-
ness to complete tasks. These permutations
affect the kind of leadership styles that the
leader would need to deploy, spanning over the
parent, coach, developer and driver types of
management.

Motivation

Motivating individual team members and the
team is a significant issue in systems project
management. A project manager would norm-
ally be aware of motivational issues and attempt
to address deficiencies in individuals’ and team
motivation. An effective leader with effective
management skills will be aware of how to
recognize motivation levels and take action
to raise motivation.

Theories of motivation explain how willing
an individual or a group is to increase their
effort to take part in and complete a task. They
relate to organization and how they lead to
improve the performance of individuals and
groups. They focus on how such involvement
satisfies particular needs of individuals and
teams. A distinction is made between motives
and needs in the theories, both of which are
internal to an individual. An individual’s
motives affect their needs and the actions they
take to achieve them.

Theories of motivation explain the level of
motivation in terms of content, process or re-
inforcement. Maslow’s hierarchy of needs and
Hertzberg’s dual-factor theory are content the-
ories. They take the individual as the subject and
focus on the relationship between individual
needs and the reward individuals get for doing
work. Their basic premise is that individuals
generate needs that increase their motivation to

111

0

11

0111

0

0

11p

99

..Chapter 4 Systems project management

satisfy the needs. In system project terms, a pro-
ject manager then provides monetary or in-kind
rewards or offers challenging tasks that either
increase or decrease job satisfaction, which in
turn is a motivational factor.

Process theories are concerned with how the
process of motivation can be developed. It can
be based on either individual’s consideration of
equitable return for the effort they put into
work, or a consideration of the expected return
for effort put into work. Equity theories are
based on how individuals compare their work
and reward with others. The comparison of
work and the return they get determines their
level of motivation based on how equitable they
perceive the reward. In theoretical terms, indi-
viduals generate a ratio of work done and
reward received and compare this ratio with
others’ ratio. An equitable ratio will lead to job
satisfaction and increased motivation and an
inequitable ratio will lead to dissatisfaction and
demotivation.

The expectancy theory of work is based on
the premise that individuals make informed and
rational decisions about how much work effort
they should make. The decision to do work is
based on whether the individual possesses the
ability to do the task and whether the expected
effort will be noticed and rewarded or not.

While no single theory of motivation will
suffice there are likely to be elements of truth
in each one. A project manager can pick ele-
ments to design job roles, work and reward
structures that lead to increased motivation in
individual team members and the team.

Project team

Project teams consist of project managers,
systems analysts, business analysts, software
programmers, database administrators and
systems professionals, and representatives of
user groups. A system project is normally

regarded as work done in a team. Individual
members of a team need to be able to work with
each other and individually. Working in a team
requires interpersonal and communication
skills. An individual’s self perception is an
important aspect of team and project success.

There are various metrics that can be used
to assess the predisposition of an individual and
their ability to work in teams. A questionnaire
designed by Belbin is often used by project
managers to determine characteristics of indi-
vidual project members. It focuses on how an
individual would describe himself or herself in
team situations and provides a self-perception
inventory analysis sheet that records individual
self-perception in team situations. It also classi-
fies the types of individual who could be part of
a team according to the potential contributions.
These types are:

• coordinator (chair)
• shaper
• innovator (plant)
• monitor/evaluator
• resource investigator
• implementer (company worker)
• team worker
• completer/finisher
• specialist.

A project manager may not rely solely on such
an assessment, but it does help to provide one
measure to base decisions on whether to include
an individual in a project team.

4.5.4 Techniques and tools

A project manager relies on planning tech-
niques and tools to determine what work needs
to be done, when it should be done by and what
resources will be required to do it. They enable
a project manager to conduct an analysis of the
work to be done and an analysis of the nature

100

Part II IS, projects and application domains..

of the product that will result from a project.
Objectifying the work to be done and the
product are both critically important for
success. Some examples of project planning
techniques available to project managers are
listed in Table 4.3.

The tools to support the techniques include
software packages for project planning.
Software support tools are available for plan-
ning precedence networks and activity-on-
arrow networks, though the former are more
popular and widely available. Some project
planning tool examples are WBS Chart Pro for
planning work breakdown structure and PERT
Chart Expert.

4.5.5 Quality and risk management

Quality and risk management are necessary
and important. Rather than being discrete
project management activity, they are a con-
tinuous activity with overall responsibility

resting with a project manager. The standard
of IS developed and the process of software
development are incorporated in quality assur-
ance. Quality assurance can be based on one of
many approaches and frameworks available.

Quality may be regarded as an absolute or
relative measure in software system. Unlike cer-
tain consumer products, the quality of IS is dif-
ficult to define in absolute terms. A software
system is considered to be of quality if it con-
forms to client’s requirements. This measure of
quality is problematic because it assumes that
client requirements can be completely captured.
There are problems with establishing require-
ments that the conformance measure of quality
does not address. The concept of ‘client’ is vague
as various stakeholders within an organization
can be said to be clients too. The determination
of actual requirements is also difficult in practice
because clients often add new requirements.

The definition of quality is important
because the agreed measure will determine

111

0

11

0111

0

0

11p

101

Table 4.3 Project planning techniques

Technique Description

Work breakdown structure A project planning technique to define work packages required to
complete a project. Also known as the means necessary to achieve
project objectives.

Product breakdown structure A project planning technique to define the results of work done. Also
known as the results or ends.

Precedence networks Precedence networks are used to schedule work packages as
activities and resources. The technique is used to manage the limited
time available on a project.

Activity-on-arrow networks Activity-on-arrow networks can also be used to schedule work
packages. They depict the work packages in a different form to
precedence networks.

PERT Program evaluation and review technique (PERT) produces charts
that depict task, duration and dependency information. A network is
produced to show connecting nodes, lines and floats.

Gantt Chart Gantt Charts are a visual graphical form for depicting work
packages against a timescale. They show the sequence of the work
packages, important milestones and floats.

..Chapter 4 Systems project management

whether a project is deemed successful or not.
A project manager needs to be aware of differ-
ing measures. Quality defined in absolute terms,
such as executable software performance or
percentage downtime, will be easier to quantify
and measure. However, the subjective element
of IS is often a significant block in regarding it
as successful or as a quality product. Clients
may raise objections concerning the ‘quality of
information’ or lack of its timeliness. Such sub-
jective objections make it difficult to identify
and measure quality in IS.

There are approaches for improving the soft-
ware development process. Though CoCoMo
is a technique for estimating resources required
to complete work packages and cost estima-
tion, it may also be used to improve quality of
the software development process. CMM is
specifically designed to improve the software
process. The Software Engineering Institute
(SEI) at Carnegie Mellon University originated
the model with the aim of improving the soft-
ware process in organizations. It is shown in
Figure 4.2 section 4.6.1 with its five stages of
software process improvement.

Risk management

Risk is the gap between what is the expected
result of effort and the actual outcome in the
future. Undesirable events that may happen in
a system project which require action to be
taken to prevent them from happening. Risk
management is the management of such uncer-
tainty in a system project. It is effort spent to
avoid undesirable outcomes. Uncertainties need
to be identified and managed to mitigate their
impact on the successful completion of a project.
Risk management is associated with the idea of
contingency measures or planning for unfore-
seen or unpredictable events. Contingency plan-
ning is an integrated aspect of project planning
and is derived from the main planning effort.

Critically, work breakdown structure and
estimation can be used to identify and manage
high-risk parts of a system project. An example
of risk is unrealistic or poor estimation of
resources and time required to complete work
packages. The judgement on risk is based on
measurable quantities and the level of confi-
dence a project manager has of them. If confi-
dence is low then there is a high risk, if it is high
then there is low risk.

A risk management plan is drawn by identi-
fying risks, assessing their impact on the project
and its objectives, planning responses and
taking action to reduce the risk from occurring.
The identification of risk results in compiling a
risk register for the project that shows the cat-
egories of risks. The risk register contains all the
identified risks. The project objectives are com-
pared with identified risks in the risk register to
assess impact and deploy appropriate response.

A project manager needs to be able to judge
the likelihood of a particular risk occurring. It
is the ability to judge occurrence of risk and its
impact on project objectives that is important
in risk management. This assessment is then
used to draw the risk management plan that
contains the necessary action required to reduce
the impact of the risk on a project. The risk
management plan will contain action to either
avoid risk or mitigate risk. For some types of
risk, action can be taken to avoid it. For
example, a known shortage of programming
skills can be avoided by hiring the right people.
Other types of risk cannot be avoided, so action
is taken to mitigate its impact on the project
objectives. For example, a particular systems
analysis work package overrunning its allocated
time.

The actual assessment of risk can be based
on a basic scale, or more sophisticated and com-
prehensive methods. At a basic level the occur-
rence of risk may be assessed as simple
categories of ‘high’, ‘medium’ or ‘low’. The

102

Part II IS, projects and application domains..

consequent impact would be ‘small’, ‘moder-
ate’, or ‘large’. This kind of measure is subjec-
tive and open to wide interpretation. Detailed
metrics are more comprehensive and provide a
more objective measure, including probabilities.

4.5.6 Work and product breakdown
structures

A system project needs to be managed to ensure
efficient and effective use of limited available
resources. A project manager has to determine
system requirements and organize human
resources and work. The relation between dif-
ferent packages of work needs to be determined
and scheduled. This is achieved by using the
work breakdown and product breakdown
planning techniques.

Work and product breakdown structures are
analyses techniques to plan, monitor and
control work. Breakdown structures enable
detailed definition of necessary work to be done
and its management in well-defined packages.
In terms of resource allocation, breakdown
structures enable more accurate estimation of
resources required to complete work packages.

Work breakdown structure and product
breakdown structure are related in terms of
means–ends analysis. Work breakdown struc-
ture is an analysis of the work required or the
means, and product breakdown structure is an
analysis of the results or the ends. Work break-
down structure enables a project manager to
define what work needs to be done and deter-
mine how the required work packages are
related. Product breakdown structure enables a
project manager to determine what tangible
products will result from the work packages.

The relation between work packages result-
ing from work breakdown structure is termed
dependencies. Work packages can be logically
linked to determine whether a particular work
package is dependent on one or more other

work package. For example, during systems
analysis system requirements specification de-
pends on requirements determination and can-
not begin until requirements determination is
completed. When one activity can only begin
when another is completed a dependency exists.
There are various types of dependencies:

End-to-start exists when one activity cannot
begin until one or more other activities are
completed. For example, process modelling in
structured systems analysis cannot begin until
data modelling is completed.

End-to-end exists when one or more activi-
ties can overlap. For example, in object-oriented
systems analysis investigation of classes for
systems design, user interfaces for instance,
can begin before systems analysis is completed.
Start-to-start exists when one or more activities
can overlap. The same example for end-to-start
applies. Start-to-end completes the logical possi-
bilities but is rarely evident in practice.

Project networks

Work packages, dependencies and schedule of
time and work can be depicted graphically in
project networks. Two examples of project net-
works are precedence networks (also called
activity-on-node) and activity-on-arrow net-
works. Precedence networks are popular in soft-
ware tools for planning project networks. They
are also simpler than activity-on-arrow net-
works. An example precedence network is
shown in Figure 4.1.

The precedence network is an example of
requirements analysis. It shows interviews, doc-
ument analysis, and current IS analysis. It also
shows the development of mock-up user inter-
faces to help ‘users’ visualize the envisaged IS.
Analysts would show the prototypes to users
and record comments they make. These would
then be used when consolidating the gathered
requirements before writing the requirements

111

0

11

0111

0

0

11p

103

..Chapter 4 Systems project management

report. The precedence network shows several
important elements for drawing a project net-
work. These elements are listed and described
in Table 4.4.

4.5.7 Estimation and schedules

A pragmatic management activity is to estimate
the time and resources and to schedule the
work required to meet project objectives. A
project manager uses the time and resource esti-
mates and work schedules to plan the project
activities using project networks. Estimation is
used to derive resource and time parameters
for the project, often called ‘baseline’ estimates.
These estimates are useful for developing
work breakdown structure, ensuring quality

standards, monitoring and controlling a project.
Estimation is done using generic human-based
or non-human techniques or techniques that
have been developed specially for systems
project management.

The Delphi method for estimation is based
on human judgement. It is composed of expert
humans in their particular sub-fields like project
management, systems analysis, or programming
who are brought together to form a panel.
Panellists need to be open to sharing their
experiences and willing to reach a consensus of
opinion. A project manager would set the
agenda to avoid a particular panellist, someone
with higher status or more success, from dom-
inating the proceedings. The panellists go
through various rounds making judgements on

104

Part II IS, projects and application domains..

Conduct interviews Develop prototype
user interfaces

Examine document

Examine current IS

Compile
requirements report

1

2 2

1 5 5

33

5

88

5

1

4

2

5

8 9

9 9

Earliest start time
(EST)

Latest start
time (LST)

Activity-on-node
(name and
duration)

00

1

0

0 3

2

2

3 1

Duration

Earliest finish
time (EFT)

Latest finish
time (LFT)

Float/slack

Figure 4.1 The precedence network

particular project objectives and resources
required to complete them. They would make
written responses to such issues. These responses
would then be used for making actual estima-
tion decisions.

Other estimation techniques based on human
judgement include: the analogy method, analysis
effort method, programming method, and direct
estimation. The analogy method is used when
the experiences of a previous similar project
are available to a project manager or organiza-
tion. The previous project is used as an analogy
for current project to determine estimates of
required time and resources.

Non-human estimation techniques are gener-
ally called estimation models. They involve
meticulous calculation using statistical tech-
niques. CoCoMo and Function Point Analysis

are examples of estimation models. In Function
Point Analysis the aim is to measure the size of a
computer program based on the number and
complexity of inputs, outputs, queries, files and
program interfaces. The number and complex-
ity of each component of the system is recorded
on a predefined worksheet, these are then used
to calculate the Total Unadjusted Function
Points (TUFP). Data entry screens, reports or
databases are examples of a component. A pro-
ject manager makes a subjective assessment of
the complexity of each of these components.
The TUFP is then assessed according to 14
factors that have an impact on complexity to
determine the Adjusted Project Complexity
(PCA). Examples of these factors are reusability,
data communications and end-user efficiency.
The TUFP value is then multiplied by the PCA

111

0

11

0111

0

0

11p

105

Table 4.4 Elements of a precedence network

Element Description

Activities An activity is a work package derived from analysis of work breakdown.
In systems analysis, examples are user case analysis or user interface
design.

Earliest start time (EST) This the earliest time that a particular activity can begin. For example,
user interface design may begin before other systems analysis tasks are
completed.

Duration (D) This is the time duration of a particular scheduled activity.

Earliest finish time (EFT) This is the earliest time that a particular activity can finish. For
example, physical database design cannot finish until requirements
specification is complete.

Latest start time (LST) This is the latest time that a particular activity can start. For example,
examining current IS can be delayed but must finish before the next
activity on the critical path.

Float/slack (F) This is the spare time available before a particular activity must start.
Often this time is useful when an activity overruns.

Latest finish time (LFT) This is the latest time that a particular activity must finish. For
example, in structured analysis the feasibility study must finish before
systems analysis can begin, or testing must finish before compiling the
final report.

Critical path The set of activities that has the longest time path is the critical path.
The activities on the critical path must all be completed on time for a
project to be successfully completed.

..Chapter 4 Systems project management

value to arrive at the Total Adjusted Function
Points (TAFP).

In the CoCoMo estimation model the aim is
to measure the effort required to complete
project objectives by converting the lines-of-
code effort into a person–month estimate.
Measuring effort requires knowledge of the size
of the project and the software production rates
of project staff. The formula to calculate the
person–month effort is:

Effort (in person–month) = 1.4 * thousands of lines
of code

For example, for a project with 20,000 lines of
code the project would take 28 person–months
to complete. This kind of simple model in
practice will be complicated by other factors
like the complexity of the algorithms, experi-
ences of programmers and the type of software
being developed. Source lines of codes can be
replaced with function points at this stage.

The complexity of the software and experi-
ence of the programmers are examples of con-
tingency that need to be incorporated in project
plans. The actual complexity of software may
be more than its estimated complexity. A pro-
ject manager needs to think ahead and ensure
that appropriately qualified and experienced
development staff is included in the project.

4.5.8 Checking progress

Once a project begins, its actual management
requires monitoring and controlling the project
plan, with its associated work and product
breakdown, estimates and schedules. A project
manager has to check progress and make
adjustments to time and work allocation where
required. The project plan when implemented
will require adjustments and actual resource
and time allocations to be revised.

There are various techniques for checking
progress and taking action. Project evaluation
techniques focus on gathering quantitative data
to monitor progress and are categorized in
terms of backward-looking and forward-look-
ing. They provide quantitative data to compare
with baselines estimates. Backward-looking is a
comparison of forecast or baseline costs with
actual costs incurred. This focus on costs alone
fails to measure how much work is actually com-
pleted. Forward-looking monitoring overcomes
this problem by measuring both costs and the
work done. This requires determining budgeted
cost of work scheduled (BCWS), actual cost of
work performed (ACWP) and budgeted cost
of work performed (BCWP). These quantities
enable comparison of scheduled cost of work
with actual cost of work or other combinations
to determine variances.

A project manager combines monitoring
with control to ensure the attainment of project
objectives. Monitoring provides information on
variances from the project plan and control is
used to take action to ensure the project plan is
successful. Project managers have a choice of
action they may take to check variances, which
includes aborting if the project looses credibil-
ity with the sponsor and influential stakehold-
ers. The other actions used in practice include
reallocating resources to recover the project or
compromise cost and time. If some project
objectives can be jettisoned without compro-
mising main required system functionality then
the scope is redefined. There may be situations
where taking no action is viable, where the
actual cost or work variance has no significant
impact on other activities.

4.6 Planned action

Planning is a significant activity in project man-
agement. Planning activities in the previous

106

Part II IS, projects and application domains..

section and the consequent action required to
implement it is characterized here as as planned
action. This kind of planned action is reflected in
many project management methods. PRINCE
is one example. Planned action is crystallized in
the CMM.

4.6.1 Capability Maturity Model for
software

CMM is a process or process-centric model of
software development, illustrated in Figure 4.2.
It was conceived to improve the production of
software through carefully planned activities
with well-defined inputs and outputs. It is a

process method of systems project management
that is defined, managed and repeatable.

CMM depicts software development as a
planned process which can be progressively
improved. The various improved processes are
defined as levels of development of the software
process. Software houses and organizations may
seek accreditation from CMM and be classified
according to the level their particular process
has reached. The process levels are:

• continuously improving process;
• predictable process;
• standard consistent process;
• disciplined process.

111

0

11

0111

0

0

11p

107

Initial

Defined

Managed

Optimizing

Disciplined
process

Planning
control

Standard consistent
process

Predictable process

Continuously improving
process

Repeatable

Ad hoc,
sporadic

Consistent

Defined process,
objective metrics

Focus on
quality

Figure 4.2 Capability Maturity Model for software

..Chapter 4 Systems project management

The lowest process is the disciplined process
and the highest is the continuously improving
process. These processes are associated with a
particular hierarchy of stages or levels.

Initial level is where an organization has
no clear and objective process and no effort is
made to have precise work schedules and
costing. The process is ad-hoc and even spo-
radic.

Repeatable level is reached when the
organization has a disciplined process. The
process is characterized as having management
control, planned work schedules and costing,
and careful control of changes.

Defined level is reached when the software
process forms the basis for developing IS. The
software process is defined and consistently
implemented.

Managed level is reached when the
defined process is improved by adding process
metrics to measure the quality of the process.
Systems project management is conducted on
the basis of identified process elements and their
careful analyses to inform decisions that lead to
improving the quality of both the product and
the process.

Optimizing level is reached when the
process is developed to continuously improve
and optimums are continuously sought. The
optimum process is characterized with innova-
tion in the software development process that
leads to improvements in quality and produc-
tivity.

Planning is a critical feature in CMM and
the highest optimizing level requires meticulous
planning. CMM is important for systems
project management because it sets a standard
for others. In practice though, few organizations
seek CMM accreditation because of the strin-
gent process improvements required. Though
the impact of CMM on systems project man-
agement is significant, its actual implementation
by organizations is sparse.

4.7 Systems analysis and design

Significant components of a system project are
systems analysis and systems design. They are
work packages in terms of work breakdown
and product breakdown structures. A project
manager, senior analysts and designers, would
need to describe them in detail for analysts and
designers. Analysis and design activities and
outcomes are identified in the work breakdown
structure and product breakdown structure. As
systems models produced by analysts form the
basis for software programming and imple-
mentation work packages, dependencies would
need to be carefully plotted on project networks.

Senior systems analysts and systems design-
ers each manage a team of systems analysts and
designers. The senior systems analyst organizes
the team to conduct interviews with stakehold-
ers and employees, analyse relevant business
documents, and shadow relevant people. These
activities are to gather information on the func-
tions required of a new IS. The senior systems
designer and the design team use the system
requirements to produce systems designs and a
system specification.

Structured systems analysis and design com-
plements systems project management. It is
used to manage effectively the software process
by identifying roles, work and modelling tech-
niques to construct systems models. Systems
project management is similarly structured, as
reflected in planning techniques and activities.

4.8 Project management and the
Critical Framework

The Critical Framework provides a critical
orientation for considering the role of systems
project management in IS development and the
role of systems analysis and design within system
projects. It can be the basis of reasoned under-
standing of the uses and limits of established
systems project management knowledge and the

108

Part II IS, projects and application domains..

need to keep an open perspective on practice.
There are various theories underpinning prac-
tice in systems project management, some are
conflicting. Practitioners need to focus on the
pragmatic resolution of problems that arise in
the situation while benefiting from theoretical
knowledge.

Figure 4.3 is the Critical Framework popu-
lated with critical reflection on systems pro-
ject management and the practice of systems
analysis and design within it. As the bottom
layer shows, many questions concerning the
four themes of criticality arise from the assump-
tion of planned action, rational human behav-
iour and stable system project environment.

A critical analysis of the role and assumptions
of systems project management will contribute
to improving a PCF. Further enhancement
of a PCF will result from a critical consideration
of alternative conceptions of IS projects, tech-
niques and measures of success. Overall, critical
reflection will enable practice to be improved by
considering how alternatives can be used and
how they can be enhanced.

4.8.1 Introduction

The conceptual basis of systems project man-
agement and its instruments need to be analyt-
ically evaluated because the underpinning
philosophical and conceptual thinking poses
practical difficulties. Developing an IS using the
SDLC within a project assumes formalism, an
objective epistemology and rationalism. These
lead to the expectation that:

1 System requirements for a new IS can be
established (predicted and remain constant).

2 Formalism and formal instruments can be
used to frame and solve an IS problem.

3 Project plans can be developed and effectively
implemented.

These assumptions underpin systems project
formalism. Systems project management in turn

assume that universalistic principles operate,
and that attainment of an ‘optimal’ is possible
in every case, for example, as in CMM. The
assumption that universalistic principles can be
applied in all cases is based on the objectivist
epistemology, which in turn leads to standard-
ization and transfer of knowledge. Combined
with rationalism and economics, it is assumed
that economies of scale and specialization are
possible.

Systems project management is based on the
discipline of project management reflected in
planned or projected activities, but there are
differences between the two that a project
manager needs to appreciate. The differences
concern the nature of software and IS develop-
ment. Unlike a physical product or other busi-
ness project, the development of social software
– for human informational and knowledge
use – does not succumb to planned action.

An allied problem is the conceptualization
of IS development as a distinct project rather
than a business operational activity. This is a
significant problem since the flow of informa-
tion is part and parcel of organized activity. Its
separation into a systems development project
assumes that organized activity will be stable
during the development process. Actual prac-
tice is quite different, where change is the norm.
Such change affects project scope and estim-
ates, which need to be revised to reflect actual
conditions.

Managing risk requires understanding the
parameters of risk, namely constraints and un-
certainty in a project. Constraints may include
human resources or time limits. Uncertainty
can arise internally in the organization and
project or externally from competitors or mar-
ket forces. A prime problem in managing risk
is the assumption that constraints and uncer-
tainty can be identified and understood to
enable risk management. The available tech-
niques for risk management seem plausible, but
are arguably only guesstimates.

111

0

11

0111

0

0

11p

109

..Chapter 4 Systems project management

110

Part II IS, projects and application domains..

Apply formal
methods

Real world of
human problems

(Messy world)

Information technology,
changing objectives,

‘creeping requirements’,
system project separated
from business operations,

stakeholders, conflict
estimation problems,
changing business
operations, failure

Systems
ontology

Project management

Business case,
planned software

development systems,
management,
set objectives,

plan,
monitor,
control,
critical
path,

time-boxing,
estimates,

work
packages/products

team,
stable system project,

environment

Pragmatic
resolution

???

Interpret formalisms in
practice

Develop knowledge

Determine a pragmatic
resolution to problems
with formal techniques

and tools

Resolve
problems

Transformation of
traditions reflexivity

Can rolling plans
contribute to better

project managment?
Why is a business

case needed?

Transformatory critique

Is a system project
necessary?

Can software
development activities be

planned?
Why is systems

development separated
from business
operations?

Critical skills

What can be learnt from
team-building?

Can users be part of the
project team?

Figure 4.3 Critical framework: systems project management

There is an operational barrier between
planning and the implementation of a plan.
Associated with this is the idea of allocating time
periods to planned activities or time boxing.
Planning itself is directed by business strategy
and can be the product of rational processes,
but the actual plan in practice is difficult to
implement as intended. The actual situation
often does not reflect the plan and timed
activities are often not realized as required.

4.8.2 Problems with rationalism and
planned action

The systems ontology component of the Critical
Framework in Figure 4.3 has the subtitle ‘pro-
ject management’. The basis of systems project
management is rational thinking. The rational
presumption is clear. A project is an entity that
has specific and clear objectives, a beginning,
duration and an end, and it is required to pro-
duce an explicit prescribed outcome. It is bro-
ken down into work packages that are known in
advance, predictable and assumed to be con-
trollable. It is assumed they can be contained
within available resources. The risks associated
with the project can be predicted, measured and
managed, and avoided or mitigated. Above all,
a project can be optimized.

IS development is normally regarded as a
special planned project. The basic premise of
the planning is that humans behave rationally
or economically. IS projects are selected ratio-
nally for development. The rational selection
assumes objectivity that is free of bias or preju-
dice and is normally based on financial methods
such as cost-benefit analysis.

IS development in actual situations does not
reflect planned action – the human problem
component.

A business case is made in terms of cost
savings, efficiency and production benefit. This
kind of justification though has proved to be dif-
ficult to measure and evaluate, as information

economists have found no specific correlation
between investment in IT and business gain.
The claims that the use of computers and IT is
integral to business are even more difficult to
quantify. Nevertheless IT and IS are significant
in modern organization.

Often organizational change programmes
are unique with no prior experience in an
organization to manage a project. An IS project
is unique in the sense that no exact same pre-
vious experience can be called upon. So even
experienced project managers have to be open
to learning. While they can draw on previous
experience of using project management tech-
niques, they will not have relevant experience
of the particular current project. Ironically, no
prior experience of similar projects reinforces
the need to plan to prevent costly mistakes.

Consideration of complexity, change and the
lack of requisite knowledge for the development
of effective plans raise the issue of the tension
between planned action and situated action.
Project managers invariably need to take cor-
rective action to ensure that the work and
resources are being done according to the
project plan. This type of action-in-the-situation
undermines assumptions of rationality and
objectivity in planned action. The situation and
situated action rather than plans seem to dictate
how project managers act.

Project managers’ knowledge of planning
techniques needs to be combined with know-
ledge of organizational work. The rationally
derived techniques and tools of structured analy-
sis and design and project management do not
reflect adequately human aspects of software
development, IS development and organiza-
tions. The effective use of planning techniques
requires knowledge of organizations and human
behaviour. Stakeholder analysis seeks to redress
the gap, but has low profile in practice.

While planning is necessary, plans are diffi-
cult to implement in organizations. Planning

111

0

11

0111

0

0

11p

111

..Chapter 4 Systems project management

and the implementation of a plan is difficult
because of complexity, change and lack of
knowledge. Complexity and change in particu-
lar pose practical software development prob-
lems. While change is considered in contin-
gency planning, project managers need to take
corrective action when these or other factors
impinge on the plan. In doing so they need
to understand the cause of the problem and
what effect the corrective action will have on
the project. It is necessary to understand the
reasons for delay and overspend to improve the
effectiveness of the project team. Managing
change often involves project managers seeking
support and commitment from the sponsor and
relevant stakeholders.

4.8.3 Success and failure

Success and failure in IS development is evalu-
ated and understood from different perspectives.
Systems analysts believe that objectivity and
rationality is possible in practice. A project men-
tality is expected to bring discipline and effec-
tiveness to IS development and success, but this
has largely failed to materialize. IS projects have
failed incurring hefty costs to companies and
public sector organizations. Executives’ expec-
tations of IT have not been fulfilled, generating
a debate among researchers and practitioners
on what constitutes a ‘successful project’.

While a project is useful for organizing work
packages, it has limitations. They have often
resulted in ‘disappointed users’ or unused
developed IS. Costly projects have tended to be
unsuccessful in project terms, for instance
keeping to the set budget or time. The flaws are
exemplified by failures like the London Stock
Exchange’s Taurus system and the London
Ambulance’s dispatch system. These projects
each had budgets of several hundred millions.
The Taurus project was abandoned and the
London Ambulance system had operational

failures leading to tragic consequences for
human life. Alternative approaches to systems
development based on similar assumptions are
susceptible to similar problems.

It is problematic to measure success in IS
development because of the nature of informa-
tion and knowledge. IT is used to process data
but the actual consumption of information and
knowledge is by humans individually and in
organizational contexts. Developed IS remain
unused because executives, managers or other
employees regard the information produced as
irrelevant to their needs.

From a different perspective practitioners are
questioning absolute measures of project success.
This perspective raises doubts on the rational
assumptions in systems ontology. They argue
that the measures relevant to non-systems pro-
jects like meeting project objectives, budgeted
costs and time targets cannot be simply trans-
lated into IS projects. Some practitioners argue
that the learning experience is more important
than the actual achievement of project objec-
tives. They reason that the experience gained
from being involved in a project can be reflected
upon and used in other projects.

4.8.4 Alternatives

Real situations provide contrary observations of
project behaviour, organizational factors,
information needs and definitions, which lead
to alternative perspectives on software and IS
development. There continues to be progress
and development in projects and IS develop-
ment process. New and emerging approaches
cater for gaps in traditional project manage-
ment and issues in IS development such as:

• Who is a systems developer?
• How is a system selected for development?
• How is a system developed?

112

Part II IS, projects and application domains..

• Why separate a system project from business
operations?

Structured and object-oriented systems ontol-
ogy assumes that a systems developer is a qual-
ified professional. The systems ontology does
not admit so-called ‘users’ to be regarded as
developers. New approaches are breaking the
traditional boundary between the ‘developer’
and the ‘user’.

The major issue in identifying and selecting
an IS project is who should do it. The SDLC
and SSADM make business executives, business
managers and IT managers responsible. This
has been challenged for some time in End-User
Computing technology, making it possible for
employees of an organization to make the selec-
tion decision and themselves develop a system.

RAD and Component-Based System Devel-
opment (CBD) are two alternatives to tradi-

tional systems project management. They seek
effective use of limited resources. Both alterna-
tives reduce reliance on meticulous planned
action. RAD removes stringent discipline or
planned action of projects. It replaces the
SDLC with an alternative that is designed to be
flexible in practice and true to context. This
alternative is based on involving users in IS
development.

CBD is the development of components of
software that can be reused and composed into
IS. This is possible using object-oriented tech-
nology, though components can be developed
in procedural languages too. CBD aims to build
software assets and generic models that can be
commonly used. Software that is reusable is
termed a ‘component’. The task for a systems
project manager developing IS based on CBD
is to identify relevant components and compose
them to produce the required IS configuration.

111

0

11

0111

0

0

11p

113

Table 4.5 Personal constructs for project management

Pole 1 Pole 2

Plan Unplanned

Set objectives No objectives

Control Uncontrolled

Resourced Under-resourced

Expected Unexpected

Team cooperate Team conflict

Motivated Motiveless

Manageable Unmanageable

Consensus Conflict

Agreement Disagreement

R
is

k
m

an
ag

em
en

t

H
um

an
 r

es
ou

rc
e

sk
ill

s

Q
ua

lit
y

T
im

e

S
ch

ed
ul

in
g

E
st

im
at

io
n

A
ct

ua
l

si
tu

at
io

n

..Chapter 4 Systems project management

4.9 Personal Critical Framework
development

4.9.1 Personal constructs for systems
project management

Table 4.5 is a sample repertory grid for project
management. Reproduce the grid on a spread-
sheet and add further columns and their polar
opposites that you consider relevant. To objec-
tify personal constructs in project management,
complete the grid by following the details on
how to use a repertory grid in section 1.10.1.

4.9.2 Systems project selection

Questions

1 Evaluate whether the notion of a project is
appropriate for developing IS.

2 Evaluate the utility of generic competitive
strategies for selection of strategic systems
projects. Some examples of generic competi-
tive strategies are: low cost producer, product
differentiation, product focus or niche. How
relevant are these for your organization?

3 Systems project management provides tech-
niques for planning and executing soft-
ware development. What practical issues
and problems can you identify with the use
of projects and project management in IS
development?

4 Discuss whether senior management or
people who do the everyday work in organ-
izations should select systems projects.

Activity A

Identify an IS in your organization. Determine
how it was selected for development. Was it
selected on the basis of a formal methodology
similar to the SDLC using feasibility study or
some other in-house method?

Activity B

The first airline reservation system is considered
to be a strategic IS. Strategic IS provide com-
petitive advantage to companies who develop
them. Individually or in groups, investigate and
describe the process and methods used in your
organization to identify and develop strategic
IS. Consider the following points:

• What assumptions can you identify?
• What systems ontology model informs the

system?
• What evaluation criteria were used to select

the system for development? Some examples
are value chain analysis, strategic alignment,
potential benefits, resource availability,
project size and duration, and technical dif-
ficulty and risk.

• Did the IS development proceed according
to plan? If not, explain why it did not.

Activity C

Identify an area of your organization that you
think might benefit from the application of IT.
It may be a business function like sales or pro-
duction, or a core business process. Develop a
business case for its selection as a system project.
Consider the following points:

• What value or benefit will be derived from
the new IS for the business?

• What monetary or other resource savings
will it provide?

• Does it have the potential to be a strategic
IS that provides the organization with com-
petitive advantage?

• Why should it be selected and not some
other system?

114

Part II IS, projects and application domains..

4.9.3 Planning

Question

Critically compare Agile Software Develop-
ment (read section 15.5) with systems project
management. Justify which method you would
choose to develop IS.

Activity A

IT and IS planning are done in conjunction
with business planning and strategy. Planners
have to deal with actual situations that do not
reflect the assumptions, ethos and techniques
of project management. In groups, discuss the
following issues found in real situations and
suggest how you as a project management team
would deal with them:

• Lack of complete knowledge and informa-
tion, both internal to the organization and
external regarding competitors and markets.

• The validity of the assumptions made in the
plans.

• Issues surrounding the scope of the project
and difficulties in defining the scope.

• Identifying and catering for contingencies in
case the plan falters.

• Authority and power issues. Will people in
the organization accept the planners and the
plan?

Activity B

Refer to Activity C in 4.9.2. Bearing in mind
that project plans are not absolute right or
wrong ways of doing work:

• Construct a work breakdown structure for
the identified system.

• Construct a product breakdown structure for
the identified system.

• Develop a project network.

4.9.4 Project management and business
models

Questions

1 Business planners use the value chain or busi-
ness processes, or other business concept, to
develop business models. Discuss how ana-
lyst’s systems models would be affected by the
need to consider business models?

2 Systems project management is used to
implement business models that contain
significant investment in IT and IS. Discuss
whether systems project management tech-
niques are sufficient to cater for a major
organizational change involving a new busi-
ness model.

3 Discuss the personal skills and competencies
a project manager requires. How would you
develop such skills and competencies?

Activity A

Think of a situation where you wanted to
achieve something that required others’ help.
Briefly describe the situation in text form.
Describe how you motivated others to help you.
Discuss how you would motivate people in a
team.

Activity B

Based on Activity C in 4.9.2, was the system
developed on the basis of a business model?
If so, describe the business model and how
it translated into the developed system. If a
business model was not used, define an appro-
priate business model for the application area
for the system identified and discuss the
expected benefits.

Activity C

Dell.com operates on a successful business
model based on IT and internet technology.

111

0

11

0111

0

0

11p

115

..Chapter 4 Systems project management

Surf the company’s website. Describe the
business model you can adduce. Identify par-
ticular technology that enables Dell.com to be
successful.

4.9.5 Stakeholder analysis

Activity A

Based on Activity C in 4.9.2, compile a list of
the main stakeholders. What is the particular
interest of each type of stakeholder? If the
system were to be developed anew how would
you as a project manager balance their partic-
ular interests and manage power relationships?
You can use any method for doing the
stakeholder analysis, for example see: http://
www.scenarioplus.org.uk/stakeholders/stake
holders_template.doc.

4.9.6 Project failure

Activity A

The London Stock Exchange’s Taurus system
and the London Ambulance Service’s dispatch
system are highly publicized IS failures. Indi-
vidually or in groups, identify an IS project that
has failed in your organization. You may inter-

pret ‘failure’ to suit your organization’s needs.
Consider the following:

• Why did the project fail?
• Is ‘failure’ a relative measure? Do IS devel-

opers consider it a success or something from
which they have learnt valuable lessons?

• What knowledge can be learnt from the
failure to ensure better project management
in the future?

• Might the use of the CMM produce a dif-
ferent outcome?

• Define your personal construct on ‘failure’
and ‘success’ for your PCF.

Activity B

Identify an IS familiar to you:

• Determine how quality was defined during
its development.

• Solicit the views of its current users to deter-
mine whether they agree with the original
definition of quality.

• Determine with the current users what may
be regarded as an appropriate definition of
quality for the system.

• Discuss whether you agree with the users’ def-
inition. Is an objective definition appropriate?

116

Part II IS, projects and application domains..

4.9.7 Internet sources

CMM is systems project management that is highly standardized and regulated. You can explore
its details at http://www.sei.cmu.edu/cmm/cmms/transition.html.

For information on team and group roles, see Belbin’s work at http://www.belbin.com/.

For information on project management see www.fek.umu.se/irnop/projweb.

Information on SSADM and project management is available at www.comp.glam.ac.uk/
pages/staff/dwfarthi.

111

0

11

0111

0

0

11p

117

PRINCE is a project management methodology. For information on PRINCE see www.
ccta.gov.uk.

For risk management see http://mijuno.larc.nasa.gov/dfc/rsk.html. It contains an overview and
a bibliography. Also, http://www.rspa.com has a list of references.

For information and method details for CoCoMo see http://sunset.usc.edu/COCOMOII/
cocomo.html.

4.9.8 Further reading

A standard textbook on project management techniques is Yeates, D. and Cadle, J. (2001) Project
Management for Information System, London: Pitman Publishing.

For a reading of alternative perspectives on software see: Truex, D., Baskerville, R. and Klein,
H. (1999) ‘Growing IS in Emergent Organizations’, Communications of the ACM, 42(9): 117–123.

For a critique of planning read Mintzberg, H. (1994) ‘Fall and Rise of Strategic Planning’, Harvard
Business Review, January–February 1994: 107–114.

To construct activity-on-arrow networks see: Yeates, Y. and Cadle, J. (1996) Project Management
for Information Systems, Harlow: Prentice Hall. Chapter 6 provides an overview of activity-on-
arrow networks and work breakdown.

For an alternative perspective on software development read Chapter 1 by Patel in: Patel, N. V.
(2003) (ed.) Evolutionary Adaptive Information Systems, Hershey, PA: Idea Group Publishing.

An alternative model of IT governance is in Patel, N. V. (2002) ‘Emergent Forms of IT
Governance to Support Global eBusiness Models’, Journal of Information Technology Theory
and Applications, 4(2): 33–48.

..Chapter 4 Systems project management

5.2 Introduction

Systems analysts are arguably important mem-
bers of a systems project team because of their
systems analysis and systems modelling skills.
The term ‘analyst’ emphasizes the ability to
think logically, analytically, critically and cre-
atively. An analyst is the person who communi-
cates between the needs of the business and the
capability of IT, and other related communica-
tions digital technology, to meet those needs.

Systems analysis has a long tradition in
organized human activity. It is an important and
vital technique to understand and develop

knowledge of human problems, define human
goals as problems, and to organize knowledge
and understanding to resolve defined problems
in systemic terms. It has been applied to mili-
tary, government and business problems, and it
is the prime form of problem definition and res-
olution for IS.

Though a specialist in IS, an analyst needs to
possess other skills. Their work is vital in orga-
nizational information and knowledge manage-
ment. Systems analysis and design has broader
implications for how an organization defines
its information and knowledge systems, and
management systems for executives. In addition

118

Chapter 5

Systems analyst

5.1 Learning outcomes

After completing this chapter you should be able to:

• Analyse the organizational problems systems analysts face in applying their skills and
suggest strategies they can use to overcome them.

• Identify and propose solutions to the problems of (dis)communication between
analysts and their clients and stakeholders, and propose pragmatic solutions for
systems modelling problems.

• Critically evaluate the problem-solving, analytical and critical skills required of a
systems analyst.

• Determine appropriate personal construct for ‘systems analyst’ for a PCF.
• Apply transformatory critique, refashioning of traditions, reflexivity and critical skills

to the ‘self’ as systems analyst.

to contributing modelling skills, analysts need
knowledge of business models, business pro-
cesses, organization, management systems and
decision-making processes. For these reasons,
analysts can make a better contribution if they
are capable of critical investigation.

5.3 Qualities and skills of systems
analysts

Systems analysts need to develop various quali-
ties to become systems modellers. An interest in
how organizations work is a prime quality
because analysts’ work is to understand people
and work and how these are organized to
achieve specific goals in systemic terms. Analysts
contribute knowledge of IT, IS and systems to
define IS. They work in a systems project team
to redesign organizations and systems radically.
Table 5.1 is a summary of the non-technical
qualities of an analyst.

Analysts require a broad range of knowledge
and skills to investigate and model organiza-
tional work and systems. Major knowledge and

skill area is systems modelling, but other areas
include IT, business modelling, organization
and people. They cover an understanding of
organization, communicating with people, con-
struction of systems models and the innovative
application of IT.

5.3.1 Organization and people
knowledge and skills

Though all organizations have common attrib-
utes like business processes and functions, each
company’s organization is unique. Business
understanding is required to underpin the
process of systems modelling and systems
models. Knowledge of organization and how
organizations work is necessary for analysts to
undertake informed systems analysis. A genuine
interest in the business, manufacturing cars or
retailing food, is necessary to develop under-
standing. The business of the organization will
determine the kind of data it produces that could
be processed by IS to provide information for
managers or enable business processes.

111

0

11

0111

0

0

11p

119

..Chapter 5 Systems analyst

Table 5.1 Qualities of systems analysts

Analysts’ qualities Qualities in practice

Investigative interest Ability to investigate organizations, organizational situations, people,
workflows and business processes.

Innovative attitude Ability to create new organization with IT and IS. Improve or replace
existing organization.

Conceptual thinking Ability to make observations and convert them into concepts and generate
new concepts from them to address business and IS problems.

Critical thinking Ability to ask searching questions based on interpreted data, facts,
perceptions or opinions. Think differently and uniquely.

Diplomacy and tact Ability to keep good relations with a project team and stakeholders.
Competing and politicking groups should not be alienated in favour of one,
so that modelling information can be extracted.

Objectivity Ability to remain impartial to develop effective systems models based on all
the sources of information equally. (This quality may be replaced with
subjectivity, depending on analysts’ predisposition.)

An important quality is diplomacy and tact.
Much of analysts’ work requires communicating
with people who make use of the information
from an IS. As analysts need to communicate
with competing and politicking groups or stake-
holders they need to be diplomatic and tactful.
They have to keep themselves in a position to
extract required information from all relevant
groups and individuals. People and groups often
have interests that vary from others’. Analysts
need to ensure that they have access to conflict-
ing stakeholders, and that they are impartial in
how they deal with conflicting interests.

In organizational terms it is the informa-
tion and knowledge in organization that is
important for the technical systems design.
Analysts need to consider all the sources of
information impartially. Partial information
will result in poor or ineffective systems models,
and consequently poor usage of the resultant
IS. Diplomacy and tact are needed not to alien-
ate individuals or groups from the modelling
process. Interpersonal skills are important in
this process.

Analysts’ knowledge of organizations is
enhanced by an investigative interest and how
IS can be used to improve business processes or
achieve strategic objectives. Business problems
can be resolved with IT and IS but the organ-
ization needs to be systematically and systemi-
cally investigated. Improvements in customer
service or product quality can be obtained by
applying IT and the development of appropri-
ate IS, only if analysts’ investigation is thorough
and informed.

An innovative attitude is necessary to resolve
business problems involving IT solutions. Sys-
tem models incorporate organizational aspects.
Analysts redesign workflows, business processes
and organization, often radically, by developing
innovative systems models. During the 1990s
innovative systems models were created based
on BPR. Analysts were part of systems project

teams that redesigned organizations radically.
They combined organization and systems mod-
els to exploit the capabilities of IT.

5.3.2 Conceptual and logical skills

The precursor to innovative design is concept.
Conceptual skills are important. Analysts need
to be able to make abstractions from observed
actual situations. Abstracting elements and
details from an actual situation requires con-
ceptual thinking. Systems models are an
abstraction from actual problem situations.
The notion of ‘system’ is itself an abstraction
used to organize thinking on human problems.
The radical redesign of organizations requires
an ability to conceptualize an alternative
organization. Experienced analysts think con-
ceptually about organization, work and IS and
IT to develop systems models. Conceptual
thinking requires an ability to make acute
observations and draw abstractions that can be
practically applied.

Analysts require cognitive skills to frame and
solve problems in systemic terms. Effective prob-
lem-solvers are people who can develop a good
conceptual understanding of the problem and
then begin to factor it into manageable sub-
problems. The skill to analyse a problem system-
atically and to use logical reasoning is important
for analysts to develop. Abstract concepts de-
rived from observations of how an organization
works underpin systems models. Analysts need
to be able to translate multifarious individual
observations into concepts to develop systems
models. ‘Business process’ is such a concept that
describes organizational work that crosses func-
tional boundaries in an organization. For exam-
ple, the production process begins with the sales
office taking an order from a customer, passing
it onto the production department to produce
the goods, and production then passing it onto
logistics to make the delivery.

120

Part II IS, projects and application domains..

Notation languages enable and support
logical reasoning. Analysts need the skill to iden-
tify, define and resolve business and organiza-
tional problems in terms of a notation language.
Many business and organizational problems
are complex and intertwined. Notation lan-
guages are used to define and resolve these
problems. Analysts need to be able to use nota-
tion languages to represent symbolically actual
problems.

5.3.3 Technical skills

Analysts’ work requires knowledge of and skills
in IT and IS modelling. Knowledge of IT is
necessary to be able to communicate with soft-
ware programmers, database administrators
and computer network specialists. Analysts do
not need to be able to write computer programs
or configure systems and computer networks,
but they need to understand IT in terms of the
‘problem domain’ and how it can be used in it.
An awareness of IT capabilities is essential.

Though not essential, an analyst who has
knowledge of computer programming will
probably develop efficient systems models.
Systems modelling skills are required to develop
effective and efficient systems models. Know-
ledge of and the application of systems notation
languages to business and organizational prob-
lems are essential to develop systems models.
Systems modelling notation languages consist of
technical symbols to represent and manipulate
actual problems.

5.3.4 Critical skills

Analysts need critical thinking skills because
many applications of IT involve radical and
fundamental change in organization and busi-
ness processes. Analysts need to be able to ques-
tion existing organization and work, and
analyse actual problems from the perspective of

proposing radically different alternative organ-
ization. In Barnett’s (1997) terms, criticality is
the predisposition ‘that the object of attention
can be other than it is’.

Investigative and innovative skills are under-
pinned with critical thinking skills. Critical
thinking involves interpretation, analysis, evalu-
ation, inference, explanation and self-regulation
(see section 1.8.1). In a particular systems mod-
elling situation, all these skills are required
to first assess the current situation and then to
generate alternatives to resolve problems. To
assess the current situation the observed data,
facts, or perceptions have to be first interpreted
and then analysed. Their credibility is then
evaluated. From this position appropriate and
relevant inferences can be drawn. The explana-
tion is the justified alternative or alternatives
generated.

At a more complex level, critical thinking
skills are needed to design organization and
systems. BPR, eCommerce and eBusiness are
examples of radical business reorganization
where criticality is paramount. Existing forms
of organization and business models need to be
questioned intelligently to produce alternatives
that make efficient and effective use of informa-
tion and internet technologies.

Critical skills are needed to make decisions
on what systems analysis instruments to use.
Undertaking analysis of a particular problem
domain requires knowledge of instruments that
will produce the required information to draw
systems models. Though an analyst alone will
not make these decisions, especially in a systems
project team, an analyst needs to have the
ability to make judgements on the appropriate-
ness of instruments in a given problem domain.

5.4 Role of the systems analyst

The analyst’s role is central in a system project
as shown in Figure 5.1. Analysts interact with

111

0

11

0111

0

0

11p

121

..Chapter 5 Systems analyst

122

Part II IS, projects and application domains..

Project manager

Senior analyst

Senior designer

Database administrator

Systems analyst

Project sponsor

Business project manager

Senior business analyst

Stakeholders

Users

Chief programmer

Figure 5.1 Role of the systems analyst

the project sponsor, stakeholders and potential
users of a new IS on the business side, and with
the project manager, senior analyst and
designer, database administrator and chief pro-
grammers on the technical side. They provide
systems programmers and database designers
with systems models based on information gath-
ered from business people. Analysts’ tasks are to:

• Analyse and investigate the existing system,
whether manual or computerized, and deter-
mine the requirements for a new IS.

• Make a judgement regarding the feasibility
of developing a computer-based system for
the application domain.

• Design a new IS: develop process models,
data models or class models, and specify
programs, hardware, data structures, and
control and maintenance procedures.

• Test and oversee the installation of a new IS.
• Document a new IS and develop operating

procedures for it.

Software programmers depend on a specifi-
cation of the required suite of programs for a
new IS. Analysts provide a system specification
based on investigation of the problem domain.
Computer network specialists also need to be
told how to configure computers and networks
to provide an integrated organization-wide IS.
They depend on analysts’ systems models to
implement the designs with internet or intranet
technology.

5.5 Systems analysis techniques

Systems analysis consists of examining the
problem domain by considering its constituent
parts with systems analysis and design tech-
niques and tools – instruments. These instru-
ments function to gather information on the
actual problem and to develop systems models.
Some techniques are borrowed from other

forms of investigation, for example social
science research, and others were developed
specifically for systems modelling. Many of the
requirements gathering techniques are common
to structured and object-oriented systems ontol-
ogy. They are summarized in Table 5.2. Other
systems modelling instruments, covered in later
chapters, differ between structured and object-
oriented systems ontology.

5.5.1 Interview

Analysts design and conduct interviews with
stakeholders and potential users. Analysts have
to identify relevant people to interview and seek
permission from managers. Interviews are gen-
erally preferred over other techniques because
analysts can gain a deeper and thorough under-
standing of the problem domain. The method
is used to gather general and detailed informa-
tion on the current situation and requirements
for a new IS.

The interviews have to be planned carefully
to ensure that useful information is gathered
and make efficient use of both analysts’ and
interviewee’s time. The analyst has to prepare
a set of questions and make decisions on how
to record the replies to the questions. The ques-
tions need to be carefully formulated to extract
required information. Interviewees’ responses
may be recorded as notes during an interview
or captured on a systems documentation form,
the normal capture method for large system
projects.

Analysts need to think through the questions
to ask at the interview. The set of questions will
probably be agreed with senior systems analysts
to ensure that the relevant information is gath-
ered to draw systems models. The kind of ques-
tions posed will cover existing work, workflows
and business processes; data generated and
used; information required and communicated;
other business areas affected. More detailed

111

0

11

0111

0

0

11p

123

..Chapter 5 Systems analyst

questions will focus on the specifics of the
problem, data and information needs.

The kind of questions asked will also depend
on the type of interview used. Structured and
semi-structured interviews can be used. A struc-
tured interview, also known as a close-ended
interview, is composed of questions that are
asked systematically in turn and the responses
recorded. Scaling is the most frequently used
form of close-ended questions. An example
close-ended question, using a Likert scale,
where a circle or tick is placed by the respon-
dent around the relevant item, is:

The granularity of the predetermined response
is determined by the problem being addressed
and the analyst’s skill to extract the required
information. Close-ended questions do not

allow respondents scope to offer their own
views. They have to select an answer from the
provided list. For instance, in the above ques-
tion, reports may be on time but not accurate
or provide other information than required at
a particular time, but respondents do not have
the scope to make this known to analysts. Close-
ended questions are asked to enable quantifica-
tion of responses and facilitate subsequent
analysis of the responses.

In a semi-structured interview, also known as
open-ended, some initial questions are designed
to elicit responses on particular topics, and the
analyst uses the responses to ask one or more
further relevant questions. So not all the
questions have to be predetermined in a semi-
structured interview. A semi-structured inter-
view generates much data, often creative and
rich in content, that needs to be analysed subse-
quently. Responses are usually recorded on
audio to enable analysis. Analysis of gathered
information can be highly structured to address
specific issues and problems. Both initial
structured and semi-structured interviews may
be followed up with second interviews to gather
further information or corroborate existing

124

Part II IS, projects and application domains..

Table 5.2 Systems analysis techniques

Systems analysis techniques Description

Interview Analysts meet with individual people or groups in the problem
domain. Questions on roles, responsibilities and interaction are asked
and responses recorded. Questions on information needs and uses of
existing IS are posed and responses recorded.

Observation Analysts observe existing workflows and processes and make a record
of the events. Uses of existing IS are observed and recorded.

Questionnaire Predetermined sets of open-ended or close-ended questions are laid
out on paper and circulated to people. Responses are quantified and
tabulated to facilitate analysis.

Document analysis For manual systems, copies of manual documents are gathered to
gather information. For existing IS, systems project documents are
retrieved from archives to study objectives, specifications, procedures
and reports.

How accurate is the information in the
management report you receive?

Never Sometimes Always
accurate accurate accurate

information. Examples of open-ended questions
are:

5.5.2 Observation

Observation is used when analysts want to see
what is happening in the problem domain and
record the information personally. Observation
affords analysts thinking space to form views
based on observed events. To prepare for obser-
vation analysts need to identify the area of the
problem domain and the people they want to
observe. They need permission from appropri-
ate business managers to observe people at
work. A form also needs to be prepared to
record observations systematically. The obser-
vation form should be structured to enable
systematic observation.

If systematic observation is not required,
then shadowing can be used. Shadowing is used
to gather information in the problem domain
as it happens. It differs from observation
because in shadowing the analyst is in the back-
ground. The analyst spends time with an
employee in the problem domain. The analyst
spends time sitting with the employee while they
work or follows the employee to meetings and
other activities. The observation is recorded as
notes or on standard documents.

5.5.3 Questionnaire

Questionnaires provide an efficient means
for reaching many people, which is not possi-
ble with interviews or observation. The format,

circulation and analysis of a questionnaire is
more efficient than interviews. They are used
for gathering structured information, where the
information sought is known in advance.
Questionnaires can be open-ended or closed-
ended. Information from a large number of
people that needs to be quantified and tabu-
lated is normally gathered by close-ended
questionnaire.

In a questionnaire, unlike a semi-structured
interview, all the questions have to be prede-
termined. Close-ended questionnaires are used
when the nature of the information is known.
Senior analysts work with analysts to determine
what information they need to understand
and develop systems models of the problem
domain. Questions are formulated to elicit that
information from individuals or groups.

5.5.4 Document analysis

Examination of existing documents in the prob-
lem domain is a logical starting point before
other methods are used. If the problem domain
has no previous IS then existing manual docu-
ments are analysed. The kind of documents
analysts may search for and analyse include
documents that record data, or pass between
people and across departments, or are compiled
for managers. Where there is an existing
IS, analysts will examine various systems docu-
ments, including system specification, project
objectives, reports, database and program
specifications, and equipment used.

To understand the business problem and
workflows analysts identify and examine docu-
ments used by people. Documents, though,
cannot be the sole source of information
because they may be outdated. It is possible that
the description of the system in the documents
may not reflect the actual system and practice.
Document analysis is normally supported with
observation.

111

0

11

0111

0

0

11p

125

What are the problems with the existing
system?

What is the cause or causes of these
problems?

..Chapter 5 Systems analyst

Standard forms are available for systems
analysis techniques in IS methodologies. In
SSADM interviews and observation are used
in the systems investigation phase to provide
insights into the problem domain, particularly
the problems experienced by people. These
forms become part of the systems documenta-
tion which itself becomes a source of information
for project managers, software programmers
and database administrators on a new IS.

5.6 Systems analysts and
stakeholders

Stakeholders may make the difference between
the success and failure of a new IS. Not all
stakeholders will have the same influence and
power. Analysts need to be aware of the influ-
ential and powerful ones. These stakeholders
may have important information required for
thorough and complete information gathering
during systems analysis. Examples are: the
sponsor of the project, auditors and depart-
ments such as accounts and finance. Potential
users of a new IS are an example of influential
stakeholders. Analysts interact with stakehold-
ers through systems analysis techniques detailed
earlier to elicit system requirements.

5.6.1 Requirements elicitation

The purpose of systems analysis is to establish
system requirements for a new IS. Analysts
need to interact with potential users and other
stakeholders to elicit system requirements. They
use analysis techniques like interviews and
observation. Analysts need to use diplomacy
and tact with stakeholders and potential users
to ensure that various user groups are kept
informed and satisfied. Alienating a particular
user group will result in deficiencies in informa-
tion gathering because the alienated group may
harbour vital information from analysts.

System requirements elicitation requires
analysts to apply their skills in various areas.
Diplomacy and tact are prime among them.
The skilful use of systems analysis technique is
another. Central to both these is knowledge and
understanding of organization and system, and
how they need to cohere to enable business
processes and objectives to be achieved.

5.7 Systems analysts and developers

Analysts are the main conduit for information to
other project team members, whose interaction
with people in the problem domain is limited.
Systems designers, software programmers and
database administrators rely on systems analysts
to provide information and knowledge on the
problem domain. So they depend on systems
analysts to provide information to enable sys-
tems design and implementation.

Analysts are in a position to develop an over-
all view of the problem domain and require-
ments for a new IS. Their interaction with
stakeholders and potential users gives them
insight. They discuss systems models, design,
and implementation issues in detail with data-
base administrators and software programmers.

Analysts communicate information to other
team members in various systems documents,
primarily the system specification. Other docu-
ments include the feasibility study containing
functional requirements of any existing system,
organization charts, grid charts and records of
interviews and questionnaire data collected
during systems analysis. These documents will
vary according to the IS development method-
ology used or, in the absence of a methodology,
according to the practices of the organization.

5.7.1 System specification

The system specification is a collection of ‘deliv-
erables’ or documents that detail the systems
models for a new IS. It includes the system

126

Part II IS, projects and application domains..

architecture design, data dictionary, the user
and system interface design, database and file
specifications, input and output definitions, and
program design. Collectively these may be re-
ferred to as systems models in terms of systems
ontology.

Systems analysts develop systems models in
the analysis and design phases in structured
systems ontology. They structure the data and
information to be processed by a new IS. These
system specification documents are communi-
cated to software programmers and database
administrators. In object-oriented systems ontol-
ogy the class systems model is developed during
analysis and design. The systems models detail
what a new IS will do and how it will do it.

The system specification is important for
several reasons. It will provide details to soft-
ware programmers on how the system should
work and database administrators will use it to
design records for database implementation. It
will also be used to evaluate and judge the
system once it is operational. The system spec-
ification will become the benchmark for evalu-
ating the accuracy and timeliness of information
an IS provides once ‘live’ or in operation.

5.8 Critical Framework and systems
analysts

A skilled and experienced analyst will have
knowledge of IS development projects. This
knowledge alone is not sufficient to act with crit-
ical insight in new situations. Reliance on skill
alone is impoverishing, but practice can be
enhanced through critical thinking. Figure 5.2
is the Critical Framework populated with criti-
cal reflection on the concept of systems analyst.
As the bottom layer shows, many questions con-
cerning the four themes of criticality arise from
the assumption of objective and rational human
behaviour. Alternative instruments and con-
ceptions of systems developers are possible.

5.8.1 Professionalism and knowledge

The development of a PCF is a significant step
in professionalism. A skilled analyst with a PCF
is likely to be more effective and contribute
intelligently to systems projects. Learning from
knowledge and practice to develop practice
further is the major function of a PCF.
Knowledge, skills and experiences of previous
IS projects can be enhanced and honed by
reflecting critically.

Analysts need to reflect critically on know-
ledge, skills and experience they acquire from
formal education and practice. With critical
thinking analysts can think independently of
formalism and draw on experience from prac-
tice. The PCF components – ethics, assump-
tions of reality, personal constructs, instruments,
relations between components – can be drawn
on to develop independence, which is an
important trait for recognizing human prob-
lems and seeking resolution. A fictional anec-
dote illustrates the richness of critical thinking:

This has been my experience in Washington when I
had made money to give away. If I gave a contract
to a designer and said, ‘The doorknob to my office
doesn’t have much imagination, much design
content. Will you design me a new doorknob?’ He
would say, ‘Yes,’ and after we establish a price he
goes away. A week later he comes back and says, ‘Mr
Eberhard, I have been thinking about that doorknob.
First we ought to ask ourselves whether a doorknob
is the best way of opening and closing a door.’ I say,
‘Fine, I believe in imagination, go to it.’ He comes
back later and says, ‘You know, I have been think-
ing about your problem, and the only reason you
want a doorknob is you presume you want a door to
your office. Are you sure that a door is the best way
of controlling egress, exist and privacy?’ ‘No, I’m not
sure at all.’ ‘Well, I want to worry about that
problem.’ He comes back a week later and says, ‘The
only reason we have to worry about the aperture
problem is that you insist on having four walls

111

0

11

0111

0

0

11p

127

..Chapter 5 Systems analyst

128

Part II IS, projects and application domains..

Apply formal
methods

Real world of
human problems

(Messy world)

Need organization
knowledge too, people

possess knowledge

Systems
ontology

SDLC formalism

Analyst as expert,
technicality of

design decisions,
assumes perfect
knowledge and

its rational application,
perfect communication,

analyst as modeller

Pragmatic
resolution

???

Interpret formalisms
in practice

Develop knowledge
Determine a pragmatic
resolution to problems
with formal methods

Resolve
problems

Transformation of
traditions reflexivity

Can stories/narratives
told by people be used?
Can people make system

design decisions?

Transformatory critique

Can an analyst be partial?
Who can be a system

developer?

Critical skills

Figure 5.2 Critical framework: systems analyst and the SDLC

around your office. Are you sure that is the best way
of organizing this space for the kind of work you do
as a bureaucrat?’ I say, ‘No, I’m not sure at all.’ Well,
this escalates until (and this has literally happened in
two contracts, although not exactly through this
process) our physical designer comes back with a
very serious face. ‘Mr Eberhard, we have to decide
whether capitalistic democracy is the best way to
organize our country before I can possibly attack
your problem.’

The extent to which practitioners can rely on
formalism in practice is a problem. Practitioners
need to develop a PCF based on learnt know-
ledge and experience informed by critical think-
ing to become more effective. The fictional
anecdote above illustrates that analysis of exist-
ing ways of working needs to be deep enough
to question implicit and explicit assumptions of
organization and work, yet it also needs to be
realistic to address the pragmatic problem of
developing an IS. The formalism of systems
depicted in the Critical Framework (Chapter 3)
leads to a form of extreme logical investigation
and intervention in human activity and organ-
izations that arguably looses realism, as in the
above anecdote. The Critical Framework’s other
two components provide the necessary realistic
perspectives.

To become effective systems analysts, ana-
lysts should invoke the Critical Framework to
question learnt and experienced knowledge. It
will support critical thinking on systems ontol-
ogy and enable it to be contrasted with real sit-
uations to seek pragmatic resolution. Whether
the requirement for analysts to be objective is
valid systemic ontological knowledge or whether
things in the problem domain exist independent
of analysts can be analytically evaluated. The
SDLC makes the assumption that analysts are
an objective agent in IS development. What is
objectivity and whether analysts can be objec-

tive can be understood independently by inter-
preting, analysing and evaluating the notion.

With reference to the Critical Framework,
analysts can question whether it is possible to
be objective in social situations like organ-
izations and develop an appropriate objectivity
personal construct. Analysts should assess the
issue of ‘ownership’ of the data and information
in the problem domain, as potential users often
claim ownership of work. Similarly, questions
about practice can be analysed. For example,
are analysts’ instruments effective or do they
produce required information.

5.8.2 Knowledge and practice

Analysts should systematically identify other
areas of knowledge and practice and question
them appropriately. These include:

• Application of systems analysis and design
skill in real organizations and IS develop-
ment contexts.

• Clarity and difficulties of communication
with potential users, stakeholders and even
other team members.

• Acting as a change agent in a systems analy-
sis and design role.

• Systems analyst as the authority or expert on
systems design decisions.

Analysts’ roles are determined by assump-
tions made in IS methodologies. In an objective
methodology like SSADM, the systems analyst
will need to behave impartially and make
systems design decisions on the basis of evidence
gathered from the problem domain. In an
interpretive methodology like ETHICS or
Multiview, the systems analyst will behave sub-
jectively and make systems design decisions on
the basis of interpreting the application domain.
These need to be evaluated.

111

0

11

0111

0

0

11p

129

..Chapter 5 Systems analyst

5.8.3 Systems ontology

Systems ontology questions can be raised
through the bottom layer of the Critical
Framework. Who should be regarded as
systems developer? Who is best placed to make
the systems design decisions? Should IS devel-
opment be top-down selection of projects or
bottom-up issues raised in work situations? Is
timeboxing an appropriate assumption to make
about IS in the real world? The answers to these
questions can be explored in structured and
object-oriented systems ontology.

The issue of a systems analyst as the author-
ity on systems design decisions is illustrated in
Figure 5.2. The SDLC assumes that only IS
professionals should develop IS and that a
systems analyst is an important intermediary in
IS development. It assumes that systems ana-
lysts, and other systems professionals, should
make systems design decisions. This assumption
is made in structured and object-oriented
systems ontology, and many other methodolo-
gies. Deficiencies in the application of such
knowledge to human problems have led to the

notion of participative design, which rec-
ognizes that people in the problem domain too
can and should make contributions to systems
design decisions.

The Critical Framework can be used to jux-
tapose systems ontology with its actual imple-
mentation in real situations, and to bring to
surface its assumptions that may contradict
practice. This knowledge can then be used to
determine pragmatic resolutions. For example,
is the systems analyst intermediary necessary?
As an intermediary the analyst has to com-
municate with potential users, which raises
many practical problems in IS development.
For example, often there is confused communi-
cation. Consequently, analysts make many
assumptions when making systems design deci-
sions. It is not unreasonable to assert that many
systems design decisions are based on assump-
tions made by analysts and designers rather
than gathered requirements.

Critical thinking leads to questioning of
received knowledge. Table 5.3 shows, in column
one, example skills that a systems analyst

130

Part II IS, projects and application domains..

Table 5.3 Systems analyst skills

Acquired skills Practical limitations Possible pragmatic
and techniques – in the real world resolution
systems ontology of human problems

Objectivity Social interaction, human Diplomacy, power brokering.
subjectivity (even ego).

People often mistrust analysts’ Involve people in design decisions
intentions and become fearful to overcome users’ mistrust and
of change that a new IS brings. fear of change.

Systems modelling Limits of technique or tool to Seek an independent review of
techniques capture rich human and most appropriate technique or

organizational situations. tool.

Complexity of technique or tool. Reduce level of knowledge needed
Real situations do not allow it to use the tools
to be used.

Technical Pace of change. Use simpler methods, tools and
Availability of knowledge. techniques.

acquires through education and practice. It
shows, in column three, how these skills need to
be supplemented with skills analysts require to
interact with others in organizational settings.
They also question methodological assumptions
made in systems ontology.

Structured systems ontology assumes perfect
knowledge. Figure 5.2 shows the assumption of
perfect knowledge. It applies to SDLC and
structured systems ontology (and other method-
ologies). Analysts should examine its validity
in practice. The knowledge that an analyst
brings to the problem domain is limited. In
actual situations it may not be possible to have all
the required knowledge of the problem domain
before making systems design decisions. This
results in analysts and other team members
making assumptions about the problem domain.
As perfect knowledge and rationality are related,
lack of perfect knowledge also questions ana-
lysts’ ability to act in a rational manner in real
situations.

Similarly, analysts’ role in software engineer-
ing needs deeper reflection. Software engineers
rely on analysts to specify what a new IS is
required to do. The engineering metaphor
may be intellectually challenged when explain-
ing the role of systems analysts. Though the
term software engineering is common when
describing the development of software, the per-
son who investigates the problem domain is
called a ‘systems analyst’. Analysis is a better
description of investigating requirements of a
new IS, because it caters for human factors in
IS development.

There is a real and fundamental problem in
developing systems models. The real or ontol-
ogy of a thing is understood through someone’s
interpretation of it (unless objectivism is
accepted). An analyst interprets the problem
domain. An interpreted systems model will
seem incredulous to people in the problem
domain because their own interpretations vary

from analysts’. They are often critical of such
interpreted systems models.

A systems investigation relies on analysts’
interpretation. Adequacy of analysis depends on
the competencies, skills and experience of ana-
lysts. It is possible that analysts may not inter-
view the right people, those who are the most
powerful and relevant stakeholders. Research
reveals analysts have interviewed the wrong
people at the wrong times. They have posed the
wrong questions resulting in wrong answers.
Such practice results in bad feeling among pro-
fessional developers and potential users and
further weakens the assumption of rational
behaviour and the engineering metaphor.

Systems models developed by analysts are
interpretations of real situations. They are not
the systems models that potential users would
necessarily build. Even among different analysts
or groups of analysts modelling the same
problem domain can result in different systems
models. Analysts emphasize certain aspects of
a new IS and de-emphasize other aspects.
Leading advocates of structured systems ontol-
ogy argue that analysts do this to facilitate com-
munication with potential users. These increase
the risk that analysts may inadvertently exclude
critical features in their interpretations, and
develop a system that has meaning for them
rather than for ‘users’.

As interpretive modelling challenges the
objectivity assumption of structured and object-
oriented systems ontology, it also weakens the
assumption of logic in problem-solving. Studies
of highly skilled analysts reveal that they rely on
human intuition to help them solve problems.
Although analysts may be trained in formal
methods of systems analysis that emphasize
rationality and logic, the actual practice of
systems analysis draws on deep human charac-
teristics like intuition and prior experience.
Though analytical skills are important, systems
analysts also need creativity skills. Transforming

111

0

11

0111

0

0

11p

131

..Chapter 5 Systems analyst

organizations with IT is not a simple matter of
mechanistic thinking, it requires creativity and
originality. Analysts’ role is potentially much
broader than defined in the SDLC systems
ontology or others.

5.9 Personal Critical Framework
development

The purpose of systems analysis is to describe a
new IS through systems modelling. In develop-
ing your PCF you should reflect critically on how
you would undertake systems analysis, in partic-
ular reflect on how you would define your role.

5.9.1 Personal constructs for systems
analysts

Activity A

Table 5.4 is a sample repertory grid for systems
analysts. Reproduce the grid on a spread-

sheet and add further columns and their polar
opposites that you consider relevant. To objec-
tify personal constructs descriptive of systems
analysts, complete the grid by following the
details on how to use a repertory grid in section
1.10.1.

5.9.2 Role of systems analysts and
method of knowing

Questions

1 List the skills required by a systems analyst.
What difficulties might an analyst experience
in practising them in an organization?

2 Critically discuss whether the systems analyst’s
role as an intermediary is required in IS devel-
opment.

3 Practising analysts may not be aware of
assumptions they make during systems mod-
elling. Discuss whether objectivity can result
in factual systems modelling.

132

Part II IS, projects and application domains..

Table 5.4 Personal constructs for systems analysts

Pole 1 Pole 2

Rational Emergent

Articulated Hidden

Objective Subjective

Complete Incomplete

Ambiguous Unambiguous

Static Changeable

Perfect Imperfect

Expert Non-expert

Reason/logic Intuition

S
ys

te
m

s
an

al
ys

t
O

rg
an

iz
at

io
n

E
m

pl
oy

ee
s

P
ro

je
ct

 t
ea

m
In

fo
rm

at
io

n
S

ys
te

m
O

bj
ec

ti
vi

ty
P

er
fe

ct
 k

no
w

le
dg

e
S

ys
te

m
s

m
od

el
s

P
la

ns
S

it
ua

ti
on

s
S

ub
je

ct
iv

it
y

C
on

te
xt

P
ro

bl
em

 s
ol

vi
ng

C
re

at
iv

it
y

R
at

io
na

le
S

ta
ke

ho
ld

er
s

P
ow

er
R

eq
ui

re
m

en
ts

Q
ue

st
io

nn
ai

re
O

bs
er

va
ti

on
In

te
rv

ie
w

in
g

4 If the assertion that ‘users’ know the problem
domain better than analysts is true, evaluate
the effectiveness of system requirement
analysis techniques to gather requirements.

5.9.3 Rationality and logic in practice

Questions

1 Structured systems ontology requires ana-
lysts to be rational and logical. What prob-
lems can you identify with these assumptions
in practice?

2 What difficulties might arise in applying
systems modelling notation languages in
practice? How would you resolve them prag-
matically to develop systems models?

Activity A

A commercial company is not a clean white-
board onto which a systems analyst can apply
learnt skills. It consists of people, departments,
global divisions and political and power rela-
tionships among employees. These aspects
of a company (organization) pose barriers for
analysts to apply their skills rationally and
logically.

• Assume that an enterprise-wide system is to
be developed in your organization.

• Identify the kinds of problems you would
encounter in practising rational and logical
systems modelling.

• How would you overcome the difficulties?
Think about innovative ways of interacting
with potential users to achieve your aims.

Activity B

A systems analyst has to operate in an environ-
ment of diversity, fluidity and ambiguity, yet
system project objectives have to be met.

• Identify departments or sections in your
organization that have diverse needs and
make a list of them.

• Make a list of the changes that happen in
your organization.

• Taking particular departments or sections,
make a list of things that are ambiguous.

• Discussion points: How would you cope with
such an application domain? How would
you reduce diversity, fluidity, and ambigu-
ity? Is it necessary to do so? Is it possible to
do so?

5.9.4 Planned action and situated action

Questions

1 Discuss the quality of system requirements
gathered by a set of planned activities involv-
ing interviewing and observations.

2 What kind of system requirements might
arise in actual situations compared to
planned elicitation events like interviewing
or observation. Evaluate the effectiveness of
the shadowing technique to capture such
requirements.

Activity A

This activity will evaluate your PCF by categor-
izing personal constructs into planned action
and situated action. Make two lists. One of
things you would do to develop systems models
that are planned, label this list ‘planned action’.
The other of things you think you would do
when required (as opposed to planned), label
this ‘situated action’.

If your PCF has only planned action, explain
why you have not got situated action items. If
your PCF has a dominance of planned action
or situated action personal constructs explain
why it is so. Compare your list of planned and
situated actions with a trusted peer. Discuss the
differences.

111

0

11

0111

0

0

11p

133

..Chapter 5 Systems analyst

5.9.5 Your analysis techniques and tools

Questions

1 Discuss the effectiveness of one system
requirements elicitation technique of your
choice.

2 Explain how you would decide to use par-
ticular requirements elicitations techniques.

Activity A

Identify a peer or department member to
conduct a systems analysis interview. Think

about how you would prepare to use the inter-
view technique with the person identified.

• What information do you expect to get?
• Prepare a set of questions to ask them,

and explain the reason for asking each
question.

• Conduct the interview and record the
responses.

• Analyse the information to determine its use-
fulness.

• What changes would you make if you were
to re-conduct the interview?

134

Part II IS, projects and application domains..

5.9.6 Internet sources

There are not many internet sources on systems analysts. An account by a working analyst is given
at http://www.itcareers.acs.org.au/people/shekar.htm/. You could also surf the internet search-
ing for professional institutes of systems analysts to learn more about their work.

The Institute of Systems Analysts at http://www.iap.org.uk/ is a useful site for practise in systems
analysis.

In the previous parts problems with systems ontology have been examined from the perspec-
tive of the Critical Framework. Particular and overall criticisms of IS development have been
discussed and PCF developed. Part III covers systems analysis. Systems analysis is a set of
analysts’ activities to describe what a new IS will do. It results in systems models that describe
what the system will do and how its parts are related.

Techniques and tools – instruments – to develop systems models in structured and object-
oriented systems ontology are covered. Analysts’ use instruments in the problem domain to
determine the data and functions of a new IS. Instruments are used to investigate, describe
and model existing workflows and business processes and to develop systems models of alter-
natives integrated with or supported by IS.

Instruments will first be introduced and then critically analysed. Instruments will be
appraised from the perspective of the Critical Framework to engender critical thought and
practical relevance. Instruments are limited in the kind of knowledge that can be gathered
using them because of ontological assumptions they make. They will be critically considered
to develop critical awareness.

The foundation of an IS is determining what it is required to do. This is termed ‘require-
ments analysis’. In structured systems ontology a system is modelled in terms of data and
process, and the logic of processes. Chapter 6 focuses on how the requirements for a new IS
are determined. System requirements are determined by developing systems models of data and
processes. Chapter 7 covers how structured data systems models are developed and Chapter 8
examines how structured process systems models are developed.

Though structured data and process modelling are covered in two chapters they are logi-
cally related. Data systems models are required to identify corporate data that may be used
in more than one process systems model. The aim of separating the two types of modelling is
to reduce data redundancy in the system. Analysts using structured analysis have to focus on
both data and process systems models.

In object-oriented systems ontology a system is modelled in terms of classes and objects.
Establishing system requirements and developing systems class models in object-oriented analy-
sis and design is covered in Chapter 9. The class systems model consists of four components:
problem domain class model, human interaction class model, data management class model,

111

0

11

0111

0

0

11p

135

Part III

Systems analysis

and system interaction class model. Together they compose an IS design. Object-oriented analy-
sis focuses on the problem domain class model. The other three components are discussed in
Part IV, Systems Design.

In terms of the Critical Framework, as well as having knowledge of instruments, analysts
need to be aware of their limitations and how they can be improved. PCF can be enhanced
and improved by examining them critically, especially by considering the value they add to
understanding particular systems analysis and design problems. In terms of criticality, the chap-
ters in this part cover critical skills developed during praxis. The Critical Framework will be
invoked in each chapter to show how systems modelling instruments are based on systems ontol-
ogy. The assumptions underpinning particular systems ontology will be examined to facilitate
the development of a PCF.

136

Part III Systems analysis..

6.2 Introduction

What is system requirements analysis, how does
it relate to humans and technology, and how
does it determine the outcomes of a system pro-
ject, are all problematic issues in IS development.
This problem is reflected in the title of the chap-
ter and is critically discussed in the section on sys-
tem requirements and the Critical Framework.

The initial stage in systems analysis is deter-
mining what a new IS is required to do. It is the
most critical feature of systems analysis and
design and the most challenging for analysts. It

is erroneous to assume that the simple applica-
tion of requirements analysis techniques, for
instance from SSADM, results in the required
information.

The difficulties in determining what a system
should do arise when analysis techniques are
applied in the problem domain – actual situa-
tions. Analysts have to overcome many issues
and problems that stem from the human and
organizational activity. They need to com-
municate with people and understand what
the system should do in terms of human and
organization purpose and work.

111

0

11

0111

0

0

11p

137

Chapter 6

Requirements

The system to be (or not)

6.1 Learning outcomes

After completing this chapter you should be able to:

• Assess the effectiveness of techniques to determine system requirements.
• Critically evaluate system requirements analysis in the context of humans and

organization.
• Apply critical skills to knowledge and practice of system requirements analysis.

Techniques for requirements analysis in structured and objected oriented systems ontol-
ogy will be examined. The problem of determining the requirements for a new IS is
common to both. Developing knowledge of requirements analysis and applying learnt
techniques to the problem domain are vital aspects of analysts’ work.

6.3 Application domains and system
requirements

When a new IS is developed or an existing one
enhanced it is necessary to know what functions
it should perform. This is termed the system
requirements. System requirements are elicited
from the application domain and are recorded
formally to provide system specification docu-
ments to software programmers. They use the
documentation to design and code computer
programs.

Knowledge of what a new IS should do is
contained in system requirements documents.
Documented system requirements feature
prominently in a system project and different
methodologies have varying formats for record-
ing system requirements. In systemic terms,
system requirements is a statement, consisting
of various types of documents, of the services
that a new IS should provide. Though the term
‘service’ is object-oriented terminology, it is
appropriate here to communicate the service
nature of IT and its application.

Determining system requirements in sys-
temic terms is the process of identifying the
functions a new IS will perform, determining
the data for the functions to process, and defin-
ing the processes that the data will be put
through to deliver required information. In an
object-oriented system, it is the process of iden-
tifying classes, objects, data, operations and
relationships in a class model.

Analysts elicit system requirements from the
application domain. They interact with people
to develop knowledge of the work they do, the
documents they use, and the data and informa-
tion they need to do their work. For IS
restricted to departments or sections, analysts
examine workflows, the sequence of events
required to complete particular tasks, to gather
information about work, data and information.
For larger IS, system requirements focus on

organization-wide business processes and
encompass investigation of divisions, depart-
ments and sections of an organization.

Clients, project managers, analysts, software
programmers and stakeholders use the require-
ments document as a repository of information
on a new IS. They all use it as the basis for
understanding what a new system is required
to do and for negotiating what they want it to
do. Analysts use it to design systems models.
Software programmers use it, and the systems
models developed by analysts, to write the
required suites of software programs.

6.3.1 Formal definitions of system
requirements

Professional bodies provide formal definitions
of system requirements. The Institute for
Electrical and Electronic Engineers (IEEE)
Standard 610 defines requirements as:

1 A condition or capability needed by a user
to solve a problem or achieve an objective.

2 A condition or capacity that must be met or
possessed by a system or system component
to satisfy a contract, standard, specification
or other formally imposed document.

3 A documented representation of a condition
or capability as in 1 or 3.

There are different types of system require-
ments:

• general requirements
• functional requirements
• implementation requirements
• usability requirements.

In the SDLC requirements analysis occurs
once the feasibility study is completed and the
decision to proceed with a new IS is made by
management. If there are existing IS, it consists

138

Part III Systems analysis..

of determining their requirements to ascertain
whether they are being met or not. This is
called the ‘as-is’ system. The requirements for
a new IS are then determined. This is called the
‘to-be’ system.

6.3.2 Systems analysts

Systems analysts are central to the process of
determining system requirements. Establishing
system requirements is a significant compo-
nent of their work. They work with people who
need the system to understand what is required
and they communicate these requirements to
systems designers. System requirements docu-
ments produced by analysts act as communica-
tive devices between analysts and users, and
analysts and software programmers.

Analysts need to develop knowledge of the
problem domain to establish valid system
requirements. They need to know what tasks
are to be supported by a new IS and map work-
flows or business processes. For applications
that span the whole organization, a team of
analysts normally work together to develop an
understanding of as-is and to-be business
processes. They work with business analysts
who share information on new business models
to be realized in systemic terms.

Analysts undertake systems analysis activities
to elicit requirements. The order in which they
are done vary according to the elicitation tech-
niques and methodology used. The people in
the problem domain have to be consulted to
understand what they want the system to do
and existing IS analysed to assess deficiencies.
Requirements may have to be negotiated
because of different data and information stake-
holder demands. Once the requirements are
established they have to be documented and
validated. The validation is used to ensure that
the documented requirements are the ‘right’
ones, and to ensure consistency and complete-

ness to prevent costly mistakes. The resultant
requirements form the system specification.

6.3.3 System types and requirements

The process of determining system require-
ments varies according to the types of IS devel-
oped. Though the aim is the same, the process
varies if a bespoke system is to be developed or
a commercial package is to be installed. In all
cases, the aim is to determine what a new IS is
required to do and ensure that it satisfies busi-
ness requirements. The different types of IS for
which requirements are established are:

• bespoke IS;
• Commercial-Off-The-Shelf Software

(COTS);
• business process re-engineering;
• eCommerce and eBusiness systems;
• knowledge management systems.

Establishing system requirements for COTS is
more difficult than for bespoke IS because
COTS are pre-designed IS based on business
best practices. COTS developers establish what
is best practice in a particular business applica-
tion domain, for example customer relationship
management or organizational knowledge
management. They then design IS accordingly.
Organizations that buy COTS may not have
the same practices embedded in the purchased
COTS. They will be confronted with the diffi-
cult decision of changing existing practices to
meet the COTS system or to tailor the COTS
to existing practices. Determining system
requirements in either case is highly problem-
atical. It needs to be done by skilled and expe-
rienced analysts. Most organizations adopting a
COTS package change their existing practices
and tailor the COTS system.

The span for analysing system requirements
will vary according to the type of IS to be devel-
oped. The span may be:

111

0

11

0111

0

0

11p

139

..Chapter 6 Requirements

• The whole organization. For IS to
support business processes, eCommerce,
eBusiness, or knowledge management the
whole organization is the problem domain.
Such IS often have a strategic purpose
aligned with business strategy.

• Department, section or group. Where
specific IS for knowledge management or
stock control is to be developed the span is
limited to departments or sections.

• Particular business process. When
a specific process like a customer relationship
management system is to be supported the
span is limited to all the activities that are
relevant for customer relationship manage-
ment, but include the whole organization.

6.3.4 People’s knowledge of
requirements

Requirements elicitation techniques are de-
signed to gather information from physical doc-
uments in the organization and from people.
The physical sources are relatively easier to
identify and manage. Sourcing information
from people though is problematic. There are a
variety of reasons why people’s knowledge of
system requirements may be limited. These are
briefly stated here and dealt with critically later
in section 6.8.3:

• People may not know what they want –
people lack prescience.

• People only know what is required in context
– when they actually do a job.

• Peoples’ and organization’s requirements
may change because of internal or external
factors.

• People are unable to communicate require-
ments in technical terms.

Systems ontology and methodologies make
assumptions about people. They assume that

people are capable of perfectly knowing how
IS can support them. This issue poses signifi-
cant problems for analysts and requirements
management. Requirements management is a
significant problem in systems project manage-
ment. The people issues and physical sources of
information need to be managed to ensure that
the ‘right’ requirements are elicited.

6.4 Business and system
requirements

It is important for a new IS to be aligned with
business needs. At a strategy level IT and IS
planning needs to be aligned with business
strategy. Analysts have to determine system
requirements at the business strategy and
system levels.

Some methodologies stipulate requirements
analysis at the business and system levels.
Conducting requirements analysis at both levels
ensures that IS are aligned with business needs.
IS developed on the basis of system level
requirements alone fail to meet business objec-
tives and consequently fail to be used as
designed.

In the Yourdon System Method, systems
analysts have to conduct an enterprise require-
ments analysis and a system requirements
analysis. In the Information Engineering
methodology, there is a specific stage of execu-
tive requirements analysis. It enables executives
to state their business level requirements.
Critical Success Factors are identified at both
the business and system levels. SSADM also has
business and system levels requirements analy-
sis, though the system level techniques are
better developed because of the engineering
focus of the methodology. In object-oriented
analysis the Kozar’s Requirements Model spans
from abstract rationale for requirements to
detailed requirements. The model relies on an

140

Part III Systems analysis..

existing business model and business mission
statement. Techniques for determining system
requirements in structured systems ontology
vary. They are simply listed here:

• documentation analysis
• observation
• interviews
• questionnaire.

6.5 Object-oriented requirements
techniques and frameworks

Object-oriented system requirements tech-
niques are common to all object-oriented
methodologies. Analysts can also make use of
the structured techniques listed above. Their
specific tasks are to:

• identify core objects;
• define the object structures and associations

between objects;
• define objects’ attributes;
• define objects’ methods and services;
• determine the messages or communication

between objects;
• refine the class model.

These tasks are completed by a variety of
techniques including those listed for structured
analysis. In addition, other techniques include:
structured meetings, scenarios, prototyping,
group brainstorming, voice and emails. These
techniques are used within frameworks for
requirements determination in object-oriented
analysis, which include:

• requirements determination subactivities;
• PIECES framework;
• Kozar’s Requirements Model;
• object-oriented requirements modelling

activities.

6.6 Systems modelling tools

System requirements methods and techniques
are supported with tools. The tools are largely
automated or software packages called CASE
tools. They are used to automate diagramming
in structured and object-oriented analyses.
Entity-relationship diagrams, data flow dia-
grams, entity-relationship models, entity life his-
tories, use case, and interaction diagrams can
all be developed with CASE tools. The aim of
CASE tools is to improve software productiv-
ity. Other objectives include:

• improve software quality;
• shorten IS development process;
• reduce costs;
• generate program code from design;
• support and automate systems project man-

agement.

CASE tools are divided into upper CASE
tools and lower CASE tools. Upper CASE tools
are used to create integrated systems model dia-
grams and to store information regarding the
system components. Lower CASE tools are
design-phase tools. They are used to create
systems model diagrams and generate code
directly for database system functionality.
Integrated-CASE or I-CASE tools contain both
upper CASE and lower CASE functionality. I-
CASE tools are designed to support the entire
SDLC process and RAD. As yet there are few
web-based CASE tools available, and their
quality is still improving.

Analysts use CASE tools to communicate
requirements to users, software programmers
and stakeholders. As communicative devices
CASE tools provide a standard form and objec-
tified knowledge of requirement. They facilitate
communication between IS project team
members and between analysts and potential
users of IS. Other benefits of CASE tools are

111

0

11

0111

0

0

11p

141

..Chapter 6 Requirements

speed of development, ease of alteration of dia-
grams, consistency and validity.

CASE provides a centralized source of
information on systems designs called the
CASE repository or data dictionary. This con-
tains screen and report designs and any amend-
ments made. CASE tools are available for
various approaches to systems analysis and
design. The following subsections describe
examples for structured, object-oriented and
agile programming.

6.6.1 SELECT

SELECT is an I-CASE tool. It can be used with
a variety of methodologies and is available for
structured and object-oriented analyses, and
XP. It is used in the Structured Analysis Design
Implementation (SADIE) methodology in the
form of SELECT Yourdon CASE tool. SADIE
requires much manual diagramming which
can become tedious. SELECT is designed to
automate the process to achieve cost and time
efficiencies.

6.6.2 Database tools

The use of the data dictionary in database
management systems has evolved. The
extended data dictionary is a systems repository
rather than a simple data dictionary. As a
systems repository it is considered to be a CASE
tool for information on systems processes and
programs. Systems repositories are useful for
managing IS projects, in particular ensuring
system integration.

CASE tools are used for indexes and cluster-
ing in physical data models. The Erwin CASE
tool has an index screen for database tables,
which is used to generate code required to
construct indexes in a Database Management
System (DBMS). A DBMS is software for data
storage and its manipulation.

6.6.3 eXtreme programming

The SELECT Scope Manager is used in XP.
It is used to minimize time, cost and develop-
ment by managing the scope of software devel-
opment. It is used to automate the Story and
Task scope management in XP. It creates a
structured log of the stories, ideas, documents
and analysis generated in XP. It also allows
‘what-if ’ analysis.

6.6.4 Object-oriented case tools

CASE tools for object-oriented analysis cover
systems analysis, design and implementation,
and they extend to code generation and script-
able HTML reports. They are used to develop
models of software and business systems, and
are available for specific object-oriented
methodologies.

The Bridgepoint tool is designed to support
the Shaler-Mellor Method of Object-Oriented
Analysis and Recursive Design. CRC (Class,
Responsibility, Collaboration) CASE tools are
used to create CRC cards and scenarios involv-
ing object interactions, to define objects, and run
interactional scenarios to check systems designs.

SELECT Enterprise is used to design and
develop complex object-oriented applications
using UML. The Enabler function frees design-
ers from having to remember to save work as
it is done automatically.

6.7 Alternative requirements
techniques

Structured and object-oriented system require-
ments make difficult ontological assumptions
about the problem domain. An example is the
assumption that people know what they want
the system to do. People are expected to be
capable and willing to state system require-
ments. In practice, these assumptions are prob-
lematical. Alternative requirements elicitation

142

Part III Systems analysis..

techniques like prototyping and eXtreme pro-
gramming have been proposed to address
requirements elicitation problems and other
problems in requirements gathering.

The alternative techniques compress the
SDLC. Quicker IS development is assumed to
lead to lower costs. They shorten the time taken
to establish requirements or place less empha-
sis on establishing requirements from people
and other physical sources by providing the
system product earlier. Involving people and
providing the system product earlier reduces
reliance on peoples’ memory and knowledge of
requirements, and enables them to see the
development process and product.

6.7.1 Rapid application development

RAD is closely related to systems project man-
agement. It shortens the software development
process and reduces systems project manage-
ment activities. It is used to develop small and
enterprise-wide systems.

RAD has four phases: requirements plan-
ning, user design, construction and cutover.
CASE tools and prototyping are used in the user
design and construction phases. Unlike the
SDLC, or structured and object-oriented analy-
ses, RAD requires the involvement of people
working in the problem domain. They become
participants in the IS development process.
Their participation is essential in the require-
ments phase, design phase and the system-
building phase. In the requirements planning
phase both analysts and people conduct Joint
Requirements Planning (JRP). During the
design phase their participation is limited to
non-technical issues through the JAD technique.

RAD is closely linked to prototyping. The
purpose of allowing people to participate is to
provide them with the required product early.
As potential users they can assess the product
early and give comments for its further

enhancement. Unlike products resulting from
the SDLC, the RAD process results in various
versions of the product to help potential users
see it, make comments and voice requirements.

6.7.2 Prototyping

It is difficult for people to visualize what a
system will do from a list of requirements
contained in a requirements document. In
prototyping an original version of the proposed
system is developed to explore and validate
system requirements. A prototype of a new IS
is built to understand and define the problem
itself.

A prototype is used to demonstrate the
system to users. People and analysts can learn
more about the business problem and what the
system should do by using the prototype in the
application domain. Most organizations find
prototyping is worth the cost in learning about
system requirements, especially for IS that are
strategically important.

Prototyping is used to understand system
requirements iteratively. By using the prototype
people can see the system as it is currently
understood and use the experience to elaborate
what the eventual system should do. Actual
work situations can be tested with the prototype
to determine whether it satisfies business needs.

In incremental prototyping or evolution-
ary prototyping system requirements are estab-
lished iteratively. As each version of the proto-
type is assessed it provides clearer understand-
ing of what is required. This information is
used to develop the next version, and so on. In
incremental prototyping the actual prototypes
eventually becomes the implemented system.

A throwaway prototype is a single version of
the proposed system. It is used for a specific pur-
pose like determining requirements. A throw-
away prototype is used to understand deeper
system requirements that cannot be easily

111

0

11

0111

0

0

11p

143

..Chapter 6 Requirements

established by normal techniques. Most proto-
types used for eliciting requirements are not
used as eventual IS, they are ‘thrown away’ after
requirements have been understood. Though
some may result in the eventual system.

6.7.3 Agile Software Development and
eXtreme programming

Agile Software Development (ASD) is gaining
credibility in some problem domains, where
highly structured and formalist methods do not
work. It can be traced to adaptive systems
development. ASD focuses on people and the
social context rather than processes and
methods for software development.

It is a response to the problem of ‘analysis
paralysis’ in structured and object-oriented
systems ontology. The phrase ‘analysis paraly-
sis’ captures the problems in the actual appli-
cation of objective systems ontology. In ASD
system requirement is conducted incrementally
and iteratively in small work packages with
users and stakeholders. It focuses on the process
of development rather than the software, and
rather than focus on plans and detailed planned
action, it plans for change.

XP has a similar focus on people rather than
processes. Whereas ASD focuses on people in
the problem domain, XP focuses on the systems
project team too. It recognizes the social
context in which IS is developed, and attempts
to keep things simple to ease communication in
the project team and with customers, who are
involved with the team on a daily basis. They
also make system decisions and changes. This
close involvement of ‘customers’ is thought to
lead to a shared understanding of the system.

People write stories of their work experi-
ences, which are used instead of requirements
documents. These stories are used to determine
the scope, content and estimates. The ‘stories’
are very short, about three sentences, and are

used to estimate how long it would take to
implement relevant code.

Like ASD, XP focuses on small releases but
its practices are based on metaphors that help
the team to perceive the system being devel-
oped in simple terms. Each story is allocated up
to a three week estimate for implementation,
where a story is estimated to take longer than
three weeks it is simplified into more than one
story. In contrast, if a story is estimated to take
less than a week to implement, it is combined
with other stories.

6.8 System requirements and the
Critical Framework

The Critical Framework is useful to bring to
surface and assess critically assumptions on
system requirements made in structured and
object oriented systems ontology. Figure 6.1 is
the Critical Framework populated with critical
reflection on system requirements. As the
bottom layer shows, many questions concern-
ing the four themes of criticality arise from
assumption made in structured and object-
oriented analyses.

Analysts need to question what is meant
by system requirements. The PCF can be
enhanced by assessing the value and limitations
of the available tools and techniques. Structured
and object-oriented requirements analyses is
based on objective systems ontology. They
assume that requirements exist as separate enti-
ties in the application domain, whether in the
minds of people or in physical documents in the
organization. A critical appreciation of system
requirements needs to address:

• What are system requirements?
• How do system requirements relate to

human and organized activity?
• How does IT and IS relate to humans and

organization?

144

Part III Systems analysis..

111

0

11

0111

0

0

11p

145

Apply formal
methods

Real world of
human problems

(Messy world)

Contextual knowledge,
people lack
prescience –

cannot know all
requirements,

requirements change,
limited capability of
rational accounts,

people attach
meanings and

interpret information

Systems
ontology

SDLC formalism

Assumes people have
knowledge of
requirements

and can rationally
elaborate them

Pragmatic
resolution

???

Interpret formalisms
in practice

Develop knowledge
Determine a pragmatic
resolution to problems
with formal methods

Resolve
problems

Transformation of
traditions reflexivity

Do requirements exist as
entities?

Is it possible that people
only potentially know
what they require?

Transformatory critique

How can contextually
tied requirements be

abstracted?

Critical skills

Figure 6.1 Critical framework: people’s knowledge of system requirements in the real world

..Chapter 6 Requirements

• Is requirements analysis a timebox event or
continuous?

• Are requirements independent entities in the
problem domain or inherent in humans?

6.8.1 What systems analysis?

Analysis is difficult. It requires deliberate seg-
mentation based on clear purpose of what is
observed. Analysing something obvious is even
more difficult because the obvious becomes so
natural that it is difficult to differentiate it from
oneself, or even becomes ‘embodied’. For
example, analyse how you ride a bicycle or
drive a car – they are embodied acts. Analyses
leading to innovation, something new, for
example a new IS, is the most challenging. It is
difficult because it is not possible to draw on rel-
evant previous experience or knowledge.

The complexity of analysing what a new IS
should do is caused by various factors. Analysts
have to approach people to determine system
requirements. The intentions of analysts and
the people they depend on to establish require-
ments are not clear to each other. It is possible
that people may withhold important informa-
tion. Organizational context is another factor
impinging on establishing requirements. It
becomes more difficult to establish system
requirements in changing contexts compared
with stable contexts. Stakeholders are a critical
factor, as they will be vying for influence and
even control over what the system should do.
Other factors to consider are actual work, work-
flows and business processes. All these have to
be understood in context. Other issues are
summarized in Table 6.1.

6.8.2 Systems ontology

The SDLC, prototyping and XP make differ-
ent assumptions of the application domain and
suppose many characteristics that constitute

systems ontology. The SDLC works on the
basic premise of objectification of system
requirements. In comparing the SDLC and
prototyping it can be seen that prototyping
allows for requirements to emerge. It does not
assume requirements as entities existing in the
application domain. In the SDLC once require-
ments are established as entities a further erro-
neous assumption is made that they are fixed.

XP is a radically different process for ‘learn-
ing’ about the problem domain and system
requirements. Its systems ontology is signifi-
cantly different. It challenges the SDLC’s
assumption that analysts are best placed to
perform requirements analysis from their posi-
tions of technical power. It assumes that require-
ments need to be learnt rather than assumed to
exist independently and elicited by analysts.
Unlike the SDLC, XP makes use of human
techniques to learn what system requirements
are relevant. By using human stories and nar-
ratives provided by people it makes IS develop-
ment more accessible to people and reduces the
burden on them to specify requirements.

The term requirements engineering is used
in structured systems ontology. There are some
fundamental problems with the underlying
premise of requirements engineering and the
consequent systems ontology. It assumes that
users are capable of explicitly and unambigu-
ously stating what they expect a new IS to do.
When designing artefacts like bridges it is pos-
sible to specify technical aspects and functions.
Though even civil engineers sometimes have
to learn from their mistakes, as the sway in
London’s millennium bridge testifies. The
design of an IS is different because the com-
puter system has to satisfy human needs, which
themselves being based on human intent,
purpose and usage are difficult to establish.
They raise uncertainty that the engineering
metaphor cannot adequately address.

146

Part III Systems analysis..

111

0

11

0111

0

0

11p T
ab

le
 6

.1
Is

su
es

 i
n

re
qu

ir
em

en
ts

 a
na

ly
si

s

Is
su

es
S

ys
te

m
s

on
to

lo
gy

A
bs

tr
ac

ti
on

R
eq

ui
re

m
en

ts
 a

s
ab

st
ra

ct
io

ns
 o

f
th

e
ap

pl
ic

at
io

n
T

he
 S

D
L

C
 a

nd
 s

tr
uc

tu
re

d
an

d
ob

je
ct

-o
ri

en
te

d
an

al
ys

es
 b

as
ed

 o
n

it

do
m

ai
n.

 H
ow

 c
an

 c
on

te
xt

ua
lly

 t
ie

d
re

qu
ir

em
en

ts
 b

e
ab

st
ra

ct
ed

?
as

su
m

e
re

qu
ir

em
en

ts
 a

s
ab

st
ra

ct
io

ns
.

X
P

 a
nd

 A
S

D
 r

el
at

es
 d

ir
ec

tl
y

to
 t

he
 c

on
te

xt
 b

y
re

ly
in

g
on

 s
to

ri
es

 a
nd

na
rr

at
iv

es
.

O
bj

ec
ti

fic
at

io
n

R
eq

ui
re

m
en

ts
 a

s
en

ti
ti

es
 i

n
th

e
ap

pl
ic

at
io

n
T

he
 S

D
L

C
 a

nd
 s

tr
uc

tu
re

d
an

d
ob

je
ct

-o
ri

en
te

d
an

al
ys

es
 b

as
ed

 o
n

it

do
m

ai
n.

 I
s

it
 p

os
si

bl
e

to
 e

lic
it

 r
eq

ui
re

m
en

ts
 f

ro
m

 a
n

as
su

m
e

re
qu

ir
em

en
ts

 a
re

 e
nt

it
ie

s
in

 t
he

 a
pp

lic
at

io
n

do
m

ai
n,

 a
nd

 t
he

y
ap

pl
ic

at
io

n
do

m
ai

n?
 D

o
th

ey
 e

xi
st

 a
s

en
ti

ti
es

?
C

an

ca
n

be
 o

bj
ec

ti
fie

d.
 T

he
y

as
su

m
e

it
 i

s
po

ss
ib

le
 t

o
de

si
gn

 n
ot

at
io

n
re

qu
ir

em
en

ts
 b

e
re

pr
es

en
te

d
an

d
ar

e
cu

rr
en

t
no

ta
ti

on

la
ng

ua
ge

s
to

 m
od

el
 o

bj
ec

ti
fie

d
re

qu
ir

em
en

ts
.

la
ng

ua
ge

s
ad

eq
ua

te
 f

or
 r

ep
re

se
nt

in
g

re
qu

ir
em

en
ts

?
X

P
 a

nd
 A

S
D

 r
ec

og
ni

ze
 t

he
 h

um
an

 b
as

is
 o

f
re

qu
ir

em
en

ts
.

S
pe

ci
fic

at
io

n
R

eq
ui

re
m

en
ts

 c
an

 b
e

sp
ec

ifi
ed

.
D

o
pe

op
le

T

he
 S

D
L

C
 a

nd
 s

tr
uc

tu
re

d
an

d
ob

je
ct

-o
ri

en
te

d
an

al
ys

es
 b

as
ed

 o
n

it

w
or

ki
ng

 i
n

th
e

ap
pl

ic
at

io
n

do
m

ai
n

kn
ow

w
ha

t
is

 m
ea

nt
 b

y
as

su
m

e
th

at
 p

eo
pl

e
do

 k
no

w
 w

ha
t

th
ey

 r
eq

ui
re

 f
ro

m
 t

he
 s

ys
te

m
 –

‘r

eq
ui

re
m

en
ts

’
an

d
do

 t
he

y
kn

ow
w

ha
t

th
ey

 r
eq

ui
re

?
C

an
 t

he
y

re
po

rt
s,

 f
re

qu
en

cy
,

gr
an

ul
ar

it
y.

 T
he

y
as

su
m

e
th

at
 a

gr
ee

d
ag

re
e

re
qu

ir
em

en
ts

 a
m

on
g

th
em

se
lv

es
 a

nd
 w

it
h

ot
he

r
sp

ec
ifi

ca
ti

on
 i

s
po

ss
ib

le
.

st
ak

eh
ol

de
rs

?
T

he
re

 i
s

a
lim

it
 t

o
w

ha
t

an
 i

nd
iv

id
ua

l
or

 g
ro

up
,

P
ro

to
ty

pi
ng

,
X

P
 a

nd
 A

S
D

 a
ll

re
co

gn
iz

e
th

e
in

cr
em

en
ta

l
le

t
al

on
e

or
ga

ni
za

ti
on

,
ca

n
sp

ec
if

y
ra

ti
on

al
ly

.
B

ey
on

d
th

at

re
ve

la
ti

on
 o

f
re

qu
ir

em
en

ts
.

T
he

y
do

 n
ot

 d
ep

en
d

on
 a

 t
im

e-
th

in
gs

 b
ec

om
e

ap
pa

re
nt

 i
n

th
e

do
in

g
ac

t
on

ly
,

or
 ‘

em
bo

di
ed

ba

se
d

sy
st

em
 s

pe
ci

fic
at

io
n

do
cu

m
en

t.
kn

ow
le

dg
e’

 o
r

si
tu

at
ed

 a
ct

io
n.

E
ng

in
ee

ri
ng

R
eq

ui
re

m
en

ts
 a

s
en

gi
ne

er
in

g.
 A

re
 r

eq
ui

re
m

en
ts

T

he
 S

D
L

C
 a

nd
 s

tr
uc

tu
re

d
an

d
ob

je
ct

-o
ri

en
te

d
an

al
ys

es
 b

as
ed

 o
n

it

su
ffi

ci
en

tl
y

ta
ng

ib
le

 t
o

be
 e

ng
in

ee
re

d?
 A

na
ly

st
s

m
ay

 f
ra

gm
en

t
as

su
m

e
th

at
 p

ri
nc

ip
le

s
of

 a
rt

ef
ac

t
en

gi
ne

er
in

g
ca

n
be

 a
pp

lie
d

to

re
qu

ir
em

en
ts

 b
ec

au
se

 o
f

th
e

m
et

ho
ds

 t
he

y
us

e
(t

he
y

sh
ou

ld

re
qu

ir
em

en
ts

 b
ec

au
se

 r
eq

ui
re

m
en

ts
 l

ea
d

to
 a

 p
hy

si
ca

l
sy

st
em

.
de

ve
lo

p
in

te
gr

at
ed

 r
eq

ui
re

m
en

ts
).

 A
na

ly
st

s
m

ay
 n

ot
 d

ev
el

op
 a

T

he
y

as
su

m
e

th
at

 a
 c

om
pl

et
e

se
t

of
 r

eq
ui

re
m

en
ts

 c
an

 b
e

el
ic

it
ed

co

m
pl

et
e

se
t

of
 r

eq
ui

re
m

en
ts

.
A

na
ly

st
s

do
 n

ot
 a

sk
 d

et
ai

le
d

an
d

de
ta

ile
d

sy
st

em
 f

un
ct

io
na

lit
y

sp
ec

ifi
ed

.
qu

es
ti

on
s

to
 d

et
er

m
in

e
re

qu
ir

em
en

ts
 –

 ‘
w

ha
t

in
fo

rm
at

io
n

do

X
P

 a
nd

 A
S

D
 a

ba
nd

on
 t

he
 e

ng
in

ee
ri

ng
 m

et
ap

ho
r.

 T
he

y
gi

ve

yo
u

ne
ed

 f
ro

m
 t

he
 s

ys
te

m
?’

 i
s

to
o

ge
ne

ra
l.

pr
im

ac
y

to
 p

eo
pl

e
an

d
in

te
ra

ct
io

n
ra

th
er

 t
ha

n
ri

go
ur

 a
nd

 m
et

ho
d.

F
ix

ed
R

eq
ui

re
m

en
ts

 a
s

re
ifi

ed
 o

bj
ec

ts
.

H
ow

 c
an

 r
eq

ui
re

m
en

ts

T
he

 S
D

L
C

 a
nd

 s
tr

uc
tu

re
d

an
d

ob
je

ct
-o

ri
en

te
d

an
al

ys
es

 b
as

ed
 o

n
it

ke

ep
 p

ac
e

w
it

h
bu

si
ne

ss
 o

bj
ec

ti
ve

s
an

d
te

ch
no

lo
gi

ca
l

as
su

m
es

 t
ha

t
on

ce
 i

de
nt

ifi
ed

 r
eq

ui
re

m
en

ts
 a

re
 fi

xe
d.

 R
ea

l
hu

m
an

op

po
rt

un
it

y?
pr

ob
le

m
s

ne
ed

 t
o

ac
kn

ow
le

dg
e

em
er

gi
ng

 a
nd

 c
ha

ng
in

g
re

qu
ir

em
en

ts
.

X
P

 a
nd

 A
S

D
 r

ec
og

ni
ze

 t
hi

s
du

ri
ng

 d
ev

el
op

m
en

t.
 E

vo
lu

ti
on

ar
y

an
d

ad
ap

ti
ve

 s
ys

te
m

s
en

ab
le

 f
un

ct
io

na
l

ch
an

ge
s

po
st

-i
m

pl
em

en
ta

ti
on

.

The issues outlined in Table 6.1 are not an
exhaustive list nor are the questions they raise
limited to those detailed. They need to be
further explored in terms of the Critical
Framework, and in particular in terms of
systems ontology and organization ontology.

6.8.3 Systems ontology and
organization ontology

Analysts need to address how to incorporate
the phenomenological characteristics of human
interaction into the systems development pro-
cess and the eventual IS developed. Pheno-
menological aspects of human behaviour are
not accounted for by the SDLC, structured and
objected-oriented systems ontology. Assump-
tions of rational human behaviour negate the
interpretation that humans place on information
and knowledge.

Notions of system requirements are rooted in
systems ontology. The issues in Table 6.1 arise
because methodologies assume and define things
in the problem domain in particular ways. In the
wider sense, the problem domain is the organ-
ization for which assumptions and definitions are
made. The problem arises when these assump-
tions and definitions, or organization ontology,
is contrary to systems ontology. For example,
assumptions about people in system require-
ments gathering are problematic in practice.
The assumption that people have the capability
to communicate how IS can support them is one
example that poses significant problems.

The main purpose of the SDLC and struc-
tured analysis is to provide: (a) a complete set
of system requirements; (b) system requirements
that are unambiguous; and (c) no redundant
data in the system requirements and eventual
systems design. These three are the ‘elusive
trinity’ because no structured approach is
capable of delivering them in real situations –
human problems. They assume not only that

system requirements can be identified, but also
that once identified system requirements will
remain constant until the end of the systems
development project.

Important questions on what a new IS is
expected to do or how system requirements can
be established become operational within
certain systems ontology, which may not reflect
actuality. Figure 6.1 illustrates the basic contra-
diction between systems ontology and the real
world (organization ontology). It shows that
assumptions made in systems ontology are
contrary to the actual experience of gathering
requirements in the human problems.

This contradiction is reflected in commu-
nicative problems between analysts and people
and between analysts and other systems project
team members. The achievement of system
project objectives is based on assuming a
common understanding among team members
and stakeholders. The initial problem of com-
municating among professional developers is
overcome in the SDLC by developing stan-
dards. The SDLC and structured and object-
oriented systems ontology provide a consistency
of standards that enables professional develop-
ers to communicate from a common, objective
base. These standards make it easier to monitor
and control a system project.

Defining appropriate systems ontology for
organizations is reflected in developments in
systems modelling for databases. Table 6.2
shows the different database model types that
have been used in IS. Their progressive devel-
opment suggests a significant gap between
systems ontology and organization ontology.
Practitioners and researchers assume that
formal models are necessary. Until formal mod-
elling can reflect real situations adequately the
gap between systems ontology and organization
ontology will persist.

Analysts need to be aware that there are
competing modelling notations and analysis

148

Part III Systems analysis..

techniques for translating business needs into
system requirements. They reflect the develop-
ing knowledge and practice in systems ontology,
and the unsolved problem of understanding the
problem domain. It is recognized that systems
ontology needs to reflect reality but it is con-
strained by instrumental, technological and
conceptual tools. System requirements gather-
ing techniques assume that the resultant state-
ment of requirements bear synergy with the
problem domain. Very large and expensive IS
projects have failed at the business level despite
this focus on business.

6.8.4 Methods of enquiry

SSM is rooted in academic interpretive action
research and it proffers to seek epistemological
relevance. It relates the work of systems analysts
directly to systems analysis and the problems
analysts encounter in investigating ‘human
activity system’. It bases investigations of human
activity systems on a ‘declared-in-advance epis-
temological framework’. This is an ‘intellectual
framework of ideas’. The framework forms the
basis for defining and expressing knowledge. It
may be subsequently modified on the basis of
research findings.

111

0

11

0111

0

0

11p

149

Table 6.2 Database model types used in Information Systems

Model type Comments

Hierarchical Hierarchy is an ordered tree and intuitive. As a modelling notation it is rooted in
mathematics, which does not reflect the richness of human intent and
organization goals and activities.

Network Network is composed of a record type and a set type. As a modelling language it
is rooted in mathematics, which emphasizes the representation of rich human and
organizational context as logical relations.

Relational A relation is a construct to represent the associations among different entities and
their attributes. As above, its mathematical roots require human and
organizational information to be represented as tables and relations between the
tables.

Object-oriented A class is composed of object with similar attributes. Objects are related through
the messages they pass to each other for particular services or operations
required. Interacting and collaborating objects form a system. Objects seem
capable of representing rich human contexts such as ‘aspects’ and ‘roles’.

Semantic Semantic databases can be based on the concept of ‘semantic net’. They have
become popular because of XML, and make use of XML-algebra for formal
definitions of data operations and transformations to prove completeness and
correctness of design methods.

Post-relational Post-relational databases enable the convergence of object and SQL technology.
An example is Matisse, which combines Object, XML and SQL technologies
within a single database.

Deductive Deductive databases are an extension of relational databases. They support
complex data modelling not suitable for relational databases. A deductive
database consists of a database (facts), knowledgebase (rules) and an inference
engine (the logic), which is used to derive information from the database using
the knowledgebase. An example of an inference engine is Datalog, used to develop
a relational deductive database system.

..Chapter 6 Requirements

Analysts similarly need to be aware of any
‘intellectual framework of ideas’ and the role of
methods of inquiry underpinning the systems
ontology they adopt. Most commercial method-
ologies do not venture into questions of episte-
mology. When they do, the search is superficial
to give academic credence. As systems analysis
techniques purport to establish knowledge of sys-
tem requirements it is pertinent to question the
validity of these techniques. Analysts need to
reflect on epistemic issues relating to determina-
tion of system requirements. Knowledge of how
to develop IS and knowledge of the IS to be
developed are questions of epistemology. They
require critical study to assess practical validity.

6.9 Personal Critical Framework
development

6.9.1 Personal constructs for system
requirements

Activity A

Table 6.3 is a sample repertory grid for system
requirements. Reproduce the grid on a spread-

sheet and add further columns and their
polar opposites that you consider relevant.
To objectify system requirements personal con-
structs, complete the grid by following the
details on how to use a repertory grid in section
1.10.1.

Analysts can use knowledge from practical
experiences of requirements elicitation to
probe the themes in the Critical Framework,
which may lead to revising personal constructs
and determine an appropriate pragmatic reso-
lution to problems. They should begin the
objectification process by asking questions
similar to:

• Why did I choose questionnaires to elicit
requirements?

• What evidence is there that questionnaires
are successful?

• Can people relate to questionnaires or did it
distance them?

• How do questionnaires relate to my other
personal constructs about peoples’ know-
ledge and their ability to communicate it?

150

Part III Systems analysis..

Table 6.3 Personal constructs for system requirements

Pole 1 Pole 2

Planned Emergent

Articulated Hidden

Objective Subjective

Complete Incomplete

Ambiguous Unambiguous

Static Changeable

Perfect Imperfect

Abstract Context

S
ys

te
m

s
an

al
ys

t

O
rg

an
iz

at
io

n

E
m

pl
oy

ee
s

R
eq

ui
re

m
en

ts

O
bs

er
va

ti
on

D
oc

um
en

t
an

al
ys

is

In
te

rv
ie

w
in

g

6.9.2 Problem domains and systems
ontology

Questions

1 With reference to Activity A, discuss how
ontological knowledge of organization affects
the design of instruments for systems analy-
sis and design.

2 Critically compare the ontological basis of
requirements gathering in SSADM and
Multiview methodologies.

Activity A

In pairs, each person:

• Identify a problem domain familiar to you,
a university department or company depart-
ment.

• Record your knowledge of the domain in
terms of the assumptions you make of its
organization, people, work and informa-
tion required, and any other aspect you
choose.

• Compare your ontological knowledge of
the department with a trusted peer.

• Would you revise your ontology? In either
case, explain why.

6.9.3 IS types and requirements

Questions

1 How would you proceed to establish system
requirements for a large multinational
car manufacturing company wanting to
buy a COTS supply chain management
package?

2 Describe the requirements gathering tech-
niques you would use to establish system
requirements for a medical doctor’s patients’
records management. Justify your choices.

3 Comment on how you would overcome the
problem of changes made to the system after
freezing the design. How would you ensure
that such changes do not remain undocu-
mented features of an IS?

Activity A

• Describe the major functions for a student
record system and locate your description in
appropriate systems ontology.

• Surf the net for a COTS student record
system.

• Assess whether the COTS system meets the
requirements you identified.

• Critically evaluate the COTS systems ontol-
ogy with your description.

6.9.4 Aligning IS and business
objectives

IT/IS planning is intricately related to corpo-
rate strategic planning. A company needs to
plan its IT/IS development to meet business
objectives.

Questions

1 How are IS projects selected in your organ-
ization? In considering this question, think
about the following:
Does the organization have a mission state-
ment and a corporate strategic business plan
(three years or one year)? How is the mission
statement and business plan used in IS plan-
ning? Can you identify specific projects to
exemplify?

2 What IT/IS planning activity are you aware
of in your organization?
What role do potential users of IS play in
selecting IS projects?

111

0

11

0111

0

0

11p

151

..Chapter 6 Requirements

3 Identify a formal IT/IS planning process
that includes users and critically discuss its
relevance.
Is IS project selection a ‘top-down’ (set by
senior management) or ‘bottom-up’ (deter-
mined by operational employees) approach
in your organization, or a combination of the
two?
What problems can you identify in the
IS/IT planning process? Are important users
or stakeholders facilitated to take part in the
planning process, if so how?

6.9.5 Requirements techniques

Questions

1 Discuss the comparative merits of observa-
tion, interviews and questionnaires for
requirements elicitation.

2 Describe in detail the situations in which you
would use each type.

3 Structured analysis aims to use a minimum
number of tools to specify a system. Discuss
the veracity of this position.

Activity A

Design interviews to establish requirements for
an admission system or human resource man-
agement system from:

• An admissions tutor in a university depart-
ment or head of a human resource depart-
ment.

• The admissions principle in the university’s
central department for admissions or the
director of human resources in a company.

Activity B

• Surf the internet to find sites on RAD and
XP.

• Critically compare RAD and XP to identify
differences in systems ontology between the
two for requirements gathering.

• What assumptions of the problem domain
does RAD make that XP does not?

6.9.6 CASE tools

Activity A

Deciding which CASE tools to use poses prob-
lems. Some advice is to be clear of the purpose
and to keep the criteria simple.

• Develop criteria for selecting CASE tools for
requirements analysis.

• Search the internet to identify available
CASE tools for structured and object-
oriented requirements analyses.

• Justify your choices for each approach.

6.9.7 Representations of reality

Questions

1 Discuss whether it is better to write software
programs directly from the problem domain
as in ASD practice, or from systems models
produced by systems analysts as structured
and object-oriented analyses do.

2 Discuss how you think your PCF affects your
ways of seeing a particular problem domain.
Assess how the component and personal
construct relationships affect requirements
elicitation.

152

Part III Systems analysis..

111

0

11

0111

0

0

11p

153

6.9.8 Internet sources

See www.agilelalliance.org and www.agilemanifesto.org/history.html for ASD perspective and
philosophy (accessed 25 March 2004).

See www.dsdm.org for details on adaptive systems development (accessed 25 March 2004).

See http://www.xprogramming.com/xpmag/whatisxp.htm for information on the philosophy
and principles of XP. Also see http://www.jera.com/techinfo/xpfaq.html for a simple introduction
to XP (accessed 25 March 2004).

6.9.9 Further reading

Checkland, P. and Holwell, S. (1998) Information, Systems and Information Systems, Chichester: Wiley.

..Chapter 6 Requirements

7.2 Introduction

A logical data model depicts data in the
problem domain that is considered of interest
or important to business people. It provides
analysts and designers with knowledge and

understanding of relevant data to be processed
and the processes for processing it in a new IS.
Business data and processes in the operation and
management of the organization are used to
develop the data and process systems models. It
is also called an ‘infological’ data model because

154

Chapter 7

Structured data modelling

7.1 Learning outcomes

After completing this chapter you should be able to:

• Interpret the problem domain in terms of logical data models, entity types, attributes
and relationships.

• Evaluate critically the entity-relationship modelling technique.
• Assess the importance of logical data modelling for database design.
• Describe the normalization process.
• Develop simple E-R models.

Structured analysis focuses on transaction data in the problem domain. The structured
modelling process allows for the redesign and integration of complex IS using data and
process models. The term ‘logical’ means removed of physical characteristics. Logical
data modelling is the process of logically describing the problem domain. Logical data
modelling separates design from systems implementation. They are used to develop logical
data models. This separation of the logical modelling of the system from its implemen-
tation will be discussed critically.

Structured systems analysis and design introduced the discipline of planning in data
and process models to IS development. The focus on data in the problem domain makes
structured analysis ‘data-centric’. Techniques and tools have been devised to interpret
data as pre-existing entities in the problem domain.

it is a data or information perspective separated
from physical implementation.

Structured analysis assumes that it is possi-
ble to plan and develop complete logical data
models for a new IS before it is implemented.
It requires systems analysts to:

• Identify and define the problem domain –
people, processes, documents.

• Develop ‘infological’ or logical data and
process models.

• Convert the logical models into the physical
design for computer implementation.

Analysts’ task is to identify ‘things of inter-
est’ in the problem domain and design data
structures suitable for computer processing.
Logical data models are an initial diagrammatic
picture of a new IS. The purpose of logical data
models is to determine what data is to be
processed and decide how it is organized.

The process of data modelling makes use of
the decomposition problem-solving strategy or
the top-down problem-solving. If the problem
were to be solved as a whole it would prove to
be too complex. In the decomposition strategy,
a complex IS problem is taken and it is decom-
posed into smaller parts. Breaking the problem
down into simpler, smaller problems enables
the sub-problems to be solved independently of
each other. The independent solutions are then
combined to provide an overall solution to the
problem. The modelling process is not expected
to produce the final system data models the first
time. It relies on an iterative model-building
process.

7.3 Transaction data

Organizations generate two types of transac-
tions data. One, it results from transaction
within an organization, for example hiring an
employee. Two, it also results from transactions

between an organization and its customers,
business partners or government agency, for
example making a sale or buying raw materials
from a supplier. Transactions data covers prod-
ucts or services, employees, customers, finance
and the government. An organization will typ-
ically generate hundreds of thousands or mil-
lions of such transactions depending on its size.
Not all transactions data is recorded.

Transaction data that is legally required or
considered relevant for managing is recorded
and processed to produce information and
knowledge. The executive and management in
an organization will be interested in analyses
and summaries of the transaction data or other
special information to support decision-making
and management. Managers will need it to sup-
port business operations management. For
example, credit controllers need an analysis of
customers by their payment record to check the
credit worthiness of customers. The analysis of
unpaid invoices can be structured in descending
order of overdue date. Identifying, collecting
and processing such data for management
information is done in logical data modelling.

In structured systems ontology transactions
data are regarded as independent items. They
are part and parcel of a conceptual entity
derived from data or processes in the actual sit-
uation – problem domain. An entity is any
‘thing of interest’ in the problem domain that
needs to be represented in an IS. For example,
in a customer relationship management system,
‘customer’ is an entity and the ‘product’ or
‘service’ bought by the customer are examples
of other entities. The selling of a product is data
that is related to the customer entity.

Understanding the business rules in an
organization identifies things or entities of inter-
est. Operational issues in turn determine busi-
ness rules. For example, in an internet book
club, decisions have to be made on whether a
member can place more than one order. The

111

0

11

0111

0

0

11p

155

..Chapter 7 Structured data modelling

policy decision becomes a business rule that
can be used to identify entity types, relation-
ships, and cardinality.

Logical data modelling is used to develop an
integrated picture of an organization’s data for
corporate databases and various IS that draw on
the databases. Most organizations store transac-
tions data on computer databases to provide a
central store which various IS access to produce
operational and management information.
Such database design requires an integrated
approach to enable the development of inte-
grated IS that provide consistent information to
managers. Failures in the integrity and consis-
tency of information can result in poor man-
agement decisions, which affect a company’s
performance.

7.3.1 Structured data and process
systems models

A model is an analytical conceptual tool. It does
not capture the problem domain as it is but as
an abstract representation of it. A systems
model is made using a formal notation and is
normally diagrammatic. The modelling nota-
tion used is not the actual computer program-
ming language used to write the eventual
computer programs. In this respect structured
analysis is computer-independent. It is separ-
ated from the computer implementation of the
system. The logical system data and process
models have to be subsequently converted into
computer design and code.

From analysts’ perspective, an important
feature of systems models is that they are objec-
tified representations of the problem domain.
(Objectification is not the same as objectivity.)
Objectification is the process of externalizing
mental ideas or constructs for others to share.
An early justification for the development of
structured analysis was that objectified data and
process models enable communication among

systems project professionals and between
systems analysts and people.

In structured analysis logical data models are
designed first and then the logical process
models. They are developed to facilitate com-
munication, check assumptions and under-
standing, and test proposals. As the actual
problem domain cannot be comprehended and
understood in its entirety, aspects of it are taken
and represented in a model. Only details of the
problem domain that are of interest are mod-
elled, other details are not modelled. The
purpose of a model is to:

• develop knowledge and understanding;
• enable communication;
• analytically generate alternatives;
• determine relationships between entities;
• design implementable systems models.

Data and process models are developed to
gather knowledge and understanding of the
transaction data in a problem domain. The
models are not to be understood as the actual

application domain. It is because the actual
application domain is complex and difficult to
comprehend that models are developed. The
models resulting from structured analysis are
used to inform systems design.

The various data and process models
developed provide three different perspectives
on a system. The perspectives are data, process
and entity life. Together they provide an
overview of a new IS. They are related and
enable checks to confirm consistency. For
example, process and data stores in dataflow
diagrams in process modelling are related to
entities in an E-R diagram in data modelling.
An entity in data modelling is related to an
entity life history model if its life history is mod-
elled. A process is related to an entity life history
as events in it.

156

Part III Systems analysis..

7.4 Logical data modelling

Techniques and tools for structured logical data
modelling have been developed to represent
data in the problem domain as logical data mod-
els. The techniques are supported with CASE
tools. They prescribe systems analysis activities
for analysts and consist of the following:

• entity relationship diagrams;
• logical database descriptions;
• data dictionary for the project.

The term ‘logical’ refers to data and pro-
cesses in the problem domain from which all
implementation dependent – physical – charac-
teristics are removed. The term ‘structure’
emphasizes the need to provide frameworks that
analysts can use. The frameworks describe activ-
ities, detail steps and stages, and define inputs
and outputs required for systems modelling.

An analyst’s task is to develop entity-
relationship diagrams (data models) using the
entity-relationship modelling technique. Two
systems analysts may develop two completely
different entity-relationship models of the same
problem domain. The entity-relationship mod-
elling technique is individually (subjectively)
applied leading to individual (subjective) logical
data models. Subjectivity is not considered to be
a problem in structured logical data modelling.
Experienced data modellers are regarded highly
for their ability to determine relevant business
rules that lead to appropriate logical data
models.

7.4.1 Entity-relationship modelling

Analysts develop entity-relationship diagrams
or E-R models of transactions data in the
problem domain. E-R modelling serves to rep-
resent things of interest to the organization
(entities) and determines their relationships with
each other. A result of the E-R model is data

tables that enable analysts to define the neces-
sary set of operations on the data to produce
operations and management information. In a
typical E-R modelling process the analyst will:

• identify the problem domain, or relevant
sections of the domain;

• identify things of interest in it;
• identify and name entity types;
• determine each entity type’s attributes;
• determine the relationship types between

entities;
• draw an entity diagram model;
• normalize the entities and relationships.

E-R modelling is an iterative process. A final
E-R model will be the result of several itera-
tions, especially when developing the model
into third normal form or higher.

Entity

An entity is anything in the application domain
that can be represented by name, attributes and
relationship. It is an abstraction of a thing in the
problem domain that generates data that is
stored. An entity is important because it pro-
vides information on actual data to be processed
in a new IS. Entities are classes of concrete or
abstract things in the problem domain. They
can be physical things in the problem domain
or ideas or concepts relevant to the operation
and management of an organization.

Both technical modelling skill and knowledge
of the problem domain are required to identify
entity types. Data is generated and stored for
each occurrence of entity types in the problem
domain. Analysts examine transactions data to
identify relevant entities, which are shown in
capital letters in descriptions of a system.
Analysts decide whether a thing of interest in the
problem domain is an entity or an attribute, and
they give a name to the identified entity type.

111

0

11

0111

0

0

11p

157

..Chapter 7 Structured data modelling

Predicates are used to determine entity types
because they describe a problem domain. For
example, as thousands of sales occur in a
company, an abstraction capable of recording
all the sales is required. Consider a sales trans-
action description that an analyst might use to
identify relevant entity types:

In this description of a sales operation, trans-
actions data on the sale of goods can be
analysed to identify various physical and
abstract entity types. Entity types can be iden-
tified from a text document in the problem
domain by underlining the nouns, as shown in
the box above. The sale or purchase is an entity.
The sales assistant is an entity. The customer
who makes the purchase is an entity. The item
purchased and sales receipt are entities. The
sale price is an attribute of the sale entity with
a value (cost) of £99.00.

The underlined entities can be named as
entity types in capital letters: SALE, SALES_
ASSISTANT, CUSTOMER, ITEM and
SALES_RECEIPT. An entity type is a group
of similar objects in the problem domain, for
example CUSTOMER entity type.

The identification of entities and entity
types is non-trivial. Consider the following
description of an employee:

The same person in the organization may
have different roles. Freda is both an experienced
financial accountant and a senior manager.
Analysts need to determine how best to organize
useful information by skilfully identifying entity
types for database design. They have to decide
whether to create separate entity types for
these two roles of the individual in the organiza-
tion, say FINANCIAL_ACCOUNTANT and
SENIOR_MANAGER, or to create one entity
type, say FINANCIAL_ACCOUNTANT and
add an attribute for management skills – senior
manager. The latter is an efficient solution in
terms of normalization.

Relationship

Relationships between entities establish the
meaning or semantics of the logical data model.
Analysts identify the relationships between the
entities. As entity types have no meaning on
their own, they need to be expressed as rela-
tions for business operations and management
information. Defining relationships is an
important feature of logical data modelling
because it determines the eventual usefulness of
the IS to people.

Relationships can be identified from facts
in the problem domain. For example, it is a
fact that the SALE and ITEM entity types are
related to the CUSTOMER entity type, because
a sale occurs when a customer makes a pur-
chase of an item. This fact is an example of a
business rule. Business rules form a significant
basis for establishing relationships between
entity types.

Managers rely on relevant relationships def-
initions for operational and management
information. For example, a sales executive
interested in generating more sales to make the
organization profitable will seek answers to
certain questions. They may ask questions
such as: ‘Which item is selling more?’ ‘Which

158

Part III Systems analysis..

A customer makes a purchase of a DVD
unit. It costs £99.00. The sales assistant
records the sale on the till, which generates
a sales receipt for the customer.

An employee Freda Ericsson is an experi-
enced financial accountant. She works
in the finance department. She is one
of the senior managers of the finance
department.

customers are buying the most?’ Information on
the former question will help to produce more
of the popular item. Information on the latter
question will help to target customers who gen-
erate the most income. Such information can
only be generated if appropriate relationships
between entity types are determined.

The value of an IS occurs when it is able
to provide valid, accurate and timely infor-
mation to decision-makers. So the ‘right’ rela-
tionships need to be modelled. Since logical
data modelling is a subjective process, analysts
require knowledge of the problem domain
and its detailed operations to ensure that
entity types are appropriately identified and
related.

Attribute and keys

Analysts identify the properties or attributes of
entity types. Attributes are emboldened in a
description of the problem domain. The attrib-
utes of the SALE entity type are: DATE,
RECEIPT_NUMBER, ITEMS, CREDIT_
CARD_NUMBER, AMOUNT, VAT. Attri-
butes have values that provide details of partic-
ular sales. Each sale made will have values
recorded for each attribute, even if the value is
zero. For example, a customer may make a cash
purchase so there will be no value recorded in
the CREDIT_CARD_NUMBER attribute.
Attributes appear in the data dictionary as
primitives.

As many sales will be made each sale needs
to be identified by an attribute uniquely, this
is called the RELATION KEY or KEY
ATTRIBUTE, shown as underlined. In the
SALE entity type, the RECEIPT_NUMBER is
the key attribute. Its value or receipt number
can be used to uniquely identify any particular
sale, no other sale will have the same value for
receipt number.

An attribute key can consist of more than
one attribute of an entity type. The attri-

butes of the CUSTOMER entity type may
be: NAME, CUSTOMER NUMBER,
ADDRESS, TELEPHONE_NUMBER. The
key attribute for the CUSTOMER entity type
is the group of attributes CUSTOMER_
NUMBER and NAME. The attribute NAME
cannot be the key attribute because there may
be two customers with the same name
John Smith or Risha Patel. CUSTOMER_
NUMBER and NAME can be used to identify
uniquely a customer.

Consider the following:
In the above description of the hotel problem

domain, an analyst may identify GUEST,
EMPLOYEE, ROOM and AGENT as entity
types. The attributes of the GUEST entity type
may include: FIRST_NAME, FAMILY_
NAME, ADDRESS, GUEST_NUMBER,
REGISTRATION_DATE, and ROOM_
NUMBER. The attributes identified of
EMPLOYEE may include: NAME,
NATIONAL_INSURANCE_NUMBER,
ADDRESS, SKILLS, SALARY, LINE_
MANAGER. The key attribute for the
GUEST is GUEST_NUMBER and for
the EMPLOYEE it is the NATIONAL_
INSURANCE_NUMBER.

Attributes have a value. Table 7.1 shows the
attributes and values of the entity type GUEST.
The entity and its attributes are a record of the
facts about the entity.

Entity types are defined in table types similar
to Table 7.1, but without the value column.
The key attribute normally appears first and the
other attributes below it. If a key is composed

111

0

11

0111

0

0

11p

159

A hotel receives a guest from a booking
agent. The guest registers with the hotel
clerk who takes the guest’s name and
address, and records the length of stay and
allocates a room.

..Chapter 7 Structured data modelling

of multiple attributes they are listed above the
other attributes.

7.4.2 Types of relationships

The relationship in an E-R model is used to
represent an association between entity types. A
relationship between entity types is named. In
the hotel example, the GUEST entity type is
related to the ROOM entity type by the rela-
tionship OCCUPIES, as shown in the E-R
diagram in Figure 7.1. An E-R diagram is inter-
preted by reading every relationship in both
directions. A GUEST occupies a ROOM or a
ROOM is occupied by a GUEST. A GUEST
may occupy one ROOM.

The relationships between entity types vary
in accordance with logical, social, organiza-
tional and physical aspects of the problem
domain. Relationships are defined on the basis
of the business rules established by analysts.
Business rules are how the organization oper-
ates based on its objectives, policies and proce-
dures. In a hotel, rooms are for occupation by
guests and earn a rent for the company.

The relationship types are called the cardi-
nality of the relationship because a relationship
between entity types has a specific number.
Cardinality defines the numeric relationship
between occurrences of the entities on either
side of the relationship line, they are defined in
Table 7.2. For example, in the E-R diagram in

Figure 7.1, the relationship between the
GUEST and ROOM entity types is one-to-one
(1:1) because a guest normally occupies one
room. (It is possible for an individual guest to
occupy more than one room, say for example
when someone may book several rooms for
a wedding function.) Another example of a
one-to-one relationship is that one person is
responsible for a department’s budget.

Analysts have to determine the cardinality of
the relationship between entity types. They
need to examine each entity type in turn to
check how many entities occur. The informa-
tion to determine the cardinality of the rela-
tionship between entity types is found in the
logic of the problem domain or the business
rules established in conceptual data models. In
the example from section 7.4.2, hotel occu-
pancy determines how the identified entity
types are related, as shown in Figure 7.1.

7.4.3 Normalization

Normalization is used to develop relational data
structures for relational database design.
Normalization is a series of steps followed to
obtain a database design that allows efficient
storage and access of data in a relational data-
base. It is based on relational calculus and it is
theoretically derived. Analysts need to be aware
of normalization but do not necessarily need to
explain how it works.

160

Part III Systems analysis..

Table 7.1 Entity type, attributes, values

Entity type Attributes Value

GUEST GUEST_number 007007

GUEST_first_name Risha

GUEST_family_name Patel

GUEST_address 1 Kensington Place

GUEST_registration_date 20/12/03

GUEST_room_number 234

Normalization is the process by which entity
tables are simplified so that each item of data
stored for an entity is in its simplest form. The
purpose of normalization is to remove redun-
dant data items from a set of entity type tables
to make database storage efficient. It is used to
eliminate data redundancy by removing entity
attributes that may be stored more than once
in relational tables. The normalization pro-

cess is based on functional dependencies and
relation keys or key attributes.

There are various forms of normalization.
An entity type table in a relational database
system is in normal form if it satisfies certain
constraints as defined in Table 7.3.

Normalization is extended to 4NF and 5NF.
In 4NF the check is for multivalued depen-
dency. In 5NF the check is for multivalued

111

0

11

0111

0

0

11p

161

OCCUPIESGUEST ROOM

Figure 7.1 Naming entity type relationships

Table 7.2 Entity relationship types

Cardinality of relationship Description

One-to-one (1:1) The one-to-one cardinality is defined for entity types when one
occurrence of the entity type is related to one other occurrence of a
different entity type.

CUSTOMER transacts one SALE (1:1)

CUSTOMER has one INSURANCE POLICY (1:1)

EMPLOYEE has one NI_Number (1:1)

NI_Number has one EMPLOYEE (1:1)

One-to-many (1:m) The one-to-many cardinality is defined for entity types when one
occurrence of the entity type is related to many occurrences of a
different entity type.

SALE contains many ITEM (1:m)

CUSTOMER can buy many ITEM (1:m) (each item is bought by one
customer).

DEPARTMENT has many EMPLOYEES (1:m)

DEPARTMENT has many EMPLOYEES (1:m) but each EMPLOYEE
belongs to one DEPARTMENT.

Many-to-many (m:n) The many-to-many cardinality is defined for entity types when
occurrences of multiple entities in a entity type are related to multiple
occurrences of another entity type.

STUDENT can enrol on many MODULES (m:n)

PART can have many COLOURS (m:n)

EMPLOYEE can be on many PROJECTS (m:n)

..Chapter 7 Structured data modelling

redundancy. These higher orders of normaliza-
tion ensure that relational data structures
contain the simplest and non-redundant data
structures.

In the CUSTOMER entity type, the attrib-
utes name and address are functionally depen-
dent on the key attribute customer number.
There are no redundant data items for the CUS-
TOMER entity type, as for each CUSTOMER
there is only one record of name and address.

The five rules of normalization stated in
simple terms are:

1 Eliminate repeating groups. Make a separate
table for each set of related attributes, and
give each table a primary key.

2 Eliminate redundant data. If an attribute
depends on only part of a multi-valued key,
remove it to a separate table.

3 Eliminate columns not dependent on key. If attrib-
utes do not contribute to a description of the
key, remove them to a separate table.

4 Isolate independent multiple relationships. No table
may contain two or more l:m or m:n rela-
tionships that are not directly related.

5 Isolate semantically related multiple relationships.
There may be practical constraints on
information that justify separating logically
related many-to-many relationships.

7.4.4 Logical database design

The logical database model is a layer of design
between people who use the data in a database
and the physical database. People who use the
data are employees, managers, and executives.
They each have different needs from the data
– this is called their ‘logical view’ of the data.
The physical database is the way that data is
actually stored in a database on a computer.
The term ‘physical’ refers to implementation
dependent characteristics of data and process-
ing. It describes how data is stored and
processed on computer disks, tapes and paper.

The logical database model allows different
logical views of the stored data in the database.
For example, a credit controller needs informa-
tion on payments made or outstanding and a
production manager needs information on
quantities and types of products ordered. The

162

Part III Systems analysis..

Table 7.3 Relational data structure normalization

Normal form Comments

First normal form (1NF) No repeating groups of attributes and all attributes entered. Eliminate
repeating groups by putting each repeating group in a separate table
and connect it with a one-to-many relationship. Every piece of
information stored in each of the rows of the table should be atomic
or indivisible.

Second normal form (2NF) If it is in 1NF and every entity attribute that is not part of the key
depends on the whole key. Second normal form eliminates functional
dependencies on a partial key by putting the attributes in a separate
table form those that are dependent on the whole key.

Third normal form (3NF) If it is in 2NF and each entity attribute not part of the key attribute
depends on the key attribute. Third normal form eliminates functional
dependencies on non-key attributes by putting them in a separate
table. At this stage, all non-key fields are dependent on the key, the
whole key and nothing but the key.

logical database contains the overall structure of
the database not the physical storage.

In the logical database, similar objects from
the problem domain are collected into entity
types and represented by their cardinality. E-R
models contribute to the system architecture de-
sign of a logical database. They are used to
develop the logical views. The E-R models
depict the database structure. They need to
be converted to logical record structures, or
the ‘logical database’ for the detailed physical
database design.

The CUSTOMER entity type from section
7.4.1 with its attributes is translated into a
logical record structure, shown in Table 7.4.
The logical record will store data or values on
the customer’s NAME, FIRST_NAME,
CUSTOMER_NUMBER, ADDRESS, AND
TELEPHONE_NUMBER. The same is done
for the SALE and ITEM entity types.

7.5 Documentation

The deliverables from system requirements
analysis, data and process modelling activities
are tangible products. Documentation is a deliv-
erable from data and process modelling. The
different kinds of documents produced in
SSADM as an example are:

• diagrammatic reports
• forms
• matrices
• narrative reports.

Documentation is easier with CASE tools,
which produce higher quality documents that
can be rapidly amended while preserving
integrity and consistency across diagrams. The
deliverable from data modelling is a set of E-R
diagrams and from process modelling a set of
coherent, inter-related data flow diagrams.

7.5.1 Data dictionary

The data dictionary is a key element of a
system project. It is a data resource for systems
analysts and systems designers, and other team
members. It contains information on the IS
to be developed and other sources of informa-
tion on it, and on existing systems. It contains
all the required information to develop an IS,
including data definitions and systems pro-
grams, and databases information. As it con-
tains information on the data used in the system
or other IS, its content is also called ‘meta-data’.
Meta-data is data that describes or explains
other data.

A relational database design results in many
entity type tables that become difficult to
manage and access. The data dictionary stores
information on these tables. It contains
information on the logical data and process
models, and collation of other system informa-
tion. In terms of entity types it would contain
information on the CUSTOMER, SALE,
ITEM entities from section 7.4.1. It contains
information on the logical process models and
data definitions.

111

0

11

0111

0

0

11p

163

Table 7.4 Logical database records based on entity definitions

CUSTOMER_ FIRST_NAME CUSTOMER_ ADDRESS TELEPHONE_
SURNAME NUMBER NUMBER

Romonavich George 001007 1 Chelsea Place 0208 5758 4890

Patel Risha 007007 1 Kensington Place 0208 3892 9240

Brown Andrew 006911 2 Tedlow Gardens 02789 881 998

..Chapter 7 Structured data modelling

7.6 Data modelling and the Critical
Framework

7.6.1 Systems ontology

The systems ontology component of the Critical
Framework is the basis for uncovering and
examining premises in logical data modelling.
It supposes certain systems ontology that ana-
lysts need to appreciate and evaluate. Figure 7.2
is the Critical Framework populated with criti-
cal reflection on logical data modelling and the
E-R notation. As the bottom layer shows, many
questions concerning the four themes of criti-
cality arise from the assumption of logical data
modelling.

To develop knowledge and practice, analysts
using structured logical data modelling require
particular personal constructs. They need to
understand the objectivist systems ontology of
structured logical data modelling. Analysts need
to consider ‘objectivity’ as a particular personal
construct and its development in practice.
Objectivity is the ability of a systems analyst to
be detached and impartial of the subject being
investigated, and to analyse the problem
domain with detachment and impartiality, free
of any bias.

Development of E-R diagrams is central in
structured logical data modelling. E-R model-
ling assumes an objective problem domain
where data exist independently of analysts and
people. Whether data entity types or data-
centric view is a sufficient characterization of
the problem domain is an issue for analysts to
consider in terms of critical skills for applying
structured instruments.

Analysts job is to determine business rules,
identify entity types, their attributes and rela-
tionships. A critical issue is how this can be
achieved. It is possible that two analysts may
develop entirely different E-R diagrams con-
taining different entity types, attributes and
relationships for the same problem domain.

Two different E-R diagrams on the same
problem domain raise questions about the inde-
pendent existence of entities and objective mod-
elling. A team of analysts working together
would need to reach consensus. This means
that in practice – the real human problems –
subjective definitions have a significant role in
structured analysis.

7.6.2 Real problem domains

Representations of reality are only as sophisti-
cated as the notation language used. The E-R
notation is based on a mathematical represen-
tation of reality – relational calculus. It relies
on a representative sample, the business rules
extracted from the facts in the problem domain,
to define data structures. It is arguable whether
human activity in organizations can be repre-
sented in mathematical terms and whether a
representative sample is sufficient for IS in a
dynamic business environment. The UML
object-oriented notation leads to an arguably
better reflection of reality and human activity.
Its development constitutes a transformatory
critique of ontological knowledge and practice.

Structured logical data analysis and systems
ontology define human problems – organiza-
tion and its human activity – in terms of entity
types. It further assumes that three types of
objects can represent the problem domain: (a)
entity type, (b) relationship, and (c) attribute.
As analysts have to learn to interpret the
problem domain in terms of these three objects,
they need to consider whether they are suffi-
cient to represent the complex social reality that
is human organization.

Structured data analysis assumes that systems
analysts can create logical data models that can
be translated into systems implementation mod-
els. Analysis in actual situations poses barriers for
analysts. A significant barrier is communication
with people. E-R diagrams are intended to facil-
itate communication but people do not generally

164

Part III Systems analysis..

111

0

11

0111

0

0

11p

165

Apply formal
methods

Real world of
human problems

(Messy world)

Business rules change,
subjective meaning of
information for people

Systems
ontology

Structured logic
data models

Things of interest,
business rules,

objective
logical models,

abstract
data entities,

relations,
and cardinality

Pragmatic
resolution

Develop a simple
prototype

???

Interpret formalisms in
practice

Develop knowledge
Determine a pragmatic
resolution to problems
with formal methods

Resolve
problems

Transformation of
traditions reflexivity

Can people participate to
identify business rules?

Critical skills

How can the complexity
of E-R models be

communicated simply
to people?

Transformatory critique

Is the data-centric view
sufficient?

Figure 7.2 Critical framework: systems ontology based on logical data modelling

..Chapter 7 Structured data modelling

understand them, and even analysts find non-
trivial E-R diagrams difficult to interpret.

Analysts have to question business opera-
tions and processes to seek out inefficiencies and
improve effectiveness. Representing the
problem domain as E-R models poses difficul-
ties for improving organizational efficiency and
effectiveness. E-R models are not rich enough
to enable analysis of organization. Structured
logical data modelling itself does not facilitate
this search for business performance improve-
ments. Analysis should produce alternative
business process models that take advantage of
IT. Radically alternate uses of IT based on busi-
ness process notations, rather than structured
notations, have been spurred by business
research, for example BPR, and business prac-
tice, for example eCommerce. An example is
the Role Activity Diagram (RAD) notation
which depicts roles, activities and relationhips.

7.6.3 The representative power of
notations

The representative and communicative power
of notation languages is significant for systems
ontology. Notation languages provide a
common language with which analysts can
communicate with other systems project team
members, users and stakeholders. Analysts’ use
of E-R diagrams as communicative tools need
purposeful thought. It is easier for other ana-
lysts, programmers and database administrators
to share the mutual and common understand-
ing of E-R diagrams. It is not so transparent for
people. They are not technically capable of
understanding the E-R notation and so cannot
make intelligible observations or comments.

There are limitations of notation languages
to represent the problem domain and function
as communicative tools. The E-R notation is not
sufficiently rich to represent a problem domain.
Its focus on data and data effectiveness is at the

expense of reflecting social and organizational
elements in a problem domain. The social and
individual dimension is now accepted know-
ledge and practice of IS. These limitations have
led to other forms of IS development like XP.
XP is an example of transformatory critique
and refashioning of traditions originating within
the practitioner community. It makes use of
‘user stories’, which are used to establish system
requirements and inform the IS development.

7.6.4 Analysts’ objectivity

During the 1990s the new IS models completely
transformed organization on the basis of BPR
knowledge resulting in human resource cost sav-
ings. The systems models analysts produce aim
to achieve such business efficiency effectiveness,
and improved productivity. Detachment and
impartiality is sometimes onerous on analysts
who have to point out the problems with cur-
rent IS and recommend cost savings or job
redundancies. Objective practice is questionable
when analysts work closely with people.

To be objective analysts need to predeter-
mine analysis activities. They need to make
plans of how a particular systems analysis will be
undertaken. Despite the objectivity criteria, two
systems analysts may develop two completely
different E-R diagrams for the same problem
domain. Rather than being objective, the E-R
notation is subjectively applied. Subjectivity is
recognized and permitted in alternative systems
ontology, for example ASD or prototyping to
some extent. In prototyping systems models are
developed iteratively and in consultation with
people. The emphasis on individuals rather than
formalism in ASD recognizes subjective views.

7.6.5 Corporate databases

The challenge in data modelling is to develop
relevant data models and databases such that

166

Part III Systems analysis..

they cater for past and future data requirements.
Companies have tried to develop ‘enterprise-
wide information architecture’, but mostly failed
because of system integration problems, and
incurred high costs. One persistent problem is
the localized or fragmented data stores needed
for various IS and the lack of integration.

In actual situations there is a constant need
to update databases to reflect localized business
change. Also, new data models are emerging
that lead to a transformatory critique of E-R
modelling. For example, image and voice data
are now a significant element of organizational
data too, requiring new data models combining
traditional transaction data, image and sound.

The development of corporate databases
through data analysis is problematic and less
plausible with constant business change. One
solution has been to consistently redefine data,
but this is costly to do. Another is to optimize
data structures to deliver speed and flexibility,
but this results in more time spent doing data
modelling, whereas the trend is to shorten IS
development time.

7.7 Personal Critical Framework
development

7.7.1 Personal constructs for data,
information and knowledge

Table 7.5 is a sample repertory grid for data,
information, and knowledge. Reproduce the
grid on a spreadsheet and add further columns
and their polar opposites that you consider
relevant. To objectify personal constructs in
data, information and knowledge, complete the
grid by following the details on how to use
a repertory grid in section 1.10.1.

7.7.2 Systems ontology and the problem
domain

Questions

1 Evaluate whether E-R modelling is a suffi-
cient notation language to represent a
problem domain.

2 As an analyst, discuss whether you would
want to develop objective data models.

111

0

11

0111

0

0

11p

167

Table 7.5 Personal constructs for data, information and knowledge

Pole 1 Pole 2

Stable Fluid

Can capture Cannot capture

Can model Cannot model

Apply Cannot apply

Process Cannot process

Logical Physical

Fact Interpretation

Abstract Real

D
at

a

In
fo

rm
at

io
n

K
no

w
le

dg
e

B
us

in
es

s
tr

an
sa

ct
io

n

N
ot

at
io

n
la

ng
ua

ge

M
od

el

A
ct

ua
l

M
ea

ni
ng

..Chapter 7 Structured data modelling

Provide analytical examples to illustrate your
position.

3 Structured logical data modelling is based on
the premise that an optimal and efficient
solution can be obtained for a problem.
Critically discuss.

Activity A

Analysts have to decide what ‘things of interest’
to include in an E-R model. The choices made
affect how the problem domain is conceived, or
how they define the real world. E-R models can
distort the issues in the problem domain. For a
problem domain of your choice:

• Identify and justify entity types, attributes
and relationships.

• In what ways do your choices limit repre-
sentation of real human problems?

• What is the significance of the limitation on
decision-makers, who will eventually use the
information produced, and the organiza-
tion?

Activity B

Structured logical data modelling requires ana-
lysts to:

1 Identify the relevant physical organization –
people, transactions, documents – or the
problem domain.

2 Develop ‘infological’ or logical data models.
3 Convert the logical models into the physical

design for computer implementation.

In a group:

• Identify a problem domain, say university
student records or supply chain management
in a company.

• Make a list of the physical things of interest
in the problem domain.

• In ‘infological’ terms, explain why the things
you identified are of interest.

• Make a list of the entity types of interest, for
each entity type determine its attributes, and
state the cardinality of the relationships
between entities.

• With a peer discuss whether ‘infological’ is a
relevant personal construct for you.

7.7.3 Conceptual and logical data
models

Questions

1 The notion of ‘model’ is a significant intel-
lectual tool for framing, analysing and
understanding actual human problems.
Critically evaluate the role of modelling in
IS development.

2 Evaluate the importance of abstract models
in the process of IS development. (Investigate
ASD as an alternative.)

Activity A

Before E-R diagrams can be developed, ana-
lysts need to develop conceptual data models
from the problem domain based on the ‘busi-
ness rules’. Consider the following facts or
things of interest in the Human Resources
department problem domain: department,
divisions, employees, function, roles and skills.

Some gathered information on the things of
interest is:

An employee always has a job title.
An employee always has zero or more skills.
An employee always has one and only one role.

Sample Facts: Risha Patel is a software pro-
grammer currently working in the IS depart-
ment as a project manager. Brenda Jones is a
database specialist currently working in the IS
department as a database administrator.

168

Part III Systems analysis..

• Define the area of interest.
• Define the things of interest.
• Analyse the things of interest and identify the

corresponding tables.
• Establish the relationships between the tables.

7.7.4 E-R models

Questions

1 In real human problems practice and the
application of formalism like E-R notation to
develop IS is important. Discuss the value
formalism has for you as a systems analyst.

2 Explain why you would decide to represent
an object in the problem domain as one or
more entity types rather than as attributes of
an entity type.

Activity A

In pairs each person:

• Independently look at Figure 7.3 and write
a description of the problem domain you
think the E-R model represents.

• What assumptions have you made in your
description?

• Compare your description and assumptions
with your peer.

• Discuss the problems subjectivity raises for
interpreting E-R data models.

Activity B

• Select an organization familiar to you.
• What are the entity types of interest in it?
• List the attributes of each entity type.
• Underline the attribute in each entity type

that is its unique identifier.

7.7.5 Separation of systems design from
implementation

Questions

1 Evaluate the benefits to structured systems
ontology of computer-independent design.

2 What kind of problems might arise in trans-
lating or transforming analysis models into
implementations (design models)?

111

0

11

0111

0

0

11p

169

TEACHING
ALLOCATIONLecturer Module

Research activity

Figure 7.3 Teaching allocation relationship

..Chapter 7 Structured data modelling

170

Part III Systems analysis..

7.7.6 Internet sources

An excellent source for definitions relevant to data modelling is the following website:
http://www.datamodel.org/DataModelDictionary.html. Also look at www.datamodel.org as it
offers a community of data modellers.

Surf http://www.databaseanswers.com/data_model. It provides free data models. You can
examine a variety of structured and object data models and the associated information on
database design.

7.7.7 Further reading

Schmidt, B. (1998) Data Modelling for Information Professionals, New York: Prentice Hall.

Reingruber, M. and Gregory, W. (1994) The Data Modelling Handbook: a Best-Practice Approach to Building

Quality Data Models, Winchester: Wiley.

8.2 Introduction

A logical process model depicts processes that
transform data into other data or information.
Like logical data modelling, structured logical
process modelling is the development of non-
implementation specific logical process models.
The models are of the logical process required
to complete business tasks or processes. Process
modelling is a descriptive act in which the
organization is interpreted in terms of processes.
Descriptive process models ‘describe’ how
processes are enacted in the problem domain.

Logical process modelling removes physical
references from the process description such as
who does what, using what medium, and where
in the process. If physical aspects were to be

modelled it would restrict systems design deci-
sions later. The purpose of logical process mod-
elling is to objectify or determine all the
functions or data transformation required in the
system. Process models are used as a commu-
nicative device among the systems project team
and with people.

Processes are dynamic and reflect the nature
of business organizations. A typical business
process in a manufacturing company is a sales
order process, for which transaction data is gen-
erated. It involves a customer contacting the
company to place an order. Sales make a record
of the details of the order, accounts generate an
invoice, production produce the goods, and
transportation ship the finished goods to the
customer.

111

0

11

0111

0

0

11p

171

Chapter 8

Structured process modelling

8.1 Learning outcomes

After completing this chapter you should be able to:

• Interpret the problem domain in terms of processes and data flow diagrams.
• Develop simple DFD diagrams with DFD notation and logic modelling techniques.
• Analytically evaluate the role of process modelling in IS development.
• Critically assess how well data flow diagrams describe a problem domain.

Process modelling is important in structured analysis. It determines how a new IS will
function to produce required information. It draws on the E-R models from logical data
modelling to define system functions and data processing.

Logical, also called ‘infological’, process
models provide a process perspective of a new
IS. Processes can be defined in terms of what
they produce. A sales order process results in a
sales order being generated, or a market
research process results in a marketing plan.
Analysts refer to the series of actions required
to generate a sales order or a market plan as
‘logical business processes’ or processes. The
term ‘process’ describes the series of actions that
people take to complete a task, like taking a cus-
tomer order or producing a marketing plan.
Taking an order for a sale requires a clerk to
take details of the customer, number and type
of units required, and to pass them onto pro-
duction. In efficiency terms, process modelling
covers actions taken to achieve an objective
such as customer relationship management, the
sales process or a market research process.

8.3 Process modelling techniques

Process modelling techniques are formalism for
representing processes as systems process
models. The developed process systems models
demarcate the things to be performed by the
computer system from things that people do
manually. They set the boundary between
human activity and computer processing. Such
models describe what data transformation
the system will do and how the data will be
transformed.

The process modelling technique used
in structured systems analysis is Data Flow
Diagrams (DFDs). Another structured tech-
nique is State Transition Diagrams. The DFD
provides a graphical representation of processes
or functions in the problem domain that will
compose a new IS. It shows data transformation
through processes that capture, manipulate,
store and distribute data between components
within a system and between a system and its
environment.

8.4 Data flow diagrams

The DFD is used to depict the scope of a new
IS, show the interaction of humans with the
system, and the system with its environment.
Analysts’ task is to identify the processes,
develop process models and write documenta-
tion to record the findings. DFD depict how
data is processed in system terms with initial
inputs, and outputs from processes used as
inputs for other processes. The DFD depicts:

• context
• system boundary
• processes
• inputs
• outputs
• subsystems
• interface.

A DFD depicts how logical data move
around in a system. It describes logical data at
rest, moving, and being transformed or
processed. There are four types of DFD:

• Current physical: description of the existing
physical system, if one exists.

• Current logical: description of the ‘info-
logical’ existing system, if one exists.

• New logical: description of the new ‘info-
logical’ system required.

• New physical: description of the new physi-
cal system.

Usually all four types are developed by analysts.
The current physical process model is devel-
oped to gather information about the problem
domain. The current logical process model is
developed to separate the logical processes from
the physical things they depend on to be accom-
plished. These models can be analysed to
examine current processes and workflows. The
new logical process models are developed to

172

Part III Systems analysis..

depict system requirements, and they remove
any inefficiency observed in current physical
and logical process models. The new physi-
cal process models are developed to describe
implementation features.

8.4.1 DFD notation

There are many notations for drawing DFD.
The one adopted here is shown in Figure 8.1.
Definitions of the symbols are given in Table 8.1.

Analysts make some typical errors in drawing
DFD. These are summarized as:

• connecting an external source directly to a
data store;

• showing a process with no outputs;
• showing a process with no inputs;
• connecting a data store directly to another

data store.

Following the rules listed in Table 8.1 can
prevent such modelling errors.

8.4.2 Levels, decomposition and
balanced DFD

Detailed DFDs are drawn at different levels of
granularity using the decomposition or the
divide and conquer problem-solving strategy. It
enables a complete set of requirements to be
captured. Decomposition results in levels of
DFD that contain further detailed description
of the process and sub-processes. This method
is called functional decomposition or levelling.
It is an iterative process consisting of breaking
the description or perspective of a system down
into finer and finer detail. Decomposition of
processes is performed until no further benefit
is gained by further decomposing a DFD. The
result is a set of hierarchically related DFD in
which one process of a given DFD is explained
in greater detail in another DFD.

The extent of levelling depends on the level
of abstraction required. Skilled analysts are able
to decide which processes to decompose further
and when to stop decomposing a particular
process. The general rule is to stop when the
most primitive activities of the process is
reached. This is the lowest logical or elemen-
tary level of the process, which cannot be
further decomposed.

Levelling begins with a Level 0 diagram. The
Level 0 diagram, also called a context diagram,
is a top level DFD. It shows the process node –
process 0 – as a general representation of the
entire system in terms of external entities. The
process node at Level 0 is a black box with
inputs and outputs. The details of how it con-
verts inputs into outputs are not known but
become clearer when the process is decom-
posed further. It depicts time, volume and fre-
quency issues in the system, and shows coupling

111

0

11

0111

0

0

11p

173

..Chapter 8 Structured process modelling

Process

Data store

Source/sink

Data flow

Figure 8.1 DFD notation

174

Part III Systems analysis..

Table 8.1 Definitions of DFD symbol notations and DFD drawing rules

Symbol label Definition and drawing rules

Process A process is the work or actions performed on data so that they are transformed,
stored or distributed within or outside of the system.

Every process is triggered by an event.

Every process uses or transforms data.

Rules

A process cannot only have outputs.

A process cannot only have inputs.

A process has a verb phrase label.

Data store A data store is data at rest.

Rules

Data cannot move directly from one data store to another data store. A process can
only move it.

Data cannot move directly from an outside source to a data store or move directly
from a data store to an outside source. It must be received by a process and placed
into a data store and placed into an outside source by a process.

Data cannot move directly into an outside sink from a data store. A process must put
it there.

A data store has a noun phrase label.

Data flow A data flow is data moving from one process in a system to another. Also referred to
as data that move together.

Rules

Data flow can only flow in one direction.

A fork indicates a copy of the same data flowing.

The same data coming together in a coming location is a join.

Data flow must be processed before returning to the same process it came from.

Data flow to a store means updating either through deletion or change.

Data flow from a store means retrieve or use.

A data flow has a noun phrase label.

Source/sink A source is the origin of data and a sink is the destination of data.

Rules

Data cannot move directly from a source to a sink. A process must put it there.

An object with only outputs is a source.

An object with only inputs is a sink.

A source or sink has a noun phrase label.

Source: Adapted from Celko, J. (1987) ‘I Data Flow Diagrams’, Computer Language 4 (January): 41–43.

and decoupling of entities. Entities are coupled
when one entity is bonded with another. They
are decoupled when the bond is weaker.
Coupling is important during systems design
when programs have to be designed and coded.
Decoupled programs are easier to maintain
when changes in the problem domain need to
be reflected in them.

When the Level 0 DFD is decomposed it is
necessary to conserve the inputs and outputs in
subsequent sub-processes. Data flows present at
one level should also be present in a subsequent
decomposed level. This is called balanced DFD.
An unbalanced set of DFD result when inputs
or outputs at one level are not reflected at a
further decomposed level. An example is when
a process in the context diagram has one exter-
nal source but at level 1 the same process has
two external sources.

An example context diagram for a university
PC inventory system is shown in Figure 8.2. It
depicts a business problem domain. It shows the
overall ‘system’, the system boundaries, exter-
nal entities and inputs and outputs. Everything
within the boundary, Process 0, will be per-
formed by a new IS and everything outside the
boundary is the system’s environment – supplier
and maintenance contractor. Demarcation of
the boundary is the first decision for physical
design, because it shows what the computer will
do. The boundary may cut across processes

indicating that some processes will be comput-
erized in part only. This is more explicit in the
SSADM methodology.

Points at which humans interact with the
computer system over the boundary become the
human–computer interaction interfaces (user
interface), or system interfaces with other IS, or
sources of data. Analysts establish a list of events
in the system’s environment to which the system
needs to respond. These events may number
into the thousands for complex systems.

At Level 1 shown in Figure 8.3, the node
process in Level 0 is decomposed into other
processes and each sub-process has its business
objectives. Two processes are modelled called
Clerk Logs Invoice and Accounts Pay Invoice.
A data store is created called Invoice File.
The arrows show the flow of data between the
processes and between the processes and the
data store. Subsequent decomposition leads to
functional primitives or the elementary level,
which through process logic modelling, are
converted, through systems design, into pro-
gramme code.

8.4.3 Entity life history

As a DFD is weak at identifying events or data,
entity life history (ELH) diagrams are used to
ensure that the system has a response for all the
internal and external events. An event is any

111

0

11

0111

0

0

11p

175

University PC
inventory system

Maintenance
contractor

Invoice

Supplier

Payment

0

Payment

Figure 8.2 DFD context diagram for a PC inventory system

..Chapter 8 Structured process modelling

occurrence in the entity’s life. For example, for
the entity type INVOICE, logging an invoice
and settling the invoice are events. It is the ‘life
history’ of the entity in the system, and can be
drawn for logical or physical entities. In struc-
tured systems analysis, the life of an entity con-
sists of three types of events sufficient to
represent the complexity of any life:

• sequence
• selection
• iteration.

Figure 8.4 shows the basic life of the invoice
entity with two nodes’ details shown to third
level. Using SSADM notation it shows sequence,
selections and iteration. It must have a ‘birth’,
events that happen during its ‘life’, and a time of
its ‘death’. Selection is shown with a ‘0’ in the
box and iteration is shown with a ‘*’. For exam-
ple, an invoice is received, processed and paid.
The received invoice is logged as either for cash

payment on receipt or three month credit, so it
is shown as a selection with a ‘0’. Processing an
invoice is iterative, so it is shown with a ‘*’.

ELH diagrams ensure that errors in the
DFD are corrected before the system boundary
is fixed. Such diagrams can be complex with
several levels of detail. They also show the time
dimension of events. Analysts normally only
develop ELH for entities that are important or
complicated.

The E-R model, DFD and ELH diagrams
must be balanced. They must reflect the same
content and be logically consistent. Such
abstract data and process models enable ana-
lysts to ‘walkthrough’ the systems design with
potential users to verify system requirements.

8.5 Process logic modelling
techniques

When a DFD is decomposed to its elementary
or primitive level, analysts have to describe its

176

Part III Systems analysis..

Clerk logs invoice
Maintenance

contractor

Invoice

Supplier

Payment

1.1

Payment D
at

a
S

to
re

1

Invoice file

Invoice data

Accounts pay
invoice

1.2

Figure 8.3 Level 1 DFD for PC inventory system

process logic. The action taken to transform
transaction data into business information is
termed business logic. Process logic may be
described as the data-to-information trans-
formation and decisions on data. It is not quite
pseudocode or programming language specific
but sufficiently detailed to describe business
logic. The term process logic describes the busi-
ness actions taken on data, or what a process
does and how it does it. Determining process
logic results in a model descriptive of how the
process is controlled and the detailed action
taken on data in it.

For example, in a customer order process,
decomposition may result in a sub-process for
calculating discounts given. The discount policy
may consist of giving percentage discounts
depending on the size of the order and distance
of delivery. So there will be various discount
decisions. Process logic modelling is used to
provide detailed descriptions of these discount
decision actions.

There are many notations for depicting
process logic. They enable clear and unam-

biguous descriptions of activities on data in a
process. As the techniques are not complemen-
tary, analysts need to select an appropriate one
for describing the logic of elementary processes.
The choice will depend on the complexity of
the business logic in the process. The logical
models can be developed using a variety of
notations:

• structured English
• decision tables
• decision trees
• action diagrams
• Nassi-Schneiderman diagrams
• entity life cycles
• flow charts.

Logic modelling involves representing the
internal structure and functionality of the
processes depicted in the DFD. Like the DFD,
logic diagrams require iterative refinement.
Analysts share their work with people to seek
feedback for correctness checking. Process logic
models serve to provide an unambiguous and

111

0

11

0111

0

0

11p

177

Log Process Pay

Invoice

Cash on
delivery
payment

3 month
credit

Raise
cheque

Check
amount

Check
service

completed

*

00

Figure 8.4 Entity life history form

..Chapter 8 Structured process modelling

thorough explanation of the system’s specifi-
cation. The deliverable from logic modelling
are structured descriptions and diagrams of
the logic of each DFD process. Logic models
show the temporal dimension of system – when
something happens and how it happens.

8.5.1 Structured English

Structured English (SE) is a modified form of
English used to specify process logic. SE is
program-like structured English descriptions of
processes that use simple sentence constructions
and logical constructs. It is used to model the
business policies or rules in the problem domain
and to refine models of business processes.
Process logic can be refined with SE to a level
where all parties can understand unambigu-
ously the process being described. This is
regarded as a benefit for communication of
process logic modelling with SE.

SE uses action verbs like read, write and
move to describe action on data, and noun-
phrases like stock-item or high-value-customer
to describe entities. It uses four types of logical
constructs: sequence, conditional statements,
repetition, and case. Examples are shown for
business policies in Table 8.2.

The logical constructs used in SE are also
used in structured programming, which makes
SE suitable for process implementation, or
program code. SE is not suitable for describing
process logic with large number of variables in
the process. In such situations decision tables
are more appropriate.

8.5.2 Decision tables

A decision table is used where the business
process logic is more complex. A decision table
is based on a declarative format that is clear and
suitable for communication and program spec-
ification. Decision tables are used for displaying

large amounts of complex data. A decision table
has a condition stub, action stub and condition
rules, as shown in Figure 8.5 (a). A limited-entry
decision table with process logic is shown in
Figure 8.5 (b).

In Figure 8.5 (b), the decision table shows a
PC manufacturing company’s discount policy.
The number of condition entries depends on
the number of conditions and the binary (Y or
N) entries in decision tables. Since there are
three conditions and two possibilities for each,
the number of columns required is 23 = 8.

Reading down the first condition entry
column, a customer with a sale of more than
£20,000, who has been with the company for
more than two years, and has a repeat sale is
given the maximum discount of 10 per cent. In
the eighth column a new customer with a sale
of less than £20,000, who has not been with
the company for two years, and makes their first
sale is given no discount. Other columns show
the other permutations. During the iterative
development of the table it is possible to reduce
the number of columns similar to the functional
decomposition in DFD.

Extended entry decision tables are used
when there is not a simple binary yes or no
condition entry. Some process logic requires
further differentiation. For example, the sale
could be differentiated in three ways: < £5,000,
≥ £5,000 but < £10,000, and ≥ 10,000. These
conditions would be placed in the condition
entry stub and the condition would be the size
of sale.

8.5.3 Decision trees

A decision tree graphically depicts a decision or
choice situation as a connected series of nodes
and branches. It is good for displaying process
logic graphically but becomes cumbersome to
follow when the decisions are more complex.
Analysts have to think of the process logic as

178

Part III Systems analysis..

111

0

11

0111

0

0

11p

179

Table 8.2 Structured English

Sequence

DO

READ next stock-item

ADD new order from order-file to stock-file

UNTIL End-of-file

General Form

DO A

DO B

Conditional statement

BEGIN IF

IF stock-level is less then minimum-order-level

THEN GENERATE new order

ELSE DO nothing

END IF

General Form

If X is true

Then Do Y

ELSE Do Z

Repetition

READ Stock-File

WHILE NOT End-of-File DO

BEGIN IF

IF stock-level is less then minimum-order-level

THEN GENERATE new order

ELSE DO nothing

END IF

END WHILE

General Form

Do A While B is true

Case

READ Stock-level

CASE 1 (stock-level greater than minimum-order-level): Do nothing

CASE 2 (stock-level equals minimum-order-level): Do nothing

CASE 3 (stock-level is less then minimum-order-level): GENERATE new order

CASE 4 (no stock): ENTER emergency order

General Form

Case 1 A > 1,000 Do B

Case 2 A < 1,000 Do C

Case 3 A = 1,000 Do D

..Chapter 8 Structured process modelling

conditional alternatives with resultant actions.
Figure 8.6 shows a schematic example decision
tree. A node is numbered and has two or more
alternative paths. The action is the final policy
decision reached along a particular branch.
Probabilities can be attached along the paths to
show the likelihood of a particular outcome.

Decision trees are better communicative
tools because people in the problem domain
can easily follow them. As they graphically show
the basic business logic, people can follow them

and verify them with analysts. An illustrated
example of a university examination board’s
condonement policy with conditions and
actions completed is shown in Figure 8.7.

8.5.4 Action diagrams

Action diagrams use a limited set of English to
depict process logic. This set includes the struc-
tured programming constructs sequence, con-
dition, repetition, case and repeat . . . until,

180

Part III Systems analysis..

Condition stub Condition entries

Action stub Action entries

(a)

(b) Condition stub Condition entries

Sale > £20,000 Y Y Y Y N N N N

Customer for > 2 years Y Y N N Y Y N N

Repeat sale Y N Y N Y N Y N

Action stub

 Discount 0% X X X

Discount 3% X X

Discount 5% X

Discount 7% X

Discount 10% X

Figure 8.5 Decision tables

similar to SE. An action diagram is good for
showing simultaneously the detail and overview
of process logic. Figure 8.8 shows an insurance
risk calculation example using sequence only. It
is drawn using a bracket indicating control,
which can be nested to show a hierarchical
structure. The bracket envelops a set of actions
that are performed in sequence.

Action diagrams can be complex, depend-
ing on the business logic to be modelled and
whether database functions are modelled. When

111

0

11

0111

0

0

11p

181

Condition 1

Condition 2

Condition 2.1

Condition 2.2

Condition 1.2

Condition 1.1 Action 1

Action 4

Action 3

Action 2
Logic A

0.25

0.25

0.25

0.75

0.75

0.75

Figure 8.6 Schematic decision tree

Mark >= 36
and < 38

Mark >=38
and <=39

Passed 1
assignment

Passed 2
assignments

Passed 2
assignments

Passed 1
assignment Do not

condone

Condone

Condone

Condone
Condonement

logic

Figure 8.7 Student module condonement logic

Risk Type 1A

Floodable plane
Dry and wet conditions
Previous floods
History of subsidence

Figure 8.8 Action diagram

..Chapter 8 Structured process modelling

conditions, repetition, case and repeat are part
of the decision logic, the diagrams can be long
and nested and difficult to read and interpret.

8.6 SSADM technical products

Knowledge of SSADM technical products is
useful for an overview of IS development, cov-
ering data, process and logic techniques. They
are listed in Table 8.3 in sequence to reflect the
phases of IS development. SSADM contains
project management, technical and quality
products. Among the technical products are
application products. The application products
contain the systems analysis and design prod-
ucts, or the system data and process models. E-
R data modelling and DFD process modelling
are SSADM systems analysis techniques.

SSADM complementary techniques include
Quality Assurance Review, Formal Document-
ation, Project Control Methods, and CASE
tools. The DFD notation used in SSADM is
shown in Figure 8.9.

8.7 Process modelling and the
Critical Framework

Structured systems ontology aims to provide ‘a
common value system’ for IS developers. It
assumes that knowledge and information is per-
fectible. Analysts need to analytically evaluate
and critically examine process modelling and
logic modelling and its structured systems ontol-
ogy to develop personal constructs for PCF.
The level of ontological questioning depends on
how nearer to the ‘truth’ analysts want to get.
Some assumptions made by structured process
modelling and issues are examined here.

Figure 8.10 is the Critical Framework pop-
ulated with critical reflection on structured and
process modelling. It shows basic ontological
assumptions in process modelling. Many of
these are questionable because they are based
on rationality, plans and plan-based human
action. As the bottom layer shows, many ques-
tions concerning the four themes of criticality
arise from the assumption of objective processes

182

Part III Systems analysis..

Table 8.3 SSADM technical products

SSADM techniques and models

Logical data models

Data flow diagrams

Requirements definition

Function definition

Specification prototyping

Relational data analysis

Entity/event modelling (entity life histories, effect
correspondence diagrams)

Business and technical options

Dialogue design

Update and enquiry process models

Physical data design

Physical process specification

Physical design control

Source/sink

Data store

Process

Data flow

Figure 8.9 SSADM data flow diagram notation

111

0

11

0111

0

0

11p

183

Apply formal
methods

Real world of
human problems

(Messy world)

Business rules change,
subjective meaning of
information/data for

people, integral nature of
knowledge of work itself.

Whose models?
Imperfect communication,

systems analysts
interpretation, bias, level
of skill, potential users
hoarding information,

inability of potential users
to make intelligent and

informed comments

Systems
ontology

Process

Assume that the process
in the systems environment

can be captured
unambiguously and

perfectly, decomposition
strategy — divide and
conquer a problem,

complete requirements,
communications

channels will be open at
all times, users will be
willing to cooperate as
and when necessary,

problem domain is static,
user, analysts and

developers possess an
equality of knowledge
and therefore shared

understanding, knowledge
and information are

perfectible, all
participating parties will

be objective

Pragmatic
resolution

???

Interpret formalisms in
practice

Develop knowledge
Determine a pragmatic
resolution to problems
with formal methods

Resolve
problems

Transformation of
traditions reflexivity

Assumes people (users)
are a homogenous
group — people as
stakeholders have
different interests

Transformatory critique

The view that complete,
unambigous,

non-redundant view of
data can be provided in

structured models is
data/system centric.

Is reductionist knowledge
appropriate for systems

modelling?

Critical skills

Figure 8.10 Critical framework: systems ontology and process capture

..Chapter 8 Structured process modelling

and business logic. The critical observation
arises from the basic assumption of rational
human action in structured systems ontology.

The ‘process’ concept has wider application.
It is not restricted to structured systems ontology.
Analysts should consider alternative process
modelling techniques including Oracle’s CASE
designer tool, RAD and JAD. The notion of
process extends beyond structured systems ontol-
ogy to cover a wider scope in systems analysis.
Some prominent process description techniques
include: Petri-nets, Role Activity Diagrams
(RADs), and IDEF0. There are four types of
process modelling techniques, though a parti-
cular technique may reflect more than one
category:

• functional
• behavioural
• organizational
• informational.

Process description techniques have improved
the scope for innovation using IT. Earlier appli-
cations of computers were to automate existing
tasks and procedures. IT combined with process
knowledge now enables radically innovative
applications, especially in BPR, eCommerce
and knowledge management systems. These
applications have transformed organizations
with significant electronic infrastructure and
informational and knowledge content.

8.7.1 Reductionism

Descriptive structured data and process models
are derived using reductionism as a problem-
solving strategy, or functional decomposition.
They simply focus on the required IS functions
modelled on business data because they are
thought to provide more stable design and
reduced data redundancy. Reductionist models
are abstractions that do not reflect complex

social, political and organizational reality. They
marginalize critically important human factors
in IS.

Structured systems ontology is broken down
into three sequentially derived components.
Structured systems analysis is done first and
Transform Analysis is applied to it to derive the
structured systems design. Structured systems
ontology assumes that systems design can be
derived from systems analysis. To progress to
the design stage the Transform Analysis needs
to be completed. This step is used to convert
systems analysis diagrams into systems design
diagrams. The conversion assumes that a series
of rules can be applied to transform, for
example, DFD, into systems design diagrams.
This is questionable since structured systems
analysis is mostly logical with no implications
for physical software design.

Reductionism is the opposite of holism.
Holism is the view that the whole exhibits prop-
erties that are more than just the individual
parts put together, allowing for emergent prop-
erties of human action. Structured techniques
do not adequately reflect the holism of the
problem domain because they decompose it
into parts such as data and processes. They do
not reflect the holistic nature of interconnected
organizational behaviour and its emergent
properties. SSM is designed to model such
emergent properties and is used in the
Multiview methodology.

8.7.2 Representation

Structured systems ontology is composed of
data and processes. It seeks to represent the
problem domain as objectified data and process
models, but the actual situation is composed of
peoples’ meanings, which are not represented
in structured models. The relationship element
of E-R diagrams aims to add semantics to the
data, but it does so only in the context of
abstracted data entities.

184

Part III Systems analysis..

Structured systems ontology requires ana-
lysts’ to be objective and detached to represent
the problem domain. Information arising from
systems analysis, though, needs to be trans-
formed into systems design decisions. Analysts
may emphasize some features of the problem
domain more than others, and even downplay
others to facilitate communication with people.
New IS are constrained by subjective strategic
business input.

Structured systems ontology does not
acknowledge that logical modelling requires a
‘creative leap’ where analysts have to exercise
imagination. They have a ‘blank canvas’ which
they have to fill with systems models. The cre-
ative leap goes beyond simple objective and
detached modelling. Analysts’ intuition and
judgement, based on experience, are part of the
creative leap. They create something that does
not yet exist.

A central issue is ‘freezing’ the representa-
tion as systems models. Once the models are
developed and the system requirements
‘agreed’, the modelling stops. In actuality there
is always some change required or emergent
issues to be addressed in a system project.
Stopping modelling in structured systems ontol-
ogy has consequences because the actual situ-
ation does not ‘stop’. Entities and relationships
may change and processes may become super-
seded by managers’ decisions or competitors’
actions. Business logic may change to maintain
competitiveness or react to market conditions.

Critical observations of the logical data and
process modelling techniques can be made too.
The Critical Framework in Figure 8.11 depicts
a sample. Structured analysis was developed to
provide a common value system, promoting a
uniform view of what is or is not desirable in
a system using structured methods and tech-
niques. Ironically, logical models can be
unclear, fuzzy and confusing because, through
abstraction, they become too detached from the

problem domain. Advocates have argued that
the term ‘essence’ is a better description than
models. Such semantic differentiation though is
superficial and it fails to address the limited
capability of structured systems ontology to
represent real situations.

There are limits to descriptive modelling
techniques. The representational capacity of
structured English is limited when a company
has several actions related to a particular set of
conditions. The resultant logic model is a
complex and cumbersome set of statements
that can confuse even systems analysts, leaving
potential users with no scope to make intelligent
and informed comment. The complexity of
most business logic makes SE unsuitable for
modelling process logic.

The DFD lacks information on how long
data takes to move from one process to another
and it is unable to explain the direction of flow.
The notation does not represent interrupts or
signals. It does not capture when IS need to be
synchronized and coordinated to achieve tasks.
Consequently, modelling techniques have been
devised to overcome some of the temporal
problems in the DFD. State-transition dia-
grams, control process and control flows all
enable the capture of interrupts and signals in
a system and the depiction of synchronization
and coordinated behaviour to achieve goals.

A DFD can be unreasonably continually
decomposed. The decision to stop decomposing
DFD is taken by the analyst and this may lead
to less overt requirements being overlooked.
Too much time can be spent modelling the
current physical and current logical system,
especially if a complex system with more than
100 events is to be modelled. It can make the
consequent models cumbersome to decipher for
both analysts and people and it can be politi-
cally dangerous and may cause the system
project to be cancelled.

111

0

11

0111

0

0

11p

185

..Chapter 8 Structured process modelling

Advocates of the structured approach regard
the data dictionary as critical, without which the
process models are a ‘rough sketch’. It is used
to show what data is processed and how it is
processed. In practice the use of a data diction-
ary among potential users and practitioners
is limited and it is more likely to be used in
conjunction with developed systems models to
verify requirements.

Other issues in representation include:
• The DFD has no explicit mechanism for

identifying reusable components to facilitate
design by extension or reuse as in object-
oriented IS development.

• Though Level 0 and Level 1 DFD identify
human–computer interaction interfaces,
they provide no guidance on developing the
user-interface.

186

Part III Systems analysis..

Apply formal
methods

Real world of
human problems

(Messy world)

Business rules change
Subjective meaning
of information/data

for people

Systems
ontology

Structured logic

Business rules
constitute systemic

algorithms, logic
models can be

transformed into
systems design

Pragmatic
resolution

???

Interpret formalisms in
practice

Develop knowledge
Determine a pragmatic
resolution to problems
with formal methods

Resolve
problems

Transformation of
traditions reflexivity

Logic modelling
techniques do not
capture meaning

Transformatory critique

Is transformation
analysis adequate?

Critical skills

Figure 8.11 Critical framework: perfect and unambiguous logical modelling

• The setting of a system boundary is arbitrary,
and may overlook real business performance
improvement opportunities.

8.7.3 Repeatability

Structured, object-oriented and even ASD
systems ontology assumes the problem domain
will repeat itself once modelled and imple-
mented in a new IS. The repeatability flaw
arises because of reliance on planned action and
passive models based on an assumed static real
world of human problems.

Structured methods assume that the
problem domain is repeatable. This assumption
is possible within structured systems ontology
because of the allied assumption that the
problem domain is static. Structured systems
ontology assumes that logical data and process
models, once implemented, will repeat in the
problem domain in the form of a new IS.

The assumption that the problem domain is
predictable or repeatable has posed difficulties
for researchers and practitioners. It is highly
questionable in the context of modern changing
organization. The social and economic context
of organization mean that modelled entities,
relationships, and processes may require chang-
ing. New entities and relationships may need
to be added and others amended or removed.
Such change causes problems during the mod-
elling process, and is certainly problematical
once an IS is implemented.

8.7.4 Representative sample

Structured modelling assumes that a represen-
tative sample can be produced and relied on to
make data and process models to represent the
problem domain. The E-R and DFD tech-
niques assume that data and processes need to
be modelled once – the representative sample.

How this sample is determined and evaluated
depends on the decisions made by steering
committees, project managers, senior analysts
and senior designers. At local level the auton-
omy of analysts influences it too, because they
decide what features of the problem domain to
emphasize or avoid in systems models.

The representative sample results in static or
passive models. A passive model once devel-
oped is detached or independent of the subject
– the problem domain. Changes that happen in
the problem domain or emergent features are
not reflected in the developed models sub-
sequently. So the models become outdated,
resulting in the problem of legacy systems. The
representative sample assumption is related to
the repeatability assumption. It further assumes
that it is possible to develop knowledge of
information needs in advance of human activity
that has yet to happen.

The E-R and DFD diagrams separate
systems modelling activity from the actual phys-
ical implementation of required functions.
Separating analysis and design from its physical
implementation is questionable because it leads
to passive models. Emerging approaches seek to
develop active models in which the systems
design and implementation are intertwined, for
example in ASD.

To overcome the problem of passive models
resulting from the repeatability and repre-
sentative sample problems, other process mod-
elling approaches develop active models. An
active model maintains the relationship with
the subject – the problem domain – after it has
been created. This allows systems developers
to keep developed IS in tune with the needs of
the problem domain. Structured systems ontol-
ogy does not include active systems models.
Object oriented systems ontology is capable of
developing active models through deferred
classes.

111

0

11

0111

0

0

11p

187

..Chapter 8 Structured process modelling

The power structures within an organiza-
tion, and the problem domain, affect people’s
influence on the models developed. Power and
politics is not recognized in the structured
systems ontology. The power structures are
prominent during requirements determination
and modelling. Stakeholders and people with
the most power exert the most influence on the
models developed. Such power relations do not
lead to a representative sample.

8.7.5 Shared understanding

Structured systems ontology assumes people
and practitioners have shared understanding of
required new IS. A system project and its
management relies on the same assumption.
This assumption lacks validity from several
perspectives and raises the pertinent issue of
ownership of models depicted in Figure 8.12.
Structured systems ontology gives ownership
of systems models to developers. The technical
nature of the structured IS development process
inherently means that only developers can
understand the models.

Structured systems ontology assumption of
homogeneity of people is erroneous. It is
assumed people have a shared understanding of
the problem domain, which analysts only need
to elicit as data and process models. Research
reveals that system projects have stakeholders
with varying interest and power to influence a
new IS development. Rather than a shared
understanding the problem domain is composed
of social conflict and power relations between
stakeholders, users and developers, which some
researchers argue results in a ‘winner and loser’.

The necessary shared understanding breaks
down when E-R and DFD techniques and logic
modelling are applied. Their focus is on func-
tions and algorithms. The DFD does not con-
sider relationships between data that is stored
in many places in an actual organization. This

relationship between data sources and data
sinks exists in one form physically and is inter-
preted in another form by analysts in logical
models, creating differences in understanding
between people and practitioners. Similarly,
the DFD does not capture the temporal aspects
of physical data. The sequence in which data
is captured, stored and processed in logical
models varies with actual situations, creating
further differences in understanding.

Logical data and process models are analysts’
interpretation of the problem domain, raising an
inherent problem with assumed shared under-
standing. Structured systems ontology assumes
that systems analysts have no preconceptions
or pre-resolved solutions to the current prob-
lem. This is questionable. Analysts’ individual-
ity, and even ego, plays a role in systems model-
ling, especially during the ‘creative leap’ that
leads to new designs. This may cause analysts to
misrepresent a required IS. It may lead to biased
requirements, biased towards technical needs,
or the actual requirements not being captured
because they are not technically elegant or
feasible. This in turn can raise questions of
ownership of IS. Related to this is that structured
systems ontology assumes that systems analysts
are best placed to develop systems models.

Other real world issues are depicted in
Figure 8.12. One example is that structured
systems ontology assumes people have the
capability to know what they require and are
capable of objectifying system requirements.
Some researchers argue that potential users
cannot know what they want and that, if they
do, then there is limit on communication with
analysts and objectification. The philosopher
Polayni is known for formulating our limits on
communication as the adage: ‘We know more
than we can tell.’ The ontological truth of this
adage has fundamental consequences for struc-
tured methods that rely on explicit information
and knowledge for IS development.

188

Part III Systems analysis..

111

0

11

0111

0

0

11p

189

Apply formal
methods

Real world of
human problems

(Messy world)

Whose models?
Knowledge and work

are integrated,
imperfect

communication,
systems analysts’

interpretation,
bias, level of skill,

potential users
hoarding information,
inability of potential

users to make
intelligent and

informed comment

Systems
ontology

Structured modelling

Assumes modelling is
an expert activity,

and processes can
be captured

unambiguously
and perfectly

Pragmatic
resolution

???

Interpret formalisms in
practiceDevelop knowledge

Determine a pragmatic
resolution to problems
with formal methods

Resolve
problems

Transformation of
traditions reflexivity

Can model ownership be
transferred to people?

Transformatory critique

Is modelling an expert
activity?

Critical skills

Figure 8.12 Critical framework: whose process models?

..Chapter 8 Structured process modelling

8.7.6 Communicative device

The shared understanding and diagrams are
communicative devices based on engendering a
‘common value system’. Structured systems
ontology assumes that modelling techniques
resolve communicative difficulties between peo-
ple and analysts and among developers. This
assumption lacks practice evidence. Advocates
assume an equality of knowledge among devel-
opers and people, enabling the latter to make
informed comments on developed systems
models presented to them.

The effectiveness of these techniques as com-
municative devices is not formally tested. People
lack technical knowledge to understand the
E-R and DFD logical models. They do not have
equal technical expertise in interpreting com-
plex logical models. Even analysts have to learn
how to develop the DFD and process logic.
An inappropriate learning curve within system
projects constraints will impede meaningful
communication.

Shortcomings in knowledge may compro-
mise completeness, unambiguity and non-
redundancy of developed models. Structured
methods assume that people have disclosed all
the information required to develop a new IS.
In actual situations, job security and resistance
to change are only two issues that question the
assumption. Lack of understanding among
people means they feel they are acting on trust,
which has consequences for confidence and
future use of developed IS.

The usefulness of instruments is determined
by the context of the problem, purpose of use
and objectives to be achieved. Analysts need to
determine the modelling objectives and choose
an appropriate technique, because each tech-
nique produces different outcomes. The out-
comes depend on the constructs each technique
provides for representing and reasoning about
the problem domain, and whether analysts
understand its features and can apply them.

8.7.7 Human intention

Structured systems ontology does not acknow-
ledge diverse human intention. It assumes all
the parties concerned are interested in achiev-
ing system project objectives. The real situation
is composed of human purpose and intention,
often unclear to even organizational decision-
makers themselves. As Figure 8.13 shows, when
complex business decisions need to be made
purpose and intention are not always clear in
real human problems.

Structured systems ontology does not recog-
nize developers’ intention. Analysts have pre-
conceived ideas, either implicit or explicit, and
make assumptions about the problem domain.
These cover organization, the type of IS
required, the design problem, and what is
expected of them. They also behave politically
to achieve their aims.

Structured systems ontology assumes people
have a clear understanding of system require-
ments. The scope of large IS projects is difficult
to set because of lack of clear understanding of
the organizational problem and of what is
required to resolve it. ‘Creeping requirements’,
the realization of new requirements after
requirements analysis is completed, has con-
tributed to the failure of complex system pro-
jects. The problem is compounded by the
assumption of mutual intelligibility of the
problem and its resolution among people and
developers.

Acquiring explicit knowledge of system
requirements is complicated by social conflict.
Structured systems ontology assumes people
will participate as and when necessary. Individ-
uals, groups or stakeholders may deliberately
withhold information because of internal con-
flict or differences with developers. Structured
systems ontology does not acknowledge social
factors like human intention and conflict in IS
development.

190

Part III Systems analysis..

Developing representative models of human
intention is problematic but interpretive
approaches are emerging. Agile or eXtreme
Programming makes use of stories from people
to design algorithms. SSM seeks mutual under-
standing through its root definition and rich
picture techniques. The root definition is a
concise description of the system, which is then
modelled to reflect multiple views and seek
consensus.

8.8 Personal Critical Framework
development

8.8.1 Personal constructs for process
modelling

Table 8.4 is a sample repertory grid for process
modelling. Reproduce the grid on a spreadsheet
and add further columns and their polar
opposites that you consider relevant. To objec-
tify personal constructs in process modelling,

111

0

11

0111

0

0

11p

191

Apply formal
methods

Real world of
human problems

(Messy world)

Complex multi-threaded
business decision

cannot be modelled,
lack of technical
expertise among
potential users

Systems
ontology

Structured modelling

Assumes that the
processes in systems

environment can
be captured

unambiguously
and perfectly

Pragmatic
resolution

???

Interpret formalisms in
practice

Develop knowledge
Determine a pragmatic
resolution to problems
with formal methods

Resolve
problems

Transformation of
traditions reflexivity

Can models capture
multiple people s

perspectives?

Transformatory critique

Can human
intention/purpose —
phenomenology —
be represented?

Critical skills

Figure 8.13 Critical framework: ambiguity and imperfection in the real world of human problems

..Chapter 8 Structured process modelling

complete the grid by following the details on
how to use a repertory grid in section 1.10.1.

8.8.2 Defining IS

Questions

1 Critically evaluate how DFD process models
are defined and represent functionality.

2 Assess the validity of the claim that the DFD
and process logic diagrams make communi-
cation between systems analysts and people
easier.

3 What ethical conduct would you use when
communicating with people in the problem
domain?

4 What would you do to improve the quality
of DFD diagrams produced to facilitate com-
munication?

5 What innovative ways could you devise to
interact with people to elicit process require-
ments?

6 What value does separation of systems analy-
sis and implementation add? What is your
personal construct on the separation of
development activities?

7 Why spend time modelling a way of
working, as required in current physical and
current logical modelling, which will be
replaced anyway?

Activity A

Think of an organization or section within it.
Find examples of: processes, dataflow between
processes, and data sources and sinks. Investi-
gate other aspects or roles that should be
reflected in a systems model. Discuss conse-
quences of leaving them out of process models.

8.8.3 Systems and real world ontology

Question

1 Analyse whether reductionism is consistent
with the notion of systems.
What assumptions of the problem do-
main does reductionism make? Are they
appropriate?
What part could reductionism play in
your personal construct for establishing
knowledge of a problem domain?

192

Part III Systems analysis..

Table 8.4 Personal constructs for process modelling

Pole 1 Pole 2

Stable Fluid

Can capture Cannot capture

Can model Cannot model

Logical Physical

Mutually intelligible Individual or group
intelligibility

Decomposition Whole

A
ct

iv
it

y

P
ro

ce
ss

F
lo

w

B
us

in
es

s
lo

gi
c

E
nt

it
y

S
ys

te
m

 b
ou

nd
ar

y

R
ep

re
se

nt
at

iv
e

sa
m

pl
e

D
at

a
st

or
e

2 Critically appraise the premise that process
models and process logic can be rationally
objectified.
To what extent is human rationality capa-
ble of capturing system requirements
completely, unambiguously and with non-
redundant data?

3 Discuss the ownership of logical data and
process models. Though developed by
systems analysts, what can be done for
people to perceive ownership?

4 To what extent does people’s lack of intelli-
gibility of logical data and process models
affect the relevance and quality of a new IS?

Activity A

GobiDesert is a medium sized internet book-
seller. It sells books over the internet and has its
UK book distribution centre in Slough near
Heathrow Airport. It wants to develop an IS to
provide information on creditors. It buys its
stock of books, stationery, computer equipment
and other operational needs from various sup-
pliers. The accounts department responsible for
paying suppliers receives invoices and checks
balances owing. It then sends a cheque by
post to the supplier or authorizes an electronic
transfer of monies for the amount owning.

Using the above description and making
your own assumptions, in two or more separate
groups:

• Draw a Level 0 DFD for a new accountants
payable system.

• Mark the system boundary and identify
where humans interact with the system.
Make a separate record of these points as
human–computer interfaces.

• Decompose the context DFD to Level 1,
ensuring balanced DFD.

• Critically compare your solution with a peer
group and discuss your group’s reasoning.

What is the role of interpretation in process
modelling and what consequences does it
have for objective systems ontology?

8.8.4 Logical modelling

Questions

1 Evaluate the value of distinguishing between
logical and physical DFD.

2 Compare critically decisions tables and
decision trees for process logic modelling.

3 What criteria would you use to select logic
modelling techniques?

4 How can a visual tool improve structured
English to reduce the complexity of the
resultant models?

Activity A

A bank has to decide what level of reminder
to send to a customer whose payment is
overdue – a legally worded letter, a reminder
or no letter. Its business rules are: If the cus-
tomer’s monthly payment is overdue by two
months then send a reminder. If the monthly
payment is overdue by three months then
send a legally worded letter and reduce the
credit worthiness rating of the customer. If
the customer has made a payment recently
then raise their credit rating. Introduce other
business rules you require. Use a version of the
DFD notation and structured English accessible
to you.

• Draw the Level 0 and 1 DFDs.
• Write the process logic for one or more

processes in structured English. Use control,
selection and iteration structures in the logic
model.

• Discuss how you would communicate prac-
tically your process logic diagrams to people
in the problem domain.

111

0

11

0111

0

0

11p

193

..Chapter 8 Structured process modelling

8.8.5 Relating structured data, process
modelling and databases

Questions

Logical modelling removes all the physical
details from the problem domain.

1 Describe how E-R diagrams relate to DFD
process modelling.

2 What information do E-R diagrams and the
data dictionary provide to develop a data-
base?

194

Part III Systems analysis..

8.8.6 Further reading

Warboys, B., Kawelek, P., Robertson, I. and Greenwood, R. (1999) Business Information System, a

process approach, Maidenhead: McGrawHill.

9.2 Introduction

Object-oriented systems ontology originates
in object-oriented programming. Software
developers’ drive to improve programming led
to the notion of object-orientation as a basis
for writing programs. It enabled programming
efficiencies and intuitive programming.

Object-oriented systems ontology assumes
that reality, the problem domain, is composed
of classes or objects and relationships between
objects. The collaborating relationships between
objects define an object-oriented system. Philo-
sophically, conceptually and practically object-
oriented systems analysis and design differs from
structured systems ontology.

The purpose of object-oriented systems analy-
sis and design is to find objects and relationships

in the problem domain and develop an object
model or class model representative of it. The
class model is meant to define what the system is
required to do in terms of fulfilling system
requirements. The actual practice of object-
oriented systems analysis and design is not strictly
stipulated in terms of sequential analysis and
design steps as in structured systems ontology.

Object orientation stems form Classification
Theory. The theory explains how people
classify their everyday experiences. It asserts
that people use three methods for organizing
experiences:

• Experience is differentiated in terms of
objects and their characteristics.

• An object is demarcated in terms of the
whole and its parts.

111

0

11

0111

0

0

11p

195

Chapter 9

Object modelling

9.1 Learning outcomes

After completing this chapter you should be able to:

• Analytically evaluate descriptions of problem domains in object-oriented terms.
• Develop a simple class model using UML.
• Explain how object-oriented modelling enables reuse of software.
• Apply critical skills to object modelling.
• Compare object-oriented analysis with structured analysis in terms of transformatory

critique.

• Groups of objects form a class and a class is
distinguished from other classes of objects.

People’s intuitive use of objects and classes to
organize personal experiences is considered an
advantage in object-orientation. It facilitates
understanding of object-orientation based on
intuition and personal experiences. Object-
oriented analysis and design draws on this
underpinning and familiarity of cognitive
process that both analysts and people have
according to Classification Theory.

Object-oriented systems analysis and design
supports the development of object-oriented
IS. The term object-oriented systems ontology
describes IS development, project management,
programming and systems. In systems analysis
and design it encompasses requirements analy-
sis, interrelationships between objects, operation
specification, design and implementation.

9.3 An object-oriented system

An object-oriented system is composed of inde-
pendent, interrelated, collaborative objects. It
has classes, objects, data and operations. An
object-oriented system is described in terms of
behavioural language. An object is said to be-
have in a certain way and the whole system
behaves as intended. A system behaves as inter-
related objects collaborating to provide services
to other objects in the system and, if required,
to other systems.

Analysts need to understand the notion of
object behaviour because it is the basis for iden-
tifying services provided by objects. A service is
some information processing provided by an
object when requested by another object. An
object is responsible for providing services. It
processes temporary data and permanent data.

In object-oriented systems ontology, analysts
investigate the problem domain to find objects,
patterns, responsibilities and scenarios. These

are then defined in terms of classes, objects,
data and operations in a class model. A class
model is an integrated model of data and oper-
ations in which process flows, data and process
are combined into one model to represent the
problem domain.

The physical implementation of an object-
oriented system contains the data and methods
required to perform the system specification.
Drawing on the integrated class model, the
system is designed so that objects contain the
data required to complete the required informa-
tion processing.

9.4 Patterns and the
generalization–specialization
pattern

The notion of patterns is central in object-
oriented systems ontology. A pattern is a tem-
plate that can be reused. Patterns are used to
organize and relate classes. A pattern is an
abstraction of classes from the problem domain
depicting stereotypical class responsibilities and
interactions. It is repeatable within the same
problem domain or across problem domains.
The generalization–specialization (gen–spec) is
one of several patterns in object orientation,
others include:

• whole–part
• participant–transaction
• place–transaction
• transaction–transaction line item
• peer–peer.

The gen–spec template is shown in Figure
9.1. It shows the inheritance relationship in
terms of classes. The figure shows a class (the
parent) and class with objects (the child), the
branches, using Coad’s notation. A class is
shown as a rectangle and a class with objects is
shown as concentric rounded rectangles – with
the inner rectangle being the object.

196

Part III Systems analysis..

The gen–spec is a hierarchical parent–child
pattern used in object-oriented systems analysis.
The purpose of creating a gen–spec, and other
patterns, is to characterize or develop onto-
logical knowledge of the problem domain. This
ontological knowledge is assumed to be valid
across problem domains and over time. Conse-
quently, patterns are reusable. Reusability is a
significant characteristic of object-oriented sys-
tems ontology. Programming code developed on
the basis of patterns can be reused in other sys-
tems and as components in component-based
systems development.

Inheritance is used in object orientation to
manage complexity. In hierarchical terms
inheritance is the principal that all lower-level
classes inherit the attributes and services of the
top class. A lower class in a hierarchy can
inherit attributes and services from a higher
class. Inheritance is based on the parent–child
pattern that is one way, from the parent to the
child. The gen–spec pattern is an example.

A problem domain illustration of a gen–spec
pattern is shown in Figure 9.2. It shows how the

gen–spec template is used in the insurance
problem domain to identify the parent (insur-
ance policy) and the child (car insurance, house
insurance and content insurance), and the
inheritance relationship. The parent–child
pattern is a common everyday relationship, but
it is powerful in object-oriented systems ontol-
ogy because it affords inheritance.

9.5 Classes and objects

An object-oriented system consists of classes and
objects. The problem domain is analysed to
determine relevant classes and objects capable
of storing data and processing it. Modelling is
critical and strategic, especially in database
modelling. Object and class modelling is rela-
tively less well-developed though the UML is a
significant development in object-oriented mod-
elling. Classes and objects in this section are
drawn using the UML notation (Coad’s nota-
tion was used in the previous section to provide
comparative contrast).

111

0

11

0111

0

0

11p

197

..Chapter 9 Object modelling

Generalization GeneralizationGeneralization

attributesattributesattributes

servicesservicesservices

Generalization

attributes

services

...

Figure 9.1 Generalization–specialization pattern

9.5.1 Objects

An object-oriented system is a set of interacting
and collaborating objects. An object is an
abstraction of some thing of interest in the
problem domain for which information is kept
and which interacts with other objects. An
object can be anything tangible or conceptual
that is relevant to the problem domain. Example
physical abstract objects are an insurance policy
and customer. They are related because a cus-
tomer draws out an insurance policy. Risk and
premium are examples of related conceptual
abstract objects. The premium is high when the
risk is high. An object contains the data and the
operations.

An object is drawn as a rectangle as shown in
Figure 9.3. In programming terms, an object is
referred to as an instance of a class. An object has
three sections: the name of the object and its class
underlined, its attributes, and its operations (ser-
vices). In naming an object, the object name is
first with capital letter, followed by an colon and
then the class name. So an object is distinguished

from a class by the objectName:className under-
lined label. It is not necessary to show all three
components in a model. The rectangle notation
could cause confusion between a class, which is
similarly depicted, and an object, but this is now
the accepted UML convention.

An example of the car policy object is shown
in Figure 9.4. The attributes are listed but the
operations are not specified. Example opera-
tions could be making a claim, changing
address details or recording an accident and
updating accident history.

Attributes are qualities that describe an
object. For an object called insurancePolicy
the attributes may be customerSurname,
customerFirstName, policyNumber, risk and
premium. The attributes have data types. For
example, customerFirstName is a string type
and policyNumber is an integer type. Each of
these attributes has a value or state, which is its
data. customerFirstName will have a value that
is the name of a customer, for example Risha
or Jackie. PolicyNumber will have a numeric

198

Part III Systems analysis..

Contents
insurance

House insuranceCar insurance

attributesattributesattributes

servicesservicesservices

Insurance policy

attributes

services

...

Figure 9.2 Gen–spec example for insurance policy

number like 457987. The actual values or data
are hidden in the object. Storing data and
operations in an object is called encapsulation.

An example object from the insurance
problem domain is an insurancePolicy shown in
Figure 9.5. Its attributes are customerSurname,
customerFirstName, policyNumber, premium
and maturityDate. Example operations are
calculatePremium or changeAddress. Analysts
determine what data and operations to encap-
sulate in an object during systems analysis. A
class model is progressively developed in object-
oriented systems analysis and design, changes to
object definitions can be made.

An object is responsible for services. A
service is a set of instructions for performing
action on data. Services are also called opera-
tions for logical specification of an object’s
behaviour during systems analysis and methods
when the operation is implemented. An
example operation for an insurance policy is the
procedure to calculate premium. It contains
information necessary to carry out the proce-
dure or operation. The operation is invoked by
a request from the object itself or from other
objects with a message.

During systems analysis analysts need to
determine which attributes of an object generate

persistent data. Persistent data is data that
is initially input into a system or generated
by it that needs to be stored. Information on
persistent data is used to create a database con-
taining such data so that it can be used by objects
or analytically queried in the database for
information. In the insurancePolicy object all
the attributes would probably be persistent data.
Some applications or attributes may contain
transient data. Such data is not required after
the program has been executed and so does
not need to be stored.

111

0

11

0111

0

0

11p

199

Car:insurancePolicy

attributes

operations

make
modelType
year
mileage
overnightParking

operations

Car:insurancePolicy

Figure 9.3 A diagrammatic representation of
an object

Figure 9.4 An example object for car insurance

customerSurname=Patel
customerFirstName=Risha
policyNumber=457987
premium=367
maturityDate=01/04/2005

calculatePremium
changeAddress

insurancePolicy

Figure 9.5 Insurance policy object

..Chapter 9 Object modelling

9.5.2 Classes

An object in a system is an instance of a class. A
class is a classification of a set of abstracted
objects with common attributes. A particular
class is a specification of objects with the same
or common attributes. It is also called an object
type, but object types do not contain any meth-
ods. The term class is normally used to define a
group of similar objects. In object-oriented sys-
tems analysis analysts’ task is to draw an abstract
class diagram of the problem domain.

The template for a class is shown in Figure
9.6. It shows a solid rectangle with three sec-
tions. The class name is in bold type in the top
part, the list of attributes is in the middle and
the list of operations is in the bottom section.

The set of home insurance policies offered
by a company can be categorized as insurance.
Those with the same characteristics can be
labelled a certain class, for example marine
insurance, house insurance or contents insur-
ance. An example class for contents insurance
is shown in Figure 9.7.

Some example attributes of the Content
Insurance class are customer’s first name,
surname, policy number, address and number
of the house insured. To preserve the descrip-
tion found in the problem domain, attributes
and services can be listed in the class as com-
pressed words with a lower case for the first
word, no spaces, and a capital letter for each

subsequent word. So, customerFirstName,
customerSurname or policyNumber are accept-
able. Two or more nouns and adjectives and
nouns can be compressed.

Classes can be either static or dynamic.
Static classification does not allow an object to
change type. Dynamic classification allows
objects to change type. Dynamic classification
is useful for problem domains where an object
type needs to be changed. For example, in the
case of a class Professor it is possible that a pro-
fessor in the problem domain becomes the head
of department.

9.5.3 Polymorphic classes and objects

Polymorphism refers to objects behaving in
varying ways in response to different messages
received. It is used in object systems ontology
to make subsystems independent and enables
the de-coupling of subsystems to facilitate
system extensibility.

A polymorphic class is designed to receive dif-
ferent type messages from objects and produce
the required result. So a polymorphic object can
change its behaviour to respond to the message

200

Part III Systems analysis..

className

attributes

operations

ContentsInsurance

customerSurname
customerFirstName
policyNumber
streetName
houseNumber
town
postcode
premium
maturityDate

calculatePremium
changeAddress

Figure 9.6 Class template Figure 9.7 Home contents insurance policy
class

it receives. The object sending the message does
not have to concern itself with the internal struc-
ture, its operations, of the polymorphic object. It
can simply send its service request and not need
to know how the receiving object will respond.

In polymorphic object behaviour there is
only one instance of a class and one or more
attributes or operations are moved to subclasses
so that they can be redefined differently. In
Figure 9.8 a class with subclasses is shown. The
operation calculateRiskType() is modelled in
the subclasses, rather than the main class,
because in each subclass it can be polymor-
phically redefined. Similarly, the attribute
insuranceType is modelled in the subclasses
because it can be variously defined as required
to describe different types of insurance policy.
The effect of polymorphic objects is to receive
a message and produce the required output.

Analysts have to investigate the problem
domain to find polymorphic objects. Poly-
morphism is a challenge for practising analysts.
They have to define classes and a class model

capable of polymorphic behaviour, usually this
is based on inheritance of behaviour from super-
classes to subclasses. Its appropriate use during
systems analysis should lead to an extensible IS,
a much demanded feature in business IS.

9.5.4 Modelling operations logic

The operations in an object may be abstract
or concrete. Abstract operations do not have
implemented methods. Operations in an object-
oriented system are simple structures because
collaborating classes enable simplification. The
total operations in the system can be analysed
in terms of specific object responsibilities rather
than as some main system functionality. Opera-
tions can be specified or modelled using:

• decisions tables
• pre- and post-conditions
• structured English
• pseudo-code
• activity diagrams.

111

0

11

0111

0

0

11p

201

Insurance

insuranceInstance
riskType

calculateRiskType

Fire

InsuranceType

calculateRiskType():
numeric

Burglary

InsuranceType

calculateRiskType():
numeric

General

InsuranceType

calculateRiskType():
numeric

Figure 9.8 Polymorphic class and subclasses

..Chapter 9 Object modelling

The first two techniques are non-algorithmic.
They cannot be easily translated into program
code. The second three techniques are algo-
rithmic – they provide structures that can be
used to design program and systems imple-
mentation. The decision tables and structured
English techniques are used structured systems
analysis (see section 6.5).

9.5.5 Links and associations

When things in the problem domain are
related, they can be modelled as an associa-
tion between classes. An association between
classes is a generalization of a relationship. For
example, an insurance policy is linked to a
client. It generalizes the specific links between
instances of objects in the real situation.

9.5.6 Multiplicity

Association multiplicity is used to describe
cardinal relationships between objects. Links
between objects need to reflect the problem
domain constraints of how objects can be
related. Multiplicity describes the number of
instances of objects that can participate in an
association. One client can have one or more
insurance policies, for example. Association
multiplicity contains information on such struc-
tures in the actual situation – problem domain.
Association multiplicity is determined by the
business rules in the problem domain.

In object-oriented systems analysis the data
dictionary is a store for information on classes,
objects, attributes, operations, links and associ-
ations. The class model would normally contain
much of this information, but analysts gather
much other information that may not be
depicted in the class model. Such information
is stored in the data dictionary. For example,
the detail of how an operation would be carried
out is usually not shown in class diagram, but
would be stored in the data dictionary.

9.6 Responsibilities and scenarios

An object is attributed with responsibility in an
object-oriented system. Responsibility has three
aspects: attributes, relationships and services.
What the object knows about itself is referred
to as its attributes (see section 9.5.1). Who the
object knows in a problem domain is its rela-
tionship. A problem domain will consist of
many objects and a particular object will be
related to one or more of them. This is the rela-
tionship the object has with other objects. A
relationship is a connection between an object
and other objects. For example, the customer
object is related to the insurancePolicy object
because a customer has an insurance policy.
What the object does is its services. The services
are provided to other objects.

A scenario is a time ordered set of interac-
tions between objects designed to fulfil specific
responsibilities. For example, there are proce-
dural steps in drawing a new insurance policy
for a customer that involves interaction be-
tween the customer, insurancePolicy, risk and
premium objects at certain times. Modelling
this interaction is called a scenario.

9.6.1 Techniques for identifying
services

Identifying the details of the services in a class
is done with specialized techniques and some
borrowed from structured systems analysis.
Systems analysts make use of these techniques
during systems analysis. (Decision trees and
decision tables are discussed in section 8.5.)
They include:

• scenario
• use case and use case scripts or descriptions
• structured English
• decision tables

202

Part III Systems analysis..

• decision trees
• state-transition diagrams.

Scenario is a specialized object-oriented
technique for documenting and identifying a
class’s service details. A scenario depicts an
interaction between the system and a user as an
ordered sequence of actions. It is used in Coad’s
methodology but use case and use case scripts
are a similar technique used in UML. A sce-
nario describes a specific time-ordered sequence
of object interactions that fulfils a specific
processing requirement in an IS. A scenario
view is quite complex for any particular object
interactions.

Service scenarios are developed to describe
how objects interact to complete a task. For
example, the insurancePolicy object will send a
message to the Risk object to invoke the
calculateRisk service. The Risk object will
process the result, calculated risk. The notation
for a UML use case diagram is given in Figure
9.9 because it is more widely used than Coad’s
services scenario and an example is given in
Figure 9.10.

The use case in Figure 9.10 shows a user goal
of processing an insurance policy. It is a set of
scenarios tied together by the common user
goal. It shows a scenario consisting of: raise new

policy, update policy, calculate risk and make
a claim. Each of these can be described further
with use case scripts. A use case diagram is a
snapshot of one aspect of information require-
ments. Many such use case diagrams are
produced to describe a new IS.

A use case script or description can be used
to elaborate a set of interactions. An example
use case script for online purchase in an
eCommerce system is shown in Figure 9.11. It
shows the primary scenario in steps 1 to 10.
These are the necessary steps to complete a
process. A use case may have one or more
paths. In the example, there are two alterna-
tives. One for credit card authorization failure
and the other for a previous customer who is
offered discounts and whose details are auto-
matically displayed to facilitate the purchase.

A use case script is able to capture more
detail than a use case diagram. The use case
script in Figure 9.11 shows alternatives for
example. It could also show other information.
The UML does not specify a standard script
format. So it is possible to check for any

111

0

11

0111

0

0

11p

203

Actor

Communication
association

System
boundary

Use case

Insurance clerk

Make a claim

Figure 9.9 UML notation for use case diagram

Make a claim

Insurance clerk

Calculate risk

Update policy

Raise new policy

Figure 9.10 Use case example for processing
an insurance policy

..Chapter 9 Object modelling

preconditions before the primary use case starts.
For example, only members of a book club can
make purchases, so the system would check for
status before allowing purchase to be made. In
this regard use case scripts enable detailed
descriptions or modelling of actual situations.

Structured English or pseudocode is used in
structured systems analysis. It is an action-
oriented form of the English language. It is
also used in object-oriented class modelling
because it describes ‘what’ the object needs to
do to complete a service request. Figure 9.12
shows part of the pseudocode for processing
an insurance claim for a car accident.

204

Part III Systems analysis..

Purchase online

Customer browses the online book catalogue and places one or more items in the shopping trolley

Customer selects purchase icon

System prompts for further purchases

System presents pricing information, including customer details information and shipping

Customer enters credit card details

System checks authorization

System authorizes purchase

System confirms sale

System prompts for further purchases or other service

System completes sale and sends confirming email

Alternative: Authorization failure

At step 5, system fails to authorize credit card.

Allow customer to re-enter credit card details three times

Alternative: Previous customer

2a System presents discount policy decision for customer with six months purchase history

4a System displays current customer information

4b Customer may accept or override displayed defaults

Return to primary scenario at step 5

Alternative: Other service

9a System presents CD department

9b Customer enters CD department

…..

Figure 9.11 Use case script for online purchase

Figure 9.12 Description of a service in
structured English

For Each newclaim

 Record accident details

 Assess liability

If liability=other then contact other company

Else commence proceedings

Endif

issue claim form

End For Each

9.7 Unified Modelling Language

UML is a notation language for developing
robust industry standard software systems.
Ironically, it is capable of modelling such com-
plex system even though it is based on the ‘less
is more’ idea of coping with complexity. It does
not contain a vast range of notation symbols but
is capable of developing rich semantic models of
the problem domain. It is used to develop class
models for small, medium and large industry
standard software. With it analysts can specify,
visualize and document models of systems.
UML can be used to explore system ideas or to
specify a detailed design. It is a third generation
object-oriented modelling language based on
the MOF(tm) metamodel and has become the
industry standard. It extends notations used in
Booch, OMT and Objectory methods. An
upgrade to UML 2.0 is in progress.

UML is intended to provide a single and
common object-oriented modelling notation
language. It has 12 standard diagram types that

can be applied to a wide range of application
domains and database design. It is used to
specify, construct and document classes and
objects in the problem domain. Its standard
diagram types lead to well-designed software
architecture. It can be used to design class
models independent of specific hardware plat-
form or specifically for a particular proprietary
platform. The diagram types are categorized
into static, dynamic, and organization and
management, as shown in Figure 9.13.

UML is still evolving. Many of the tech-
niques do not have specific standards, for
example use case scripts, which can be inter-
preted and used variously by analysts. The
value of UML for analysts in system projects is
that it is ‘methodology-independent’. It can be
used to develop systems models regardless of the
methodology being used. It can be used with a
methodology but it is not a methodology itself.
Structure is important in UML. It is used to
deal with the complexity of designing large
systems and it enables code reuse.

111

0

11

0111

0

0

11p

205

Static application structure (four standard diagrams)

Class diagram

Object diagram

Component diagram

Deployment diagram

Dynamic object behaviour (five standard diagrams)

Use case diagram

Sequence diagram

Activity diagram

Collaboration diagram

Statechart diagram

Organization and management of application modules (three standard

 diagrams)

Package diagram

Subis

Models

Figure 9.13 UML diagram types and diagrams

..Chapter 9 Object modelling

Formalism is based on the proposition that
natural language is unsuitable for communi-
cating system requirements or modelling.
Natural language is imprecise and ambiguous.
Proponents of notation languages claim that a
class model developed with UML diagrams
eases communication between analysts and
people because it is specific and formal. Classes
can be named in the language of users, rather
than as abstract names. Some UML tools make
it possible to visualize defined classes, objects
and relationships. Visualization further makes it
easier to communicate with diagrams.

9.7.1 Components and reusability

Object-orientation facilitates the design and use
of components. In some object-oriented IS
development software components are reused.
A component is a self-contained module of soft-
ware code designed for reuse. Software com-
ponents are assets and are normally developed
for enterprise applications, business process
redesign and web services.

The practical advantage of developing
reusable components is that though they
are developed for a particular application or
problem domain, they can be stored in a lib-
rary and reused in other applications that
require the same or similar functionality. The
Object Modelling Group (OMG) provides a
central source for developing a marketplace
for re-usable components.

The concept of reusability is extended to
reusable requirements and patterns like gen–
spec. Analysts can make use of reusable require-
ments and patterns, and contribute patterns to
a system library. This results in reusable com-
ponents that can be used in problem domains
for which they were not intended, and makes it
possible to cut costs of a system project.

Methodologies exist in the commercial mar-
ketplace to enable object-oriented component
analysis and design. Use cases are used in a top-

down approach, but bottom-up approaches also
are incorporated to allow existing IS and data-
bases to be reflected in the class model. The aim
is to create flexible component architectures
that integrate with existing IS and draw on
valuable data in legacy systems.

Components are designed in terms of:

• the problem domain component;
• the human interaction component;
• the data management component.

Classes identified by analysts during systems
analysis and systems design, and subsequently
coded as Java classes, can be componentized
using JavaBeans. JavaBeans is an architecture
that supports reusable components. JavaBeans
are normally used for GUI interface classes.

Analysts’ can take advantage of reusability
because of object and encapsulation. When
including components not designed by the ana-
lyst, analysts do not have to worry about how the
service request will be met. This is termed de-
coupling, where the object is designed to work in
context but is not intertwined in it. Gen–spec
and other patterns can be reused because they
are decoupled.

Polymorphism is a critical feature of object-
oriented systems ontology that enables reusabil-
ity. An object is polymorphic if it can vary its
behaviour according to the messages it receives.
Systems analysts use polymorphism in object-
oriented analysis by identifying and defining a
class and its subclasses that behave differently
depending on the message received.

9.8 Object-oriented analysis
and design

Object orientation has influenced systems
design, particularly database systems. Object-
oriented analysis is based on the view that the
problem domain has objects that perform tasks
and have attributes, and that the objects are

206

Part III Systems analysis..

related to other objects in terms of operations
to enable tasks to be completed. An object-
oriented system is a set of such objects that are
interrelated. For example, an insurance policy
is taken out by a customer, brokered by an
insurance broker, underwritten by an under-
writer and administered by an administrator.
The parties are related and each party performs
operations for other parties.

The aim of Object-Oriented Analysis (OOA)
is to identify detailed system requirements by
describing the existing physical system and
determine how a new IS will become part of it.
Data definition involves identifying object, class,
relationships and abstraction. Data manipula-
tion involves determining methods and mes-
sages. Data definition and data manipulation
result in the object or class model.

The problem domain is analysed in terms of
objects, patterns, responsibilities and scenarios.
Once the analyst identifies objects they are
likely to persist through to the design and imple-
mentation or programming stage. The analyst’s
critical role is to identify the objects and classes
in the problem domain. Analysts undertake five
activities in Coad and Yourdon’s (1990) OOA:

• Identify classes and objects in the problem
domain.

• Identify structures or relationships between
classes and objects.

• Identify subjects or related objects.
• Define attributes or the data elements of

objects.
• Define services or how the object behaves.

OOA results in systems models of the struc-
ture of objects and their behaviour. Objects
can be identified from transcribed records of
interviews or text documents by underlining
nouns. For example, insurance policy, client or
premium are acceptable nouns or noun phrases
in an insurance company. The label given to an
object depends on the analyst’s preference and
style, but it is important to preserve the termi-
nology of the problem domain. Naming objects
and classes with terminology from the problem
domain makes it easier for people to understand
a class model.

OOA is not strict planned action like struc-
tured analysis. Analysts do not have to per-
form the five activities in sequence. As eliciting
requirements depends on people OOA enables
analysts to work with them. They are permitted
to explore the problem domain and undertake
each activity as and when appropriate informa-
tion is found or revealed by people. The effort
analysts spend on each activity will depend on

111

0

11

0111

0

0

11p

207

Problem domain

The objects here will be those required to address the business problem.

Human interaction

The objects here will be those required to design the human–computer interaction, such as the

interface, windows and reports.

Data management

The objects here will be those required for the persistent storage of data, such as databases.

System interaction

The objects here will be those required to enable the present system to interact with other

systems.

Figure 9.14 Components of a class model

..Chapter 9 Object modelling

what information they discover, with some
aspects of a class model more deeply explored
than others. The iterative OOA process enables
analysts to validate and continuously improve a
class model with information from people.

A class model is composed of major
model components consisting of the problem
domain, human interaction, data management
and system interaction, shown in Figure 9.14.
Analysts identify objects and their responsibili-
ties for the components of a class model.

9.9 Java and object orientation

The Java programming language has become
closely associated with object-oriented systems.
The origins of object orientation are in
Scandinavia and SMALLTALK is a popular
object-oriented language. Java though is con-
sidered suitable for implementing distributed
object models. Object models can be imple-
mented using any programming language,
though there will be efficiency gains in some
and costs in others. Java is designed for the
object-oriented systems environment. It is
widely used largely because of the success of the
internet and the world wide web.

Unlike other programming languages Java
can be many things to many people. It is an
object-oriented programming language, con-
taining the syntax and semantics of a program-
ming language. It uses the notions of a virtual
machine and byte code to enable it to be exe-
cuted on different machines. Java is a pro-
gramming environment too. It contains classes
and libraries provided by the language.

Programmers use these classes by ‘extending’
them to suit their processing requirements. Java
is the de facto programming language of the
web. Other object-oriented languages can be
used, but Java is the preferred language of most
commercial software developers for the web.
Java treats strings, arrays, windows and integers

as objects. For example, the string ‘Risha Patel’
is an object of the class String.

9.10 Object modelling and the
Critical Framework

Object-oriented systems ontology addresses two
problems in structured systems ontology. The
creation of separate data and process systems
models and multiple models in structured
systems ontology causes validation problems.
This is overcome with the one class model
created in object-oriented systems ontology.
The encapsulation of data and operations
within an object removes validation issues.

The other problem is determining the tran-
sition from structured analysis to structured
design. This arises because of the Transform
Analysis stage, which assumes that rules can be
applied to the systems analysis E-R and DFD
diagrams to convert them into systems design
diagrams. This is overcome in object-oriented
systems ontology with the one class model
developed during analysis, and progressively
developed to include design and programming
tasks. In OOA the integration between systems
analysis and systems design is now complete, as
it is possible to generate implementation
program code from analysis diagrams.

9.10.1 One class model

Figure 9.15 is the Critical Framework populated
with critical reflection on object-oriented sys-
tems ontology. It questions the assumption that
real situations can be accounted for by classes,
objects, relationships and collaboration between
objects. One issue is the temporality of analysis,
design and implementation. These activities are
concurrent in object systems ontology. The
analysis class model is elaborated to include
design and implementation features. The notion
of analysis in object systems ontology is different

208

Part III Systems analysis..

111

0

11

0111

0

0

11p

209

Apply formal
methods

Real world of
human problems

(Messy world)

Information technology,
people lack tangible
insight of the new IS
requirements change

during development and
post-implementation,
difficult to define the

problem domain,
contextual issues,
creative chasm for

developers

Systems
ontology

Object-orientation

Classification theory,
class, object,

attributes,
services,

encapsulation,
relationships,
collaboration,
inheritance,

polymorphism,
reusable

Repeatable patterns,
dynamic binding,
non-separation

of analysis and design
in the class model,

implementable
analysis

Pragmatic
resolution

???

Interpret formalisms in
practice

Develop knowledge

Determine a pragmatic
resolution to problems
with formal techniques

and tools

Resolve
problems

Transformation of
traditions reflexivity

How can techniques and
tools be deployed to
respond to change?

Transformatory critique

Is classification theory
sufficient to describe and

represent the problem
domain?

Can object-orientation
cater for

phenomenological
information?

Critical skills

Figure 9.15 Critical framework: object-orientation

..Chapter 9 Object modelling

from structured systems ontology because analy-
sis contains design and implementation features.

Actual practice in industry though is differ-
ent. Practitioners maintain a separation between
analysis and design despite the concurrency
facility in object-oriented analysis and design. In
traditional IS development (see section 3.4) such
concurrency was the norm, but the force of the
SDLC and engineering metaphor has set itself
in practitioners’ minds. An additional factor
reinforcing this separation is the systems project
mentality and work breakdown structures.

Compared to structured systems ontology, in
object systems ontology analysts interpret and
represent the problem domain as classes and
objects. A transformatory critique is to question
the validity of classification theory to describe
and represent the problem domain. For
example, is it possible to model human meaning
attached to information? There are aspects of
object technology such as deferred classes and
dynamic binding that can be modelled to reflect
change in the problem domain. They cannot
reflect the interpretive aspect of IS.

Reusability and patterns lead analysts to
think of problem domains as consisting of stereo-
typical and repeatable object behaviours. Re-
peatability in object-oriented systems ontology
is problematical because it could lead to apply-
ing unsuitable patterns in particular problem
domains. The problem being that the ‘best avail-
able’ pattern may be applied in situations where
it is inappropriate. In problem domains where
requirements are ambiguous, a reusable require-
ment pattern may be applied for convenience.

9.10.2 Representation and
problem-solving

Object modelling is considered to be essential,
especially for large enterprise-wide applications.
Proponents argue that modelling can contribute
to the success of a system project, and improve
the quality of software produced. It supports

scalability, robustness, security and extend-
ibility. Like structured systems ontology, object-
oriented systems ontology proposes building a
class model before coding.

The basis of this modelling is the meta-model
from which UML is defined. A meta-model is a
model of the constructs in UML.The meta-
model is defined using a metacircular inter-
preter, which is a language, defined in terms of
itself. The meta-model is significant because it
contains ontological assumptions about reality.
Its power to address problems and develop rep-
resentative models of the problem domain
depend on the validity of these assumptions. For
example, the assumption that experience is clas-
sified in terms of classes and how one class differs
from another is significant because it, in turn,
assumes a certain level of ontological objectivity.

Techniques for gathering information to
develop class models need to be analytically
evaluated to assess whether they are sufficient
to identify objects, attributes, operations, asso-
ciations and multiplicity. Sampling, question-
naires, interviewing, reading or research, and
observation seem sufficient, but the quality of
information gathered with these techniques is
sometimes poor, resulting in class models that
are a poor representation of the real human
problem situation. Poor quality information
contributes to lack of analysts’ creativity.

The association definition and association
multiplicity are generalizations. Analysts’ need
to consider how they would determine such
generalizations with information obtained from
requirements analysis. The available informa-
tion is essentially limited to the time when
requirements analysis is undertaken and to the
people, and other sources, available at the time.
In real business situations changes occur to how
things are related and the multiplicity of their
relationship. An issue with structured and
object-oriented systems ontology is how such
changes can be easily reflected in developed IS.

210

Part III Systems analysis..

Problem-solving in object-oriented systems
ontology is relatively easier compared to struc-
tured analysis. Once classes are identified they
tend to remain stable during analysis and design,
though attributes, operations and relations may
change. This may be interpreted as validating
classification theory’s power to represent the
problem domain. Similarly, the dynamic classi-
fication of an object is useful in changing prob-
lem domains. Object systems ontology in this
respect reflects real human problems. Though it
introduces uncertainty in object-oriented sys-
tems ontology because an object can be anything
and its features are not syntactically defined in an
available notation language.

Structured methods and methods of other
systems ontology are derived from predicate
calculus, for example normalization in E-R
models. Object-oriented instruments are not as
mathematically rigorous. They are intuitive
rather than mathematically rigorous and their
popularity attests to their relevance to practice.
For example, unlike structured systems ontol-
ogy where an entity is an abstraction of some-
thing of interest, an object does not have to be
an abstraction it can be concrete too. The
problem exists because an object can have any
number of features beyond the basic three fea-
tures used in the UML notations: name, attrib-
utes and operations. The move from
mathematical rigour in object-oriented systems
ontology is significant because it makes software
intuitive rather than formulaic. Its logical pro-
gression is evident in storycarding in ASD.

Analysts’ task is made challenging because of
encapsulation and polymorphism in object-
oriented systems ontology. They not only have
to identify objects, attributes and operations, but
also ensure that polymorphic behaviour is facil-
itated in a class model. Often, analysis of poly-
morphic object behaviour is overlooked because
the problem domain does not afford itself so

transparently to identifying polymorphic things
of interest.

Structured and object-oriented process mod-
elling techniques make an erroneous assump-
tion of real situations. They assume that the real
situation requires to be modelled once in the
form of systems models. In structured systems
analysis data and process models are created
separately but become frozen. In class models,
data and operations are encapsulated within
objects. The real situation though is dynamic
and ‘frozen’ models can become obsolete when
the system is delivered.

9.10.3 Incremental and iterative
development

Pragmatically, object-oriented IS development
is not planned but is architecture-driven, incre-
mental and iterative. It can be described as sit-
uated action rather than planned action. The
analysis, design and implementation activities
are not distinct phases but iterative activities.
In some cases, this leads to an evolutionary
IS development approach, where a system is
delivered in phases.

UML may be described as the situated use
of modelling rather then planned. It is not a
methodology, so it does not prescribe planned
action, and it can be used with any object-
oriented methodology. Its various diagrams can
be used in context, decided by analysts. Unlike
the systematic phases of data and process
modelling in structured systems analysis, a class
model is developed progressively in context.
Object encapsulation ensures that data and
operations are contained and validated each
time a process is added or amended.

This means that systems project manage-
ment is not planned in the traditional sense
used in structured systems ontology, but rather
project constraints are readjusted each time a
version of a system is delivered. A problem
arises when a project manager wants to apply

111

0

11

0111

0

0

11p

211

..Chapter 9 Object modelling

rigorously the work breakdown structure and
enforce the PERT activities on a project. In such
cases the inherent flexibility of object systems
ontology is lost. Practice reflects such inflexibil-
ity because IS are developed as projects.

Analysts should allow flexibility in their PCF.
Systems ontology, whether structured or object-
oriented, is not mutually exclusive. New ideas
can be used with existing methods and tech-
niques if it is appropriate. For instance, rela-
tional databases support object-orientation.
The SQL3 database includes some object-
orientation features. This suggests analysts and
designers should not think only in ideal types –
relational database or object-oriented data-
base – but recognize that knowledge of systems
ontology is progressive and can be inclusive.

9.11 Personal Critical Framework
development

9.11.1 Personal constructs for object
modelling

Table 9.1 is a sample repertory grid for object
modelling. Reproduce the grid on a spreadsheet

and add further columns and their polar oppo-
sites that you consider relevant. To objectify
personal constructs in object modelling, com-
plete the grid by following the details on how
to use a repertory grid in section 1.10.1.

9.11.2 Systems ontology

Questions

1 Critically evaluate how appropriate object-
oriented systems ontology is for representing
a business organization’s activity and goals.

2 Comparatively evaluate logical data and
process modelling in structured systems
analysis with class modelling in object-
oriented systems analysis.

3 What is the systemic value of encapsulating
data and operations in objects?

4 ‘The purpose of creating a gen–spec is to
meet the needs of the problem domain, not
neatness or elaborateness.’ Evaluate the
effectiveness of patterns in object-oriented
systems analysis for representing real human
problem situations.

212

Part III Systems analysis..

Table 9.1 Personal constructs for object modelling

Pole 1 Pole 2

Pattern No pattern

Method No method

Encapsulate Separate

Reusable Not reusable

Dynamic Stable

Grouped Ungrouped

Service Independent

O
bj

ec
t

A
tt

ri
bu

te
s

C
la

ss

In
te

ra
ct

io
n

P
at

te
rn

C
om

m
un

it
y

H
ie

ra
rc

hy

O
pe

ra
ti

on
s

In
he

ri
ta

nc
e

Activity A

Comparing structured systems ontology with
object orientation, the latter recognizes the
creative role of systems analysts. In determining
detailed system requirements, analysts identify
the objects and classes in the problem domain.

• Make a list of your creative attributes and
discuss them with a trusted peer.

• Select an IS familiar to you and comment
on its creative aspects.

• What does it do anew that is not in the pre-
vious system or manual work?

• Comment on what difference the creative
element of the system makes to the organ-
ization’s performance?

Activity B

Investigate a situation in a problem domain
where polymorphic behaviour would be
required. Think of a class to represent the situ-
ation that should only have one instance, where
one or more operations and attributes are mod-
elled to subclasses to produce polymorphic
behaviour. You will need:

1 a class
2 subclasses
3 generalization
4 one or more attributes or operations that

need to be polymorphically redefined in sub-
classes.

Once you have the required elements:

• Draw a class diagram.
• Discuss critically whether polymorphic sys-

tems ontology reflects real human problems.
• Identify requirements analysis techniques

you would use to find polymorphic classes
and objects and analytically evaluate their
effectiveness to do so.

9.11.3 Planned action versus situated
action

Questions

1 UML is not a methodology. How would you
use it in object-oriented systems analysis and
design?

2 Evaluate the practicality of the iterative
development of a class model in an IS
project. Base your evaluation on the themes
of situated action and planned action.

Activity A

Object-oriented analysis may be described as
situated action. Though sequence is important,
unlike early versions of the SDLC, iteration is
accepted and essential in object-orientation and
it is often linked with prototyping. A class model
is validated and continuously improved with
clients. In two groups:

• Identify a problem domain for which an IS
is required or one in which there is an exist-
ing IS.

• Make a list of the advantages of object-
oriented analysis applicable to the problem
domain.

• In a plenary compare your lists and discuss
the similarities and differences.

9.11.4 Communicating with diagrams

Object-orientation diagrams are used as a tool
to ease communication between systems ana-
lysts and people in the problem domain.

Questions

1 Discuss the reasons why natural language is
not suitable for communicating system
requirements?

111

0

11

0111

0

0

11p

213

..Chapter 9 Object modelling

2 Assess the effectiveness of the various UML
diagrams to communicate system require-
ments and systems models to people.

3 Critically evaluate the claim that object
systems ontology is intuitive and therefore
enables easier understanding of the class
model by people.

214

Part III Systems analysis..

9.11.5 Internet sources

The Object Management Group was set up ‘to create a component-based software marketplace’.
It is a rich resource for object-oriented analysis, design and reusability: www.omg.org

A site for object-oriented tools is www.rational.com.

9.11.6 Further reading

For a practical text on object-oriented analysis see: Bennett, S., McRobb, S. and Farmer, R. (1999)
Object-Oriented System Analysis and Design – Using UML, London: McGraw Hill.

Coad, P. and Yourdon, E. (1990) Object-Oriented Analysis (2nd edn), Englewood Cliffs, NJ: Yourdon
Press, Prentice Hall.

Part IV covers systems design. Whereas systems analysis focuses on what the system will do,
systems design focuses on how the system will do it. A design is a solution for a problem. As
alternative solutions can be generated, designers aim to generate a solution that is efficient,
effective and achievable within monetary and time constraints. Quality standards are used to
ensure that the system design is robust and capable of fulfilling system requirements specification.

In structured systems ontology design is concerned with converting the logical designs from
systems analysis into logical design and physical design for implementation. It normally begins
after decisions on hardware and software platform have been made. Systems design involves
making decisions on system performance, computer files, data structures, processes, databases
and user interfaces. E-R models, DFD and data dictionary are used to inform these decisions.
In object-oriented systems ontology, systems design is the refinement of class diagrams, or
class model, created during analysis, but does not necessarily cover actual implementation or
physical design. In both, the models resulting from the logical design describe how the parts
of the system will work.

Chapter 11 covers user system interfaces design. In structured systems design this requires
considering what data input and output is required. In object-orientation, systems design leads
to the creation of the human interaction class model and, if required, the system interaction
class model to enable communication between systems.

Chapter 12 is on system and data design. In structured systems design, overall system level
performance design decisions are made, and file or database design decided. In object-oriented
systems design, system level and detailed design decisions are made. Systems design is con-
cerned with overall systems issues like performance. Detailed design is concerned with class
design.

Both chapters cover critical skills in praxis. In considering how requirements will be met
and how the system will be implemented, designers need to reflect on technical issues like
improving system performance, reducing processing times and making efficient use of data
storage. The kinds of praxis questions concern, why is a particular hardware and software
platform better than another and how will the choice affect the business, is the data organ-
ized efficiently to make use of limited storage, and what is the benefit of using platform-
independent software.

111

0

11

0111

0

0

11p

215

Part IV

Systems design

10.2 Introduction

The focus of design is on how to achieve a goal,
with the emphasis on the means or mech-
anisms. In structured systems ontology systems
design succeeds systems analysis. Systems design
is concerned with how system requirements
established during systems analysis will be trans-
formed into an implemented system. Systems
design also extends to determining what com-
puter hardware will be required to implement
the system specification. The transformation of
the requirements specification focuses on deter-
mining specific hardware and software plat-
forms required to operationalize the new IS.

The system design involves the design of
interfaces, programs, data storage (databases),
construction, testing and implementation activ-
ities. Detailed design documents are created

during systems design. Programmers’ work
from the detailed design documents produced
during systems design to write and test software
to realize the new IS. This chapter will cover
only the design activities.

10.3 Structured design

Interface design consists of designing interfaces
between the system and people who will use it
and where inter-system communication is
needed designing interfaces between the system
and other systems. The user interface is the
medium through which people interact with a
new IS. Programs that require data to complete
processes need a user interface for the data to
be inputted and outputted. The main principle
guiding user interface design is the ease with
which people can interact with the new IS.

111

0

11

0111

0

0

11p

217

Chapter 10

Interface, input and output design

10.1 Learning outcomes

After completing this chapter you should be able to:

• Analyse and evaluate the process of refining the analysis class model for design
purpose.

• Evaluate the human interaction and system interaction components in object-oriented
systems design.

• Critically compare structured and object-oriented systems design.
• Apply critical skills to practical interface, input and output design.

10.3.1 User interface design

User interface design is based on knowledge of
Human–Computer Interaction (HCI). Modern
user interfaces now use Graphical User Inter-
faces (GUI) rather than text commands. Often
a user model forms the basis of designing user
interfaces. A user model describes and predicts
how people interact with a computer system.
User models or aspects of it are used to decide
what interaction methods, presentation forms
and colours to use. They help designers to
determine appropriate screen layout, menus,
form filling and interactivity.

The purpose of user interface design is to
specify how users will interact with the system
and how database actions will be triggered by
user actions. In SSADM such a model is called
the User Object Actions. It is a logical model
descriptive of user action. A user action is some-
thing in the minds of users that can be carried
out on a user object. The GUI actions are the
user interface mechanisms used to implement
the User Object Actions. The User Object
Actions are logical and relate to the GUI
actions that are physical.

Usability is a major design issue in user
interface design. It addresses the ease with
which people can use the system through user
interfaces and how to improve interactivity,
efficiency, effectiveness and reliability. Usability
is concerned with enabling specific users to
achieve specified goals with a system. Signifi-
cantly, usability is concerned with peoples’ satis-
faction with achieving goals.

Usability provides knowledge on how to
design the layout of interfaces, for example, use
of colours, grouping related elements and
system response times. For interactive systems,
usability knowledge is used to decide the kinds
and types of interface objects to use, for
example, function keys, radio buttons, form-
filling. e-Tailing for example requires highly

interactive systems, in which direct manipula-
tion devices, such as menu selection, are used.
Usability issues for online user interfaces include
response times and the depth of navigation
users have to go through. Response times and
depth of navigation both need to be kept to a
minimum in e-Tailing.

Designers consider the details of input data
and what user interface mechanism will be
appropriate to enter it into the new IS. The
choice of data entry methods will depend on the
timeliness and speed of data entry required.
Data entry methods include manual entry,
entry via user interfaces, Electronic Data
Interchange (EDI), or networked direct entry.
The latter two are used in system where a large
volume of data needs to be entered. User inter-
face methods are used where a user can enter
manageable volumes of data manually.

User interface interactivity is designed at two
levels, the primary window and secondary
window. A primary window has a border or
frame. It contains a title bar, toolbars, a status
bar, a menu bar and the content. Where the
content extends beyond a screen, horizontal
and vertical scroll bars are used. An example
primary window is a word processor’s window.
A secondary window has no bars or frame func-
tions. It can be a dialog box, a message box, a
tab folder or a drop-down list. An example sec-
ondary window is a logon window. Some exam-
ples of interactivity methods or activities are:
toolbar button, double click and scrolling
button.

In structured systems design, for instance in
SSADM, the user interface design is part of the
requirements phase, rather than the physical
design. User interface design during require-
ments analysis helps to understand and gather
information for user requirements. The physi-
cal user interface design in SSADM consists of
a window navigation model, window specifica-
tion and help system specification. The design

218

Part IV Systems design..

of windows can be based on window navigation
models, which are themselves sometimes based
on a function navigation model.

Interactivity is important for business IS.
Interaction models of different interaction styles
are used to improve interaction between people
and a computer system. They are rooted in
early studies of ergonomics and information
science and technology. Interaction models
focus on tasks that people want to achieve on a
system and the model user and system, both of
which are complex. They seek to understand
the interaction in terms of what a user wants
and what the system does, and help to identify
interaction problems that can be avoided
through appropriate design decisions.

A popular interaction model is Norman’s
rational model, which is intuitive. In the model
a person is thought to formulate a plan of action
which is executed at the computer system
through the user interface. During the execution
and at its completion the person assesses the
obtained results, and based on the results
determine further action. In detail the model is:

• establishing the goal;
• forming the intention;
• specifying the action sequence;
• executing the action;
• perceiving the system state;
• interpreting the system state;
• evaluating the system state with respect to

the goals and intentions.

10.3.2 Data output or report design

An IS processes data, supports work and gener-
ates management reports. The information gen-
erated by the system is termed data output in
structured systems ontology. Data output that is
useful for operational and management use for
an organization is converted into management
reports. Managers and executives use manage-

ment reports to support decision-making, and to
control and monitor workflows and business
processes.

Designers in consultation with managers
determine the format and presentation of such
reports. Reports can be daily, weekly, monthly
or even real-time on screen. The frequency and
granularity of the reports will depend on man-
agers’ needs and are initially determined during
requirements analysis.

10.4 Object-oriented design

The distinction between the analysis and design
phases in structured systems ontology is not
made in object-oriented systems ontology. In
object-oriented systems design, designers rely
on the problem domain class systems model
created during systems analysis. Designers
create additional classes for data inputs, outputs
and associated processes. They make decisions
on how data required for classes will be entered,
how it will be displayed on screen for people or
presented as management reports. Standards
are used to produce basic user interface designs
like screen or report layout.

Object-oriented user interfaces are normally
developed first as prototypes. The aim in using
prototypes is to gather requirements of what user
interfaces need to be capable of doing and then
designing and evaluating it through the proto-
type. Many prototype user interfaces are devel-
oped using visual programming languages. A
visual programming language environment
enables user interfaces to be designed first to
understand system requirements. Often this is
the practice adopted by systems designers.

10.4.1 Human interaction component

In an object-oriented system, user interfaces,
input and output design usually consist of
windows and reports objects. An interface class

111

0

11

0111

0

0

11p

219

..Chapter 10 Interface, input and output design

is shown in Figure 10.1. It is drawn with the
word ‘Interface’ in chevrons. Systems designers
identify and design these additional classes and
objects. Three types of windows are designed:

• logon and security
• system set-up
• business events.

Security design features are important. The log-
on window is used to enable authorized people
to access a new IS. Its design is critical to safe-
guard sensitive data and information. The set-up
windows enable systems administrators to:

• Install and operationalize the system either
in standalone mode or, more likely, as a net-
worked system.

• Add or remove peripherals such as printer
drivers.

• Add or remove people authorized to use the
system.

• Manage the system privileges given to par-
ticular people.

• Create, maintain and remove persistent
data, for example client records.

The business events windows are the main user
interfaces to actual systems processing. For an
insurance example, a window is needed to
enable a new policy insurance to be drafted or
a management report to display all the policies
with a high or low risk. The business events

windows provide the main interaction with the
system for business people. Consequently, they
need to be designed with usability features.

Though management reports can be dis-
played on screen, they are normally designed
as objects. There may be many kinds of re-
port objects depending on managers’ need
for information, for example decision-making,
monitoring and control needs. Systems design-
ers identify the report objects and attributes,
and design the responsibilities (operations) and
scenarios. The report objects collaborate with
the problem domain objects identified during
systems analysis to produce the required inform-
ation. These interactions are the connections
between the problem domain and human inter-
action components of a class model.

10.5 Interface design and the
Critical Framework

10.5.1 Interactivity

Business people interact with an IS through user
interfaces. Knowledge of interactivity is there-
fore significant in systems ontology. Theoretical
knowledge on user interface design is based on
the broader research area of human–computer
interaction. The kind of questions addressed
in human–computer interaction concern appro-
priate ergonomic design and interaction

The social context is significant for IS.
Interaction models like Norman’s model are
based on the assumption that people behave
rationally and logically. Interaction with an IS,
though, happens in a social and organizational
context, which affects both users and the
system. Interaction models do not adequately
consider this context because they focus on tasks
and assume rational systems ontology.

User interface design needs careful consider-
ation to enable human–computer interaction.
Figure 10.2 is the Critical Framework populated

220

Part IV Systems design..

<<Interface>>
Insurance Claim

Figure 10.1 An interface class

with critical reflection on human–computer
interaction. As the bottom layer shows, many
questions arise concerning the four themes of
criticality. The systems ontology component

contains some examples of the theoretical and
formal knowledge available to designers.

Assumptions need to be examined in the user
models used to inform user interface design.

111

0

11

0111

0

0

11p

221

..Chapter 10 Interface, input and output design

Apply formal
methods

Real world of
human problems

(Messy world)

Time and place of
information provision,

granularity of
information,

systems navigation
problems

Systems
ontology

Interface design

Human–machine
interaction,

user models,
mental models,

ergonomics,
intelligent agents

Pragmatic
resolution

???

Interpret formalisms in
practice

Can flexible interfaces
be designed?

Develop knowledge

Is a particular user
model appropriate?

Determine a pragmatic
resolution to problems
with formal methods,
combine user models
with intelligent agents

Resolve
problems

Transformation of
traditions reflexivity

What contextual
metaphors can be used

to design interfaces?

Transformatory critique

Can interaction
be facilitated

or performed by
intelligent agents?
How can semantic

interfaces be
developed?

Critical skills

How can information
quality be improved?

Figure 10.2 Critical framework: human machine interaction systems ontology

Critical awareness is especially needed when
using mental models. Mental models are made
of users mental activity when interacting with a
computer system. Designers need to ensure that
the mental models they use are appropriate for
the type of user expected to use the system.

Usability engineering is based on specific user
actions and not the wider social and organiza-
tional context in which IS are used. It is based
on interpretations and shared understanding,
which assumes meanings. The assumption is
that shared understanding will provide agreed
goals and metric with which to evaluate usabil-
ity satisfaction. Such shared understanding is
difficult to realize in practice.

10.5.2 Mental models

The application of user or mental models in
user interface design affects IS operation and
usage. A person’s mental model is effectively
the system – this is not considered in deploying
mental models to design user interfaces and inter-
activity. Mental models do not have the same
level of detail as usability engineering models
because a mental model is a users’ own inter-
pretations of how a system works. Often people
have only a partial understanding of the full
capabilities of a system, and the mental models
can be unstable or subject to change over time.

Incorrect mental models lead to design error.
A mental model can be internally inconsistent
because a person does not calculate all the
logical consequences of an action. Some designs
result in lack of usage because people are
unable to navigate through the various user and
system interfaces. This is an undesirable result
for companies making strategic investments
in IS. So usability is a critical design issue.
Pragmatic use of user and mental models is
necessary to ensure the operational success
of IS. When considering the pragmatic resolu-
tion element of the critical framework systems

designers should be aware of information qual-
ity arising form untested mental models.

10.5.3 Semantic information structures
and user interfaces

A weakness of both structured user interface
design and object-oriented human component
interaction design is the lack of semantic and
contextual modelling. This is because of
assumptions on data and information in their
respective systems ontology. Both structured
and object-oriented systems ontology lacks
semantic information modelling.

Web technology makes use of semantic and
contextual mark-up languages to represent the
problem domain terminology in a system and
its interfaces. XML is an example of a mark-up
language. It enables web application analysts to
use the terminology of the problem domain and
construct data structures to reflect it in the
application and user interfaces. Such semantic
user interfaces improve the usability features of
a system and make it intuitive for people to use
it. The semantic web is defined as an exten-
sion of the current web in which information is
given well-defined meaning, better enabling
computers and people to work in cooperation
(Berners-Lee et al., 2001).

10.6 Personal Critical Framework
development

10.6.1 Personal constructs for
human–computer interaction

Table 10.1 is a sample repertory grid for
human–computer interaction. Reproduce the
grid on a spreadsheet and add further columns
and their polar opposites that you consider
relevant. To objectify personal constructs, com-
plete the grid by following the details on how
to use a repertory grid in section 1.10.1.

222

Part IV Systems design..

10.6.2 User models

Questions

1 Define user model and mental model.
2 Determine your criteria for selecting a user

model for user interface design.
3 Critically evaluate whether user models add

value to user interface design.

10.6.3 Design process

Questions

1 Critically analyse the value of a separate
systems design phase in structured systems
ontology.

2 Assess the value of the progressive develop-
ment of a class model from analysis to design
in object-oriented systems ontology.

10.6.4 Interactional devices

Label, button, choice, textfield are some exam-
ples of user interface devices. For a highly inter-
active system, like an ambulance dispatch
system:

• What kind of interactional devices would
you use?

• Discuss critically how the interactivity
afforded by your choice of devices relates
to the human activity in the problem
domain.

• Assess whether structured or object-oriented
systems ontology is better for designing
interactivity.

10.6.5 Usability

Activity A

Either use the SSADM User Object Action user
model in section 10.3.1 (you will need to source
it) or using one familiar to you:

• Identify a system interface you use.
• Evaluate the system interface with reference

to the identified user model.
• What additional design features would you

add? What would you remove? Explain
your reasons commenting on interactivity if
relevant.

111

0

11

0111

0

0

11p

223

..Chapter 10 Interface, input and output design

Table 10.1 Personal constructs for human–computer interaction

Pole 1 Pole 2

Visible Hidden

Function Aesthetic

Practical Impractical

Usable Unusable

Static Dynamic

Persistent data Transient data

Computer-based data/ Semantic data/
information structures information structures

In
te

rf
ac

e

D
at

a
in

pu
t

D
at

a
ou

tp
ut

D
is

pl
ay

/
pr

es
en

ta
ti

on

U
se

r
m

od
el

s

M
en

ta
l

m
od

el

In
te

ra
ct

io
na

l
de

vi
ce

s

In
te

ra
ct

iv
it

y

224

Part IV Systems design..

10.6.6 Internet sources

See the notes of the OMG-MCC-DARPA Workshop on Compositional Software Architectures
at: http://www-db.stanford.edu/CHAIMS/Doc/Papers/commerce.html.

10.6.7 Further reading

Tim Berners-Lee is the founder of the world wide web. He is now the Head of the World Wide
Web Consortium (W3C). For his thoughts on the semantic web see: Berners-Lee, T., Hendler,
J. and Lassila, O. (2001) ‘The Semantic Web’, Scientific American, May.

11.2 Introduction

In structured systems ontology, systems design
involves logical and physical design of data cov-
ering computer programs, data storage, net-
works and change management. Computer
program specifications are made and diagrams
created to define program algorithms. Systems
programs require input data and generate out-
put data. Output data may need to be stored, so
data storage decisions, whether to use computer
files or databases need to be made. The choice
depends on the size of data and the purpose for
its storage. In object-oriented systems ontology,
a class systems model forms the basis of program
and other system components design.

Analysts and designers are involved in the
implementation of a new IS as part of a change
management program. As well as making deci-
sions on hardware, software and computer net-

works, they consider how to introduce the
system to people and organization. Change
management is an important issue because
large systems have an impact on organization.
Analysts especially are involved in managing
such organizational change resulting from a
new IS.

11.3 From logical to physical data
design

In structured systems ontology, implementation-
independent design is the logical data design or
logical data model built independently of phys-
ical computers and software. Implementation-
dependent design is the physical design or
physical data design of data as it is stored in
computers and software. Physical design is con-
cerned with making decisions on the hardware
and software required to implement a new IS.

111

0

11

0111

0

0

11p

225

Chapter 11

Systems design

11.1 Learning outcomes

After completing this chapter you should be able to:

• Interpret the distinction between logical and physical systems design.
• Detail the design activities at system level and describe detailed design.
• Apply critical skills to data design.
• Critically evaluate the role of the data management and system interaction

components in object-oriented systems ontology.

In structured design, physical data design
involves converting E-R models into physical
formats as part of the Transform Analysis.
Physical data design can either be in file format
or a database. Where files are used, decisions
on the type of files, access methods and their
organization need to be made. Each logical
entity in the E-R model is translated into a
record type and each attribute is translated into
a data field. The application program manages
the relationships between entities with the keys.

Database storage is common in large com-
panies because organizations are interested in
creating corporate information and knowledge.
So decisions on the type of database to be used
need to be made. Each entity in the E-R model
is translated into a table, and each attribute of
an entity is translated into a column of the table.
Systems designers determine how the entities in
the new record types or tables format will be
stored. Decisions are made on how to group the
entities but relationships are initially kept to
reflect the logical model.

The physical data model of the selected data-
base is used to organize the data. The DBMS
uses logical pointers to maintain the relation-
ships between entities. If people do not use
some of the entity relationships once the system
is installed then database administrators can
remove them in consultation with them to
improve system performance or reduce the cost
of storage. The implemented system is then
tested to ensure it meets performance and
system requirements.

In object-oriented design, the class systems
model created during systems analysis is refined
and the data management and system inter-
action components designed. For the data
management component, designers consider
whether to store persistent data in files or data-
bases, decide between object and relational
databases, and model data management objects
in UML diagrams. The system interaction com-

ponent is needed if a new IS is to be networked
or if it has to share data with other systems.

11.4 Some fundamentals of
hardware and software platform

The term for computers and software combined
in an IS is platform. Designers develop options
on different platforms that can be used to imple-
ment the logical models created during systems
analysis. Sometimes there are no options to
consider because of investment in existing
platforms.

Storing data is an important issue. The
quantity of storage required needs to be deter-
mined. Analysts and designers consider the
existing storage requirements and project what
will be required in the future. They would need
to consider business growth issues like sales or
volume of employees to determine future
storage needs. Storage for each entity or per-
sistent object is determined by totalling the
bytes required for fields or attributes, multiply-
ing the total by the number of records needed
and then dividing by the number of records.
The actual implementation may be as data files
or a database.

The performance of the system is the
measure of its efficiency and effectiveness.
Performance is important for safety-critical IS
like emergency services. It is also important
for critical functions in IS like keeping records
of important business transactions. The Taurus
stock trading system at the London Stock Ex-
change and the London Ambulance Service’s
Computer Aided Despatch System (LASCAD)
both failed because they failed to design for the
actual processing demand when the systems
were made live.

Designers seek flexibility in the choice of
DBMS to cater for future needs. Software that
is hardware-independent is preferred to ensure
maintainability and prevent obsolescence. For

226

Part IV Systems design..

eCommerce systems the Java programming
language is used because of its platform inde-
pendence. Designers need to ensure that the
functionality of the system is assured given
monetary and time constraints. Data storage,
processor usage, and access times need to be
efficient. Having more data storage capacity
than is required will mean additional unneces-
sary costs, but having insufficient storage space
could affect the performance of the business
detrimentally.

Where multiple databases are used, design-
ers need to ensure data integrity is preserved
across databases. In one case, consultants used
two databases for a pharmaceuticals company
because one database could not cope with the
volume of data. They did not check adequately
for data integrity across the two databases.
Managers were unaware of this situation and
used the data from both databases in opera-
tional and strategic decisions. In time, the
company had to file for bankruptcy.

11.5 Structured design

People are not involved in drawing up the
detailed systems design documents in structured
design. The reason is the technical content of
the design documents required for the design
of data inputs, outputs, processes and data
files or databases.

During systems analysis references to physi-
cal entities in the problem domain are removed
from the systems models. In the design phase
decisions about physical details of a new IS
need to be made. The data and process models
and requirements specification produced during
systems analysis is transformed into design doc-
uments that detail file and record structures, file
access mechanisms, database design and
storage media. The E-R model is used to design
the database model and the logic models used
to inform program algorithms.

During the transition from analysis to design,
inefficiencies in the problem domain may be
addressed. The logical modelling process may
reveal problems in the problem domain, partic-
ularly physical aspects that can be addressed. For
example, DFD systems models may show dupli-
cate physical file storage, these can be removed
in the logical DFD and consolidated in one store.

11.5.1 Detailed systems design
documents

Systems design diagrams differ from those used
during systems analysis. Structured design
based on the SDLC includes both the computer
and manual aspect of a new IS. Various design
documents are generated including those shown
in Figure 11.1.

A structure chart is used to detail the con-
nection between program modules in a system.
It is compiled on the basis of the HIPO tech-
nique (hierarchical input/process/output). A
given process in a system, for instance prepare
an insurance policy, will require separate
program modules to interact to exchange data.
The structure chart depicts the various program
modules and the data flowing between them. It
provides a hierarchical, clear and easy to under-
stand picture of a new IS in terms of programs
and data movements.

111

0

11

0111

0

0

11p

227

..Chapter 11 Systems design

Figure 11.1 Structured systems design
documents

Grid chart

System outline

Structure charts

Record specification

File specification

Flowcharts

Hardware specification

Stored database design

A grid chart is used to show the use of files
for updating or reading data by each program
in the system. Each program is listed in a
column and each data file is listed in separate
columns alongside. Crosses are marked in the
rows for each program that makes use of a data
file, if files are used for data storage.

11.5.2 Systems design tools

There are commercial software tools avail-
able to aid the systems design process. The aim
of designers of structured and object-oriented
systems design tools is to make the design
process efficient and effective. Systems design
tools focus on enforcing certain practices,
usually associated with a methodology like IE
or notation language like E-R. They enforce
stipulated design processes, whether structured
or object-oriented, program modularity and
documentation. Their use produces better qual-
ity design because they check for consistency
and integrity across different diagram types.

11.5.3 Program design

How the computer will process the data entered
into the system is an important part of systems
design. The program algorithms convert the
data into the required data outputs for other
programs or management reports. Flowcharts
may be used to design algorithms but they
enable any conceivable structure to be modelled
– their flexibility is a disadvantage in some cases.
Tools available for program design include:

• Editors to create and modify source code
and documentation.

• Static analysers to examine source code.
• Dynamic analysers to examine running pro-

grammes.
• Language sensitive editors to create syntac-

tically correct source code.

Many systems designers prefer the Nassi-
Schneiderman chart because it is precise in
describing algorithms produced by a team of
software developers normally associated with
a system project. The Nassi-Schneiderman
chart or box diagrams, illustrated in Figure 11.2
are used to represent procedural constructs con-
sistent with structured concepts. They help to
ensure correct program design in terms of:

• Functional design: well-defined and visually
presented definitions of scope of repetition or
if-then-else functions.

• Prevent arbitrary transfer of control.
• Easily determine the scope of local and

global data.
• Easily represent recursion.

Structured program design makes use of
modularity. A module is a program that focuses
on one function in the system. A computer
program consists of lines of code, or algorithm,
written in a particular programming language
to process data to provide particular outputs. A
good program has high internal cohesion and
low coupling. Cohesion is a measure of the
strength of relations of subroutines within a
program and coupling measures the strength of
bonds between programs. Structured design
rationalizes input and output with processing
through structured programming. Architecture
efficiency is improved through cohesion and
coupling resulting in modules of program code.

11.5.4 File design

A file design specification will define the file
medium. The decisions to be made are whether
it will be sequential or random access, the file
size and back-up procedures. The grid chart
shows the programs in the system and which
files they access to read data or update records.
Flow charts are used to depict procedures and

228

Part IV Systems design..

the control of the flow through procedures
required to complete a computer run.

11.6 Database design

Database design is separated into logical and
physical design to enable data indepen-
dence. Data independence is desirable because
changes in business needs can be enabled by
changing the logical database design and not
having to redesign the physical computer files.
Conversely, this separation enables database

administrators to change the physical database
design with no impact on the logical design and
users. They may need to do so to improve the
efficiency of the database.

People are not involved in database design,
to them the DBMS is a black box. The DBMS
provides physical data independence. As it is
not possible to predict the volume of actual
queries of the database, estimates are generated
and used to anticipate usage patterns.

The structure of the data defined during
systems analysis determines the data model of

111

0

11

0111

0

0

11p

229

repetition

if-then-else

F TCondition

else part then part

Sequence

First task

Next task

Next + 1 task

loop condition

do-while part

loop condition

repeat-until part

Selection

Case condition

case
part

case
part

Value Value Value Value

case
part

case
part

Figure 11.2 Nassi-Schneiderman diagrams

..Chapter 11 Systems design

the database and the data models from systems
analysis are used to design the logical database.
The logical record structure and how the
records will be accessed is derived from the
E-R model. Each set of E-R diagrams can be
converted into a logical record type. Logical
record structures are defined at the system level
and include the primary keys of records. For
example, for a relational database model the
conceptual database is determined by convert-
ing the E-R model into a relational model. An
entity is represented as a relation. A relation-
ship is represented as a relation too with the
primary keys of the entities in the relationship.

11.7 Object-oriented systems design

The focus in object-oriented design is on the
architecture of the new IS, quality and standards
issues. Systems designers create additional classes
for files or database storage. Unlike structured
systems design, in object-oriented systems design
a class model is not transformed but refined. In
this sense there is no separation between systems
analysis and systems design in object-oriented
systems ontology. The class systems model
produced during systems analysis is enhanced
with more detail but remains essentially the
same model, though different diagrams are
used to produce the logical design or imple-
mentation. So it is possible for people to be still
involved during design.

Detailed systems design decisions are con-
cerned with designing components that com-
pose the system architecture. During systems
design the classes are refined and the classes
form the basis of program algorithm designs.
Like object-oriented analysis, the focus of
design is on classes, reuse and assigning respon-
sibilities to classes – a continuation of class
modelling.

Designers take advantage of reusable com-
ponents. Software development has a tendency

to address recurring coding problems. Design
patterns are used to reduce the repetitive reso-
lution of the same problem. They provide
encapsulated functionality and data in classes
that can be reused. Designers do not need to
create new design for classes if they already exist
or can be bought commercially. Categories of
design patterns available are creational, struc-
tural and behavioural. Patterns that can be
bought commercially are termed components.

11.7.1 Additional design diagrams

During design additional diagrams are gener-
ated including collaboration diagrams, state
transition diagrams, package diagrams and
deployment diagrams. Systems designers con-
tinue modelling the system by selecting the
appropriate diagrams.

Collaboration diagrams are used to model
different objects interacting to exchange data
for a specific process, as shown in Figure 11.3.
Collaboration modelling is central in systems
design, comparable to use case during systems
analysis. Use cases are realized through depict-
ing the necessary collaborations. Collaborations
diagrams depict associations between objects.
Collaboration in UML consists of objects inter-
acting to achieve a specific purpose and can be
used to show a particular operation or a whole
use case. As they do not depict temporality,
sequential numbering is used, and when itera-
tion is required the numbers are nested.
Branching can be similarly represented.

A package is a way to organize classes into
logically related groups. It can be used for
classes identified during systems analysis and
systems design. Figure 11.4 shows a package
diagram for a database. Class A and Class B
can be for two different database connec-
tions. For example ODBMS (Open Database
Management System) and CORBA (Common
Object Request Architecture).

230

Part IV Systems design..

Packages are useful for testing systems
designs. Unit testing can be done on the basis
of packages. This makes it easier to manage a
large testing programme.

11.7.2 Data management component

The data management component is concerned
with how to store and manage such stable, or

persistent data. Database designers identify data
storage classes, usually based on an abstract
superclass, and determine the collaboration
required with business classes (identified during
systems analysis) to determine storing and
retrieving of objects.

Organizations have both transient data and
stable data. An IS may produce both types. An
example of transient data for an insurance

111

0

11

0111

0

0

11p

231

:customerDialogue
interface

:assessLiability contactOthers
Company

commenceLegal
Proceedings

:recordAccident
Details

newClaim () 1: getClaimForm ()

2: recordAccident ()

 3: assessLiability ()

4: getCompanyDetails ()

4.1: getLegalForm ()

Figure 11.3 Collaboration diagram for insurance claim

Dependency

Package Name

Class A

Class BPackage Name

Figure 11.4 Package diagram

..Chapter 11 Systems design

company may be a quotation for a policy that
the inquirer does not draw out. As transient
data is not needed beyond its immediate
purpose it is not stored. Some data, though, are
regarded as valuable and stable. They need to
persist in the system. An example is the details
of a new policy written for a client.

Designers determine whether to store persis-
tent data in files or databases. The choice is
made on the basis of how the stored data will
be used. File storage is used if the data is for
one application only but it is inappropriate for
developing corporate information and know-
ledge, because file stores would multiply with
each application created, and data integrity
checks would become problematical. Multiple
file stores could not easily facilitate new
information requirements arising from changes
to business needs or markets and cannot
support online data query.

When the data is used for corporate informa-
tion needs it is normally stored in a database. An
object-oriented database contains class objects
and their interrelationships based on a class
model. A database is used to store data that
need to persist and enable sharing of persistent
data between objects, applications and systems.
Systems designers decide between object and
relational databases, and model data manage-
ment objects in UML diagrams. A design class
model is created to depict normalized relations
with multiplicity.

A database can be accessed by many appli-
cations and deal with multiple and changing
queries or interrogation of the data. It facilitates
data sharing through the external schema – the
view of data in an application, and conceptual
schema – logical model of data. The key to
achieving such flexibility in managing the data
is the DBMS. A DBMS is used to organize and
manage the physical data separately from appli-
cations that use it. The conceptual schema
achieves this separation, with the external

schema being the application programs’ view of
the data and the internal schema being the
physical storage of data in files and indexes.

11.7.3 System interaction component

The system interaction component needs to be
designed if a new IS is required to interact with
other systems. The new IS may take data as
input from another system or provide data
as output to a different system. The communi-
cation systems are modelled with deployment
diagrams. A deployment diagram shows two
systems communicating with each other as
nodes and the protocol and network used for
linking as communication associations.

An example is shown in Figure 11.5. It shows
the PC client, which is called a node, with an
insurance policy system and another compo-
nent for database connectivity. Components are
the various functional units in a system. The PC
is networked to a mainframe machine which
has the policy database installed on it, which
becomes active when it is called from the PC
client.

For example, client-server architecture is
commonly used in new IS. It consists of PCs,
called the client, used by people, and the server
that contains the required software. Designers
make decisions on what process to allocate to
the different server machines available and how
the different machines will communicate. This
is done using UML physical deployment dia-
grams. A deployment diagram is used to show
the physical relationships between hardware
and software components in physical systems
design.

11.8 Change management

The success of a new IS depends on people’s
perception of it and whether they use it. The

232

Part IV Systems design..

introduction of a new IS will require reorgani-
zation of people’s job roles, responsibilities and
business processes. Organizational change
management is concerned with managing the
people issues that arise from such change.

Although not strictly a systems analysis and
design issue, change management is now
accepted as being critical for the success of a
new IS and for realizing its planned benefits.
Work packages in system projects may include
analysts working in a change management
team. People are the essence of change man-
agement. The expected benefits from a new IS
will only be derived if people accept it.

Analysts and designers are involved in train-
ing and educating people about a new IS as part
of a change management program. Systems
analysts work closely with business analysts to
define new job roles and responsibilities or
changes to existing ones. A key involvement
area for analysts is managing people’s expecta-
tions of a new IS. Analysts’ early contact with
people during systems analysis can form the
basis of managing such expectations, and ana-
lysts are usually in a business team set-up to
manage the change.

11.8.1 Change management theory

Change management theory is concerned with
how change can be successfully realized in
organizations. The issues it addresses include
identifying who the relevant people are, how
they are motivated, their understanding of
the change and identifying and managing
resistance.

People perceive any organizational change
including a new IS which affects them with some
reservation. They do not commit fully because
of fear. The change may remove their current
status or even their jobs. Change management
theorists seek to understand how organizational
change can be managed by understanding the
role of people in change.

One model of change management is Kurt
Lewins’ (1958) ‘unfreezing, moving and refreez-
ing’. It begins by giving people a reason for
change and enabling them to think for them-
selves why it is necessary, the ‘unfreezing’.
Senior managers, once they have decided that a
new IS is required, need to communicate the
reasons to people. Keeping people uninformed
of the need will result in anxiety and fear, and
even result in losing key people. The ‘moving’

111

0

11

0111

0

0

11p

233

PC Client
sun.jdbc

InsurancePolicy
System

<<JDBC>> Mainframe

Policy:Database

Figure 11.5 Deployment diagram

..Chapter 11 Systems design

step is to inform people of the chosen change and
prepare them to become party to it. This step is
more difficult than the first because it requires
people to make the change themselves. Their
commitment to the new order needs to be strong
because problems may arise that may deflect
them. Peoples’ involvement and commitment
is particularly required during requirements
analysis. The final step is ‘refreezing’. It requires
enabling people to familiarize themselves to the
change. People’s training and best practices are
reinforced, and any problems resolved.

11.9 Systems design and the Critical
Framework

Arguably, systems analysis is more important
than systems design for understanding and
specifying system requirements. Systems design
is nevertheless significant because it involves a
transformation step in structured systems analy-
sis, which is problematical. In object-oriented
systems ontology its significance is in how a class
model continues to be progressively developed.

11.9.1 Systems ontology

Figure 11.6 is the Critical Framework popu-
lated with critical reflection on systems design.
As the bottom layer shows, many questions con-
cerning the four themes of criticality arise from
the assumption of a data-centric or object-
centric reality.

The notion of ‘stable data’ underpins struc-
tured systems ontology. Data are considered
sufficiently stable to describe business activities
in a problem domain. It is because they are con-
sidered stable that they are stored in corporate
databases. Decisions regarding file storage or
types of databases, relational or object-oriented,
depend on the IT/IS strategy of the organiz-
ation. Where corporate data forms a significant
part of strategy then database storage will be

required. If unstructured data like image, voice
and graphics needs to be stored then an object-
oriented database is more appropriate.

Structured systems ontology is a ‘functional’
characterization of the problem domain, which
reinforces the input, process and output view of
an IS. It is arguably a ‘computerization’ per-
spective, in the sense of a mechanistic character-
ization of real human problems. Its focus on data
analysis gives primacy to functions, data and
processes as defining characteristics of a problem
domain. This mechanistic characterization of
the problem domain leads to a separation of sys-
tems analysis and systems design, because the
latter is closer to the machine itself and in which
the real world human problem is reflected.

Structured systems ontology does not ques-
tion this separation. Whether systems design can
inform systems analysis is both a transformatory
critique and refashioning of traditions. Changes
in practice, such as prototyping and user inter-
face prototypes during requirements analysis,
indicate that the separation is flawed. IS devel-
opment benefits from intertwined systems
analysis and design activities, rather than con-
crete separation.

The structured systems ontology focus on
data, with ‘data analysis’ being a significant
element of database design, has consequences
on how an organization is modelled for IS
development. A corporate database is regarded
sufficient to describe or model the organization.
The social element of organization is not
accounted for in such systems ontology. Also,
importance of organizational knowledge and its
management means that a corporate database
is insufficient as a model of an organization.
Organizations are now also building ‘know-
ledge bases’, which are significant in their
attempts to manage organizational knowledge.

A database stores organizational data import-
ant or critical to a business. Modelling an organ-
ization as databases is problematical because the

234

Part IV Systems design..

modelling process needs to reflect human and
organizational needs. In pragmatic terms,
because of costs a database is only composed of
data models of organizational functions like per-
sonnel or sales. In a process view of organization
it is composed of processual data models.

Systems analysts and systems designers need
to decide whether their perspective of the data
model from which a database is designed
is objective or subjective. From an objec-
tive perspective the data model is the organiza-
tion. Such a personal construct will have

111

0

11

0111

0

0

11p

235

Apply formal
methods

Real world of
human problems

(Messy world)

Information technology,
implementation,
business change

and growth

Systems
ontology

Design

Formal solution,
logical design,

physical design,
mechanistic,
coding from

logical design

Pragmatic
resolution

???

Interpret formalisms
in practice

Is a relational or object
database relevant?

Develop knowledge

Structured and
object-oriented design,

program design,
file design,

database design

Resolve
problems

Determine a pragmatic
resolution to problems
with formal methods,

combine relational and
object database,
consider costs

Transformation of
traditions reflexivity

Can design inform
analysis?

Transformatory critique

Is data hierachical,
networked or relational?

Is encapsulation of
data in an object

representative of the
problem domain?

Critical skills

What kind of heuristics
is needed to interpret

notion languages
in context?

Figure 11.6 Critical framework: ontology and systems design

..Chapter 11 Systems design

consequences for corporate database design.
From a subjective view the data model is one
interpretation of an organization. It does not
represent the whole organization for all time
or the varied perspectives of its members.
Database design from this perspective is likely
to be a truer reflection of real human problems.

Problems with Transform Analysis in struc-
tured systems ontology are being overcome
by emerging systems analysis and design
approaches like ASD and XP. They conceptu-
alize systems development as continuous, thus
not having to make a transition from systems
analysis to systems design.

The critical development of database tech-
nology itself reflects the development in onto-
logical knowledge of organizational data,
information and knowledge. Various database
conceptions are reflected in developments in
database types: hierarchical, networked, rela-
tional and now object-oriented databases.
Database technology is significant in defining
systems ontology appropriate for organizations.

Each stage of development in database tech-
nology permits richer representation of real
human problems. Developments in database
conceptions reflect both transformatory critique
and reflexivity, depicted in Figure 11.6. Systems
design is significant for systems ontology
because of the physical capabilities and limits of
available IT. Knowledge of program and data-
base design determines how a system is defined
and designed, and its design has an impact
on the performance of the problem domain or
the organization. Analysts and designers need
to bring their personal constructs on systems
design to the surface and reflect on knowledge
and practical validity.

11.9.2 Separation of analysis and design

In structured systems ontology there is a distinct
separation of systems analysis and systems design

phases. Earliest versions of the SDLC made such
a distinct separation, but have now accepted a
spiral version of software development. It is
arguable whether this separation reflects the
problem domain, systems ontology, organiza-
tion ontology or even the actual work of practi-
tioners. Many developers move between analysis
and design, and organizations would rather
make IS development an operational issue than
a distinct system project.

Though object-oriented analysis and design
caters for the non-separation of systems analy-
sis and design, through its progressive develop-
ment of a class model, on the whole, prac-
titioners persist on completing systems analysis
before undertaking systems design. The reason
is the timeboxing constraints of system project
management and the discipline imposed by
project management. In essence, business con-
straints prevent the fluid development of a class
model.

The separation of analysis and design in struc-
tured systems ontology raises practical prob-
lems once a system is implemented. Often, it is
necessary to make amendments to the detailed
analysis and design documents because of chan-
ges in requirements. Business requirements often
change during systems development, and occur
because of market or competitor forces.

For both structured and object-oriented
systems ontology, another reason for change in
requirements is lack of information on what is
required. During requirements analysis people
in the problem domain are expected to provide
a detailed account of what they require. They
are unable to do so in the set time for require-
ments analysis or timebox period allocated in a
systems management work breakdown package.

Requests for new requirements or changes
to captured requirements arise as new informa-
tion becomes available to people. Often the
changes are only reflected in the design

236

Part IV Systems design..

documentation but not the analysis documen-
tation. The requirements specification becomes
inconsistent with design documentation. This is
a problem of separating analysis and design in
structured analysis.

Earlier development in prototyping, RAD
and JAD reduced the distinction between
analysis and design. The recent move to ASD
is a stronger statement for the non-separation
of analysis and design activities.

11.9.3 Pragmatism

The pragmatic resolution of which database to
choose reveals a mixed approach rather than
adhering to a single type of database. Designers
need to reflect on how they make their choices.
As Figure 11.6 shows, critical thinking leads
designers to make use of mixed databases con-
taining relational and object-oriented elements.
Such a choice is significant from a systems
ontology perspective. It indicates that both
models, rather than just the one, better describe
the actual problem domain or real human
problems.

Systems analysis, design and implementation
does not have to be either structured or object-
oriented. It can be a mixture in practice. It is
possible for practitioners to make use of struc-
tured analysis and design but implement an
object-oriented system. It is also possible to
implement a systems design using the object-
oriented approach in a combination of con-
ventional and object-oriented programming
languages.

Systems analysis, systems design and pro-
gramming can each be done in different genres
or practices for the same system. So it is possi-
ble to do the systems analysis using structured
instruments, systems design using object-
oriented instruments, and programming in an
object-oriented language like Java. Other per-

mutations are also possible, but practice tends
to adhere to one underlying approach in a given
system project.

In structured systems design, the technical
content of design documents prevents design-
ers from involving people in designing. To
ensure that the completed system is valid, it is
validated with requirements specification, but
normally this is not done thoroughly. In con-
trast, people remain involved in object-oriented
systems design. The problem domain class
model is refined during design rather then sep-
arately developed, so people can still be
involved, though they will not comprehend
technical program and database terminology.

IS as a field itself has recognized the impor-
tance of change management through reflex-
ivity and refashioning of traditions criticality.
Methodologies and in-house expectations now
require analysts to be significant members of a
change management team. Analysts need to
appreciate that a new IS brings organizational
change. Though it is important to manage care-
fully the people aspect of the change, analysts
may not be the most appropriately skilled
people to do so.

11.10 Personal Critical Framework
development

11.10.1 Personal constructs for systems
design

Activity A

Table 11.1 is a sample repertory grid for
systems design. Reproduce the grid on a spread-
sheet and add further columns and their polar
opposites that you consider relevant. To objec-
tify personal constructs in systems design, com-
plete the grid by following the details on how
to use a repertory grid in section 1.10.1.

111

0

11

0111

0

0

11p

237

..Chapter 11 Systems design

11.10.2 Logical data design

Questions

1 What is meant by ‘data independence’ and
how does logical data design during systems
analysis contribute to achieving data inde-
pendence?

2 How is the E-R data model used for logical
data design?

3 How are logical data models used in defin-
ing the conceptual schema in a DBMS?

4 Critically discuss the idea of the progressive
development of a class model through
systems analysis and systems design.

11.10.3 Physical data design

Questions

1 What is meant by ‘physical data design’ and
what is the role of the DBMS internal
schema?

2 What kinds of platform decisions need to be
made for physical data design?

3 What value do UML deployment diagrams
add to physical systems design?

11.10.4 Database design

Activity A

Databases are used to store corporate data and
develop it as a corporate resource or informa-
tion assets.

1 Identify a database in your organization.
2 Enumerate the kinds of data it stores.
3 Analytically evaluate the corporate informa-

tion value of the stored data. Is it used to add
value to the organization? Is it used to
compete with other firms or differentiate
your organization from others?

11.10.5 Managing change

Activity A

• Find an example of a system project that has
failed because of poor change management.
For example, the London Ambulance
Service’s Computer Aided Despatch System
(LASCAD).

• Read any one version of LASCAD. You can
use either the official report on LASCAD
available at http://www.cs.ucl.ac.uk/staff/

238

Part IV Systems design..

Table 11.1 Personal constructs for systems design

Pole 1 Pole 2

Objective Subjective

Stable Fluid

Mechanical Organic

Explicit Tacit

Conceptual Actual

D
at

a
m

od
el

In
fo

rm
at

io
n

K
no

w
le

dg
e

D
at

ab
as

es

L
og

ic
al

 d
es

ig
n

P
hy

si
ca

l
de

si
gn

O
rg

an
iz

at
io

n

A.Finkelstein/las/lascase0.9.pdf (accessed
26 March 2004) or a personal view available
at www.lond.ambulance.freeuk.com/cad.
html (accessed 26 March 2004).

• Analyse LASCAD in terms of Kurt Lewins’
model of change management.

• Detail the activities you would initiate for
LASCAD for each of Lewins’ model steps.

• Detail the methods you would use to con-
vince people to accept the change.

111

0

11

0111

0

0

11p

239

11.10.6 Further reading

Lewin, K. (1958) ‘Group Decision and Social Change’, in Swanson, E., Newcombe, E. and Harley,
R. (eds) Readings in Social Psychology, New York: Rhinehart and Winston, pp. 459–473.

For an alternative object-oriented systems design see: Shlaer, S. and Mellor, S. (1992) Object

Lifecycles: Modelling the World in States, Englewood Cliffs, NJ: Prentice Hall.

..Chapter 11 Systems design

Part V covers the broader issues in the development of knowledge and practice. The PCF
section in each previous chapter focused on reflection and critical thinking on a specific systems
analysis and design topic. In this part, the question of how knowledge of systems analysis and
design is acquired and accepted is covered and critically considered. Systems ontology is heavily
influenced by innovations in software programming. Radical changes in knowledge and prac-
tice stem from new ideas, concepts and methods developed by practitioners in software. The
structured, object-oriented, and agile concepts all originate in software programming.

Since its introduction in the 1960s, the engineering metaphor in software development has
dominated intellectualism and practice. Both structured and object-oriented systems ontology
focuses on systems and systemic factors. Chapter 12 is on social action. It examines the non-
systemic social, cultural and political factors in IS development. Systems analysis and design
is undertaken in a political, organizational and cultural context. This questions the suitability
of structured systems ontology because of its assumption about factual design knowledge, and
to a lesser extent object-oriented systems ontology. Structured systems ontology has been
adapted subsequently to account for some of these criticisms.

Chapter 13 is a general critical reflection on the previous parts of the book. It is a discus-
sion on the assumptions made of users, systems analysis, systems design and organization in
structured and object-oriented systems ontology. The chapter is a consolidated critical reflection
drawing together various strands of critical argument.

Chapter 14 introduces paradigm as a way of thinking and acting. IS development has pro-
gressively resulted in paradigms of thinking and knowledge. IS developers unwittingly accept
certain paradigms of knowledge and act upon it. No one paradigm is the solution to the problem
of IS development. Each paradigm makes different assumptions of systems, instruments, IS,
organization, people (‘users’), and systems analysis and design, which researchers and practi-
tioners have subsequently challenged. Analysts need to be aware of paradigms and understand
that their actions are underpinned by explicit or implicit choices of paradigm.

In terms of the map of criticality presented in Figure 1.1, Chapter 13 covers refashioning
of traditions and Chapters 14 and 15 cover transformatory critique. Developing theoretical
and conceptual knowledge can enhance a PCF, especially if it is critically evaluated. Such
knowledge can benefit the practice of systems analysis and design too if it is based on under-
standing how knowledge is acquired, and how it is accepted as valid knowledge by a community
of practice such as systems analysts and IS developers.

111

0

11

0111

0

0

11p

241

Part V

Criticality, paradigms and
IS development

12.2 Introduction

Stemming from the SDLC, structured and
object-oriented systems analysis and design
focus on systemic factors. They characterize IS
development, and systems analysis and design,
as a systemic problem that can be resolved
rationally and objectively. The set of assump-
tions underpinning objective problem-solving
though does not account for organizational and
human factors. Research reveals how social
action affect IS development. This chapter
examines such factors and considers how know-
ledge of them can be used to improve know-
ledge and practice.

In addressing the central problem of how to
develop IS, practitioners and researchers need
to be aware of social theory and social action.
The non-systemic factors are organizational,
social, cultural and political, and they need to

be reflected in systems ontology. They are
termed social action here. This is essentially
human action in a social context, its explana-
tion and knowledge of social factors relevant for
IS development. Knowledge of social action is
important because it poses potential obstacles to
systems analysis, systems design and implemen-
tation if it is not understood and accounted for
in systems ontology. The relations between
technical factors, social action and IS are shown
in Figure 12.1.

The figure depicts the relations between
technical factors, social factors and IS. It shows
that the relation between technology and social
action is bi-directional. Technology affects
social action and social action affects technol-
ogy. Information Technology is a keen example
of this bi-directional relationship. Both these
factors determine the conceptualization and
realization of IS.

111

0

11

0111

0

0

11p

243

Chapter 12

Social action

12.1 Learning outcomes

After completing this chapter you should be able to:

• Apply refashioning of traditions criticality to systemic problem-solving strategies.
• Analyse and assess the impact of social action on systems analysis and design,

generally on IS development.
• Evaluate the effectiveness of using instruments in the context of social action.

12.3 Social theory and IS

Interpretive researchers have framed IS
research questions in the context of social
theory to understand and explain IS and IS
development. For example, the structuration
theory of society in sociology has been used to
explain IS. Such accounts based on social
theory add important critical considerations in
conceptualizing and realizing IS. Other aca-
demics have combined knowledge of technical
and social action in methodologies to improve
effectiveness.

The fundamental concept in interpretive IS
research is the subjective construction of reality.
It asserts that knowledge of reality is socially
constructed rather than being an objective
entity. Its implication for structured and object-

oriented systems ontology is that systems models
cannot be construed as being objective. E-R
and class systems models become a matter of
social construction, rather than being objective
or ‘correct’. ‘Data’, ‘process’, ‘class’, ‘object’
and ‘relationships’, and other systems model-
ling terminology, is not an objective fact. They
do not exist independently of humans – both IS
developers, including systems analysts, and
people in the problem domain. The subjective
construction of reality means that people attach
unique meanings to their actions and interpre-
tations of others’ actions. IS developers need to
account for these interpretations in systems
models. Accounting for social action affects
what is represented in systems models and who
decides what to include or exclude.

244

Part V Criticality, paradigms and IS development..

Information System

Information Technology
Computer system

Internet/web
Mobile technology

Programming language
Software

Social action
Social context

Meaning/interpretation
Organization

Culture
Politics/power
Stakeholders

Determines

Determines

Figure 12.1 Technical factors, social action and IS

12.3.1 Social and cultural factors

The ‘social life’ of information and knowledge
is significant. Each organization is socially
and culturally unique. It forms the context for
IS development. This context has an impact
on methodologies and instruments used and on
how effective systems analysts and designers
can be.

Interpretive and socio-technical systems
ontology recognize social action. It seeks to
account for the social, political and cultural fac-
tors in IS development. Socio-technical ideas
are incorporated in the ETHICS and Multiview
methodologies, but have not had an impact on
practice. Now the activities of agile software
developers are beginning to make social action
the focus of systems analysis and design.

Information and knowledge have proved to
be great levellers of status in organizations. If a
new IS challenges the existing status of individ-
uals or groups it will be heavily contested. They
may become ‘passive’ during the development
and withhold information. In some cases groups
whose high status is threatened by a new IS will
object and create political issue. They will con-
flict with newly formed status groups privileged
by a new IS.

Other organizational issues include culture,
values and ‘rites and rituals’. Research shows
that organizations have ‘value systems’ that
need to be recognized by IS developers, who
themselves may have a different set of values.
A particular issue is the culture of information,
its value, sharing of it in business problems, and
capitalizing on it are significant issues in IS
development. People may withhold certain
information if they deem it politically powerful
and significant. Where the culture is one of
individualism, competition and non-sharing of
information, systems design needs to reflect it in
the data and information provided. When the
culture is team-based, consensual and coopera-
tive, a different systems design is needed.

Another aspect is the behaviour of people in the
problem domain and norms shared by groups
that may be contrary to those of other stake-
holders or even IS developers. Information may
be heavily protected.

12.3.2 NIMSAD

There is recognition of normative values in
adopting methodologies. The Normative Infor-
mation Model-Based Systems Analysis and
Design (NIMSAD) originates in systems think-
ing and addresses problem-solving in IS. It
is an action research evaluation framework,
which enables an understanding of subjective
processes.

In the NIMSAD framework problem-solving
consists of four elements:

• The problem situation and understanding it
as a ‘situation of concern’.

• The problem-solver.
• The problem-solving process.
• Evaluation of the above three at three time

periods (t0, t1, t2).

It is used to evaluate methodologies-in-action
and contains four elements: methodology in
context, methodology user, methodology and
evaluation. Each of these elements consists of
asking a set of questions and interpreting the
answers in terms of problem solving.

12.4 Organizational factors

The flow of information is an important defin-
ing characteristic of organization. Information
flow ‘binds’ an organization. A new IS results in
different information flows that may raise con-
flicts of interest. Change management is critical
in recognizing different interests and finding
strategies for reconciliation of conflicting groups
of interests.

111

0

11

0111

0

0

11p

245

..Chapter 12 Social action

Stakeholder analysis is used to understand
who or what group has an interest in a new IS,
what potential conflicts of interest exist, and
how they should be managed. Systems project
managers use it to identify interested groups,
assess their power of influence and develop
strategies for managing stakeholder interests
and expectations. Analysts need to behave
diplomatically with powerful but sensitive
stakeholders.

Organizational change resulting from IT
is central to the ETHICS methodology. It is
particularly oriented towards systems analysis
and design that is sensitive to job roles and job
satisfaction. Involving people or participation
in the systems design decision-making process
facilitates this sensitivity in ETHICS.

12.5 Political factors

The politics of information and knowledge is a
significant factor in IS development. Practi-
tioners disregard politics because it questions
the assumption of objective and rational
problem resolution underpinning systems ontol-
ogy. Structured and object-oriented systems
ontology do not explicitly recognize politics in
systems analysis and design. They encourage
systems analysts to interact with people free of
political bias, and interpret the problem domain
rationally and logically. Such objective systems
ontology does not recognize politics.

Similarly, training courses, and often degree
modules on systems analysis and design, do not
adequately consider the laden politics implicit
in IS development. Consequently, analysts
can become pawns in political struggles of orga-
nizational stakeholders interested in develo-
ping stronger political power through the
development of particular IS.

Interpretive systems ontology can allow for
political factors. Though not entirely subjective,

socio-technical approaches acknowledge social
conflict. SSM, Multiview and ETHICS recog-
nize conflict among stakeholders and different
world-views of developers and people affected
by a new IS. SSM focuses on ‘human activity
system’ and uses systems theory to propose
holistic solutions to achieve predetermined
purposes. It acknowledges the importance of
people and describes their differing perceptions
and conflicts in systems models.

Analysts developing inter-organizational IS,
or networked organizations, in particular need
to be aware of political factors. Such networked
IS involve multiple organizations vying for
political dominance. In the case of a manufac-
turing organization and its suppliers, a power-
ful manufacturer will be interested in dictating
terms to suppliers, and the proposed networked
systems design will reflect the shift in power to
it. Such systems change traditional business
practices and have an impact on economic
transaction costs and organization structure.

12.6 Social theory in the Critical
Framework

Some researchers argue that social action defies
rational explanation characteristic of structured
and object-oriented systems analysis and design.
Systems ontology need not be devoid of social
action though. It can account for social action.
For example, socio-technical and interpretive
approaches recognize varying social perspec-
tives and political conflict among stakeholders.
Analysts also need to account for social action
in personal constructs because IS development
happens in the context of social action. Analysts
need to develop appropriate social action per-
sonal constructs and consider how they fit into
a PCF.

The assumption of rational human behav-
iour made in structured systems ontology, and
to a lesser degree in object-oriented systems

246

Part V Criticality, paradigms and IS development..

ontology, does not account for social action,
particularly organizational politics. IS develop-
ment is heavily influenced by political power.
This puts the analysts’ task of deploying require-
ments analysis techniques in a charged political
context. Line managers will determine people
available for interviews or observation. The
information interviewees volunteer will depend
on their perceptions of a new IS and its affect
on their jobs and status. All these decisions
are social and politically motivated in an
organizational context.

Figure 12.2 is the Critical Framework popu-
lated with critical reflection on social action
(non-systemic factors). As the bottom layer
shows, questions concerning the four themes of
criticality arise. The question of adapting instru-
ments to model social action is raised in the prag-
matic component. Developments in ASD, based
on XP, can be interpreted as modelling social
action. The AgileAlliance Manifesto restates the
practice of software development in comparison
to structured systems ontology as principles:

• Individuals and processes over processes and
tools.

• Working software over comprehensive soft-
ware.

• Customer collaboration over contract nego-
tiation.

• Responding to change over following a plan.

Significantly, all the things sought in emerging
systems ontology are characteristic of the Real
World Component of the Critical Framework.
ASD is now incorporating them into agile sys-
tems ontology. XP uses the stories people can tell
of their experiences of the problem domain to
develop implementable models. The stories are
captured as ‘storycard’ and stored in structured
databases, subsequently are analysed to deter-
mine requirements and functionality.

12.6.1 Mutuality and shared
understanding

A significant issue in systems ontology not
addressed in structured and object-oriented sys-
tems ontology is mutuality and shared under-
standing. Mutual IS development has only
recently been accepted through participative IS
development or analysis and design that involves
‘users’. Even more important is shared under-
standing of IS development and a new IS itself.

Developers and ‘users’ do not have a shared
understanding of a new IS, it is even lacking
among users. They each approach its concep-
tion, analysis, design and realization from very
different perspectives, and develop it in equally
varying contexts. The developer and analyst act
from a technically informed viewpoint and the
user from an organizational viewpoint, in which
IS are a means to an end – organizational goal,
task achievement, workflow support or process
improvement.

Shared understanding depends on commu-
nication and communicative methods that are
not sufficiently considered in systems ontology.
The instruments used to conduct systems analy-
sis and design originates in a technical context
– programmers and analysts technical prob-
lems. The instruments are used euphemistically
to allay ‘users’ concerns, and even propounded
as enabling ‘communication’ and participation
with them. Practical use, though, reveals how
uninformed or unintelligible users remain.
Analysts need to explore alternatives that gen-
uinely develop shared understanding of IS
development and the IS itself.

12.6.2 Best practices and COTS
solutions

The design of software components and
Commercial-Off-The-Shelf Software (COTS) is
based on best practices. When implemented in
a company, business processes in it are altered

111

0

11

0111

0

0

11p

247

..Chapter 12 Social action

248

Part V Criticality, paradigms and IS development..

Apply formal
methods

Real world of
human problems

(Messy world)

IS and IT, social conflict,
power, struggle

Systems
ontology

Social action

Politics,
culture,

organization,
interpretation,

meaning,
individuals,

working
software,

collaboration,
change,

mutuality,
shared understanding

Pragmatic
resolution

Reflect in tools and
techniques

Interpret formalisms in
practiceDevelop knowledge

Determine a pragmatic
resolution to problems
with formal techniques

and tools

Resolve
problems

Transformation of
traditions reflexivity

Can people be involved
more?

How can social
organization be
incorporated?

Transformatory critique

Can social action be
understood in terms of

systems ontology?
How does social action
affect system design?
How can non-systemic
factors be reflected in

systems ontology?

Critical skills

Can techniques and tools
be adapted to reflect

social action?

Figure 12.2 Critical framework: social action

to suit the information processing design based
on best practice. Solutions based on best prac-
tices have resulted in the failure of companies
in which they were implemented.

A systems ontology that recognizes the social
and cultural uniqueness of organization would
form the basis of questioning the use of best
practices in systems models and COTS. Analysts
are involved in deploying Enterprise Resource
Planning (ERP) or Customer Relationship
Management (CRM) COTS. Often, the prob-
lem domain has to be changed to suit the COTS
being implemented. This means that the organ-
ization itself is changed. This is a highly ques-
tionable practice, which can result in disruptions
and even cause poor performance.

The same observation can be applied to IS
developed using software components. As solu-
tions components embody certain ‘problem
domain’, for which they were originally devel-
oped. The attributes and operations in classes
may be too complex to change for the target
problem domain. So the target problem domain
is often changed to suit the componentized
solution.

The same critique applies to methodologies
as planned action. Methodologies embody best
practices for developing IS in a planned and
systematic manner. They are also underpinned
with ontological assumptions about the
‘problem domain’. Often these remain hidden
to practitioners. Research reveals that method-
ology use in organizations is low. When it is
used it is adapted to suit the organization using
it or selectively applied alongside in-house prac-
tices. When a methodology is deployed, analysts
often have to change their practices to apply
unfamiliar instruments. They often become
blasé as a result.

12.6.3 Deploying instruments

How knowledge of social action can be reflected
in systems ontology is a significant issue in IS

development. Figure 12.2 provides exemplary
critical questions. Transformatory critique is
significant because it can result in alternative
approaches like ETHICS or XP that account
for social action. XP focus on social action with
the ‘storycard’ technique to capture the social
aspect in systems design. It may be interpreted
as situated action.

Non-systemic factors affect significantly the
deployment of instruments. The rational and
objective base of structured and object-oriented
systems ontology instruments mean they are
not capable of acknowledging varying human
perspectives and political conflict characteristic
of social action found in a problem domain.
Instruments based on structured systems ontol-
ogy particularly need to be adapted.

In terms of the pragmatic component of the
critical framework in Figure 12.2, analysts need
to consider non-systemic factors when analysing
a problem domain. This can be achieved by
questioning systems ontology that underplays or
negates politics, culture and organization. Alter-
native systems ontology, for example ETHICS
or ASD, can be analysed to evaluate how they
seek to reflect such factors in instruments and
IS development.

12.7 Personal Critical Framework
development

12.7.1 Personal constructs for social
action and organization

Activity A

Table 12.1 is a sample repertory grid for organ-
ization and non-systemic factors in IS develop-
ment. Reproduce the grid on a spreadsheet and
add further columns and their polar opposites
that you consider relevant. To objectify per-
sonal constructs in organization, complete the
grid by following the details on how to use a
repertory grid in section 1.10.1.

111

0

11

0111

0

0

11p

249

..Chapter 12 Social action

12.7.2 Accounting for social action

Questions

1 Discuss what uses systems project managers
and analysts can make of stakeholder analy-
sis results to manage political issues in IS
projects.

2 Critically discuss whether situated action
accounts better for social action than planned
action.

3 The E-R, DFD, and class models lack social
context. Discuss how you would deploy them
in actual situations to take account of social
action.

4 Critically discuss structured and object-
oriented systems ontology from the ontolog-
ical perspective of social construction of
knowledge.

Activity A

Compare structured systems ontology with
ASD. Use the sources for ASD given in section
12.7.4 and your own:

• Is ASD a methodology?
• Is it appropriate to characterize ASD as sit-

uated action rather than planned action?
Explain your position.

• How does ASD respond to change in system
requirements?

• What instruments are used to cater for the
agile manifesto claim of ‘Individuals and
interaction over processes and tools’?

• How does ASD cater for social action?

12.7.3 Political and cultural factors

Activity A

For this activity use the information you have
on LASCAD from Activity A in section 11.10.5
and additional information you can collect.

• Identify three political factors that had an
impact on LASCAD’s development.

• Discuss how each one affected systems
analysis and design.

250

Part V Criticality, paradigms and IS development..

Table 12.1 Personal constructs for organization

Pole 1 Pole 2

Organized Unorganized

Planned Unplanned

Captured Not captured

Consensus Conflict

Context Abstract

Stable Fluid

Mechanical Social

Process Individual

Contract Customer

Negotiation Collaboration

S
oc

ia
l

ac
ti

on

P
ol

it
ic

s

C
ul

tu
re

S
tr

at
eg

y

In
te

rn
al

C
ha

ng
e

C
ol

la
bo

ra
ti

on

E
xt

er
na

l

• Analyse the impact of London Ambulance
Service organization culture on LASCAD’s
development.

• Discuss appropriate systems ontology for
managing the LASCAD project capable of
accounting for social, political and cultural
factors.

111

0

11

0111

0

0

11p

251

12.7.4 Internet sources

Surf the Agile Alliance manifesto site at http://agilemanifesto.org/. Analyse how the SDLC
systems ontology is replaced with one that reflects social action.

Authoritative information on ASD is available at www.agilealliance.org.

12.7.5 Further reading

Brown, J. S. and Duguid, P. (2002) The Social Life of Information, Boston, MA: Harvard Business
School Press.

For an understanding of the philosophical basis of methodologies see: Fitzgerald, G. and Avison,
D. (2003) Information System Development: Methodologies, Techniques and Tools (3rd edn), London:
McGrawHill.

..Chapter 12 Social action

13.2 Introduction

The problem of IS development remains unre-
solved and is continually being advanced by
emerging understanding, knowledge and prac-
tice. Structured analysis and design is the earli-
est attempt to develop consistent knowledge or
a shared ‘value system’, but its ontological basis
of data and processes do not account for social
action. Object-oriented analysis and design is
the most recent body of knowledge. Through
certain UML diagrams it can develop class
models that reflect ‘actors’ in the social context,
but arguably not social action.

Structured systems ontology characterizes IS
development as ‘engineering’ an artefact. The

complex elements of humans, organization and
social context are considered subsidiary. These
elements form the social context in which an IS
is proposed, designed, built and used to achieve
organizational goals. Methodologies, tech-
niques and tools, and professional IS develop-
ers, including systems analysts, all have to
operate in this social context. Researchers and
practitioners are increasingly acknowledging its
importance in software development and
systems analysis and design.

The various strands of criticality in previous
chapters on systems thinking, systems analysts,
requirements gathering, data and process model-
ling, logical modelling, class models and systems
design all need consolidated critical reflection.

252

Chapter 13

Critical reflection

13.1 Learning outcomes

After completing this chapter you should be able to:

• Evaluate themes in systems ontology: engineering metaphor, organization,
instruments, modelling and people.

• Evaluate the value of the concept of computer-independent design in systems
ontology.

• Critically evaluate structured and object-oriented systems analysis and design and
their respective ontological basis.

• Evaluate the relevance of planned action and situated action in systems ontology.
• Apply transformatory critique to structured and object-oriented systems ontology.

Deeper critical analysis is developed in this chap-
ter of the premises and assumptions of system,
humans and organization made in structured and
object-oriented systems ontology to engender
transformatory critique. The critical coverage will
encompass how the problem of IS development is
defined, conceptions of IS itself, adequacy of
instruments for data, process, and logic model-
ling, object modelling and systems design.

13.3 Defining the IS development
problem

Characterizing IS development is problematic
for researchers and practitioners. It needs to
account for technological, systemic, human,
organizational and social elements. There are
no metrics to determine relative weights or
importance of these elements but satisfactory
characterization of the problem needs to be
based on clear understanding of the significance
of each one. Research in IS, and recent practice,
indicates that the human and social elements
need to be central rather than peripheral.

Various methodologies and approaches,
including emerging approaches, give varying,
and often unequal, weight to one or a combina-
tion of these elements. Structured and object-
oriented systems ontology emphasize tech-
nology. Structured systems ontology is con-
cerned with the efficacy of using computers, so it
emphasizes completeness of data, its unambigu-
ity and non-redundancy to enable efficient com-
puter processing. Object-oriented systems
ontology emphasizes systemic relevance of
objects, the services they provide, and how they
collaborate with other objects.

Through research and practice the other ele-
ments are becoming recognized as significant.
Socio-technical approaches provided the
seminal focus on human and social elements,
but maintained the supremacy of technical
knowledge. ASD gives primacy to individual,
social and organizational elements and under-

plays technical and contractual knowledge and
practice.

The ontological basis of systems and systems
interoperability is also being recognized, for
example in ontological definitions of domain
knowledge. Ontology management tools are
designed to enable sharing and reuse of onto-
logical knowledge of the problem domain.
Critical questions concerning how knowledge is
elicited, constructed and formalized inform
research into systems ontology.

A significant problem for developing onto-
logical system knowledge is the proposition that
social action, or human and social elements,
defy rationalization. Nevertheless, since they
are constituents of IS, they need to be included
in systems ontology and IS development.
Systems analysis and design in some form,
whether planned or contextual, is a vital
element of the problem. Whereas structured
and object-oriented systems ontology construe
the problem in terms of technological problem-
solving, underpinned with rationalism, ASD
construes it as situated and contextual activity,
underpinned with pragmatism. The emerging
ASD alliance recognizes all the elements of the
problem but shifts development activity to
human and social elements.

Defining the process of IS development is
problematical too. The objective and rational
basis of the SDLC defines it as a sequential
process, consisting of specification, design and
implementation. Even with later additions recog-
nizing iteration and spiralling between phases,
practitioners maintain a phased approach de-
marcated into requirements analysis, systems
design and implementation. RAD and JAD
compress the sequential process activities to
speed development. Prototyping iterates among
the activities until a satisfactory product is devel-
oped. The emerging ASD jettisons the planned
action basis of the whole process and its activi-
ties, and engages with individuals, seeks working

111

0

11

0111

0

0

11p

253

..Chapter 13 Critical reflection

software rather than technical efficiency, regards
collaboration as more important, and makes the
enabling of change central in the development
process.

Modelling is a significant issue in defining
the IS problem because it is the basis for devel-
oping IS. As an IS consists of all the elements
enumerated above, the modelling process needs
to cater for them comprehensively and in suffi-
cient detail. The focus on data and processes in
structured systems ontology neglects social
action. Object-oriented systems ontology con-
siders them peripherally. ASD is based on these
factors. A subsidiary problem is the type of
models developed. The prevalent form is the
passive model type, which is abstracted and
detached from reality, rather than the active
model type, which can be dynamically linked to
social action or human activity. Class models
though are capable of dynamic binding.

13.3.1 Abstract forms and reality

Systems analysis and design is a process of
abstraction from actual, real human problems
with the resultant forms called systems models.
A model is composed of pertinent elements,
those judged to be relevant by modellers, with
other details of the actual situation removed.
Such models contain abstract forms. In struc-
tured systems ontology the abstract forms are
entities, attributes, relations, cardinality or the
E-R model. In process models abstract forms
are process and logic. In object-oriented systems
ontology the abstract forms are classes, objects,
attributes, operations, encapsulation, relation-
ships, hierarchy, and polymorphism, or the
class model.

E-R and process models and class model are
technical notations considered sufficient to rep-
resent reality. The problem is not how to dupli-
cate reality, which is not achievable, but its
pertinent features need to be reflected in systems
models. The very need for an IS is rooted in

human and organizational activity, and remov-
ing details during modelling raises critical ques-
tions. What details should be removed and why
remove them are significant issues because they
determine how effective a system will be in
operation. The corollary issues are what details
should be included and why. Systems models
that remove details pertinent to business needs
result in IS that tend to be underused or not
used at all. Conversely, what new details should
be added to models to improve business per-
formance is significant too because it affords
the opportunity to create a new reality that
could provide benefits. eBusiness, eCommerce,
and networked organization are examples of
such transformations of organizational reality
through radical modelling.

Who should decide what details to include
or remove is pertinent. Analysts and designers
make the decisions in structured and object-
oriented systems ontology. In the earliest ver-
sions of structured IS development, developers
solely decided definitions of the ‘problem
domain’ and the activities emphasizing conse-
quent technical compliance of a new IS. The
resulting IS were heavily biased in IT.
Subsequent approaches have introduced ‘par-
ticipative development’ and ‘joint development’
to include people, though people still lack skills
required to understand systems models and
make informed intelligent contribution.

The assumption that IS can be engineered
is central in the abstraction process. The SDLC,
and methodologies based on it, support the
premise that an IS is an engineered product.
In methodologies, the engineering analogy is
applied to define the problem, specify what
is required, design the system and then implement

the design. This introduces an additional layer
of abstraction in structured systems ontology
and modelling notations. This is the separation
of design from the computer – computer-
independent design. It is the distinction between
the logical and physical design in structured

254

Part V Criticality, paradigms and IS development..

systems ontology. The logical designs constitute
the abstract forms that in turn are converted
into physical design – the actual computer
system.

Reality is systemless. The notion of system
itself is an abstract form, which is used as an
‘organizing concept’, to organize ideas and
thoughts about reality. It is a fundamental
element in the definition of the problem of IS
development and conceptions and definition of
IS itself. Human and organizational need for
information is characterized as an ‘Informa-
tion System’. Systems thinking is incorporated
into the Multiview methodology. The system
abstract form is powerful because it is concise
and precise in providing techniques for includ-
ing and removing details of reality in models.
The sophistication of IT, the internet and the
web in turn lead to sophisticated interpretations
of systems in the world.

The process of abstraction is reflected further
in systems project management. Project plans
define in detail activities of a project team and
resources required to produce an IS. Such a
plan is an abstract form of organized human
activity. Project managers’ monitoring and con-
trolling activities are to ensure systematic devel-
opment within finite resources detailed in the
plan. Such plans have often failed in practice
because the weight of the detail removed super-
sedes the elements of reality kept in the plan. The
real world mess is stronger than any plan, and
planning in the mess remains problematical.

Abstract forms fail to recognize social action
– critical social and organizational factors. A
major assumption underpinning E-R, process
and class models, and plans, is that human and
organizational behaviour is objective and ratio-
nal. Consequently, the abstract forms neglect
social and political organizational behaviour
and culture. In organizations that serve humans,
the police or healthcare for example, there is
an additional human factor that researchers in
labour have identified – emotion. Object-

oriented systems models have the potential to
depict ‘aspects’ and ‘roles’ in organization.

13.4 Further development of the
Critical Framework

The original Critical Framework presented in
Chapter 3 can itself be further developed with
critical questioning of systems ontology. Through
transformatory critique systems ontology can be
improved to reflect human intention, purpose,
mutuality, shared understanding and organiza-
tion. Such critique can lead to the development
of ontological knowledge of systems that inte-
grates technology and social action.

The questions concern the value and validity
of existing ontological knowledge and know-
ledge yet to be acquired. For example, organ-
ization theorists describe organizations as
having a boundary, goals and activities. Systems
ontology shares two of these descriptors, bound-
ary and purpose (goals). It does not have activ-
ities – which is present in SSM as ‘human
activity system’. Other ontological issues in IS
development include: the value of the SDLC
and the structured and object-oriented systems
ontology based on it, and the effectiveness of
concepts, instruments, and models.

Figure 13.1 is an improved critical framework
reflecting technology and social action perspec-
tives. It is populated with paradigmatic critical
reflection. As the bottom layer shows, questions
concerning systems ontology, real situations and
pragmatic resolutions arise. Systems designers
have emphasized system integration as a critical
issue, but the focus remains on systemic issues.
More important is integrating IS and organiza-
tion. This is one research direction taken in
Deferred System’s Design (see section 15.6).

Paradigms and paradigmatic knowledge
revolutions are significant for improving the
Critical Framework. Paradigms of IS develop-
ment reflect what knowledge is accepted as
valuable and valid by practitioners. The SDLC,

111

0

11

0111

0

0

11p

255

..Chapter 13 Critical reflection

256

Part V Criticality, paradigms and IS development..

Apply formal
methods

Real world of
human problems

(Messy world)

Information Technology,
humans,

social action,
political and cultural

factors,
reality is systemless,

systems in
the world

Systems
ontology

Technology and
social action

Integrated model of
systems and
organization,

human intention,
purpose,
change,

complexity,
planning in
the mess

Pragmatic
resolution

System and organization
integration,

reduce the level
of abstraction,
develop active
system models

Interpret formalisms in
practice

Develop Critical
Knowledge

Paradigms and
revolutions, technical,

socio-technical,
human-centred,

system-organization,
ontology

Determine a pragmatic
resolution to problems
with formal techniques

and tools

Resolve
problems

Transformation of
traditions reflexivity

How can individuals be
included in development?
Can stories and narratives

provided by people in
the organization be

used?

Transformatory critique

Is formal systems
modelling sufficient

for describing
and understanding

social action,
intention and purpose?
One system or multiple

perspectives and
systems?

How can organization
be represented
systemically?

Is formalism consistent
with social action?

Critical skills

What kind of techniques
and tools are required to
describe social action?

Can techniques and tools
be adapted to reflect

social action?

Figure 13.1 Improving the critical framework

and IS methodologies based on it, form a
paradigm of objectivity and rationalism in IS
development. The objective systems ontology
paradigm can be described as a ‘clean room’,
where non-systemic factors are cleaned or
removed. The clean room makes it possible to
speak of a ‘problem domain’, ‘optimum solu-
tion’, ‘an agreed system’, ‘logical’ and ‘physical
design’, and other such systemic and techno-
logical terminology. This paradigm is critically
questioned by socio-technical and interpretive
IS development, and recently by ASD.

A fundamental assumption of the SDLC is
that a system, rather than different perspectives
of the system or even different IS, is to be pro-
duced. The DBMS conceptual schema enables
various perspectives, but the underlying physi-
cal system and conceptual schema are not
rooted in social action. In the SDLC a system
agreed by all the parties concerned is to be pro-
duced. Consequently, systems analysis and
systems design is for one physical system. Such
conceptualization leads to systems ontologies
that assume a single system. This assumption is
misplaced for certain kinds of IS and fails
to account for differences among stakeholders
in organizations. An exception is the Multi-
view methodology, which develops multiple
perspectives systems ontology.

The single system view prevailed because of
contemporary technology during the develop-
ment of structured systems ontology. Recent
object-oriented technology is capable of the
alternative concept of multiple perspectives on
a system. Aspect-oriented systems ontology rec-
ognizes multiple perspectives. Objects are ver-
satile and can be modelled to reflect ‘aspects’
and ‘roles’, as well as behave polymorphically.

13.4.1 Organization, organizing and
systems in the world

The value and validity of ontological know-
ledge of systems can be improved by developing

knowledge of how to develop IS that reflect
organizing and organization simultaneously.
The terms ‘system’ and ‘problem domain’ are
abstract forms that do not reflect the present
continuous tense that is organizing. Organ-
izational theorists think of organizations as
social units with goals, boundaries and activity.
Some IS researchers argue that organizations
evolve and emerge. Such various explanations
of organization undermine the premise of
planned action in IS development.

Neither structured nor object-oriented sys-
tem ontology recognize emergent organization.
Emergent organization is the recognition that
things can happen in organization which
cannot be accounted for in predetermined
strategies or plans. For example, a company
takeover is an emergent factor if it is unexpected
or at an operational level realization of a defec-
tive product. Just as organizations have to
respond to such emergence, systems too need
to reflect them. Passive systems models are
unable to cater for such emergent change.

An ‘Information System’ needs to fuse
organization, organizing and system. IS devel-
opers emphasize the technological system, the
human and organizational element is generally
peripheral. To improve systems ontology, the
distinctions between technological systems, IS
development and business operations need to
be critically questioned. Thinking of IS devel-
opment in terms of systems project management
reinforces such distinctions. Some researchers
and practitioners argue that systems ontology
will better reflect organization and organizing
when the activity of developing IS is conceptu-
alized as being an everyday operational issue
rather than ‘projectizing’ it. The development
of active models reduces the distinctions and
tends towards this view.

Adaptive and evolutionary IS aim to reflect
organizing, rather than organization. Systems
models for adaptive and evolutionary IS are
dynamic, they are designed to reflect actual

111

0

11

0111

0

0

11p

257

..Chapter 13 Critical reflection

situations dynamically. Object-oriented systems
ontology can cater for such systems through its
dynamic binding of objects and deferred objects.

13.4.2 Human intention, purpose,
change and complexity

Specifically, the critical framework can be
enhanced to reflect social action, as shown in
Figure 13.1. Systems ontology needs to account
for human intention, purpose, meaning, change
and complexity. Systems analysis and design, as
practised in structured and object-oriented
approaches, does not sufficiently acknowledge
social action, of which change and complexity
have an inordinate effect on IS development.

The assumption of a static problem domain
is erroneous in systems ontology. In business
organizations uncertainty can arise from the
actions of markets and competitors or internal
strategic decisions, which can make the devel-
opment of systems models, especially for strate-
gic IS, problematical. The effectiveness of
instruments is compromised by organizational
change and complexity. Such instruments
assume stability in real situations.

Similarly, the assumption of a static IS
environment is erroneous. Uncertainty and
complexity also arises when intended organiza-
tion design is exposed to its environment. The
intended organization design, containing
processes and structures designed to achieve
goals, needs to be responsive to its environment.
The system concept acknowledges the environ-
ment, demarcated by the system boundary and
feedback. Systems ontology though, whether
structured or object-oriented, is weak in sug-
gesting concepts and actual mechanisms for
managing environmental effects, because it
assumes a static systems environment.

Complexity also arises when formalism like
organization design, systems designs or project

plans designed to achieve human purpose are
applied to actual situations. Applying formalism
in practice is difficult because of human and
organizational factors, and the variance
between what is depicted in the formalism and
actual reality. System project plans tend to be
revised because the actual situation differs from
the projected required situation and systems
designs fail because they do not reflect business
requirements.

A prime weakness of structured and object-
oriented systems ontology is the lack of under-
standing of human intention. They do not seek
to develop knowledge of human intention. The
human element in IS though, presupposes
intention. In strategic IS the intention is to
develop IS that are difficult to imitate by com-
petitors, otherwise any competitive advantage
gained would be lost. In decision support
systems the human decision-maker is the source
of intention, which is usually concerned with
decisions on allocating scarce resources or
investments. Human intention is critical to
systems analysis and design when humans inter-
pret information. Human intention is the most
pronounced and the most difficult to reflect in
systems ontology.

13.5 Personal Critical Framework
development

13.5.1 Personal constructs for
criticality

Activity A

Table 13.1 is a sample repertory grid for criti-
cality. Reproduce the grid on a spreadsheet
and add further columns and their polar oppo-
sites that you consider relevant. To objectify
personal constructs in learning, complete the
grid by following the details on how to use a
repertory grid in section 1.10.1.

258

Part V Criticality, paradigms and IS development..

Activity B

A PCF enables a person to develop a notion of
self and identity. Its constituents provide a basis
for self-expression and action in real situations.
For example, an analyst convinced of the value
and validity of structured systems ontology will
deploy structured instruments believing that
they will produce the required results. Such an
analyst would probably propound structured
analysis and design and propose it to develop
IS. Drawing on the PCF you developed through
the previous chapters:

• Improve your PCF by questioning the cor-
rectness, value, and validity of your personal
constructs. Would you defend your personal
systems ontology? Would you put into prac-
tice the methods, techniques and tools you
accept as valid and how would you do so
professionally?

• What kind of emotion, commitment and pro-
fessionalism does your PCF result in for you?

• Does your PCF provide you with a ‘social
identity’ as an analyst?

• Would you call yourself a ‘structured’ or
‘object-oriented’ analyst?

Questions

1 Assess the practical value of the system
concept for IS development.

2 Discuss whether the activities involved in
‘problem-solving’ are capable of accounting
for the human element in IS.

13.5.2 Developing systems ontology

Question

Discuss what you would do to improve struc-
tured and object-oriented systems ontology in
terms of:

• How knowledge of systems is acquired.
• How such system knowledge is formalized.

Consider the critical thinking skills enumerated
in section 1.8.1.

111

0

11

0111

0

0

11p

259

Table 13.1 Personal constructs for criticality

Pole 1 Pole 2

Question Fact

Reflect Internalize

Existing thing Alternative thing

Interpret Accept

Analyse Use

Evaluate Do not judge

Explain Ignore

Self-regulate Do not reflect

T
ra

ns
fo

rm
at

or
y

cr
it

iq
ue

R
ef

as
hi

on
in

g
of

 t
ra

di
ti

on

R
efl

ex
iv

e
cr

it
ic

al
it

y

C
ri

ti
ca

l
sk

ill
s

S
oc

ia
lly

co

ns
tr

uc
te

d
kn

ow
le

dg
e

N
eg

at
iv

e

..Chapter 13 Critical reflection

13.5.3 Structured systems ontology and
social action

Activity A

Table 13.2 contains descriptive statements of
structured systems ontology. Reproduce it in a
word processor. Enter your comments in the
second column on how it can better reflect the
social action.

From your readings, list other claims made
by the advocates of structured systems ontology.
Reflect on these claims. Are they valid claims?
What does practising structured systems ontol-
ogy reveal?

13.5.4 Object-oriented systems ontology
and social action

Activity A

Table 13.3 contains statements descriptive of
object-oriented systems ontology. Reproduce it
in a word processor and enter your comments
in the second column on how it can better
reflect social action.

From your readings list other claims made
by the advocates of object-orientation. Reflect
on these claims. Are they valid claims? What
does practising object-oriented systems ontology
reveal?

13.5.5 Analysis of systems ontology and
real human problems

Activity A

Table 13.4 lists many of the critical issues affect-
ing structured and object-oriented systems
ontology in the first column. The issues are
divided into practical, philosophical and social
action. The issues concern how the problem of
developing IS is defined. When completed the
table will be a comparison of the SDLC-based
structured approach and object-orientation
with the real or messy world. The category of
criticality is also added to enable you to respond
in terms of how you would be critical of systems
ontology and the messy world.

• Reproduce the table in a word processor and
fill column two with appropriate descriptions

260

Part V Criticality, paradigms and IS development..

Table 13.2 Questioning structured systems

Statement Reflecting social action

A computer system (IS) can be engineered.

A computer-independent design is possible.

Objective knowledge about the problem domain
(business area) is possible because things exist
independently of humans.

Structured techniques make communication
between analysts and users easier.

Data, process and logic modelling techniques
can reflect the problem domain.

Entities describe things of interest in the
problem domain.

The DFD notation language is sufficient for
developing systems models of business processes.

111

0

11

0111

0

0

11p

261

Table 13.3 Questioning object-oriented systems

Statement Reflecting social action

A class is a set of objects with common
characteristics in the problem domain.

An object is an abstraction from the problem
domain, capable of encapsulating data and
operations, processing information and
collaborating with other objects.

Generalization is useful for building logical
structures to represent similarity or differences
between classes.

Objects communicate with each other by
sending messages.

Message passing is enhanced by polymorphism.

Table 13.4 Comparative analysis of systems ontology with the messy world

Systems ontology

Structured and object-oriented Messy world of social
systems analyses and design action (provide evidence)

Practical
Praxis
Methods to achieve aims
The role of projects in IS development
Knowledge of the application

domain, characterization of the
application domain

Capable of techniques and tools
Communication between professional

developers and users
Understanding of data and information
Formalism, knowledge and theory

Philosophical
Premises/assumption
Ontology
Epistemology

Social action
Resultant system
Organizational politics
Organizational culture
Information

Criticality
PAC cycle
Personal Critical Frameworks
Critical knowledge and practice

framework
Critical thinking
Critical skills
Reflexivity

..Chapter 13 Critical reflection

of structured and object-oriented analyses in
response to each item in the first column.

• Use lessons learnt from this textbook, case
studies or experiential knowledge to describe
the real or messy world in column three. You
may also enter a description of your personal
construct.

• Compare the two columns you filled in terms
of knowledge gaps and practice implications.

Question

Comparatively analyse the effectiveness of
structured and object-oriented systems ontology
for representing social action in IS.

262

Part V Criticality, paradigms and IS development..

13.5.6 Internet sources

See Cambridge University’s Department of Engineering page for succinct overview of SSM at:
http://www-mmd.eng.cam.ac.uk/people/ahr/dstools/control/softsm.htm.

13.5.7 Further reading

For a special issue dedicated to social computing see: ‘Communication of the ACM’, Social

Computing, 37(1) January 1994.

For systems thinking applied to human activity systems, which accounts for social action see:
Checkland, P. B. (1981) Systems Thinking, System Practice, Chichester: Wiley.

14.2 Introduction

Knowledge of how to develop IS or what consti-
tutes IS remains incomplete. An examination of
the intellectual traditions in IS research and
practice reveal systems and ontological assump-
tions underpinning them that have led to certain
approaches, some more successful than others.
Structured and object-oriented systems ontology
contains assumptions and assertions that do not
account adequately for actual IS development.
This chapter is a deeper theoretical underpin-
ning, taking a discursive, critical perspective of
systems ontology, the SDLC, and systems analy-
sis and design. It considers paradigms of systems
analysis and design, and examines their assump-
tions about technology, humans, social action,
organizations, data, information and IS.

A critical analysis of the ontological basis of
IS is important for evaluating knowledge and
practice. IS paradigmatic knowledge determines
praxis. Analysts’ ways of thinking and acting
depend on theoretical and practical knowledge
reflected in an implicit or explicit paradigm.
The relationship between thinking and acting is
understood through praxis, which is informed
by knowledge that is internalized, accepted as
valuable and valid. Praxis assumes relations that
are hidden and assumed, and enacted automat-
ically in actual situations. Through reflexive
praxis, based on the critical analysis of systems
ontology, analysts can uncover implicit paradig-
matic assumptions underpinning their actions
and evaluate their relevance to knowledge and
practice.

111

0

11

0111

0

0

11p

263

Chapter 14

Ways of thinking and acting

14.1 Learning outcomes

After completing this chapter you should be able to:

• Revisit previous critical perspectives in the context of paradigmatic understanding.
• Assess the impact of IS paradigms on ontological knowledge and practice.
• Analytically evaluate paradigms of IS development to inform practice.
• Critically evaluate how IS paradigms affect praxis or thinking.
• Apply transformatory critique to your knowledge and practice based on paradigmatic

knowledge and understanding.

14.3 Criticality through
paradigmatic analysis

An understanding of paradigms in IS is neces-
sary for criticality and informing reflexive prac-
tice. It is an aid to understanding what
constitutes progress. Paradigms in particular
characterize progress as ‘revolutions’ in know-
ledge. Progress though can be towards cer-
tainty, or even uncertainty. Paradigmatic
analysis can be used to understand the obsta-
cles to progress, some of which are internal to
a paradigm and others beyond it. Notions of
progress have complexity as a central theme,
where increasing knowledge eradicates the
idea that something is simple.

A paradigm is a set of beliefs, assumptions,
values and shared knowledge accepted by a
community of practice. IS developers, includ-
ing systems analysts, form such a community of
practice. The community accept standards and
measures of validity for knowledge, how it is
acquired, evaluated, and applied. The para-
digm focus is on what constitutes knowledge,
what is legitimate to investigate, and what
methods of investigation are valid.

Practitioners do not think about paradigms
or act contrary to an accepted explicit or
implicit paradigm. For them a paradigm is ‘rea-
son in practice’. There are exemplary forms of
reasoning present in different systems analysis
and design approaches and practice. Know-
ledge and understanding gained from a partic-
ular paradigm is accepted as valuable and valid,
and held by an analyst to be correct. It is this
belief in the correctness of knowledge, or certain
ways of reasoning and acting, that determines
how a particular IS development problem is
thought through and what action is taken to
resolve it. Alternative conceptualization of the
problem and its resolution is resisted because it
is not part of the accepted paradigm.

Uncritical acceptance of knowledge and rote
practice stems from a lack of awareness of a

paradigm of knowledge and practice and a lack
of awareness of alternative paradigms. Know-
ledge and practice can be improved when an
analyst becomes conscious of an accepted para-
digm and begins to question it in the context of
available alternatives. Paradigms can be utilized
to improve reflexivity and, through personal
constructs, can be validated empirically.

The value of paradigmatic analysis is in
understanding how knowledge is acquired and
accepted as valid. It enables questioning of
reason in practice or criticality and uncovers
assumptions of knowledge. Paradigmatic analy-
sis uncovers how knowledge is acquired. Such
knowledge is important for understanding
epistemological knowledge – methods used to
acquire and validate knowledge. It uncovers
assumptions made of the physical and social
world, which is relevant in developing ontolog-
ical knowledge of systems. Significantly, para-
digmatic analysis is valuable because it reveals
the knowledge base that informs and determines
how analysts act.

14.4 Paradigms of IS development

The discussion on paradigms of IS develop-
ment is based on Hirschheim and Newman’s
(1989) work, which draws on social theory to
account for knowledge and practice in IS devel-
opment. They describe four paradigms of IS
development and cite exemplars.

Functionalism The systems analyst is des-
ignated an ‘expert’ developer. IS development
is conducted from without with accepted for-
malism and ‘planned intervention’ using ‘ratio-
nalistic’ tools and methods. People, hardware,
software, organizational rules and objective
entities constitute elements in defining IS.
Structured systems analysis and design and
Information Engineering are classified in the
functionalist paradigm. They assume know-
ledge is objective and that the social world is

264

Part V Criticality, paradigms and IS development..

ordered. This is also true of object-orientation,
though it is underpinned with classifica-
tion theory, which assumes people order their
experiences of the world.

Social relativism The systems analyst is
designated a ‘catalyst or facilitator’. IS devel-
opment is conducted to improve subjective and
cultural understanding within the application
area. Evolutionary social change is recognized
in the IS development process. Subjective
meanings, symbolic structures and metaphors
constitute elements in defining IS. Exemplars
are enthnographic approaches and the FLO-
RENCE project. Social relativist IS develop-
ment assumes that knowledge is subjective and
can be ordered.

Radical structuralism The systems
analyst is designated a ‘warrior’ for social
progress and is partisan. IS development is con-
ducted politically from without using ideology
to affect conscience and develop consciousness.
The tools and methods are adapted to suit dif-
ferent class interests. The same elements used
to define IS in the functionalist paradigm are
used but objective entities are interpreted polit-
ically to serve economic class interests. Trade
Union led approaches, UTOPIA and DEMOS
projects are exemplars. Radical structuralist
IS development assumes that knowledge is
objective but is embedded in social conflict.

Neohumanism The systems analyst is des-
ignated ‘emancipator’ or ‘social therapist’. IS
development is conducted from within to
improve human understanding and bring to the
surface rationality underpinning human action.
Its purpose is to emancipate suppressed inter-
ests and to liberate people from natural and
social constraints. The same elements used to
define IS in the functionalist paradigm are used,
but objective entities are interpreted to develop
‘technical knowledge interests’ to enable control
over nature and social situations. Language and
its intersubjectivity is pertinent in defining IS.

Exemplars are critical social theory based
approaches, SAMPO project. Neohumanistic
IS development assumes that knowledge is
subjective and stems from social conflict.

The focus of structured and object-oriented
systems ontology is on objective modelling.
They operate with the premises of rational
or economic human behaviour and do not
account for social action. They focus not on
individuals and groups but technological
systems. So they can be classified as the func-
tionalist paradigm.

Explanations of IS range from nomolog-
ical to behavioural, to pattern-based. Object-
oriented systems analysis and design is an
example of the latter. Another category of
probabilistic-statistical is evident, where IS
researchers try to explain IS in terms of statis-
tical probabilities. Probabilistic-statistical expla-
nations, contrary to their proponents’ views, do
not establish causal relationships characteristic
of nomological explanations.

14.5 Paradigms, thinking and
acting

Action is concerned with making a difference
to a situation for the benefit of the individual
or others. Humans act in order to achieve
desired aims. Analysts’ action is concerned with
improving organization performance through
systems, and ultimately with applying their
expertise to help an organization achieve its
aims. Their work makes a difference, often
significant, to the working lives of people.
Crucially, it has an impact on the effectiveness
and success of organizations.

It is possible to show how the assumptions
underpinning a particular paradigm affect the
actions of its adherents. Analysts educated and
trained in structured systems analysis and design
unwittingly subscribe to the functionalist para-
digm. Structured systems analysis and design

111

0

11

0111

0

0

11p

265

..Chapter 14 Ways of thinking and acting

leads to prescribed action. A tenant of the
functionalist paradigm is that an expert is best
placed to make systems design decisions. In
structured systems ontology the IS developer –
including the systems analyst – is the expert who
makes design decisions. This assumption domi-
nates requirements analysis, systems modelling,
and systems design, and certainly implementa-
tion. The analyst usually makes policy decisions
that affect processes and structures in organ-
izations. The role of the expert analyst causes
misunderstandings and difficulties between
developers and users. Analysts who identify with
the functionalist paradigm need to analyse what
can be done to reduce friction.

Another tenant of the functionalist paradigm
is objectivity of knowledge. This requires
systems analysts to be apolitical. Apolitical
behaviour leads to neglecting the real political
issues pertinent in IS projects, requirements
analysis, modelling and systems design. The
focus on data in structured systems analysis
results in systems designs that lack stakeholder
champions. In data-centric approaches an IS is
regarded as a product of the data captured,
stored and processed with computer algorithms.
Its proponents claim it has better design stabil-
ity and low data redundancy because rigorous
mathematically based formalism is applied
objectively.

In process-centric approaches an IS is
regarded as a product of the processes it needs
to support with the danger of limited design
stability and propagation of data redundancy.

Action in object-oriented systems ontology is
open to interpretation, rather than prescribed
as in structured systems ontology. Object-
oriented systems analysis and design leads to
interpreted action. The UML is not a method
or methodology, as such it does not prescribe
analysts’ action. UML diagrams are deliberately
designed to be interpretable in context. For
example, the basic features of an object used in

most systems models are name, attribute and
operations. An object can have any other
features deemed appropriate for a problem
domain. This is possible in object-oriented
systems because of meta-models, which define
notation.

14.6 Primacy of method

Conceptions of IS development and method-
ologies in the functionalist paradigm logically
result in the primacy of method and instru-
ments, usually underpinned with formalism
informed or derived from predicate calculus.
Methods for acquiring knowledge of systems,
methods for determining system requirements,
methods for analysis and design, and imple-
mentation are all developed because of the belief
in the value and validity of objective knowledge
and a reality separate and independent of IS
developers. The methodical perspective seeks to
define precisely activities involved in developing
IS and to ensure compliance to those activities
– standards.

The SDLC is an exemplar of the methodi-
cal approach. The development process is
demarcated into distinct phases, with each
phase containing multiple activities. The out-
comes of each phase and activity are the
‘deliverable’ that forms both an input into
another activity and the simultaneous definition
of the resultant IS. Structured and object-
oriented systems ontology emphasize this kind
of methodical IS development.

The primacy of method is further enforced
as projects that control costs. The cost of devel-
oping a system can be detailed in a systems
project plan with distinct activities or work
packages stipulating human and financial
resource requirements. An exemplar in software
development is CMM, with its emphasis on
planned and repeatable systems development
activities. Practitioners, and some researchers,

266

Part V Criticality, paradigms and IS development..

have lately questioned the primacy of method
both in IS development and projects.

14.7 Stories and narratives

Conceptions of IS development and method-
ologies in social relative, radical structuralism
and neohumanism paradigms lead to ‘sense-
making’, meaning, stories and narratives,
where method and process is secondary. Social
relativism and neohumanism assert that reality
does not exist separately from people, so IS
development proceeds by ‘sense-making’ and
sharing meanings among different groups. In
radical structuralism class conflict and partisan
behaviour are characteristic of the analyst.

ASD and XP make use of techniques to gen-
erate stories from people about their experi-
ences. The stories are written by ‘customers’
and used to define the scope of a system project.
The important difference from structured or
object-oriented systems ontology is that system
requirements are sourced directly from the
experiences of people in the problem domain
through their stories, written on a StoryCard.
These StoryCards are kept throughout the
development to keep the team focused on the
customer’s requirements.

Interpretive research in IS also draws on
social theory to develop understanding and
knowledge of the application of IT and devel-
opment of IS. Interpretive researchers build on
the ‘subjective construction’ of reality, sense-
making, and meaning. Though the concept of
interpretation is accepted in the IS research
community, as yet there are few practical
instruments available. An earlier example
though is NIMSAD (Normative Information
Model-Based Systems Analysis and Design). It
is an evaluation framework for methodologies
based on the social relative paradigm. It is used
to evaluate problem-solving in IS.

14.8 Paradigmatic critical
frameworks

The role of a Critical Framework is central in
further developing knowledge and practice.
Criticality among researchers and practitioners
leads to progress in knowledge. Similarly, a
PCF that is static will become obsolete. It
should be revised, amended and improved over
time as new knowledge and advances in systems
analysis and design are made, and as personal
understanding of systems ontology improves.

Figure 14.1 is the Critical Framework pop-
ulated with paradigmatic critical reflection. As
the bottom layer shows, many questions con-
cerning how knowledge is acquired, accepted
and practised arise from entities presupposed to
exist in reality.

Questions on when an assumption or ele-
ment of a PCF should be introduced, amended
or shed can be addressed through paradigmatic
analysis. Paradigmatic critical frame-
works can be of two types. A critical focus
on what constitutes knowledge and how it is
acquired within a paradigm is one type. Some
researchers and practitioners work within a par-
adigm to improve knowledge and practice. For
example, within the functionalist paradigm
when an existing method or methodology is
found to be ineffective an alternative is devised.
For instance, Information Engineering (IE)
was designed to fill gaps in structured systems
analysis and design.

A critical focus on what constitutes know-
ledge and how to acquire it across paradigms is
the other type. Some researchers and practi-
tioners work across paradigms. When the limit
of a particular paradigm is reached an alterna-
tive paradigm is explored, either to cross-
fertilize or to step over into the alternative. For
instance, Multiview is an example of cross-
fertilization, as it is rooted in the functionalist
paradigm but makes use of social relativism. It

111

0

11

0111

0

0

11p

267

..Chapter 14 Ways of thinking and acting

seeks to cross-fertilize functionalist thinking in
STRADIS and IE with social relativist ideas
found in SSM and ETHICS.

Criticality within and across paradigms was
covered in Parts II, III and IV of this book. The

purpose of the critical framework presented in
Chapter 3, and revised in Chapter 12, was
to afford within and across paradigmatic criti-
cality. It is possible to map Barnett’s (1997)
types of criticality to reflect within and across

268

Part V Criticality, paradigms and IS development..

Apply formal
methods

Real world of
human problems

(Messy world)

Holism and continuity
of social action,
organization and

system interaction,
temporality of events

Systems
ontology

Paradigms

What constitutes
system

knowledge?
How is knowledge

acquired?

Pragmatic
resolution

???

Interpret formalisms in
practice

Develop knowledge
Determine a pragmatic
resolution to problems
with formal methods

Resolve
problems

Transformation of
traditions reflexivity

Is it possible to utilize
cross-paradigmatic

knowledge for practice?
What critical thinking can

be applied within a
paradigm to improve

practice?

Transformatory critique

Are there competing
paradigms of system

knowledge?
What criteria are
needed to select

a paradigm?
Is the ontology of a
particular paradigm

appropriate?
Can cross-paradigmatic

critique be applied to
improve a paradigm?

Critical skills

What assumptions have
I made?

Is it possible to borrow
instruments from other
paradigms to solve a
practical problem?

Figure 14.1 Paradigmatic critical framework

paradigm criticality, as shown in Figure 14.2.
The figure shows what types of criticality can
be used within a paradigm and what types
across paradigms.

Elements of critical thinking discussed in
Section 1.8.1 apply to both within and across
paradigms. Interpretation, analysis, evaluation,
inference, explanation and self-regulation are
needed to be critical of a paradigm and for
thinking beyond a particular paradigm. Self-
regulation is particularly pertinent for cross
paradigmatic analysis because it enables ‘ques-
tioning, confirming, validating or correcting
either one’s reasoning or one’s results’.

14.9 Personal Critical Framework
development

Knowledge that is not reflected upon and prac-
tice that is not questioned becomes rote. The
formation of personal constructs should be
based on paradigmatic critical analysis. Personal
constructs contain assumption of reality made
by the owner. They need to be uncovered by
understanding paradigms of practice.

14.9.1 Personal constructs for praxis

Table 14.1 is a sample repertory grid for praxis.
Reproduce the grid on a spreadsheet and add
further columns and their polar opposites that
you consider relevant. To objectify personal
constructs in praxis, complete the grid by
following the details on how to use a repertory
grid in section 1.10.1.

14.9.2 Defining the problem of IS
development

Activity A

Consider the four paradigms in section 14.4.
Form into two groups, based on your readings,
each group is to:

• Explore the functionalist basis of structured
and object-oriented systems ontology for
defining the problem of developing IS. What
functionalist paradigm ideas do they use to
define IS and determine the IS development
process?

111

0

11

0111

0

0

11p

269

C
rit

ic
al

 t
hi

nk
in

g

Across paradigmWithin paradigm

Transformatory critique

Critical skills

Transformatory critique

Refashioning of traditionsReflexive criticality

Figure 14.2 Critical thinking and paradigms

..Chapter 14 Ways of thinking and acting

• Evaluate the appropriateness of the solutions
proffered by each of the ontology.

• Appoint a raconteur in each group to relate
the discussion to the plenary.

• Groups to come together in plenary and
explain and discuss their respective views.

• Appoint a scribe to note groups’ comments
on flip charts or white boards.

This activity should result in a rich discussion
of individuals’ knowledge and the variance in it
between individuals. This variance is important
because it allows individuals then to question
their personal knowledge relative to others.

Activity B

Making Your Paradigm Explicit practitioners often
act on the basis of routine behaviour and
implicit assumptions. When asked to explain
their behaviour they find it difficult to objectify
the knowledge they use to underpin their
actions. The PCF is a device to objectify the par-
adigm or framework you use to develop prac-
tice knowledge. Reflect on your own behaviour
in relation to an interest or work experience.
Identify and list the assumptions you made on:

• people;
• your interest or work area;

• the instruments you used;
• your expected results.

14.9.3 Thinking and acting the
structured way

Activity A

Hirschheim and Newman’s (1991) paper criti-
cally appraises structured IS development.

• Source the paper and read it. (Full reference
is given in section 14.9.6.)

• The chapters on requirements analysis and
process and logic modelling should be revis-
ited after reading the paper.

• Take the authors’ arguments and apply
them to the structured techniques stipu-
lated for requirements determination, data,
process and logic modelling.

• Analytically evaluate the flaws you detect in
the structured methods, techniques and
tools.

• Discuss how representative structured
systems models are of real situations. (You
may want to re-read Chapter 12 on non-
systemic factors.)

270

Part V Criticality, paradigms and IS development..

Table 14.1 Personal constructs for praxis

Pole 1 Pole 2

Fact Belief

Value-free Value

Experience Supposition

Objective Constructive

Assert Persuade

Expert People

A
ct

T
hi

nk

D
ec

id
e

C
on

ce
pt

F
ra

m
ew

or
k

V
al

id

A
cq

ui
re

kn

ow
le

dg
e

A
cc

ep
t

kn
ow

le
dg

e

Q
ue

st
io

n
kn

ow
le

dg
e

P
ar

ad
ig

m

Questions

1 The role of the analyst as ‘expert’ causes mis-
understandings and difficulties between
developers and users. What can be done
pragmatically to improve this situation?

2 Discuss whether an organization is an inde-
pendent, objective fact and whether it can be
modelled as such.

3 Critically evaluate the relative contributions
of structured and object-oriented systems
ontology to resolving the problem of IS
development.

14.9.4 Thinking and acting in
object-orientation

Activity A

Object-oriented systems ontology is based on
classification theory (see section 10.2). It asserts
that people use cognitive processes to organize
thinking of their experiences. The three methods
used to organize thinking are:

• Differentiation of experience in terms of
objects and their characteristics.

• Making distinctions between whole objects
and components parts.

• Formation of classes or groups of objects and
distinction between classes.

Recount some of your experiences and apply
the above to them to determine objects, attrib-
utes, wholes, parts and classes. What difference
does it make to your knowledge to become
aware of your cognitive processes?

Question

1 Critically evaluate the contribution of object-
oriented analysis to resolving the problem of
IS development.

2 Critically assess whether the class model can
be a sufficient representation of real human
problems.

111

0

11

0111

0

0

11p

271

14.9.5 Internet sources

For a philosophical basis of paradigmatic knowledge and the original ideas of Thomas Kuhn see
the essay by Pajares, F. at: http://www.emory.edu/EDUCATION/mfp/kuhnsyn.html.

14.9.6 Further reading

For a complete discussion of the four paradigms of IS development see: Hirschheim, R. and Klein,
H. (1989) ‘Four Paradigms of Information Systems Development’, Communications of the ACM, 32(10):
1199–1215.

For an elaborate critical discussion of assumptions underpinning IS development based on the
functionalist paradigm see: Hirschheim, R. and Newman, M. (1991) ‘Symbolism and Information
Systems Development: Myth, Metaphor and Magic’, Information Systems Research, 2(1): 29–62.

Hirschheim, R. and Newman, K. (1989) ‘Four Paradigms of Information System Development’,
Communications of the ACM, 32(10): 1199–1215.

Estes, W. K. (1997) Classification and Cognition, Oxford Psychology Series, Oxford: Oxford University
Press.

..Chapter 14 Ways of thinking and acting

Part VI examines emerging systems ontology knowledge and practice. It takes a future-ori-
ented stance on systems ontology and systems analysis and design. The future perspective is
important for two reasons. First, the act of developing an IS is itself future-oriented. It is a
creative act. Most new IS are creations of new business processes or order in organizations.
This is significant because new processes and order contribute to business performance and
achievement of goals. The global classic example of new order is the web.

Second, the future of IS is important because of its impact on organizations and society
during the 1990s. The acceptance of IS in organizations necessitates appropriate conceptual-
ization of further developments in IT and IS. Unlike other technologies, for example analogue,
the progress of digital technology and its application to develop IS shows no signs of slowing.

Chapter 15 is on new and emerging systems ontology and different perspectives on systems
analysis and design arising from new software programming strategies and system concepts.
These developments will determine future ontological knowledge of systems. Some perspectives
are emerging and others are established but are not the dominant form of practice. In terms
of criticality, Chapter 15 covers transformatory critique. It focuses on making systems analysis
and design inclusive. A more complete systems ontology needs to take account of system onto-
logical knowledge that is marginal but which may be valuable in certain situations, or new
approaches that provide paradigmatic shifts, and reveal new features of systems ontology.

111

0

11

0111

0

0

11p

273

Part VI

The future of IS development

15.2 Introduction

This chapter will consider emerging and mar-
ginal approaches to systems analysis and design.
It covers methods that are marginal but which
may be valuable in certain situations or new
approaches that provide paradigmatic shifts.
These approaches provide an alternative con-
ception that could benefit the IS development
process and improve conceptions of IS. For
example, emerging approaches like ASD and
adaptive and evolutionary systems introduce
new elements into systems ontology that require
different systems analysis and design.

The future of systems analysis and design is
likely to be non-SDLC, as emerging concep-
tions of IS development reveal. The web itself,
rather than applications for it, is an example.
The internet is another example. These types
of systems and hardware enable radically dif-

ferent conceptions of IS, as evident in the
eCommerce and web revolutions.

The fundamental challenging question for
analysts is: Who is an appropriate analyst? For
examples, individuals determine the web IS as
a whole rather than a team of designers. Its
analysis and design is not undertaken, as we
currently understand the practice, in structured
and object-oriented systems ontology.

15.3 Alternative and emerging
thinking

The alternatives and emerging thinking can
be conceptualized and analysed in terms of
amethodological IS development, situated action
and evolutionary development. An appropriate
conception is amethodogical IS development.
An amethodological orientation consists of
doing development activities that are pertinent

111

0

11

0111

0

0

11p

275

Chapter 15

Making systems analysis and
design inclusive

15.1 Learning outcomes

After completing this chapter you should be able to:

• Make the Critical Framework and PCF inclusive of emerging and marginal
systems ontology knowledge and practice.

• Evaluate the usefulness of emerging and marginal systems analysis and design.
• Apply reflexive criticality and transformatory critique to systems ontology.

in context. So, analysing system requirements
can be done at any time or design decisions
can be taken before requirements analysis is
complete. This is in contrast to the planned
action of the SDLC and systems project man-
agement. A prime characteristic of the alterna-
tives is the re-conceptualization of thinking
and acting on IS development. Much of
the re-conceptualization has resemblances to
Suchman’s (1994) work on interface design.
She uses a navigation analogy contrasting the
western and ‘Truckese’ navigator to distinguish
between planning and then acting – planned
action – and setting an objective and acting to
achieve it – situated action. She states:

[T]he European navigator begins with a plan – a
course – which he has charted according to certain
universal principles, and he carries out his voyage by
relating his every move to that plan. His effort
throughout his voyage is directed to remaining
‘on course’. If unexpected events occur, he must
first alter the plan, then respond accordingly.
The Truckese navigator begins with an objective
rather than a plan. He sets off toward the objec-
tive and responds to conditions as they arise in an
ad hoc fashion. He utilises information provided
by the wind, the waves, the tide and current, the
fauna, the stars, the clouds, the sound of water
on the side of the boat, and he steers accordingly.
His effort is directed to doing whatever is necessary
to reach the objective. If asked, he can point to his
objective at any moment, but he cannot describe
his course.

(Preface)

Thinking and action in terms of situated
action is a distinguishing feature of amethod-
ological approaches that have jettisoned the
SDLC, and in some cases, the functionalist par-
adigm. The ‘plan’ of distinct systems analysis,
design and implementation phases of the SDLC
are merged and done continuously rather than

at discrete times. Examples of amethodological
approaches are Prototyping, RAD, JAD and
ASD. Those covered here in terms of future
developments are component-based develop-
ment, ASD and deferred system’s development.

15.4 Component-based
development

Rather than compress the phases of the SDLC,
Component-Based Development (CBD) radi-
cally eliminates it and the need for traditional
systems project management. CBD is the idea
that software developers will write components
for functions, which will develop into a library
of component software traded in a market. IS
developers can then buy the appropriate com-
ponents and put them together to develop a
required system. CBD can be classified in the
functionalist paradigm.

The SDLC is eliminated. CBD also reduces
the boundary between IS development as
system projects and the actual operations of the
organization. Since components can be pur-
chased and ‘plugged’ together it is not neces-
sary to temporally separate IS development
from the actual operations of an organization.
In this view, IS development can become a
business operational issue rather than a special
system project. The required component
market though for CBD to be industrially viable
has yet to materialize. CBD is practiced only
within organizations that have developed their
own library of components.

Systems analysis and design in the context of
CBD would still involve requirements analysis
to determine what the proposed system is
required to do. The systems analysis and design
activities would be at high level to integrate
system components. There would be a need for
a class model, consisting of packages diagrams,
and other UML diagrams to determine overall
system behaviour. Additional analysis and

276

Part VI The future of IS development..

design steps would be needed to configure the
components into the required functionality.

15.5 Agile software development

The agile systems ontology is radically different.
Activities for systems analysis, design, imple-
mentation and systems project management are
still required in it, but they are not sequential
or prescribed stringently. ASD is concerned
with giving primacy to individuals, collabora-
tion and working software. It can probably be
thought of as being social relativist paradigm.

The significant change compared to struc-
tured and object-oriented systems ontology is to
view people as collaborators in IS development.
This is in contrast to acting on a contractual
basis with clients. Important stakeholders are
identified and, with business analysts, included
in the IS development team. The stakeholders
set the priority list of what functions to develop.

Analysis, design and implementation are
concurrent in ASD. Systems analysis is not an
initial discrete step. So analysis is done itera-
tively as required and in small packages of work.
Systems analysis and systems design are inter-
twined and depend on each other, each being
done when required. The outcomes of systems
analysis do not have a direct relation with
systems design or implementation. The analysis
does not have to map directly onto software.
Implementation decisions are used to inform
systems analysis.

A radical change in ASD is that process and
methods are secondary to individuals’ needs.
Systems analysis and systems design activities
are not done through stipulated and prescribed
processes and methods – instruments are sec-
ondary and devised as required. Importance is
given to individuals rather than the efficient
deployment of methods.

System project management is radically dif-
ferent too. The software development tasks are

broken down into small tasks. The tasks are
defined so that each one can be completed in
a month or less. The priority for determining
which task is developed is set by stakeholders
and business analysts, rather than the project
manager. This aspect of ASD can be regarded
as making IS development into an operational
matter. Analysis, design and implementation
activities are repeated monthly for each task
undertaken.

15.6 Deferred system’s design

Deferred system’s design (DSD) is still in the
research and theoretical stages, with some
actual application of the concept in commerce.
It is a theme of research in a UK university and
acknowledged in practice by systems analysts
and project managers in UK local government.

Figure 15.1 is the Deferred-Specified IT/IS
matrix (Patel, 2003) adapted here in terms of
systems analysis and design. The matrix is a
synthesis of technological factors and social
action. It depicts four systems ontologies in each
of the four quadrants, based on a four-dimen-
sional analysis of technology and social action.
The four dimensions are planning or rational-
ism, emergence, deferred design decisions and
diffused management. When correlated these
four dimensions result in four types of systems
ontology: deferred systems, real systems,
autonomous systems and specified systems. The
correlations can be interpreted for organ-
izations too, as shown in the figure. The matrix
thus matches semantically theoretical systems
ontology and organization ontology for four
types of systems and organization.

The basic theoretical proposition of DSD is
that systems ontology needs to be a synthesis of
planned action, emergent technical and social
factors, and deferred action. The top left
quadrant of the matrix depicts real situations
where planning potential and capability is low,

111

0

11

0111

0

0

11p

277

..Chapter 15 Making systems analysis and design inclusive

emergent factors high, and therefore the need
for deferred action is high. In such situations
systems design needs to be deferred to people
who make use of the system in context. The
web is an example of a deferred system. This is
to be contrasted with Specified System’s (SSD)
shown in the bottom right quadrant. It depicts
real situations where planning potential and
capability is high, emergent factors low, and
therefore little need for deferred action.
Problem domains in structured and object-
oriented ontology are assumed to be of this
type. (For details of the other two types of
systems ontology and detailed explanation of
the dimensions see Patel, 2003).

The deferred systems ontology in the matrix
is based on an interpretation of social action as
being simultaneously planned and emergent.
Even the act of planning contains emergence
(see section 15.8.5; Harris and Patel (2001)).
This is in contrast to systems ontology that
assume plans only or emergency only. Recog-
nizing the possibility of planned or rational
action and emergent or deferred action in
human activity affords the four types of systems
ontology and organization ontology to be cor-
related. Systems ontology above the grey line
recognize a fluid boundary, so they are termed
open systems. Those below the line have a rigid
boundary, hence they are termed closed systems.

278

Part VI The future of IS development..

Low

High

High

Low

Specified systems

Specified organization

Deferred systems

Deferred organization

Formalism

(Strategy, planning, process)

High

Low

D
eferred

 actio
n

(D
eferred

 d
esign d

ecisions)

Open systems
E

m
er

g
en

ce

Ta
ci

t,
 s

oc
ia

liz
at

io
n,

 la
ck

 o
f c

om
p

le
te

ne
ss

Diffused management

Closed systems

LowHigh

Real systems

Real organization

Autonomous
systems

Autonomous organization

Figure 15.1 Deferred systems and organization

Source: Adapted from Patel, N. V. ‘The Logic of Deferring the Design Process’, in Patel, N. V. (ed.) Adaptive
Evolutionary Information Systems, Hershey, PA: Idea Group Publishing.

The deferred systems ontology has been
applied to develop banking systems and inter-
pret systems analysis and design for web appli-
cations in British local government. In banking,
a system was developed that enabled clerks to
change system functionality using the deferred
design decision principle (right dimension).
Clerks were given software tools to change
system functions when required. This is signifi-
cant for systems analysis because it removes
systems design decisions from analysts and
places them in the hands of people in the actual
human context. People in the actual context
who make systems design decisions are called
action developers in the deferred systems ontol-
ogy. Practising systems analysts interpret their
brand of systems analysis deployed in the UK
local government LEAP project as deferred
systems ontology. They have developed systems
analysis techniques that place systems design
decisions in the hands of action developers.

15.7 An inclusive Critical
Framework

The functionalist paradigm assumes organiza-
tion to be an objective fact, but this ignores the
social action that is an organization. The func-
tionalist formulation of the IS development
problem surgically removes sociological and
political aspects of organization and organizing
human behaviour. It claims that objective,
optimal and efficient instruments can be devi-
sed, and economically used, to solve optimally
the objective formulation of the IS development
problem.

An inclusive Critical Framework means
understanding IT, social action and the appli-
cation of IT to organization to develop IS. It
requires an interdisciplinary approach that
includes social theory and technology, and IS –
in terms of the knowledge of how to apply IT.
An organization is a social unit with goals, a

boundary and activity. As such, people within
it attach meanings to their actions, struggle for
power and resources, and develop cultures,
norms and values.

Social theory can be used to enhance the
Critical Framework and to re-conceptualize
systems analysis and design. The functionalist
IS paradigm provides an initial but incomplete
understanding of IS. Its premise of acting only
on perfect knowledge is questionable. Even if
it were possible, it would still not account for
phenomenological aspects of organization and
information.

In functionalist systems ontology analysts are
required to capture facts objectively. The
elusive trinity of unambiguous, complete and
non-redundant data in structured systems
ontology is achievable for some practitioners.
They argue that the rational basis of structured
systems ontology provides an initial under-
standing that could be used to move onto
higher levels of understanding. The revised
inclusive Critical Framework in Figure 15.2
depicts that the real world of human problems
contains non-systemic factors that lead to the
opposite premise. There are no objective facts
that can be captured, only phenomenological
interpretations by humans of social action,
including data, information and knowledge.

System project management itself is similarly
interpretive. It does not have a unified value
system in practice. Project managers’ priorities
for effective, efficient and successful project
management are different from stakeholders
need to retain a stake in the development.
Analysts’ concern with users is not shared by
software programmers’ need to write technically
efficient and elegant software algorithms. Not
only is the value system not unified it is highly
uncertain too. IS projects in practice have
shifting objectives, resources and timescales.

Analysts need to develop appropriate sys-
temic and social action personal constructs. An

111

0

11

0111

0

0

11p

279

..Chapter 15 Making systems analysis and design inclusive

280

Part VI The future of IS development..

Apply formal
methods

Real world of
human problems

(Messy world)

Human behaviour is
intentional and motivated

by personal and group
interests

Conflict,
political aspects,
human hunches,

sociological aspects,
bounded rationality,
power relationships,

interpretation
of situations,

imperfect
communication,

hoarding information
and knowledge

Systems
ontology

Inclusive

Social action,
technology,

socio-technical
systems,

agile systems,
deferred systems,

reflective and
action developers,
IS development as

business operations

Pragmatic
resolution

???

Interpret formalisms in
practice

Agile development
Develop knowledge

Determine a pragmatic
resolution to problems
with formal methods

Resolve
problems

Transformation of
traditions reflexivity

Does systems design
need to be separated

from organization design?
Can IS development be
made part of business

operations?

Transformatory critique

Is social theory
applicable to systems
ontology and design?

Can phenomenological
meaning be systemically

represented?
Can individuals be given
responsibility for system

analysis and design
decisions?

Critical skills

Figure 15.2 Critical Framework: inclusive systems analysis and design

effective PCF is one that is inclusive and pro-
gressive. Its continual development should be
based on critical systems ontology.

15.8 Personal Critical Framework
development

15.8.1 Personal constructs for
future-orientation

Table 15.1 is a sample repertory grid for a
future-oriented view. Reproduce the grid on
a spreadsheet and add further columns and
their polar opposites that you consider relevant.
To objectify personal constructs, complete the
grid by following the details on how to use a
repertory grid in section 1.10.1.

15.8.2 Interpretive IS

Questions

1 Evaluate the potential contribution of social
theory in the conceptualization, definition
and development of IS.

2 Critically discuss how stories and narratives
provided by people can be used to determine
system requirements.

15.8.3 Component-based IS
development

Activity A

The promise of CBD is not realized. Examine
the role of systems analysis in CBD:

• Search the internet to identify CBD com-
mercial and interest sites.

• Deduce the proposed role of systems analysis.
• Is there a viable market for components?

15.8.4 Deferred systems ontology

Activity A

Identify an existing IS and examine:

• Its planned basis – what is it expected to do?
• Emergence in its context that was not in the

original plan and which needs to be part of
its functionality.

• With reference to the second bullet point,
what kinds of design decisions can be
deferred to people in the context?

111

0

11

0111

0

0

11p

281

Table 15.1 Personal constructs for future-orientation

Pole 1 Anticipate Experience IT IS Organic Plan Pole 2

Unpredictable Predict

Social Technological

Interpretive Objective

Revise Freeze

Pre-design Defer design

Story Fact

Critical Accept

..Chapter 15 Making systems analysis and design inclusive

282

Part VI The future of IS development..

15.8.5 Internet sources

For an example implementation of deferred classes see http://docs.eiffel.com/general/guided_
tour/language/invitation-13.html.

See www.agilealliance.org and www.agilemanifesto.org/history.html for ASD perspective and
philosophy.

‘Only that programming is vital which finds its own elements in the people who use it.’ For
computer programmers working on the boundary of the future of computer programming see
http://www.sgi.com/grafica/future/.

15.8.6 Further reading

For chapters on deferred system’s design see: Patel, N. V. (ed.) (2003) Adaptive Evolutionary Information

Systems, Hershey, PA: Idea Publishing.

Harris, H. J. and Patel, N. V. (2001) ‘A Narrative Analysis of Information System Development
in a Local Government Organization: Conversations Reflecting Deferred System’s Design’, ACM
Conference on Object-Oriented Programming, Systems, Languages, and Application, Tampa
Bay, Florida.

Patel, N. V. (2004) ‘Deferred Systems: Deferring the Design Process and Systems’, Journal of Applied

System Studies, 5(1).

For a comprehensive view of CBS see: Szyperski, C. (1999) Component Software: Beyond Object-Oriented

Programming (1st edn), Perth, Scotland: Pearson Education.

For an application of DSD see: Stamoulis, D., Theotokis, D., Martakos, D. and Gyftodimos, G.
(2003) ‘Ateleological Development of Design-Decisions-Independent Information Systems’, in
Patel, N. V. (ed.) Adaptive Evolutionary Information Systems, Hershey, PA: Idea Group Publishing.

Algorithm A computer program algorithm is the sequence in which a computer is instructed
to execute program code. Process logic models in structured systems ontology and operations
in objects in object-oriented systems ontology are used by systems designers to develop program
algorithms.

Application domain A term used in systems analysis to describe an organization or its parts for
which a new IS is to be developed.

ASD Agile Software Development is a radically different perspective on software development.
It is concerned with individuals and processes over processes and tools, working software over
comprehensive software, customer collaboration over contract negotiation, responding
to change over following a plan. Its systems analysis and systems design activities are non-
prescriptive, non-linear, and agile

BPR Business Process Re-engineering is the recognition of business activities in terms of criti-
cal processes and their transformation to deliver improved operational efficiency and effec-
tiveness. BPR is normally associated with the application of IT to achieve such performance
improvements.

Business case A rationale for deciding to proceed with the development of a particular IS.
Business model A set of business ideas related to achieve predetermined objectives, usually

in terms of profits, customer satisfaction, reduced costs, product or service differentiation, or
other business measure.

CASE Computer-Aided Software Engineering are computerized tools to support the
development of systems models during systems analysis and systems design. The advantages
of using CASE tools are speed, accuracy and consistency in the development of systems
models.

Client A person, group, department or organization for which an IS is to be developed.
CMM Capability Maturity Model is a standard for developing high-quality software. The CMM

standard is set by Software Engineering Institute at the Carnegie Mellon University, who devel-
oped it for the US Department of Defense to enable them to evaluate an organization’s ability
to produce software under contract.

Critical Framework The Critical Framework for Knowledge and Practice development is an
intellectual tool for gathering, interpreting, analysing, evaluating and critiquing ontological

111

0

11

0111

0

0

11p

283

Glossary

knowledge of systems and its practical application. It serves to enable the development of
personal constructs for a PCF.

Critical systems ontology Critical systems ontology is the interpretation, analysis, evalua-
tion, inference, explanation, questioning and critical study of system. It is the notion that current
ontological knowledge of systems can be improved, and that it can be ‘other than it is’ to be
practically effective.

Critical thinking Critical thinking is a set of cognitive process required to develop critical
thinkers capable of self-regulation.

Criticality Barnett (1997) defines criticality as: ‘a human disposition of engagement where it
is recognised that the object of attention could be other than it is’.

Data Data are elements of transactions or transactions arising from organized activity. In com-
puting terms data are items inputted into a computer system and processed by it to produce
other data or information.

Deliverable A diagram or document resulting from a method or phase of a methodology or
the SDLC. It is a concrete thing that can be used to define or develop an IS.

Engineering metaphor The engineering metaphor is used in software development. It is used
to define efficient and effective processes for developing software.

Epistemology Epistemology is theory of knowledge and how it is acquired. Usually it refers
to the method by which knowledge is acquired. The epistemological methods can be objective
or interpretive.

Estimation models An estimation model is used to plan the resources required in a system
project. An estimation model provides rigour and exactness based on statistical analysis. An
example is Function Point Analysis.

e-Tailing Online retailing is called e-Tailing.
ETHICS The Ethical and Technical Implementation of Computer Systems. ETHICS is a

socio-technical methodology. It is the seminal methodology to consider the social factor in
IS development.

Ethics Ethics is concerned with making judgements concerning right and wrong behaviour.
Evidence-based reasoning Knowledge and practice that is supported with evidence is evi-

dence-based reasoning.
Formalism Formalism in systems analysis and design is the notation and its structure used to

represent things of interest in a problem domain. It is used to develop formal systems models.
Information Information is used by decision-makers to allocate, monitor and control resources

in an organization. Information in terms of computing is processed data.
Interpretivism Interpretivism is an epistemology used in IS research. It is applied to under-

stand and develop knowledge of subjective and phenomenological aspects of IS. A person using
this method is called an interpretivist or subjectivist. Interpretivism is based on phenomenol-
ogy, the idea that detailed descriptions of human experience alone constitute knowledge.
Phenomenology does not focus on explanations.

JAD Joint Application Development is the notion, methods, techniques and tools that enable
people in the problem domain and professional IS developers to work together to develop
an IS.

JSD Jackson System Development is the set of structured techniques proposed to develop IS.

284

Glossary..

JSP Jackson Structured Programming is the set of structured techniques proposed to develop
software programs.

Method A method is a set of activities designed to achieve a specific systems analysis or systems
design task.

Methodology A methodology consists of a prescriptive staged process for IS problem defini-
tion and development with associated techniques and tools. The stages may be variously divided
in different methodologies, but they all contain systems analysis and systems design.

Notation language A notation language is a formal set of symbols with precise meanings to
represent things of interest in the problem domain. It is used in structured systems ontology to
develop models of the current and new IS. Modelling notations help to objectify the problem
domain and facilitate communication between analysts themselves, with clients and software
programmers.

Object-oriented analysis Object-oriented analysis is the specific systems analysis and design
technique proposed by Coad and Yourdon.

Objectification Something is objectified when it is recorded on physical media. Mental con-
structs recorded on physical media are objectified. Objectification is used to develop a PCF.

Objectivism Objectivism is the doctrine that reality is objective or independent of the observer
and that sense data directly correspond to it. A person who practices objectivism is called an
objectivist. Structured systems ontology, and to some extent, object-oriented systems ontology,
is based on objectivism.

Ontology Ontology is concerned with the nature of being. It is the assumptions or presuppo-
sitions in a theory to explain a phenomenon. The notion of ‘structure’ or ‘object’ in systems
has a set of ideas that describe systems based on certain assumptions.

Organization A sociological definition of organization is that it has a goal, boundary and
human activity. It is composed of people and the work they do to achieve predetermined busi-
ness aims.

Organizational knowledge Organizational knowledge are the experiences and actions of
individuals and groups, or communities of practice, involved in achieving specific objectives.

OSS Open Source Software is a movement in software development that makes initial software
code open for the public, usually interested software programmers and organizations, to help
in its further development. Open source software is licensed by the Open Source Initiative
(OSI) for commercial exploitation.

Paradigm A paradigm is a set of beliefs, assumptions, values, and shared knowledge accepted
by a community of practice. It forms a body of knowledge and informs practice.

Paradigmatic critical framework Paradigmatic critical frameworks can be of two types. A
critical focus on what constitutes knowledge and how it is acquired within a paradigm or a
critical focus on what constitutes knowledge and how to acquire it across paradigms.

Participative Design See JAD.
PCF Personal Critical Framework is an intellectual device for acquiring, interpreting, evaluat-

ing and inferring personal knowledge appropriate for action.
Persistent data Data that continues to exist when the system is not live and needs to be stored

for further use.

111

0

11

0111

0

0

11p

285

..Glossary

Personal construct Individuals experience reality and then develop constructions (personal
constructs) to help them anticipate it. Personal constructs are used to interpret and explain events.
They are part of a personal construct system, which is a set of personal constructs and the
relations between them that provides the unity in the experience of individuals.

Planned action Action that is predetermined with expected outcomes to achieve known objec-
tives and enacted in actual situations to realize the expected outcomes.

Praxis Praxis is the art of acting in given conditions in order to change them.
PRINCE Project Management In Changing Environments is a systems project management

method. It is devised to determine the scope, plan, monitor and control and IS development.
Problem domain A systemic term to describe an actual situation for which an IT solution is

required.
Problem-solving Problem-solving in systems analysis and design requires the application of

rationality, logic and formalism to a human area of concern to seek a resolution.
Prototype An initial IS product used to determine system requirements by testing it in the

problem domain with users. Prototypes are developed using RAD.
RAD Rapid Application Development is a process for rapidly developing software with users

participating.
Reality The actual condition in which human action happens.
Repertory grid A repertory grid is used to elicit, assign, and analyse knowledge in terms of

personal construct and can be used for self-help. It can be used to assess and evaluate personal
experiences and knowledge.

Scientific method An empirical epistemological method for acquiring, testing and verifying
empirical knowledge.

SDLC Systems Development Life Cycle is a method demarcating distinct phases of IS devel-
opment activities.

Situated action Situated action depends on its material and social circumstances.
Social action The activities of humans in a group oriented towards the achievement of objec-

tives.
Socio-technical The combination of social and technical factors in an IS methodology.
Software engineering The idea of applying engineering precision and discipline to software

development.
SSM Soft Systems Methodology is a continuous learning cycle for people in situations of social

concern.
Stakeholders Stakeholders are groups of people or a person who has a specific interest in a

system project because they are the sponsor of it, or will be affected by it, or will have to work
with a new IS.

Structured systems analysis Structured systems analysis is the practice of systems analysis
based on the discipline of formal structure and problem-solving in the process of conducting sys-
tems analysis.

Structured systems design Structured systems design is the practice of systems design based
on the discipline of formal structure and problem-solving in the process of conducting systems
analysis.

286

Glossary..

System A system is an abstract concept used to structure a problem and seek its resolution in
terms of a boundary, sub-elements, control and feedback.

Systems analyst A systems analyst is someone who investigates and makes systems models of
a problem domain.

Systems ontology Systems ontology is knowledge of what constitutes the nature of systems.
The term systems ontology is used to describe knowledge and practice relating to computer-
based IS.

Technique A specific intellectual device to achieve a concrete result used to develop an IS.
Temporary data Data that exists only during the time the system is live or during run-time.
Time boxing The demarcation of systems development and project management activities into

discrete time periods for completion.
Tool An implement used as a medium for achieving a specific objective.
UML Unified Modelling Language is a graphical notation for systems modelling used on its

own or as part of a method or methodology to express concepts for IS in object-oriented terms.
Usability Usability is the consideration of efficient and effective means in user interfaces to

enable specific users to achieve specific tasks.
User A label given by technically qualified IT professionals for people who use computer-based

IS. The term ‘user’ is also used by IS researchers and others.

111

0

11

0111

0

0

11p

287

..Glossary

AgileAlliance Manifesto 247
agile software development: act and think strategy

13; individuals 277; interpretivism 34; modelling
social action 247; non-separation of analysis and
design 187, 237; response to ‘analysis paralysis’
144; situated action 8, 32; storycard 247, 249;
subjectivity 166; systems project management
277

amethodological 275; situated action 276; Truckese
Navigator 276

application domain 53, 58; multifarious 87;
predictable and repeatable 187; problem
domain 21

best practice critique 247
business analyst 68
business case 95, 111
business model 43

capability maturity model 107
CASE 72
change management 225, 233; theory 233
classification theory: transformatory critique 210
class model 195
Component-Based Development 276
computer program 228; cohesion 228; coupling

228; modules 228
corporate database 156; fragmented data stores

166; organization 234
Critical Framework: critique 46; epistemology 32;

example application 45; human problems 34;

inclusive 279; IS theory 55; organization theory
31; ownership 11, 188; paradigmatic 267;
pragmatic resolution 35; relating to PCF 44;
self 37; social theory 243; subjective 36;
systems ontology 33, 34; systems theory 67;
theory 31

criticality: across paradigms 267; critical skills 19;
critical thinker 19; critical thinking 18; critique
29; definition 19; refashioning of traditions 19,
31; reflexivity 19; self 19; transformatory critique
19, 31, 33; within paradigm 267

critical systems ontology 8, 11; abstract forms
254; classification theory 196; communicative
devices 190; cultural factors 245; definition 3;
interactivity 220; mutuality 247; NIMSAD
245; ontology 9; organizational factors 245;
philosophy 33; political factors 246;
reductionism 184; repeatability 187;
representation 184; representative sample 164,
187; shared understanding 188; structuration
theory 244

data 29, 43, 56; iterative modelling 155; logical
data modelling techniques 157; mechanistic
definition 83; modelling 155; processing 57

database: conceptual schema 232; external schema
232; internal schema 232; interrogation 232;
logical database model 162; logical views 162;
model types 148; object-oriented 226; structured
systems design 226, 229; technology development
236; transient data 199

288

Index

data dictionary 72, 142, 163; object-oriented 202
data entry 218
data flow diagrams 172; balanced DFD 175;

coupling 175; decomposition 173; notation 173
data output 219
data transformation 172
DBMS 142
deferred system’s design 277; action developer 279;

application 279; deferred classes 187; Deferred-
Specified IT/IS Matrix 277; emergent
organization 278; IS and organization integration
255; organization ontology 278

Delphi method 104
documentation 163; structured design 227

education 5, 48; training 5
entity: association 160; attributes 159; cardinality

160; entity life history 175; entity types 157; key
159; normalisation 160; relationship 158

epistemology: interpretivism 34; nomological 265;
objectivism 10; phenomenology 34; positivism
34; probabilistic-statistical 265; reductionism 34

E-R model 157

formalism 31; object-oriented systems analysis 206;
structured systems analysis 65

grid chart 228

human action: action 265; assumptions 265;
deferred action 277; developing knowledge of
planned action 8; developing knowledge of
situated action 8; intention 258; planned action
32, 38; situated action 8, 32, 34, 39; systems
theory 39

human activity system 246
human–computer interaction 220

information 29, 43, 56; business logic 177; human
interpretation 258; information assets 56;
mechanistic definition 83; problem domain 43

information system 46; defining the problem 253;
failure 112; meaning 244, 265; social factors 243;
systems thinking 41; types 96

instruments 12; non-systemic factors 249

interaction models 219
internet 208

Java 208

knowledge: acquisition 33; conceptual 31, 55;
criticality 18; deficiency 19; development 8, 31,
55; empirical data 31; evaluation 31; formal 31;
generalised 37, 38, 55, 59; knowledge assets 56;
objective 34; ontological 34, 36; personal 18, 29,
36, 48; positivist 10; practical 32, 35; progress
264; redefining 19; revolutions 264; scientific
method 8, 10, 32; social construction 244;
subjectivism 10; validity 255

knowledge management 29, 43, 56

legacy systems 187
logical data model 154
logical model: definition 65

method: European Navigator 276
methodology: category 74; engineering discipline

64; ETHICS 38; JAD 32; NIMSAD evaluation
framework 245; purpose 74; SDLC 38, 59;
SDLC versions 83; SSADM 38, 70; SSADM
technical products 182

model 156; abstract representation 156; active
models 187; conceptual data 160; definition
see developer 254; passive 187; rigour 211

notation languages 65; communication 64;
definition 62; meta model 266; object-oriented
67, 70; power 166

object-orientation 195; classification theory 195;
data types 198; de-coupling 206; generalisation
202; message 199; object-oriented programming
195; object technology 66; object type 200;
operations 198; polymorphism 200; responsibility
202; SMALLTALK 208

object-oriented systems analysis 206; Coad and
Youdon 207

object-oriented systems analysis and design:
association 202; class 197; class instrance 198;
class model 67; encapsulation 199; inheritance

111

0

11

0111

0

0

11p

289

..Index

197; integrated class model 78; methods 199;
multiplicity 202; object 198; object attributes 198;
scenario 203; scenario definition 202; service 199;
use case 203; use case script 203

object-oriented systems design 219; additional
design diagrams 230; class model 219; data
management component 231; human interaction
component 220; refining class model 230; system
interaction component 232

object-oriented systems ontology 28; IS 196; pattern
196; reality 195

ontology management tools 253
organization: effectiveness 41, 42, 166; efficiency

29, 41, 42, 172; organization ontology 148;
organizing 257

PAC cycle 3
paradigm: definition 264; explicit and implicit 264;

functionalism 264; IS paradigms 264; knowledge
264; neohumanism 265; paradigmatic knowledge
255; radical structuralism 265; social relativism
265; social theory 264

persistent data 232
personal construct theory 10; anticipate 11;

constructive alternativism 10; individual’s
experience 13; personal construct 10; personal
construct system 10, 11, 24; personal construct
types 11; Repertory Grid 11; Repertory Grid
technique 21

personal critical framework 3, 6; anticipate 4;
effectiveness 4; ethics 9; evidence-based 13;
improving instruments 12; knowledge acquisition
11; objectification 5; objectification for personal
effectiveness 4, 8; objectification problems 12;
ownership 5; practice effectiveness 7; reality 31;
self regulation 269

platform 226
practice 7
praxis: definition 286; deployment of knowledge 5;

hidden relations 263; practical 6
problem domain 58; functional 234; static 258;

systemic problem 243
problem-solving: Action Science 14; behaviourist

theory 68; decomposition 173; formal 68;
General Problem Solver Model 68; Gestalt

theory 68; holism 43; interpretivism 34; logical
thinking 43; NIMSAD 245; object-oriented 211;
productive 68; reductionism 34, 86; reproductive
68; systemic 20; systems analysts 13; systems
theory 68; types 43

process: knowledge 184; wider concept 184
process logic 177; business logic 177; modelling

techniques 177; pseudocode 177
process model: logical process model 171; transform

data 171
process modelling: Structured English 178;

techniques 172
project manager: leadership models 99
prototyping 78; define problem 143; merging

analysis and design 237; requirements elicitation
143; strategies 78; subjectivity 166

rational: plan 8; think and act 13
rationality see human action
real-time 219
Repertory Grid; visual focusing 22

social action 243; politics 247; social factors 37
software: agile 11; algorithm 57; component 206;

open source software 34; reuse 67
software engineering: analogy 82; analyst’s role 131;

Software Engineering Institute 102
stable data 231, 234
structured systems design 225; file design 228;

implementation-dependent 225; implementation-
independent 225; Nassi-Schneiderman charts
228; physical data design 226; program design
228; transform analysis 208, 226

structured systems ontology 11, 28, 188; objective
reality 12; planned action 32; separation of
analysis and design 236; structured systems
analysis 56, 64, 103; transformatory critique 19

system: correct models 84; debates 46; emergent
property 40; graphical models 69; modelling 62;
object-oriented 66; physical model 65

system project: estimation 104; estimation models
105; human factors 98; motivation theories 99;
network dependencies 103; precedence network
103; product breakdown structure 103; project
manager 65; project network 103; quality

290

Index..

definition 101; risk management 102; stakeholder
definition 98; team 100; work breakdown
structure 103

system requirements 138; alternatives 142;
application domain 58; ‘creeping requirements’
190; definition 138; engineering 146; people’s
knowledge 140; types 139

systems analysis 11, 31, 146; in object-oriented
analysis 67; practice 35

systems analyst 8, 9, 12, 28, 29, 33, 41, 61, 68;
change management 237; cognitive skills 120;
creativity 44; critical skills 121; interpretation
188; knowledge of social factors 37; objective 79,
166; personal critical framework 7; qualities 119;
role 121; social identity 259; in structured
analysis 66; work 32

systems design 217; structured design 217
systems project management 93; business project

94; interpretive 279; software development see
software; stakeholders 88; timeboxing 236

system specification 138

systems theory 36, 39–40
systems thinking 40, 42

techniques 122; interview 122; observation 125;
operations 201; planned action 8; services 202

theory: definition 6
theory and practice 7
traditional systems analysis 63
training 28
transaction data 155

UML 70; contextual use 211; diagram types 205
user interface 218; direct manipulation device

218; graphical 218; interactivity 218; mental
models 222; SSADM 218; usability 218; user
model 218

world wide web 208

XP 142, 143; shared understanding 144; social
context 144; stories 144

111

0

11

0111

0

0

11p

291

..Index

	Book Cover
	Title
	Contents
	List of illustrations
	Preface
	Abbreviations
	Introduction
	Foundations for critical learning and teaching
	The PAC cycle
	Critical knowledge and practice framework
	IS, projects and application domains
	Systems analysis and design in concept and action
	Systems project management
	Systems analyst
	Systems analysis
	Requirements: the system to be (or not)
	Structured data modelling
	Structured process modelling
	Object modelling
	Systems design
	Interface, input and output design
	Systems design
	Criticality, paradigms and IS development
	Social action
	Critical reflection
	Ways of thinking and acting
	The future of IS development
	Making systems analysis and design inclusive
	Glossary
	Index

