

“FM” — 2006/2/6 — 18:49 — page 1 — #1

� �

� �

I N F O R M AT I O N S C I E N C E

“FM” — 2006/2/6 — 18:49 — page 2 — #2

� �

� �

“FM” — 2006/2/6 — 18:49 — page 3 — #3

� �

� �

I N F O R M AT I O N S C I E N C E

DAVID G. LUENBERGER

P R I N C E T O N U N I V E R S I T Y P R E S S

Princeton and Oxford

“FM” — 2006/2/6 — 18:49 — page 4 — #4

� �

� �

Copyright © 2006 by Princeton University Press

Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540

In the United Kingdom: Princeton University Press,

3 Market Place, Woodstock, Oxfordshire OX20 1SY

All Rights Reserved

Library of Congress Cataloging-in-Publication Data

Luenberger, David G., 1937–

Information science / David G. Luenberger.

p. cm

Includes bibliographical references and index.

ISBN-13: 978-0-691-12418-3 (alk. paper)

ISBN-10: 0-691-12418-3 (alk. paper)

1. Information science. 2. Information theory. I. Title.

Z665.L89 2006

004—dc22

2005052193

British Library Cataloging-in-Publication Data is available

This book has been composed in Times

Printed on acid-free paper. ∞
pup.princeton.edu

Printed in the United States of America

1 3 5 7 9 10 8 6 4 2

“FM” — 2006/2/6 — 18:49 — page 5 — #5

� �

� �

To Nancy

“FM” — 2006/2/6 — 18:49 — page 6 — #6

� �

� �

“FM” — 2006/2/6 — 18:49 — page vii — #7

� �

� �

Preface xiii

Chapter 1 INTRODUCTION 1
1.1 Themes of Analysis 2
1.2 Information Lessons 4

Part I: ENTROPY: The Foundation of Information

Chapter 2 INFORMATION DEFINITION 9

2.1 A Measure of Information 10
2.2 The Definition of Entropy 12
2.3 Information Sources 14
2.4 Source Combinations 15
2.5 Bits as a Measure 16
2.6 About Claude E. Shannon 17
2.7 Exercises 18
2.8 Bibliography 19

Chapter 3 CODES 21

3.1 The Coding Problem 21
3.2 Average Code Length and Entropy 27
3.3 Shannon’s First Theorem 30
3.4 Exercises 33
3.5 Bibliography 34

Chapter 4 COMPRESSION 35

4.1 Huffman Coding 35
4.2 Intersymbol Dependency 40
4.3 Lempel–Ziv Coding 44
4.4 Other Forms of Compression 48
4.5 Exercises 52
4.6 Bibliography 53

Chapter 5 CHANNELS 55

5.1 Discrete Channel 56
5.2 Conditional and Joint Entropies 57

vii

“FM” — 2006/2/6 — 18:49 — page viii — #8

� �

� �

viii • CO N T E N T S

5.3 Flipping a Channel 60
5.4 Mutual Information 62
5.5 Capacity* 65
5.6 Shannon’s Second Theorem* 66
5.7 Exercises 68
5.8 Bibliography 69

Chapter 6 ERROR-CORRECTING CODES 70

6.1 Simple Code Concepts 71
6.2 Hamming Distance 73
6.3 Hamming Codes 75
6.4 Linear Codes 77
6.5 Low-Density Parity Check Codes 78
6.6 Interleaving 79
6.7 Convolutional Codes 80
6.8 Turbo Codes 82
6.9 Applications 83
6.10 Exercises 85
6.11 Bibliography 86

Summary of Part I 89

Part II: ECONOMICS: Strategies for Value

Chapter 7 MARKETS 93

7.1 Demand 94
7.2 Producers 97
7.3 Social Surplus 99
7.4 Competition 100
7.5 Optimality of Marginal Cost Pricing 101
7.6 Linear Demand Curves 102
7.7 Copyright and Monopoly 103
7.8 Other Pricing Methods 107
7.9 Oligopoly 108
7.10 Exercises 111
7.11 Bibliography 113

Chapter 8 PRICING SCHEMES 114

8.1 Discrimination 114
8.2 Versions 116
8.3 Bundling 119
8.4 Sharing 124
8.5 Exercises 127
8.6 Bibliography 128

“FM” — 2006/2/6 — 18:49 — page ix — #9

� �

� �

CO N T E N T S • ix

Chapter 9 VALUE 130

9.1 Conditional Information 131
9.2 Informativity and Generalized Entropy* 133
9.3 Decisions 135
9.4 The Structure of Value 135
9.5 Utility Functions* 139
9.6 Informativity and Decision Making* 140
9.7 Exercises 141
9.8 Bibliography 142

Chapter 10 INTERACTION 143

10.1 Common Knowledge 144
10.2 Agree to Disagree? 146
10.3 Information and Decisions 149
10.4 A Formal Analysis* 150
10.5 Metcalfe’s Law 153
10.6 Network Economics* 155
10.7 Exercises 159
10.8 Bibliography 160

Summary of Part II 161

Part III: ENCRYPTION: Security through Mathematics

Chapter 11 CIPHERS 165

11.1 Definitions 166
11.2 Example Ciphers 166
11.3 Frequency Analysis 169
11.4 Cryptograms 169
11.5 The Vigenère Cipher 171
11.6 The Playfair Cipher 174
11.7 Homophonic Codes 175
11.8 Jefferson’s Wheel Cipher 176
11.9 The Enigma Machine 177
11.10 The One-Time Pad 181
11.11 Exercises 183
11.12 Bibliography 184

Chapter 12 CRYPTOGRAPHY THEORY 186

12.1 Perfect Security 186
12.2 Entropy Relations 188
12.3 Use of a One-Time Pad* 193
12.4 The DES and AES Systems 196

“FM” — 2006/2/6 — 18:49 — page x — #10

� �

� �

x • CO N T E N T S

12.5 Exercises 197
12.6 Bibliography 198

Chapter 13 PUBLIC KEY CRYPTOGRAPHY 200

13.1 A Basic Dilemma 200
13.2 One-Way Functions 201
13.3 Discrete Logarithms 202
13.4 Diffie–Hellman Key Exchange 203
13.5 Modular Mathematics 205
13.6 Alternative Puzzle Solution 208
13.7 RSA 209
13.8 Square and Multiply* 211
13.9 Finding Primes* 213
13.10 Performance* 214
13.11 The Future 215
Appendix: The Extended Euclidean Algorithm 216
13.12 Exercises 217
13.13 Bibliography 218

Chapter 14 SECURITY PROTOCOLS 220

14.1 Digital Signatures 220
14.2 Blinded Signatures 223
14.3 Digital Cash 225
14.4 Identification 226
14.5 Zero-Knowledge Proofs 228
14.6 Smart Cards 231
14.7 Exercises 234
14.8 Bibliography 235

Summary of Part III 237

Part IV: EXTRACTION: Information from Data

Chapter 15 DATA STRUCTURES 241

15.1 Lists 241
15.2 Trees 244
15.3 Traversal of Trees 247
15.4 Binary Search Trees (BST) 248
15.5 Partially Ordered Trees 252
15.6 Tries* 254
15.7 Basic Sorting Algorithms 255
15.8 Quicksort 257
15.9 Heapsort 260
15.10 Merges 261
15.11 Exercises 262
15.12 Bibliography 263

“FM” — 2006/2/6 — 18:49 — page xi — #11

� �

� �

CO N T E N T S • xi

Chapter 16 DATABASE SYSTEMS 264

16.1 Relational Structure 264
16.2 Keys 267
16.3 Operations 267
16.4 Functional Dependencies 271
16.5 Normalization 271
16.6 Joins and Products* 277
16.7 Database Languages 279
16.8 Exercises 281
16.9 Bibliography 282

Chapter 17 INFORMATION RETRIEVAL 284

17.1 Inverted Files 285
17.2 Strategies for Indexing 287
17.3 Inverted File Compression* 291
17.4 Queries 293
17.5 Ranking Methods 294
17.6 Network Rankings 296
17.7 Exercises 299
17.8 Bibliography 299

Chapter 18 DATA MINING 301

18.1 Overview of Techniques 301
18.2 Market Basket Analysis 303
18.3 Least-Squares Approximation 306
18.4 Classification Trees 310
18.5 Bayesian Methods 314
18.6 Support Vector Machines 319
18.7 Other Methods 323
18.8 Exercises 325
18.9 Bibliography 327

Summary of Part IV 327

Part V: EMISSION: The Mastery of Frequency

Chapter 19 FREQUENCY CONCEPTS 331

19.1 The Telegraph 334
19.2 When Dots Became Dashes 335
19.3 Fourier Series 338
19.4 The Fourier Transform 339
19.5 Thomas Edison and the Telegraph 342
19.6 Bell and the Telephone 342
19.7 Lessons in Frequency 345
19.8 Exercises 347
19.9 Bibliography 349

“FM” — 2006/2/6 — 18:49 — page xii — #12

� �

� �

xii • CO N T E N T S

Chapter 20 RADIO WAVES 350

20.1 Why Frequencies? 350
20.2 Resonance 354
20.3 The Birth of Radio 354
20.4 Marconi’s Radio 355
20.5 The Spark Bandwidth 357
20.6 The Problems 359
20.7 Continuous Wave Generation 360
20.8 The Triode Vacuum Tube 361
20.9 Modulation Mathematics 363
20.10 Heterodyne Principle 365
20.11 Frequency Modulation 367
20.12 Exercises 369
20.13 Bibliography 372

Chapter 21 SAMPLING AND CAPACITY 373

21.1 Entropy 373
21.2 Capacity of the Gaussian Channel 376
21.3 Sampling Theorem 378
21.4 Generalized Sampling Theorem∗ 380
21.5 Thermal Noise 383
21.6 Capacity of a Band-Limited Channel 384
21.7 Spread Spectrum 385
21.8 Spreading Technique 387
21.9 Multiple Access Systems 388
21.10 Exercises 391
21.11 Bibliography 392

Chapter 22 NETWORKS 393

22.1 Poisson Processes 394
22.2 Frames 395
22.3 The ALOHA System 396
22.4 Carrier Sensing 398
22.5 Routing Algorithms 399
22.6 The Bellman–Ford Algorithm 400
22.7 Distance Vector Routing 401
22.8 Dijkstra’s Algorithm 402
22.9 Other Issues 404
22.10 Exercises 405
22.11 Bibliography 406

Summary of Part V 407

Index 409

“FM” — 2006/2/6 — 18:49 — page xiii — #13

� �

� �

I
nformation seems to be a characterizing theme of the modern age. It is mentioned
everywhere. Yet information as a subject of study is so vast that it is impossible to
fully define its various aspects in a simple succinct statement. It is, instead, perhaps

more fruitful to assume a rough understanding of the term, and then seriously study
some of the important and interesting facets of the subject it represents. That is the
approach taken by this text, which is an outgrowth of an undergraduate course taught
at Stanford for the past few years. The approach is based on exploring five general
areas of information, termed the five E’s. They are entropy, economics, encryption,
extraction, and emission. In fact, the text is divided into five parts, corresponding to
these five areas.

The text, of course, does not attempt to cover everything about information. It is
limited to covering only these five aspects of the “science” of information. However,
the text is not designed to be a survey or overview. It is packed with specific concepts,
most of which can be cast into mathematical or computational form and used to
derive important results or explain observed phenomena. These concepts are used in
derivations, examples, and end-of-chapter exercises. Indeed, a major objective is to
present concepts that can be used in a number of areas, even beyond those directly
related to information. In that sense the text is as much about general methods of
analysis and design as it is about the subject of information. Much of the “science”
of information science is portable to other fields.

The text is organized in the standard way, by parts, chapters, sections, and subsec-
tions. The chapters are more or less independent. Chapter 2 is basic and should be
covered by all. Chapter 3 is also useful background, and some other chapters refer
to sections of chapters 3 and 5. Although largely independent, the chapters are tied
together by frequent reference to the concept of entropy and by the use of several
common methods of analysis.

Some sections or subsections are marked with an asterisk (*), indicating that
the material may be more difficult or that it can be safely skipped without loss of
continuity. Likewise, some end-of-chapter exercises are marked with an asterisk,
indicating that they are more challenging than most.

The level at which the text can be used is variable. At Stanford, students ranging
from sophomores to graduate students have taken the course. There is no specific
prerequisite; however, students of this text should have some level of comfort with
mathematical reasoning: both for modeling and for finding answers. In terms of a
standard phrase, students should know how to solve “word problems.” The actual
mathematics used is of several types. Elementary calculus is employed in some sec-
tions. Other sections use algebraic theory. Still others use probability. However,
the mathematics that is beyond elementary calculus or algebra is introduced and
explained. In that sense, the text is essentially self-contained with respect to the
mathematics required. And since the chapters are largely independent, it is possible
to select topics at various mathematical levels.

xiii

“FM” — 2006/2/6 — 18:49 — page xiv — #14

� �

� �

xiv • P R E FAC E

The complete text includes far more material than can be treated in a single aca-
demic quarter or even a semester. At Stanford I have covered about fourteen or fifteen
of the twenty-two chapters in one quarter, although the particular choice of chapters
has varied. Even this somewhat reduced agenda includes an enormous amount of
subject material; after all, there are entire texts devoted to some of the material in
individual chapters. How can so much be covered in a single academic course without
seriously compromising depth?

I believe that rapid progress hinges on genuine student interest and motivation.
These are derived from five main sources. First, inherent interest is typically strong
for this subject. Many students plan to seek careers in the information industry, and this
motivates a desire to learn about the field. Second, students are naturally curious about
things they work with. How do compression algorithms such as JPEG and ZIP work?
How is it possible to have a secure digital signature that cannot simply be copied?
How does the Internet route millions of messages to their proper destinations? Third,
interest is enhanced when students witness or participate in illustrative examples and
experiments. The text includes such examples, and many of them can be used as
experiments, as explained in the instructor’s manual. Fourth, subjects come alive
when students learn something about the individuals who pioneered in the area of
study, learning, for example, whether someone’s particular contribution occurred by
happenstance or as the result of intense struggle. These little stories add a human
dimension to the subject. Fifth, if a student works with the material, adding to it,
finding a new way to present it, or exploring a new application, he or she becomes an
owner rather than simply an observer of the subject. In the Stanford class, students
worked in teams of four to develop projects of their choice that were presented in
written and oral form. Many students felt this was the highlight of the class.

One objective of the text is to create a desire for further study of information
science and the methods used to explore it. I hope that students studying this material
will see the relevance of the tools that are employed and the excitement of the areas
presented.

Development of this text and the underlying course has been a rewarding experi-
ence. It was made all the more pleasant by the encouragement and help that I received
from many colleagues and students. I wish especially to thank Martin Hellman, Fouad
Tobagi, Ashish Goel, and Thomas Weber for detailed professional feedback on parts
of the manuscript. I also wish to thank Kahn Mason, Christopher Messer, Geraldine
Hraban, and Mareza Larizadeh for help with development of the class itself. I appre-
ciate Charles Feinstein, Wayne Whinston, Robert Thomas, and Sharan Jagpal for
providing helpful comments on the entire manuscript. I want to thank Leon Steinmetz
for the special drawings in the text and the staff at Princeton University Press for their
creativity and hard work. And certainly, I am grateful for the helpful suggestions of
the many bright and enthusiastic students who greatly influenced the development of
this text.

David G. Luenberger
Stanford
December 2005

“FM” — 2006/2/6 — 18:49 — page xv — #15

� �

� �

I N F O R M AT I O N S C I E N C E

“FM” — 2006/2/6 — 18:49 — page xvi — #16

� �

� �

“ch21” — 2006/2/6 — 20:00 — page 373 — #1

� �

� �

21
SAMPLING AND CAPACITY

T
his chapter brings us back to the beginning—back to Shannon’s theory. Shannon’s
simple definition of entropy for a source with a discrete channel produced the
notion of channel capacity, the framework for data compression, a theory of clas-

sical encryption, and an understanding of the limits to information organization and
retrieval. In this chapter, Shannon’s work once again is central. His formula for the
capacity of a continuous channel in the presence of additive white Gaussian noise is
the basis for analysis of many communication technologies. As with his theory for
discrete channels, his theory of continuous channels captures the essence of com-
munication issues. Today it can be regarded as a crucial step toward the mastery of
frequency.

The chapter begins with the extension of entropy to sources having a continuum of
possible values, rather than a finite number. Such sources occur whenever the possible
message is any real number—for instance, a source reporting outside temperature,
rather than simply whether it is sunny or cloudy; or signals derived from speech,
pictures, or other continuous values.

Shannon went further and derived a formula for the capacity of a channel that
operates continuously in time, within a frequency bandwidth. This is considered by
many to be Shannon’s most important result.

A particular conclusion of Shannon’s capacity theorem is that capacity increases
(but not linearly) with bandwidth. This led to the development of spread-spectrum
technology, which as we shall see was first proposed by the beautiful movie star Hedy
Lamarr.

21.1 Entropy

The definition of entropy for continuous channels is straightforward, but subtle.
Let p(x) be a probability density on the real numbers. This is a function p(x) for

−∞ < x < ∞ that is never negative and integrates to 1. Suppose that this probability
density is associated with a possible signal x that will be sent.

373

“ch21” — 2006/2/6 — 20:00 — page 374 — #2

� �

� �

374 • C h a p t e r 21 S A M P L I N G A N D C A PAC I T Y

0−1−2−3 1 2 3 4 5 6 7 8

p(x)

x
∆x

FIGURE 21.1 Discrete approximation. A continuous variable x is approximated by points
�x apart.

As an approximation to this continuous signal, the axis of real numbers is dis-
cretized into equally spaced steps of width �x, and accordingly, the possible signals
are restricted to the magnitudes: . . . −2�x, −�x, 0, �x, 2�x The correspond-
ing values of x are denoted xi = i�x, for −∞ < i < ∞. The probability of level xi

is defined to be p(xi)�x. See figure 21.1.
The entropy HD of a signal discretized this way is easily calculated (using the basic

definition of section 2.3) as

HD(p) = −
∞∑

−∞
p(xi)�x log [p(xi)�x]

= −
∞∑

i = −∞
p(xi)log [p(xi)]�x −

∞∑
i = −∞

p(xi)log [�x]�x

= −
[∞∑

i = −∞
p(xi)log [p(xi)]�x

]
− log [�x] (21.1)

because it can be assumed that
∑n

i = 1 p(xi)�x = 1. Notice that the first term in the last
expression can be approximated by an integral as �x → 0. However, the second term
goes to infinity because log [�x] goes to minus infinity as �x goes to zero. Hence
the entropy HD goes to infinity. This reflects the fact that with an infinite number of
possibilities, an infinite amount of information is conveyed by transmission of any
particular point.

The entropy of the continuous distribution is, however, defined to be the finite part,
corresponding to the integral, since the other part does not depend on the probabilities.

It may seem odd to throw out the infinite part and keep only the finite part, but this
is why the definition is subtle. The reason this is a useful definition is that calculations
of channel capacity involve differences of entropy—the extra term, common to all
entropies in the capacity expression, cancels out and hence can be ignored. The formal
definition is given in what follows.

Entropy of a continuous random variable. The entropy of a random variable x
with probability density p(x) is

H(p) = −
∫ ∞

−∞
p(x)log [p(x)]dx.

“ch21” — 2006/2/6 — 20:00 — page 375 — #3

� �

� �

S e c t i o n 21.1 E N T R O P Y • 375

If one wishes to keep the discretized version in mind, the discretized version can
be approximated as

HD(p) = −
∫ ∞

−∞
p(x)log [p(x)]dx − E,

where E is the extra term log[�x], which is common to all entropies with that same
discretized �x.

Example 21.1 (Uniform density). Suppose that

p(x) =
{

1/a 0 ≤ x ≤ a
0 otherwise.

Then

H(p) = −
∫ a

0

1

a
log

(
1

a

)
dx = log a.

This is in accord with the entropy of an analogous finite source. A source with n
equally likely symbols is log n. For a uniform density, the width of the density a is
analogous to n.

Example 21.2 (Gaussian density). A most important continuous variable density
is the Gaussian (or normal) density. With zero mean value and standard deviation σ

it is

p(x) = 1√
2πσ

e−x2/(2σ 2). (21.2)

The corresponding continuous entropy can be computed by a series of
simple steps (remembering that log x ≡ log(e) ln x, ln e = 1, and that E(x2) =∫ ∞
−∞ x2p(x)dx = σ 2). Thus

H(p) = −
∫ ∞

−∞
p(x) log

[
1√

2πσ
e−x2/(2σ 2)

]
dx

= −
∫ ∞

−∞
p(x) log(e) ln

[
1√

2πσ
e−x2/(2σ 2)

]
dx

= −log(e)
∫ ∞

−∞
p(x)

[−x2

2σ 2
− ln

√
2πσ 2

]
dx

= log(e)

[
1

2
+ ln

√
2πσ 2

]
= log(e)

[
1

2
+ 1

2
ln 2πσ 2

]

= log(e)

[
1

2
ln e + 1

2
ln 2πσ 2

]
= 1

2
log(e) ln 2πeσ 2

= 1

2
log 2πeσ 2 bits. (21.3)

This final result is surprisingly simple.

“ch21” — 2006/2/6 — 20:00 — page 376 — #4

� �

� �

376 • C h a p t e r 21 S A M P L I N G A N D C A PAC I T Y

The Maximum Property of a Gaussian Density

The Gaussian density has a maximum property that is important because it is the
density that one must strive for to attain a maximum rate of information transmission.

Specifically, the Gaussian density maximizes entropy under a constraint on the
variance that can be considered the level of average energy, or power. In mathematical
terms the maximization problem is

maximize −
∫ ∞

−∞
p(x)log [p(x)] dx (21.4)

subject to
∫ ∞

−∞
p(x) dx = 1∫ ∞

−∞
x2p(x) dx ≤ P.

The first line is the formula for the value of continuous entropy in terms of the density
function p(x). The first constraint states that the area under the density function must
be 1, so that p(x) is a legitimate density function. The second constraint is the average
energy or power constraint. Energy is proportional to the square of the signal, so the
constraint is on expected energy. Power is energy per unit time; hence, by suitable
normalization the constraint can be considered to be on average power.

This problem is not difficult to solve (see exercise 1). The result is the Gaussian
density (21.2) with σ 2 = P.

Recall that for a finite set of symbols, entropy is maximized when the underlying
probabilities are all equal. A uniform density does not make sense if the symbols
consist of all real numbers −∞ < x < ∞. In practical situations, an energy or
power constraint is often a necessity, inherent in the technology. When there is such
a constraint, entropy is maximized by a Gaussian density.

21.2 Capacity of the Gaussian Channel

Let us turn now to one of the most important results in Shannon’s information theory—
the formula for the capacity of a channel subjected to additive Gaussian noise. The
derivation is remarkably simple and has a nice interpretation.

Consider a general channel that can transmit continuous-valued signals, but that
is subject to the requirement that the average energy per signal, the power, must be
less than P. Signals are corrupted by additive noise with average power N . The noise
is statistically independent of the signal.

Let X represent the transmitted signal, Y the received message, and Z the noise.
Then Y = X + Z , and X and Z are independent.

The capacity is the maximum value of1

I(X; Y) = H(Y) − H(Y |X).

1Note that this is the difference of two entropies, so the extra term in equation (21.1) cancels.

“ch21” — 2006/2/6 — 20:00 — page 377 — #5

� �

� �

S e c t i o n 21.2 C A PAC I T Y O F T H E G AU S S I A N C H A N N E L • 377

We have

I(X; Y) = H(Y) − H(Y |X)

= H(Y) − H(X + Z|X)

= H(Y) − H(Z|X)

= H(Y) − H(Z)

= H(signal + noise) − H(noise). (21.5)

The first step is a definition, and the second step should be clear. The third follows
because the information about X, given that X is known, is zero. Hence, H(X+Z|X) =
H(Z|X). The fourth step follows from the independence of Z and X.

Let us look at some special cases. Suppose, for example, that the noise power is
very small. Then the information transmitted through the channel is nearly equal to
H(signal) and the entropy of the noise is very small. (Remember that these entropy
values omit the discritization terms that go to infinity.) Hence, I(X; Y) ≈ H(signal).
Conversely, suppose that the noise power is very large and the signal power is small.
Then I(X; Y) ≈ H(noise)−H(noise) = 0, and essentially no information is transmit-
ted. Note that this also explains why both the signal and the noise are in the first term.
If only the signal were in that term, large noise would produce negative entropy, which
is impossible. The expression I(X; Y) = H(signal + noise) − H(noise) is therefore a
highly intuitive result for channels with independent additive noise.

Formula (21.5) can be used to find the capacity of a channel with additive Gaussian
noise under a power constraint. The capacity is found by maximizing I(X; Y) subject to
the constraint that the signal have average power of S. The noise is given as Gaussian
with average power N . Its entropy is therefore, from equation (21.3), H(noise) =
1
2 log 2πeN .

The power of the signal plus the noise is S + N . From the maximum property of
the Gaussian density under a power constraint, the maximum of H(signal + noise)
is achieved by making the signal Gaussian with average power S, for this will render
the resulting signal plus noise Gaussian with average power S + N (since the sum of
two Gausian random variables is itself Gaussian). Therefore the capacity is

C = 1

2
log [2πe(S + N)] − 1

2
log [2πe(S + N)] (21.6)

= 1

2
log (S + N)/N) (21.7)

= 1

2
log

(
1 + S

N

)
. (21.8)

This result is formalized by the following statement.

Capacity of a channel with Gaussian noise, subject to a power constraint.
The capacity of a continuous channel with signal power constrained to S, but subject
to independent additive Gaussian noise of power N , is

C = 1

2
log

(
1 + S

N

)
. (21.9)

“ch21” — 2006/2/6 — 20:00 — page 378 — #6

� �

� �

378 • C h a p t e r 21 S A M P L I N G A N D C A PAC I T Y

Example 21.3 (S/N = 1). If the signal and noise have equal average power, then
C = 1

2 log 2 = 1
2 bit per symbol.

Example 21.4 (California temperature). The autumn temperature T in California
is likely to be somewhere in the range of 65◦–80◦ Fahrenheit. Suppose a friend mea-
sures the temperature as 72◦ and reports that value to you. How much information
has been transmitted? Suppose that your friend’s crude thermometer is accurate to
about 1◦. In that case the standard deviations of the temperature T and the measure-
ment noise N are about 80◦ − 65◦ = 15◦ and 1◦, respectively. The variances are the
squares of these. Hence, the mutual information, the information transmitted, is from
(21.5) equal to I(T ; T + N) = 1

2 log (1 + 152) ≈ 3.5 bits.
As a comparison, you could assume that the 16 temperatures 65◦, 66◦, . . . , 80◦

were equally probable and that the measurement accurately described the correct inte-
ger value. The corresponding discrete-value entropy would then be log 16 = 4 bits.

21.3 Sampling Theorem

A continuously varying signal can be converted to a series of separate values by
periodically sampling the continuous signal as illustrated in figure 21.2.

It seems clear that, in general, the samples provide only an approximate representa-
tion of the original continuous message. The Nyquist–Shannon sampling theorem
states that, in fact, a band-limited signal can be accurately reconstructed from its
samples provided that the sampling rate is high enough. Specifically, if the signal
bandwidth is W cycles per second, the sampling rate must be at least 2W per second.

Theorem 21.1 (Sampling theorem). Suppose a function x(t) has a frequency spec-
trum (Fourier transform) that is band-limited to frequencies less than W cycles per
second. Then the function can be completely reconstructed from samples taken at the
uniform rate of 2W samples per second. (That is, the samples are 1/(2W) seconds
apart.)

t

FIGURE 21.2 Sampling a continuous signal. Sampling takes place at regular intervals
of time.

“ch21” — 2006/2/6 — 20:00 — page 379 — #7

� �

� �

S e c t i o n 21.3 S A M P L I N G T H E O R E M • 379

Proof: Let X(f) be the Fourier transform of x(t). Using the inverse Fourier transform,
the function x can be written as in equation (19.3)

x(t) =
∫ ∞

−∞
X(f)ei2π ftdf (21.10)

=
∫ W

−W
X(f)ei2π ftdf (21.11)

because X(f) is zero outside the band −W ≤ f ≤ W .
The samples can be expressed as

x
(n

2W

)
=

∫ W

−W
X(f)ei2π n

2W f df .

The theory of Fourier series can now be used in a kind of backward manner, by
considering a Fourier series of a function of the variable f rather than of t. The right-
hand side of the above equation defines the coefficients of a Fourier expansion of
a periodic repetition of the function X(f) (with period 1/(2W)), with the interval
−W ≤ f ≤ W as the basic interval. (The sign of n must be changed to get an
exact correspondence with the Fourier series.) See figure 21.3. The samples x(n

2W)
determine the Fourier coefficients of the periodic version of X(f), and hence they
determine X(f). From X(f), the original function x(t) can be recovered. This proves the
theorem.

Using the sampling theorem the function x(t) can be expressed in terms of its
samples. Consider the function

sinc(2πWt) ≡ sin(2πWt)

2πWt
.

This function, shown in figure 21.4, has value 1 at t = 0 and value 0 for all other
sampling points t = n/2W (with n �= 0). The Fourier transform of this function is
constant with value 1/(2W) in the band −W ≤ f ≤ W and zero outside that band.
(See example 19.1 in chapter 19 but where the roles of t and f are reversed compared
to here.) Hence the sinc function is band-limited. If, when the original function x(t)
is sampled, all the samples are zero except the one at t = 0, which is 1, it would
follow that x(t) = sinc(t) since that is appropriately band-limited and agrees with

X(f)

f−W W

FIGURE 21.3 Fourier series of transform. Samples of the function x provide the coeffi-
cients for a Fourier series of the Fourier transform X(f). Here the Fourier transform is the
function indicated in the shaded region. Its copies make up the periodic extension of that
transform.

“ch21” — 2006/2/6 — 20:00 — page 380 — #8

� �

� �

380 • C h a p t e r 21 S A M P L I N G A N D C A PAC I T Y

1

−4τ t−3τ −2τ −τ τ 2τ 3τ 4τ

FIGURE 21.4 The function sinc (2πWt). This function is zero at every sampling point
t = nτ , n �= 0, where τ = 1/(2W). The Fourier transform of the function is constant over
the frequency interval −W ≤ f ≤ W.

the obtained samples. If the only nonzero sample were at a different point, at say
τ ≡ 1/(2W), then likewise it would follow that x(t) = sinc(t − τ), since this shifted
version of the sinc function is also band-limited to between −W and W . In general,
therefore, any nonzero sample corresponds to a sinc function shifted so that it is
centered at the sample point. Therefore the original function x(t) can be expressed as
below.

Recovery from samples. Suppose a function x is band-limited to frequencies
between −W and W cycles per second. Suppose also that this function is sampled at
every t = nτ , n = · · · −2, −1, 0, 1, 2 . . . where τ = 1/2W . Then x can be recovered
from the samples by the expression

x(t) =
∞∑

n = −∞
x(nτ) sinc(t − nτ). (21.12)

21.4 Generalized Sampling Theorem∗

A generalization of the standard sampling theorem is closely related to the theory
of amplitude modulation, and this viewpoint enhances the understanding of both
sampling and modulation.

Consider a periodic pulse train p(t) with period T as shown in figure 21.5(a). If
this pulse train is multiplied by the message signal s(t), whose Fourier transform is
band-limited to −W ≤ f ≤ W , the result is the new signal v(t) = s(t)p(t).

Since p(t) is periodic, it can be expressed as a Fourier series. Thus, denoting
fp = 1/T , we use the complex coefficient version of the Fourier series as given in
secion 19.3 to write

p(t) =
∞∑

n = −∞
cnein2π fpt .

“ch21” — 2006/2/6 — 20:00 — page 381 — #9

� �

� �

S e c t i o n 21.4 G E N E R A L I Z E D S A M P L I N G T H E O R E M ∗ • 381

t

t

t

(a)

(b)

(c)

FIGURE 21.5 Sampling pulse train. The pulse train of (a) is multiplied by the signal
(b) to produce the sampled signal (c).

Hence the Fourier transform of v(t) is

V (f) =
∫ ∞

−∞

[
s(t)

∞∑
n = −∞

cnein2π fpt

]
e−i2π ftdt. (21.13)

Or, interchanging the order of integration and summation,

V (f) =
∞∑

n = −∞
cn

∫ ∞

−∞
s(t)e−i2π (f −nfp)tdt. (21.14)

The integral in the last expression is recognized as S(f −nfp), where S(f) is the Fourier
transform of s(t). Hence (21.14) becomes

V (f) =
∞∑

n = −∞
cnS(f − nfp).

This result says that the Fourier transform of v(t) is simply several copies of the
Fourier transform of s(t) spread along the f axis as shown in figure 21.6. Each copy is
separated by a distance fp. In the figure it is assumed that fp is greater than 2W so that
the Fourier transform copies do not overlap. This condition, fp ≥ 2W , corresponds
to T ≤ 1/(2W), which is the condition that the pulses repeat at least as fast as the
Nyquist–Shannon sampling rate for a signal band-limited between −W and W cycles
per second.

The specific values of the cn’s depend on the pulse shape, but they do not matter
for most purposes. It is clear that as long as one of the cn’s is nonzero and the copies

“ch21” — 2006/2/6 — 20:00 — page 382 — #10

� �

� �

382 • C h a p t e r 21 S A M P L I N G A N D C A PAC I T Y

ffP 2fP0−2fP −fP

V(f)

FIGURE 21.6 Fourier transform of a signal multiplied by a pulse train of frequency fp.
Copies of the Fourier transform of the original signal are obtained.

do not overlap, the Fourier transform of the original signal s(t) is available in V (f),
and hence s(t) can be recovered from v(t). This conclusion holds no matter what the
shape of the pulse train p(t) as long as it is periodic with a period T ≤ 1/(2W). The
classic sampling theorem corresponds to the limiting case of vanishing small pulse
width.

Relation to AM

The result stated above can be related to amplitude modulation by letting the pulse
train be a (carrier) sinusoid of frequency fc. The coefficients cn of the Fourier series
of the carrier are all zero except for c−1 and c1. Hence in this case there are only two
copies of the Fourier transform of s(t), one centered at −fc and the other at fc.

Sampling provides a simple way to shift the Fourier transform of a signal. If the
signal is sampled at least as fast as the Nyquist–Shannon rate and uses any pulse shape
that has all its Fourier coefficients nonzero, the resulting Fourier transform will have
copies of the signal transform spread fc apart. Using a selective bandpass filter, all
copies can be eliminated except the one in a particular region. The result is a shifted
version of the original Fourier transform. This surprising and powerful result was not
known to early researchers.

Example 21.5 (How not to raise your voice). Consider again the baritone who
sings below the middle C tone, as in example 20.4. Suppose a tape recording of one of

his songs is multiplied by a pulse train with frequency one octave higher
than middle C. If this recording were played, a horrible whistle at two
octaves above middle C would be heard.
However, if the result is passed through a filter that greatly attenuates the

frequencies above middle C (as by playing through a woofer loudspeaker),
the song will be heard, sung by a baritone, his voice apparently normal.

When a pure tone is used as the multiplying signal, it is only necessary to
raise the pitch one octave, as in example 20.4. Figure 21.7 makes this clear.

“ch21” — 2006/2/6 — 20:00 — page 383 — #11

� �

� �

S e c t i o n 21.5 T H E R M A L N O I S E • 383

f

0 C−C

f

0 C−C

f

0 C−C 2C 3C−2C−3C

f

0 2C−2C 4C−4C

FIGURE 21.7 Not raising your voice. Top: The original spectrum. Second: The result of multiplying by a middle
C tone. Since the pure tone has components only at C and -C, the sifted copies do not overlap. Third: The result
of multiplying by an arbitrary pulse train of frequency of middle C. There are copies at every multiple of C, and
hence there is overlap, which means that the original shape cannot be recovered by filtering. Bottom: The result of
multiplying by an arbitrary pulse train of frequency two times middle C. Now there is no overlap and the original
spectrum can be recovered.

21.5 Thermal Noise

Noise is present in every form of electronic transmission, and it causes errors. There
are numerous sources of noise: interfering transmissions (as in spark radios), light-
ening, crosstalk through adjacent telephone wires, multipath disturbances, thermal
disturbances at the electronic level, and approximations in a sampling process. One
of the most ubiquitous forms is thermal noise, discussed in this section.

Thermal noise is due to the inherent random movements of electrons, which inten-
sify as temperature is increased. This noise is present in every form of electronic
media, and it is, for practical purposes, completely random. The Fourier apparatus
can be extended to treat random waveforms. The principal tool for this purpose is the
power spectral density, which as the name implies is the density of power (energy
per unit time) at various frequencies.

Thermal noise is usually modeled as white noise, defined as a process with a power
spectral density that is constant across all frequencies. This means that theoretically
the total average power is infinite, but in actuality the power spectral density can be
observed only over a finite range.

The level of white thermal noise power in bandwidth W is N0W , where N0 is given
by the formula

N0 = kT .

N0 is in watts per Hz, k is Boltzman’s constant 1.3803 × 10−23 joules per degree
kelvin, and T is the temperature in degrees kelvin. The power spectral density of

“ch21” — 2006/2/6 — 20:00 — page 384 — #12

� �

� �

384 • C h a p t e r 21 S A M P L I N G A N D C A PAC I T Y

white thermal noise is constant at level N0/2 since a bandwidth of W defines the
frequency range −W ≤ f ≤ W of twice the width of W itself, and hence the total
noise in the band | f | ≤ W is N02W/2 = N0W .

Example 21.6. Suppose a transistor radio sitting in your room operates at a tem-
perature of 20◦C. That corresponds to 20◦ + 273◦ = 293◦ kelvin. The thermal noise
power is therefore N0 = 293 × 1.3803 × 10−23 = 4.05 × 10−21 watts per Hz. If this
receiver is tuned to receive a bandwidth of 20 kilocycles per second, the total thermal
noise power in that bandwidth is 20 × 103 × 4.05 × 10−21 = 8.1 × 10−17 watts. That
may not seem like much, but it can be a significant fraction of the total power in that
band received by the radio’s antenna.

21.6 Capacity of a Band-Limited Channel

It is now possible to put everything together and present Shannon’s celebrated formula
for the capacity of a band-limited channel.

Suppose the channel is capable of transmitting continuous-time signals with a
bandwidth of W , and there is (independent) additive white Gaussian noise. From
section 21.2, the capacity of a Gaussian channel consisting of a single sample is

C = 1

2
log

(
1 + S

N

)
,

where S and N are the average powers of the signal and noise, respectively. Since the
signal can be completely generated by samples defined at a rate of 1/(2W) samples
per second, the channel can send up to 2W independent samples per second. Thus
the capacity of this channel is

C = W log

(
1 + S

N

)

bits per second, where now S and N are the average powers of signal and noise,
respectively.2 This leads to the famous capacity formula stated below.

Capacity of band-limited channel. The capacity of a continuous channel, band-
limited to W hertz and subject to additive white Gaussian noise of average power
spectral density N0/2 (and hence total power over −W ≤ f ≤ W of N0) is

C = W log

(
1 + S

N0W

)
, (21.15)

where S is the average power of the signal.

Shannon also explained how this capacity can, in principle, be achieved. The trans-
mitted signals must approximate white Gaussian noise within the given bandwidth,
and when those signals are perturbed by additive white Gaussian noise, the received
signals will also be approximately white noise in that band.

2Since both S and N have the same units, the renormalization in going from energy per sample to energy
per second cancels out. Hence it can be assumed that they are in standard units of average powers of signal
and noise, respectively.

“ch21” — 2006/2/6 — 20:00 — page 385 — #13

� �

� �

S e c t i o n 21.7 S P R E A D S P E C T R U M • 385

Example 21.7 (Modem capacity). The V.34 telephone modem operates in a band-
width of approximately 3,400 Hz. The signal-to-noise level is usually about 3,000.
Hence the theoretical capacity is 3,400 log 3,001 = 39,274 bits/second. This modem
actually achieves about 33,400 bits/second.

21.7 Spread Spectrum

Hedy Lamarr, the glamorous Hollywood star often called “the most beautiful girl in
the world" during World War II, invented a concept of spread spectrum that is the
basis for much of modern communication.

She was born Hedwig Maria Eva Kiesler, in Vienna, Austria. In 1933 she married
Fritz Mandl, who was one of Europe’s leading armaments manufactures. Mandl began
selling arms to Hitler and displayed Lamarr as a showpiece in business meetings but
kept her as a virtual prisoner. One issue that Mandl was working on was the remote
control of weapons such as torpedoes by use of radio signals. It was an attractive
alternative to wire control, but had the severe disadvantage that an adversary could
also tune into the transmitting frequency and jam the signal.

In 1937 Lamarr escaped from her husband by drugging her watchful maid, and
made it to London. There she met Louis B. Mayer of Metro Goldwyn Mayer (MGM);
he brought her to the United States and gave her the stage name Hedy Lamarr.

In Hollywood she met George Antheil, a charming musician known for technical
innovations in music, such as use of airplane propellers and player pianos in concerts.
As a result of personal experience in Europe, he was firmly anti-Hitler.

Hedy mentioned the radio control problem to Antheil and explained her solution.
The transmitter should randomly and rapidly change its transmitting frequency, select-
ing various frequencies over a wide band. The enemy would not be able to jam all
frequencies at once, so 99 percent of the signal would get through. She explained also,
however, that the scheme would require that the frequency changes in the transmitter
and receiver be perfectly synchronized, and she did not know how to achieve that.

Antheil proposed that identical piano roll mechanisms be installed in both the
transmitter and receiver. Together Lamarr and Antheil worked out a system, and
obtained a patent in 1942. Rather than exploit the patent commercially, they gave it to
the U.S. government as a contribution to the war effort. However, because additional
technical problems would have to be worked out, the navy never used the idea.

The patent expired in 1959, but soon after that engineers at Sylvania Electronic
Systems Division developed a digital version of synchronization and a correspond-
ing system that supplied secure communications during the Cuban missile crisis
of 1962.

Lamarr and Antheil’s concept of randomly changing the frequency of transmission
is today called frequency hopping and is one version of a class of techniques called
spread spectrum that employ a broad spectrum in transmission. Frequency hopping
continues to be used, especially by the military, as an effective method of secure
wireless transmission. Since reception of a message that is transmitted by frequency
hopping is based on a prearranged random hopping schedule, the method was one
of the first effective encryption techniques for radio. It is also, as we shall see, an
efficient method of communication from an information theory viewpoint.

“ch21” — 2006/2/6 — 20:00 — page 386 — #14

� �

� �

386 • C h a p t e r 21 S A M P L I N G A N D C A PAC I T Y

Capacity Gain

The advantage of wide spectrum communication is revealed by Shannon’s formula
for the capacity of a band-limited channel:

C = W log

(
1 + S

N0W

)
. (21.16)

Suppose that the available average signal power S is constrained, which is reason-
able since it is derived from transmitter power resources. Suppose though, that by
appropriate system design, the system bandwidth can be varied. As bandwidth W is
increased, the signal-to-noise ratio worsens because the signal power is fixed but the
noise power increases. However, the channel capacity actually increases because the
leading W term in the capacity formula outweighs the decrease inside the log term.
Figure 21.8 shows the capacity as a function of W for a ratio of S/N0 = 107, meaning
that the signal-to-noise ratio is 10 at a bandwidth of W = 1 MHz (megahertz). There
is then a limiting capacity of C = S/[N0 log2(e)], achieved as W → ∞. For the
example of figure 21.8 this limiting capacity is C = 14.4 megabits/sec, which is 14.4
times what it is at W = 1 megahertz.

Early spark radio was troublesome precisely because each transmission occupied
a broad spectral band. This led to inefficient use of power and exceedingly vexing
problems of transmitter interference. The solution, made possible by a continuous
carrier and amplitude modulation, was to slice the available spectrum into separate
narrow bands that could be assigned to different stations. This restriction of transmis-
sion bandwidth, as we now see, sets perhaps a low limit on the capacity that can be
achieved by any one station.

Recall that when Edwin Armstrong was designing FM, conventional wisdom said
that he should reduce the broadcast bandwidth in order to reduce the total noise power
received. Instead, as another indication of Armstrong’s genius, he decided that it was
better to increase bandwidth, in accord with what is now clear from Shannon’s result.

FIGURE 21.8 Spread spectrum capacity. The capacity increases as a function of the
bandwidth when average signal power is fixed and noise power is proportional to
bandwidth.

“ch21” — 2006/2/6 — 20:00 — page 387 — #15

� �

� �

S e c t i o n 21.8 S P R E A D I N G T E C H N I Q U E • 387

21.8 Spreading Technique

A wide spectrum is desirable, but how is it to be obtained? One way is by fre-
quency hopping, jumping randomly every split second among narrow bands within a
larger one. Another method is by direct spreading, which spreads the spectrum by
multiplying the signal by a random signal of broad bandwidth.

To see how direct spreading works, consider figure 21.9. The first panel shows
a low-bandwidth signal. The second shows a high-bandwidth random signal (like
pure static). The third panel shows the result of multiplying the two together. This
resulting waveform is also essentially purely random and hence has a broad and nearly
flat power spectral density similar to that of static. The signal has been spread across
the wide bandwidth. The signal can be recovered if the static part of the signal is
known, for the static part can be divided out of the combined signal.

In modern practice, this spreading technique is implemented digitally with pulses.
The original signal (such as a voice waveform) is sampled and the samples are coded
with one of the binary codes discussed in chapters 3 and 6. This binary code is
then converted to a series of 1’s and −1’s (rather than 0’s and 1’s). If sent directly
through an electrical communication system, these binary symbols would be pulses
of magnitude 1 or −1. Each pulse would have a duration roughly equal to 1/(2Ws),
where Ws is the bandwidth of the signal. The resulting pulse train will also have a
bandwidth of roughly Ws.

Next, the pulse train is multiplied by a chipping code, which is generated as
pseudorandom noise (alternatively termed pseudonoise or PN for short). The chipping
code pulses have duration much shorter than the signal pulses. See figure 21.10.
The resulting high-frequency pulse train inherits the pseudorandom character of the
chipping PN, and occupies the same broad frequency band. Of course, the signal can
be recovered by dividing out the PN. For binary −1’s and +1’s, division is equivalent
to multiplication, so the spread signal can be multiplied by the PN series to recover
the original signal.

The PN sequences can be generated by shift registers of the kind discussed in
chapters 6, and 11. There are two commonly used sequences: a long code and a short
code. The long codes are 242 bits long. If an original digital bit stream runs at 9,600
bits/second and a long code spreading stream runs at 1.2288 megabits/second, it takes
about 41 days for the code to complete a single cycle. By contrast the short codes are
of length 215, and in the same situation they cycle every 26.7 milliseconds.

FIGURE 21.9 Spreading a signal. The first graph shows a low-bandwidth signal. The
second graph shows a broad bandwidth random waveform. The third graph shows the
result of multiplying the two together. The result is again essentially random with a broad
bandwidth. The original signal can be recovered by dividing out the random waveform.

“ch21” — 2006/2/6 — 20:00 — page 388 — #16

� �

� �

388 • C h a p t e r 21 S A M P L I N G A N D C A PAC I T Y

Signal

Pseudo Noise

Transmission

FIGURE 21.10 Spreading of binary pulses. The original binary coded message (of 1’s
and −1’s) is multiplied by a pseudonoise chipping code. The resulting signal inherits the
random nature of the PN, and hence has a wide power density spectrum. In practice, the
pulse width of the spreading PN is orders of magnitude shorter than that of the signal
pulses.

21.9 Multiple Access Systems

Many modern communication networks are designed to be shared by several users,
all operating simultaneously. Cell phones are a principal example. There are four
basic methods for sharing bandwidth.

1. Time Division Multiple Access (TDMA). In this method a basic time
duration, a fraction of a second, is itself divided into a number K of short
segments, and these are assigned to K different users. Each user therefore
has command of the entire bandwidth for that short period. This method
is commonly used in data and digital voice transmission.

2. Frequency Division Multiple Access (FDMA). Here the available band-
width W is divided into K segments that are assigned to K users. This is
the method used to allocate frequency bands among radio and television
stations and in some digital communication systems.

3. Code Division Multiple Access (CDMA). In this system all users operate
over the entire bandwidth W and at all times. Users spread their signals
to fully occupy W by using a chipping code. Interference is minimized
by the incorporation of orthogonal chipping codes, as discussed below.
This system is used in some cellular telephone systems.

4. Nonspread Random Access. In this method users access the common
channel randomly. Some messages collide and must be retransmitted, as
discussed in chapter 22.

Orthogonal Codes

CDMA relies on orthogonal chipping codes so that a given receiver can screen out
signals from all users except the one desired.

“ch21” — 2006/2/6 — 20:00 — page 389 — #17

� �

� �

S e c t i o n 21.9 M U LT I P L E ACC E S S S Y S T E M S • 389

Here is the general idea. A PN chipping code is of the form c = (b1, b2, b3, . . . , bn),
where each bi is 1 or −1. Two codes cu and cv are orthogonal if

cu · cv ≡
n∑

i = 1

buibvi = 0.

For example cu = (1, 1, −1, −1) and cv = (1, −1, 1, −1) are orthogonal.
A message signal s is also a code, although in the chipping time frame the message

signal has long blocks of constant values corresponding to the long duration message
pulses. A signal su of a sender u is spread by multiplying it by the sender’s chipping
code cu, and the result is transmitted as tu = su · cu. The message is recovered by
multiplying by the code cu giving tu · cu = su · cu · cu = sun (where the factor of n is
due to cu · cu = n).

When there are several users u, v, w with orthogonal chipping codes, the overall
signal received by all is t = su · cu + sv · cv + sw · cw. The message from u can be
recovered by multiplying by cu as before, since

t · cu = (su · cu · cu) + (sv · cv · cu) + (sw · cw · cu) = sun

as before because of the orthogonality of the chipping codes.
A basic component of such a system is a large set of orthogonal PN chipping codes.

It is standard practice to use Walsh codes, which are available in sets with lengths that
are powers of two, and they are easily constructed. (See exercise 4.) For example, the
IS-95 standard for CDMA specifies a set of 64 orthogonal Walsh codes of length 64.

In practice, things are not as perfect as in the simplified theory. Various delay
times, multipath transmission, and other factors degrade the orthogonality relation.
A practical system must incorporate many compensating features in its design. But
the basic principle is elegant and has been made very effective.

Capacity Comparisons

Shannon’s formula for the capacity of a channel subject to additive white Gaussian
noise (AWGN) can be used to analyze the capacity of multiple access systems. We
consider them in turn.

Suppose there is available a bandwidth of W and there are K users each having
average power S. There is white Gaussian noise of power spectral density N0/2, but
with a total power of N0W .

First consider TDMA. Assume that each user transmits a fraction 1/K of the time,
with the average power during that time being KS (so that the average overall time is
S). The capacity of user k is therefore

Ck = W

K
log

[
1 + KS

N0W

]
,

since the user only gets 1/K of the capacity. The total capacity for K users is
accordingly

C = W log

[
1 + KS

N0W

]
,

“ch21” — 2006/2/6 — 20:00 — page 390 — #18

� �

� �

390 • C h a p t e r 21 S A M P L I N G A N D C A PAC I T Y

which is the same as the capacity that would accrue to a single user with average power
KS. It is clear that the capacity increases with K (because the total signal power used
is proportional to K).

Next consider FDMA. Assume that the bandwidth is divided into K equal segments,
each allocated to a different user. The capacity enjoyed by user k is

Ck = W

K
log

(
1 + S

N0(W/K)

)
.

The total capacity is therefore

C = W log

(
1 + KS

N0W

)
,

which is exactly the capacity that would accrue to a single user with average power
equal to the sum of the average powers of the K users, and is the same as the capacity
of TDMA.

Finally, consider CDMA. Each user uses the entire bandwidth W and transmits a
PN signal (a message multiplied by a chipping code) of average power S. A receiver is
subject to the ambient Gaussian noise and interference from K − 1 users’ PN signals.
Hence the capacity for user k is

Ck = W log

[
1 + S

N0W + (K − 1)S

]
.

Hence the total capacity for K users is

C = KW log

[
1 + S

N0W + (K − 1)S

]
.

For large K , log (1 + 1/K) ≈ (log2 e)/K , and hence

C → W log e.

Hence, unlike TDMA or FDMA, the capacity does not increase to infinity as K is
increased.

CDMA has other features that make it attractive. It is easy to add or subtract users
(since no new time or frequency divisions are required). In addition, when all users
are not active (which is the normal case for cell phones), the capacity of CDMA can
be superior to that of other forms of multiple access.

The design of multiple access systems requires knowledge of Fourier transforms,
power spectral density, random processes, noise characteristics, effective coding of
message sources, orthogonal chipping codes, the sampling theorem, and Shannon’s
theory of capacity. All of these represent a great mastery of frequency beyond the
pioneering efforts of Fourier, Lord Kelvin, Hertz, Bell, and others who contributed
to the progress of the communication field.

“ch21” — 2006/2/6 — 20:00 — page 391 — #19

� �

� �

S e c t i o n 2 1 . 1 0 E X E R C I S E S • 391

21.10 EXERCISES

1. (Maximum entropy) Solve problem (21.4) by the following steps:
(a) Introduce Lagrange multipliers for each of the two constraints, and differentiate the

resulting Lagrangian integral with respect to p at each point x. Set this derivative
to zero.

(b) Show that ln p(x) = c − dx2 for some constants c and d.
(c) Evaluate the constants to satisfy the two constraints.

2. (Two models of information transfer) Consider a random variable whose value is
transmitted.

(a) Suppose that the variable has standard deviation n and that the true value is trans-
mitted with noise of standard deviation 1. What is the amount of information
transmitted?

(b) Alternatively, suppose that the variable has n equally probable values,
and the actual value is transmitted exactly. How much information is
transmitted?

(c) As n → ∞, how do these values compare?

3. (Noise loss) A delicate electronic instrument normally operates at 20◦ C with a signal-to-
noise ratio of 100. If it is taken to the desert and operated at 40◦ C, by what percentage will
its capacity be reduced?

4. (Walsh codes) Walsh codes are generated from Hadamard matrices consisting of 0’s and 1’s.
Hadamard matrices of order 2k can be found by a simple recursion. Given a Hadamard
matrix Hk of order 2k , the matrix Hk+1 is formed as

Hk + 1 =
[

Hk Hk
Hk Hk

]
,

where Hk denotes the matrix complementary to Hk , with 1’s and 0’s interchanged.
(a) Starting with H0 = [0], find H1, H2, and H3.
(b) A Hadamard matrix defines a set of codes from the rows of the matrix. One way

is to convert 0’s to −1’s and use ordinary multiplication. Show that the codes
resulting from H1, H2, and H3 each define orthogonal sets.

(c) Argue that orthogonality applies to codes derived from any Hadamard matrix.

5. (CDMA and FDMA) Suppose that there are 100 users but on average only 10 of them use
the system at any one time. Each has average power S when active, and the background
noise has power spectral density of N0/2.

(a) Suppose that in FDMA the available bandwidth is divided into 10 equal segments
and 10 people are assigned to each of them. Any active user can expect that one
other user will be active on the same sub-band. Write an expression for the capacity
enjoyed by a user.

(b) In CDMA an active user can expect to see pseudorandom noise from 10 other
users. Write an expression for the capacity enjoyed by a user.

(c) At low signal-to-noise levels, which system gives users the greater capacity?
(d) ∗Does one of these systems always have more capacity than the other?

“ch21” — 2006/2/6 — 20:00 — page 392 — #20

� �

� �

392 • C h a p t e r 21 S A M P L I N G A N D C A PAC I T Y

21.11 Bibliography

The theorems on capacity for continuous channels were first presented in Shannon’s
classic monograph [1]. An excellent general text on continuous information theory
is [2]. See [6] for a nice presentation of the generalized sampling theorem. See [4]
and [5] for more about Hedy Lamarr’s invention. Two excellent general texts on
modern communication are the basic text [6] and the more advanced [7] (from which
the discussion of capacity for multiple access systems was adapted). Overviews of
CMDA, including examples, background theory, and practical details, are found in [8]
and [9] which has a good discussion on long codes and gives examples.

References

[1] Shannon, Clande E. The Mathematical Theory of Communication. Urbana:
University of Illinois Press, 1949.

[2] Cover, T. M., and J. A. Thomas. Elements of Information Theory. New York:
John Wiley and Sons, 1991.

[3] “Female Inventors—Hedy Lamarr.” http//www.inventions.org/culture/female/
lamarr.html.

[4] Hughes, David. Nomination of Hedy Lamarr and George Antheil for Achieves
of Science Award, 1997.

[5] Nahin, P. J. The Science of Radio. 2nd ed. Woodbury, N.Y,: American Institute
of Physics, 2001.

[6] Stallings, W. Data and Computer Communications. 6th ed. Upper Saddle River
N.J.: Prentice-Hall, 2000.

[7] Proakis, John G. Digital Communications. 4th ed. New York: McGraw-Hill,
2002.

[8] Garg, V. K., K. Smolik, and J. E. Wilkes. Applications of CDMA in Wireless/
Personal Communications. Upper Saddle River, N.J.: Prentice-Hall, 1997.

[9] Lee, Steve. Spread Spectrum CDMA. New York: McGraw-Hill, 2002.

“ch20” — 2006/2/6 — 20:00 — page 350 — #1

� �

� �

20
RADIO WAVES

O
ne of the greatest scientific achievements of the nineteenth century—indeed,
perhaps of all time—is the unified theory of electromagnetism developed by James
Clerk Maxwell. His general equations, presented in his masterful A Treatise on

Electricity and Magnetism, published in 1873, capture the phenomenon and partial
theories of Oersted, Faraday, and Ampère. Maxwell was largely inspired by the theory
of light as a wave phenomenon, and his theory implied that if electromagnetic waves
existed, they would move at the speed of light. Using his theory, he in fact measured
the speed of light indirectly by making electrical measurements.

Unfortunately, Maxwell died of cancer at the age of 48 while he was still working
on the second edition of his great Treatise. He was therefore unable to spend much time
working out the implications of his theory or fully testing it empirically. That work,
then, fell to a small group of scientists who called themselves the “Maxwellians.”

One of that group was Oliver Heaviside. Another was Heinrich Hertz, a student
of von Helmholtz. Heaviside contributed greatly to the theory, recasting it in a mod-
ern vector approach that is easily understood. Hertz’s experiments were as important
to development and acceptance of Maxwell’s theory as was Heaviside’s theoretical
work. It was understood by physicists familiar with the theory that Maxwell’s equa-
tions implied the possibility of generating electromagnetic waves that would radiate
indefinitely away from their source, carrying energy outward. It was Hertz who first
generated and measured such waves, providing major experimental verification of
Maxwell’s theory, as described below in section 20.3.

20.1 Why Frequencies?

To discuss radio it is useful to understand a bit more about frequency—especially
how it is treated by circuits. The introduction to chapter 19 mentioned the invariance
property of sinusoids in linear systems. This connection is made more explicit here.

350

“ch20” — 2006/2/6 — 20:00 — page 351 — #2

� �

� �

S e c t i o n 20.1 W H Y F R E Q U E N C I E S ? • 351

Homogeneous Solutions

Consider the differential equation

dnx(t)

dtn
+ an−1

dnx(t)

dtn
+ · · · + a0x(t) = 0. (20.1)

This is termed a linear differential equation or order n. It is linear because all func-
tions of the unknown x(t) appear linearly. The equation is defined by the coefficients
a0, a1, . . . , an−1. In (20.1) these are constant coefficients since they do not depend on
time. It is these two properties, linearity and constant coefficients, that together lead
to sinusoids. As an example, the low-amplitude motion of a pendulum is described
by such an equation of order two.

The particular equation (20.1) is called a homogeneous equation because the
right-hand side is zero.

If x or one of its n derivatives is nonzero at t = 0, there will be a nonzero solution
to the homogeneous equation. For example, if a pendulum bob is held up and then
released, the pendulum will swing.

Equation (20.1) can be solved by assuming a solution of the form x(t) = eλt for
some value of λ. Substituting this solution into the equation produces

λneλt + an−1λ
n−1eλt + · · · + a0eλt = 0.

Canceling the common factor of eλt yields

λn + an−1λ
n−1 + · · · + a0 = 0, (20.2)

which is the characteristic equation of equation (20.1). This polynomial equation
can be solved for n roots. Some roots may be repeated, and some may be complex.
If they are complex, they occur in complex conjugate pairs. In general, the real part
of a root describes a growing exponential (if the real part is positive) or a decaying
exponential (if the real part is negative). The imaginary part of a root indicates the
presence of sinusoids. If two of the roots are λ1 = r + iω and λ2 = r − iω, the
solution will have components of the form Aert sin ωt + Bert cos ωt. In order that
there be complex roots it is necessary that the order n be at least two.

Example 20.1 (Pendulum). Consider a pendulum of length L and mass of its bob
M. Let the angle away from center be θ (t). The gravitational force pulling it back
to the center1 is −Mgθ (t), where g is the gravitational constant. This force must,
according to Newton’s law, be mass times acceleration, ML d2θ (t)/dt2. Hence, after
dividing by ML,

d2

dt2
θ (t) + g

L
θ (t) = 0.

The characteristic equation is λ2 +g/L = 0, with solutions λ = ±i
√

g/L. This means
that the motion will be of the form A sin (gt/L) + B cos (gt/L).

1Actually it is Mg sin θ (t), but for small angles sin θ (t) ≈ θ (t).

“ch20” — 2006/2/6 — 20:00 — page 352 — #3

� �

� �

352 • C h a p t e r 20 R A D I O WAV E S

Nonhomogeneous Solutions

Generally, a system not only responds to its initial conditions, but also to input signals
or forces. The relevant equation then has the form

dnx(t)

dtn
+ an−1

dnx(t)

dtn
+ · · · + a0x(t) = s(t). (20.3)

This is termed a nonhomogeneous equation. The equation may be difficult to solve
directly—except when s(t) is exponential.

Assume that s(t) = eqt where q may be a complex number. Then trying a solution
of the form x(t) = Aeqt one finds that all terms in (20.3) have this same factor. Hence
canceling that common term gives

A(qn + an−1qn−1 + · · · + a0) = 1.

The solution therefore has

A = 1

qn + an−1qn−1 + · · · + a0
. (20.4)

In general, there would be added to this solution some solution to the homogeneous
equation as determined by the initial conditions. Notice that if q is close to a root λ

of the characteristic equation, then A will be large, since the denominator is zero at
a root.

This analysis reflects the importance of sinusoids in analysis of linear systems. If
an input signal is a sinusoid, the response will be sinusoids of the same frequency, but
perhaps with a different magnitude and phase, depending on the coefficients A and B
of the sine and cosine terms. If there are nonzero initial conditions, or if the signal is
suddenly applied at, say, time zero, there will also be sinusoids that are characteristic
of the homogeneous system. The general rule is that a system responds to a sinusoid
with the same frequency and with frequencies characteristic of the homogeneous
system.

Example 20.2 (Lord Kelvin’s system). Consider the simplified model of a
telegraph transmission line of figure 19.2. The equation for the voltage v1 is

dv1

dt
= − 1

RC
(v1 − v0).

The characteristic equation is λ + 1/(RC) = 0. Hence the homogeneous solution is
of the form v(t) = e−t/(RC). The input signal, defining the nonhomogeneous part, is
v0/(RC), which is a sinusoid of zero frequency. The part of the solution corresponding
to this will be a constant. It will be of magnitude v0/(RC) × A, where A is given by
equation (20.4), as A = RC. Hence, v1 = v0 + ce−t/RC . The constant c is chosen to
make v1(0) = 0. Thus v1(t) = (1 − e−t/RC)v0.

Example 20.3 (Tuned circuit). Consider the classic RLC circuit of figure 20.1.
The equations of the RLC circuit can be derived by using the fact that the current

must be equal at every point in the circuit and the total voltage drop around the circuit

“ch20” — 2006/2/6 — 20:00 — page 353 — #4

� �

� �

S e c t i o n 20.1 W H Y F R E Q U E N C I E S ? • 353

C

R

L

I
+

−

FIGURE 20.1 A classic RLC circuit. For small values of resistance R, a circuit with
capacitance C and inductance L will oscillate.

must be zero. The three voltage relations (measured clockwise around the circuit) are
(with V ’s for volts and I for current in amperes)

1. VR = I(t)R (Ohm’s law, with R in ohms)

2. VL = L
d

dt
I(t) (changing current produces voltage, with L in henrys)

3. VC = 1

C

∫ t

0
I(τ)dτ − V0 (changing voltage produces current, with C in

farads). The initial voltage V0 across C is regarded as −V0 when moving
clockwise around the circuit.

It is always true that
VR + VL + VC = 0, (20.5)

or upon differentiation,
d

dt
[VR + VL + VC] = 0. This yields the differential equation

d2I

dt2
+ R

L

dI

dt
+ 1

LC
I = 0,

for the current I(t). The characteristic equation is therefore

λ2 + R

L
λ + 1

LC
= 0.

Using the techniques discussed above leads to the solution

I(t) = V0

ω1L
e−Rt/2L sin ω1t, (20.6)

where

ω1 =
√

1

LC
−

(
R

2L

)2

.

If R is zero, the circuit will oscillate like a pendulum. The addition of positive resis-
tance has two main effects. It lowers the oscillation frequency, and it damps the
oscillations so that they die out exponentially.

“ch20” — 2006/2/6 — 20:00 — page 354 — #5

� �

� �

354 • C h a p t e r 20 R A D I O WAV E S

20.2 Resonance

A tuning fork stimulated by a sharp tap responds by vibrating at its characteristic
frequency. Likewise, an LC circuit with low resistance stimulated by a sudden voltage
will “ring” at its characteristic frequency. It is also true that if a continuous sound tone
is played near a musical string, the string will vibrate in sympathy to the impressed
tone, especially if the pitch of the impressed tone is near the characteristic pitch of
the string. An RLC circuit behaves in much the same way. If a sinusoidal voltage
is impressed upon it, it will respond at the frequency of the impressed sinusoidal
voltage. However, an RLC circuit with small R will, like a tuning fork, respond
vigorously when the impressed frequency is close to the characteristic frequency of
the circuit. This can be seen from equation (20.4), which shows that the magnitude of
the response will be large if q is near the characteristic frequency. This phenomenon is
termed resonance, and an RLC circuit with low resistance is often called a resonant
circuit.

20.3 The Birth of Radio

Hertz must be credited with construction of the first radio, although he did not have
that in mind. His experimental apparatus generated electromagnetic waves and he was
able to detect them. His experimental setup is shown schematically in figure 20.2.

The inductance of the circuit was supplied by a coil. The capacitance was obtained
from a small gap in the antenna and large (30 cm) zinc disks at the ends of the antenna.
The overall capacitance was low, so that the characteristic frequency would be high.

Across his lecture hall he set up wall-sized plates of zinc, capable of reflecting
electromagnetic waves (if they existed). When the capacitor was discharged through
the antenna and spark gap, the oscillator drove current up and down the antenna.

Oscillator Resonator

FIGURE 20.2 The Hertz oscillator and resonator. The oscillator circuit was the trans-
mitter. Inductance was supplied by a coil, capacitance was supplied by two large plates
attached to the ends of the antenna, and resistance was present in the spark gap and the
wiring. The spark gap was at the center of a dipole antenna.

“ch20” — 2006/2/6 — 20:00 — page 355 — #6

� �

� �

S e c t i o n 20.4 M A R CO N I ’ S R A D I O • 355

This fluctuating current produced a magnetic field and generated the radiating elec-
tromagnetic waves predicted by Maxwell’s theory. These waves were reflected by
the zinc, and standing waves were established. Hertz measured the amplitude of the
waves with a small circle of wire with a gap—a device he termed a resonator. If the
magnetic field were sufficiently strong, a spark would form in the gap of this resonator.

According to Maxwell’s theory all electromagnetic waves travel at the speed of
light. If λ denotes the wavelength, and f the corresponding frequency in cycles per
second (hertz), then λf = c, where c is the speed of light. Since the speed of light is
c = 3×108 meters per second, the radiation of frequency 100 MHz (100 megahertz),
a frequency Hertz used, has a wavelength of λ = 3 × 108/108 = 3 meters.

Greatest radiation efficiency of an antenna like Hertz’s is achieved when the rods
have a length equal to one-quarter of a wavelength. At 100 MHz, the wavelength is
3 meters and hence each side of the dipole should be 3/4 meters. If he had used low
frequencies of, say, 1 MHz, characteristic of the now familiar AM band, the best
length for each side of an antenna would be 75 meters, or about 245 feet. Today it is
common to use a grounded monopole antenna where one side of the dipole is ground.
The single arm must be about 245 feet, and this explains why radio station towers
you may see near highways are about 245 feet tall.

After Hertz’s successful experiment his students asked what use there might
be for these waves. Hertz responded, “It’s of no use whatsoever. This is just an
experiment that proves Maestro Maxwell was right—we just have these mysterious
electromagnetic waves that we cannot see with the naked eye, but they are there.”

“So what is next?” asked one of this students.
Hertz shrugged. “Nothing I guess.”
But of course, there was a great deal more. Hertz’s experiment ushered in the

modern age of electromagnetic waves.

20.4 Marconi’s Radio

Guglielmo Marconi was only 22 years old in 1896 when he presented his version of
a radio to William Preece, chief engineer of the British General Post Office. Preece,
himself, had experimented extensively with wireless communication, and in fact had
achieved it with underwater conductors communicating for short distances. Preece’s
system was based on inductive waves as opposed to the radiated waves of Hertz’s
experiment. Inductive waves do not radiate energy and their effect falls off as the
square of distance instead of in direct proportion to distance, as is the case for radiated
waves. Preece apparently did not understand the difference, although physicists had
attempted to explain it to him. Nevertheless, for whatever reasons, Preece received
Marconi enthusiastically, and arranged to have his system tested.

Marconi had experimented with radio since he was 19, using Hertz’s basic exper-
imental design, which he read about while vacationing in the Alps. He had moderate
success at first, transmitting several yards, but his father advised him that nothing
would come of it unless he could achieve communication over much greater dis-
tances. In response, Marconi changed his antenna design. Instead of the two equal
rods of a dipole that Hertz had used, Marconi used a single vertical rod attached to
one side of the spark gap, and a metal plate on the ground attached to the other side

“ch20” — 2006/2/6 — 20:00 — page 356 — #7

� �

� �

356 • C h a p t e r 20 R A D I O WAV E S

of the gap. He found that the waves emitted from this antenna bent with the earth
and traveled farther than those emitted from a Hertz dipole. He achieved distances
of about two miles, and these results were confirmed by the tests under the auspices
of Preece. With the support of the British General Post Office, Marconi was able to
complete development of a practical radio system.

Sending the result of a single spark is not of much use, for the amplitude of
its associated wave dies out quickly. Even if there is little actual resistance in the
LC circuit, the oscillations are damped the same as if there were large resistance
because the transmitting circuit loses energy by producing sound and light at the
gap, and by radiating electromagnetic energy from the antenna. Indeed, the whole
objective is to radiate energy, and that dissipates energy from the oscillator circuit
with a net effect that is identical to loss due to resistance. Hence the wave pattern
generated by a single spark is short—on the order of a dozen or so cycles. To obtain
usable signals, therefore, early radios were designed to produce a rapid sequence of
sparks (keyed by electro-mechanically opening and closing the circuit switch with a
vibrator). These rapid pulses (repeated at audible frequencies of about 500 Hz) were
heard at the receiver as a continuous pitch, and thus dots and dashes could be sent at
this pitch. This then is the basic spark radio transmitter diagrammed in figure 20.3.
The figure shows the vibrator and shows also that the switching circuit is coupled to
the antenna circuit with a coupling transformer. The capacitance is associated with
the path between the antenna and the earth.

Because Marconi’s antenna was vertical, he could extend its length and thereby
reduce the basic frequencies of transmission from the MHz (megahertz) region that
Hertz worked with to the hundreds of kHz (kilohertz) that is now familiar in AM radio.

Main on-off switch

Vibrator armature

Spring Antenna

Spark gap

Transformer

FIGURE 20.3 A simple spark radio. Closing the main switch attaches the battery to
the circuit, causing a spark to jump across the gap and generating a wave pulse that is
transmitted through the transformer to the antenna. A short time later the electromagnet
pulls down the armature of the vibrator, breaking the circuit. A spring then pulls the
armature back up, closing the circuit and enabling another pulse to be transmitted. The
electromagnet vibrator has a frequency of about 500 cycles per second.

“ch20” — 2006/2/6 — 20:00 — page 357 — #8

� �

� �

S e c t i o n 20.5 T H E S PA R K B A N D W I D T H • 357

It was found that these waves bend with the earth, while higher-frequency waves tend
to follow straight lines (like light, which is after all a very high-frequency electromag-
netic wave). In Marconi’s first transatlantic transmission, one end of his transmitter
was attached to a high-flying kite, and the other was attached to a plate in the sea.
The low frequencies bent around the earth and were received well below the horizon
seen at the transmitter. (The existence of the ionosphere, which is responsible for the
bending, was not known at the time, but its existence was conjectured by Heaviside
and Kennelly.)

Sea Rescues

By 1909 it was fashionable for seagoing luxury liners to carry “wireless,” capable of
sending Morse code from sea to land, up to about 200 miles using a Marconi spark
radio. Passengers could send and receive greetings, follow the stock market, and
get important news. In January of 1909 the Republic, a ship of the White Star line
heading for Europe off of the Nantucket sound, collided in the fog with the Italian
ship Florida. The young wireless operator on the Republic, Jack Binns, working with
a damaged wireless unit, managed to contact the operator at the Nantucket station,
and eventually the not too distant Baltic, which came to the rescue. Although the
Republic sank, everyone was saved, except the few who died as a direct result of the
collision. Jack Binns became a national hero, and wireless took on new respect as an
indispensable technology.

Three years later, in 1912, Jack Binns was offered the position of wireless operator
on another luxury liner—the Titanic—but he turned down the offer because he was
going to be married. After the iceberg collision, the Titanic wireless operator tried
in vain to get immediate help, but tragically, the operator on the Californian, just 20
miles away, had gone to bed. Fortunately, the Carpathia, 58 miles distant, heard the
distress call and arrived three and a half hours later, in time to save the passengers in
lifeboats. Shortly thereafter Congress passed legislation requiring wireless units on
all ships.

20.5 The Spark Bandwidth

A spark radio generates frequencies across an extremely broad band even if its underly-
ing characteristic frequency is stable. This makes it essentially impossible for different
stations to broadcast simultaneously since even if they use different base frequencies
their outputs will interfere with each other. This “frequency pollution” greatly limited
radio’s utility. Indeed, in its early years radio was largely confined to the transmission
of telegraphic messages to and from ships at sea, where interference was avoided
because of the great geographic distance between different parties.

A wave generated by a single spark is a heavily damped sinusoid having the general
form shown in figure 20.4. Such a signal with unit initial amplitude can be represented
mathematically as

x(t) = e−αtsin 2π f0t, t ≥ 0.

“ch20” — 2006/2/6 — 20:00 — page 358 — #9

� �

� �

358 • C h a p t e r 20 R A D I O WAV E S

t

FIGURE 20.4 The wave generated by a spark circuit. If the spark circuit contains
capacitance and inductance, a sinusoidal wave will be generated; however, circuit losses
and radiation severely damp the oscillations.

The energy spectral density of this spark wave can be calculated by evaluating its
Fourier transform. Specifically,

X(f) =
∫ ∞

0
e−αtsin 2π f0t e−i2π ft dt.

This can be evaluated from integral tables or by using the identity sin ω0t =
1
2 i[e−iω0t − eiω0t], in which case every term in the integral is of the form ebt , with
different values of b. The integral of such a term is ebt/b.

The overall result is

X(f) = i

2

{
1

α + i2π (f − f0)
− 1

α + i2π (f + f0)

}
. (20.7)

Notice that if α is close to zero, corresponding to light damping, the Fourier transform
has a sharp peak at f = f0, the frequency of the underlying sine wave. Indeed, if α = 0,
the value of X(f0) is infinite. The transform is nonzero at other frequencies because
even if α = 0, the signal is not a pure sine wave because it is zero for t < 0. The
sudden start introduces other frequencies.

The energy spectral density, |X(f)|2, can be approximated near f0 as

|X(f)|2 ≈ 1/4

α2 + 4π2(f − f0)2
. (20.8)

For spark radiation the value of α is rather high, and hence the amplitude of the wave
dies down considerably after only a few cycles. The period of a cycle is T = 1/f0. If
a signal of unit magnitude is reduced to .05 ≈ e−3 in seven cycles the corresponding
α satisfies e−7αT = e−3. Hence α = 3/(7T) ≈ .43f0. The AM radio band, at which
spark radios operated, extends from roughly 500 kHz to 1500 kHz. Consider a spark
radio operating at the middle of the band, at 1000 kHz. A plot of the corresponding
spark energy spectral density when α = .43f0 is shown in figure 20.5. Eighty percent
of the energy is spread over the range between 800 kHz and 120 kHz—a band 400 kHz
wide; still 20 percent of the energy is outside this broad band. Today AM stations

“ch20” — 2006/2/6 — 20:00 — page 359 — #10

� �

� �

S e c t i o n 20.6 T H E P R O B L E M S • 359

0.8

0.6

0.4

0.2

0

1.0

MHz

Re
la

ti
ve

 E
n

er
g

y
D

en
si

ty

50 100 150

FIGURE 20.5 Normalized energy spectral density of a spark. The damped wave pro-
duces a very broad spectrum, so that it is almost impossible to distinguish different radio
transmissions even if their base frequencies are widely separated.

operate completely within a band of only 10 kHz on each side of the base frequency.
The spark transmitter with the stated α has an energy spectral density 40 times as
broad. That is, the spark radio would be heard in 40 contiguous stations of today’s
radio.

Fortunately, a better method of transmission was developed, and spark radios were
outlawed in 1923.

20.6 The Problems

Several problems plagued radio at the end of the 19th century. One was the inherent
properties of the spark transmitter. Its broad spectrum polluted the frequency band and
made it difficult for more than a few stations to transmit at a time. Another problem
was that radio was essentially limited to the transmission of Morse code dots and
dashes. For these reasons alone, radio was at that time considered to be a version of
the telegraph, restricted to transmissions from one point to another, between a sender
and one intended receiver. Indeed, radio was primarily used at sea as a substitute for
telegraph. The fact that other stations might also receive an outgoing message was
regarded as a disadvantage, which often required encryption for security.

A final problem lay with the receiver. In order to receive a message it was necessary
to detect the presence of waves. It was impractical to use the simple loop with spark gap
that Hertz had used in his experiments. Instead a coherer invented by Oliver Lodge,
professor of experimental physics in Liverpool, was used even in early Marconi radios.
This was a small glass tube filled with iron filings. The presence of electromagnetic
waves caused the filings to cohere, thus decreasing the resistance through the tube. To
restore the original state, the tube was mechanically tapped, and of course this took
time. Accordingly, message transmission rates were very slow.

“ch20” — 2006/2/6 — 20:00 — page 360 — #11

� �

� �

360 • C h a p t e r 20 R A D I O WAV E S

These limitations were surmounted over a period of less than 20 years, but the
lives of some of those who achieved it were filled with litigation and tragedy, as well
as inspiration.

20.7 Continuous Wave Generation

There were two early approaches to the generation of continuous waves. One was to
build a very high-frequency alternator, which was essentially a high-speed rotating
power generator. Alternators were being produced by companies such as General
Electric, but they operated at much lower frequencies. Amazingly, however, suitable
high-frequency alternators were built. A GE transmitter designed by Fessenden (who
had previously worked for Edison) was tested by the navy in 1906. On Christmas and
New Year’s Eve that year, music and speech were transmitted to several navy ships
in the North Atlantic.

A second method for generating continuous waves was to use an arc, familiar as
the source of strong light in streetlamps and searchlights. As we know, the reason that
the LC circuit of a spark transmitter cannot sustain its oscillations is that the circuit
loses power due to circuit resistance and radiation. Those losses can be canceled out
if some form of negative resistance is inserted in the circuit. At a certain region of its

0

1

t

FIGURE 20.6 A simple crystal radio and its output. Top: The antenna is coupled with a transformer to the receiver.
The crystal diode (whose symbol is arrow-like) shorts out the negative half of the signals, leaving positive pulses that
charge the capacitor and are then discharged through the headphones. Bottom: The signal with the negative portion
chopped off.

“ch20” — 2006/2/6 — 20:00 — page 361 — #12

� �

� �

S e c t i o n 20.8 T H E T R I O D E VAC U U M T U B E • 361

operating parameters, an arc exhibits negative resistance, and this can be used in an
LC circuit to generate continuous waves. By 1912 this concept had been perfected to
the point where arc radio transmitters were practical. From 1912 to 1917 they were,
in fact, considered the best radios.

Improvement of wave detection progressed simultaneously with development of
wave generation. The best detectors acted as diodes, letting current flow in one direc-
tion only. It was found that Carborundum and other crystals have this diode property,
and based on this, the crystal detector was invented by Dunwoody of the De Forest
Wireless Company in 1906. To operate a simple crystal radio, one moves a cat’s
whisker (a thin wire probe) on the surface of the crystal until a spot with diode
properties is found, and radio speech or music is heard in the earphones.

With a diode in the circuit, only the positive part of a wave is transferred to a
capacitor, which smoothes the wave and passes it to the headphones at the spark
frequency. Or in the case of a continuous wave, the diode-capacitor combination
fully recovers the amplitude of the AM signal. (See section 20.9.) Such a receiver is
shown in figure 20.6.

20.8 The Triode Vacuum Tube

While working with his early electric lightbulbs, Edison noticed that the bulbs’ inte-
riors blackened with a thin layer of carbon dust. Investigating this, he constructed a
bulb with an additional wire inserted a short distance from the bulb’s filament. He
found that if he connected this wire in the circuit so that it was positive relative to
the filament, a small current flowed between the wire and the filament. If, on the
other hand, the voltage of the wire was negative relative to the filament, no current
flowed. He could not explain this result, nor put it to use, but nevertheless he patented
it in 1884. The electron had not yet been discovered, so it was impossible for him
to conceive the explanation, which is that the hot filament boils off electrons (with
some carbon attached) and these are attracted to a positive element in the bulb and
repelled from a negative element. Regardless of the explanation, it was clear that the
device served as a one-way electric valve—a diode. One can only guess why Edison
dismissed it as relatively unimportant, considering that his first inventions, the duplex
and quadruplex telegraph systems, relied on the one-way devices of polarized elec-
tromagnets. But this was only 1884. Radio was young, and Edison had many other
things to attend to.

Edison’s experiment was repeated by others—one of these being Sir William
Preece, chief engineer of the British General Post Office. It was Preece who called
the phenomenon the Edison effect. The design of the bulb as a working diode was
made by Fleming and patented in 1904; however, it found little use as a detector since
it was less effective than crystal detectors that by then were available. The Edison
effect, nevertheless, would later form the basis of modern electronics and open the
possibility of much fuller exploitation of the gifts of frequency.

Lee de Forest was born in 1873, eight months earlier than Marconi. He possessed
a high level of internal drive, and was determined to invent something important.
Borrowing funds for subsistence, he put together a radio system and formed a small
three-person company. Noting that Marconi had achieved great fame in 1899 for

“ch20” — 2006/2/6 — 20:00 — page 362 — #13

� �

� �

362 • C h a p t e r 20 R A D I O WAV E S

providing coverage of a yacht race in New York, de Forest arranged to provide
coverage of the America’s Cup races in 1901. However, Marconi also provided
coverage of the race. The result was a disaster—due to the fundamental problem
of spark radio. The signals from the two competitors interfered with each other, and
consequently neither was able to successfully transmit news of the races.

In 1906, while working to design a better receiver detector by improving the
diode characteristics of an Edison effect bulb, de Forest had the inspiration to add an
additional element between the cathode (heated by the filament) and the anode (the
positive electrode). This new element, shaped by zigzagging a wire back and forth a
few times, he termed the grid. A small negative voltage applied to the grid shielded the
electrons from the anode and hence drastically reduced the current between cathode
and anode. Small variations in grid voltage controlled similar but stronger current
variations in the anode-to-cathode circuit. Therefore, if a receiving antenna were
attached to the grid, the tiny voltage could indirectly drive a large current in the
headphones circuit. He called his device an audion.

De Forest used the audion only as a superior detector, which it certainly was. But
he did not immediately seriously pursue its development.

Edwin Armstrong was the true four-time genius of radio. He was full of energy;
he studied hard, rode a red motorcycle, and enjoyed climbing high towers. In 1912
while a student at Columbia University, he undertook a serious investigation of the
audion, meticulously measuring currents and voltages. It occurred to him one day
that if the audion produced an amplification of signal, then perhaps he could take the
resulting signal and send it back through the audion again for greater amplification.
Perhaps the signal could be sent around and around hundreds or thousands of times.
During the summer he accomplished this by placing an output circuit coil in close
proximity to the antenna coil so that by induction the output would reenter the cir-
cuit at the antenna. He had invented feedback, although he called it regeneration.
The results were astounding. His regenerative receiver was able to bring in signals
from Ireland and Hawaii, and he was able to shed the earphones in favor of a loud-
speaker. This was a great leap forward in radio, and was Armstrong’s first stroke of
genius.

Armstrong noticed that if he increased the regeneration, the circuit oscillated at
radio wave frequency. Using this knowledge, he modified his regenerative circuit to
serve as a transmitter, generating continuous waves. Now the massive alternators or
spark-gap machines could be replaced by a small circuit containing an audion. This
revolutionized radio transmission, and was Armstrong’s second stroke of genius.
There were more yet to come.

Armstrong faced nasty patent disputes, especially with Lee de Forest. It was clear
that de Forest did not understand the workings of the audion, believing incorrectly that
its action depended on the presence of special gases in the tube. He also did not seem
to understand its significance as an amplifying device, at least initially. But later, after
Armstrong’s results were established, de Forest claimed to have discovered feedback
and oscillation years earlier. The two of them battled in court repeatedly.

De Forest developed another innovation that is now part of daily life. In New York
in 1907 he acquired an arc generator and sent music over the airwaves to “distribute
sweet melody broad-cast over the city & sea.” He may have been the first to use the term
broadcast and, more importantly, the first to see the potential of radio as more than a
wireless telegraph or telephone designed for point-to-point communication between

“ch20” — 2006/2/6 — 20:00 — page 363 — #14

� �

� �

S e c t i o n 20.9 M O D U L AT I O N M AT H E M AT I C S • 363

two parties. He saw that radio could reach everyone. He extended his broadcasts to
news events and even to live opera.

The first real radio broadcast station was set up in 1909 by Charles Herrold and
Frank Schmidt in San Jose, California. The first major news broadcast (by another
station) was on election eve in 1916. At 11:00 pm Eastern Standard Time it was (incor-
rectly) declared that Charles Evans Hughes won the presidential election! Radio, as
conceived by de Forest and made possible by his invention, introduced instantaneous
mass communication.

Although de Forest perhaps did not understand the physics of his triode or the
full significance of the feedback that it made possible, it was the single most impor-
tant technological invention associated with the mastery of frequency, leading to
continuous-wave transmission, modulation, heterodyning, efficient receivers, oscil-
lators, telephone repeaters, audio equipment, and of course the future developments
of television, computers, and all other miraculous devices dependent on amplification
of electric signals.

The electromagnetic relay used in Morse’s telegraph, the liquid microphone used
in Bell’s revised telephone, and the triode audion developed by de Forest—all three
of these were amplification devices that enabled a small signal to control a larger one.
Morse, the least technical of the three inventors, seems to have grasped this immedi-
ately for the electromagnet. Bell gave the microphone only secondary importance in
his patent application, and it was not embodied in his original telephone. De Forest
did not at first appreciate the amplification feature of his audion, for he used it only
as an improved diode. So here we have three of the greatest inventions in electrical
communication all based, at root, on the common principle of amplification, yet even
when the principle was at hand, its significance was poorly understood by two out of
three of the very individuals whose inventions depended on it.

20.9 Modulation Mathematics

Continuous waves are useful only if information can be efficiently attached to them.
This is accomplished by modulating the waves. The most obvious method is ampli-
tude modulation (AM) in which the amplitude of the continuous (carrier) wave is
varied in proportion to the communicated signal of speech, music, video, or a train of
pulses. Using the principle that any signal can be decomposed into sinusoids and then
reconstituted, AM is analyzed by supposing that the signal is itself a sinusoid, but of
much lower frequency than the radio carrier frequency. For example, the carrier may
have a frequency fc = 1,000 kHz (which is the about the middle of the standard AM
band), while the signal may have a frequency somewhere between 100 and 10,000
hertz, the frequency range of speech and low-fidelity music.

If a radio-frequency carrier cos 2π fct at frequency fc is amplitude modulated by a
signal s(t), the result is the product wave

v(t) = [1 + as(t)]cos 2π fct,

where a is a modulation coefficient. Generally a is chosen so that 1 + as(t) is always
positive. For the signal s(t) = cos 2π fst, the modulated wave is

m(t) = [1 + a cos 2π fst] cos 2π fct, (20.9)

“ch20” — 2006/2/6 — 20:00 — page 364 — #15

� �

� �

364 • C h a p t e r 20 R A D I O WAV E S

t

FIGURE 20.7 The result of amplitude modulation. The amplitude of the carrier frequency is proportional to the
signal. In this figure the signal is itself a low-frequency sinusoid.

and a is taken with 0 < a < 1. See figure 20.7. Using the identity

cosA cosB = 1

2
[cos(A + B) + cos(A − B)],

we see that the modulation term introduces sum and difference frequencies, often
called beat frequencies. Explicitly, for the modulated wave (20.9)

m(t) = cos 2π fct + a

2
cos 2π (fc + fs)t + a

2
cos 2π (fc − fs)t.

Hence, overall, power components are present at the carrier frequency fc and at the
sum and difference frequencies fc + fs and fc − fs.

For a general signal made up of many sinusoids as expressed by its Fourier
transform, each frequency component contributes two beat frequencies to the final
composite. In this final composite the original Fourier transform will be copied twice,
as illustrated in figure 20.8.

The frequency spectrum (that is, Fourier transform) will in general be complex
valued, so the figure shows only magnitudes. In essence, the original spectrum is
shifted upward to the carrier frequency fc in two copies, termed sidebands. The
sideband above the carrier corresponds to the sum frequencies, and the lower sideband
is reversed in shape corresponding to the difference frequencies. There is also a signal
at the original carrier frequency fc, corresponding to the background level of the
carrier.2 If the frequency width (the bandwidth) of the original signal is W , then the
bandwidth of the modulated wave, including its two sidebands, is 2W .

Figure 20.8 actually shows only one-half of the spectrum. Recall that there is a
mirrored copy of it in the negative part of the frequency axis. This is a complex
conjugate of the spectrum in the positive half. Typically, only the positive axis need
be shown.

Although the frequency spectrum of an AM wave is complicated, it is relatively
easy to recover the original signal with the simple radio receiver shown earlier in

2It is assumed in the figure that the carrier frequency does not overlap with the signal spectrum, and this
assumption is certainly satisfied by standard AM radio.

“ch20” — 2006/2/6 — 20:00 — page 365 — #16

� �

� �

S e c t i o n 20.10 H E T E R O DY N E P R I N C I P L E • 365

f

f

(a) Original signal spectrum

(b) Modulated signal spectrum

fC

FIGURE 20.8 The frequency spectrum of AM. The spectrum of the modulated wave
consists of the carrier and two sidebands. The upper sideband is a copy of the original
spectrum, translated up by the carrier frequency. The lower sideband is a reflected complex
conjugate of the upper sideband.

figure 20.7. The diode shorts out the negative part of the signal, leaving a chopped-off
version of the modulated signal that charges up the capacitor. The high frequencies
are suppressed by the RC circuit, consisting of the capacitor and the headphones, in
much the same way that telegraph signals are smoothed as they traverse undersea
cables. The result is that audio frequencies pass through to the headphones in nearly
original form.

20.10 Heterodyne Principle

Edwin Armstrong joined the army in 1917 and was stationed in France, where he
assisted with military radio operations as an expert. He was, however, perplexed by
two related issues. The Germans were communicating at frequencies of 500,000 to
3 million hertz, and the Allies’ equipment could not effectively tune to frequencies
that high. The other issue was that Armstrong wondered whether the high-frequency
(10 million Hz or more) radiation generated by enemy aircraft engines could be
tracked and thus used to guide antiaircraft guns. He addressed both of these questions
by using the concept of heterodyning invented by Fessenden in 1901.3

3Heterodyne: from the Greek meaning “other forces.”

“ch20” — 2006/2/6 — 20:00 — page 366 — #17

� �

� �

366 • C h a p t e r 20 R A D I O WAV E S

The heterodyne principle is actually a specialized version of AM modulation. If a
high-frequency wave is mixed (that is, multiplied) by a wave of lower frequency, one
result is a sideband at the difference frequency. In this way, a high-frequency wave
can be shifted down to a lower frequency.

Armstrong used this principle to not only solve the immediate issues,
but also as the basis of an entirely new receiver for standard
AM radio: the superheterodyne receiver. It works by shifting the

incoming modulated signal to a standard intermediate frequency.
The remainder of the receiver design can then be optimized
to amplify and detect at that one frequency. Virtually all commer-
cial AM radios made since that time are based on Armstrong’s
design. The superheterodyne was Armstrong’s third stroke of
genius.

Example 20.4 (How to raise your voice). Imagine a baritone who sings in a narrow
range below the middle C tone. Suppose a tape recording of one of his songs is made
and is played back at double speed. You know what will happen. The pitch of his
music will be raised an octave and the whole song will be twice as fast as before.
Suppose, alternatively, that the recording is multiplied by a pure middle C note.4 If
this new recording were played, an unpleasant mixture of high and low notes would
be heard. Since the new tape represents pure amplitude modulation, its signal will
contain two copies of the original spectrum: one above middle C and a reversed one
below (because a signal at f is transformed to C + f and C − f). If the result is passed
through a filter that greatly attenuates the frequencies below middle C (as by playing
through a tiny tweeter loudspeaker), the song will be heard, sung by a baritone with his
voice raised by approximately an octave,5 and the song will progress at normal speed.

FIGURE 20.9 A baritone raises his voice. By application of the heterodyne principle, a
baritone can raise his voice without changing the speed.

4The A above middle C is the concert tuning note of 440 Hz. Middle C is nine notes below that, so its
frequency is 440 × 2−9/12 = 261.625565 Hz.

5The notes other than C will be distorted somewhat because the transformation adds 261.625565 Hz to
each note rather than multiplying their frequencies by two.

“ch20” — 2006/2/6 — 20:00 — page 367 — #18

� �

� �

S e c t i o n 20.11 F R E Q U E N C Y M O D U L AT I O N • 367

20.11 Frequency Modulation

Frequency modulation (FM) was proposed in the early days of radio as a possible
way to reduce reception static, but the method was supposedly proved to be worthless
by several theoretical investigations. Armstrong believed, perhaps intuitively, that
it could work. He embarked on a multiyear intensive exploration of the concept,
even in the face of continued skepticism by established experts. The original idea
was that FM could reduce the required bandwidth and thereby limit the noise power.
Finally, after years of work, Armstrong decided instead that the bandwidth should be
widened! He went on to develop a system that was nearly impervious to noise and
had greater fidelity than normal AM radio. This was Armstrong’s fourth stroke of
genius.6

In FM, the frequency of the carrier is varied in proportion to the amplitude of the
low-frequency audio signal. The explicit form of the transmitted wave is, accordingly,

v(t) = cos (ωc + as(t))t,

where for convenience we use ωc = 2π fc, and where again a is a design factor
that determines the degree of modulation. The effect of FM modulation on a simple
sinusoidal signal is shown in figure 20.10. Note that the amplitude of the transmitted
wave is constant, and only the frequency varies. Most noise is an amplitude effect,
and hence by clipping a received FM signal so that the amplitude is constant, the pure
noise-free signal will be recovered.

The Fourier series associated with a carrier frequency modulated by a sinusoid can
be calculated, but it is quite complicated. Consider a carrier modulated by a single
sine wave producing the composite signal

v(t) = sin (ωc + a sin ωst)t, (20.10)

t

FIGURE 20.10 Frequency modulation. In FM the instantaneous frequency of the carrier is shifted in proportion to
the amplitude of the signal.

6There was yet another earlier stroke of genius, the superregenerative receiver that, by squelching possible oscillations, amplified
signals by a factor of 100,000 in one stage. But it was not commercially successful.

“ch20” — 2006/2/6 — 20:00 — page 368 — #19

� �

� �

368 • C h a p t e r 20 R A D I O WAV E S

0 4 8 12 16481216

0.4

0.2

ωs

FIGURE 20.11 A spectrum of FM. Shown are the magnitudes of the Fourier coefficients
when the carrier is modulated by a single sinusoid. The frequencies are relative to the
carrier ωc. The pattern is the result of a particular design choice (a = 10). The individual
spectral lines are separated by the frequency of the modulating sinusoid.

where ωc is the carrier frequency and ωs is the information frequency. The single
modulating sinusoid sin ωst produces an infinite set of frequencies in the FM wave.
These frequencies are located symmetrically above and below the carrier frequency
ωc, so just as in the case of AM, there are two sidebands, although the structure is
more complicated in FM than in AM.

One possible pattern, due to a single modulation frequency, is shown in
figure 20.11, where the magnitudes of the Fourier coefficients are shown. In com-
mercial FM transmission, most power is in the range below 7.5 kHz, and regulations
allow a frequency band of 200 kHz.

The Belated Success of FM

FM was fully developed by Armstrong in 1933, a time when the huge company RCA
was making good profit with the sale of superheterodyne AM radios and was about to
launch television. FM would be used for the sound portion of TV, but RCA and other
companies did everything they could to thwart FM radio and bypass Armstrong’s
FM patents. Armstrong continued to deploy FM and is thus responsible for both
its inception and commercialization. But it was not a happy existence. Armstrong
constantly fought patent battles. In a fit of despondency, he took his own life in 1954
by jumping from his apartment in New York. His wife continued his legal battles with
up to 18 companies and eventually won or settled them all. Today a majority of all radio
sets sold include FM, and television, microwave links, and space communications all
use FM.

More recently, the complexity of the FM spectrum suggested to Professor John
Chowning of Stanford University that the sounds produced directly by FM waves
might be musically interesting, since they contain a rich pattern of overtones. He
designed a music synthesizer based on that idea, and patented the concept. Today,
most sophisticated music synthesizers use that system.

“ch20” — 2006/2/6 — 20:00 — page 369 — #20

� �

� �

S e c t i o n 2 0 . 1 2 E X E R C I S E S • 369

20.12 EXERCISES

1. (Homogeneous) Find the solutions to the equations below with the given initial conditions
(at t = 0).

(a)
d2x(t)

dt2
+ dx(t)

dt
− 2x(t) = 0, x(0) = 1,

dx(0)

dt
= 4.

(b)
d2x(t)

dt2
+ x(t) = 0, x(0) = 1,

dx(0)

dt
= 0.

2. (Nonzero R∗) Derive equation (20.6).

3. (Spark limit) What is the energy spectral density of a (hypothetical) spark radio pulse with
zero damping? What is the energy spectral density magnitude at ω = 0? How much energy
is radiated by such a pulse? Hint: consider it over time, not frequency.

4. (Antenna height) About how tall is a quarter-wave monopole antenna for FM radio?

5. (Circuit Q) A measure of the quality of an oscillatory system is its Q, defined as

Q = 2π
maximum energy stored

energy dissipated per cycle

at the resonant (assuming no dissipation) frequency. For a pendulum, the stored energy is
transferred back and forth between potential energy (the height of the pendulum bob) and
kinetic energy (the speed of the bob). The energy dissipated is due to friction. In a series
RLC circuit, the stored energy is transferred back and forth between the capacitor and
inductor and the energy dissipated is the loss due to the resistor. The Q of many practical
resonant circuits is several hundred or more. The energy stored in an inductor when the
current through it is I is 1

2 LI2. The energy stored in a capacitor when the voltage across it

is V is 1
2 CV2. The rate of energy dissipation is RI2. The energy dissipated is approximated

by assuming that the current is an undamped sine wave over a resonant cycle. Show that Q
for the series RLC circuit of figure 20.1 is Q = ω0L/R. Hint: To calculate the maximum
energy stored, consider the point in the cycle where the current is maximum and the voltage
across the capacitor is zero. Use

∫ 2π
0 sin2 t dt = π in the calculation of dissipation.

6. (Resonance calculation) Consider the circuit of figure 20.12, which is a series RCL circuit
with sinusoidal input voltage applied. Suppose this voltage is represented in complex form
as eiωt .

R

L

C

FIGURE 20.12 A stimulated resonant circuit.

“ch20” — 2006/2/6 — 20:00 — page 370 — #21

� �

� �

370 • C h a p t e r 20 R A D I O WAV E S

(a) Derive the second-order differential equation for current I

L
d2I(t)

dt2
+ R

dI(t)

dt
+ I(t)

C
= deiωt

dt
,

and find a solution of the form A(ω)eiωt .
(b) With ω0 equal to the ideal resonant frequency, show that

A(ω)

A(ω0)
= 1

1 + iQ
(

ω
ω0

− ω0
ω

) ,

where Q is defined as in exercise 5.
(c) Notice that at ω1 and ω2 satisfying

ω

ω0
− ω0

ω
= ± 1

Q

the power (proportional to the square of the magnitude of current) is one-half of
what it is at ω0. The two frequencies ω1 and ω2 with ω1 < ω0 < ω2 are called
the half-power points. The range ω1 ≤ ω ≤ ω2 is called the bandwidth of the
circuit. (See figure 20.13.) Calculate the bandwidth in terms of Q and ω0; that is,
find ω2 − ω1.

7. (Q of a radio) The AM frequency band is centered at 1 MHz, and the bandwidth of each
station is 10 kHz. What order of magnitude do you estimate as the Q of many of the resonant
circuits in AM radios?

8. (AM wave) Consider the ideal AM modulated wave v(t) = s(t) cos 2π fct. Using the Fourier
transform S(f) of the applied signal, show explicitly that the Fourier transform of the AM
wave is

V (f) = 1

2
[S(fc + f) + S∗(fc − f)].

0.5

0

1.0

1.0

|A(ω)A(ω0)|2

ω1/ω0 ω2/ω0 ω/ω0

FIGURE 20.13 Power ratio. Q determines the bandwidth of a resonant circuit. The higher
the Q, the narrower the bandwidth.

“ch20” — 2006/2/6 — 20:00 — page 371 — #22

� �

� �

S e c t i o n 2 0 . 1 2 E X E R C I S E S • 371

9. (Speech scrambler) A speech scrambler is a security device that attaches to the mouthpiece
of a telephone. It scrambles the speech so that casual eavesdroppers cannot understand the
message. The voice message is assumed to have a spectrum falling between −5 kHz and
5 kHz. The magnitude of the spectrum is depicted in figure 20.14 as a triangular shape. The
actual shape may be different but, since the message is real, the shape is always symmetric
about the vertical axis.
The scrambler works by multiplying the signal by a continuous wave of 20 kHz and then
passing the result through a perfect high-pass filter that only accepts frequencies of |f | ≥
20 kHz. The result is then multiplied by a signal of 25 kHz and then passed through a
perfect low-pass filter that only accepts frequencies of |f | ≤ 20 kHz. The result y(t) is the
scrambled voice message.

(a) Draw a diagram of the magnitude of the spectrum of the signal, say x(t), at the
point right after the high-pass filter.

(b) Draw a diagram of the magnitude of the spectrum of y(t).
(c) How can the scrambled signal be unscrambled?

10. (Parallel circuit) Assume that the parallel circuit of figure 20.15 generates a current of eiωt

upward through the generator shown at the left side of the circuit. Using the fact that the
sum of the currents through the three circuit elements must equal this generated current,
find the voltage of the form B(ω)eiωt across the circuit.

m(t) y(t)

20 KHz 25 KHz

HPF LPF

5 KHz−5 KHz

f

|M(F)|

FIGURE 20.14 Speech scrambler.

R LC

FIGURE 20.15 A parallel RLC circuit.

“ch20” — 2006/2/6 — 20:00 — page 372 — #23

� �

� �

372 • C h a p t e r 20 R A D I O WAV E S

20.13 Bibliography

The quoted conversation of Hertz upon the success of his experiment is from [1].
For history of more general advances in electricity and electromagnetic theory, see
[2], [3], and [4]. A wonderfully fascinating account of early radio is [5]. A pleasant
and accessible introduction to the theory of radio is [6], from which exercise 9 is
adapted. The story about Jack Binns and the Republic is presented dramatically and
informatively in [7]. See [8] for a popular introductory text that, among many other
things, explains Q.

The history of the early days of radio after continuous waves were produced is
beautifully presented in [9]. Other good historical accounts are [10], [11], [12], and
[13]. A lively account of the relations between Edwin Armstrong, Lee de Forest, and
David Sarnoff (of RCA), recounting their contributions and differences, is [14]. See
also [15]. The details on the FM frequency spectrum are adapted from [16].

References

[1] “Heinrich Hertz.” http://www.webstationone.com/fecha/hertz.htm.
[2] Hunt, Bruce J. The Maxwellians. Ithaca: Cornell University Press, 1991.
[3] Appleyard, Rollo. Pioneers of Electrical Communication. Freeport, N.Y.:

Books for Libraries Press, 1968.
[4] Skilling, H. H. Exploring the Electrical Age. New York: Ronald Press, 1948.
[5] Aitken, Hugh G. J. Syntony and Spark—the Origins of Radio. New York: Wiley,

1976.
[6] Nahin, P. J. The Science of Radio. 2nd ed. Woodbury, N.Y.: American Institute

of Physics Press, 2001.
[7] Rescue at Sea. PBS Home Video, WGBH Educational Foundation, 1999.
[8] Smith, Ralph J. Circuits, Devices, and Systems. 4th ed. New York: Wiley, 1984.
[9] Aitken, Hugh G. J. The Continuous Wave: Technology and American Radio,

1900–1932. Princeton: Princeton University Press, 1985.
[10] MacLaurin, W. J. Invention & Innovation in the Radio Industry. New York:

Macmillan, 1949.
[11] Hijiya, J. A. Lee de Forest and the Fatherhood of Radio. Bethlehem, Pa.: Lehigh

University Press, 1992.
[12] Wedlake, G.E.C. SOS: The Story of Radio-Communication. New York: Crane,

Russak, 1973.
[13] Bray, John. The Communications Miracle: The Telecommunication Pioneers

from Morse to the Information Superhighway. New York: Plenum, 1995.
[14] Lewis, Tom. Empire of the Air. New York: Edward Burlingame Books, Harper

Collins, 1991.
[15] Burns, Ken, dir. Empire of the Air. PBS Home Video, Florentine Films, 1991.
[16] Seely, S. Radio Electronics. New York: McGraw-Hill, 1956.

“ch19” — 2006/2/6 — 19:59 — page 329 — #1

� �

� �

P AR T V

EMISS ION
The Mastery of Frequency

“ch19” — 2006/2/6 — 19:59 — page 330 — #2

� �

� �

“ch19” — 2006/2/6 — 19:59 — page 331 — #3

� �

� �

19
FREQUENCY CONCEPTS

F
requency has long been recognized as a fundamental part of nature—basic to music,
all matters of sound transmission, mechanical vibrations, and the mathematics of
differential equations. Centuries ago it was known that the frequency of vibrat-

ing strings or of resonant flutes can be controlled by adjusting physical parameters
such as tension, length, or volume. But deeper understanding of frequency—its true
mastery—developed rapidly with the advent of modern communication technology,
beginning with the telegraph.

Indeed, frequency concepts play a major role in almost all forms of electrical and
optical communication, but these concepts, although now clear and in many respects
simple, were originally elusive and mysterious. They were discovered and honed
only through patience, genius, and happenstance, tinged by human frailty and fierce
competition. Today the theory of frequency is regarded as both beautiful and powerful,
and its myriad applications are enjoyed by many.

The next few chapters study several theoretical concepts that comprise the mastery
of frequency. This study emphasizes historical aspects more than do earlier chapters,
for this history—of the telegraph, telephone, radio, and modern communication—is a
significant part of our culture, and one can learn from the missteps as well as brilliant
insights of key characters in this development. Through this history we will witness
how frequency was mastered.

Here are five basic principles of frequency:

1. Invariance of sinusoids. Consider a continuous signal that passes through
a linear medium such as an electric circuit. As a general rule, the result
differs in form from the original. For example, perhaps you have listened
to your voice spoken under water, and found it highly distorted, or noticed
that if you tap on a musical string, the response is much more sustained
than a tap on a piece of wood. Graphs of the entering and exiting signals
in a linear system will, in general, differ in shape.

331

“ch19” — 2006/2/6 — 19:59 — page 332 — #4

� �

� �

332 • C h a p t e r 19 F R E Q U E N C Y CO N C E P T S

Signal in

Signal out

t

t

FIGURE 19.1 Invariance of a sine wave. A sinusoidal signal passing through a lin-
ear medium or system preserves its sinusoidal character (of the same frequency). Only
amplitude and phase are affected.

However, if the original signal is a sinusoid (a time function of the
form1 A sin (2π ft + θ)) of frequency f , the resulting output will also be
sinusoidal of the same frequency f , although the amplitude and phase may
differ from the original (that is, the peaks may be of different height and
shifted in time from those of the original). See figure 19.1. The reason that
the basic shape is preserved is that a linear system consists of elements that
perform some or all of the following operations on a signal: multiplication
by a constant, differentiation, integration, delay, and sums of these. From
calculus, we know that sine and cosine waves remain sinusoidal of the
same frequency under each of these operations.

This invariance of form allows a simple analysis of the behavior of
a sinusoidal wave as it passes through a cable, a circuit, or a physical
medium such as water or metal. It is not necessary to deduce the output
shape, only its amplitude and phase. Much of modern systems analysis is
based on this concept.

2. Fourier representation. In the early 1800s the great French mathemati-
cian Jean Baptiste Joseph Fourier deduced that any periodic function
(within broad limits) can be expressed as a combination of sinusoidal
waves. Although he developed this theory as early as 1807, publication
was held up by controversy regarding the validity of his methods, and

1Here A is a constant, f is the frequency, t is a variable representing time, and θ is a phase shift with
0 ≤ θ ≤ 2π . For example, the function cos 2π t is a sinusoid of frequency f = 1 with θ = π/2.

“ch19” — 2006/2/6 — 19:59 — page 333 — #5

� �

� �

C h a p t e r 19 F R E Q U E N C Y CO N C E P T S • 333

his work was not publicly available until 1822, when he published his
Théorie analytique de la chaleur, which not only presented the Fourier
series concept but also applied it to solve complicated partial differen-
tial equations related to heat transfer. His method was later extended to
the Fourier transform that can be used to represent functions that are not
periodic.

The fact that an arbitrary function can be represented by a series of
sinusoids has profound implications when combined with the principle
of invariance discussed above. It means that the linear transformation of
an arbitrary signal can be analyzed in three steps: (1) represent the signal
as a combination of sinusoids, (2) compute the effect on each of those
separate sinusoidal waves using the invariance principle, and (3) combine
the separate results to determine the final result. This idea is used, directly
or indirectly, in almost all analyses of continuous signals.

3. Resonance. While the previous two concepts are mathematical in nature,
the phenomenon of resonance is easily experienced physically. You wit-
ness it when you blow across the mouth of a soda bottle to produce a deep
tone characteristic of the shape and volume inside, or when you hear a
harpist pluck a string. Electrical circuits display resonance as well. Grad-
ually it was learned that it is possible to manipulate resonance to create
oscillations, tune radios, and filter out noise.

4. Modulation and the heterodyne principle. Eventually it was discovered
that nonlinear transformations of signals, such as squaring or multiply-
ing two signals together, produced important frequency transformations.
From elementary trigonometry it is known that when a sine wave of
frequency f1 is multiplied by a sine wave of frequency f2, the result
can be expressed as the sum of two sinusoidal waves—one of fre-
quency f1 + f2 and the other of frequency | f1 − f2|. This mathematical
identity is manifested physically by the production of a wave that con-
sists of two component frequencies. Purposeful control of this effect
is inherent in amplitude modulation (AM) and it also underlies the
more general heterodyne principle by which signal frequencies are
changed.

5. Nyquist–Shannon sampling theorem. If a continuous signal is sampled at
regular intervals, the resulting sequence of sample values can be regarded
as an approximation to the actual signal, but obviously some detail may
be lost. The Nyquist–Shannon sampling theorem states that if the fre-
quencies contained in the original signal are all below some value W, and
the signal is sampled at least every 1/2W seconds, then the original signal
can be exactly reconstructed from the samples. This result plays a funda-
mental role in modern communications technology that relies on digital
processing. The result also forms the basis of Shannon’s most famous
capacity calculation, which is presented in chapter 21.

These key principles along with other concepts were discovered gradually along
the path to frequency mastery, and we shall follow that development during the course
of the next few chapters.

“ch19” — 2006/2/6 — 19:59 — page 334 — #6

� �

� �

334 • C h a p t e r 19 F R E Q U E N C Y CO N C E P T S

19.1 The Telegraph

The nature of communication technology was fundamentally changed by the invention
of the electric telegraph, for it made possible almost instant communication around
the world—over continents and across the seas. Messages of national emergency, of
family crises, of economic developments, of business relations, and of every aspect of
human experience could be sent almost routinely. The world was profoundly different.

The electric telegraph also initiated the modern theory of information and commu-
nication. It was the first application of electricity to practical life, and as such it was
a visible and friendly breeding ground for fundamental research, the results of which
played a significant role in later inventions. Many aspects of electricity were tested
and advanced in the course of telegraph development, including the understanding
of electrical capacity, induction, batteries, long cables, measurement devices, relays,
and so forth.

We study the telegraph and later inventions partly for their interest but
mainly because the telegraph motivated a major step in the understanding and use of
frequency.

FIGURE 19.2 An early tele-
graph station. Stations used
codes that could be observed
from several miles away.

A method for long-distance communication over land was initiated in 1791 when
Claude Chappe and his brother transmitted messages visually by sequentially display-
ing black and white panels that could be observed at a distance of a few miles using
a telescope. Their invention was coined télégraphe, meaning “far writer.” The prim-
itive system was improved by the development of mechanical semaphores between
line-of-sight stations. Usually, a large building on a hill was equipped with a tower
with long mechanical armlike appendages that could be rotated to various positions to
represent alphabetical characters or codewords (figure 19.2). Messages could be sent
for several miles, and even further by relaying messages from station to station. These

telegraph systems were deployed widely throughout Western Europe and in parts of
the United States over the next several decades. Even today their past is evidenced

by the existence of a “Telegraph Hill” in many cities.
During that period, several individuals imagined an “electric telegraph” using

the then newly discovered phenomenon of electricity, generated in those days
as static electricity. Real progress was made by Alessandro Volta’s invention
of the battery, which generated electricity chemically using metals and acid
configured into a “pile,” and by the revolutionary discovery in 1820 of electro-
magnetism by the Danish professor Hans Christian Oersted. Oersted observed
that a current in a wire influenced the direction of a nearby compass needle, thus
establishing a connection between electricity and magnetism. Soon electro-

magnets and galvanometers were invented that responded to the presence of elec-
tric current. Some people attempted to create a telegraph based on these principles,
but without significant success.

In 1832 on a return voyage to the United States from Europe, Samuel Morse, a fairly
accomplished artist, heard passengers discuss the phenomenon of electromagnetism
and the possibility of detecting a current at any point along a wire. He immediately
saw that this could lead to the construction of an electric telegraph, and (incorrectly
assuming that this idea was original) he determined to develop such a system.

With the help of the physicist Joseph Henry and others, he eventually produced
a working telegraph. He also developed the Morse code using dots and dashes to
correspond directly to letters of the alphabet and numbers. He assigned short code

“ch19” — 2006/2/6 — 19:59 — page 335 — #7

� �

� �

S e c t i o n 19.2 W H E N D OT S B E C A M E D A S H E S • 335

words to frequently used letters (using “dot” for “e,” for example), determining the
relative frequencies on the basis of a visit to a printer, where he observed the relative
numbers of different letters available in a type box.

After four years of difficult negotiations, Morse eventually convinced a skepti-
cal U.S. Congress to support the construction of a 40-mile telegraph line between
Baltimore, Maryland, and Washington, D.C. On May 24, 1844, the line operated suc-
cessfully, reportedly sending “What hath God wrought!” as the first transmission.2

Over the next decade the telegraph system grew enormously, and its influence was felt
in practically every area of life. By 1850 there were over 12,000 miles of telegraph
line in the United States.

The main component of the telegraph was an electromagnet, made by wrapping
a length of wire many times around an iron core. When current was passed through
the coil, a magnetic field was produced. This actuated an armature that indicated the
presence of the current.

Electromagnets also form the basis for relays. In this case the armature acts like
a switch in a separate circuit: when the first circuit is active and pulls the armature
down, the second circuit is completed. By this procedure a relatively weak current
in the coil circuit controls what could be a much larger current in the second circuit.
Morse understood the importance of the principle that something small could control
something large. When his associate Gale worried that the telegraph signal would be
too weak at even modest distances, Morse responded, “If a lever can be moved at any
distance, it can operate a control point and send a strong signal to the next point, and
so on around the globe if desired.”

19.2 When Dots Became Dashes

As the telegraph system expanded in both the United States and Europe, it was natural
to envision a telegraph crossing bodies of water, including the Atlantic Ocean. Once
batteries, relays, and basic line configurations were established, telegraph over land
did not seriously challenge the concepts of electric transmission. Over land, voltages
could be periodically bumped up along a line by relay stations. And since dots and
dashes were coded by hand with telegraph keys and interpreted by ear, the rates of
transmission were limited to about 25 words per minute. This meant that dots and
dashes were relatively long in duration, as compared to the capabilities of the line.
However, transmission through undersea cables was found to be an entirely different
matter.

The most obvious difficulties associated with underwater transmission were purely
mechanical, but after a few failed attempts, it was found that sufficiently heavy cables
insulated with the gummy material extracted from the gutta-percha tree3 were rea-
sonably reliable. Such cables were laid across the English Channel and other spans
of water up to about 100 miles.

However, once the early cables were in place, a fundamental difficulty was dis-
covered. The lines were electrically sluggish, and hence messages were garbled. Dots
blurred and became indistinguishable from dashes. Consequently, it was necessary
to transmit more slowly than on land-based systems. A typical resulting response to

2There is controversy over when this famous phrase was actually first transmitted by telegraph.
3This material was used in early golf balls and is currently used in dentistry to fill root canals.

“ch19” — 2006/2/6 — 19:59 — page 336 — #8

� �

� �

336 • C h a p t e r 19 F R E Q U E N C Y CO N C E P T S

t

Signal in

Signal out

FIGURE 19.3 Response to dots and dashes. When a line has high capacitance, the signals
tend to blur together, which necessitates that the rate of signaling be significantly slowed
for clear reception.

a series of dots and dashes is shown in figure19.3. The received signal is a smoothed
version of the original transmission, making it difficult to distinguish dots from dashes.

Scientists understood that, because the conductor in the cable would be in close
proximity to the ocean water, which is also a conductor, a large level of electrical
capacitance would be associated with the line. However, it was not understood what
the consequences would be.

William Thompson (later Lord Kelvin) was deeply involved in the undersea tele-
graph project, and developed much of the associated theory. He based his work on
the Fourier series, for he was well aware of Fourier’s analysis of the heat equation in
his famous 1822 publication; after all, Thompson was an expert on heat.4

Thompson’s analysis explained the effect of undersea line capacity. Capacity is
the ability to store charge. Thompson explained the effect of capacity in cables by
stating that the cable acted like a thin flexible tube through which water was to be
sent. It would be sluggish because the tube would first have to be stretched. Or, as
a scientifically more accurate analogy, he explained that sending a pulse along the
cable was like sending a pulse of heat along a thin metal wire. The entire wire must
be heated before the far end would register a temperature change.

The laying of the Atlantic cable was one of most spectacular and difficult engi-
neering feats of modern times, and it was fraught with a series of disasters. Finally,
after several failed attempts at laying a cable, the Great Eastern, a huge ship, three
times as large as any other ship in service at that time and capable of storing the entire
length of nearly 3,000 miles of cable in its hold, was commissioned. On the first
attempt with this vessel, in 1865, cable was laid extending about 70 percent across
the Atlantic from Ireland to Newfoundland before the cable broke and the venture was

4Fourier also was an expert on heat. It is reported that he was in fact obsessed with heat, keeping his
rooms unusually warm, perhaps as a result of the three harsh years he spent on a mission to Egypt with
Napoleon.

“ch19” — 2006/2/6 — 19:59 — page 337 — #9

� �

� �

S e c t i o n 19.2 W H E N D OT S B E C A M E D A S H E S • 337

R

C

v0 v1

FIGURE 19.4 Highly simplified transmission cable. A transmission cable has resis-
tance R due to the resistance of the wire conductor. There is capacitance because the
cable is in close proximity to the sea, which serves as the other side of the circuit. This
version is simplified in that it does not reflect the fact that resistance and capacitance are
present continuously along the line.

terminated. The second attempt, a year later in 1866 again with the Great Eastern,
was successful, and another mission was immediately launched that recovered the
cable of 1865 and completed it as well. Thompson traveled on these ventures, and
provided invaluable technical support based on his theory.

When the two cables were in place, an engineer in Ireland requested that the two
ends be connected in Newfoundland. Then from a borrowed silver thimble, some
acid, and a piece of zinc he improvised a tiny battery and sent a signal across the
Atlantic and back. The returning pulse was detected by a mirror galvanometer after
traveling over 4,000 miles.

Thompson’s fundamental analysis can be simplified by approximating a telegraph
line by the simple circuit shown in figure 19.4, consisting of line resistance R (in ohms)
due to the resistance of the wire, and capacitance C (in farads) resulting from the
proximity of the wire to the seawater through the insulation.5

The circuit is analyzed by finding its response to a general sinusoidal signal volt-
age.6 For example, suppose v0(t) = sin 2π ft. It can be shown that if this voltage wave
is applied to the circuit of figure 19.4, the output will be

v1(t) = 1√
1 + (2π f)2(RC)2

sin(2π ft − θ),

where tan θ = 2π fRC. This shows that the magnitude of the signal is sharply atten-
uated at high frequencies. Thompson understood that the sharp edges of a pulse
represented high-frequency components of the signal. Their attenuation explains the

5Thompson’s analysis actually took account of the propagation of voltage v along the continuous line.
He developed the partial differential equation ∂2v/∂x2 = RC∂v/∂t for the voltage at distance x and time t,
which is still regarded as the fundamental equation for a line with capacity and resistance. This equation
is, as he understood, identical in form to the equation for propagation of heat along an iron rod.

6The equations governing the circuit of figure19.4 are v0 − v1 = IR and CI = dv1/dt, where I is the
current. Elimination of I gives

dv1

dt
= − 1

RC
(v1 − v0).

If a constant voltage v0 is applied at time t = 0, then the solution is v1(t) = (1 − e−t/RC)v0.

“ch19” — 2006/2/6 — 19:59 — page 338 — #10

� �

� �

338 • C h a p t e r 19 F R E Q U E N C Y CO N C E P T S

blurring effect of the transmission, illustrated in figure 19.3. From this blurring effect
he estimated that the first transatlantic cable could sustain a transmission rate of 4,000
words per day (that is, about 3 words per minute), which was just enough to render
the project economically feasible.

Thompson at least partially discovered and used two of the most important proper-
ties of frequency: the invariance property of sinusoids and the Fourier representation.
His work was proof that even the early theory had enormous practical power, which
could transform the world of communication.

19.3 Fourier Series

A function x(t) is periodic with period T if x(t + T) = x(t) for all t, −∞ < t < ∞,
and if T is the smallest positive value with this property. Two periodic functions are
the sine and cosine functions sin2π t/T and cos2π t/T . These are said to be sinusoidal
functions with period T and frequency f0 = 1/T . If, as we almost always suppose,
t represents time, frequency has units of cycles per second (or equivalently, units of
hertz). One complete cycle of the sinusoidal function is completed every T = 1/f0
seconds.

Frequency is alternatively expressed in terms of radians per second. In these units
the frequency associated with a period of duration T is ω0 = 2π/T radians per second,
and the basic sine function with period T is sin ω0t. Radians are often used because
the notation is somewhat cleaner without the factors of 2π .

The harmonics of the basic sinusoidal functions of period T are the sine and cosine
functions with frequencies that are integer multiples of the basic frequency f0. For
example, sin 2π (2f0)t = sin 2π (2t/T) completes two cycles every T seconds.

The amazing theory of Fourier is that any7 function of period T can be decomposed
into a series of sinusoidal functions of period T and harmonics of these sinusoids.
Specifically, the Fourier series of a function x(t) with period T uses sines and cosines,
and is written as

x(t) = a0

2
+

∞∑
n = 1

ancos(2πnf0t) +
∞∑

n = 1

bnsin(2πnf0t). (19.1)

The coefficients a0, and an, bn for n ≥ 1 can be found by simple formulas as well, as
shown in exercise 2.

Imaginary Exponentials

A shorthand way of expressing combinations of sines and cosines is to use the special
identity

eiθ = cos θ + i sin θ ,

where i is the imaginary number i = √−1. It follows, likewise, that e−iθ = cos θ −
i sin θ . Complex exponentials obey the rule ea + iθ = ea[cos θ + i sin θ].

7The function must satisfy certain technical assumptions concerning boundedness and continuity.

“ch19” — 2006/2/6 — 19:59 — page 339 — #11

� �

� �

S e c t i o n 19.4 T H E F O U R I E R T R A N S F O R M • 339

Fourier series can be expressed in terms of complex exponentials as

x(t) =
∞∑

n = −∞
cnei2πnf0t , (19.2)

where again f0 = 1/T . In this expression the coefficients cn may be complex numbers.
This more compact representation of the Fourier series is, of course, equivalent to

the earlier one. In fact the coefficients are related by

a0 = 2c0

an = cn + c−n

bn = cn − c−n

i
.

19.4 The Fourier Transform

The Fourier series can be extended to nonperiodic functions by letting the period
T tend to infinity. The result is termed the Fourier transform, and because of its
generality, it is today used more often than Fourier series. Indeed, it is the workhorse
of almost all frequency analyses.

The Fourier transform representation of a function x(t) is

x(t) =
∫ ∞

−∞
X(f)ei2π ftdf . (19.3)

Since ei2π ft = cos 2π ft + i sin 2π ft, the Fourier transform representation of the func-
tion x(t) is in terms of sinusoids. The function X(f) is itself termed the Fourier
transform or alternatively the frequency spectrum of x(t) and is analogous to the
coefficients of a Fourier series, for X(f) gives the weight to be applied to the sinusoidal
term ei2π ft . A Fourier transform may have |X(f)| > 0 for almost all frequencies, since
all frequencies can be regarded as harmonics when the period approaches infinity and
the corresponding basic frequency approaches zero.

The Fourier transform can be found explicitly from the equation

X(f) =
∫ ∞

−∞
x(t)e−i2π ftdt. (19.4)

The relationship between the original function and its transform is therefore defined
by the symmetric pair

X(f) =
∫ ∞

−∞
x(t)e−i2π ftdt

x(t) =
∫ ∞

−∞
X(f)ei2π ftdf .

Tables of such pairs for various functions are available in reference texts.

“ch19” — 2006/2/6 — 19:59 — page 340 — #12

� �

� �

340 • C h a p t e r 19 F R E Q U E N C Y CO N C E P T S

Example 19.1 (A pulse). Consider the unit pulse x(t) of width T centered at t = 0
shown in the top portion of figure 19.5. The Fourier transform of this pulse is

X(f) =
∫ T/2

−T/2
e−i2π ftdt

=
∫ T/2

T/2
[cos 2π ft − i sin 2π ft]dt. (19.5)

Since the sine is antisymmetric about t = 0, the imaginary part of the integral is zero.
The remaining integral is easily found to be

X(f) = sin(π f T)

π f
.

This function of f is shown in the bottom portion of figure19.5. This example is
useful in many applications. Notice that as the width of the pulse is decreased
(T made smaller), the Fourier transform widens. This is a general characteris-
tic of functions and their Fourier transforms: narrower functions produce wider
transforms.

T/2−T/2

1

t

X(f)
T

−2/T −1/T 0 1/T 2/T

f

FIGURE 19.5 A square pulse and its transform. A single pulse of finite duration has a
Fourier transform that extends over the entire range of frequencies.

“ch19” — 2006/2/6 — 19:59 — page 341 — #13

� �

� �

S e c t i o n 19.4 T H E F O U R I E R T R A N S F O R M • 341

Energy Distribution

An important quantity in physical communication systems is the energy represented
by a signal, for that energy must be supplied by some physical source. Generally,
energy over a short period is proportional to the square of the signal, and hence the
total energy required by a signal function x(t) is proportional to the integral

E =
∫ ∞

−∞
x(t)2dt.

This energy is distributed among frequencies, and that distribution is directly
represented by the Fourier transform of the signal. This connection is established by
a series of simple steps, manipulating the formula for the total energy.

E =
∫ ∞

−∞
x(t)2dt

=
∫ ∞

−∞
x(t)

[∫ ∞

−∞
X(f)ei2π ftdf

]
dt

=
∫ ∞

−∞
X(f)

[∫ ∞

−∞
x(t)ei2π ftdt

]
df

=
∫ ∞

−∞
X(f)X∗(f)df

=
∫ ∞

−∞
|X(f)|2df . (19.6)

where X ∗ denotes the complex conjugate of X. This expression for energy is known
as Parseval’s theorem or Rayleigh’s energy theorem. It shows that the energy
distribution among frequencies is given by the function |X(f)|2, which is called the
energy spectral density of x(t).

For the pulse of example 19.1, the energy spectral density is

|X(f)|2 =
[

sin (πTf)

π f

]2

,

which indicates that the energy is concentrated around f = 0 but falls off with higher
frequencies.

Since X(−f) = X∗(f), it follows that |X(− f)|2 = |X(f)|2. Hence, the energy can
alternatively be expressed as

E = 2
∫ ∞

0
|X(f)|2df ,

where the factor 2 is due to writing the integral from 0 to infinity rather than from
minus infinity to infinity.

The Fourier transform is a basic tool of frequency analysis. Its power was exhibited
by its fundamental role in the development of the telegraph, and it is central in the
remaining chapters.

“ch19” — 2006/2/6 — 19:59 — page 342 — #14

� �

� �

342 • C h a p t e r 19 F R E Q U E N C Y CO N C E P T S

19.5 Thomas Edison and the Telegraph

The discovery of electricity, and especially electromagnetism, spawned a flurry of
invention activity beginning in the mid-1800s. The telegraph, being highly visible
and commercially successful, attracted young inventive minds like a magnet attracts
iron filings.

Among those attracted by the promise and technical excitement of the telegraph
was the energetic young man Thomas Alva Edison, who began work as a telegraph
operator in 1863 when he was sixteen. He was an unusual operator, however. Fre-
quently he played practical jokes on coworkers (such as wiring a water bucket, from
which workers drank, to a high-voltage source), and his energies often drifted away
from routine keying and interpretation of messages to the study of telegraph tech-
nology. Edison did not stay long in any one location, but rather became a transient
operator, traveling from city to city, typically playing jokes on his new colleagues
and irritating his supervisors with his inventions. Yet he was an excellent telegrapher,
certainly one of the fastest Morse code operators in the country.

One project that fascinated him was the possibility of designing a duplex, which
would allow simultaneous transmission of messages in both directions along a single
telegraph line. Most of his supervisors dismissed his excursions into the duplex idea
as a fruitless waste of time.

Eventually, he gave up telegraph operation to become a full-time inventor. His
initial laboratory consisted of space in the shop of Charles Williams, Jr. on Court
Street in Boston. Mr. Williams sold electric equipment and often rented laboratory
space to young inventors. It was here that Edison first constructed a working duplex
using polarized electromagnets (although he was not the first to do so).

Edison’s first commercially successful inventions were the quadruplex, improved
gold price tickers, and improved stock tickers—all related to the telegraph. As we
shall see, his contributions, built on the experience gained while working on the
telegraph, played a fundamental role in the advancement of communication.

19.6 Bell and the Telephone

Alexander Graham Bell was born March 3, 1847, in Edinburgh, Scotland. He was
exposed to voice training and the synthetic reproduction of voice during his entire
youth. Both his father and his grandfather made their livings by the study and teaching
of speech and elocution. In 1864 Bell’s father, Alexander Melville Bell, developed
a universal phonetic alphabet called “Visible Speech,” the symbols of which were
representations of the configurations of the mouth and tongue that produced the cor-
responding sounds. This was a major achievement, for several leading phoneticians
had failed in their attempts to create such a universal alphabet. It also led to a unique
and effective method for teaching deaf people to speak, and Alexander Graham Bell
became an excellent instructor in the method.

It was a year later, in 1865, that Alexander Graham Bell, at nineteen, began to
experiment with tuning forks. He found that by holding a tuning fork in front of his
mouth as he spoke a vowel, the tuning fork of proper pitch would resonate. He soon
discovered that each vowel corresponded to a few specific tones. His friend Alexander
Ellis told him that these experiments were duplications of earlier experiments by the

“ch19” — 2006/2/6 — 19:59 — page 343 — #15

� �

� �

S e c t i o n 19.6 B E L L A N D T H E T E L E P H O N E • 343

great German physicist Hermann von Helmholtz, and so Bell studied Helmholtz’s
book On the Sensations of Tone.

Based on his knowledge of Helmholtz’s experiments, Bell conceived the idea of
sending several messages simultaneously over the telegraph by means of a “harmonic
telegraph” in which each of several messages would be sent in Morse code but each
using a different pulse tone. To pursue this idea, he began to duplicate Helmholtz’s
experiments with oscillations derived from tuning forks. He soon replaced the tuning
forks with metal reeds, which had the advantage of being smaller and being tunable
by adjusting the length of the free part of the reed. A working harmonic telegraph
was not easily produced, although Bell tried numerous variations.

In 1874 Bell met Thomas Watson at Williams’s electric shop on Court Street,
where Thomas Edison had set up his laboratory three years earlier. Watson assisted
Bell in his attempts to perfect a workable harmonic telegraph using space in the attic
of Williams’s shop.

A major breakthrough occurred to Bell on June 2, 1875, while he was engaged in
his work on the harmonic telegraph. It was important that the transmitter reeds and
receiver reeds be tuned identically. Bell typically held a receiver reed to his ear while
with a small instrument he adjusted it to match the tone that was being sent by the
transmitter in another room. On that particular day, Watson interrupted the vibration
of the transmitter reed to make an adjustment, and Bell, with his ear to the receiver
reed, heard sounds associated with Watson’s manipulations of the transmitter reed.
Bell immediately knew that that was of fundamental significance. He understood then
that the wires could transmit, not only tones, but complex sounds. He knew then that
a telephone could be built.

What had occurred was the demonstration of the converse of the familiar principle
of electromagnets. If a base current flows though the coil, and the armature is forcibly
moved (as by impressed sound waves on a reed armature), the current in the coil will
respond in accord with the armature movements. This is a manifestation of the dual
aspect of electromagnetism: changing current causes armature movement, and arma-
ture movement causes changing current. In this context it was a brilliant discovery.

Bell and Watson set about to construct the telephone. The receiver and the trans-
mitter were identical, each consisting of a stretched parchment drumhead with the
free end of a harmonic transmitter reed attached at the center of the drumhead. When
Watson spoke toward the transmitting drumhead, the sound would be transmitted
electrically to another room, where Bell could hear Watson’s voice reproduced by
the drumhead of the receiver. At least that was the concept. Unfortunately, it did not
work well because the feeble current generated by the transmitter was not sufficient
to vigorously drive the receiver, so that only a weak and vague response to Watson’s
voice could be heard. Nevertheless, this primitive telephone launched a transition
in understanding. Arbitrary sounds could be sent as electrical signals, simply by
electromagnetism.

Bell filed for a patent on his device on February 14, 1876. A diagram in the patent,
shown in figure 19.6, makes clear how his first telephone was constructed. The trans-
mitter reed’s vibration induces a corresponding vibration in the transmitter coil, which
then proceeds to the receiver coil, where it causes the receiver reed to vibrate in sym-
pathy to the original reed. Another inventor, Elisha Gray, filed a caveat (a preliminary
patent filing) for a telephone two hours after Bell filed his patent application.

The famous telephone conversation in which Bell entreated, “Mr. Watson. Come
here. I want to see you,” did not occur until about a month later, on March 10 of the

“ch19” — 2006/2/6 — 19:59 — page 344 — #16

� �

� �

344 • C h a p t e r 19 F R E Q U E N C Y CO N C E P T S

FIGURE 19.6 A diagram from Bell’s patent application. Sound waves from a speaker
move the transmitting diaphragm and induce a feeble varying current in the coil of the
transmitting electromagnet. This current is carried to the receiving electromagnet, which
moves the receiver diaphragm.

needle in liquid

sound waves

battery

electromagnet
and vibrating reed

FIGURE 19.7 Bell’s variable resistance. The diaphragm moves a needle up and down in
the acidic liquid, causing the resistance between the needle and a fixed brass rod to vary
according to the sound patterns impressed on the diaphragm.

same year, and it was made over a telephone whose transmitter was constructed on
an entirely different principle—that of a microphone.

It was evident that a major problem with the original design was that
the current generated by an electromagnet directly connected to a
diaphragm was not sufficient to produce intelligible speech at the
receiver. The breakthrough modification connected the transmitting

diaphragm to a device whose resistance varied as the diaphragm moved.
This resistive device was then part of a high-voltage circuit that drove
the receiving electromagnet. The setup is shown in figure 19.7. Bell’s
variable resistance device (or microphone) consisted of a small dish of

dilute sulfuric acid into which a brass tube was inserted to serve as
one side of the circuit. A needle was connected to the transmitting

diaphragm, and the tip of this needle was also inserted into
the liquid. As the needle mimicked the vertical vibrations of the

diaphragm and slid up and down in the liquid, the needle surface exposed to the
liquid varied, and consequently the resistance between the needle and the brass tube
was continuously modified. Thus the tiny vibrations of the diagram controlled a large
current through an electromagnet that vibrated a reed or other diaphragm. It was with

“ch19” — 2006/2/6 — 19:59 — page 345 — #17

� �

� �

S e c t i o n 19.7 L E S S O N S I N F R E Q U E N C Y • 345

this arrangement that the famous first phone conversation between Bell and Watson
took place. Strangely, however, the incident was not reported by either Bell or Watson
for more than 10 years.

Controversy and intrigue surrounded the original patent application. The main
body of the application says nothing about the use of variable resistance; however, a
relatively short paragraph, almost an afterthought, mentions the possibility of using a
liquid variable resistance. On the other hand, Elisha Gray’s filing fully describes this
possibility. Yet there is some evidence that Bell had conceived the concept much ear-
lier. The controversy and numerous other patent disputes, by inventors who apparently
had working telephones prior to Bell’s, were the subject of much litigation, with one
case being finally resolved in the U.S. Supreme Court, which found in favor of Bell in
a split decision. A logical inference from these favorable judgments is that Bell was
likely very charming and very lucky, as well as hardworking. As an interesting side
note, Bell and Gray had earlier each filed patent applications for the harmonic tele-
graph, with Gray being two days ahead of Bell, and Gray eventually won that patent.

The liquid variable resistance was not commercially practical, and other inventors
soon devised superior devices. Indeed it was Thomas Edison who developed the
carbon microphone that is still in common use. In the basic design as a diaphragm
moves in response to sound waves, it compresses a little space that is filled with small
granules of carbon. As the granules are pressed more tightly together, the resistance
through them decreases.

19.7 Lessons in Frequency

The saga of Bell’s researches, and those of his contemporaries working on similar
paths, brought forth an improved mastery of frequency. Two major ideas seem to
have emerged. First was the implicit understanding that the shape of a sinusoidal
signal is preserved as it passes through electric circuits. Indeed this was the principle
underlying the harmonic telegraph.

A second principle—that of a tuned circuit—also was only partly known to the early
telephone researchers. These researchers generated sinusoidal signals mechanically,
and detected them mechanically as well, with tuning forks or reeds tuned to match
those at the transmitter. These practical inventors had not yet discovered that tuning
itself could be done with electrical components.

Perhaps the greatest leap in understanding was the recognition that complex
sounds, such as those of the human voice, can be thought of as patterns of a single
quantity whose amplitude varies; and this pattern can be transcribed as mechanical
movements or fluctuations of electrical current, and hence transported over great dis-
tances and then converted back to duplicate the original sound. It is perhaps difficult
for us to imagine a state of knowledge in which this simple fact is not known. Cer-
tainly musicians and physicists knew that sound comes from mechanical movements,
but although it was known for a single tone, it was apparently unclear that the com-
plexity of sound could be regarded as a single pattern. This lack of understanding
perhaps explains Bell’s first conception of a telephone—the harp phone—consisting
of a series of reed transmitters with different closely spaced frequencies. A voice
projected onto the reeds would stimulate each according to the frequency makeup
of the sound, and then be transported to the corresponding array of tuned receiver

“ch19” — 2006/2/6 — 19:59 — page 346 — #18

� �

� �

346 • C h a p t e r 19 F R E Q U E N C Y CO N C E P T S

reeds, where the voice would be reasonably reconstituted as the combination of their
separate vibrations. Bell knew that all of these separate tones could be transported
over a single wire to the array of tuned receivers, but he did not understand that they
did not have to be impressed in their separate identities. However, because of its
complexity. Bell never built the harp phone. The original telephone of figure 19.6 is
so simple, it is hard to imagine that most of Bell’s investigations were attempts to
separate and then later gather the individual frequencies.

Shortly after the introduction of the telephone, Thomas Edison created what came
to be his favorite invention: the phonograph. In original form, it was not even electric.
Edison had been experimenting in his Menlo Park, New Jersey, laboratory with modi-
fications to the telephone, including his carbon microphone, and hence had telephone
components readily available. One day in 1877, Edison attached a pin to a diaphragm,
and while shouting the word “halloo” onto the diaphragm, he pulled a strip of waxed
paper past the pin to record the vibrations as a groove on the paper. He then placed
the pin in the groove and pulled the paper through again. He heard a faint “halloo,”
and the concept of the phonograph was born. Edison was amazed that his voice was
captured with that thin wavy scratch. This was one of the first observations of a human
speech waveform.

The phonograph was immediately popular, due in part to that little wavy groove
that amazed, mystified, and delighted average citizens as much as it did Edison. The
breakthrough in understanding could be appreciated and enjoyed by everyone. Indeed,
it was upon the introduction of the phonograph that Edison was fondly referred to as
the “Wizard of Menlo Park.”

In terms of its pure technology, Bell’s telephone represents an interesting per-
plexity. The fundamental observation that electromagnetism works both to generate
current and to respond to it enabled his first telephone. That was the essential idea
described in his patent, and it clearly was an outstanding achievement. Yet the first
practical telephone, constructed a month or so later and capable of producing truly
audible sounds at the receiver, did not use that principle; and neither do modern tele-
phones. Instead, a different principle was used—one we find in almost every major
technological idea that has advanced the mastery of frequency—the principle of a
small signal controlling a larger one (as with Morse’s electromagnetic relays). The
liquid microphone embodies that idea in Bell’s telephone. The tiny vibrations of
the transmitting diaphragm are used, by way of the variable resistance, to control the
large current in the receiver circuit. It is not certain when Bell conceived of that idea
or when he understood its true significance (for he continued to experiment with the
earlier idea), but it was that principle that was most profound.

Later, secure with monies generated by the telephone, Bell continued to invent. He
invented the hydrofoil ship, the box-shaped airplane wing, and several other important
innovations. His favorite, however, which he considered “his most important inven-
tion,” was what he called the “photophone,” by which voice signals were transmitted
on a light beam.8 The device relied on the element selenium, which changes resis-
tance according to the amount of light to which it is exposed. The variable resistance
is used to convert the small light signal to a large current in the receiver!

8The intensity of the beam was changed by reflecting the beam from a diaphragm controlled by voice.
As the diaphragm became more convex, the reflected beam was spread and hence was less intense over
any given receiving angle.

“ch19” — 2006/2/6 — 19:59 — page 347 — #19

� �

� �

S e c t i o n 1 9 . 8 E X E R C I S E S • 347

19.8 EXERCISES

1. (Alternate form) An alternate version of the Fourier transform uses radians per unit time
(ω) rather than cycles per unit time (f). In general, ω = 2π f . The Fourier transform of x(t)
based on ω is

X(ω) =
∫ ∞
−∞

x(t)e−iωtdt.

(a) Show that

x(t) = 1

2π

∫ ∞
−∞

X(ω)eiωtdω.

(b) Show that

E = 1

2π

∫ ∞
−∞

|X(ω)|2dω.

2. (Fourier coefficients) It is easily seen from figure19.8 that the integral over a period of the
product of a sinusoid and its first harmonic is zero. More generally,∫ T

0
sin 2πmf0t sin 2πnf0t dt =

{
0, m �= n
T/2 m = n.∫ T

0
cos 2πmf0t cos 2πnf0t dt =

{
0, m �= n

T/2 m = n.∫ T

0
sin 2πmf0t cos 2πnf0t dt = 0, all m and n.

By using these orthogonality relations, show that the coefficients of the Fourier series

x(t) = a0

2
+

∞∑
n = 1

an cos (2πnf0t) +
∞∑

n = 1

bn sin (2πnf0t)

are

a0 = 2

T

∫ T

0
x(t)dt

an = 2

T

∫ T

0
x(t) cos (2πnf0t) dt

bn = 2

T

∫ T

0
x(t) sin (2πnf0t) dt.

T t

FIGURE 19.8 Orthogonality of a sinusoid and its harmonic.

“ch19” — 2006/2/6 — 19:59 — page 348 — #20

� �

� �

348 • C h a p t e r 19 F R E Q U E N C Y CO N C E P T S

3. (Square wave series) Find the Fourier series of the square wave with period T defined on
0 ≤ t ≤ T by

x(t) =
{

1, 0 ≤ t < T/2

−1, T/2 ≤ t < T ,

and extended periodically for all t.

4. (Exponential decay) Find the Fourier transform of

x(t) =
{

0, t < 0

e−at , t ≥ 0.

5. (Fourier identities) Suppose that the Fourier transforms of x(t) and y(t) are X(f) and Y (f),
respectively. Find the Fourier transform of the following signals.

(a) ax(t)
(b) x(t) + y(t)
(c) x(at)
(d) x(t + a)
(e) z(t) = ∫ ∞

−∞ x(t − τ)y(τ)dτ .

6. (Cosine pulse) Consider the cosine pulse that is zero except in the interval −T/2 < t < T/2,
where it is x(t) = cos 2π f0t with f0 = 1/2T .

(a) Sketch the pulse shape.
(b) Write the integral expression for the Fourier transform of x(t).
(c) Can you infer that you only need to integrate the product of two cosines?
(d) Find the Fourier transform. Hint: You may find it useful to use the identities

2cos A cos B = cos (A + B) + cos (A − B)

sin (A + B) = sin A cos B + cos A sin B

sin (A − B) = sin A cos B − cos A sin B.

7. (Pulse energy) Using Rayleigh’s energy theorem applied to the pulse of example 19.1 show
that ∫ ∞

0

sin2 x

x2
dx = π

2
.

8. (More Fourier identities) If X(f) is the Fourier transform of x(t), find the transform of

(a)
dx(t)

dt
(b) tx(t).

9. (An integral*) Evaluate the integral

∫ ∞
0

cos ω

1 + ω2
dω

by considering the Fourier transform of

x(t) =
{

0, t < 0

e−t , 0 ≤ t ≤ 1.

Hint: Use exercise 1 and first consider y(t) = e−t for t ≥ 0, y(t) = 0 for t < 0.

“ch19” — 2006/2/6 — 19:59 — page 349 — #21

� �

� �

S e c t i o n 19.9 B I B L I O G R A P H Y • 349

19.9 Bibliography

The colorful history of the early telegraph is presented in [1], [2], [3], [4]. An excel-
lent popular textbook treatment of the Fourier transform, including a brief biography
of Joseph Fourier, is [5]. A general history of early electrical discovery and engi-
neering is [6]. Histories of Bell’s telephone work are [7] and [8]. See also [9] for an
introduction to telephone technology and its history. A detailed study of the contro-
versy surrounding the Bell telephone patent is contained in [10]. There are several
biographies of Edison; two that were especially useful in preparation of this chapter
are [11] and [12].

References

[1] Standage, Tom. The Victorian Internet. New York: Berkley Books, 1998.
[2] Wilson, Geoffrey. The Old Telegraphs. London: Phillimore, 1976.
[3] Clarke, Arthur. Voice across the Sea. London: William Luscombe, 1958.
[4] Coe, Lewis. The Telegraph: A History of Morse’s Invention and Its Predecessors

in the United States. Jefferson, N.C.: McFarland, 1993.
[5] Bracewell, Ronald N. The Fourier Transform and Its Applications. 3rd ed. New

York: McGraw-Hill, 1986.
[6] Skilling, H. H. Exploring Electricity: Man’s Unfinished Quest. New York:

Ronald Press, 1948.
[7] Bruce, Robert V. Bell: Alexander Graham Bell and the Conquest of Solitude.

Boston: Little, Brown, 1973.
[8] Frailey, Jarrell D., and James M. Velayas. In the Spirit of Service: Telecommuni-

cations from the Founders to the Future. St. Louis: Columbia Creek Publishing,
1993.

[9] Noll, A. Michael. Introduction to Telephones & Telephone Systems. 2nd ed.
Norwood, Mass.: Artech House, 1991.

[10] Aitken, William. Who Invented the Telephone? London: Blackie and Sons,
1939.

[11] Adair, Gene. Thomas Alva Edison: Inventing the Electric Age. New York:
Oxford University Press, 1996.

[12] Israel, Paul. Edison: A Life of Invention. New York: Wiley, 1998.

“Ch18” — 2006/2/6 — 18:48 — page 301 — #1

� �

� �

18
DATA MINING

O
rganization or structuring of data can be considered an information operation,
because a mass of completely random data has apparent high entropy, but when
that data is organized or structured, its entropy is reduced. The associated decrease

in entropy represents the informational effect of the structure. Effective data analysis
decreases raw entropy, but the resulting information is more useful.

Data analysis is an enormous topic, consisting of dozens of basic techniques and
procedures often individually tailored to one of a vast assortment of application areas.
The popular catch phrase data mining loosely refers to methods of analysis that are
more or less automatic, often computationally intensive, and designed for application
to large banks of data. This focus on automatic methods has inspired researchers to

carefully delineate and characterize proposed methods so as to unify several
ad hoc techniques. However, it must be emphasized that the greatest success

is achieved, even with automatic methods, when human insight contributes
significantly to preliminary structuring, analysis, and choice of method. It
is not enough to be expert in the technical aspects of data manipulation.
One must also possess an understanding of the science and detail of the
particular application area.
That having been said, this chapter does focus primarily on standard
techniques of data mining, with the understanding that human intelligence
and application understanding must be incorporated at every step.

18.1 Overview of Techniques

Data mining consists basically of three components: (1) the underlying data, (2) the
questions that are posed with respect to the data, and (3) the types of functions or
other mathematical structures used to answer the questions. We discuss these in turn:

1. The data. The data associated with a data-mining project can be consid-
ered to consist of records, each listing attribute values in various fields.

301

“Ch18” — 2006/2/6 — 18:48 — page 302 — #2

� �

� �

302 • C h a p t e r 18 D ATA M I N I N G

(See chapter 16.) A set of records may be symbolized by R(A1, A2, . . . , An)
where each Ai represents an attribute field that can take on various values.
A particular set of N samples has the form

R1 = (a11, a12, a13, . . . , a1n)

R2 = (a21, a22, a23, . . . , a2n

...
...

RN = (aN1, aN2, aN3, . . . , aNn),

where aij is a particular instance of the attribute Ai. In general, attributes
may be numeric, categorical, alphanumeric, graphical, or any other data
type that is defined consistently. The data therefore defines a relation as
explained in chapter 16.1

Because of the diverse nature of data and methods of analysis, the
notation for attributes varies in different applications and methods. When
data are numerical, it is common to use X’s, Y ’s, or Z’s for attribute labels.
A few specific attributes of categorical data may be labeled A, B, C, etc.
And in specific examples is it clearest to refer to attributes by indicative
names such as Apples, Bananas, and Eggplant or Heart rate, Blood
pressure, and Age.

2. Questions. Data analysis attempts to discover relations, to classify, to
simplify, to estimate, and to predict. Sometimes one expects unequivo-
cal answers, such as how many instances of a particular combination of
attribute values are contained in the data, but generally one settles for
imprecise answers or answers in probabilistic form (such as whether it is
likely that a certain value of A1 implies a given value of A2).
Here is a brief description of some of the most common types of questions
that drive analysis:

(a) Estimation. Sometimes it is believed that the data is indirectly
related to some underlying value x that one wishes to estimate. For
example, suppose N measurements of the boiling point of water
have been made with data attribute Thermometer from which an
estimate of the true value of temperature is to be estimated. The
estimation procedure is defined by a function f mapping the data
into the estimate of x.

(b) Relation discovery. Often one seeks to discover relations that
give insight or provide a means for simplifying or organizing
a collection of data. A suitable relation is a function f of the
attributes of the form f (A1, A2, . . . , An) = 0. This may take a
logical form, such as the following: If A1 = 3, then A2 = 7, which
is expressed more simply as (A1 = 3) ⇒ (A2 = 7). But such
relations may hold only imperfectly. For example, in a collection
of supermarket purchases it may be found that customers who
purchase beer tend to purchase pretzels as well, but it is not a
definite rule.

1Familiarity with methods explored in chapter 16 is not essential to the reading of this chapter.

“Ch18” — 2006/2/6 — 18:48 — page 303 — #3

� �

� �

S e c t i o n 18.2 M A R K E T B A S K E T A N A LY S I S • 303

(c) Classification. Sometimes one special attribute serves to classify
data, in which case the possible values for that attribute are termed
classes or categories. For example, in a database of patients’
medical records, each record listing symptoms and medical his-
tory, one attribute may be Heart disease, having only the two
possible values “yes” and “no,” thereby classifying the patients
as those with heart disease and those without. When a new patient
who has not yet been diagnosed arrives, the other attributes (of
symptoms and family history) may be used to roughly predict the
heart disease classification.
Classifications derived from a finite sample of data are often
imperfect and, similar to rules, are regarded as holding only
with a certain level of confidence. Some classification techniques
explicitly assign probabilities to categories.

(d) Clustering. Clustering is similar to classification except that the
classes are not prespecified; that is, there is no designated clas-
sification attribute. Instead, clustering seeks to define classes by
searching for disjoint (or nearly disjoint) clusters of data points
in a multidimensional representation. Once these clusters are
defined, the existing data can be interpreted and new data points
can be categorized. For example, in a database of student grades, it
may be found that one cluster of students does well in humanities
and another cluster does well in science.

(e) Prediction. Most of the techniques discussed above lead to the
possibility of predicting an event or condition. For example, once
the parameter of a physical law is estimated, that value can be
inserted into the law to predict outcomes and relations. Hence,
if the velocity of an oncoming missile has been estimated, that
velocity estimate can be used to predict the missile’s future course.
Or, the likely sales price of a particular house can be predicted
from its age and square footage if a general relation between these
variables has been determined from past sales data. Classification
and clustering are often motivated by their potential for prediction.

3. Functions and structures. A wide assortment of functions and mathemat-
ical structures are used in data mining. Often they are interwoven within
complex algorithms, but at root they draw on familiar constructs. They
include linear and nonlinear functions, logical expressions and relations,
tree structures, linear inequalities, probabilistic relations, and optimiza-
tion algorithms. This chapter uses a sampling of these techniques with
the objective of indicating the broad range of possibilities.

18.2 Market Basket Analysis

One of the simplest techniques of data mining, termed market basket analysis, is
designed to analyze records where items either occur or do not. The standard exam-
ple, responsible for the name of the method, is to the analysis of grocery purchases,

“Ch18” — 2006/2/6 — 18:48 — page 304 — #4

� �

� �

304 • C h a p t e r 18 D ATA M I N I N G

where the records are customer purchases of various grocery items. The purpose
of the analysis is to discover logical relations among attributes A, B, C, . . . , such as
(A = yes) AND (B = yes) ⇒ (C = yes). It may be found, for instance, that if a
customer purchases apples (A), he or she is likely to purchase bananas (B) as well,
leading to the rule (A = yes) ⇒ (B = yes). Such relations hold only approximately,
in a percentage of cases, but in a higher percentage than would be expected by pure

chance. Many such relations (such as the apples and bananas relation) may be
obvious, but other less obvious and useful ones may be discovered. In

some stores it was found that on Thursdays, beer and diapers were
often purchased together. In hindsight it was deduced that
shoppers were preparing for a weekend of undisturbed
television. As a result of this discovery the store found it
advantageous to place its own highly profitable brand of

diapers near the aisle where beer was located.
In market basket analysis the attributes are typically items

(apples, bananas, etc.) and the attribute values are binary “yes”
or “no” or perhaps “true” or “false,” and hence it is convenient

to simply write A and A to stand for “A is yes” and “A is no,”
respectively. Then p(A) denotes the probability that A occurs, and p(A, B) denotes
the probability that A and B occur together. The probability of joint events can be
converted to conditional probabilities through Bayes’ rule,

p(B|A) = p(A, B)

p(A)
.

If this conditional probability is high, one might propose the rule A ⇒ B.
The notions of high probability and usefulness of a rule are formalized by the

introduction of three quantities.

1. The support of a combination is the percentage of records (e.g. transac-
tions) in which this combination occurs. For example, the support of the
combination A, B is the number of times A and B occur together divided
by the total number of records. In terms of probability, the support is an
estimate of the probability p(A, B).

2. The confidence of a rule A ⇒ B is the number of times the pair (A, B)
occurs divided by the number of times A occurs. In probability terms the
confidence is an estimate of the conditional probability p(B|A).

3. The lift of a rule A ⇒ B measures how the proportion of B in a population
changes when the population is restricted to samples in which A occurs.
Formally,

lift = p(B|A)

p(B)
= p(A, B)

p(A)p(B)
.

This can be interpreted as the correlation between A and B. Lift greater
than 1 is considered significant.

The A Priori Algorithm

Searching for pairs, triples, and general tuples of items that have significantly high
support values can require astronomical levels of computation when the number of
items is large. The a priori algorithm can significantly reduce that burden.

“Ch18” — 2006/2/6 — 18:48 — page 305 — #5

� �

� �

S e c t i o n 18.2 M A R K E T B A S K E T A N A LY S I S • 305

The algorithm progresses one level at a time, from single-item counts, to pairs, to
triples, and so forth. The algorithm is based on the way support values propagate from
one level to the next. In the algorithm, support is measured in absolute terms. That is,
it is a count of the actual number of occurrences of multiple items, not a percentage.
The support s of (A, B) is the actual number of occurrences of the pair (A, B).

The key observation is that if a tuple of length k is to have support of amount s, then
each sub-tuple of length k − 1 must also have support of level s. For instance, if the
triple (A, B, C) has support s, then the pairs (A, B), (B, C), and (A, C) must also have
support s, for if one of these pairs occurs less than s times, then certainly (A, B, C)
must occur less than s times.

Accordingly, the algorithm progresses through successive levels, keeping only
those tuples having support of at least s for consideration as components of tuples at
the next level.

Example 18.1 (Five items). A small sample of market basket data is shown in
the left part of figure 18.1, with items A = apple, B = banana, C = cantaloupe,
D = dates, E = eggplant. The basic count of single items is shown to the right. (Only
items that appear are shown; that is, the appearance of A means “A = yes.”)

Suppose that a threshold support count of 2 is established. Then all items pass
through the first support test, since each count is at least 2.

The next step is to form all pairs of items that passed the first test, and count the
occurrences of the pairs in the original data. The result is shown in the top left-hand
corner of figure 18.2. Some of the pairs occur less than twice, and hence they can be
pruned for the next phase. A list of the surviving pairs and their counts is shown on
the right side of the figure.

Next, to evaluate triples, only those triples are considered that have the property
that every contained pair is included in the previously pruned list of pairs. For example,
the triple (A, B, C) is included because each of the pairs (A, B), (B, C), and (A, C) is
in the pruned list. The triple (A, B, D) is not included because, although (A, B) and
(A, D) are in the pruned list, (B, D) is not. The list of acceptable triples is shown at
the bottom of figure 18.2. In general, this list would be pruned to include only those

1
2
3
4
5
6
7
8
9

10

A,
A,
B,
A,
A,
C,
B,
A,
C,
A,

D

E
C

D,
D
E
C

E

Items
B
C,
C
C,
B,
D
C,
B,
D,
B,

Customer
A
B
C
D
E

6
6
8
5
3

CountItems

FIGURE 18.1 Market basket data. This is a record of the fruits and vegetables pur-
chased by 10 customers. From these transactions, it is possible to infer some tentative rules.
A preliminary step of the a priori algorithm is to count the number of times each item
occurs.

“Ch18” — 2006/2/6 — 18:48 — page 306 — #6

� �

� �

306 • C h a p t e r 18 D ATA M I N I N G

A, B
A, C
A, D
A, E
B, C
B, D
B, E
C, D
C, E
D, E

4
3
2
1
4
1
1
4
3
2

CountPairs

A, B
A, C
A, D
B, C
C, D
C, E
D, E

4
3
2
4
4
3
2

CountSurviving Pairs

A, B, C
C, D, E

2
2

CountTriples

FIGURE 18.2 Market basket analysis. As a second step of the a priori algorithm, the
number of occurrences of the pairs is determined. Those pairs that do not have adequate
support (2 in this example) are pruned from the list, leaving the survivors shown the right.
The next step examines triples, keeping those whose component pairs all appear in the
previous pruned list.

triples that survive the support test, but in this case all these triples do. We conclude
that the triples (A, B, C) and (C, D, E) have significant support.

It is possible to extract some rules from this data. From the pairs we can deduce,
among others, the rules shown below:

Rule Support Confidence Lift
A ⇒ B 40% 2/3 1.11
C ⇒ D 40% 1/2 1.0
C ⇒ E 30% 3/8 5/4

It might be concluded that A ⇒ B, which has good support and reasonable lift, is a
good useful rule. The rule C ⇒ E has better lift, so even though its support is modest,
it is an interesting rule.

It is possible to extract rules such as A, B ⇒ C from the triples. The lift of (C,
D, E) is 1.67, and the lift of (A, B, C) is .694, but the support of each is only .2. Hence
the associated rules such as A ⇒ B, C are likely to be of little interest. However, in
situations with more data, several interesting rules may be discovered.

18.3 Least-Squares Approximation

Probably the oldest and most widely used method of data analysis is least-squares
approximation. In the simplest version of the method, the value of one attribute Y is
approximated by a straight-line function of another attribute X, in the form

Y ≈ a + bX.

“Ch18” — 2006/2/6 — 18:48 — page 307 — #7

� �

� �

S e c t i o n 18.3 L E A S T - S Q UA R E S A P P R OX I M AT I O N • 307

The approximation is defined by the two constants a and b. As an example, the
height Y of men might be approximated as a function of their weight X.

The approximation is based on data consisting of several actual pairs of x’s and
y’s, which can be labeled as (x1, y1), (x2, y2), . . . , (xN , yN).

For any a and b the straight-line approximation will likely not match the data
perfectly. The error associated with any data point (xi, yi) is εi = yi − (axi + b). In
least-squares approximation, a and b are chosen so as to minimize the total sum of
squared errors E = ∑N

i=1 ε2
i . That is, the least-squares approximation solves

min
a,b

E = min
a,b

N∑
i=1

(yi − a − bxi)
2. (18.1)

An example is shown in figure 18.3, where the heights of 10 men are plotted versus
their weights. We seek an estimate of the form height = a + b weight.

The best coefficients a and b can be found by setting the derivatives of equation
(18.1) with respect to a and b equal to zero. It is algebraically neater to make a slight
change in the parameters and write the approximations as

yi = α + β(xi − x), i = 1, 2, . . . N ,

where x = 1
N

∑N
i=1 xi is the average of the xi’s. In this formulation the problem is

min
α,β

N∑
i=1

[yi − α − β(xi − x)]2.

76

74

72

70

68

66

160 170 180 190 200 210 220

H
ei

g
h

t
(in

ch
es

)

Weight (pounds)

FIGURE 18.3 Height versus weight. A least-squares straight line is a standard method
for approximating data. Here the straight line is height = 50.7 +0.1 × weight.

“Ch18” — 2006/2/6 — 18:48 — page 308 — #8

� �

� �

308 • C h a p t e r 18 D ATA M I N I N G

The two equations that define the minimum are

0 = ∂E

∂α
= −2

N∑
i=1

[yi − α − β(xi − x)]

0 = ∂E

∂β
= −2

N∑
i=1

[yi − α − β(xi − x)](xi − x).

If we recognize that
∑N

i=1 (xi − x) = 0, these equations can be solved separately,
obtaining

α = 1

N

N∑
i=1

yi

β =
∑N

i=1 yi(xi − x)∑N
i=1 (xi − x)2

.

A useful measure of the closeness of approximation is the square root of the average
squared error, which is, loosely, called the standard deviation since it is analogous
to the standard deviation of a random variable. Formally, this measure is

s =
√√√√ N∑

i=1

ε2
i /N .

For the height–weight example, s = 1.37, which translates into an average approxima-
tion error of roughly 1.37 inches.

The method of least squares can be extended to include nonlinear functions of the
independent variable. For example, approximations may take any of the following
forms:

y ≈ a + bx + cx2 + dx3

y ≈ a + b sin x + cx2 + d cos x

y ≈ a ln x + c arctan x.

The method can also be extended to the case of more than one independent variable.
For example, the attribute Z may be approximated by X and Y with the linear relation

Z = a + bX + cY .

Example 18.2 (Housing prices). In a certain neighborhood recent
housing sales prices together with the ages and square footages
of the houses have been recorded and are listed in the top table
in figure 18.4. In order to visualize the data the price range is
partitioned into the four intervals [0, 200], [201, 300], [301,
400], [401 and more], each with a different assigned icon. The

houses with their icons are plotted on an age–square footage graph in the lower part
of figure 18.4.

“Ch18” — 2006/2/6 — 18:48 — page 309 — #9

� �

� �

S e c t i o n 18.3 L E A S T - S Q UA R E S A P P R OX I M AT I O N • 309

Price ≤ 200
200 < Price ≤ 300
300 < Price ≤ 400
400 < Price

50

45

30

25

20

10

0 10 20 30 40

A
g

e
(y

ea
rs

)

Square Feet (hundreds)
50

40

35

15

5

0

17
36

474

35
32

397

30
17

222

44
23

278

39
19

285

11
12

210

36
17

195

37
11

140

26
40

504

4
25

377

34
22

334

28
22

312

AGE
SQ. FT
PRICE.

10
17

224

33
18

235

26
22

295

27
26

362

31
24

292

26
26

395

6
17

253

19
19

333

38
20

298

34
12

179

29
18

281

39
35

414

17
36

474

AGE
SQ. FT
PRICE.

FIGURE 18.4 Housing price data. Prices are in thousands of dollars, square footage is
in hundreds, and age is in years. The 25 data records are displayed visually using price
intervals in the graph under the data.

The original data can be approximated by a relation giving price as a linear
function of age and square feet. The coefficients that minimize the total squared
error can be easily found with a simple spreadsheet program (by solving three
linear equations or by directly minimizing the total squared error). The resulting
approximation is

Price = 89 − 1.4 × Age + 11.5 × Sq. feet.

This result is in accord with intuition and even casual inspection of figure 18.4,
which indicates that, roughly, prices decrease with age and increase with square
footage.

The total sum of squares is 15,066. This translates to an average standard deviation
of error in price of 24.5 thousand dollars, which is pretty good accuracy considering
that house prices are in the hundreds of thousands of dollars.

“Ch18” — 2006/2/6 — 18:48 — page 310 — #10

� �

� �

310 • C h a p t e r 18 D ATA M I N I N G

18.4 Classification Trees

Suppose A1, A2, . . . , An are attributes of data records and there is one additional
attribute, labeled C, that is a categorical class attribute. A classification scheme is a
mapping from A1, A2, . . . , An to C. Classification rules for such data are designed by
use of a training set of samples, in which all n + 1 attributes are available. Once the
classification rule is established, it can be used to classify new data for which only
the n independent attributes A1, A2, . . . , An are available.

Classification schemes are used in a wide variety of application areas. The attributes
may be credit score, age, income, and debt figures for loan applicants, with the associ-
ated classification being high or low default risk. The attributes may be symptoms and
medical test results, with the classification being diseased (or not). The attributes may
be opinions about public policies, with the classification being political party dispo-
sition. Or the attributes may be pixel patterns on a screen derived from a handwriting
sample, with the classification being the letter or number written.

One of the most popular methods for constructing the mapping from attributes to
classification is with classification trees, also called decision trees. These trees are
used in a manner similar to those used with binary search trees, discussed in chapter 15.

Classification trees are applied to situations in which there are a finite number
of classes. The tree is constructed by beginning at a top root node that includes all
possible combinations of attribute values. Then a special attribute is selected for that
node and its possible values are partitioned into two or more subsets in preparation
for splitting the node to improve class separation. Each of the subsets defines a
lower-level node. All of the new nodes so created are children of the root.

Each child node is split using a special attribute for that node, leading to second-
generation children and so forth. The process continues until a stopping criterion is
satisfied. The final nodes, called leaf nodes, are labeled with the classification that
best fits the attribute values that survive to that node.

An example of a simple hypothetical classification tree is shown in figure 18.5.
There are two underlying attributes T = total cholesterol (which is bad) and

Root

T < T1 T ≥ T1

T < T2 T ≥ T2

T < T3 T ≥ T3

H < H1 H ≥ H1

H < H2 H ≥ H2

Low

HighLow

Low High High

FIGURE 18.5 A (hypothetical) decision tree for heart disease. The splits are defined
by critical values T1,T2,T3,H1,H2.

“Ch18” — 2006/2/6 — 18:48 — page 311 — #11

� �

� �

S e c t i o n 18.4 C L A S S I F I C AT I O N T R E E S • 311

H = high density lipids (which is good). There are fixed splitting values T1 >

T2 > T3 and H1 > H2. The root node is split using the attribute T at the value T1. At
the next level there are two nodes, and one happens to be split using H at the value
H1, while the other again uses T . The leaf nodes are indicated by the shaded box and
contain the classification value of Low or High risk of heart disease. When someone’s
blood is analyzed, the T and H values are used to progress down the tree to determine
the associated risk. For example, T < T1 and H > H1 implies Low risk.

It is possible to construct a tree such that there are enough leaf nodes to cover
practically every possible combination of attributes. For instance, if each attribute is
categorical with k values and there are n independent attributes, a tree with kn leaf
nodes could represent every combination of independent attributes. However, there
may be only a few test points in some of these nodes, implying that the tree may
be an unreliable classifier of new data. Good classification trees have strong class
separation with relatively few splits based on a large number of samples.

Node Splitting∗

The quality of a classification tree is influenced by the procedure used to split nodes.
This procedure must specify the attribute on which to base the split and how to
partition that attribute’s values.

The objective of a split is to reduce the diversity of the classes within the nodes.
Equivalently, the objective is to make each node have a dominant class. For instance
in cholesterol screening, splits of the attributes T or H are determined from a sample
population for which the T and H values and the classification as low or high risk are
known for each person in the sample. A node split is designed so that the two children
nodes have higher proportions of low- or high-risk individuals, respectively, than the
parent node. To formalize this, suppose there are K possible classes. The diversity of
a node is characterized by the proportions p1, p2, . . . , pK of the different classes in the
sample population at that node. The objective is to minimize diversity as measured
by a specific function D(C) of these class proportions. Various functions are used for
D(C), all of which favor extreme probabilities (0 or 1). Some examples are

1. D(C) = D(p1, p2, . . . , pK) = p1p2 · · · pK

2. D(C) = D(p1, p2, . . . , pK) = − max[p1, p2, . . . , pK]
3. D(C) = H(C) = − ∑K

i=1 pi log pi

Treating the observed proportions as probabilities, the last of these D(C)’s is entropy.
With this choice the objective is to reduce entropy.

A diversity function is used by first computing the diversity of the node that is to be
split. This is D(C). Suppose the node is split along a certain attribute into J children.
Define pi| j as the resulting proportion of class i in the j-th child node. The diversity
of the j-th child is accordingly

Dj = D(Cj) = D(p1| j, p2| j, . . . pK| j).

The overall diversity is then the weighted average of these; namely,

Dnew =
J∑

j=1

qjD(Cj),

“Ch18” — 2006/2/6 — 18:48 — page 312 — #12

� �

� �

312 • C h a p t e r 18 D ATA M I N I N G

where qj is the ratio of the number of samples in the j-th child to the number of
samples in the original parent node.

The ideal splitting strategy selects the split, among those under consideration,
that has the largest decrease in the diversity measure being employed. This can be
computationally intensive since the effect of many different split possibilities must
be worked out and compared. When the independent attributes are categorical, splits
can be considered for every possible value of every attribute. When the attributes are
continuous, as for example cholesterol levels, a finite number of split points must be
proposed.

Proper termination of the process is important as well. A simple criterion is to
terminate when no split reduces the diversity. But in practice it is advisable to terminate
before the number of samples at a node becomes small. There are a number of
procedures for termination, including the possibility of pruning nodes after a tentative
tree has been constructed.

Regression Trees

A regression tree operates much like a classification tree except that the attribute
to be predicted is continuous-valued rather than categorical. To treat the continuous
variable, each leaf node is characterized by the mean value and variance of the sample
values it contains, rather than simply a class designation.

The node-splitting procedure for regression trees seeks at each stage to minimize
the total sum of squared errors (the total sample variance), in the prediction vari-
able, among the child nodes. A perfect split produces children that have a variety
of attribute combinations, but the same value for its predicted variable. The squared
error (variance) for each such node would ideally be zero, and hence the total squared
error would be zero.

Example 18.3 (The housing data). Let us construct a regression tree for the exam-
ple of house sales, consisting of records of house price, age, and square feet studied
in example 18.2. The data are shown again in the first four columns of table 18.1 but
with the data sorted with respect to square feet.

To the right of the data are the running values of means and total squared error
down from top to bottom and up from bottom to top. That is, record k in the list for
“squares down” is the total of the sum of squares of price deviation from the mean,
looking only at the first k records. Mathematically, it is SD(k) = ∑k

i=1 (pi − pD
k)2,

where pD
k = ∑k

j=1 pj/k. The number for “squares up” is computed looking at only
records from 25 up to k. The final column gives the sum of SD(k) + SU (k + 1), which
is the sum of squares that would be obtained if a split were made at k, producing the
two subsets {i ≤ k} and {i > k}.

The prices themselves have a mean value of $311.32 (thousands) with a total sum
of square deviations (or equivalently, sum of variances) of 218,739.

By inspection, the best split is at k = 17, with square feet = 24, for a total sum
of square deviations from the mean of 67,704 divided into 48,584 and 19,120. The
mean values of the two subsets are p = 258 and p = 425, respectively. It turns out
that this split is better than any split with the age variable, so this is the one to keep.

“Ch18” — 2006/2/6 — 18:48 — page 313 — #13

� �

� �

S e c t i o n 18.4 C L A S S I F I C AT I O N T R E E S • 313

TABLE 18.1
Housing Data and Preparation for Split.

Square Mean Squares Mean Squares Sum of
k Price Age Feet Down Down Up Up Vars.

1 140 37 11 140.00 0 311.32 218,739 188,166
2 210 11 12 175.00 2,450 318.46 188,166 178,341
3 179 34 12 176.33 2,461 323.17 175,891 156,621
4 253 6 17 195.50 6,869 329.73 154,160 154,862
5 244 10 17 205.20 8,751 333.38 147,993 148,355
6 222 30 17 208.00 8,986 337.85 139,605 134,463
7 195 36 17 206.14 9,131 343.95 125,477 111,190
8 281 29 18 215.50 14,034 352.22 102,059 110,722
9 235 33 18 217.67 14,372 356.41 96,688 95,398

10 333 19 19 229.20 26,344 364.00 81,026 106,345
11 285 39 19 234.27 29,174 366.07 80,001 102,134
12 298 38 20 239.58 32,897 371.86 72,960 99,982
13 295 26 22 243.85 35,732 377.54 67,085 95,437
14 312 28 22 248.71 40,045 384.42 59,705 94,029
15 334 34 22 254.40 46,834 391.00 53,984 97,244
16 278 44 23 255.88 47,356 396.70 50,410 82,111
17 292 31 24 258.00 48,584 409.89 34,755 67,704
18 377 4 25 264.81 61,958 424.63 19,120 78,488
19 395 26 26 271.47 78,065 431.43 16,528 93,044
20 362 27 26 276.00 85,850 437.50 14,980 93,989
21 397 35 32 281.76 99,794 452.60 8,139 104,069
22 414 39 35 287.77 116,486 466.50 4,275 117,086
23 474 17 36 295.87 149,659 484.00 600 150,109
24 474 17 36 303.29 180,067 489.00 450 180,067
25 504 26 40 311.32 218,739 504.00 0 218,739

mean = 311
Total S = 218,739

SF ≤ 24 SF > 24

mean = 258
Total S = 48,584

mean = 425
Total S = 19,120

FIGURE 18.6 Start of house tree. A single split on square footage gives two nodes
with different mean prices and different squared errors.

The single split into two parts (giving 67,704) has greatly reduced this sum of squares
(from 218,739). The corresponding tree is shown in figure 18.6.

The same procedure is next applied to each of the two child nodes. The data for
each are sorted according to the attribute considered as a basis for the split. It turns
out that in this case both nodes should be split along square footage. This process is

“Ch18” — 2006/2/6 — 18:48 — page 314 — #14

� �

� �

314 • C h a p t e r 18 D ATA M I N I N G

mean = 311
Total S = 218,739

SF ≤ 24 SF > 24

mean = 258
Total S = 48,584

mean = 425
Total S = 19,120

mean = 206
S = 9,131

mean = 294
S = 7,452

SF ≤ 17 SF > 17

mean = 389
S = 1,598

mean = 467
S = 4,275

SF ≤ 35 SF > 35

mean = 284
S = 4,811

mean = 302
S = 1,849

SF ≤ 19 SF > 19

mean = 546
S = 438

A > 26

mean = 453
S = 145

A ≤ 26

FIGURE 18.7 House tree. The leaf nodes are shaded, while intermediate nodes are clear.
The mean prices and squared error of the data points included in a node are shown. The
total squared error is the sum of the squared errors S of the leaf nodes. In this case the
total sum of squared deviations is 20,649, which is considerably less than the 218,739 of
the original.

continued, but a proposed split is rejected if one of the subsets contains only a single
point.

The tree obtained after a number of splits is shown in figure 18.7. The leaf nodes are
shaded, while the intermediate nodes are clear. The total sum of squared errors for the
tree is the sum for the leaf nodes; namely: 9,131+4,811+1,849+438+145+4,275 =
20,649, which is a huge reduction from the 227,854 of the original and from the 67,704
resulting from the first split. However, the result is not as good as the 15,066 obtained
by the simple least-squares analysis of section 18.3. The data closely fits a linear
model in this case. In other cases the regression tree may turn out to be superior.

18.5 Bayesian Methods

Classifiers are rarely perfect. Bayesian methods recognize this inherent imperfection
and produce category probabilities rather than single category statements. There are
two main types of Bayes’ classifiers: Naive Bayes classifiers and Bayesian belief
networks.

“Ch18” — 2006/2/6 — 18:48 — page 315 — #15

� �

� �

S e c t i o n 18.5 B AY E S I A N M E T H O D S • 315

Naive Bayes

Suppose that there are attributes (X1, X2, . . . , Xn) and another attribute C termed the
class with specific classes C1, C2, . . . , Ck . The Naive Bayes method assumes that
there is a conditional probability structure of the form

p(Cj|X1, X2, . . . , Xn)

giving the probabilities of the various classes as a function of the other attributes. If it
is desired to assign a specific class to a new observed attribute vector (x1, x2, . . . , xn),
the Cj with the greatest probability is selected. That is, Cj is chosen to maximize

p(Cj|x1, x2, . . . , xn)

with respect to the Cj’s.
Unfortunately, it is not easy to evaluate the conditional probabilities

p(Cj|x1, x2, . . . , xn)

from data because although there may be only a few classes and several data sam-
ples, there are likely to be only a few samples with any particular attribute pattern
(x1, x2, . . . , xn) to average in order to estimate probabilities.

Instead, one uses Bayes’ theorem to write

p(Cj|x1, x2, . . . , xn) = p(x1, x2, . . . , xn|Cj)p(Cj)

p(x1, x2, . . . , xn)
.

Since p(x1, x2, . . . , xn) is constant, independent of Cj, for purposes of maximization
it is sufficient to maximize the numerator

p(x1, x2, . . . , xn|Cj)p(Cj)

with respect to Cj.
The probabilities p(Cj) can be estimated from the data as

p(Cj) = Nj/N ,

where Nj is the number of cases in which Cj appears in the N data points.
Greater difficulty arises when attempting to estimate the conditional probabil-

ities p(x1, x2, . . . , xn|Cj), and this is where the naive aspect of the naive Bayes
method is employed. It is assumed (naively, for sake of computational simplic-
ity) that the attributes are class conditionally independent. That is, given a fixed
class, the probabilities of the other attributes are probabilistically independent.
Mathematically,

p(x1, x2, . . . , xn|Cj) = p(x1|Cj)p(x2|Cj) · · · p(xn|Cj) = �n
i=1p(xi|Cj).

“Ch18” — 2006/2/6 — 18:48 — page 316 — #16

� �

� �

316 • C h a p t e r 18 D ATA M I N I N G

The individual conditional probabilities p(xi|Cj) can be estimated quite readily;
but there are two cases depending on whether the attributes are categorical (discrete-
valued) or continuous-valued.

If attribute Xi is categorical, then the estimate is

p(xi|Cj) = Nij/Nj,

where Nij is the number of instances of xi when Cj occurred and Nj is
the number of instances of class Cj.

If attribute Xi is continuous-valued, the conditional probabilities are represented
by a parameterized family of continuous distributions, such as (Gaussian)

normals. In the normal case the conditional probability density is of the
form

p(xi|Cj) = 1√
2πσCj

e
−(1/2)(xi−mCj)2/σ 2

Cj . (18.2)

Example 18.4 (Football prediction). Your favorite football team has a good record
in the current season, having won 8 out of 12 games. You would like to predict the
probability that it will win the next game. A record of the games is shown below.
The table shows whether the game was Home or Away, whether the opposing team
is rated in the Top half or Bottom half in the region, and whether your team Won
or Lost.

Field H A H A H H H A H A H A
Opponent T T T B B T T B B B T B
Win/Loss W L W W L W W L W W L W

The next game will be played at Home with a Top team. Inspection of the table
yields these counts:

Total games = 12, W = 8, WH = 5, WT = 4, HT = 5.

These imply the probabilities

P(W) = 8/12, p(H|W) = 5/8, p(T |W) = 4/8, p(HT) = 5/12.

Using the naive Bayes method, you express the probability of winning as

p(W |HT) = p(H|W)p(T |W)p(W)

p(HT)
= 1/2. (18.3)

It looks like it will be a close contest.
However, since you went to all this work, it is not much harder in this small example

to bypass the naive method and use the actual probability p(HT |W) implied by the
record. A simple count yields HTW = 4, implying p(HT |W) = P(H, T , W)/p(W) =
4/8. Using this instead of p(H|W)p(T |W) in equation (18.3) produces p(W |HT) =
4/5. Now it looks like your team has a very good chance of winning!

“Ch18” — 2006/2/6 — 18:48 — page 317 — #17

� �

� �

S e c t i o n 18.5 B AY E S I A N M E T H O D S • 317

Bayesian Belief Networks

Consider a given set of attributes X1, X2, . . . , Xn that may include categories. A com-
plete probabilistic representation of them is defined by the joint probability density
p(X1, X2, . . . , Xn). Given this density, it is possible to deduce various conditional
probabilities. For example, if the values x1 and x2 of attributes X1 and X2 are known,
the probability density of X3 is, symbolically,

p(X3|x1, x2) =
Xn∑

Xi=X4

p(x1, x2, X3, X4, . . . , Xn). (18.4)

Theoretically, this is a convenient and compact way to describe attribute relations
and determine probabilities of unknown attribute values on the basis of observed
attributes.

The difficulty, of course, is dimensionality.2 If there are n attributes, each with
m possible values, the joint density p(X1, X2, . . . , Xn) requires mn values. This can be
extremely large for even modest values of m and n. A number of data records several
times mn would be needed to even roughly estimate the mn required values.

As said before, good models are based, in not insignificant part, on human intel-
ligence. Selecting an all-purpose general model is seldom useful until it is simplified
by the imposition of structure derived from science, common sense, intuition, or
preliminary exploratory data analysis.

Bayesian belief networks (sometimes called simply Bayesian networks) provide
a framework for describing a probability density structure in terms of probabilistic
influences. Nodes in the network correspond to events or situations. A directed arc
from one node to another implies that the event represented by the second node is
probabilistically influenced by that at the first. An example (discussed below) is shown
in figure 18.8.

A general Bayesian belief network consists of an acyclic graph (that is, a graph
whose arcs are directed and for which it is impossible to find a path of arcs that forms
a cycle) and a description of the conditional probabilities p(Xi|Xpa[i]), where Xpa[i]
denotes the set of parents of Xi. The fact that these conditional probabilities provide
all the information that is needed is encapsulated in the basic formula for the entire
joint density

p(X1, X2, . . . , Xn) = �n
i=1p(Xi|Xpa[i]). (18.5)

Example 18.5 (Alarm system). In this standard example, it is assumed that you
have installed an alarm system in your house to detect burglaries. If a burglary is
attempted, there is a good chance that the alarm will be activated. This dependency
is indicated in figure 18.8 by the line between Burglary and Alarm. However, if an
earthquake occurs, there is a possibility that the alarm will be set off as well. This
is indicated by the line between Earthquake and Alarm. There is no connection
between Earthquake and Burglary, which implies that Earthquake and Burglary
are independent events.

2Each Xi represents a number of specific values. To evaluate equation (18.4) at a specific x3, it is necessary
to substitute x3 for X3 and sum over all possible specific x4, x5, . . . , xn.

“Ch18” — 2006/2/6 — 18:48 — page 318 — #18

� �

� �

318 • C h a p t e r 18 D ATA M I N I N G

Alarm

Mary callsJohn calls

Earthquake Burglary

FIGURE 18.8 A Bayesian net for the alarm system. The alarm is influenced by an
earthquake or a burglary. In turn, the alarm influences both John and Mary to call.

Two neighbors, John and Mary, agree to call you at work if they hear the alarm.
Of course, either of them may call you at other times as well, and there is a chance
that either of them may be away when the alarm sounds and hence will not call you.
Nevertheless, the probability that either John or Mary calls is influenced by the state
of the alarm, as indicated by a connection from Alarm to each of them.

The probability of any event is conditional on its parent nodes, and in fact knowl-
edge of the state of the parents is all that is needed to determine the probability of
a node.

Consequently, the probability that Mary calls is dependent on Burglary. But when
conditioned on Alarm, Mary calls is independent of Burglary because Mary responds
only to the alarm, not to burglars. Likewise, Mary calls and John calls are related,
but when conditioned on Alarm, they are independent because Mary’s calls do not
influence John’s for a given state of Alarm.

Associated with each node is a table of the probabilities of that node conditioned
on its parents. The tables for the alarm system3 are shown in figure 18.9. These tables
are all that is required to define the complete set of probabilities for the network, as
a special case of equation (18.5).

Let us use the notation E and E to mean that E is, respectively, True or False. The
probability of the joint event (E, B, A) (there is an earthquake but no burglary and the
alarm does not sound) is, according to equation (18.5),

p(E, B, A) = p(E)p(B)p(A|E, B)

= .002 × .999 × .80 = .001598.

Bayesian networks are similar to the information channels discussed in chapter 5.
Attributes that cannot be directly measured are akin to signals transmitted through
the network structure, according to conditional probabilities, to the final observed

3These probabilities should be considered as referenced to a certain time period (say a week), since
clearly the probability of an earthquake or burglary depends on the length of time considered.

“Ch18” — 2006/2/6 — 18:48 — page 319 — #19

� �

� �

S e c t i o n 18.6 S U P P O R T V E C TO R M AC H I N E S • 319

Alarm

Mary callsJohn calls

Earthquake Burglary

E
T
T
F
F

B
T
F
T
F

T
.95
.20
.90
.05

F
.05
.80
.10
.95

P(A|E, B)

A
T
F

T
.75
.10

F
.25
.90

P(J|A)

T
.002

F
.998

P(E)

T
.001

F
.999

P(B)

A
T
F

T
.85
.05

F
.15
.95

P(M|A)

FIGURE 18.9 The conditional probability tables for the alarm system. For each
node, there is a table giving the probabilities of the event at that node occurring (T for
True or F for False) conditional on the status of its parent nodes. If there are no parents,
the unconditional probability is given. From these tables, the entire probabilistic structure
can be derived.

attributes. It is necessary to reverse the structure with Bayes’ rule to deduce
information about the original signals.

Although Bayesian belief networks are useful for expressing probabilistic rela-
tions, the computational demands can be enormous in large networks. It is important,
therefore, that the model be as simple as possible consistent with the objective of
getting good results.

18.6 Support Vector Machines

Support vector machines represent yet another powerful and versatile method for
classification. The basic idea is rather simple and has been used for decades, but
modern developments have greatly expanded the range of applications and power of
the method. Today support vector machines are used to analyze textual documents,
decipher handwriting, classify graphical images, filter email messages, and serve in
many other classification applications.

The central idea is illustrated in figure 18.10. In this example, the data samples
have two attributes X and Y , and there are two possible classes: square and round. The
two classes are separated by a straight line in the two-dimensional attribute space, so
that the squares are on one side and the circles on the other. The straight line is defined
by a linear equation of the form y = ax + b. A new item is classified by plotting its
attribute values and determining on which side of the separating line it lies.

“Ch18” — 2006/2/6 — 18:48 — page 320 — #20

� �

� �

320 • C h a p t e r 18 D ATA M I N I N G

y

x

FIGURE 18.10 A separating line. In higher dimensions two classes are separated by a
separating hyperplane.

The idea is easily extended to an arbitrary number of dimensions n. In the general
case the linear separation is by a hyperplane, a flat surface of dimension n−1. In three
dimensions, for instance, a hyperplane is a two-dimensional plane. A hyperplane in
n-dimensional space is defined by solutions x to a linear equation of the form

xT w + w0 = 0,

where x is the vector of attribute components, w defines the coefficients, w0 is a
constant, and xT w denotes the inner (or dot) product of x and w.

The separating hyperplane method was developed in the 1950s as a learning pro-
cedure using artificial neurons intended to mimic the functioning of the human brain.
The highly influential book Automata Studies, of which Shannon was an editor, pop-
ularized the approach. The first separating hyperplane updating device was proposed
by Rosenblatt and called a perceptron. An alternative with a different updating pro-
cedure was developed by Professor Widrow and Marcian (Ted) Hoff 4 at Stanford
University and called ADALINE.

Depending on their distribution, it is not always possible to separate sample points
with a hyperplane; but if it is possible, there is a simple step-by-step procedure for
doing so. The method begins with a collection of just one sample point and adjoins
additional sample points to the collection one by one and adjusts the hyperplane as
each new point is adjoined. It is always possible to construct a separating hyperplane
if the number of data points N is less than or equal to the number of dimensions plus
one, that is, N ≤ n + 1 (although the separation may not be strict). (See exercise 8.)
This condition is often met when the method is applied to textual material, where
the number of dimensions corresponds to the number of dictionary words, while the
number of training samples is far less than that.

4Shortly after that, Hoff joined the small company Intel, where he invented the first microprocessor.

“Ch18” — 2006/2/6 — 18:48 — page 321 — #21

� �

� �

S e c t i o n 18.6 S U P P O R T V E C TO R M AC H I N E S • 321

w

xTw + w0 = 0

xTw + w0 = M

xTw + w0 = −M

FIGURE 18.11 Maximum separating hyperplane and support vectors. By properly
tilting a hyperplane, the separation between two classes can be maximized, as illustrated
by the heavy dark line. The two translations of this that touch the classes define the
separation distance, and the sample points where these lines touch are termed support
vectors.

A difficulty with the simplest separating hyperplane method is that the separation
it defines may be unnecessarily weak. That is, points of different classes may be
close to the same hyperplane even though the points themselves are widely separated
in terms of distance. A support vector machine (SVM) ameliorates this problem
by selecting the hyperplane that produces maximum possible separation. The idea is
illustrated in figure 18.11.

Comparison of the hyperplane indicated by the heavy line with the hyperplane of
figure 18.10 shows that the distance from the heavy hyperplane to either of the two
classified sets is substantially greater than the corresponding distances for the earlier
hyperplane. This greater distance is likely to enhance the classification performance
when applied to new data.

Consider the two translated hyperplanes of figure 18.11 that touch one of the
classification sets. The distance between these two hyperplanes, measured in the
direction w, is the distance that should be made as large as possible. Suppose the points
αw and βw are points at the lower and upper hyperplanes, respectively. The distance
between them is d = (β − α)||w||, where ||w|| is the length of w. These points
satisfy

αwT w + w0 = − M

βwT w + w0 = M.

Subtracting the first equation from the second gives

(β − α)||w||2 = 2M.

“Ch18” — 2006/2/6 — 18:48 — page 322 — #22

� �

� �

322 • C h a p t e r 18 D ATA M I N I N G

Or, equivalently,

d = (β − α)||w|| = 2M

||w|| .

The separating hyperplanes are unchanged by multiplying their equations by any
constant: that is, by multiplying w, w0, and M by a constant. Hence M can be
specified as M = 1. The maximum distance d is found by minimizing ||w|| or
equivalently minimizing ||w||2. Hence the problem of finding the best hyperplane is
mathematically

min
w,w0

||w||2

subject to yi[xT
i w + w0] ≥ 1, for all i,

where for each data sample i, one sets yi = +1 if i is of class 1, and yi = −1 if i is
of class 2. Optimization problems of this form are called quadratic programs, and
efficient software packages are available to solve them.

As in figure 18.11, the solution will have at least one, and generally more than
one, data point touching the lower boundary hyperplane and others touching the upper
boundary hyperplane. The points that touch are termed support vectors because they
are points where a boundary hyperplane visually supports one of the classification
sets.

If the two sets cannot be separated with a hyperplane, it is still possible to define
a best hyperplane as the one that minimizes the amount of overlap.

The most important extension of support vector machines is to nonlinear
separation, illustrated in figure 18.12.

Suppose the dimension of the original space is N . A nonlinear mapping � is defined
from N-dimensional space to a space RN that may be of higher or lower dimension,
and data points xi are mapped as xi → �(xi). For example, the transformation

(a) Original space (b) Transformed space

FIGURE 18.12 Nonlinear separation. A nonlinear transformation of the data may make
it possible to separate two classes. Increasing the dimension may also be advantageous.

“Ch18” — 2006/2/6 — 18:48 — page 323 — #23

� �

� �

S e c t i o n 18.7 OT H E R M E T H O D S • 323

x = (x1, x2) → �(x) = (x1, x2, x1x2, x2
1) maps from two dimensions to four. A judi-

cious choice of � often can produce excellent separation when none was initially
possible.

18.7 Other Methods

The field of data mining is evolving quickly, fueled by the increasing availability
of massive amounts of data and great computer power. There are now several other
important methods beyond those described in earlier sections, and we briefly describe
four of them here.

1. Artificial neural networks. The method of artificial neural networks has a long
history in the field of data mining, and it is still widely used. As the name implies,
these networks are modeled after the neural connections in the brain and consist of
interconnected nodes (like neurons) and arcs (like neuron connections). The values
of observed attributes enter the network as values to input nodes. These values then
progress through interconnections (arcs) that apply various weights to them before
they reach a node at a deeper layer of the network. A receiving node then applies a
nonlinear function to the value it receives and sends the result on to other nodes at
the next layer. The final nodes give the class or predicted value.

The main parameters of the network are the weights associated with the arcs. These
are determined by adjusting the network with training data.

An advantage of neural networks is that they are widely applicable and software
implementations are available. A disadvantage is that it is often difficult to train
optimally and the results often are difficult to interpret as simple rules.

2. Fuzzy logic. Many classification systems assign a specific class to an occurrence
(a combination of attribute values). For example, a system might classify people
with a medical test result of 51–100 as high risk and those with result of 0–50 as
low risk. However, it can be argued that someone with a result of 49 may in reality
be of only marginally low risk. The method of fuzzy sets allows for the possibility
of having less than full degree of membership in a set. In the case of two possible
categories A and B, an instance would have membership values vA and vB that are
nonnegative and sum to 1 (like probabilities) representing degrees of membership in
the sets.

The same instance may be processed by another classification system to determine
fuzzy membership in two other sets C and D. Then using the rules of fuzzy logic,
final membership values for A, B, C, and D can be determined. Fuzzy logic methods
have similarities to probabilistic methods.

3. Memory-based reasoning (MBR). In this method, the training instances from past
situations are stored directly as tuples of attributes and their corresponding classifi-
cation categories. Then when a new instance arises, its nearest neighbor (according
to some measure) is found, and the new instance is assigned the category of this
neighbor.

A disadvantage of this system is that it is sensitive to the parameters used for
measuring distance. In addition, the method does not produce simplified rules for

“Ch18” — 2006/2/6 — 18:48 — page 324 — #24

� �

� �

324 • C h a p t e r 18 D ATA M I N I N G

classification, and this means that categorization of a new instance may require a
great deal of computational time.

4. Case-based reasoning (CBR). Case-based reasoning goes further than MBR by,
in general, proposing solutions to difficult problems within a domain by looking
at similar problems and their solutions. For example, a doctor may enter into the
system the symptoms and test results of a current patient. The CBR system will
search for similar situations and looking at their solutions, propose a solution for the
current case.

In most advanced form, a CBR system will consider several similar cases and
invent a unique solution for the current case based on the experience with previous
cases. There have been successful applications of CBR, but this method is, as can be
imagined, in an early stage of development.

“Ch18” — 2006/2/6 — 18:48 — page 325 — #25

� �

� �

S e c t i o n 18.9 B I B L I O G R A P H Y • 325

18.8 EXERCISES

1. (Market basket entropy) For example 18.1 calculate the relative entropy H(B|A) and the
mutual information I(A; B) based on probabilities estimated from the data, and hence give
an entropy measure to the rule A =⇒ B.

2. (New rules) Find other rules for the market basket example discussed in the text.

3. (Zero mean) Show that the average value of the error in least-squares estimation of the form
y = a + bx is zero.

4. (Add a square*) For the housing data find a best fit of the form Price ≈ a + b Age +
c Sqft + d Sqft2.

5. (Linear estimation entropy*) Suppose that an unknown parameter x has a normal (Gaussian)
distribution with variance σ 2. Independent measurements of the form yi = x +εi are made,
where each εi is Gaussian with mean zero and variance ω2 and is independent of x. The
entropy of a multidimensional Gaussian variable is H = 1

2 log (2πe)n|Q| bits, where |Q| is
the determinant of the covariance matrix corresponding to the variable. (See chapter 22 for
the n = 1 case.)

(a) Find I(y1, y2, . . . , yn; x).

(b) Let y = 1
n

∑n
i=1 yi and find I(y; x), showing that for purposes of estimation it is only

necessary to consider y rather than keeping track of the individual yi’s.

6. (The alarm) Referring to example 18.5, find the probability that there is an attempted
burglary if John calls.

7. (K-means clustering) Suppose that there are n records (or items) each with m attributes
that can be expressed in numerical form, so that each item corresponds to a vector in
m-dimensional space. These can be grouped into k clusters with the k-means algorithm:
First, k records are chosen as seeds. Next, each other item is assigned to the seed closest
to it in terms of Euclidean distance in the m-dimensional space. These assignments define
k clusters. Next, the centroid of each cluster is formed (being the point that minimizes the
total squared distance to all points in the cluster), and these centroids replace the original
seeds. The algorithm then proceeds by reassigning each point to the centroid closest to it.
This defines a revised clustering. The steps are repeated, calculating new centroids and
obtaining new clusters, until the resulting change in clusters is small.
Using this method, cluster the following items into two groups: [2, 4, 10, 12, 3, 20, 30,
11, 25]. Begin by assigning the first two items as seeds, and arbitrarily assign 3 to the seed
2 (rather than to 4 since there is a tie).

8. (Separation condition) Let N be the number of items and n the dimension of the space
of items. Show that if N ≤ n + 1, items of two different classes can be separated by a
hyperplane. (For simplicity assume that N = n + 1 and that any n of the N items are
linearly independent.)

18.9 Bibliography

There are a number of good survey texts on data mining. One of the most accessible
and useful is [1]. Other good texts are [2], [3], [4], and [5]. A good discussion of data
mining and web mining is [6]. A nice set of notes on Bayesian networks is [7].

“Ch18” — 2006/2/6 — 18:48 — page 326 — #26

� �

� �

326 • S U M M A R Y O F PA R T I V

A comprehensive book of statistical learning with emphasis on support vector
machines is [8]. The book edited by Shannon and McCarthy [9] is interesting and
was highly influential. The separating hyperplane devices were first presented in [10]
and [11]. Exercise 7 is from [4].

References

[1] Berry, Michael J. A., and Gordon Linoff. Data Mining Techniques. New York:
John Wiley, 1997.

[2] Hand, David, Heikki Mannila, and Padhraic Smyth. Principles of Data Mining.
Cambridge: MIT Press, 2001.

[3] Witten, Ian H., and Eibe Frank. Data Mining. San Francisco: Morgan
Kaufmann, 2000.

[4] Dunham, Margaret H. Data Mining: Introductory and Advanced Topics. Upper
Saddle River, N.J.: Prentice-Hall, 2002.

[5] Han, Jiawei, and Micheline Kamber. Data Mining: Concepts and Techniques.
San Francisco: Morgan Kaufmann, 2001.

[6] Baldi, Pierre, Paolo Fransconi, and Padhraic Smyth. Modeling the Internet and
the Web. New York: John Wiley and Sons, 2003.

[7] Hauskrecht, Milos. “Bayesian Belief Networks.” Lecture 1. http://www.ecs.pitt.
edu/∼milus/conrses/cs2001/.

[8] Vapnik, V. N. Statistical Learning Theory. New York: John Wiley and Sons,
1998.

[9] Shannon, Claude E., and J. McCarthy, eds. Automata Studies. Annals of
Mathematical Studies 34. Princeton: Princeton University Press, 1956.

[10] Rosenblatt, F. “The Perceptron: A Probabilistic Model for Information Storage
and Organization in the Brain.” Psychological Review 65 (1958): 386–408.

[11] Widrow, B., and M. E. Hoff. “Adaptive Switching Circuits.” IRE Westcon
Convention Record 4 (1960): 96–104.

“Ch18” — 2006/2/6 — 18:48 — page 327 — #27

� �

� �

S U M M A R Y O F PA R T I V • 327

S U M M A RY O F PA R T I V

Data is most useful when it is organized, and data structures provide the tools and
concepts for that purpose. The simplest data structure is a list, but generally it is
desirable for the list to be ordered according to a key, such as alphabetically or by
date. If the list is stored in a computer and is dynamic, with additions and deletions
occurring from time to time, some provision must be made for updating the list and
arranging it so that it can be queried efficiently. This can be facilitated by the use
of pointers associated with each entry, indicating the memory location of the next
or previous entry. However, searching a list of length n requires an average of n/2
operations, which is excessive for long lists. More efficient data structures are based
on trees. Binary search trees and partially ordered trees are especially effective.
Both of these can be searched in an average time proportional to log n, which is
consistent with the entropy of n equally likely items. Information theory, in fact,
implies that times proportional to log n are the best that can be done.

A related problem is that of sorting a list of items according to a key. Two simple
methods are bubble sort and insertion sort, but these both require a number of
operations proportional to n2. The faster methods of quicksort and heapsort are
based on binary search trees and partially ordered trees. These sort algorithms have
ordering times proportional to n log n.

A major breakthrough in data organization was the introduction of the relational
database system. This system of organization, which is surprising simple and yet
wonderfully elegant, consists simply of arrays, like spreadsheets. The algebraic theory
of relations provides systematic methods for manipulating these arrays, decomposing
them into simpler components and combining them again when needed. A funda-
mental concept used for decomposition is that of a functional dependency among
attributes. Today most large database systems are relational.

How can a huge collection of textual and other material be searched quickly?
This is the issue addressed by modern information retrieval systems. These systems
typically regard a collection as a set of documents. Depending on the application, the
term document may refer to a page in a book, a web page, a verse in the Bible, a book
in the Library of Congress, a technical article in a collection of professional journals,
and so forth. Most large-scale retrieval systems begin by constructing a forward
file, which lists the terms that appear in each document. In simplest form such a file
lists documents one by one down the first column. The other columns correspond
to possible terms. A non-zero entry at document i and term j indicates that term j
appears in document i. The file is most useful when it is transformed into an inverted
file, listing for each term the documents that contain it, much like a book index that
lists the pages on which various terms appear. Forward files can be enormous, so
special strategies have been developed to invert them. The principles of linked lists,
binomial search trees, and sorting algorithms are useful for this purpose.

Size is also managed by compression. Inverted files are typically sparse and thus
can be significantly compressed using run-length codes.

Efficacious response to queries of document collections is facilitated by ranking
methods that quantify the closeness of a particular document to the terms indicated
in the query. Many of these methods are based on the dot product of the query and

“Ch18” — 2006/2/6 — 18:48 — page 328 — #28

� �

� �

328 • S U M M A R Y O F PA R T I V

the document when each is considered to be a vector of 1’s and 0’s, with a 1 in a
particular component indicating the presence of a corresponding term.

When documents contain links to other documents, as in book references and
especially in Internet documents, it is possible to rank query responses by a measure
of their popularity as measured by the link structure.

It is both important and challenging to extract useful information, beyond standard
queries, from a collection of data. The term data mining refers to this activity. In
a sense, data mining looks for structure in data when none is initially obvious. The
process can be regarded as decreasing entropy while increasing usefulness; for a large
mass of seemingly unstructured data is initially characterized as having high apparent
entropy. Structure decreases apparent entropy. For example, if the data comprises
two variables A and B that appear to be independent, the entropy of the collection is
estimated as H(A) + H(B). However, if a relation between A and B is known, then
the perceived entropy is H(A, B) ≤ H(A) + H(B), the difference being the mutual
information of A and B.

There are several data-mining techniques. They can be classified by the nature
of the structure they seek to discover. These include logical relations such as A
implies B, functional relations such as y = f (x), and partitioning relations that
divide the attribute space into regions. All of these can be modified to allow for
probabilistic statements; for example, A = a1 implies that B = b1 with probability p.
The probabilistic structure of Bayesian networks is explicitly based on conditional
probabilities and hence is closely related to many concepts of information science.
Support vector machines are designed to group samples into classes by establishing
separate regions in the space of attributes.

“ch17” — 2006/2/6 — 18:48 — page 284 — #1

� �

� �

17
INFORMATION RETRIEVAL

V
ast amounts of data are today available to all of us who have access to libraries, the
Internet, or computer files of many sorts. This profusion brings with it the challenge
of finding the particular elements of data that are relevant for us—the information

that we seek. There are many tools that aid in our search. Libraries that once relied
exclusively on card catalogs now have computer files that can execute searches by
author, title, keywords, or subject. Many libraries make available database directories
for collections residing in remote locations or on computer files. The Internet is
connected to a vast heterogeneous assortment of data as pictures, music, movies, and
text. And it is relatively easy to access this data from almost anywhere in the world,
even with wireless connections.

In concert with the exponential expansion of accessible data, there have been
advances in the techniques and tools for finding the data that we seek, or finding data
relevant to our need but of whose existence we were previously unaware. There has
indeed been a great deal of thought and creativity devoted to the development of tools
that assist the retrieval of relevant information from the enormous amount of data
available.

This chapter surveys some of the main retrieval concepts and tools. In order to
bound the range of discussion, the chapter focuses almost exclusively on retrieval of
text, leaving aside pictures, music, and movies. In practice, it is text that is most often
sought. However, many of the ideas presented in this chapter have been extended and
specialized to treat the other forms of data.

The general approach to information retrieval is not mysterious. It is simply an
extension of the retrieval methods used for years in visits to a library or when con-
sulting a text or reference work. Retrieval is partitioned into two parts: indexing and
query response. Most textbooks and reference works include a comprehensive index,
alphabetically listing terms and the key pages on which they appear. Some libraries
still maintain a card catalog, which alphabetically lists works separately by author,
title, and subject, together with a call number that indicates where in the library
the work is located. Indexes are fundamental to information retrieval. But as data

284

“ch17” — 2006/2/6 — 18:48 — page 285 — #2

� �

� �

S e c t i o n 17.1 I N V E R T E D F I L E S • 285

collections expand to encompass many millions of text sources, indexing becomes a
science as well as an art.

Query response is also important. When consulting a book, such as this one,
the reader can ask a question—such as “On what pages is entropy defined?”—

and the index will provide the answer. When a data collection is
enormous, such as that of the Internet, it is important that the retrieval
system be able to respond usefully to complex queries.

The vast majority of retrieval systems for huge collec-
tions do not search the collection in response to a query.

Rather, they rely on a previously prepared index. Thus,
to respond usefully to complex queries, the index itself

must be more complex than that found in textbooks or card catalogs.
Most retrieval systems are simply a combination of an index and a query response
system—the two working together.

17.1 Inverted Files

Consider a body of text consisting of a collection of distinct documents. The terms
collection and document are defined broadly. A collection might be a single book,
with the documents being the individual pages. A collection may be a professional
journal series (spanning several years) with documents being the individual articles
in the series. A collection might be the entire set of web pages on the Internet with
documents being the individual pages at various websites. Or a collection may be
the set of books in the U.S. Library of Congress with documents being individual
books. An important collection used often in retrieval experiments is the Bible, with
the documents being the separate verses.

A simple index for a collection is a list of terms (usually in alphabetical order) with
each term having a sublist giving the documents in which the term appears. This is the
format of a textbook index, although book indexes generally list only important terms
and report only important or defining instances of those terms. More complex indexes
may indicate how often the term appears in each document and/or the positions of
the term within a document.

Consider the small collection of four lines from the (fabricated) Terrachrona:

1 Now is the time
2 And now is the place
3 Time and place make now
4 Now is now

A simple index for this collection is shown in figure 17.1.

And

Is

Make

Now

Place

The

Time

2, 3

1, 2, 4

3

1, 2, 3, 4

2, 3

1, 2

1, 3

FIGURE 17.1 Index for
Terrachrona. The index
lists terms alphabeti-
cally and gives the
document (line) num-
bers where each term
appears.

A lexicon relative to a collection of documents is the set of words or terms contained
in the collection. In the preceding example, the lexicon consists of seven words: and,
is, make, now, place, the, time.

For purposes of indexing, a collection can be defined by an incidence matrix,
also termed a forward file, which lists the words each document contains (although

“ch17” — 2006/2/6 — 18:48 — page 286 — #3

� �

� �

286 • C h a p t e r 17 I N F O R M AT I O N R E T R I E VA L

Doc1

Doc 2

Doc 3

Doc N

1

0

1

1

0

1

1

0

1

1

1

0

0

1

1

1

Collection Term 1 Term 2 Term 3 Term M.

.

.

.

.

.

.

FIGURE 17.2 Forward file or incidence matrix. The terms in each document are indi-
cated by the 1’s in the corresponding row. In the case of a frequency matrix, the entries
give the number of instances that the term appears in the document.

0

1

1

0

Line No.

1

1

0

1

0

0

1

0

1

1

1

1

0

1

1

0

1

1

0

0

1

0

1

0

1

2

3

4

and is make now place the time

Words

FIGURE 17.3 Forward file for Terrachrona. There are four documents (lines) and seven
words in the lexicon.

it may only record important words, leaving out common words such as the). The
general form of a forward file is displayed in figure 17.2. The forward file for the
Terrachrona example is shown in figure 17.3.

A related but slightly more complex representation is a frequency matrix, which
records the number of occurrences of the word in each document rather than simply
indicating if there is at least one occurrence. The frequency matrix for the Terrachrona
is identical to the incidence matrix except that the last row has a 2 in the “now” column.

The index of a collection is the transpose of the incidence or frequency matrix,
for it lists the documents in which terms appear, rather than the terms that appear in
documents. In this context the transpose is termed the inverted file of the forward
file. The general form of an inverted file is shown in figure 17.4.

Finding the (forward) incidence or frequency matrix itself is straightforward. One
merely scans each document in turn and lists the terms that it contains. The entries
can be placed in an incidence matrix or written down in order. For example, a (not
very practical) way to construct an index for a textbook is to scan each page and list
alphabetically on an index card the important terms that that page contains. The index
itself could then be constructed from these cards by selecting terms alphabetically
and for each term, scanning through the cards to find entries.

“ch17” — 2006/2/6 — 18:48 — page 287 — #4

� �

� �

S e c t i o n 17.2 S T R AT E G I E S F O R I N D E X I N G • 287

Term1

Term 2

Term 3

Term M

1

0

1

1

0

1

1

0

1

1

1

0

0

1

1

1

Lexicon Doc 1 Doc 2 Doc 3 Doc N.

.

.

.

.

.

.

FIGURE 17.4 General inverted file. This is the transpose of the forward file.

A computer implementation for constructing an inverted file seems obvious. One
first constructs the incidence matrix by scanning the documents sequentially. Then
the inverted file is formed by scanning down the columns, listing the documents
associated with a given term.

This simple method can in fact be used for small collections. A single 400-page
book with 500 words per page may contain as many as 10,000 different words. In a
simple implementation, four-byte integers may be used to represent the elements in
the incidence or frequency matrix. The total storage requirement for the matrix would
then be 400×10,000×4 = 16 megabytes, which is quite manageable on present-day
machines.

A concordance of the Bible lists the verses in which words appear. The Bible
contains 31,101 verses and 8,965 different words. The same analysis as above gives
31,101 × 8,965 × 4 = 115 gigabytes, which is too large to fit in the random access
memory of most computers today. Of course, these estimates can be reduced by
refined coding that may allocate only a few bits to an entry (one bit in an incidence
matrix) or by compressing the matrix as discussed later in this chapter. On the other
hand, it is clear that even modestly large collections can exceed available fast memory.
It is therefore important to consider other approaches.

17.2 Strategies for Indexing

We shall describe four different strategies for indexing in this section. Each has its
advantages depending on the size of the collection and the technology used.

Card File Indexing

Traditionally, authors indexed their books by hand using three-by-five index cards. In
this method each card is headed by a term followed by a list of pages on which that
term is found. The cards are placed alphabetically in a file box, or more often laid out
alphabetically on the floor (as I can attest). The author progresses through the book a
page at a time. When a term that should be placed in the index is found, the existing
cards are searched for that term and the current page number is written on the card.

“ch17” — 2006/2/6 — 18:48 — page 288 — #5

� �

� �

288 • C h a p t e r 17 I N F O R M AT I O N R E T R I E VA L

If no card exists for that term, a new card is inserted at the appropriate alphabetical
position among the others. This is an effective time-tested method.

It is not easy to implement this method on a computer. A blank file card is essentially
a block of free memory capable of storing several page references. Hence, whenever
an author introduces a file card, a block of memory is being allocated to a particular
term. If this strategy were used on a computer, it would be necessary to allocate a
large block of memory to each term in anticipation that it may be filled, and this surely
would be excessive.

Linked Lists

The computerized version of the file card method uses linked lists. A data structure
for the terms is first established. A good choice is a binary sort tree, which is an
efficient way to insert terms alphabetically and find them when needed. Each term
occupies a memory slot large enough to contain the term, pointers for movement in
the term data structure, and a pointer to the first element in a linked list for that term.
The document numbers referenced by a term are located along this linked list.

The documents are scanned sequentially. When a term t to be indexed is found in
document d, the data structure is searched for t. If t is in the structure, the links are
followed to the end of the list for t. The document number d is then placed in the first
available memory location (which may be some distance from the last member of the
list) and the pointer of what was the last element is updated. If t is not already in the
data structure, it is inserted together with a pointer to the first element of a linked list
that is initiated with the document number d. The members of any particular linked
list are likely to be scattered in memory because they arise erratically depending on
when they are found in other documents. Hence, unlike the file card system, the only
extra memory space is that of the pointers. The approach is illustrated in figure 17.5.
(In the figure the terms have appeared in the order HECMEKGMHHGE.)

Once scanning is complete, the data structure is traversed alphabetically. At each
term, the linked list is followed (jumping from location to location) so that all ref-
erences to that term can be written, in order, to construct the index entries for that
term.

This method requires memory to store the linked lists as well as the data structure
of terms. The total number of elements in all linked lists is equal to the number of
document references in the final index. For large collections, this will exceed available
random access memory, and hence most of the linked list storage will be in slower
memory such as disk. Furthermore, since, as explained above, any particular linked
list is scattered throughout memory, the list cannot be followed quickly.

The linked list method therefore requires either a huge random access memory or
a great amount of time. Hence we again look for other methods.

Sort-Based Methods

Recall the author who indexes by hand. Suppose that, realizing that a blank index
card is equivalent to a significant block of memory, the author instead uses small slips

“ch17” — 2006/2/6 — 18:48 — page 289 — #6

� �

� �

S e c t i o n 17.2 S T R AT E G I E S F O R I N D E X I N G • 289

H

E M

C G K

Term Data Structure

Linked File List

FIGURE 17.5 Linked list inverted file. In the figure, the possible terms are assumed to be the letters of the alphabet,
and they appear in random order as documents are scanned. The term data structure (in this case a binary search
tree) is used to store the terms for quick access. When a term is found, the corresponding document number is
appended to the linked list for that term. The linked lists are stored outside of main memory. Since the terms
appear in essentially random sequence, the linked list of a particular term is likely to be scattered throughout. The
binary sort tree itself is stored as an array giving the term, node number, parent, and left and right child of each node.

of paper upon which only two entries can be made: a term and a page number. The
author progresses through the documents (pages), filling out a slip whenever a term
to be indexed is found. When all pages are scanned, there will be a large pile of these
slips. It is only necessary to sort these slips alphabetically using term as the primary
key and page number as the secondary key. The slips of a given term t will form an
entry in the book index.

The sorting process is equivalent to constructing the inverted file. The slips are
originally written in page (or document) order, and later sorted in term order.

This method easily translates to computerized form. Documents are scanned
sequentially. When in document d the term t is encountered, the two-tuple (t, d)
is stored. These two-tuples are then sorted by term and the common terms grouped
to form the index, the inverted file.

This method requires roughly the same amount of memory as the linked list method,
so for even modestly large collections the original list of two-tuples cannot be stored
in fast memory, and hence a simple sort procedure cannot be used.

However, there is an efficient method of sorting, using an in-place merge sort. In
outline: the entire list of two-tuples is partitioned into equal-sized segments that each
fit in fast memory. Suppose there are R such segments. Each of these R segments
is sorted in the fast memory using an efficient sort procedure such as quicksort, and
then returned to the slower memory. Next the R segments are merged a few at a time.
This is quite efficient compared with the linked list approach because data is accessed
in blocks from the segments, rather than in the helter-skelter pattern associated with
linked lists. The sort-based method is illustrated in figure 17.6.

“ch17” — 2006/2/6 — 18:48 — page 290 — #7

� �

� �

290 • C h a p t e r 17 I N F O R M AT I O N R E T R I E VA L

1
2
3
4
5
6
7
8
9

C
S
T
W
R
R
S
R
K

F
R

F
K
C
T
C

W
K

V

R C
F
W
R
K
S
R
T
W
F
R
K
V
R
C
S
T
R
C
K

1
1
1
1
2
2
2
3
4
4
5
5
5
6
6
7
7
8
8
9

C
F
K
R
W
F
R
S
T
W
C
K
R
R
V
C
K
R
S
T

1
1
2
1
1
4
2
2
3
4
6
5
5
6
5
8
9
8
7
7

C
C
C
F
F
K
K
K
R
R
R
R
R
S
S
T
T
V
W
W

1
6
8
1
4
2
5
9
1
2
5
6
8
2
7
3
7
5
1
4

C
F
K
R
S
T
V
W

1
1
2
1
2
3
5
1

6
4
5
2
7
7

4

8

9
6

8

Forward File
Inverted File

(a) (b) (c)

FIGURE 17.6 Sort-based indexing. The forward file consists of terms (shown as letters) and document numbers.
They are originally sorted by document number in (a). Next they are sorted by term. For large files, the sorting is
carried out in segments (producing part (b) of the figure).The segments are merged to produce the file shown in (c).
This is converted to the inverted file (in index form).

Text-Based Partitioning

Another strategy an author might use when compiling a book index is to index part
of the book, say the first half, and then make a separate index for the second half.
Finally the two indexes can be merged to form a completed full index.

In computer form this method is extremely practical. The collection of documents
is partitioned into manageable groups, and an index constructed for each group using
only fast memory, with for example, a linked list procedure or a simple sort-based
procedure in fast memory. The separate indexes are then placed in the slower memory
and merged in the same manner as separate partitions are merged with a full sort-based
method.

Implementation

The methods outlined in the subsections above are general strategies rather than fully
detailed methods. In actual implementations, the lists or tuples resulting from a scan of
documents are usually compressed to save memory. These compression techniques are
discussed in the next section. In addition, there are many details concerning pointers,
storage allocation, and so forth that must be carefully designed and incorporated into
a final system.

“ch17” — 2006/2/6 — 18:48 — page 291 — #8

� �

� �

S e c t i o n 17.3 I N V E R T E D F I L E CO M P R E S S I O N * • 291

17.3 Inverted File Compression*

Return again to the view of indexing as the construction of an inverted file from an
incidence matrix. If there are N total documents in the collection, any one row of the
inverted file consists of N elements that are either 0 or 1, with the 1’s indicating the
various documents that contain the term. Although this view is theoretically useful,
it is usually not practical to write the entire list of 0’s and 1’s. Instead, the row
associated with a term is better represented as an ordered list of document numbers
corresponding to documents that contain the term. A standard textbook index is of
that form. It presents an ordered list of the page numbers where the term appears
rather than an indication for each page as to whether the word appears there or not.

Generally, then, a row of the inverted file can be represented as a list (dt1,
dt2, . . . , dtkt) where the dti’s are the document numbers of documents that contain t.
For example, a particular list may be (3, 6, 15, 36, 44).

Note that the entries in such a list are increasing; that is, each document number
in the list is greater than the previous one. Therefore, the list can be expressed using
incremental rather than actual values, the elements in the list indicating how much
to add to the previous document number to obtain the next in the list. For instance,
the list (3, 6, 15, 36, 44) can be expressed in incremental form as (3, 3, 9, 21, 8). In
traditional coding theory, this method is termed run-length coding. The advantage
of this method is that it might lead to smaller entries, on average, and hence it
may be possible to use fewer total bits than otherwise. To verify this, suppose the
list of document numbers is (d1, d2, . . . , dk). In run-length form the list is (d1, d2 −
d1, d3 − d2, . . . , dk − dk−1). The average of the entries in the first list is Aver1 =
(d1 + d2 + · · · + dk)/k. The average of the entries in the second list is Aver2 = dk/k.
Clearly Aver2 ≤ Aver1. However, if there is only a single entry in the list, then
Aver1 = Aver2. Hence the range of numbers that may be encountered by the two
methods is the same. The number spread is equal in both methods, but the numbers
associated with the run-length method tend to be bunched near small values. This
feature can be used to advantage.

Unary Codes

A simple method of coding a series of numbers that tend to bunch up at the low end
is the unary code. The codewords for the first seven integers are shown in table 17.1.
The code for an integer i is a series of i − 1 ones followed by a single zero. The
number zero is not coded, since it never appears in a run-length list.

TABLE 17.1
The Unary
Code.

1 0
2 10
3 110
4 1110
5 11110
6 111110
7 1111110

This code can be recognized as the comma code of chapter 3. At first sight it may
seem quite wasteful; after all, seven symbols can be coded with a code with words of
length three, but actually it can be quite efficient.

Recall that the Shannon coding scheme sometimes achieves an average word length
equal to the entropy of the source. The condition for this is that the lengths be chosen as

li = log
1

pi
, (17.1)

where pi is the probability of item i. Usually this formula is applied forward: starting
with the pi’s and selecting the li’s. It can be applied backward now to analyze the

“ch17” — 2006/2/6 — 18:48 — page 292 — #9

� �

� �

292 • C h a p t e r 17 I N F O R M AT I O N R E T R I E VA L

unary code. The lengths of this code are known; the pi’s for which this code is optimal
can be found. Inverting (17.1) produces

pi = 2−li . (17.2)

Using the fact that li = i for the unary code, it follows that pi = 2−i. That is, p1 = 1
2 ,

p2 = 1
4 , p3 = 1

8 These probabilities definitely favor small integers. If the entries
of the incremental (or run length) list appear with these probabilities, then unary
coding of the list achieves maximum compression.

This is a nice result, but unfortunately there is no reason to expect that entries
appear with these probabilities. In fact, in most cases, the probabilities implied by
unary coding emphasize small integers too strongly. We therefore seek alternative
coding methods, but we have learned some useful ideas from study of this code.

Golomb Codes

Rather than invent a code arbitrarily, and then determine what probability distribution
corresponds to it, it seems more logical to propose a probability distribution and then
find the corresponding optimal code. This, of course, is the procedure used in the
general study of coding theory presented in chapters 3 and 4.

A reasonable model for the probabilities of run lengths is the Bernoulli model.
This model assumes that a given term to be indexed appears randomly in a document
with a given probability, say p. That is, if one selects a document at random from the
collection, there is a probability p that the document will contain the term t.

From this assumption the probability of runs of various lengths can be determined.
The probability that t appears in document i and then not again until document i + x
is (1 − p)x−1p, since there are x − 1 documents of no appearance and one where
there is appearance. This resulting probability distribution is termed a geometric
distribution.

Golomb devised a coding procedure that is very effective for this Bernoulli model
and the resulting geometric distribution. The idea is that if a number x − 1 is divided
by some integer b > 0, the result is a smaller quotient and a remainder. The quotient
is encoded with a unary code and the remainder by a binary code, forming a two-part
code. We consider the simplest case where b is selected to be a power of 2; that is,
b = 2k .

To construct the Golomb code for an integer x > 0, the quotient1 q = �(x − 1)/b�
is computed and q + 1 is encoded with a unary code (which is possible because q + 1
is never zero).

The remainder r = x − 1 − qb is coded in binary. There are b = 2k possible
residue values: 0, 1, 2, . . . , b − 1, so since b is a power of 2, this number matches the
number of values available in a pure binary code with k bits. The final code is formed
by first using the unary code for q + 1 followed by the binary code for r.

As an example, let us encode x = 118 with b = 24 = 16. Here q = �117/16� = 7
and r = 5, since 117 = 7 · 16 + 5. Hence the code is 1111110 0101. The first part
is the unary code for 7 and the last four bits are the binary code for 5. (In practice no
space would be used.)

1For any number y, the expression � y� denotes the largest integer less than or equal to y, and �y� denotes
the smallest integer greater than or equal to y.

“ch17” — 2006/2/6 — 18:48 — page 293 — #10

� �

� �

S e c t i o n 17.4 Q U E R I E S • 293

These compression techniques can be used to compress the list of documents in
the inverted file associated with a particular term. They can also be used in more
complete inverted files that list the positions of all occurrences of a term in a specific
document.

17.4 Queries

Data is retrieved in response to queries, and different data systems allow different
types of queries and handle queries in various ways.

Tries

Systems for small collections may not use indexes. For example, the “Find” oper-
ation in a word processor simply scans a document for the string of characters that
is requested. Some systems use tries, discussed in chapter 15, to facilitate string
searches. These have the advantage that complex queries can be handled, but they are
expensive in terms of memory.

Basic Index-Based Query Systems

Perhaps the simplest query is the request for all documents that contain a given word.
Such a query fits perfectly with the structure of a standard inverted file index. For
example, querying the word God in a Bible concordance will produce all verses in
which God appears. When searching for a word on the Internet with a good search
engine, the search engine can produce every web page in which that word appears
(at least all web pages that are indexed by the search engine), although the search
engine may report only the subset of these pages that are considered highly relevant.
Such single-term queries are easily answered by direct consultation to the inverted
file index.

A Boolean query is slightly more complex. Such a query incorporates logical
operators of AND, OR, and NOT. For instance one might formulate the query

university AND California NOT public,

hoping to find all references to private universities in California. Such a query is
processed by the addition of a logical computation in conjunction with an inverted
file index. All documents with university are listed in a temporary file, then all with
California, and all with public. The first two resulting files are merged, and then items
are deleted if they appear in the list for public.

It must be remembered that such a query simply checks the word occurrence with
no reference to placement or intent. Hence, the response to the above query would
not report a document about the private university Stanford if the document contained
the sentence, “Stanford University, located in California, serves the public interest.”

Queries can be broadened by using more complex Boolean queries such as

(college OR university) AND (California OR (Washington NOT D.C.)).

“ch17” — 2006/2/6 — 18:48 — page 294 — #11

� �

� �

294 • C h a p t e r 17 I N F O R M AT I O N R E T R I E VA L

Response to such a query requires an advanced Boolean processor, but such a
processor represents a small part of a total retrieval system for a large collection
of documents.

One difficulty with Boolean queries based on word indexing is that no account is
made for word placement. Hence the query

University AND of AND California

could return many documents that contained those three words in any order. Some
retrieval systems allow queries containing phrases, sometimes indicated by placing
quotation marks around the phase, such as

University of California.

A proper response to such a query can be generated by retrieval systems that search
strings. Proper responses also can be generated by inverted file systems that record
the positions of a given word’s occurrence in every document, for then it is only
necessary to determine whether the words in the query phrase appear consecutively
in a document. This, of course, requires a more complex index, but many indexes,
including several Internet search engines, are structured this way.

17.5 Ranking Methods

Simple queries do not always adequately express the full intent of the inquirer. That
realization motivates the idea of ranking query responses according to some measure.
Most ranking methods applied to inverted file indexes are based on vectors associated
with the forward file.

Consider the sample forward incidence matrix shown in figure 17.7. The rows,
consisting of integers, can be regarded as vectors of dimension seven, the number of
terms. The entire forward file can be regarded as a collection of these vectors, one for
each document.

A query that specifies a word or set of words can itself be considered a vector of
the same dimension (with ones corresponding to the terms in the query and zeros
elsewhere).

0

1

1

0

1

1

0

1

0

0

1

0

1

1

1

1

0

1

1

0

1

1

0

0

1

0

1

0

1

2

3

4

and is make now place the time

FIGURE 17.7 Forward file as collection of vectors. Each row is a seven-dimensional
vector.

“ch17” — 2006/2/6 — 18:48 — page 295 — #12

� �

� �

S e c t i o n 17.5 R A N K I N G M E T H O D S • 295

Suppose x and y are two vectors of length T . The inner product (or dot product)
of x and y, denoted x · y, is equal to

x · y =
T∑

i = 1

xiyi.

If the components of x and y consist only of zeros and ones, then the inner product
is equal to the number of one-valued components that are in the same position in
each vector. Hence, if x is a query vector and y is a document vector recording only
the presence or absence of terms, the inner product gives the number of query terms
present in the document. Thus the inner product can be used to rank documents by
the number of queried terms they contain.

The naive way to compute the inner product is to scan each document and count
the instances where a term matches one in the query. This procedure entails running
through every document, which could take an enormous amount of time. Alternatively,
the inner product can be computed by use of the inverted file. For each term in the
query, the inverted file gives a list of documents that refer to that term. We credit a
value of one unit to each of these documents. After processing all terms in the query,
the total score assigned to each document is available, and the documents are then
ranked accordingly.

Weighted Vectors

There are three obvious shortcomings of the simple counting procedure: (1) A doc-
ument that contains many instances of a query term is likely to be more important
than one that contains only a single instance. Hence, the frequency of the term’s
appearance should be incorporated. (2) Common words are likely to produce higher
counts than uncommon words. Hence, the document ranking of a query such as Eiffel
OR Tower will be dominated by documents that contain “tower” rather than “Eiffel.”
(3) On average, long documents are more likely than short documents to contain a
given term. Hence, the counting procedure favors long documents, even though they
may be less important to the query.

The first shortcoming can be ameliorated by recording the frequencies of terms,
rather than mere presence. This is easily accomplished if the inverted file con-
tains frequency information. The document vectors then consist of various integer
components, rather than just ones and zeros.

The issue of common versus uncommon words has several facets. First, it is clear
that common words will on average appear more frequently in documents and hence
tend to skew rankings in favor of these terms, but this effect can be offset by applying
weighting factors to terms. A common term such as the is given a small weight, while
a term such as tower is given a larger weight. In practice, weights are usually based on
the overall frequency of appearance in a collection. For example, if ft is the number
of documents that contain the term t and N is the total number of documents, then a
reasonable weighting for t is

wt = ln

(
1 + ft

N

)
,

which increases with the frequency, but this increase flattens out for large ft .

“ch17” — 2006/2/6 — 18:48 — page 296 — #13

� �

� �

296 • C h a p t e r 17 I N F O R M AT I O N R E T R I E VA L

A second consideration relates to the intent of the query. Some words may be more
important than others. For example, after an adjustment for frequency, the term Eiffel
may be more important than tower in the query. This intent can be incorporated by
allowing the query vector to have term weights other than zero or one.

Finally, the fact that long documents are likely to produce more total weight than
short documents can be attenuated by normalizing the vectors. The most common
normalization uses Euclidean length defined for a vector x = (x1, x2, . . . , xT) as

||x|| =
√√√√ T∑

t=1

x2
t .

The inner product of two vectors x and y is normalized by computing what is
essentially the cosine of the angle between them, as

cosine θ = x · y

||x|| · ||y|| ,

which achieves a maximum value of 1 when x and y are proportional (that is, when
x = αy for some α > 0).

In a query system using weights, a fixed document d has an associated vector wd
with components wdt for each term t. Likewise, a specific query q has an associated
vector vq with components vqt for each term t. The cosine value of document d relative
to query q is

cosine θ =
∑

t vqt wdt

||vq|| · ||wd || .

Of course, most of the components vqt in the query vector vq are zero, so the sum
actually contains far fewer nonzero components than the general expression might
indicate. The value of ||wd || is independent of the query, and hence can be precom-
puted. The weights wdt are found directly from the inverted file provided that the
frequencies fdt have been recorded.

The cosine ranking method forms the foundation for a fairly comprehensive rank-
ing method. Other features can be added. For example, the document vectors can be
expanded to record whether a given term appears in the title of the document.

17.6 Network Rankings

When documents contain links to other documents, as on the Internet, it is possible
to use the structure of those links to formulate rankings based on popularity. If a
document is referred to by many other documents, it is likely to be important and
thus likely to be a good response to a query. This type of ranking mechanism was
originally developed as PageRank2 for the search engine Google.

One way to envision the ranking is to imagine a little program crawling through
the web. It goes from document to document in a semirandom manner. Specifically,

2The “Page” in PageRank refers to Larry Page, one of the developers.

“ch17” — 2006/2/6 — 18:48 — page 297 — #14

� �

� �

S e c t i o n 17.6 N E T W O R K R A N K I N G S • 297

when at any given document, there is a fixed probability p (p = 85 percent has
been suggested) that it will next follow one of the links originating at that document,
choosing from among those available with equal probabilities. Alternatively, with
probability 1 − p it jumps to an arbitrary document, again making the choice with
equal probabilities.

By watching the behavior of this little program, one can record the relative fre-
quencies with which it visits various documents. A document that has a lot of links
pointing to it is likely to be visited relatively often, provided that the documents
pointing to it are themselves visited often. The ranking of a document is defined as
its relative visit frequency.

This procedure can be formalized in terms of the link structure of the network.
Suppose that there are N documents, and suppose that document i contains a link to
document j. Then define aij = 1/ni, where ni is the total number of links originating
from document i. Otherwise, if there is no link from i to j, let aij = 0. Thus aij is the
normalized link value. The sum of all link values aij from document i is 1, provided
that there is at least one link (which for simplicity we assume). The matrix A is defined
as the N × N matrix having entries aij.

Notice that aij can be interpreted as the probability that the crawling program will
jump to document j if it arrives at document i and must follow a link. However,
the crawler only follows some link with probability p; otherwise it jumps randomly.
The probability that the crawler arrives at a node by jumping is (1 − p)/N . Hence the
total probability of the crawler moving to document j once it is on document i is
bij = (1 − p)/N + paij. In matrix form the overall probability matrix is

B = (1 − p)E/N + pA,

where E is the N × N matrix with all components equal to one.
Suppose a crawler starts at web page 1. Future positions will occur with vari-

ous probabilities, expressed as a vector with N components. Initially this vector is
(r0)T = (1, 0, 0, . . . , 0)T , indicating that it is with probability 1 at location 1 and with
probability 0 at all other locations. For one move ahead, the probabilities change to
(r1)T = (b11, b12, b13, . . . , b1N)T . In general, if rk is the probability vector (written
as a column) for step k, then

rk+1 = BTrk , (17.3)

where BT is the transpose of the matrix B.
In equilibrium, after many, many steps, the probability vector will converge, so

that rk+1 = rk in equation (17.3). The equilibrium probability vector will therefore
satisfy

r = BT r, (17.4)

where the vector r is normalized with
∑N

i=1 ri = 1.
The vector r is an eigenvector of the matrix BT. It can be found computationally by

iteration, or as in practice by actually carrying out the crawling procedure. For appli-
cation to web searching the implied matrix B is huge, with the number of documents
(web pages) N on the order of billions.

“ch17” — 2006/2/6 — 18:48 — page 298 — #15

� �

� �

298 • C h a p t e r 17 I N F O R M AT I O N R E T R I E VA L

The popularity ranking of a particular site is its relative probability in the equi-
librium vector r. An overall ranking is formed as a combination of the probability
ranking and other factors such as key words and term frequency counts.

1 2

3

FIGURE 17.8 A linked col-
lection of documents.

Example 17.1 (Three documents). Suppose that three documents have the link
structure shown in figure 17.8. The corresponding link matrix is

A =
⎡
⎣0 1

2
1
2

0 0 1
1 0 0

⎤
⎦ .

Suppose p is set as p = 0.7. Then (1 − p)/N = 0.1 and the eigenvector equation is
the matrix equation ⎡

⎣.1 .45 .45
.1 .1 .8
.8 .1 .1

⎤
⎦

T ⎡
⎣r1

r2
r3

⎤
⎦ =

⎡
⎣r1

r2
r3

⎤
⎦ .

This equation can be solved together with the normalization condition r1+r2+r3 = 1,
yielding

r1 = .375

r2 = .231

r3 = .393.

Document 3 has the highest rank, which is consistent with the fact that both other
documents have links to it. Document 1 is next highest in rank since it has a link from
the most highly ranked document.

“ch17” — 2006/2/6 — 18:48 — page 299 — #16

� �

� �

S e c t i o n 17.8 B I B L I O G R A P H Y • 299

17.7 EXERCISES

1. (An index) A scan through nine documents, searching for English letters, produced the
table below:

1 F K L A
2 B L C F
3 A F L
4 L A
5 K C F H
6 C A L
7 F
8 K F A B
9 A H K

Make an alphabetical index for the terms by the following methods:
(a) Construction of an incidence matrix followed by construction of the inverted file.
(b) A sort and merge procedure.

2. (Golomb examples) Construct the Golomb codes for the following numbers using the
indicated value of b: (28, b = 2), (203, b = 32).

3. (Gamma codes*) Let x be a positive integer. The γ code for x consists of a unary code for
1 + �log x� followed by the binary code for x − 2�log x�. Essentially, the first part of the γ

code tells how many bits are required to code x in binary, and the second part is the binary
code for x with all bits preceding the second 1 omitted. For example, the γ code for 13 is
1110 followed by 101, indicating the binary code 1101 of length 4.

(a) Find the γ code for 20.
(b) The length of the gamma code is approximately 1+2 log x bits. Find the probability

distribution of x that would make the γ code the one minimizing average length.

4. Find the PageRank for the link structure shown in figure 17.9 using p = .7.

17.8 Bibliography

1 2

3

FIGURE 17.9 A link
structure for exercise 4.

An excellent text on information retrival is [1]. Another good reference is [2]. The
Golomb code is presented in [3]. See [4] for a detailed analysis of the properties of
the method. PageRank is described in [5]. There have been several other methods
proposed for ranking based on links. One is described in [6].

References

[1] Witten, Ian H., Alistair Moffat, and Timothy C. Bell. Managing Gigabytes. 2nd
ed. San Francisco: Morgan Kaufmann, 1999.

[2] Baeza-Yates, R., and B. Ribeiro-Neto. Modern Information Retrieval. Harlow,
Eng.: Addison-Wesley, 1999.

“ch17” — 2006/2/6 — 18:48 — page 300 — #17

� �

� �

300 • C h a p t e r 17 I N F O R M AT I O N R E T R I E VA L

[3] Golomb, S. W. “Run-Length Encodings.” IEEE Transactions on Information
Theory 12 (1966) 399–401.

[4] Gallager, R. G., and D. C. Van Voorhis. “Optimal Source Codes for Geometri-
cally Distributed Integer Alphabets.” IEEE Transactions on Information Theory
21, (1975): 228–30.

[5] Brin, S., and L. Page. “The Anatomy of a Large-Scale Hypertextual Web Search
Engine.” In Proceedings of the 7th International World Wide Web Conference.
Amsterdam: Elsevier Science, 1998, pp. 107–17.

[6] Kleinberg, J. M. “Authoritative Sources in a Hyperlinked Environment.” Journal
of the ACM 46 (1999): 604–32.

“ch16” — 2006/2/6 — 18:48 — page 264 — #1

� �

� �

16
DATABASE SYSTEMS

M
ost people are familiar with the term database, for these repositories are
practically everywhere, holding data both routine and critical, mundane and
esoteric. Database systems are an essential element of modern information sci-

ence, making available vast quantities of data for analysis, business operations, and
ready access for a variety of purposes. A database is essentially a systematic orga-
nization of data, which through a database system can be queried to present data in
useful form.

16.1 Relational Structure

Early database designs were based on standard data structures of lists, trees, and
arrays studied in the previous chapter, but they proved to be rather unwieldy.
A great revolution occurred with a publication by Edgar F. Codd in 1970.
A mathematician working at the IBM San Jose Research Laboratory,
Codd realized that the mathematical theory of relations could form a founda-
tion for a rigorous theory of database design. His relational theory is indeed
now the foundation of essentially all modern database systems.

A relational database system can be viewed as consisting of “tables and only
tables,” for a table is a natural representation of a relation. A table, of course,
is a two-dimensional array. The top row of a relation table contains headings,
termed attributes, and each other row of the table is an instance of the

relation, and is defined by a tuple having components corresponding to the
attributes. For example, you might own a relational database in the form of a
small address book. It might have the attributes name, house number, street

name, city, state, and ZIP code. Each entry would be regarded as a row or tuple
and would consist of the corresponding information for one of your friends. Such an
address book relation is shown in figure 16.1, with the name AddressBook.

264

“ch16” — 2006/2/6 — 18:48 — page 265 — #2

� �

� �

S e c t i o n 16.1 R E L AT I O N A L S T R U C T U R E • 265

AddressBook

Name Number Street City State ZIP
Marge Davis 890 Water Street Metropolis WA 98202
Jane Doe 312 A Street Smallsville CA 94333
Ralph Flowers 314 A Street Smallsville CA 94333
Mary Green 8567 Baker Ave Blue Field AZ 85678
Harry Lincoln 786 Water Street Metropolis WA 98202
Peter Mallard 875 A Street Smallsville CA 94333
Cheri Stockton 7890 Viewpoint Ave Smallsville CA 94334
Nancy Strong 6589 Carpenter Ave Blue Field AZ 85678

FIGURE 16.1 The AddressBook relation. The relation is a table with columns corresponding to attributes and
rows being instances.

A relation is just this kind of structure, with the one restriction that no two instances
can be the same. If they are (temporarily) identical, they must be coalesced into one.

You might look down the Name column of AddressBook to find a particular person
and then scan across that row to find the person’s city. You could also scan down the
City column looking for all friends that live in Smallsville, or the Street column to
find all friends that live on Baker Street. It is a simple but useful database—and it is
relational because it consists of tables and only tables (in this case just one table).

An abstract relation is referred to by its name, which might be simply R. If it
has attributes A1, A2, . . . , Am, the fuller name R(A1, A2, . . . , Am) is frequently used.
Thus the full name of the address book is AddressBook(Name, Number, Street,
City, State, ZIP).

Another example relation Clinic is a (simplified) version of a database of a small
medical clinic, keeping track of patient visits as shown in figure 16.2. Both the
AddressBook and Clinic relations will be used to illustrate basic database design
concepts.

Clinic

ID Name Birth year Doctor Specialty Date
1106 Peter Mallard 75 Ralston Allergy Jan 14
4023 Alan Baker 37 Hartwood Rheumatology Jan 14
2469 Cheri Stockton 88 Elwood Dermatology Jan 14
3487 Robert Casent 80 Ralston Allergy Jan 14
2469 Cheri Stockton 88 Elwood Dermatology Jan 15
5602 Jane Doe 78 Vister Dermatology Jan 15
3671 Ralph Flowers 52 Hartwood Rheumatology Jan 15
4023 Alan Baker 37 Vister Dermatology Jan 15
2776 Gavin Jones 82 Ralston Dermatology Jan 16

FIGURE 16.2 The Clinic relation. This full table can be reduced.

“ch16” — 2006/2/6 — 18:48 — page 266 — #3

� �

� �

266 • C h a p t e r 16 D ATA B A S E S Y S T E M S

Although it is impractical to do so in most cases, any relational database can be
viewed as a single large table. It would be used exactly like the AddressBook or

Clinic tables, although it might have an enormous number of columns
and rows. Such a single-table representation of a large database is
likely to be a highly inefficient representation, containing a great deal
of redundancy and being awkward to update. Inefficiencies can be seen
in Clinic, since each doctor’s specialty is repeated numerous times,
and this is fundamentally unnecessary. Redundancy can be reduced

by representing a single table as a combination of smaller ones. In
general, a good relational database can be regarded as a virtual master
table based on several smaller efficient tables. The overall table need
not ever be built explicitly since the equivalent information is fully

contained in the collection of small tables.
A new representation of the relation Clinic as two relations PatientVisits(ID,Name,

Age, Doctor, Date) and Doctors(Doctor, Specialty) is shown in figure 16.3. In this
version, the information about doctor specialties is contained in a separate relation
(or table) and hence is not repeated in the relation about patient visits.

There is still some redundancy in the two-table version of Clinic because each
patient’s birth year is repeated in each of that patient’s visit tuple. This redundancy
can be eliminated by representing ClinicVisits as two relations, as shown in figure 16.4.
This produces the representation of Clinic as the three relations Patients, Visits, and
Doctors.

The following sections study relations systematically and develop a general
procedure for decomposing a relation into several small efficient component relations.

PatientVisits

ID Name Birth year Doctor Date
1106 Peter Mallard 75 Ralston Jan 14
4023 Alan Baker 37 Hartwood Jan 14
2469 Cheri Stockton 88 Elwood Jan 14
3487 Robert Casent 80 Ralston Jan 14
2469 Cheri Stockton 88 Elwood Jan 15
5602 Jane Doe 78 Vister Jan 15
3671 Ralph Flowers 52 Hartwood Jan 15
4023 Alan Baker 37 Vister Jan 15
2776 Gavin Jones 82 Ralston Jan 16

Doctors

Doctor Specialty
Elwood Dermatology
Hartwood Rheumatology
Ralston Allergy
Vister Dermatology

FIGURE 16.3 Two-table version of Clinic. Specialties are separated from visit information.

“ch16” — 2006/2/6 — 18:48 — page 267 — #4

� �

� �

S e c t i o n 16.2 K E Y S • 267

Patients

ID Name Birth year
4023 Alan Baker 37
3487 Robert Casent 80
5602 Jane Doe 78
3671 Ralph Flowers 52
2776 Gavin Jones 82
1106 Peter Mallard 75
2469 Cheri Stockton 88

Visits

ID Doctor Date
1106 Ralston Jan 14
4023 Hartwood Jan 14
2469 Elwood Jan 14
3487 Ralston Jan 14
2469 Elwood Jan 15
5602 Vister Jan 15
3671 Hartwood Jan 15
4023 Vister Jan 15
2776 Ralston Jan 16

FIGURE 16.4 Decomposition of PatientVisits into Patients and Visits.

16.2 Keys

Loosely speaking, a key in a relation is an attribute or group of attributes that can be
used to uniquely define any instance in the relation. For example, in AddressBook
shown in figure 16.1, the attribute Name serves as a key because it uniquely defines
an instance in the relation. Each name occurs only once.

More generally, a superkey of a relation is an attribute or group of attributes
whose values always uniquely define an instance in the relation. That is, once the
values of the superkey attributes are known, the values of all remaining attributes are
defined. There can be at most one tuple for every combination of superkey attributes.
Mathematically, a set of attributes {A1, A2, . . . , Am} is a superkey for a relation if no
two instances have the same values of these attributes.

By definition, every relation has at least one superkey since no two instances are
identical; hence the entire set of attributes always constitutes a superkey.

A key is a minimal superkey. That is, a key is a set of attributes {A1, A2, . . . , Ak} that
uniquely defines all other attributes, and there is no smaller subset of {A1, A2, . . . , Ak}
that has this property. Again, every relation has at least one key because starting with a
superkey, redundant attributes can be eliminated one by one until no further reduction
is possible, and the result is a key.

Your email program might contain a small database of names and email addresses
that are referenced by a unique nickname for each person. One person on the list
might be “jim,” another “james,” and still another “jimmy.” The nicknames are part
of the database, and form the key used to access any instance. Of course, this database
has other keys as well, including the email address itself.

Although a relation may have more than one key, it is standard practice to select
one as the primary key, which is used to access the various instances. It is extremely
important that at least this primary key be unambiguous, and remain so even if addi-
tions are made to the database, for repetition in a key is not only ruled out theoretically,
it is disaster in practical terms. Often considerable effort is devoted to the design of a
primary key (which may include more than a single attribute). The attribute Number
(the house number on the street) might be considered as a key for AddressBook as
currently constituted, since no two people have the same house number. But it is a

“ch16” — 2006/2/6 — 18:48 — page 268 — #5

� �

� �

268 • C h a p t e r 16 D ATA B A S E S Y S T E M S

poor candidate for a primary key. As other people are listed, someone at a different
location may have the same house number. A key should be unambiguous for all
conceivable tuples.

The issue arises frequently in database systems containing information about peo-
ple. The use of people’s names is often fine for small systems, but in large systems
there is a strong possibility that two people will have the same name. For this reason,
the U.S. Social Security number is frequently used as a key attribute. But, this too has
weaknesses, since many foreign nationals do not have Social Security numbers. To
get around this, most universities, for example, assign special university ID numbers
to all students, faculty, and staff. Some stores use telephone number as an attribute
that can serve as a key or part of a key. Banks assign account numbers. Some organi-
zations use name and birth date. All of these practices are motivated by the need to
ensure that a unique key is defined. The relation Clinic uses an ID number for each
patient for this reason. However, doctors are not given an ID number, for it is assumed
that no two doctors in the clinic have the same name—if a duplication should occur,
the doctors would be distinguished in the database by, for example, using a first name
as well as last name.

There is no single attribute that serves as a key for the relation Clinic. However,
the pair ID, Date does serve as a key under the assumption that a patient has only
one appointment and sees only one doctor on any given day. If this assumption is
not warranted, a new attribute Appointment can be introduced that assigns a unique
number to every appointment or doctor consultation. Each tuple in the database would
have a unique appointment number, and hence Appointment could serve as a key.
(See exercise 5.)

16.3 Operations

Part of the power of the relational model is that it is fairly easy to perform useful
operations on relations. Queries can be formulated and answered, relations can be
decomposed into smaller subrelations, and two or more relations can be combined.
The output of queries can themselves be treated as relations, allowing nested queries.
These operations are intuitive, yet flexible enough to carry out important manipulation.
Some of these are used in the following sections. They may be divided into two main
classes: set operations and algebraic operations.

Set Operations

Some operations are based on the fact that a relation is a set of tuples. Familiar set
operations such as union and intersection may then be applied.

1. Union. Suppose there are two address books, each with the same
attributes. Their union is a larger address book that includes the
information in either of the individual books. However, if a particular
instance (tuple) appears in both books, only one copy is included in the
master book.

“ch16” — 2006/2/6 — 18:48 — page 269 — #6

� �

� �

S e c t i o n 16.3 O P E R AT I O N S • 269

In general, the union of relations R and S, denoted R ∪ S, is the set of
tuples that are in either of the two relations. For this to make sense, it is
necessary that the two individual relations have the same set of attributes,
listed in the same order.

2. Intersection. The intersection of two address books is the (probably
smaller) address book that contains only those listings that occur in both
books.
The intersection of relations R and S is denoted R∩S. Again, it is necessary
that R and S have the same set of attributes in the same order.

3. Difference. The difference R − S is the set of tuples that are in R but
not S.

Algebraic Operations

1. Selection. Selection is the process of reducing a relation so that it includes
only some of its instances. The tuples to be included are determined
by various rules applied to the attributes of the instances, depending on
the data that is required. For example, a reduced clinic relation with
entries corresponding to patients of Dr. Elwood could be formed. This
new relation would consist precisely of the instances from the original
Clinic relation that had Elwood as the Doctor attribute. Sometimes, the
selection criterion is complex and involves many of the attributes. For
example, the clinic may want to find all patients that are either older than
50 or have seen a doctor whose specialty is dermatology. The selection
operation is the basic operation used in queries, for it isolates the subset
of information needed for a particular reason.

2. Projection. Projection reduces a relation by including only a subset of the
original attributes. The result is termed the projection onto these attributes.
Projection may have the added effect of reducing the number of instances
because duplicates of the reduced-dimension tuples must be eliminated.
Consider the relation R(A1, A2, . . . , AM). The projection onto the attributes
A1, A2, . . . , Ak consists of tuples whose attributes are A1, A2, . . . , Ak but
with the duplicate tuples removed.

For example, if Clinic is projected onto the attributes {Doctor,
Specialty}, the relation Doctors of figure 16.3 is obtained.

Projection is the basic operation used to reduce a complex relation
to a series of simpler relations. The decomposition of Clinic shown in
figure 16.3 into PatientVisits and Doctors is indeed formed by two
projections.

3. Natural join. The natural join operation combines two relations to form
a single relation that contains all the relevant information in the two orig-
inal ones. It is the basic operation for reconstructing a full relation after
it has been decomposed. The natural join of relations R and S is denoted
R �� S.

“ch16” — 2006/2/6 — 18:48 — page 270 — #7

� �

� �

270 • C h a p t e r 16 D ATA B A S E S Y S T E M S

The set of attributes of the natural join of two relations (often termed
simply the join) is the union of the attributes of each of the rela-
tions, with duplicates eliminated. For example, if the two relations are
PatientVisits(ID, Name, Birth year, Doctor, Date) and Doctors(Doctor,
Specialty), the join of these two has attributes {ID, Name, Birth
year, Doctor, Specialty, Date}. The common attribute Doctor appears
only once.

The tuples included in the join are those made up by concatenating
all combinations of tuples in the corresponding individual relations, but
only if their values agree in the common attributes. Thus if the relations
are R(A, B, C) and S(C, D, E), the join consists of all tuples of the form
(a, b, c, d, e), where (a, b, c) is in A and (c, d, e) is in B and with the c being
the same in A and B. The joined relation can be much larger than either
of its two components.

The join PatientVisits(ID, Name, Birth year, Doctor, Date) �

Doctors(Doctor, Specialty) is the original relation Clinic.
The natural join is a powerful operation, and as the name suggests, there

are other joins as well, some of which are discussed in the exercises.

4. Product. The product of two relations R and S, denoted R × S, combines
R and S in a way that preserves every possibility.

The set of attributes of the product R × S consists of the concatenation
of the attributes of R followed by the attributes of S, without eliminating
duplicates. Thus, if R has m attributes and S has n attributes, the product
R × S will have m + n attributes. If R and S do have identical attributes
with the same name, it is necessary to rename the attributes of at least
one of the duplicates so that they are distinguished. One way to do this,
when the relations are R(A1, A2, . . . , Am) and S(B1, B2, . . . , Bn) with some
duplication of attributes, is to denote the product by

[R × S](R.A1, R.A2, . . . , R.Am, S.B1, S.B2, . . . , S.Bn).

Suppose that R has M tuples and S has N tuples. The product R × S is
constructed by listing the first tuple in R a total of N times and adjoining
to each of these the entire list of N tuples from S. Then the next tuple
from R is listed N times and the entire list of N tuples from S adjoined
again, and so forth. When the list is complete, it will contain a total of
M × N tuples, each of the M tuples from R being paired with each of the
N tuples of S.

Various smaller relations can be obtained from the product. The natural
join R � S can be obtained from the product R×S by applying the selection
operator, selecting those tuples that agree on the attributes common to R
and S. The result is then projected onto the set of attributes that contains
all attributes only once, thereby eliminating the duplication. An example
of this operation is shown in section 16.6.

There are other set and algebraic operations, such as various types of joins, but all
of these can be obtained from the operations outlined in this section, together with a
possible renaming of attributes.

“ch16” — 2006/2/6 — 18:48 — page 271 — #8

� �

� �

S e c t i o n 16.5 N O R M A L I Z AT I O N • 271

16.4 Functional Dependencies

An important characterization of a particular relation is the set of functional depen-
dencies that it contains. A functional dependency in a relation R is a dependency
among attributes, written as

A1A2, . . . , Am −→ B1,

where the Ai’s and B1 are attributes from R. This is interpreted to mean that if the
values of the attributes A1, A2, . . . , Am in a tuple are known, then the value of B1
is determined uniquely. Another way to state this is that if two tuples agree on the
attributes A1, A2, · · · , Am, they agree on the attribute B1. This is also expressed by
saying that A1, A2, . . . , Am determine B1. If the attributes A1, A2, . . . , Am determine
additional attributes B2, B3, . . . Bn as well, one may write

A1A2 · · · Am −→ B1B2B3 · · · Bn,

which is also considered to be a functional dependency. If the Ai’s are all distinct
from the Bj’s, the dependency is said to be nontrivial.

The term “functional dependency” implies that the dependency is valid for all
conceivable tuples that may occur in the relation. It is not enough that the dependency
holds for a particular sample or for the current entries. For example the relation
Clinic contains the apparent dependency Name → Birth year because everyone in
the relation has a different birth year. However, this is not a functional dependency
because, clearly, there is the possibility that a new patient may have a birth year
that duplicates one that is already in the relation. When searching for functional
dependencies, one must spell out the assumptions about what tuples might possibly
be entered.

Note that all attributes are functionally dependent on any superkey that is in fact
a valid superkey for all possible entries, and indeed an alternative way to define a
superkey is that it has this property.

Many relations have functional dependencies that are not based on keys. For
example, Clinic contains the functional dependency Doctor → Specialty.1 It is
these functional dependencies that guide the decomposition of a relation into useful
components.

16.5 Normalization

A database is rarely static. Rather, it is frequently changed, with new data being
added, old data being removed, and corrections being made. If a large database has

1But note the implicit assumption that each doctor has at most one specialty. If there is the possibility
that a doctor has more than one specialty, the apparent dependency would not be a functional dependency.

“ch16” — 2006/2/6 — 18:48 — page 272 — #9

� �

� �

272 • C h a p t e r 16 D ATA B A S E S Y S T E M S

its relation represented in full form, it may be inefficient, but equally important, the
redundancy and inefficiency may render the database susceptible to update errors.

Suppose that the Clinic relation also included patient addresses as an attribute
Address. Then if a patient alerted the office that his or her address was incorrect,
it would be necessary to go through the entire database and change every entry that
involved that patient. However, in the three-relation version of Clinic, it would only
be necessary to change the address once, in the relation Patients. If the database were
large, the first method would be lengthy and prone to error.

Deleting tuples can also lead to undesirable effects, including the loss of potentially
valuable information. For example, suppose a specialist doctor is brought into the
clinic to see a patient. If the listing for that one visit is deleted, the information about
the doctor is also lost. This phenomenon can be important in critical or complex
database systems.

Normal Forms

It is said that in the early part of 1970 when Codd was working out relational database
theory, there were news reports of President Nixon normalizing U.S. relations with
the People’s Republic of China. Codd thought that if Nixon could normalize those
relations, then perhaps Codd could normalize his database relations.

Codd’s normalization required that all subrelations in a representation of relation
satisfy certain desirable properties. There is now essentially a hierarchy of normal
forms that impose increasing restrictions on the nature of the relational description.
The early normal forms have largely been superseded by a later form, termed the
Boyce–Codd normal form. However, the elementary dictates of the first normal form,
denoted 1NF, are worth pointing out. This form requires only that the attributes be
all single values. For example, in your address book relation you might consider
adding the attribute Children to list the children of the people in your database.
A corresponding tuple entry for that attribute might be Todd, Martha, Jane. This
multiple value form is not allowed in 1NF, for it can make it difficult to compare
tuples, to extract information, and to update the database. One way around this2 is to
provide for several children attributes in the relation, with headings Child 1, Child 2,
Child 3, Child 4, Child 5.

Boyce–Codd Normal Form

Update and inefficiency difficulties can be ameliorated by decomposing a relation
into components that are in Boyce–Codd normal form. The definition of that normal
form is straightforward in terms of the notion of functional dependency discussed in
section 16.4.

Boyce–Codd Normal Form. A relation R is in Boyce–Codd normal form (BCNF)
if for all nontrivial dependencies A1A2, . . . , Ak → B, the attribute set {A1, A2, . . . , Ak}
is a superkey for R.

2See exercise 1 for another (better) method.

“ch16” — 2006/2/6 — 18:48 — page 273 — #10

� �

� �

S e c t i o n 16.5 N O R M A L I Z AT I O N • 273

This definition can be regarded as a kind of test. If a database relation fails the test,
it is not in BCNF and something can be done about it. Specifically, the dependency
can be used to decompose the relation into components. Then the test can be applied
to each of these components.

Let us apply this test to the relation Clinic (in its full original form). There are
several nontrivial dependencies, including Doctor → Specialty and ID → Name,
Birth year and ID, Date → Specialty. In the first two of these the left-hand side of
the dependency is not a key, and hence these dependencies indicate that the relation
is not in Boyce–Codd normal form and can be decomposed. Indeed, as will be shown
later these two dependencies can be used to decompose Clinic into the three relations
Doctors, Patients, and Visits and this decomposition is in Boyce–Codd normal form.
Doesn’t that seem right—that a clinic is described by its doctors, patients, and visits?

A School Example

Consider a simplified database of a small high school that records student grades
during one semester. The relation School is shown in figure 16.5. It is assumed that
each class type is taught by a single instructor and always in the same room.

Let us analyze the structure of this relation. First, what are the keys? In particular,
is there a single attribute that can serve as a key? Clearly not. There is no single
attribute that will suffice, since every column has repeated entries. However, consider
the pair {ID, Class}. It does form a key, for any row in the table is specified uniquely
by giving the student ID and the class.

Let us now search for nontrivial dependencies. An obvious one is ID → Student.
Can we find other nontrivial dependencies with the same left-hand side? No, nothing
else is uniquely determined by the student ID number. This tells us that a component
relation can be constructed from this dependency. To do so, the attributes on both
sides of the dependency are used. Let us call this relation Students. The dependent

School

ID Student Class Subject Instructor Room Grade
10112 J. Banes MA 23 Calculus LaGrange F 203 B
10112 J. Banes Eng 40 Fiction Moss K 112 A
10112 J. Banes Hist 62 Latin Amer Felding G 331 A-
12343 S. Johnson Eng 40 Fiction Moss K 112 B-
12343 S. Johnson Hist 62 Latin Amer Felding G 331 B
12343 S. Johnson Art 76 Drawing Picas A 2 A
12343 S. Johnson PE 45 Dance Murray W. Gym A
23678 M. Walters MA 23 Calculus LaGrange F 203 C
23678 M. Walters Art 76 Drawing Picas A 2 A-
23678 M. Walters Eng 40 Fiction Moss K 112 B

FIGURE 16.5 The relation School. Every student is assigned an ID number. Classes have numbers and subject
names, and are taught by a single instructor, always in the same room.

“ch16” — 2006/2/6 — 18:48 — page 274 — #11

� �

� �

274 • C h a p t e r 16 D ATA B A S E S Y S T E M S

attribute can then be eliminated from the original relation to obtain the slightly
smaller relation called StudentClasses. These two component relations are shown
in figure 16.6.

Next let us search for a nontrivial dependency in the remaining component rela-
tion StudentClasses. We find Class → Subject, Instructor, Room, and Class is
not a superkey for the StudentClasses relation. (Recall that it is assumed that each
class is taught by a single instructor, always in the same room, during the semester;
hence Class → Instructor, Room is a functional dependency—always true.) Using
the dependency Class → Subject, Instructor, Room, a corresponding component
relation called Classes can be constructed, and the three dependent attributes can be
dropped from what remains. Let us call the remaining relation Grades. The overall
decomposition, consisting of three relations each in BCNF, is shown in figure 16.7.

Notice how easy it is to update the final representation of the relation. If instructor
Lagrange moves to a new room, for example, only one entry must be changed.
If there is an error in the spelling of a student’s name, it need be corrected only
once.

The BCNF is a good goal, but there are both weaker and stronger normal forms that
are occasionally of practical value. See exercise 4. Also, suppose that Mr. Lagrange
were to teach a class in algebra as well as calculus but in the same room. Then
the classes relation would contain a nontrivial dependency Instructor → Room that
could be the basis for further decomposition. But this minor refinement may not be
worthwhile.

Students

ID Student
10112 J. Banes
12343 S. Johnson
23678 M. Walters

StudentClasses

ID Class Subject Instructor Room Grade
10112 MA 23 Calculus LaGrange F 203 B
10112 Eng 40 Fiction Moss K 112 A
10112 Hist 62 Latin Amer Felding G 331 A-
12343 Eng 40 Fiction Moss K 112 B-
12343 Hist 62 Latin Amer Felding G 331 B
12343 Art 76 Drawing Picas A 2 A
12343 PE 45 Dance Murray W. Gym A
23678 MA 23 Calculus LaGrange F 203 C
23678 Art 76 Drawing Picas A 2 A-
23678 Eng 40 Fiction Moss K 112 B

FIGURE 16.6 The first decomposition of School. The attribute Student is determined
by the small relation, and hence is not needed in the remainder.

“ch16” — 2006/2/6 — 18:48 — page 275 — #12

� �

� �

S e c t i o n 16.5 N O R M A L I Z AT I O N • 275

Students

ID Student
10112 J. Banes
12343 S. Johnson
23678 M. Walters

Classes

Class Subject Instructor Room
MA 23 Calculus LaGrange F 203
Eng 40 Fiction Moss K 112
Hist 62 Latin Amer Felding G 331
Art 76 Drawing Picas A 2
PE 45 Dance Murray W. Gym

Grades

ID Class Grade
10112 MA 23 B
10112 Eng 40 A
10112 Hist 62 A-
12343 Eng 40 B-
12343 Hist 62 B
12343 Art 76 A
12343 PE 45 A
23678 MA 23 C
23678 Art 76 A-
23678 Eng 40 B

FIGURE 16.7 Final decomposition. The remaining relation Grades has no nontriv-
ial dependency that is not based on a superkey. Hence the complete relation is
decomposed into components that are in BCNF.

The BCNF Algorithm

There is a general process used to obtain the BCNF that was illustrated by the School
example.

Beginning with a relation R, one looks for a nontrivial dependency of the form
A1A2 · · · , Ak → B1, B2, Br in which the set {A1, A2, . . . , Ak} is not a superkey.
To minimize the number of components in the final decomposition, it is best to
include as many Bj’s as possible and as few Ai’s as possible for those Bj’s. That
is, given a nontrivial dependency of the form A1A2 · · · Ak → B1, one should seek
additional attributes also dependent on A1, A2, . . . , Ak and include them as well; and

“ch16” — 2006/2/6 — 18:48 — page 276 — #13

� �

� �

276 • C h a p t e r 16 D ATA B A S E S Y S T E M S

then minimize the number of Ai’s. These last procedures are optional. It is only
necessary to begin with a nontrivial dependency in which the left-hand side is not a
superkey.

The original relation R is then decomposed into two relations R1 and R2. R1
is the projection of R onto the attributes A1, A2, . . . , Ak , B1, B2, . . . , Br . And R2 is
the projection of R onto A1, A2, . . . , Ak , C1, C2, . . . , Cs, where the collection of Ci’s
includes all other attributes of R aside from the Ai’s and Bi’s. It then follows (as soon
will be shown) that R is equal to the natural join of R1 and R2.

Next R1 and R2 are each examined to determine if they can be decomposed using
the same process. If either of them cannot be so decomposed, then by definition it
must be in Boyce–Codd normal form. This process continues until all the subrelations
are in Boyce–Codd normal form.

Verification of the Algorithm*

To verify that the process works, it is necessary to establish two things. First it must be
shown that the algorithm always comes to a successful conclusion. To see that it does,
we first prove that any relation with just two attributes must be in BCNF. Suppose
the two attributes are A and B. There are only two basic possibilities: (1) if there is
no nontrivial dependency, R must be in BCNF, (2) if A → B, then A must be a key,
for if there were two tuples with the same first element, say (a, b1) and (a, b2), the
dependency would imply that b1 = b2, which means that the two tuples are identical,
contrary to the definition of a relation. The situation is parallel if B → A. Thus a
two-attribute relation is always in BCNF.

Now notice that at every stage of the decomposition the newest subrelation con-
tains fewer attributes than the one from which it was derived. Hence, eventually,
all components must either be in BCNF or consist of only two attributes, and in
either case the relations are in BCNF. Therefore the algorithm always concludes
successfully.

The second thing that must be established is that the decomposition is faithful to
the original in the sense that the original relation can be reconstructed from the decom-
posed form. Suppose for simplicity that R has only three attributes, A, B, C. Suppose
also that there is a nontrivial dependency B → C with B not a key. Decompose this
relation into R1 = R1(A, B) and R2 = R2(B, C). We will show that the natural join of
R1 and R2 is R.

Suppose there is a tuple (a, b, c) in R. Then R1 will contain (a, b) and R2 will
contain (b, c). The natural join R1 � R2 will contain all combination tuples in R1 and
R2 with a common B element. Thus clearly (a, b, c) will occur in the join. Hence the
join contains everything in R. It still must be shown, however, that that is all there is
in the natural join; no new false tuples are created.

Suppose as before that (a, b, c) is in R. R1 contains (a, b). There could be a problem
if R2 contained a tuple of the form (b, c′), for then (a, b, c′) would be in the natural
join. But there can be no such (b, c′) in R2, for that would violate the dependency
B → C. Hence no new tuples are created, and the natural join faithfully reconstructs
the original relation R. This argument applies directly (but with cumbersome notation)
to an arbitrary number of attributes.

“ch16” — 2006/2/6 — 18:48 — page 277 — #14

� �

� �

S e c t i o n 16.6 J O I N S A N D P R O D U C T S * • 277

Relation to Entropy∗

Consider a relation R(A, B, C, D). If the entries are considered to be random, the
entropy H(A, B, C, D) can be defined. Suppose now that there is a functional
dependency A → B. Then the relation can be expressed as the natural join of two
simpler relations of the form R1(A, B) and R2(A, C, D). The entropy can be written as

H(A, B, C, D) = H(B|A, C, D) + H(A, C, D)

= H(B|A) + H(A, C, D) (because C and D add nothing
to A about B)

= H(A, C, D) (because H(B|A) = 0).

Hence it is necessary only to consider H(A, C, D), and one should keep a record of
A → B, which is the relation R1(A, B). In general, functional dependencies imply a
zero-valued conditional entropy that simplifies the structure of H in the same way
that it simplifies the structure of the relation.

16.6 Joins and Products*

The product operation can be used to manipulate data contained in two or more
relations in complex ways. This section displays the result of a product operation,
and shows how the natural join of two relations can be easily found from the product.

Consider the two relations Students(ID, Student) and Grades(ID, Class, Grade) of
the school example. These two component relations are shown again in figure 16.8.
The product of these two relations includes all attributes of both, even duplicating ID.
To make clear that they are distinct, let us rename them ID1 and ID2. The complete
product is displayed in figure 16.9, which has a total of 2 + 3 = 5 attributes and
3 × 10 = 30 tuples.

Students Grades

ID Student ID Class Grade
10112 J. Banes 10112 MA 23 B
12343 S. Johnson 10112 Eng 40 A
23678 M. Walters 10112 Hist 62 A-
 12343 Eng 40 B-
 12343 Hist 62 B
 12343 Art 76 A
 12343 PE 45 A
 23678 MA 23 C
 23678 Art 76 A-
 23678 Eng 40 B

FIGURE 16.8 The two relations Students and Grades. Their product is shown in
figure 16.9.

“ch16” — 2006/2/6 — 18:48 — page 278 — #15

� �

� �

278 • C h a p t e r 16 D ATA B A S E S Y S T E M S

Product

ID1 Student ID2 CLASS Grade
10112 J. Banes 10112 MA 23 B
10112 J. Banes 10112 Eng 40 A
10112 J. Banes 10112 Hist 62 A-
10112 J. Banes 12343 Eng 40 B-
10112 J. Banes 12343 Hist 62 B
10112 J. Banes 12343 Art 76 A
10112 J. Banes 12343 PE 45 A
10112 J. Banes 23678 MA 23 C
10112 J. Banes 23678 Art 76 A-
10112 J. Banes 23678 Eng 40 B
12343 S. Johnson 10112 MA 23 B
12343 S. Johnson 10112 Eng 40 A
12343 S. Johnson 10112 Hist 62 A-
12343 S. Johnson 12343 Eng 40 B-
12343 S. Johnson 12343 Hist 62 B
12343 S. Johnson 12343 Art 76 A
12343 S. Johnson 12343 PE 45 A
12343 S. Johnson 23678 MA 23 C
12343 S. Johnson 23678 Art 76 A-
12343 S. Johnson 23678 Eng 40 B
23678 M. Walters 10112 MA 23 B
23678 M. Walters 10112 Eng 40 A
23678 M. Walters 10112 Hist 62 A-
23678 M. Walters 12343 Eng 40 B-
23678 M. Walters 12343 Hist 62 B
23678 M. Walters 12343 Art 76 A
23678 M. Walters 12343 PE 45 A
23678 M. Walters 23678 MA 23 C
23678 M. Walters 23678 Art 76 A-
23678 M. Walters 23678 Eng 40 B

FIGURE 16.9 Product of Students and Grades. The product contains every combina-
tion of tuples from the two underlying relations.

Once the product is formed, the natural join can be obtained by selection and
projection. The section criterion is that ID1 = ID2. The tuples that meet this require-
ment are shaded in the product representation shown in figure 16.9. After selecting
on these tuples, the result is projected onto an attribute set that eliminates either ID1
or ID2; it does not matter which is dropped, since their values agree on all selected
tuples. The ID attribute that remains in the projection is renamed ID for simplicity.
The outcome of this selection and projection procedure is the natural join of Students
and Grades (figure 16.10), which is the relation StudentGrades (from which the two
components were originally derived).

“ch16” — 2006/2/6 — 18:48 — page 279 — #16

� �

� �

S e c t i o n 16.7 D ATA B A S E L A N G UAG E S • 279

StudentGrades

ID Student Class Grade

10112 J. Banes MA 23 B

10112 J. Banes Eng 40 A

10112 J. Banes Hist 62 A-

12343 S. Johnson Eng 40 B-

12343 S. Johnson Hist 62 B

12343 S. Johnson Art 76 A

12343 S. Johnson PE 45 A

23678 M. Walters MA 23 C

23678 M. Walters Art 76 A-

23678 M. Walters Eng 40 B

FIGURE 16.10 Natural join of Students and Grades. The join can be obtained from
the product by selecting tuples that agree on the duplicated attribute, and then projecting
to eliminate the duplication.

16.7 Database Languages

The primary purpose of a database is to readily access portions of data that are
requested and add or delete entries. These operations are carried out through a query
language. The standard query language SQL (for Structured Query Language, and
pronounced “sequel”) is used in most database systems. This language allows for flex-
ible formulation and execution of queries and for modifying the entries in a database.
This section illustrates the use of this language in a generalized manner.

Queries

Most users interface databases through queries, asking for the return of certain tuples,
restrictions of tuples, or combinations of tuples from one or more relations.

The most important query is that of selecting the tuples that satisfy a simple
specification. A query to the School relation might be

SELECT Grade, Subject
FROM School
WHERE Name = ‘J. Banes’ AND Class = ‘Hist 62’

This will return the grade and subject of J. Banes in the History 62 class. Specifically,
it will return “A−, Latin America.”

A slightly more complex query might be

SELECT ID, Student
FROM School
WHERE Class = ‘Ma 23’ AND Grade = ‘B’

This will return the ID and name of all students who received a B in Math 23.

“ch16” — 2006/2/6 — 18:48 — page 280 — #17

� �

� �

280 • C h a p t e r 16 D ATA B A S E S Y S T E M S

Queries can involve more than one relation. For example, consider the query

SELECT Grade, Instructor
FROM Classes, Grades
WHERE ID = ‘10112’ AND Class = ‘Eng 40’

This will return the grade and instructor of J. Banes in the English 40 class using
the relations Classes(Class, Subject, Instructor, Room) and Grades(ID, Class,
Grade).

Queries can be evaluated internally in several different ways. One way is to convert
the query to the evaluation of a combination of relational operations and evaluate the
result. For example, an intersection query can be evaluated by actually forming the
intersection of relations. Any query can be expressed in terms of the six fundamental
operations of select, project, union, difference, product, and rename. The conversion
of a query to the appropriate combination of operations is the job of the database
system, and this operation can be complex. As users, it is not necessary to know
the details, but understanding the basic structure as described in this chapter is valuable
for anyone beginning to probe database theory.

Modification

From time to time new tuples must be adjoined to the relations of a database, and
out-of-date tuples must be modified or deleted.

New tuples are adjoined by use of the insert command. For example, consider the
instruction

INSERT INTO ID, Students(ID, Student)
VALUES (‘3001’, ‘R. Smith’)

This will add the student R. Smith with ID 3001 to the relation Student. Later, to add
class information about R. Smith, one might use

INSERT INTO ID, Grades(ID, Class, Grade)
VALUES (‘3001’, ‘Hist 62’, ‘B+’)

If this were an error, we could delete the tuple with the instruction

DELETE FROM ID, Grades(ID, Class, Grade)
WHERE ID = ‘3001’ AND

Class = ‘Hist 62’ AND
Grade = ‘B+’

“ch16” — 2006/2/6 — 18:48 — page 281 — #18

� �

� �

S e c t i o n 1 6 . 8 E X E R C I S E S • 281

16.8 EXERCISES

1. (Children) Explain how the problem of including any number of children’s names in
AddressBook can be solved by defining an additional relation that has only single-valued
entries (using perhaps Name and Child as attributes).

2. (Find the keys) Let R(A, B, C, D) be a relation and suppose it contains the following
dependencies: A → B, BC → D, and D → A.

(a) Find all superkeys of R.
(b) Find all keys of R.

3. (Addresses) Are there any nontrivial functional dependencies of the relation AddressBook
in which the left-hand side is not a superkey?

4. (Multi-attributes) Consider the relation ClubMembers shown in figure 16.11. Show that
it is in BCNF, but find a simpler representation as two relations. (The representation that
eliminates this kind of redundancy is termed the fourth normal form.)

5. (Appointment) Suppose Clinic is augmented to ClinicPlus by the addition of the attribute
Appointment, which is unique for every tuple. This can serve as a primary key. Find the
BCNF of ClinicPlus and compare it with the BCNF of Clinic.

6. (Intersection) Express R ∩ S in terms of differences.

7. (Closure) Let R be a relation and let X = {A1, A2, . . . , Ak} be a subset of the attributes of
R. Define X+, the closure of X, as the smallest set X+ such that X+ ⊃ X and X+ → B
implies B ∈ X+.

(a) Find the closure of the set {Instructor, Grade} in School.
(b) Show that X is a superkey if and only if X+ is the set of all attributes of R. Hint!

For “if ” construct X+ step by step.

ClubMembers

Name Child Hobby
Alice Mary Tennis
Alice Sam Tennis
Alice Mary Golf
Alice Sam Golf
Barbara John Choir
Barbara Kate Choir
Barbara Nancy Choir
Barbara John Photography
Barbara Kate Photography
Barbara Nancy Photography

FIGURE 16.11 A relation for club members, listing members names, their children, and
their hobbies.

“ch16” — 2006/2/6 — 18:48 — page 282 — #19

� �

� �

282 • C h a p t e r 16 D ATA B A S E S Y S T E M S

8. (Equi-join) The equi-join of two relations R and S over the common attribute B is the set of
all pairs of tuples, the first from R and the second from S, such that the values of attribute
B are equal. The equi-join can also be defined relative to several common attributes. How
does the equi-join of R and S over all common attributes differ from the natural join of R
and S?

9. (Theta-join) The theta-join of relations R and S, denoted R �θ S, is the set of all pairs
of tuples, the first from R and the second from S, that satisfy a specified condition θ . The
condition θ can be equality of a given attribute, for example, in which case the theta-join
is the equi-join. But θ can be more general. The theta-join can be obtained by first forming
the product R × S and then selecting only those tuples that satisfy θ .
Consider the relations R and S defined as

R A B C S D E F
2 2 3 6 4 3
6 4 2 2 4 1
3 5 7 3 1 2
2 4 2 7 0 4

Find R �A<F S.

10. (A new relation) Assuming that all apparent dependencies (such as A → B) are actual
functional dependencies, put the relation below in BCNF.

A B C D E F G
6 2 1 8 2 4 3
7 1 1 8 2 6 1
4 2 2 6 6 2 3
6 2 1 8 2 4 1
6 2 2 7 0 5 0
4 2 2 6 6 2 5
7 1 1 8 2 6 8
9 0 2 9 8 9 4

11. (Two ways) Consider the two relations R and S shown below.

R A B S A C
2 3 2 8
4 7 4 6
2 9 2 1

(a) Form the natural join T = R � S. Note that it has five rows.
(b) Form the Boyce–Codd decomposition of T . Note that one component has five rows,

and note that the original description of T in terms of R and S is more compact
than the BCNF decomposition.

(c) Does the number of rows in at least one of the relations in BCNF decomposition
of a natural join always equal the number of rows in the original (composite)
relation?

16.9 Bibliography

There are many texts on database systems. The three listed here cover the range
from elementary [1], to comprehensive [2], to a concise presentation of theory and
application [3].

“ch16” — 2006/2/6 — 18:48 — page 283 — #20

� �

� �

S e c t i o n 16.9 B I B L I O G R A P H Y • 283

References

[1] Harrington, J. L. Relational Database Design Clearly Explained. London:
Academic Press, 1998.

[2] Date, C. J. An Introduction to Database Systems, 4th ed. Vol. 1. Reading, Mass.:
Addison-Wesley, 1986.

[3] Ullman, J. D., and J. Widom, A First Course in Database Systems. Upper Saddle
River, N.J.: Prentice-Hall, 1997.

“ch15” — 2006/2/6 — 19:59 — page 239 — #1

� �

� �

P AR T IV

XTRACT ION
Information from Data

“ch15” — 2006/2/6 — 19:59 — page 240 — #2

� �

� �

“ch15” — 2006/2/6 — 19:59 — page 241 — #3

� �

� �

15
DATA STRUCTURES

I
nformation often resides in data, but data is not always the same as information:
certainly data is not the same as useful information. Nevertheless, often data—
collected in experiments, gleaned from transactions, offered by individuals in ques-

tionnaires, or downloaded from other sources—does contain information of great
value. The challenge is to extract the useful information from all that is available.

Data sources can become enormous and unwieldy. The first step toward trans-
forming data into useful information is to organize the data so that it can be readily
accessed, searched, manipulated, updated, simplified, and sometimes generalized.
Data structures provide the basis of such work. Many of these structures were origi-
nated to facilitate the programming of complex data manipulations, but the principles
underlying data structures are useful more generally, for constructing databases or data
warehouses, for building efficient data retrieval systems, and ultimately for assisting
with the processes of extracting information from data.

Basic data structures include lists, arrays, and trees. From these basics, more com-
plex structures can be built.

We shall find that these basic structures often are used in concert and that one may
be converted to another. For example, an effective way to sort a list is to transform it,
either explicitly or implicitly, into a tree; then sort the tree and transform the results
back to a list. In the process, the tree might be represented as an array. Data structures
are fluid and adaptable, and come in numerous variations.

15.1 Lists

An obvious way to store data is sequentially, as a list, one item after another. Employee
names might constitute a list, for example.

Abstractly, a list is an ordered set of objects (or items) of a given type. A list of
length n can be represented as (a1, a2, . . . , an) where the ai’s are the objects. The

241

“ch15” — 2006/2/6 — 19:59 — page 242 — #4

� �

� �

242 • C h a p t e r 15 D ATA S T R U C T U R E S

position of an object is its index i in the list. The objects themselves may be numbers,
book catalog records, patient health profiles, gene descriptions, or names of state
capitals. The objects in a list need not be numeric or alphabetic. A row of automobiles
in a parking lot can be regarded as a list.

The objects in a list may be multidimensional. For example, items in a library
catalog may include book title, author, Library of Congress catalog number, date of
publication, publisher, date of acquisition, and availability status. Such an object is
termed a record with individual portions of the record being fields.

For a list to be most useful, it must be possible to carry out certain basic operations
on the list. For example, one may wish to insert additional items in the list, delete
some items, locate an item or items that meet certain criteria, or move to the next
or previous item. The ease with which such basic operations can be performed may
depend on how the list is represented.

Two of the most important operations on a list are sorting and searching. Sorting is
the process of arranging the items according to an ordering of the items. For example,
it may be desired to sort items numerically or alphabetically. If an item is a record
with several fields, the ordering is usually carried out with respect to a single field
termed the key that uniquely identifies the entry in the list. Searching is the process
of finding an item that meets a specific criterion, or concluding that no such item is
in the list. Data structures facilitate sorting and searching, carried out by the basic
operations mentioned in the previous paragraph.

Lists Represented by Arrays

Normally one thinks of a list as an array, the items being placed at successive locations.
For example, the items might be written on successive rows of a sheet of lined paper
or at successive locations in computer storage.

As a physical example, imagine the parking lot of a rental car agency located at
an airport. The parking lot spaces are numbered consecutively. The rental cars also
have identification numbers that serve as their keys. Only a small fraction of the total
inventory of cars is in the lot at any one time.

Suppose the agency keeps track of available cars by storing them in numerical
order in parking spaces, with the car of lowest identification number going in space
number 1. When a car is returned to the lot, it must be put in its proper place between
cars of lower and higher identification numbers. To make room for this car, all cars
with higher identification numbers must be moved one space down the list to provide
an opening (figure 15.1)

Likewise, when a car is rented and leaves the lot, all cars beyond it on the list
must be moved up one space to close the gap. Clearly this is not an efficient way to
store cars.

Inserting or deleting an element in a list that is implemented this way requires, on
average, n/2 movements of items in the list, and even when the items are entries in a
computer, this can be time consuming for large lists. On the other hand, if a particular
item is found, finding the next or previous item is simple. One simply goes to the next
or previous location.

“ch15” — 2006/2/6 — 19:59 — page 243 — #5

� �

� �

S e c t i o n 15.1 L I S T S • 243

FIGURE 15.1 To insert a new vehicle in the parking lot, several others must be moved.

FIGURE 15.2 Each pointer gives the location of the next car. When a new car arrives, it
can be inserted by updating the pointers, as shown in the bottom part of the figure when
the entering vehicle is sixth on the list.

Linked Lists

The items of a list can be stored in arbitrary locations, provided that a record of their
locations is kept. The simplest way to do this is with a linked list. In such a list the
items are stored arbitrarily in the spaces available, but accompanying each item is a
pointer to the location of the next item on the list.

In the parking lot example, cars can be stored in arbitrary spaces if on each car
there is a pointer sign giving the location of the next car on the list (figure 15.2). To

“ch15” — 2006/2/6 — 19:59 — page 244 — #6

� �

� �

244 • C h a p t e r 15 D ATA S T R U C T U R E S

find, say the fifth car (the car fifth on the list of available cars sorted by identification
number), you start at the first car, read its pointer telling where the second car is, go
to the second car and learn where the third car is, and so forth, until you reach car 5.

When a new car arrives, it can be parked in any available space. The pointer of
the car preceding it in the sorted list is then changed to indicate the location of this
new car, and the new car is given the pointer that the preceding car had, pointing to
the next car. Hence, by changing one pointer and adding another, the list is updated
to include the new car, and the ordering is preserved.

This procedure works identically for lists stored in a computer. Items can occupy
arbitrary memory locations, with each item appended with a pointer indicating the
location of the next item. By following the pointers, one can traverse the entire list in
order.

It is also simple to remove an item. To do so, it is only necessary to change the
pointer of the preceding object to be the pointer of the object being removed. This
deletes the object from the list even if the object is not physically removed. With no
pointer pointing to it, the object is essentially nonexistent.

Although it is easy to move forward through a linked list, it is not easy to move
backward. The pointers only point forward. This difficulty is solved by a doubly
linked list, in which each object is accompanied by two pointers: one pointing to the
successor item and the other to the predecessor.

Special Lists

Lists often have special uses that dictate a particular form of updating. One of these
is the stack in which objects are entered one by one at the top of the list, each new
addition causing the others to be pushed down one place. Objects are removed from
the top as well, causing the other objects to move upward. The scheme is termed FILO,
for “First In, Last Out.” For example, if you make changes in a word processor, these
changes are saved one at a time in a stack. Then if you decide to undo a change, the
first change restored is the last that was made, since it comes off the top of the stack.

The sister to the stack is the queue in which objects are entered one by one at
the top of the list, and removed from the bottom of the list. This is termed FIFO, for
“First In, First Out.” It simulates a queue of people waiting for service at the bank, or
program steps waiting to be executed. The first in line is the first served.

15.2 Trees

Trees are valuable structures used in formal and informal representation,
analysis, and manipulation of data. Trees represent structures such as
organizational charts, genealogy (family trees), contest standings (as in a
tennis ladder), and various other hierarchical structures.

P

Y
K U A

E
T

EC
C

U

C

M
T A

Y

S

M

6
WZ

4
5

8
7

JS

B

A

V

F

T
9

 X

 H

U

Y

R
G

N

P

Y
KB U A

A

E

V
T

F
EC

CCC
CC U

C

M
T

T

A

9 X X

 X

 HUU

U

YY

S

M

R

DD

G

6
WZ

4
5

8
7

JS N

3355

22
BB

In fact, a tree is basically a hierarchical arrangement of nodes. One node
is designated as the root, and (although it is called a root) it is usually visualized

as being at the top of the hierarchy. The simplest nonempty trees consist of a
single root and no other nodes.

Generally, a node has a number of children nodes directly connected to it but one
level further down the hierarchy. Every node i, except the root, has a single parent,

“ch15” — 2006/2/6 — 19:59 — page 245 — #7

� �

� �

S e c t i o n 15.2 T R E E S • 245

FIGURE 15.3 A tree. The root has three children, each of which has two children.
There are a total of ten leaf nodes.

such that i is a child of this parent. A node without children is termed a leaf. The
parent–child relation is described pictorially by lines connecting the corresponding
nodes as shown in figure 15.3.

In a binary tree every node has at most two children. It is conventional to refer
to a child in a binary tree as either a left child or a right child, where naturally the
left child is the one located below and to the left of the parent and the right child is
located below and to the right of the parent. Clearly, in a binary tree each node may
have either no children, a left child, a right child, or both a left and right child.

Ordered Trees

It is often convenient to number the nodes systematically. In one simple method, the
root is assigned number 1. Then at the next level numbers are assigned sequentially,
starting from the left and working across to the right. This is continued through
successive levels. The version of the tree of figure 15.3 numbered this way is shown
in figure 15.4.

Other numbering strategies, useful in certain computational procedures, are
discussed in the next section in the context of transversal.

Representation of Trees

One of the simplest ways to represent a tree is with a set of pointers that point down
the tree. The position of the root is specified first. At every node, pointers to the
locations of each of its children are listed. It is then possible to move from the root

“ch15” — 2006/2/6 — 19:59 — page 246 — #8

� �

� �

246 • C h a p t e r 15 D ATA S T R U C T U R E S

1

2 3 4

5 6 7 8 9 10

11 12 13 14 15 16

17 18 19 FIGURE 15.4 An ordered version of the tree in figure 15.3.

1

2 3

4 5 6 8

9 10

7

1
2
3
4
5
6
7
8
9

10

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

0
1
1
2
2
3
3
3
5
5

FIGURE 15.5 A tree and an array representation.The record
of each node is placed in the array, followed by a pointer to the
parent of the node.1

2
3
4
5
6
7
8
9

10

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

2
4
6
N
9
N
N
N
N
N

3
5
7

10

8

FIGURE 15.6 A list represen-
tation of the tree of fig. 15.5.
Each node is represented by its
contents and a list of its chil-
dren.The symbol N denotes that
the node has no children and is
therefore a leaf node.

down a variety of paths, following one of the pointers at each node encoun-
tered. The entire structure of the tree is embodied in this pointer structure.
Alternatively, each node may contain pointers to its parents. This too is
sufficient to describe the tree.

A tree can be represented concretely as an array, in any one of several
ways. Figure 15.5 shows a tree of record locations and the tree’s representa-
tion as an array, which contains the records as well as the node numbers
and pointer to the parent. The entire tree structure is embodied in this
array.

A tree can also be represented as a series of lists. For example, a tree can
be described by listing the children of each node. Figure 15.6 shows this
representation for the tree of figure 15.5.

“ch15” — 2006/2/6 — 19:59 — page 247 — #9

� �

� �

S e c t i o n 15.3 T R AV E R S A L O F T R E E S • 247

15.3 Traversal of Trees

Frequently it is desirable to traverse a tree, visiting every node to find one that satisfies
a search criterion or to modify the contents of the nodes. If the tree is represented
only by its parent–child relations, such a traverse must move systematically node by
node: from parent to child, or from child to parent.

As an analogue, imagine that the connecting lines of the tree are pathways. To
traverse the tree, one must walk on the paths in a route that visits every node. Some
duplication is likely to be necessary—some nodes will be visited more than once—but
we seek a systematic strategy. Such a strategy is illustrated in figure 15.7. The route
indicated by the dotted line goes through every node, and it stays on the connecting
paths. From the figure it is clear that if a complete cycle from the root back to the root
is made, each leaf node will be visited only once, but others will be visited at least
twice.

This traversal route can be used to order the nodes in one of several ways. The most
direct numbering system is termed preorder. In this method, the nodes are numbered
sequentially as they are passed the first time in the traversal that cycles the tree in the
counterclockwise direction. The resulting node ordering for the tree of figure 15.7 is
given by the numbers indicated in the nodes.

A special ordering for binary trees is termed inorder. In this method, the tree
is again traversed according to the counterclockwise cycle, just as before. The leaf
nodes are numbered the first (and only) time they are passed. However, other nodes
are numbered the second time they are passed. The root, for example, will usually
not be assigned number 1.

1

2 7

3 4 8 10

5 6

9

FIGURE 15.7 Traversal of a tree. A counterclockwise cycle defines a traversal that
goes through every node at least once. The numbers in the nodes in this tree are
those defined by the preorder method of ordering.

“ch15” — 2006/2/6 — 19:59 — page 248 — #10

� �

� �

248 • C h a p t e r 15 D ATA S T R U C T U R E S

6

2 8

1 4 7 9

3 5 10

FIGURE 15.8 Inorder of a binary tree. Leaf nodes are numbered the first (and only)
time they are passed. Other nodes are numbered the second time they are passed.
A node without a left child is numbered before its right child.

There is a special case of this method that must be treated carefully. If a node has a
single child and that child is a right child rather than a left child, then an artificial left
child must be assigned to that parent. This artificial node does not get a number, but
its existence insures that the parent will be visited twice before the traverse reaches
the single right child. For example, in a tree consisting of a root and a single right
child, the root would be numbered 1, because the root would be visited twice (the
second time being after the visit to the artificial left child) before the right child
is reached.

Another way to characterize the inorder order is that it numbers trees in LNR
order; that is, in Left, Node, Right order. A left child is numbered first, followed
by the node, followed by the right child. If there is no left child, then the node is
numbered first.1

An example of a binary tree in inorder order is shown in figure 15.8. The numbers
can be verified by making a counterclockwise cycle of the tree. Notice that node 9
has a single child, which is a right child. Hence, following the LNR rule, node 9
is numbered before node 10. This is the same ordering as would be obtained by
appending an artificial left child to node 9, but not assigning it a number as the tree
was traversed.

15.4 Binary Search Trees (BSTs)

The binary search tree is one of the most powerful of the basic data structures. Such
trees lead to simple, yet highly efficient representations for searching and sorting data.
It employs the inorder method of ordering.

A binary search tree is applicable when the objects to be processed possess key
values that can be ranked (such as alphabetically or numerically). Construction of the

1The process can be described recursively by defining the general step at a node: visit left child and carry
out the process, then number the current node, then visit right child and carry out the process. Start at
the root.

“ch15” — 2006/2/6 — 19:59 — page 249 — #11

� �

� �

S e c t i o n 15.4 B I N A R Y S E A R C H T R E E S (B S T S) • 249

tree and the search through it are governed by the order inherent in the key values.
A binary search tree is built in such a way that an inorder transversal leads to a sorted
ordering.

The process is simple. The first object becomes the root of the tree. The next object
is compared with the root and becomes a left or right child of the root depending on
whether its key value is less than the root or greater than (or equal to) the root.
Subsequent objects are entered by comparing them first with the root, determining
whether to go left or right, then continuing down the tree, making similar comparisons
at every node encountered, until it becomes either the first or second child of a
parent.

An example should clarify the procedure. Suppose we wish to alphabetize the
following names: Linda, Joanne, Carl, Robert, Jenna, Steve, Marion, Nancy, Ian,
Jill, Susan, Fred. The tree is built by taking the first name, Linda, as the root. The
next name, Joanne, is then compared with the root. If it is lower in the alphabet, it
becomes the left child, otherwise the right child. Thus Joanne becomes the left child
of Linda. Then Carl goes left of Linda and left of Joanne. The complete binary search
tree is shown in figure 15.9.

In the example, artificial nodes are adjoined as left children of Carl, Marion,
and Steve to remind us how to define the inorder. Indeed, Carl is the first item in
the inorder. The other items can be quickly ordered by traversing through the tree
counterclockwise, leading to Carl, Fred, Ian, Jenna, Jill, Joanne, Linda, Marion,
Nancy, Robert, Steve, Susan.

To search for a name, say Nancy, it is only necessary to follow the path downward.
Nancy must be to the right of Linda, to the left of Robert, and to the right of Marion.
Bingo! There she is. Alternatively, if a search is instituted for a name such as Ralph
that is not on the list, one will progress down to a leaf node with no place farther to
go, and hence conclude that Ralph is not on the list.

Linda

Joanne Robert

Marion Steve

Jenna Susan

Carl

Nancy

JillIan

Fred

FIGURE 15.9 A binary search tree of names. The tree automatically puts the names in
inorder as it is constructed.

“ch15” — 2006/2/6 — 19:59 — page 250 — #12

� �

� �

250 • C h a p t e r 15 D ATA S T R U C T U R E S

Another example of a binary search tree is the tree of figure 15.8. It is the BST
that would result from construction based on the unordered sequence 6, 2, 8, 4, 1, 3,
5, 9, 7, 10.

Binary search trees are used in many practical applications, such as airline
reservation systems where individuals’ names are entered sequentially as they
book flights.

TABLE 15.1
Worst and Best Path
Lengths to a Leaf. In
the worst case the path
length of a tree with n
nodes is n. For a balanced
tree the path length is
log(n + 1).

n log (n + 1)
7 3

127 7
1,023 10

16,383 14
131,071 17

1,048,575 20
16,777,215 24

134,217,727 27
1,073,741,823 30

Average Path Length

Searching for an object in a BST entails traveling along the unique path from the root
to the object. The total search time is proportional to the total number of comparisons
required, and hence proportional to the length of the path.

The length of such a path in a BST with n nodes can vary widely, depending on
the particular tree. The best case is when the tree is balanced, with each node having
two children. In this case the total number of nodes n is of the form n = 2k − 1 for
some integer k ≥ 1. The maximum length of a path, in terms of the number of nodes
visited, is then Lmax = k; or in terms of n, Lmax = log2 (n + 1).

The worst case is when each node, except the last (which is a leaf node), has only
a single child. The length of a path from top to bottom is n. In general, therefore, the
maximum path length varies between log (n + 1) and n.

As shown in table 15.1, there is a tremendous difference between these two bounds
for even modest values of n. For a tree of about 1 billion nodes, the length from the
root to a leaf node is at most 30 if the tree is balanced. On the other hand, if the tree
is completely unbalanced, the length is a billion.

It is of great importance to know what length might be expected in actual applica-
tion. For n = 1 billion, is the number of required comparisons for a search closer to
1 billion or to 30?

This question can be addressed by considering a binary search tree with n objects,
under the assumption that the ordering of the keys is initially random. Let P(n) be the
average path length to a random object where now the object is not necessarily at a
leaf node. The following important result characterizes P(n).

Theorem 15.1. The function P(n) satisfies

P(n) ≤ 1 + 2 ln n ≤ 1 + 1.386 log n.

Proof: Define Q(n) as the expected total number of node visits required to construct
the entire binary search tree. The average number of visits to a particular node P(n)
is then Q(n) divided by n.

The nodes are referred to by node numbers 1 though n, which are taken to be
identical to the ranking of their keys. Hence the proper ordering is 1 through n. A step
occurs when two elements are compared. Two elements i and j are compared at most
once. We shall find the probability that i and j are compared, and for this purpose it
can be assumed that i < j.

Consider the chain of values i, i + 1, i + 2, . . . , j that has L = j + 1 − i members.
The elements arrive randomly for placement. If any element k with i < k < j arrives

“ch15” — 2006/2/6 — 19:59 — page 251 — #13

� �

� �

S e c t i o n 15.4 B I N A R Y S E A R C H T R E E S (B S T S) • 251

before i or j, then i will never be compared with j, for i will be sent left of k and j will
be sent right. Hence, i is compared with j only if i or j occurs before all other elements
in the chain. The probability of i or j occurring first among the L elements is 2/L.

The expected total number of comparisons is therefore nL × 2/L, where nL is the
number of chains of length L. This number is NL = n + 1 − L, for L = 2, 3, . . . , n.
In addition, each node is considered to visit itself. Hence the total number of
visits is

Q(n) = n +
n∑

L = 2

nL
2

L
= n +

n∑
L = 2

2
(n + 1 − L)

L
.

Using the standard approximation to the harmonic sum of 1/L’s (see exercise 2),

n∑
L = 2

1

L
≤

∫ n

x=1

1

x
dx = ln n, (15.1)

gives P(n) = Q(n)/n as

P(n) = 1 +
n∑

L = 2

2
n + 1 − L

nL

= 1 − 2

(
1 − 1

n

)
+ 2

(
1 + 1

n

) n∑
L = 2

1

L

≤ 1 + 2 ln n + 2

[
1

n
(1 + ln n) − 1

]
. (15.2)

The term in brackets is always less than or equal to zero. Hence

P(n) ≤ 1 + 2 ln n ≤ 1 + 1.386 log n.

The actual values of P(n) are extremely close to the bound given by the theorem.
If the bracketed term in equation (15.2) is included, a tighter upper bound Pu(n) is
obtained that is at most two steps less than 1 + 2 ln n. A lower bound Pl(n) can be
constructed, by using a lower bound on the sum in equation (15.1) (see exercise 3)
that is only about two steps less than Pu(n). Hence the actual value of P(n) is within
two steps of either of these strong bounds. For example, the value of P(1 billion) is
between the bounds of 39.0602373 and 40.44653173.

Measures of efficiency as a function of the problem size n usually focus on the
performance for large n. Typically, this asymptotic behavior is expressed in “big O”
notation. A statement that the number of steps is T (n) = O(nk) means that there
is a constant c ≥ 0 such that T (n) ≤ cnk for sufficiently large n. Thus if T (n) =
47 + 2n + 19n2, then T (n) is O(n2).

A stronger notion is defined by � notation. A statement that T (n) = �(nk) means
that there are positive constants c1, c2 such that c1nk ≤ T (n) ≤ c2nk for sufficiently
large n. Hence �(nk) implies O(nk), but the reverse implication is not necessarily
true. With this notation, the path length of BSTs is at worst �(n), but on average
�(log n).

“ch15” — 2006/2/6 — 19:59 — page 252 — #14

� �

� �

252 • C h a p t e r 15 D ATA S T R U C T U R E S

6

2 8

1 4 7 9

3 5

6

2

3

4

7

8

9

-

6

4

2

8

6

8

2

1

-

3

-

7

-

8

4

-

5

-

9

-

N P L R

FIGURE 15.10 A binary tree and its representation as a table. The table shows node,
parent, left child, right child.

Representation

A table representation of a binary tree listing the left and right children of various
nodes facilitates rapid search through the tree. An example is shown in figure 15.10.
To search for node 3, for instance, one begins at the root 6 and moves to the left child
2, then to the right child 4, then to the left child to arrive at 3. The parent pointers
are not needed for this type of search, but they are useful when traversing a tree. For
instance, after arriving at node 3 in the figure, which is seen to be a leaf because it has
no children, the pointer to the parent makes it possible to move back up to node 4.

15.5 Partially Ordered Trees

A partially ordered tree is a binary tree that is balanced as much as possible and has
all of its leaf nodes at the lowest level as far to the left as possible. Furthermore, the
key value of any node is less than or equal to that of its children.

The first requirement implies that if there is a total of h levels, then the (h − 1)-th
level is full with 2h−1 nodes, and the h-th level has all of its nodes to the left. The
second requirement means that as one moves down the tree along any path, the key
value never decreases. An example of a partially ordered tree is shown in figure 15.11.

Partially ordered trees are sometimes used to represent priority queues, ordering
the service of various customers or jobs. The first customer in the queue is represented
by the root. When served, that node is eliminated and the tree is reconfigured to a
new priority queue.

To reorder the tree when the root is eliminated, the root is replaced by the node in
the tree at the lowest level and at the rightmost position. The tree is then still balanced
as much as possible but with one less node than before at the lowest level. To restore
the partial order, the new root is pushed down the tree, exchanging it with its child of
smallest key value until its key value is no smaller than that of either of its children

“ch15” — 2006/2/6 — 19:59 — page 253 — #15

� �

� �

S e c t i o n 15.5 PA R T I A L LY O R D E R E D T R E E S • 253

6

8 12

11

13 17

19

20

26 21 24 28 18

16

15

12 23

14

20 22

FIGURE 15.11 A partially ordered tree. Each node has a lower key value than its
children, and the tree is balanced as much as possible, with all levels except the last full,
and all nodes in the bottom level located to the left as far as possible.

or until it becomes a leaf node. Figure 15.12 shows the process of restoring the tree
of figure 15.11 after the root node has been eliminated and replaced by the rightmost
node at the bottom level.

The importance of partially ordered trees is derived from the efficiency of the
restoration (push down) process. The maximum number of necessary exchanges is
equal to the depth of the tree. This number is equal to at most log (n + 1). Hence, the
restoration process is a O(log n) process. We will later see how this can be used to
advantage when sorting large lists.

18

8 12

11

13 17

19

20

26 21 24 28

16

15

12 23

14

20 22

8

18 12

11

13 17

19

20

26 21 24 28

16

15

12 23

14

20 22

8

11 12

18

13 17

19

20

26 21 24 28

16

15

12 23

14

20 22

8

11 12

16

13 17

19

20

26 21 24 28

18

15

12 23

14

20 22

(a) (b)

(c) (d)

FIGURE 15.12 Pushing down a node. From figure 15.11 with the original root 6 dropped, the new root 18 is
shown in (a). This root is exchanged with its smallest child 8 in (b). Then 18 is further exchanged with its new smallest
child 11 in (c). Finally, 18 is exchanged with the new smallest child 16 as shown in (d). No further exchanges are
necessary, and the tree is again partially ordered.

“ch15” — 2006/2/6 — 19:59 — page 254 — #16

� �

� �

254 • C h a p t e r 15 D ATA S T R U C T U R E S

Heaps

Another advantage of partially ordered trees is that they can be stored efficiently in
array form. This feature depends only on the balanced nature of the tree rather than
its order, but the term heap usually refers to the partially ordered version.

Generally, the nodes of a partially ordered tree are numbered consecutively across
each level. This numbering is independent of the key value. The root is number 1,
its left child is 2, and this level is numbered up to 4. Because the tree is balanced as
much as possible, the children of any node, say number i, are at node numbers 2i and
2i + 1. Hence it is easy to move through the tree in array form. Suppose the tree of
figure 15.11 is numbered that way. Then it can be represented by the following array.

node number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 16 17 18 19
key value 6 8 12 11 15 14 19 20 16 13 12 17 23 20 22 26 21 24 28 18

No pointers need be appended to the list, since the children of node i are located
systematically at 2i and 2i + 1. Note, for example, that the children of node 5 (with
key value 15) are nodes 2 · 5 = 10 and 2 · 5 + 1 = 11 (with key values 13 and 12).
Manipulations such as the push-down process can be carried out directly on the array
representation of the tree.

15.6 Tries∗

The term2 trie is derived from retrieval and refers to a special type of tree useful for
representing strings of data, such as words, codes, or numbers of several digits. The
branches (or the nodes) of a trie are labeled with symbols in such a way that movement
down the tree along a path from root to leaf defines an acceptable string. Tries were
used in chapters 2 and 3 to study codes. Figure 15.13 is a trie representation of a
Huffman code with codewords 00, 010, 011, 10, 11. The codewords are found by
following the branches from the root to a leaf. Such a trie is a convenient way to verify
that no codeword is a preface to another, for a preface would be found before reaching
a leaf. Word tries are also used as dictionaries in some spell-checking programs.

10

11 00

10

FIGURE 15.13 Code-
word trie. Code words
are read by beginning
at the root and moving
down a path to a leaf.

In general, a valid string in the trie may in fact be a preface to other valid strings.
THE is a preface to THESE, for instance. This situation is handled in a trie by
introducing a special symbol, such as �, to indicate the end of a string. Figure 15.14
shows a partial trie for common English words. Note that there are three instances of
the � symbol to signal that THE, TO, and TON are valid words even though they are
prefaces to longer words.

When used as a dictionary words are checked by tracing a path down the trie,
following the sequence of letters in a word being tested. If the word is in the trie, the
path will end at a leaf node or a �. If a word is not in the trie, its path will reach a
point where there is no appropriate branch or it will reach a leaf node before the word
is complete.

2Tries are alternatively termed digital search trees.

“ch15” — 2006/2/6 — 19:59 — page 255 — #17

� �

� �

S e c t i o n 15.7 B A S I C S O R T I N G A LG O R I T H M S • 255

T O

RNFOH

∆ N

Y∆

IA
E

T Y S∆

FIGURE 15.14 Word trie. Words are found by moving down a path. The � symbol indi-
cates the end of an acceptable word. For example, THE and THEY are valid words in this
tree.

15.7 Basic Sorting Algorithms

One of the most important applications of the data structures studied in this chapter
is to the sorting of lists. Sorting may seem to be a trivial or routine operation, but
sorting is an integral component of many sophisticated data analysis procedures,
and hence can be regarded as fundamental to the extraction of information from
data. As much as 25 percent of computer time worldwide is devoted to sorting and
searching. Improvements in sorting efficiency can accordingly pay large dividends.
Good sorting methods are concrete illustrations of the importance and power of data
structure theory.

Sorting is, of course, the ordering of a list of objects, with the order determined
by a key. A sort can be made relative to numerical or alphabetical order, by date,
by string length, or by any other key quantity that can be ordered. Usually ties are
allowed, in which case the tied objects are placed together in the sorted list.

Two of the simplest sorting methods are presented in this section. Although they
are useful only for relatively short lists, they are a preview of, and provide motivation
for, the more efficient methods discussed in the next two sections.

Bubble Sort

The name bubble sort expresses the view that this sorting process bubbles up low-
valued key items, floating them over the higher-valued key items.

Suppose there are n items in a list, and imagine that they are listed vertically.
Suppose also that we want to sort this list according to key value, with the item with
lowest key value at the top. To begin the process, the bottom two items, in positions
n − 1 and n, are compared. If the bottom item has a key value less than the one above
it, the two are exchanged; otherwise not. The two bottom items are then in order. The
process then moves up one step, comparing the items at positions n − 2 and n − 1.
They are exchanged if necessary to bring these two into proper order. This pair-wise
comparison is continued up to the top of the list.

“ch15” — 2006/2/6 — 19:59 — page 256 — #18

� �

� �

256 • C h a p t e r 15 D ATA S T R U C T U R E S

Math Art

English

History Gymnastics Gymnastics Gymnastics

Gymnastics Gymnastics

Language Gymnastics

Art

Art Art Art Art

English English English EnglishMath

English Math

History

Language Language Language Language Math

LanguageMathHistory History

Math History History

FIGURE 15.15 Bubble sort. Each successive column shows the result of an additional
full pass. The boldface items have completed their upward bubbling.

After one complete pass, the lowest-valued item will be at the top, because once it is
encountered in a comparison, it will be the lowest item in all subsequent comparisons
and will thus be exchanged over and over again, bubbling up to the top. Another pass
will bubble the second lowest item up to the second position.

Additional passes are made, although the k-th pass need not include the top k − 1
items since they are already in proper order. All items will be properly ordered after
at most n − 1 passes. An example is shown in figure 15.15, where class titles are
sorted alphabetically.

Measures of the efficiency of bubble sort focus on the number of comparisons or
exchanges required. The best situation is when the list is initially in proper order, in
which case n − 1 comparisons and no exchanges are needed. The worst situation is
when the list is initially in reverse order. Then the comparisons and exchanges in the
first pass are both n−1 in number. Likewise, the k-th pass requires n−k comparisons
and exchanges. The total is

∑n−1
k=1 (n − k) = n(n − 1)/2 comparisons and exchanges.

Therefore in the best case, bubble sort is a �(n) process, while in the worst case it is
a �(n2) process.

The average number of exchanges required in bubble sort can be deduced from the
following clever observation. Consider a list L with n items ordered randomly, and
consider the list L, which is ordered in the exact reverse of L. Suppose bubble sort is
applied to each list separately. Two items i and j will be out of order in exactly one of
the lists, and so at some point they will be exchanged in that list. Since this applies
to any two items, there must be exactly one exchange, in either L or L, for every
pair of items. Since there are exactly n(n − 1)/2 distinct pairs, sorting both L and L
requires n(n − 1)/2 exchanges. This means that, on average, n(n − 1)/4 exchanges
are required for a list of length n. Thus bubble sort is, on average, a �(n2) process.3

It can be shown that the average number of comparisons is also �(n2).

Insertion Sort

In insertion sort items are inserted, one by one, into an incomplete list that is always
properly sorted and that grows to full size. The result is the desired sorted list.

3It is assumed that all items have different key values.

“ch15” — 2006/2/6 — 19:59 — page 257 — #19

� �

� �

S e c t i o n 15.8 Q U I C K S O R T • 257

History

Math

English

History Gymnastics

Gymnastics

Language

Art

Art

Math

Math

Math

LanguageMath

Math History

English English EnglishEnglish

Gymnastics Gymnastics

HistoryHistory

Language

English

FIGURE 15.16 Insertion sort. Each successive column shows the result of an additional
insertion of an item from the first column.

Again it is useful to imagine the list arranged vertically. The top item is considered,
by itself, to be the single item in a short list of length 1; this short list is clearly in
proper order. The second item in the main list is then inserted into the short list, and
by an exchange if necessary, the new two-item list is properly ordered. Additional
items are inserted one by one, keeping the partial list in order. When all items are
inserted, the entire list is properly sorted. The details of an insertion sort applied to
the same list used to illustrate a bubble sort are shown in figure 15.16.

The performance of insertion sort is similar to that of bubble sort. The number
of exchanges is on average identical to the number required by bubble sort because
the same symmetry argument applies. The average number of comparisons is, how-
ever, approximately one-half the number required by bubble sort, and for this reason
insertion sort is considered superior to bubble sort. Both of these methods are �(n2)
processes on average.

The basic ideas of these algorithms, however, can be combined with tree structures
to produce highly effective sorting algorithms, as discussed in the next section.

Information

From an information-theoretic viewpoint, the entropy associated with knowledge of
the permutation embodied in the initial order of n items is log (n!). Since log (n!) ≈
n log (n/e), about n log (n/e) bits of information are needed to sort a list of length n.

Comparison of the order of two items constitutes a single bit. Hence, it might rea-
sonably be inferred that there are sorting algorithms that on average require �(n log n)
comparisons. Furthermore, it is clear from the information-theoretic argument that
this is the best that can be done. Two algorithms that achieve this average are presented
in the following sections.

15.8 Quicksort

The sort algorithm considered most effective overall is quicksort. Its strategy is
best understood as a practical implementation of the binary search tree discussed in
section 15.4.

“ch15” — 2006/2/6 — 19:59 — page 258 — #20

� �

� �

258 • C h a p t e r 15 D ATA S T R U C T U R E S

Tree Version of Insertion Sort

Imagine an insertion sort that inserts items one by one into a BST rather than into a
linear list. When the tree is complete, the items can be read out in inorder to construct
an ordered version of the original list. This is illustrated in figure 15.17.

This method can be extremely effective, with the one drawback that a tree must be
constructed outside the original list. In other words, unlike bubble sort or insertion
sort, this BST method does not take place within the list itself, but must build another
structure as well.

The Quicksort Algorithm*

Quicksort provides a strategy that takes advantage of the BST structure but carries out
the sort within the original list. The list is visualized as being laid out horizontally.
To start, a root is selected and then, rather than processing each item in turn, all items
with key values less than that of the root are placed to the left of the root, and all items
with key values greater than or equal to that of the root are placed to the right. Those
items now on the left can then be handled separately, using the same procedure, by
selecting a lower-level root (called a pivot) for the left. Likewise, those items now on
the right can be handled by a similar process. These processes are continued in each
subgroup, leading to smaller subgroups, until the resulting subgroups contain only a
single item or items that have equal key values.

6

2 8

1 4 7 9

3 5 10

6

2

1

8

9

4

7

5

10

3

Original list

Sorted list

BST

FIGURE 15.17 Insertion into a binary search tree (BST). Items from a list are inserted
one by one into the BST; then the sorted version is read out to construct a sorted list.

“ch15” — 2006/2/6 — 19:59 — page 259 — #21

� �

� �

S e c t i o n 15.8 Q U I C K S O R T • 259

One way to select the appropriate pivot for each group is to examine the two
leftmost items and select the one with the largest key value. This guarantees that the
pivot is not the item with the smallest key value.

Once the pivot is selected, some items must be moved left or right to their proper
section of the list. For this purpose, left and right cursors are introduced. The left
cursor begins at the far left and moves right until it encounters an element with key
value equal to or greater than that of the pivot. The right cursor moves left until it
encounters an item of key value less than that of the pivot. If the cursors have not
met, the items they have encountered are swapped. Then the cursors continue their
progress until they reach another stopping point, where another swap is made. This
process continues until the cursors meet. The result is that the list is divided into two
segments: a left-hand portion with all elements having key values less than that of the
pivot and a right-hand portion with all items having key values greater than or equal
to that of the pivot. These two segments are then processed individually in the same
way, producing smaller segments, and so forth. If at any stage a segment consists
of a single element or equal elements, that segment need not be processed further.
Eventually, all segments will be of that type, and the sort is complete. An example is
shown in figure 15.18.

v = 3
3 2 6 6 7 8 4 1 2 5 4

2 2 1 6 7 8 4 6 3 5 4

1 2 2 6 4 5 4 6 3 8 7

3 4 5 4 6 6 7 8

3 4 5 4

4 4 5

1 2 2 3 4 4 5 6 6 7 8

v = 2 v = 7

v = 6 v = 8

v = 4

v = 5

FIGURE 15.18 Quicksort. In the initial list, 3 is chosen as the pivot element (indicated
by v = 3) since it is the larger of the first two elements. The left cursor is halted immediately
at the 3. The right cursor advances leftward until it reaches 2, at which point the 3 and
2 are swapped. A further swap of 6 and 1 occurs. At that point the list is divided into
two parts as shown by the separating bar in the figure. The individual portions are then
processed in the same way. The final version of the list is shown in the last line.

“ch15” — 2006/2/6 — 19:59 — page 260 — #22

� �

� �

260 • C h a p t e r 15 D ATA S T R U C T U R E S

Efficiency

Quicksort inherits its efficiency from the characteristics of the BST. The number of
steps required in a path through a BST is in the worst case �(n) and in the best and
average cases �(log n). Sorting n numbers can be expected to require about n times
as many steps, and accordingly, the worst performance of quicksort is �(n2). The
best and average cases are O(n log n) and �(n log n), respectively. The O(n log n)
performance is a huge improvement over bubble sort and insertion sort, and is con-
sistent with the best performance implied by entropy considerations. A strategy
to improve worst-case performance is to select the pivot points randomly. Then,
against any particular set of input data, the expected number of steps is on average
�(n log n).

15.9 Heapsort

Heapsort is another tree-based sorting method, but it uses the partially ordered tree
data structure rather than the BST. It has the (theoretical) advantage that it is at worst,
best, and average a �(n log n) process. Thus unlike quicksort, which may require
�(n2) operations in the worst case, heapsort is a �(n log n) process in all cases.

First imagine that the list is to be entered into a partially ordered tree. There are
two ways to do this. The first way can be viewed as a tree version of bubble sort. In
this method items are initially entered into the tree in any order while simply assuring
that the tree is balanced as much as possible. Then each item in the bottom level is
compared with its parent, and if the parent has higher key value, the parent is swapped
with its lowest-valued child. After the lowest level is processed in this way, the next
higher level is processed in the same way, and so forth up to the top. This entire
process is then repeated, starting again at the bottom level. After at most O(n) such
passes, the tree will be partially ordered.

The second method for achieving the partially ordered form can be viewed as a
tree version of insertion sort. Items are entered one by one at the bottom level and
moved up level by level until the key value of its parent is less than or equal to the
key value of the new item.

Once the tree is partially ordered, the items can be sorted by using the push-down
process discussed in section 15.5. As items are extracted from the tree, they are placed
in a sorted version of the original list.

Heapsort can be carried out without constructing a tree separate from the original
list by using the heap structure. The list itself is viewed as a tree by considering each
item i as having items 2i and 2i + 1 as its children.

Although heapsort’s worst-case performance is far superior to that of quicksort
and both are O(n log n) on average, experience has shown that heapsort is in practice
rarely as efficient as quicksort.

Going from a linear list to a two-dimensional tree structure reduced the sorting
time from O(n2) to O(n log n). One might suspect that going to a three-dimensional
structure will give further improvement. However, consideration of entropy shows
that O(n log n) is the best that can be achieved on average.

“ch15” — 2006/2/6 — 19:59 — page 261 — #23

� �

� �

S e c t i o n 15.10 M E R G E S • 261

15.10 Merges

Frequently it is necessary to merge two lists L1 and L2, each of which has been sorted,
into a new sorted list L containing all of the items in both L1 and L2. If these two lists
can be simultaneously accommodated in the internal memory of the computer, there
is a simple and effective method to attain the desired result.

The method begins by comparing the first item in each list, and inserting the item
with the lowest key value of the two into the master list and removing it from its
original list. This procedure is repeated until all items have been inserted, or until one
of the original lists is exhausted, in which case the remainder of the surviving list is
inserted.

This method can be extended to the merge of any number of sorted lists: simply
compare the first of each and insert the one with lowest key value into the master list,
deleting it from its original list.

It may be a law of nature that people seem to need more data than can be handled
conveniently in their existing computing systems, and certainly more than can be
stored in internal memory. Thus, historically, computer systems have employed tape
drives, magnetic drums, and magnetic disks as external storage to augment internal
storage.

Sorting huge lists that cannot be accommodated in internal memory is usually
carried out by dividing the list into a number of smaller sublists, each of which
can be sorted in internal memory. These separate sorted lists are then merged. The
overall sorting and merging strategy moves segments of data back and forth between
internal and external memory. There are many such strategies, the advantage of each
depending somewhat on the physical characteristics and performance of internal and
external storage devices.

Linear Time Sorting

There are a number of sorting algorithms that sort items in O(n) time, which of
course is faster than the �(n log n) algorithms discussed in the past few sections.
The difference is that these algorithms apply to special cases—cases where the key
values of the items have some known structure. For example, counting sort applies to
sorting integers known to lie in a fixed range 0 to k. These algorithms take advantage
of the special structure to reduce direct comparisons between elements. As a simple
example, in counting sort the proper placement of the element 0 is known to be at the
top of the list; no comparison with other numbers is required.

“ch15” — 2006/2/6 — 19:59 — page 262 — #24

� �

� �

262 • C h a p t e r 15 D ATA S T R U C T U R E S

15.11 EXERCISES

1. (Alphabetize) Insert these items into a BST (using alphabetical order): Hockey, Baseball,
Football, Tennis, Swimming, Ice skating, Badminton, Hopscotch, Basketball,
Water polo, Crew.

2. (Harmonic inequality) By graphically comparing
∫

(1/x) dx to
∑

(1/k), prove that

ln (n + 1) − ln2 ≤
n∑

k=2

1

k
≤ ln n.

3. (Lower estimate) Use exercise 2 to find a lower bound Pl(n) for the average path length of
a BST, and show that this average length is in fact �(log n).

4. (Balanced) Consider a binary tree balanced as much as possible. Suppose that all elements at
the bottom level are first considered for exchange upward, then the next level, etc. However,
a child is bubbled up only if its key value is less than that of its parent and no greater than
that of its sibling. Show that once an element bubbles upward (after processing its entire
level), it never moves down again. Hence, argue that putting an n-node tree in partial order
with the bubble up process is an O(n log n) process.

5. (Perfectly balanced) A perfectly balanced binary tree has 2k−1 nodes at level k for each
level k. If there are m levels, the total number of nodes is thus n = ∑m

k=1 2k−1 = 2m − 1.
(a) Argue that the average length of a path from the root to a random node is

L(m) =
∑m

k=1 k2k−1

2m − 1
.

(b) Show that

L(m) = m − 1 + m

2m − 1
= m − 1 + m

n
.

That is, for large m, the average length is essentially equal to the length to the
second-to-last level.
Hint:

m∑
k=1

ak = a − am+1

1 − a

m∑
k=1

kak = a + am+1[am − m − 1]
(1 − a)2

.

6. (Bubble count) Consider the list L = (5, 3, 1, 2, 4).
(a) Sort the list L with bubble sort and count the number of exchanges required.
(b) Sort the list L, which has the reverse order of L, and count the number of exchanges

required.
(c) Is the sum of these exchanges equal to n(n−1)/2, where n is the length of the list?

“ch15” — 2006/2/6 — 19:59 — page 263 — #25

� �

� �

S e c t i o n 15.12 B I B L I O G R A P H Y • 263

A

C

L

GF

B

D
E

H

M

K

PO

J
I

N

FIGURE 15.19 Tree for exercise.

7. (Order the tree) Given the tree in figure 15.19, order the elements in inorder and preorder.

8. (A quicksort) Do a quicksort of the following numbers: 3, 6, 7, 2, 9, 1, 4, using 6 as the
initial root.

15.12 Bibliography

The material of this chapter is treated comprehensively in several good textbooks such
as [2], [3], [4], and [5]. An especially concise and modern presentation that greatly
influenced this chapter is [1]. The method for evaluating the average path length in
a BST is adopted from the comprehensive text [5]. [6] is a valuable reference that
provides depth and numerous extensions of the methods presented in this chapter.

References

[1] Aho, Alfred V., John E. Hopcroft, and Jeffrey Ullman. Data Structures and
Algorithms. Reading, Mass.: Addison-Wesley, 1983.

[2] Lewis, T. G., and M. Z. Smith. Applying Data Structures. Boston: Houghton
Mifflin, 1976.

[3] Reingold, Edward M., and Wilfred J. Hansen. Data Structures in Pascal.
Boston: Little, Brown, 1986.

[4] Smith, Harry F. Data Structures: Form and Function. San Diego: Harcourt
Brace Jovanovich, 1987.

[5] Cormen, Thomas H., Charles E. Leison, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. 2nd ed. Cambridge: MIT Press, 2001.

[6] Knuth, Donald E. The Art of Computer Programming. Vol. 3, Sorting and
Searching. Reading, Mass.: Addison-Wesley, 1973.

“ch14” — 2006/2/6 — 19:59 — page 220 — #1

� �

� �

14
SECURITY PROTOCOLS

M
odern cryptography has ramifications reaching far beyond the problem of secur-
ing message transmission. The principles of cryptography—especially public key
cryptography—provide the foundation for a variety of secure digital operations,

including digital signatures, practical methods of digital cash, secure transmission
over the Internet, anonymous transactions, and proving one’s identity. These func-
tions are carried out by systematic procedures termed protocols, consisting of specific
steps taken by the parties involved. For example, the RSA protocol consists of Alice’s
selection of two prime numbers p and q to form n = pq, her determination of corre-
sponding public and private values b and a, the publication of her public key 〈n, b〉,
and the subsequent steps for encryption and decryption.

Protocols are usually expressed first in generalized terms to convey the essential
outline of the procedure. Greater detail is required to specify a practical or commercial
system. It is the generalized versions that are discussed in this chapter, with the
objective of indicating the range and power of modern cryptography, how it already
influences our daily lives and is likely to to do so in the future. There are dozens if
not hundreds of protocols in use or in published form. This chapter highlights some
of the most common, which in fact are building blocks to more complex protocols.

14.1 Digital Signatures

One of the most basic security protocols enables a person to sign a document digitally,
in such a way that other parties can be assured that the signature is authentic. At first
this may seem impossible, for couldn’t the signature simply be copied? The protocol
for digital signatures is, however, one of the simplest, and is a component of several
other more complex protocols.

The basic digital signature protocol simply interchanges the roles of public and
private keys. Or, said another way, the order of encryption and decryption is reversed.

220

“ch14” — 2006/2/6 — 19:59 — page 221 — #2

� �

� �

S e c t i o n 14.1 D I G I TA L S I G N AT U R E S • 221

Here is a digital signature protocol based on the RSA system that allows Alice to
sign a message m in such a way that Bob or anyone with knowledge of Alice’s public
key can be assured that the signature is indeed Alice’s:

1. Alice publishes an RSA public key 〈n, b〉.
2. Alice encrypts her message m with her private key 〈n, a〉, forming

y = ma mod n,

and she presents y as the signed version of m.

3. Bob (or anyone) decrypts y using Alice’s public key to recover

m = yb mod n.

Bob sees that the decrypted document is the original, and hence knows
that only Alice could have encrypted it.

The method is based on the complementary properties of public and private keys.
If a message is encrypted using a public key 〈n, b〉, it can be decrypted with the
corresponding private key 〈n, a〉. Likewise if it is encrypted with a private key 〈n, a〉,
it can be decrypted with the corresponding public key 〈n, b〉. It is a beautifully elegant
system.

The method can be generalized to other asymmetric key systems. Suppose Alice’s
private and public keys are represented by the parameters ka and kb, respectively. And
suppose that Bob wishes to send her a message x. For shorthand notation we denote
by E[x, ka] the encryption of x with key ka by whatever method of encryption is used.
In this notation Bob sends y = E[x, ka]. Alice decrypts the result y by the inverse
x = E[y, kb]. The digital signature protocol simply reverses the order of encryption
and decryption.

Hashing

Although the digital signature protocol described above is simple in concept, it
requires a great deal of computation because the entire document m must be encrypted
with Alice’s private key. Normally, one thinks of a signature as something short
appended to a document, rather than an alteration of the entire document. The basic
digital signature can be modified so that it, itself, is of modest length.

A hash of a document is a mapping of the document into a smaller message—a sort
of message digest—and that digest can be signed using the digital signature protocol
and appended to the full plaintext message. The hash mapping is accomplished by a
mathematical formula applied to the numerical version of the original message text.
It is represented symbolically by h = H(m). For example, the hash function might
calculate h = H(m) = m mod n, where m is the numerical version of the message and
n is a fixed large integer. The result is an integer between 0 and n − 1. This particular
method, however, is not practical for other than very short messages, and in actual
application far more complex functions are used, for reasons to be explained shortly.

Once a hash function is agreed upon, Alice can hash her message and sign the
hashed version. Her signature can be verified by checking that the decrypted version

“ch14” — 2006/2/6 — 19:59 — page 222 — #3

� �

� �

222 • C h a p t e r 14 S E C U R I T Y P R OTO CO L S

of her signed hashed version is identical to the hashed version of the full message.
The process is indicated schematically in figure 14.1, which shows how a signature
can be appended to a document.

Although almost any hash function can be used as a method to verify Alice’s
signature in this way, the method may be susceptible to alterations of the document
after it has been signed. This would be possible if an alteration could be constructed
that resulted in the same hash value. For example, Alice might agree to pay Bob
$100,000 for a house. She signs a document to that effect and gives it to Bob. Bob
prepares another document that states that she will pay $120,000, and he arranges the
document so that its hashed version is identical to the version that Alice signed. Bob
destroys the original document, keeping only the signed hashed segment, which he
appends to the alternate version. Bob then has a signed document stating that Alice
will pay $120,000.

To avoid the potential for such alterations, a hash function should satisfy the
following three properties:

This digital document represents a valid
real estate offer obligating the buying party
to purchase a property from the seller. lt is
essential that the signature on this document
be authentic and tamper proof.
Although this document is in digital form,
it is legally binding and non-revolkable.

The property to be purchased under this
agreement is located at 10097 Crypto Way,
in the city of Enigma, CA. Said property
consists of a single-family dewelling.
The payment will be made through the
First Cipher Title and Trust Company in
Enigma, CA. The closing date will be on
April 1.

The sales price is $100,000.

The transaction will be all cash to the seller.
All transfer fees and taxes will be paid by the
buyer.

This digital document represents a valid
real estate offer obligating the buying party
to purchase a property from the seller. lt is
essential that the signature on this document
be authentic and tamper proof.
Although this document is in digital form,
it is legally binding and non-revolkable.

The property to be purchased under this
agreement is located at 10097 Crypto Way,
in the city of Enigma, CA. Said property
consists of a single-family dewelling.
The payment will be made through the
First Cipher Title and Trust Company in
Enigma, CA. The closing date will be on
April 1.

The sales price is $100,000.

The transaction will be all cash to the seller.
All transfer fees and taxes will be paid by the
buyer.

Hashed Version (signed by Alice)
101100110011100010111010011110
110000110111010001111100110101

ggheiis ffbestpp jjzcvb ggestiisl jjibesid

Document

Hashed Document

 Signed Hashed Document

FIGURE 14.1 A signed document. The original document is hashed to form a short
digest (which is represented here in alphabetical form). This digest is signed by Alice; (it
is assumed here that this produces a binary stream). The signed digest is appended to the
original document.

“ch14” — 2006/2/6 — 19:59 — page 223 — #4

� �

� �

S e c t i o n 14.2 B L I N D E D S I G N AT U R E S • 223

1. Given a message m, the hash value h = H(m) should be simple to
calculate.

2. The function H should be one way. That is, given a hashed value h, it
should be difficult to find a message m such that h = H(m).

3. The function H should be collision resistant. That is, it should be
extremely difficult to find two messages m1 and m2 such that H(m1) =
H(m2).

Standardized hash functions satisfying these properties have been developed. They
are rather complex, and typically involve several steps much like a classical encryption
algorithm such as DES, but good hash functions are now readily available. Still, as a
precaution, it is advisable to guard against possible alteration when signing documents
prepared by others. One stratagem is to insist on a slight insignificant modification
of the document, like the addition of a comma. Such a change will alter the hashed
version, and make it extremely unlikely that a specially prepared alternate document
will hash equivalently if the minor change is placed in it as well.

14.2 Blinded Signatures

Suppose Alice wishes to have a document notarized by Bob. That is, she wants Bob
to sign her message with his private key so that others can decrypt it with Bob’s public
key, but she does not want Bob to be able to read the document itself. She only wants
Bob to sign the message to certify that the document was prepared at a certain date,
and she wants this done so that Bob cannot read it even if he keeps a copy. This can
be accomplished with a blinded signature.

Suppose Bob has a private RSA key 〈n, e〉 and a corresponding public key 〈n, f 〉.
Alice wants Bob to sign her message m with his private key, while being unable to
read m. Alice accomplishes this by disguising her message before having it signed
and then removing the disguise after it is signed. Here is the protocol:

1. Alice formulates her message m as a number.

2. Alice selects a random blinding number k with 0 < k < n and gcd
(k, n) = 1 (the n being part of Bob’s key). Then she finds g, which is the
mod n inverse of k; that is, kg ≡ 1 mod n, as discussed in chapter 13.
Alice then computes

t = mkf mod n,

where 〈n, f 〉 is Bob’s public key.

3. Alice takes the blinded message t to Bob to sign. Bob cannot extract m
from t because the blinding factor k is unknown to him.

4. Bob signs t with his private key to produce

y = te mod n,

following the basic digital signature protocol.

“ch14” — 2006/2/6 — 19:59 — page 224 — #5

� �

� �

224 • C h a p t e r 14 S E C U R I T Y P R OTO CO L S

5. Alice unblinds y by calculating z = yg mod n. This gives

z = yg mod n

= teg mod n

= (mkf)eg mod n

= mekg mod n

= me mod n.

Hence z is m signed with Bob’s private key 〈n, e〉.

Example 14.1 (Thousand-dollar message). Alice wishes to have her offer to
Cynthia signed by her agent Bob, but she does not want Bob to see the amount of her
offer. Bob has a published public key 〈n, f 〉 = (5,561, 235). Alice’s offer is $1,000.

1. Alice’s message is m = 1,000. She selects the random number k = 91
and computes its inverse mod n, which is g = 550, since

kg = 91 × 550 ≡ 1 mod 5,561.

Alice blinds her offer by computing

t = mkf mod n = 1,000 × 91235 mod 5,561 = 1,715.

She uses the square-and-multiply method of section 13.8 to compute the
large power of 91 mod 5,561.

2. Bob signs the blinded message by using his private key 〈n, e〉, computing
the blinded signed message

y = te mod n = 1715e mod 5,561 = 216.

Bob also uses the square-and-multiply method to compute the large power
of 1,715 mod 5,561, and finds y = 216 (but he does not reveal e).

3. Alice realizes that now

y ≡ te ≡ (mkf)e ≡ mek mod n.

She unblinds this by multiplying by the inverse of k, which is g = 550.
Thus the final message is

z = yg mod n = 216 × 550 mod 5,561 = 2,019.

4. Cynthia can find Alice’s original message by using Bob’s public key to
compute.

m = z f mod n = 2,019235 mod 5,561 = 1,000.

Note that nobody except Bob (not even you) knows Bob’s private key 〈n, e〉 and unless
they factor n = 5,561, they cannot find it. (See exercise 1.)

“ch14” — 2006/2/6 — 19:59 — page 225 — #6

� �

� �

S e c t i o n 14.3 D I G I TA L C A S H • 225

14.3 Digital Cash

Cash has two features that many consumers like: it is readily transferable and
it is anonymous in the sense that one can spend it without identifying oneself.
Cryptography offers the possibility of designing digital cash with these same features.

The main outlines of digital cash were developed by David Chaum. Before pre-
senting the protocol for digital cash, let us consider the physical analogy that he
suggested. Alice wants to obtain an anonymous $20 cashier’s check from her bank.

1. Alice obtains a blank form from the bank and writes a 100-digit identifi-
cation number on it that she selects randomly.

2. Alice puts the form together with a piece of carbon paper in an envelope
and takes it to the bank.

3. The bank debits Alice’s account by $20 and stamps the envelope with the
bank’s special (nonduplicable) $20 stamp. The impression made by this
stamp goes through the envelope and through the carbon paper, leaving
its image on the form inside, thus certifying the form as representing a
valid $20 cashier’s check from the bank.

4. Alice removes the certified form from the envelope.

5. Alice gives the $20 check to a merchant in exchange for goods.

6. The merchant sends the check to the bank for payment. The bank verifies
that a $20 cashier’s check with that identification number has not previ-
ously arrived at the bank. Then the bank credits the merchant’s account
for $20 and adds the 100-digit identification number to the master list of
identification numbers. The bank has no way of knowing that the check
was issued to Alice. From Alice’s viewpoint, the check is (almost) as
good as cash.

Figure 14.2 illustrates the process.

6009861104688

Anonymous

First Cypher Bank
Twenty Dollar Form

(Please Stamp)

FIGURE 14.2 Preparing a cashier’s check. Alice writes a random serial number on a
form and encloses it together with carbon paper in an envelope. The bank stamps the
envelope with its $20 stamp, which, thanks to the carbon paper, leaves a validating impres-
sion on the enclosed form. The bank does not see the serial number until Alice spends
the $20.

“ch14” — 2006/2/6 — 19:59 — page 226 — #7

� �

� �

226 • C h a p t e r 14 S E C U R I T Y P R OTO CO L S

This protocol can be carried out digitally using the digital signature protocol. The
bank has a public RSA key 〈n, f 〉 for $20 bills.

1. Alice selects a serial number S and a blinding factor k. Both of these are
large numbers. The first several digits of this serial number identify the
bank. She selects the remainder of the digits randomly. She also calculates
g as the mod n inverse of k; that is, kg ≡ 1 mod n.

2. Alice computes

y = Skf mod n.

The result y is a blinded version of the serial number S. The blinding is
analogous to Alice placing the form with her chosen serial number in an
envelope with carbon paper. She sends the blinded value y to the bank.

3. The bank debts her account by $20 and signs the blinded serial number
with its private $20 signature key 〈n, e〉, forming

t = ye mod n.

The bank returns this value to Alice.

4. Alice unblinds t by computing

z = tg mod n

= yeg mod n

= [Skf]eg mod n

= Sekg mod n

= Se mod n,

which is then the bank’s digital $20 bill.

5. Alice purchases merchandise by using the bank’s digital $20 bill. The
merchant verifies that it is valid by computing

S = zf mod n

and noting that the leading digits are those that identify the bank. The
merchant submits S to the bank.

6. The bank verifies that the serial number S has not been used before and
then credits $20 to the merchant’s account.

14.4 Identification

An important component of modern information services is the ability to identify
oneself to a remote party or computer system, as in automated banking, message
retrieval, investment transactions, and use of private databases. Modern cryptography

“ch14” — 2006/2/6 — 19:59 — page 227 — #8

� �

� �

S e c t i o n 14.4 I D E N T I F I C AT I O N • 227

provides several ways to do this, and each method has special characteristics and
features.

Password Protection

The most common method of identification is by means of a password or Personal
Identification Number (PIN). The password is usually established by a secure line, by
mail, or by personal appearance. In use, the host computer requests the user’s name
and password and the user sends them. The computer compares the password–name
combination with those stored in a master list and verifies identity if there is a match.

The system has several vulnerabilities, one of which is that someone might break
into the computer that stores the passwords, and thereby obtain a list of passwords
and associated names. This weakness can be mitigated by use of our familiar tool, the
one-way function. In this method, the host computer does not store passwords with
names, but instead, in each case, stores the result of a one-way function applied to the
password. For example, if your password is the number x, the computer might store
f (x) = gx mod n, where g and n are fixed large integers. Whenever you log in and
report your password x, the host easily computes f (x) and compares the result with
what is stored with your name. If the results match, you are admitted to the system.
If someone manages to obtain a copy of the master list of transformed passwords,
that person cannot deduce your password from the list of f (x)’s without solving the
discrete logarithm problem, which, as we know, is extremely difficult. Hence, your
password is protected against theft of the password list.

The basic password system is, however, vulnerable to eavesdropping. If someone
is able to tap into your conversation while you send your password, that person can
later pretend to be you by using your password.

Simple Challenge Method

Public key cryptography, such as RSA, provides the basis for a protocol that is more
secure than the simple password system. Suppose Bob asks Alice to identify herself
before sending further communication. Bob initiates the identification protocol by
selecting a random number x, sending it to Alice, and asking her to encrypt it with
her private key. Bob receives Alice’s response and decrypts it with Alice’s public
key. If the result is the original random number x, Bob considers that Alice has
indeed identified herself. No one else could have encrypted x so that it faithfully
decrypts with Alice’s public key. One way to look at this protocol is that Bob asks
Alice to sign the random number x with her private key. Bob verifies Alice’s digital
signature.

The method can also be considered as a challenge-and-response protocol. Bob chal-
lenges Alice to properly encrypt the random number x. The challenge-and-response
method is a central feature of many identification protocols. The public key challenge
method is secure from theft within the host computer because the only thing stored is
Alice’s public key, which is public anyway, and hence, it does not matter if someone
steals it.

“ch14” — 2006/2/6 — 19:59 — page 228 — #9

� �

� �

228 • C h a p t e r 14 S E C U R I T Y P R OTO CO L S

The public key challenge is also secure against eavesdropping. If Eve intercepts the
message between Alice and Bob, she will know the value of x and Alice’s encrypted
version of it. But this will not enable Eve to pose as Alice in the future, for when she
tries, Bob will send a different value of x for encryption, and Eve will be unable to
properly respond to the challenge.

14.5 Zero-Knowledge Proofs

Suppose you want to prove to someone that you know something specific without
actually revealing what it is. For example, you might wish to prove that you know
the combination of a safe, without revealing the combination. An easy solution for
that case is to ask everyone else to leave the room for a few moments while you open
the safe. When they return and see the open safe, they must conclude that you know
the combination. You have proved what you wished to prove while transmitting zero
knowledge about the specific thing you know.

There is a famous example of zero-knowledge proofs from mathematics.

Example 14.2 (Tartaglia’s formula). Any student of algebra is familiar with the
general quadratic equation ax2 + bx + c = 0 and the explicit formula for its solution,
x = [−b ± √

b2 − 4ac]/(2a). This formula has been known since at least the ninth
century. A similar formula for the solution of a cubic equation ax3 + bx2 + cx +
d = 0 was not known until the early 16th century. It was in 1535 that the Venetian
mathematician Niccolò Tartaglia claimed to have discovered such a formula, but
believing it to be of value, he did not wish to reveal the formula itself. However,
he proved that he possessed such a formula by responding to challenges. People
would submit a cubic equation to him, and shortly thereafter he would announce the
solution (consisting of the three roots). His solutions were easily checked, by merely
substituting them into the equation. Soon the mathematical community was convinced
that Tartaglia possessed the formula, but no one else could deduce the formula from
the challenges.

Eventually, Geronimo Cardano, sworn to secrecy, convinced Tartaglia to show him
the formula. And, as might be expected, Cardano later published the formula in his
own book, although he did give credit to Tartaglia. However, to this day the formula
is generally referred to as Cardano’s formula.

Zero-knowledge proofs (that is, proving you have knowledge without revealing
the specifics) is accomplished by responding to a challenge. In the case of the safe,
you open it while no one is looking. Likewise, for a formula that solves equations,
you apply it to challenge equations. The challenge method for identity verification
based on private key encryption of a random number is another example.

In some cases the response to a single challenge is sufficient, as in open-
ing the safe or encrypting the value of x with one’s private key, while in other
cases such as Tartaglia’s demonstration that he had the formula, successful
responses to several challenges are required. Digital protocols of zero-knowledge
proofs commonly require several challenges, each challenge having a probabilistic

“ch14” — 2006/2/6 — 19:59 — page 229 — #10

� �

� �

S e c t i o n 14.5 Z E R O - K N O W L E D G E P R O O F S • 229

A

Door

FIGURE 14.3 Tunnel with door. Alice wants to prove to Bob that she can pass
through the door, but she does not want Bob to know in which direction she is able
to pass.

component. The concept is illustrated by the standard textbook situation shown in
figure 14.3.

Alice wants to prove to Bob that she can pass through the door in the tunnel,
but she does not want to reveal how she does it or even in which direction she can
pass. She could easily prove that she can pass through the door by asking Bob to
wait at point A while she goes down one side and comes back the other. How-
ever, this reveals the direction by which she passes, which is more information than
she wants to reveal. A more complex protocol using random challenges solves the
problem.

Here is the method:

1. Alice tells Bob to wait outside while she goes down either the left or the
right side. Bob is unable to observe which side she selects.

2. When Alice is inside, Bob comes to point A and shouts “left” or “right,”
selected randomly, as a challenge.

3. Alice reappears by coming from the direction that Bob calls out.

4. After several challenges and successful responses, Bob is convinced that
Alice can indeed pass through the door.

Alice of course always goes down the side from which she is able to pass through
the door. Suppose it is the left side. Then if Bob calls out “left,” Alice simply returns
up the left side, the way she came in. If Bob says “right,” Alice passes through the
door and returns up the right side. She can do this indefinitely until Bob is convinced,
and Bob never learns the direction by which she passes. He obtains zero knowledge
about the secret direction.

If Alice cannot pass through the door, she may be able to fool Bob into thinking
she can—at least for awhile. Alice will randomly select a side to go down. If Bob
calls out that side, she can return correctly; otherwise not. Alice has a 50 percent
chance of meeting each challenge. Hence, Bob will want to issue several challenges,
randomly calling out left or right, until Alice fails or until he is convinced that Alice
can pass through the door.

If Alice meets the challenge N times in succession, there remains a probability
of only P = .5N that she cannot pass through the door. For N = 20, for example,

“ch14” — 2006/2/6 — 19:59 — page 230 — #11

� �

� �

230 • C h a p t e r 14 S E C U R I T Y P R OTO CO L S

P ≈ 1/(1 million). Hence, like Tartaglia and his formula, Alice can prove she knows
her secret without revealing it.

A Numerical Protocol∗

The concept of zero-knowledge proof has been implemented in digital form using
concepts related to public key cryptography. One version is especially well suited to
the problem of identity verification.

A central trusted agency selects an integer n as the product of two primes n = pq
and an integer s, 0 < s < n. The agency also computes y = s2 mod n. Alice is told n
and s (and can compute y).

Suppose that Alice wishes to identify herself to Bob, her network provider. Bob
has been given y and n by the central agency as the values to use when identifying
Alice. Alice must prove to Bob that she knows the number s that is the square root
(mod n) of y without revealing s.

Given only y and n, it is virtually impossible to deduce s. Indeed, doing so is
equivalent to finding the message s that has been encrypted with an RSA public key
of 〈n, b = 2〉, producing the encrypted message y = s2 mod n. This special case of
going from y = s2 mod n to s is termed the discrete square-root problem, and when
n is the product of two (unknown) primes, it is extremely difficult to solve, requiring
the factoring of n, as in any RSA cipher.

Alice needs to prove that she has the discrete square root of y without stating what
it is.

Here is a simplified version of the protocol designed by Fiat and Shamir:

1. Alice splits s into two pieces r1 and r2 such that r1r2 = s mod n. (She can
do this by first selecting r1 with gcd(r1, n) = 1, and then setting r2 = sr−1

1 ,
where r−1

1 is the mod n inverse of r1, which can be found as explained in
chapter 13.) Alice then computes x1 = r2

1 mod n and x2 = r2
2 mod n and

sends x1 and x2 to Bob.

2. By simple calculation Bob verifies that y = x1x2 mod n, which must be
the case since

x1x2 mod n = r2
1r2

2 mod n

= (r1r2)2 mod n

= s2 mod n = y.

Of course, Bob cannot see this detail, since he does not know r1 or r2.
Bob does know, however, that if Alice knew the discrete square root

of both x1 and x2, she would know s since s2 = x1x2 mod n. Bob also
would know s if he knew the discrete square roots of x1 and x2, so Alice
will not tell him both of these.

Hence, Bob requests that Alice supply the square root of either x1 or
x2, and he randomly selects which of them to request.

3. Alice sends Bob r1 or r2, corresponding to whether he requests the
square root of x1 or x2, and Bob verifies that her response is a proper
square root.

“ch14” — 2006/2/6 — 19:59 — page 231 — #12

� �

� �

S e c t i o n 14.6 S M A R T C A R D S • 231

4. The procedure is repeated, with Alice selecting a new random pair r1 and
r2, sending the new x1 and x2 to Bob, and responding to Bob’s request
for the discrete square root of either x1 or x2. This continues until Bob is
convinced that Alice indeed knows s.

If Alice does not know s, then, like the door and the tunnel, she has a 50
percent chance of passing a challenge. She can select r1 randomly and compute
x1 = r2

1 mod n. She then determines x2 = yx−1
1 mod n where x−1

1 is the mod n
inverse of x1. Then x1x2 = y mod n, but it is extremely unlikely that x2 is a square.
That is, there is no r2 such that x2 = r2

2 mod n.
When Bob receives x1 and x2 from Alice, he verifies that y = x1x2 mod n, but he

requires proof that both x1 and x2 are squares. He cannot ask Alice to supply square
roots of both x1 and x2, so he selects one. He has a 50 percent chance of selecting the
one she did not prepare. Hence, each challenge has a 50 percent chance of exposing
Alice’s deceit if she does not know s. After sufficiently many challenges that are
correctly met, Bob agrees that Alice knows s.

14.6 Smart Cards

A smart card is a wallet-sized plastic card that contains a microprocessor and memory
so that it can carry out a limited amount of computation and store a modest-sized file.
The card contains no internal power source, but gets power through contacts when
inserted in a card-reading terminal. The computational capacity of a smart card is
physically limited by the dimensions and physical characteristics of the card, but it
is expected that the capacity of new cards will increase in coming years. Smart cards
are used for personal banking, for the purchase of items from merchants or special
vending machines, and for record keeping. Generally speaking, the computational
aspects of the card are related to two main functions: authentication and financial
payment. These operations illustrate how the protocols of this chapter are used in
practice.

Authentication

We limit consideration to smart cards with authentication protocols that are based
entirely on numerical data, as opposed to those employing photographs, hand-made
signatures, fingerprints, or eye scans. The authentication process is divided into two
steps: (1) the user is authenticated to the card, and (2) the card is authenticated to the
computer of the bank or transaction agent. Thus for someone to fraudulently use an
account, he or she must first obtain the card and be able to (falsely) identify himself
or herself to the card. Then the card will identify itself to the computer.

The authentication of the user is generally based on a Personal Identification Num-
ber (PIN) known by the user. When the individual wishes to use the card, he or she
inserts the card in a terminal and types the PIN into the terminal keyboard. The
terminal relays this number to the card, which can compare it with the PIN stored
internally. If there is a match, the card will place itself in a mode ready for additional
service activity. Because this stage of verification is between the individual and the

“ch14” — 2006/2/6 — 19:59 — page 232 — #13

� �

� �

232 • C h a p t e r 14 S E C U R I T Y P R OTO CO L S

Compute
x = E(x,kb)

Generate
R

y = R?

ID

Card Computer

Yes

Send ID

Send R

Send x

Authenticate

Compute
x = E(R,ka)

FIGURE 14.4 Smart card authentication protocol. The card sends its identification num-
ber to the computer. The computer responds by sending a random number as a challenge
to the card. The card encrypts the random number with its private key and sends the result
back to the computer. The computer decrypts the result with the user’s public key. If this
new result matches the random number, authentication is verified.

card, there is no reason for the terminal to store the PIN or compare it with a list. The
terminal simply acts as a means for accessing the card.

The next phase is for the computer system to verify the card. This is carried out by
a challenge-and-response protocol, which may be based on either a symmetric key
cipher system or an asymmetric key system. In one of the simplest methods, the card
and the computer share a common function f and a key k associated with that card.
The computer generates a random number R and sends it to the card. The card com-
putes f (R, k) and sends the result back to the computer. The computer independently
computes f (R, k) and compares the result with the card’s response. If they are equal,
access is granted.

Authentication can be made more secure by use of public key cryptography as
shown in figure 14.4. The card has a private key stored internally, and a pub-
lic key stored in the computer. The computer generates a random number R and
sends it to the card. The card encrypts R with its private key ka to produce
x = E[R, ka], which is sent to the computer. (Here again, E[R, ka] denotes the result
of encrypting R with key ka.) The computer decrypts x with the card’s public key
to verify that R = E[x, kb]. If the verification is positive, the computer authenticates
the card.

The authentication can also be based on a zero-knowledge proof, such as the Fiat–
Shamir protocol. In this case the secret value s is hard-wired into the card and no one
else need know it or store it. The card’s identity is y = s2 mod n, and the card proves
its identity by proving that it knows s.

“ch14” — 2006/2/6 — 19:59 — page 233 — #14

� �

� �

S e c t i o n 14.6 S M A R T C A R D S • 233

Compute
y = E(x,kb)

y = C ?

Card Bank Computer

Yes

Send
amount C

Send C,x

Accept
charge

Compute
x = E(C,ka)

Merchant

FIGURE 14.5 Smart card payment protocol. The merchant requests payment of an amount C from the card. The
card encrypts this amount with its private key and sends the amount C and the encrypted version of C back to the
merchant (who can check that C is still correct) and on to the bank. The bank verifies that C is consistent with its
encrypted version (thus guarding against a change in C by the merchant). When verification is complete, the bank
carries out the financial transaction.

Payment Protocols

In the context of a point-of-sale (POS) payment system, a smart card can authorize
payment from a bank or can transfer digital cash. Again, either symmetric key or
asymmetric key cipher systems can provide security for this process.

There are three parties involved in a payment system: the customer, the merchant,
and the bank. All three must interact in the transaction, and each must be protected.

One way to carry out the transaction using an asymmetric key system is shown
in figure 14.5. In this method neither the user nor the merchant can change the pay-
ment amount C as it is sent to the bank. The merchant can check what the card
sends to the computer, and the bank can check that the merchant did not alter the
amount.

“ch14” — 2006/2/6 — 19:59 — page 234 — #15

� �

� �

234 • C h a p t e r 14 S E C U R I T Y P R OTO CO L S

14.7 EXERCISES

1. (Factor) Find Bob’s key for example 14.1 and compute the number he would give to Alice
if she changed her offer to $1,200.

2. (The birthday attack*) Suppose there are 23 people at a gathering. What is the chance that
at least two people share the same birthday? This is known as the birthday paradox, for the
answer is 50 percent, which at first seems surprisingly large.

A variant of the puzzle is this: Suppose there are r people in each of two rooms.
Each person holds a (random) number between 1 and n, where n is large compared to r.
What is the probability that a pair of people, one from each room, possess the same
number?

(a) Argue that the probability that such a pair exists is 1 − (1 − r
n)r .

(b) Let r = √
λn for some λ. Using the approximation 1−x ≈ e−x , find the probability

that such a pair exists in terms of λ.
(c) What is the probability of a matching pair if n = 250 and r = 230?
(d) Alice is planning to digitally sign the hash of a contract. The hash will be a reduced

document 50 binary digits in length. She feels safe because there are 250 possible
hash functions. Larry decides to launch a birthday attack by, first, preparing a
fraudulent contract with terms unfavorable to Alice. Then he selects 30 places in
each of the contracts where a slight change can be made (adding a comma for
instance), changes that Alice is likely to accept. He prepares 230 (approximately
1 million) versions of the contract by using all combinations either making a change
or not at the 30 places. He then forms the hashed version of all of these, and looks
for a match. What is the probability that there will be at least one pair of hashed
versions, a good and a fraudulent, that match? If Larry finds a match, he can show
Alice the corresponding fair contract and present the fraudulent hashed version for
her digital signature.

3. (Bit commitment) Alice claims that she is able to predict what the stock market average
will be one month from now. To prove she can do it without revealing the value ahead of
time, she offers to give Bob now an encrypted version of the future average (say x) and in
one month give Bob the inverse of the key she used so that he can verify the result. Bob
is suspicious and wants better assurance that Alice does not have a number of different
inversion keys that she could choose from to match the actual stock market value when it
is known. Can he ask her to encrypt something else as well that will guarantee the security
of her commitment?

4. (Secret sharing) Suppose you have a secret message m (a number) that you wish to divide
among n people, so that the message can be determined by any t members of the group, but
not by any subgroup of less than t members. This can be done as follows:

(a) Select a prime number p larger than any m that might be used.
(b) Select t − 1 coefficients s1, s2, . . . , st−1 and form the polynomial

s(x) = m + s1x + s2x2 + · · · st−1xt−1.

(c) Index people from 1 to n, and tell them all the number p. Tell person with index k
the value s(k) mod p.

Any group of t people can reconstruct the (t −1)th order polynomial from their information
by using the Lagrange interpolation formula. Let T be the set of indices of t people. That

“ch14” — 2006/2/6 — 19:59 — page 235 — #16

� �

� �

S e c t i o n 14.8 B I B L I O G R A P H Y • 235

group can determine m as

m =
∑
k∈T

s(k)
∏

j∈T /k

j

j − k
mod p,

where T /k denotes every index in T except k. For example, for determination by three out
of five people, suppose the message is 17, p = 43, and s(x) = 17 + 24x + 36x2. Then the
five individuals would be told p, and each would be given a result according to this list:

1. 17 + 24 + 36 mod 43 = 34
2. 17 + 24 · 2 + 36 · 4 mod 43 = 37
3. 17 + 24 · 3 + 36 · 9 mod 43 = 26
4. 17 + 24 · 4 + 36 · 16 mod 43 = 1
5. 17 + 24 · 5 + 36 · 25 mod 43 = 5.

Suppose that persons 2, 3, and 5 share their information. They compute

m = 37

(
3

3 − 2

) (
5

5 − 2

)
+ 26

(
2

2 − 3

) (
5

5 − 3

)
+ 5

(
2

2 − 5

) (
3

3 − 5

)
mod 43

= 37 · 5 + 26 · (−5) + 5 · 1 mod 43 = 17.

Suppose on another day, the group is told p = 57 and persons 1, 3, and 4 are told the values
54, 48, 39 respectively. What is the message?

14.8 Bibliography

A readable discussion similar to parts of this chapter, including the story about
Tartaglia, is contained in [1]. Numerous protocols are outlined in [2]. The concept of
blinded signatures as well as several other signature and digital cash protocols were
originated by David Chaum. See [3], [4]. For the discrete square root protocol, see
[5]. The exercise on secret sharing is adapted from the general presentation in [6],
which discusses several other protocols as well.

References

[1] Beutelspacher, Albrecht. Cryptology. Washington, D.C.: Mathematical Asso-
ciation of America, 1996.

[2] Schneier, Bruce. Applied Cryptography. 2nd ed. New York: John Wiley, 1996.
[3] Chaum, David. “Blind Signatures for Untraceable Payments.” In Advances in

Cryptology: Proceedings of Crypto ’82, ed. David Chaum, R. L. Rivest, and
A. T. Sherman. New York: Plenum Press, 1983.

[4] ———. “Achieving Electron Privacy.” Scientific American, August 1992,
96–101.

[5] Fiat, A., and A. Shamir. “How to Prove Yourself: Practical Solutions to Iden-
tification and Signature Problems,” Advances in Cryptology—CRYPTO ’86
Proceedings, Springer-Verlag, 1987: 186–194.

[6] Trappe, Wade, and Lawrence C. Washington. Introduction to Cryptography
with Coding Theory. Upper Saddle River, N.J.: Prentice-Hall, 2002.

“ch14” — 2006/2/6 — 19:59 — page 236 — #17

� �

� �

“ch14” — 2006/2/6 — 19:59 — page 237 — #18

� �

� �

S U M M A R Y O F PA R T I I I • 237

S u m m a r y o f P a r t I I I

Ciphers are designed to confound the efforts of outsiders wishing to read messages
intended for others. Classical ciphers are based on a key known by both sender and
intended receiver. The key associated with a substitution cipher is a transformation
of the letters of the alphabet into other symbols, or it is a permutation of the alphabet
itself. The key associated with a transposition cipher is a formula for changing the
order of the letters sent. Complex ciphers may be combinations of both methods and
may change with every letter sent. One measure of the complexity of a cipher is
the number of its possible keys. A simple Caesar cipher has only 26 possible keys.
The Vigenère cipher has 26n possible keys, where n is the length of the key word.
Cryptograms have 26! ≈ 4×1026 possible keys. The original Enigma machine had
7.6 × 1018 possible keys. Jefferson’s cipher wheel had an astounding 3.72 × 1041

possible keys.
Shannon developed a comprehensive theory of classical encryption that includes

a definition of perfect security, which can be related to entropy. It follows from this
theory that the one-time pad method of encryption has perfect security if the symbols
in the pad are truly random. The theory also quantifies the degree of security of a
cipher system in terms of the unicity point, which is an estimate of the length of
ciphertext that must be seen before an unknown key can be deduced.

Because a one-time pad is the most practical way to obtain perfect security, effort
has been devoted to developing means for efficiently generating random numbers. One
method employs shift registers, and another uses linear congruences. Both have the
advantage that pseudorandom sequences with good properties can be generated from
a few initial parameters. A disadvantage of these methods is that these few parameters
generally can be inferred from observation of a long sequence generated by them.

Shannon’s theory is based on the degree of uncertainty of the key. According to
this theory a greater number of keys produces greater security. However, the Enigma
machine has on the order of 1018 keys, while cryptograms have on the order of 1026

possible keys. Yet a cryptogram can be solved rather quickly by an average citizen,
whereas the initial Enigma was breached only after a great deal of work and use of
a computer. Computational complexity plays an important role in determining actual
security.

The public key approach to encryption is directly based on computational com-
plexity rather than absolute key size. The discrete logarithm problem of solving the
equation y = ak mod n for k, given y and a, provides no security from a purely prob-
abilistic standpoint because indeed it can be solved. There is no ambiguity. However,
for large values of n it is extremely difficult from a computational standpoint.

The original motivation for public key systems was the difficulty of managing key
distribution in a classical system. The original Diffie–Hellman paper gave a method,
using the discrete logarithm problem, in which two parties jointly agree on a secret
key even though their communication was open to anyone. Other public key systems
follow that approach, finding functions that are hard to solve unless one knows a key.
Some of the main tools used in the development of such systems are the Euclidean
algorithm and Fermat’s theorem.

“ch14” — 2006/2/6 — 19:59 — page 238 — #19

� �

� �

238 • S U M M A R Y O F PA R T I I I

A standard public key system is RSA. The security of this method rests on the
computational difficulty of factoring a large number that is the product of two unknown
primes. A person, say Alice, generates her public key 〈n, b〉, which can be openly
published, and a corresponding private key 〈n, a〉 that is not published. Anyone wish-
ing to send a message to Alice encrypts the message using Alice’s public key. Alice
can decrypt it with her private key. This method and its variants are now in common
use—in Internet correspondence, financial transactions, and military operations.

Public key concepts form the basis of protocols designed to accomplish various
secure operations. A digital document can be signed using a digital signature protocol
that reverses the role of public and private keys. The document is encrypted with one’s
private key, and the signature is verified by application of the public key that decrypts
the document. A more complex protocol provides a blinded signature whereby a
document can be confusingly modified so that a notary can sign it without being able
to read it. Public key protocols are embedded in digital cash systems and in some
smart cards used for financial transactions.

“ch13” — 2006/2/6 — 18:47 — page 200 — #1

� �

� �

13
PUBLIC KEY CRYPTOGRAPHY

T
he weak link in classical cryptology is the transmission of keys between sender and
receiver. In communication networks—such as in military operations, international
business, or personal finance—a different key should ideally be used by each pair of

participants. This massive and frequent exchange of keys is vulnerable to interception
and thus to serious security compromise. Indeed, the management of keys dominates
the practical implementation of classical cryptography.

In the 1970s Prof. Martin Hellman at Stanford University, working with gradu-
ate student Whitfield Diffie, addressed the key management problem directly. They
believed, intuitively, that it should be possible to securely transfer a key by digital
means. In 1976, in a celebrated paper, they outlined the basics of what is now known
as public key cryptography, and they provided a specific method for two separated
parties to securely construct a key using what is now known as the Diffie–Hellman
key exchange method. This general approach, which emphasizes computational com-
plexity as a means for providing security, is today the basis for secure ciphers, digital
cash, digital signatures, secure Internet transmission, and other digital products that
depend on security.

This chapter presents the elements of the public key concept and its implementa-
tion. The following chapter discusses many of the theory’s interesting applications.

13.1 A Basic Dilemma

Alice and Bob are standard fictional characters in discussions of cryptography. We
introduce them now in the context of a simple dilemma or puzzle, the solution of
which hints at the techniques of public key cryptography.

Suppose that Alice wishes to send to Bob a handwritten letter through the mail,
and she does not want anyone else to read it. She feels that ordinary envelopes, which
can be steamed open, do not offer enough security. She has at her disposal a solid

200

“ch13” — 2006/2/6 — 18:47 — page 201 — #2

� �

� �

S e c t i o n 13.2 O N E - WAY F U N C T I O N S • 201

FIGURE 13.1 Alice wants to send a letter to Bob.

metal box that can be secured with a padlock to which she has the only key. If Alice
places her letter in the box, locks it with the padlock, and sends it through the mail,
Bob will receive it safely. However, since Bob does not have a copy of the key, he is
unable to open the box. How can Alice securely send the letter to Bob?

She might first consider sending a copy of the key to Bob, for once he had it, he
could use it to open the box. But if she uses the mail for this purpose, the key might
be intercepted and duplicated. This is exactly the dilemma of two people wishing to
communicate with a classical cipher based on a key. The key must first be sent from
one party to the other.

There is a simple but clever solution to this puzzle: Alice places the letter in the
box and locks the box with her padlock. The box travels securely through the mail.
Bob receives it in fine order but cannot open it. Instead, he further secures the box
with an additional padlock to which he has the only key. He then returns the box to
Alice through the mail, its security protected now by two locks.

When Alice receives the double-locked box, she unfastens her lock and sends the
box back to Bob, again through the mail. When Bob receives the box, he opens the
remaining padlock with his key, and reads Alice’s letter. Transmission of the letter
was secure even though neither Bob nor Alice ever possessed the other’s key.

This solution suggests that security may be achieved by clever schemes when brute
force or direct methods fail, and this is a theme of public key cryptology. This puzzle
is referred to in later sections, in order to relate digital procedures to the physical
procedures used by Alice and Bob.

13.2 One-Way Functions

One feature of a padlock is that it can be locked without the key. The key is needed only
to unlock it. This is a characteristic of public key cryptology as well. The mathematical
analogy of a lock is a one-way function. Such a function is easy to apply to an input
number, but extremely difficult to unscramble so as to recover the input.

Many functions exhibit a modest degree of one-way-ness. Consider the function f
applied to integers x defined by f (x) = x2. The square of x is easily found by ordinary
multiplication. Finding the square root with the ordinary method is more difficult. It
is easier to go forward than backward.

“ch13” — 2006/2/6 — 18:47 — page 202 — #3

� �

� �

202 • C h a p t e r 13 P U B L I C K E Y C R Y P TO G R A P H Y

Although f (x) = x2 gives a general idea of the one-way concept, it does not have
all of the characteristics of a lock. Going backward is not difficult enough, and there
is no key to unlock it.

Another example is the phone book function. If I wanted you to secretly send
me the name of a person suspected of a crime, I could instruct you to send me the
suspect’s phone number. You could easily look up the number in the phone book and
send it to me. If someone intercepts the message, he or she would find it difficult to
deduce the corresponding name. However, if I had a key—namely a reverse phone
book that lists phone numbers sequentially and gives corresponding names—I could
easily decrypt your message.

Here are some other functions possessing a degree of one-way-ness:1

1. Multiply by n. That is, f (x) = nx. Multiplication is easier than division.

2. Raise to power n. That is, f (x) = xn. Raising to a power is easier than
taking the n-th root.

3. Put in exponent. That is, f (x) = nx . Exponentiation is easier than taking
the logarithm.

4. Put in exponent and drop off digits. For example, let f (x) = 12x but with
only the final four digits retained. Hence x = 9 leads to 129 mod 104 =
5, 159, 780, 352 mod 104 = 0352. It is very difficult to discover that x = 9
from the last four digits.

Of these examples, the last is the most secure. It is difficult to go backward from
the last few digits of nx to find x. It is these kinds of functions that serve as building
blocks for the one-way functions used in public key systems.

13.3 Discrete Logarithms

When Diffie and Hellman were searching for an appropriate one-way function, they
discussed their need with John Gill, who at the time was a young professor at Stanford.
Gill suggested the discrete logarithm problem.

Consider the equation

b = ak mod n (13.1)

(meaning ak = cn + b for some integers c and b with 0 ≤ b < n). Assume first that
a and n are known positive integers. Then, given an integer k, it is not difficult to
evaluate b. This can be regarded as b = f (k), the forward direction of a function f .
The reverse problem is that of finding k when b, as well as a and n, are given.

If it were not for the modulo n in the equation, the value of k could be found by
taking ordinary logarithms. Specifically, k = (log b)/(log a). However, when b is
defined with the modulo n, it is much more difficult to find k. This problem is termed
the discrete logarithm problem.

1The inverses for the first three examples can be found relatively efficiently for very large numbers by the
iterative technique called Newton’s method. Hence the one-way properties of these examples are quite
modest.

“ch13” — 2006/2/6 — 18:47 — page 203 — #4

� �

� �

S e c t i o n 13.4 D I F F I E – H E L L M A N K E Y E XC H A N G E • 203

Item 4 listed in the previous section, with b = f (k) = ak mod 10, 000, is an exam-
ple of the discrete logarithm problem. For instance, with a = 12, n = 10, 000, and
b = 0352, it is difficult to deduce that a solution is k = 9 (since 129 = 5,159,780,352).

Primitive Values

A family of discrete logarithm problems is defined by fixing the integers a and n in
equation (13.1). Generally, one takes 1 < a < n to avoid trivialities. However, even
with that obvious restriction, not all combinations of a and n define useful one-way
functions.

For example, suppose a = 5, n = 10. The resulting function can be studied by
looking at a table of all resulting k and b combinations, as shown below.

k 1 2 3 4 5 6 7 8 9

b = 5k mod 10 5 5 5 5 5 5 5 5 5
.

This highly degenerate case is clearly not suitable since the relation from k to b is not
invertible to a unique k.

Consider instead the values a = 3, n = 10. The corresponding table of possibilities
is then

k 1 2 3 4 5 6 7 8 9

b = 3k mod 10 3 9 7 1 3 9 7 1 3
.

This combination is better, but it also contains duplicates.
Finally, consider the combination a = 2, n = 11 (with a modulus different from

before). The corresponding table of resulting k and b combinations is then

k 1 2 3 4 5 6 7 8 9 10

b = 2k mod 11 2 4 8 5 10 9 7 3 6 1
.

In this case b ranges over all integers between 1 and 10 = n−1 as k ranges over these
same values. The function f from k to b is therefore one-to-one for k in this range.

In general, a is primitive relative to n if ak mod n includes all values 1, 2, . . . , n−1
as k ranges over 1, 2, . . . , n − 1. When a is primitive relative to n, it is also said that
a is a generator (with respect to n) because all the integers between 1 and n − 1 are
generated by powers ak mod n.

13.4 Diffie–Hellman Key Exchange

The Diffie–Hellman key exchange system was the first concrete example of the
general theory outlined in Diffie and Hellman’s original paper. The background in
the previous section is sufficient to follow this innovative method of key exchange.2

2During the period that Diffie and Hellman were working on their general approach to encryption, Ralph
Merkle, a graduate student at the University of California, Berkeley, independently outlined an approach
to key exchange based on the generation and transmission of thousands of puzzles, one of which would be
chosen at random by the receiving party. Merkle soon joined Prof. Hellman’s group to work with Hellman

“ch13” — 2006/2/6 — 18:47 — page 204 — #5

� �

� �

204 • C h a p t e r 13 P U B L I C K E Y C R Y P TO G R A P H Y

The key exchange method can be described for the players Alice and Bob who
wish to agree on a common key for encryption without others being able to discern
the key even if they intercept all messages between them. The method consists of
three steps.

1. Alice and Bob agree on integers a and n with a primitive3 with respect
to n; and n large. These choices need not be secret.

2. Alice privately selects an integer kA, 1 < kA < n, which is her part of the
key. She then computes

yA = akA mod n (13.2)

and openly sends yA to Bob.
Likewise, Bob selects an integer kB, 0 < kB < n, which is his part of

the key. He computes
yB = akB mod n (13.3)

and openly sends yB to Alice. Both Alice’s and Bob’s messages can be
sent insecurely.

3. Alice and Bob then agree on the joint key

kAB = akAkB mod n.

Alice computes the key from the formula

kAB = (yB)kA mod n,

which she can compute because she (and no one else) knows kA and she
knows the value yB that Bob sent.

Likewise, Bob computes

kAB = (yA)kB mod n.

Both Alice’s and Bob’s messages can be sent over an insecure channel
because learning yA (or yB) does not divulge kA (or kB) due to the one-way
nature of the function involved.

Of course the two methods of computing the key are equivalent since

akAkB = (akA)kB = (akB)kA .

The key is secure because an outsider who has intercepted yA and/or yB cannot
compute kAB without knowing either kA or kB, and determining one of these requires
solving one of the discrete logarithm problems defined by equation (13.2) or (13.3).
For a large, but still practical, n (on the order of a few hundred digits) this inverse
problem is extremely difficult to solve, requiring perhaps millions of years using
today’s fastest computers.

and Diffie and pursue his Ph.D. degree. Because the Diffie–Hellman key exchange method is close in
concept to Merkle’s ideas, Hellman has suggested that it should be more properly called Diffie–Hellman–
Merkle key exchange.

3It is not strictly necessary that a be primitive with respect to n, only that a generate a large quantity of
numbers of the form ak mod n.

“ch13” — 2006/2/6 — 18:47 — page 205 — #6

� �

� �

S e c t i o n 13.5 M O D U L A R M AT H E M AT I C S • 205

Example 13.1 (Small n). For illustrative purposes we use a small value of n. Let
us take n = 97, a = 5 (5 is primitive with respect to 97). Suppose Alice and Bob
independently select kA = 16, kB = 11, respectively. They compute as follows.

Alice using kA = 16. (It is simplest to break powers into a series of lower powers
and reduce each to the modulo equivalent. Alice uses a simple decomposition as
follows.)

yA = 516 mod 97 = 58 × 58 mod 97

= 390, 625 × 390, 625 mod 97

= (4, 027 ∗ 97 + 6) × (4, 027 ∗ 97 + 6) mod 97

= 6 × 6 mod 97

= 36.

Bob using kB = 11. (Bob uses a more detailed decomposition as follows.)

yB = 511 mod 97 = 58 × 52 × 5 mod 97

= [[(5)2]2]2 × 52 × 5 mod 97

= [[25]2]2 × 52 × 5 mod 97

= [625]2 × 125 mod 97 = [43]2 × 28 mod 97

= 1849 × 28 mod 97 = 6 × 28 mod 97 = 71.

Then, knowing kA and yB, Alice computes

kAB = (yB)kA mod 97

= 7116 mod 97

= 62.

Likewise, Bob calculates

kAB = (yA)kB mod 97

= 3611 mod 97

= 62.

Hence they both agree on the key 62.

13.5 Modular Mathematics

Modular mathematics is heavily used in public key encryption systems, but for intro-
ductory purposes only a little background is required. The basics are reviewed in this
section.

First is notation. The “mod m” notation is used in two ways. The first usage is as an
operator that reduces a number to its modulo m value. The value of “c mod m” is the
remainder when c is divided by m. Specifically, if c is expressed as c = km +b where
k is an integer and 0 ≤ b < m, then c mod m = b. For instance, 32 mod 10 = 2.

The second usage of the notation “mod m” is as an equivalence relation, in which
case the equivalence symbol ≡ is used. A statement of the form b ≡ c mod m,

“ch13” — 2006/2/6 — 18:47 — page 206 — #7

� �

� �

206 • C h a p t e r 13 P U B L I C K E Y C R Y P TO G R A P H Y

means that the equality is true only in mod m terms. Specifically it means that b− c is
an integral multiple of m. For example, 32 ≡ 2 mod 10 is such a statement. In a string
of such equivalences, the final mod n applies to the entire set. Thus 33 ≡ 19 ≡ 5 ≡
1 mod 2.

The mod operator follows some simple rules with respect to addition and
multiplication that facilitate computation.

Addition:

(a + b) mod m = [(a mod m) + (b mod m)] mod m.

Multiplication:

a · b mod m = [(a mod m) · (b mod m)] mod m.

These rules show that when computing the modular values of sums and products, the
mod operator can be applied at any point. For example,

(56 + 27)(112 + 13) ≡ (6 + 7)(2 + 3) ≡ 3 · 5 ≡ 5 mod 10,

which is easier than computing

(56 + 27)(112 + 13) = 83 · 125 = 10, 375 ≡ 5 mod 10.

The Euclidean Algorithm

A concept related to both primality and modular mathematics is that of the greatest
common divisor of two integers. This is the positive integer that divides evenly into
both numbers and which is a multiple of every other common divisor. For example,
the greatest common divisor of 6 and 10 is 2. The greatest common divisor of the two
integers A and B is denoted gcd(A, B).

If the integers A and B satisfy gcd(A, B) = 1, then A and B are said to be relatively
prime. For example, if A and B are distinct prime numbers, then they are relatively
prime since there is no positive number that divides them both.

The gcd of two integers can be found efficiently by use of the Euclidean algo-
rithm, which was described in Euclid’s Elements, written about 300 BCE, although it
believed that the algorithm was discovered 200 years earlier. This wonderful algorithm
has the distinction of being the oldest known nontrivial mathematical algorithm.

The algorithm to find gcd(A, B) is easily described. Assume that 0 < B < A.

1. If B = 0, the algorithm terminates with A as the answer.

2. Replace the pair (A, B) by the pair (B, A mod B). Return to step 1.

The algorithm must terminate because the second entry is reduced during step 2.
The process is probably best understood by going through an example.

Example 13.2 (Simple to find). Let us find the greatest common divisor of 70 and
63. We write

(70, 63) → (63, 70 mod 63) = (63, 7) → (7, 63 mod 7) = (7, 0).

Hence gcd(70, 63) = 7.

“ch13” — 2006/2/6 — 18:47 — page 207 — #8

� �

� �

S e c t i o n 13.5 M O D U L A R M AT H E M AT I C S • 207

TABLE 13.1
Computation of gcd(935, 273).

A B

935 = 3 · 273 + 116 935 273
273 = 2 · 116 + 41 273 116
116 = 2 · 41 + 34 116 41

41 = 1 · 34 + 7 41 34
34 = 4 · 7 + 6 34 7

7 = 1 · 6 + 1 7 6
1 = 1 · 1 + 0 6 1
1 = 0 + 1 1 0

Example 13.3 (A longer one). As another example, take A = 935, B = 273. The
appropriate computations are shown in table 13.1. Since the final value of A is 1, we
conclude that gcd(273, 935) = 1. The two values are relatively prime.

Modular Inverses

Given a with 0 ≤ a < m, an integer b with 0 ≤ b < m is the inverse of a modulo m if

ab ≡ 1 mod m.

In this case a is said to be invertible mod m. It is not always true that such a b exists.
However, there is a unique b if a and m are relatively prime. For example, if a = 7,
m = 10, then b = 3 is the appropriate inverse because ab = 7 · 3 = 21 ≡ 1 mod 10.

It is left as an exercise to show that when it exists, the inverse is unique.
When a and m are relatively prime, the inverse of a modulo m can be found from

the Euclidean algorithm. However, it is necessary to keep track of the factors used
in the algorithm. A systematic procedure is the generalized Euclidean algorithm
described in the appendix to this chapter.

In the examples of this book, which use relatively small numbers, modular inverses
are easily found by trial and error by hand or by using a spreadsheet program.

The main conclusion, however, is the following important theorem.

Theorem 13.1. If a and m are relatively prime, with 0 < a < m, then there is a
unique b, 0 < b < m, such that ab ≡ 1 mod m.

Fermat’s Theorem

Cryptography theory often takes the modulus m to be a prime number p. There is a
simple but important result for that case.4

4This is not the famous “Fermat’s last theorem.”

“ch13” — 2006/2/6 — 18:47 — page 208 — #9

� �

� �

208 • C h a p t e r 13 P U B L I C K E Y C R Y P TO G R A P H Y

Theorem 13.2 (Fermat’s theorem). If p is prime, then for any integer x,

xp ≡ x mod p. (13.4)

Proof: The proof is by induction. The result is trivially true for x = 0 and x = 1.
Assume it is true for some x. Then by direct expansion

(x + 1) p = x p + px p−1 + p(p − 1)

2
x p−2 + · · · + px + 1.

The coefficient of the k-th term in the above expansion is the binomial coefficient
p!/[(p − k)!k!]. All of these coefficients, except for k = 0 and k = p, contain a
factor of p in the numerator. This factor cannot be canceled by any denominator term
because p is prime. Therefore, all coefficients except the first and the last are multiples
of p. Hence

(x + 1) p ≡ x p + 1 mod p.

By the induction hypothesis, xp ≡ x mod p, and thus the above relation becomes

(x + 1) p ≡ x + 1 mod p,

which shows the result is true for x + 1, completing the induction process.

As an example, take p = 3, x = 2. Then xp = 23 = 8 ≡ 2 mod 3 = x.
There is an important corollary based on the result concerning modular inverses

discussed in the previous subsection.

Corollary. If p is prime and x is not a multiple of p (including 0), then

xp−1 ≡ 1 mod p. (13.5)

Proof: The equivalence xp ≡ x mod p can be divided by x if x is not a multiple
of p.

13.6 Alternative Puzzle Solution

Perhaps you did not notice that there is an alternative solution to the Alice and Bob
locked box dilemma; a solution in which Alice’s letter travels only once through
the mail instead of three times as in the original solution. This solution begins with
Bob, and hence this might be termed the “Bob solution” as contrasted with the earlier
“Alice solution.”

Bob sends Alice an open lock to which he has the only key. The lock travels safely
through the mail, for no one has an incentive to intercept it. Alice receives the lock and
snaps it shut on her metal box, securing the letter inside. She then sends the locked
box to Bob. He opens it with his key, and reads the letter.

The Bob solution is more efficient, and it provides a good analogy for modern
public key systems.

“ch13” — 2006/2/6 — 18:47 — page 209 — #10

� �

� �

S e c t i o n 13.7 R S A • 209

FIGURE 13.2 Alternative solution. Bob sends his open padlock to Alice, who uses it to
secure her letter in a box that she sends back to Bob.

13.7 RSA

After Diffie and Hellman published their groundbreaking paper on a new approach to
cryptography, a group at MIT—Ronald Rivest, Adi Shamir, and Leonard Adleman—
began a quest for an appropriate public key system as envisioned by the Diffie–
Hellman paper. After a year of effort by the team, Rivest put it all together one day
and wrote it up that night. The paper was published by the three of them. Their method
is now termed RSA, after the initials of their last names.

RSA begins with the choice of a modulus, but it is selected to be the product of
two primes.

In terms of the Alice and Bob situation, RSA is analogous to the solution titled as
Bob’s. Bob constructs a lock to which only he has the key, and he sends the open lock
to Alice. Alice secures her message with Bob’s lock and sends it to him. He opens it
with his key.

Bob could send copies of his open lock to everyone, and announce that if anyone
wishes to send him a message, they should simply secure with his lock. Only he has
the key. In digital form, Bob’s lock is a pair of numbers 〈n, b〉. These are referred to
as a public key, rather than an open lock, but this public key serves a role analogous
to a physical lock.

Here are the steps of the RSA method that you would use to have people send you
secure messages, each step capable of being carried out efficiently even for numbers
that are a thousand bits or more in length:

1. Select two primes p and q and form n = pq and φ = (p − 1)(q − 1).
(Section 13.9 indicates how large primes can be found.)

2. Select b, 1 < b < φ such that b is relatively prime to φ. That is,
gcd(b, φ) = 1. (Values of b can be checked with the Euclidean algorithm.)

3. Find a such that ab ≡ 1 mod φ. (This can be done with the generalized
Euclidean algorithm as discussed in section 13.5.)

4. Publish n and b. These together form the public key. Instruct people to
encrypt messages m (with 0 < m < n) intended for you by y = mb mod n.
(Section 13.8 explains how to calculate large modular powers.)

5. Decrypt messages by m = ya mod n. (Use the same method as in step 4.)

“ch13” — 2006/2/6 — 18:47 — page 210 — #11

� �

� �

210 • C h a p t e r 13 P U B L I C K E Y C R Y P TO G R A P H Y

The important feature of RSA is that outsiders cannot compute φ directly from n,
and hence they cannot compute a, the mod φ inverse of b. The only way someone
can find φ, and hence a, is by factoring n into its prime components p and q so that
they can evaluate (p−1)(q−1). Such factoring is extremely difficult when n is large.
In a sense, the underlying one-way function is multiplication of two prime numbers.
Such multiplication is easy; factoring is (very) hard.

Example 13.4 (A simple RSA). Here is a step-by-step example using small
numbers.

(Set up public key) Alice selects the two primes p = 3, q = 11 and defines
n = pq = 33. She calculates

φ = (p − 1)(q − 1) = 2 × 10 = 20.

Next she selects b relatively prime to φ. There are several choices: 3, 7, 9, 11, 13,
17, or 19. She settles on b = 13. Her public key is the combination 〈n, b〉 = 〈33, 13〉.
She announces this to anyone wishing to send her a message.

(Find the private key) Alice finds a such that ab = 1 mod φ. She can find this
a since she knows φ. Other people cannot find a unless they can factor n (which
although easy for this example, is nearly impossible for very large values of n).

She could find a with the extended Euclidean algorithm, but for this example Alice
simply calculates 13a mod 20 for all possible values of a until she finds the right one.
Here is the table of calculations:

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
13a 13 6 19 12 5 18 11 4 17 10 3 16 9 2 15 8 1

.

Thus a = 17, and Alice’s private key is 〈n, a〉 = 〈33, 17〉.
(Test message) Suppose Bob wishes to send Alice the letter d, which he converts

to the message m = 4, since d is the fourth letter of the alphabet. He encrypts the
message m with Alice’s public key by computing y = 413 mod 33. (A spreadsheet
can calculate this directly using the mod function, or it can be calculated by noting
that 46 = 4,096 ≡ 4 mod 33; hence 412 ≡ 16 mod 33; and thus 413 ≡ 16 × 4 ≡
64 ≡ 31 mod 33.) Thus the encrypted version of the message m = 4 is y = 413 mod
33 = 31.

(Decoding) Alice receives the encrypted message y = 31. To decode it she com-
putes y17 mod 33. (This can be done by expressing y17 in terms of lower powers. 3117

mod 33 = 31(314)4 mod 33. Using 314 = 923,521 ≡ 16 mod 33, she finds 3117 mod
33 = 31 × 164 mod 33 = 2,031,616 mod 33 = 4.) Hence she concludes that m = 4,
and thus that the message from Bob is the letter d.

Public key systems are sometimes contrasted with classical encryption systems by
referring to the classical systems as symmetric key systems, since both parties use
identical keys. Public key systems are asymmetric key systems.

“ch13” — 2006/2/6 — 18:47 — page 211 — #12

� �

� �

S e c t i o n 13.8 S Q UA R E A N D M U LT I P LY * • 211

Proof of RSA*

Assume the message m is encrypted to produce y = mb mod n as described. We will
evaluate ya mod n. By definition

y = mb − sn for some integer s.

Hence

ya mod n = [mb − sn]a mod n

= mab mod n (omitting terms containing n)

= mt(p − 1)(q − 1) + 1 mod n, for some t (since ab ≡ 1 mod φ)

= m · mt(p − 1)(q − 1) mod n (factoring out m). (13.6)

Next we write (for some r)

m · mt(p − 1)(q − 1) ≡ m(rp + 1)t(q − 1) mod p (by Fermat’s theorem for p)

≡ m mod p (by eliminating all terms containing p).

Likewise,
m · mt(p − 1)(q − 1) ≡ m mod q.

It follows that5

m · mt(p − 1)(q − 1) ≡ m mod pq.

Finally, from equation (13.6) it follows that (since pq = n)

ya mod n = m

as desired.

13.8 Square and Multiply*

Many public key systems, such as RSA, require the computation of ma mod n for
extremely large values of a and n. As found in our numerical examples, it is often

useful to break the computation into stages. A systematic method for
breaking up the calculation is essential when the numbers are large.
An algorithm for computing powers known as square and multiply
has a long history. It was described by Legendre in 1798, but in the
form for multiplying two large numbers. This latter procedure was
apparently known to the Egyptians as early as 1800 bc and hence, like
the Euclidean algorithm, it is one of the most ancient of mathematical
algorithms.

First it must be noted that squaring and multiplying (mod n) can be carried out
using numbers that never exceed n by more than a single digit. As a simple example,

5If x ≡ m mod p and x ≡ m mod q, then x = cp + m = dq + m for some c and d. Subtracting, we find
cp = dq. Since p and q are prime, it follows that c is divisible by q. Hence x = c′qp + m, and therefore
x ≡ m mod pq.

“ch13” — 2006/2/6 — 18:47 — page 212 — #13

� �

� �

212 • C h a p t e r 13 P U B L I C K E Y C R Y P TO G R A P H Y

100 × 456 is a five-digit number. But 100 × 456 mod 873 can be computed without
exceeding four digits as

100 · 456 ≡ 10 × 4,560 ≡ 10 × 195 ≡ 1,950 ≡ 204 mod 873.

Multiplication of more general numbers, not powers of ten, can be carried out the
same way by breaking one of the numbers into its multiples of 1, 10, 100, and so
forth. For example, 378 · 456 = 100 · 3 · 456 + 10 · 7 · 456 + 8 · 456.

The method of square and multiply to compute large powers (mod n) also uses
the fact that large powers can themselves be broken into small pieces. For example,
one can compute m16 mod n with only 4 squares as m16 = (((m2)2)2)2. Because
the computation is reduced mod n at each stage, the size of the numbers remains
manageable. For example, if n is 100 digits long, each result is no more than 100
digits long, whereas a typical 100-digit number raised to a typical 100-digit power is
close to ten thousand digits long.

To raise a number to a power using the square and multiply method, the exponent
must first be expressed as a sum of powers of 2. For instance, m13 is expressed as
m8 + 4 + 1.

Generally, to keep track of these powers when evaluating ma mod n the exponent
a is represented in binary form as

a =
k−1∑
i = 0

bi2
i,

where for i = 0, 1, 2, . . . , k − 1, each bi = 0 or 1. For example 13 = 1 · 23 + 1 · 22 +
0 · 21 + 1 · 20, or 1101 in binary. The bi’s guide the transformation of the calculation
into a series of squarings and multiplications. The first guide number is the leftmost
binary digit, and successive guides are found by moving to the right. If the guide
binary digit is 0, the operation is squaring. If the guide binary digit is 1, the operation
is square and multiply. The steps for 713 mod 10 are therefore (from 1101): square and

TABLE 13.2
Square and Multiply. The table evaluates
124187 mod 313. The process is guided by the
binary representation of the exponent 187, which
is in the bk column. At each step the result is
reduced modulo 313.The result is 245.

k bk Value

7 1 12 × 124 = 124
6 0 1242 = 039
5 1 0392 × 124 = 178
4 1 1782 × 124 = 040
3 1 0402 × 124 = 271
2 0 2712 = 199
1 1 1992 × 124 = 180
0 1 1802 × 124 = 245

“ch13” — 2006/2/6 — 18:47 — page 213 — #14

� �

� �

S e c t i o n 13.9 F I N D I N G P R I M E S * • 213

multiply, square and multiply, square, square and multiply. The process is initiated
with the number 1. Thus,

713 mod 10 = ({[(12 · 7)2 · 7]2}2 · 7) mod 10.

Evaluation of what is inside each bracket, starting with the inside parentheses and
working to the outer parentheses, gives 713 mod 10 → 7 → 3 → 9 → 7.

The calculation of 124187 mod 313 is illustrated in table 13.2. It uses a = 187
expressed as a = (1·1) + (1·2) + (0·4) + (1·8) + (1·16) + (1·32) + (0·64) + (1·128).
In short, b = 10111011 is the binary representation of a.

13.9 Finding Primes*

A public key system such as RSA requires the selection of prime numbers, and these
must be large to insure strong security.

A question that arises immediately is whether there is an ample supply of large
primes. If they are rare, they may be difficult to find, there may not be enough for
everyone, and once known they might be compiled in a list that could be used to
factor someone’s public key. However, one need not worry, for the celebrated prime
number theorem states that for any integer N the number of primes no greater
than N is approximately N/ ln N . Thus the number of 100-digit primes is about
10100/ ln 10100 = 10100/100 ln 10 ≈ 4 × 1097. This is more than 10 billion times
1077, the number of atoms in the universe. There are plenty of primes to go around.

If a number is selected randomly between 0 and N , the chance that it is a prime is
about 1/(ln N). Hence, a randomly selected 100-digit number will be prime with a
probability of about 1/ ln 10100 ≈ 1/230. If the search is restricted to odd numbers,
the probability doubles, to about 1/115. Hence selecting at random a few thousand
odd 100-digit numbers (and checking for primeness) almost guarantees that one will
be prime. For instance with ten thousand attempts the chance of not finding a prime
of 100 digits is (1 − 1/115)10,000 ≈ 10−38.

Checking Primes

Once a candidate number is selected, it must be determined if it is in fact prime. The
straightforward way to do this is to attempt to divide the number by all numbers less
than the square root of the number. For a 100-digit number this means checking all
numbers having 50 digits. Of course, one would not have to try even numbers, and
there may be a scheme whereby only division by prime numbers need be tried. But
there would be about 1050/ ln 1050 ≈ 1048 of those.

In practice, prime checking is carried out with a test procedure that is not perfect,
but has a known maximum probability of error. If different versions of this test
are applied enough times and the candidate number continues to pass them all, the
confidence that the number is in fact prime can be made arbitrarily high.

The most popular of these tests is the Rabin–Miller method, which is based on
Fermat’s theorem. As a simplification of the method, one selects a random number a
and evaluates y = an−1 mod n. If y 	= 1, then according to Fermat’s theorem, n is not

“ch13” — 2006/2/6 — 18:47 — page 214 — #15

� �

� �

214 • C h a p t e r 13 P U B L I C K E Y C R Y P TO G R A P H Y

prime. If y = 1, there is a chance that n is prime, but additional tests with different
values of a must be performed. In the Rabin–Miller procedure, every successful test
reduces the probability that the number is not prime by one-fourth. A succession of
twenty successful tests reduces the probability of n not being prime to 10−12. For
details see exercise 13.11.

13.10 Performance*

Public key cryptology relies on one-way functions. It should be easy to go forward,
and extremely difficult to go backward without the key. Proper evaluation of a system,
however, requires that the qualitative notion of difficulty be made quantitative.

The difficulty of computational algorithms is usually measured by how the run
time of the algorithm varies as a function of the length of the input data. For integer
algorithms, such as those used in RSA, the input length is generally taken as the
number of digits n in the input string. Difficulty is therefore measured by the run time
as a function of n.

Simple algorithms have run times that are proportional to a polynomial in n, and
these are said to be polynomial time algorithms. The largest power in the polynomial
is the most important, and for rough comparisons, it is the only thing considered.
For example, the conventional method for multiplying two n-digit numbers is an n2

algorithm.
An algorithm is considered difficult if its run time as a function of n increases faster

than any polynomial. Exponential-time algorithms, whose run times are proportional
to ean for some a > 0, take a great deal of time for large n, and such algorithms are
considered too time consuming and their underlying problems are considered to be
very hard. A simple method for factoring a number with n digits is to try to divide it
by all odd numbers less than its square root. This algorithm is exponential because
there are 1

2

√
10n = 1

2 10n/2 numbers to be tried. Hence factoring (at least with this
method) is very hard.

In practical terms, a one-way function used in a public key system should require
low-order polynomial algorithms in the forward direction used by the legitimate
sender and receiver, and a non-polynomial-time algorithm, such as an exponential-
time algorithm, in the backward direction faced by someone attempting to break the
cipher.

The forward algorithms associated with RSA involve multiplication, evaluation of
modulo values, taking powers with respect to a modulus, and finding primes. These
are generally polynomial, most of order n3 or less. Thus, the encryption (forward)
process is fairly simple.

For RSA, the difficulty of the backward process (faced by a cryptanalyst) is
dominated by the requirement of factoring. The simple method mentioned above
is exponential, but there are faster methods. Currently, the best algorithms for fac-
toring n-digit numbers have run times roughly proportional to e(log n)1/3

, which lies
between polynomial and exponential time. More progress may be made, for a lower
bound on the time to factor a number has not been established. In fact, it has not even
been proved that factoring cannot be done in polynomial time.

“ch13” — 2006/2/6 — 18:47 — page 215 — #16

� �

� �

S e c t i o n 13.11 T H E F U T U R E • 215

Progress in factoring has led to the use of longer keys. In 1977 Ronald Rivest
estimated that factoring a 125-digit number would require 40 quadrillion years. But
in 1994 a challenge number of 129 digits was factored. Currently, it is considered
prudent to use keys with a length of 512 bits, and many experts suggest a length of
1,024 bits.

13.11 The Future

There are newer public key systems. Elliptic curve methods use an algebraic structure
more complex than the integers mod n, and implement analogs of integer-based public
key systems on this structure. Elliptic curve methods are attractive because breaking
them appears to require full exponential time. Hence, they can be made highly secure
with relatively short keys. For example, it is claimed that an elliptic curve key of 200
bits gives the same security as that of an RSA key of 1,024 bits. These methods are
well suited to encryption of binary data.

The field of cryptography is still advancing rapidly. There is a continuing race
between advances in cryptanalysis and development of new, more secure crypto-
graphic systems. One of the most intriguing innovations on both sides of this race is
quantum cryptography. A photon has the mysterious property of being in several
physical states simultaneously. It may be possible to construct a massively parallel
computer using this property that would provide a means for rapidly factoring large
integers.

On the other hand, the quantum properties of photons can form the basis of a cryp-
tography system that has the perfect security of a one-time pad. In this system a sender
and receiver communicate over a channel that sends photons that can be polarized
in either of two states, representing 0’s or 1’s. It is secure because an eavesdrop-
per’s observations must, by the Heisenberg uncertainty principle, cause the state
to be randomized, and this can be detected by the receiver. Such systems currently
exist but transmit over fiber optic lines of only modest length. In these systems quan-
tum cryptography is used to distribute a key for a symmetric key encryption process
such as the AES. It is clear that the story of cryptography still has a few surprises
in store.

“ch13” — 2006/2/6 — 18:47 — page 216 — #17

� �

� �

216 • C h a p t e r 13 P U B L I C K E Y C R Y P TO G R A P H Y

APPENDIX

The Extended Euclidean Algorithm

To find the inverse of r1 mod r0, where r1 < r0, one records the details of the
Euclidean algorithm for gcd(r0, r1), as follows:

r0 = k1r1 + r2 0 ≤ r2 < r1

r1 = k2r2 + r3 0 ≤ r3 < r2

r2 = k3r3 + r4 0 ≤ r4 < r3

...
...

rn−2 = kn−1rn−1 + rn 0 ≤ rn < rn−1

rn−1 = knrn.

We assume that the algorithm terminates after n steps. If r0 and r1 are relatively prime,
then rn = 1.

The extended Euclidean algorithm introduces a series of values sj defined by

s0 = 0

s1 = 1

sj = sj−2 − kj−1sj−1 mod r0, for j ≥ 2.

Then sn is the desired mod r0 inverse of r1.

Example 13.5 (Inverse of 273 mod 935). From example 13.5 we know that 273
and 935 are relatively prime. The kj values are read off the steps of the algorithm used
to determine that 273 and 935 are relatively prime. Thus,6

s0 = 0
s1 = 1
s2 = s0 − 3s1 ≡ −3 mod 935
s3 = s1 − 2s2 ≡ 7 mod 935
s4 = s2 − 2s3 ≡ −17 mod 935
s5 = s3 − 1s4 ≡ 24 mod 935
s6 = s4 − 4s5 ≡ −113 mod 935
s7 = s5 − s6 ≡ 137 mod 935.

Thus we find s7 = 137. Indeed it is easily verified that

273 · 137 = 37401 = 40 · 935 + 1 ≡ 1 mod 935.

6It is only necessary to determine the sj’s mod 935, except for s7. At each of the steps the negative values
obtained may be converted to positive numbers by adding 935.

“ch13” — 2006/2/6 — 18:47 — page 217 — #18

� �

� �

S e c t i o n 1 3 . 1 2 E X E R C I S E S • 217

13.12 EXERCISES

1. (A table) Make a complete table of ab mod 10 for a and b between 1 and 10. How many
a’s have mod 10 inverses?

2. (Uniqueness) Show that if a and m are relatively prime, then the inverse of a mod m is
unique.

3. (Find an inverse) Find the inverse of 16 mod 101.

4. (Affine code inverse) Consider the affine code that transforms a message x into ciphertext
y as

y = 19 · x + 6 mod 31.

(a) Show that the message can be recovered by an affine transformation of the form

x = c · y + d mod 31

and determine the constants c and d.
(b) What is the general method for determining c and d in such a cipher?

5. (Digraphs) Encoding single letters one by one is rather limiting, since there are only 26
possible messages. It is better to use longer basic messages. One way is to send letters in
pairs, such as ab or kn. These pairs are termed digraphs, and it is clear that there a total of
262 = 676 of them. To be practical, there must be a simple formula for assigning digraphs
to numbers. We assign aa → 0, ab → 1, . . . , az → 25, ba → 26, etc.

(a) What is the number corresponding to the digraph th?
(b) What is the general procedure for finding the number corresponding to a digraph?

6. (Break the cipher) Alice has published her RSA public key as 〈n, b〉 = 〈91, 5〉. Accordingly,
Bob sent her the cipher text 71. What letter of the alphabet was Bob’s message?

7. (A card experiment) Take a packet of p playing cards where p is prime, for example, seven
cards. Have a friend select one of these cards, noting its value. Pretend to mix the cards,
but arrange that the chosen card ends on top of the face-down packet.
Hand the packet to your friend and ask him or her to select any number less than the number
of cards in the packet. For example, with seven cards the friend can select any number from
one to six. Suppose the number four is selected. Have the friend deal, one at a time, four
cards from the top of the packet to the bottom. Then turn the next card face up on top. The
process is to be repeated p − 1 times, dealing four to the bottom and turning the next card
face up on top. After p − 1 times, all but one card will be face up, and that one will be the
originally selected card. This is true no matter what number between 1 and p − 1 the friend
uses in the deal and turnover process. Try it yourself.
Why does this work?
(In card magic literature, this is termed George Sands’ prime number principle.)

8. (Simplified Chinese remainder theorem) The proof of RSA used the fact that if x = m mod
p and x = m mod q, then x = m mod pq. More generally, knowing x mod p and x mod q
determines x mod pq. For example, consider the table below:

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x mod 3 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0
x mod 5 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0

“ch13” — 2006/2/6 — 18:47 — page 218 — #19

� �

� �

218 • C h a p t e r 13 P U B L I C K E Y C R Y P TO G R A P H Y

Knowing the second and third entries in a column determines the top element. A formula
for the solution to x = a mod 3, x = b mod 5 is

x = [a · 5 · (5−1mod 3) + b · 3 · (3−1mod 5)]mod 15

= 10a + 6b mod 15.

Find the solution x mod 45 to the equations x = 3 mod 5 and x = 1 mod 9.

9. (Square and multiply) Find 41105 mod 92.

10. (Generators*) Let p be prime and suppose that you know the factors of p − 1. Namely,
p − 1 = q1q2 · · · qn where each qi is prime. Show that a is a generator for p if and only if
a(p−1)/qi mod p 	= 1 for all i = 1, 2, . . . , n. Use this test to determine if 3 is a generator for
p = 11.

11. (Rabin–Miller method*) Here is an algorithm for determining if n is prime:
(a) Represent n−1 as n−1 = 2km, where m is odd. (That is, m is what remains when

all factors of 2 are taken out of n − 1.)
(b) Select a random number a, 1 < a < n.
(c) Compute

b = am mod n.

If b = 1 or − 1 (−1 = n − 1), declare PRIME and end.
(d) Repeat k − 1 times or until end: Define a new b by

b = b2 mod n.

If b = −1, declare PRIME and end.
If the algorithm ends without declaring PRIME, then n is definitely not prime. If n is prime,
the algorithm will declare PRIME. However, for general n, if PRIME is declared, there is
a 1/4 probability that n is not actually prime.
Apply a single cycle of the method to n = 5,009 using a = 3.

12. (Cesàro estimate*) Let a and b be integers chosen randomly. Show that the probability that
gcd(a, b) = 1 is 6/π2 using the following steps:

(a) Assume that the probability of gcd(a, b) = 1 is p. For any integer d it will happen
that gcd(a, b) = d only if a and b are each multiples of d and gcd(a/d, b/d) = 1.
Hence find the probability that gcd(a, b) = d in terms of p.

(b) Use the fact that sum of all those probabilities must be 1. Hint:
∑∞

i = 1
1
i2

= π2/6.

13.13 Bibliography

The Diffie–Hellman paper [1] that initiated the concept of public key systems is
easily accessible. The small book [2] is a readable introduction to public key systems.
Intermediate texts are [3], [4], and [5]. Showing how to solve y = mb mod n for m and
using this solution in cryptography is presented in [6]. The original RSA paper is [7].
The Rabin–Miller prime-testing procedure is presented in the intermediate textbooks
mentioned, and was originally published as [8]. Another method is that of [9]. A
standard method for factoring large numbers is the method of Pollard [10]. For an
interesting discussion of the Euclidean and square-and-multiply algorithms, see [11].
The history of cryptography, including public key cryptography, is presented nicely
in [12] and [13]. Exercise 10 is based on [5], p. 254.

“ch13” — 2006/2/6 — 18:47 — page 219 — #20

� �

� �

S e c t i o n 13.13 B I B L I O G R A P H Y • 219

References

[1] Diffie, W., and M. E. Hellman. “New Directions in Cryptography.” IEEE
Transactions on Information Theory 22 (1976): 644–54.

[2] Beutelspacher, Albrecht. Cryptology. Trans. J. Chris Fisher. Washington, D.C.:
Mathematical Association of America, 1996.

[3] Stinson, Douglas R. Cryptography: Theory and Practice. Boca Raton: CRC
Press, 1995.

[4] Mollin, Richard A. An Introduction to Cryptography. Boca Raton: Chapman &
Hall/CRC Press, 2001.

[5] Schneier, Bruce. Applied Cryptography. 2nd ed. New York: Wiley, 1996.
[6] Pohlig, S. C., and M. E. Hellman. “An Improved Algorithm for Computing

Logarithms of GF(p) and Its Cryptographic Significance.” IEEE Transactions
on Information Theory 24 (1978): 106–110.

[7] Rivest, Ronald L., A. Shamir, and L. Adleman. “A Method for Obtaining Digital
Signatures and Public Key Cryptosystems.” Communications of the ACM 21
(1978): 120–26.

[8] Rabin, M. O. “Probabilistic Algorithms for Testing Primality.” Journal of
Number Theory 12 (1980): 128–38.

[9] Lehmann, D. J. “On Primality Tests.” SIAM Journal on Computing 11 (1982):
374–75.

[10] Pollard, J. M. “Theorems on Factorization and Primality Testing.” Proceedings
of the Cambridge Philosophical Society 76 (1974): 521–28.

[11] Knuth, Donald E. The Art of Computer Programming, Vol. 2. Reading, Mass.:
Addison-Wesley, 1969.

[12] Singh, Simon. The Code Book. New York: Doubleday, 1999.
[13] Levy, Steven. Crypto. New York: Viking, 2001.

“ch12” — 2006/2/6 — 18:47 — page 186 — #1

� �

� �

12
CRYPTOGRAPHY THEORY

P
erhaps it is not surprising that the basic theory of classical cryptography was
established by Claude Shannon. Indeed, just two years after publication of
his Mathematical Theory of Communication he published a definitive analysis

of classical cryptography. In fact, Shannon developed his theory of cryptography
simultaneously with his theory of communication because the two are intimately
linked, each using similar concepts and addressing similar issues. Encryption is
a form of encoding, and hence the same tools used to analyze codes designed
for accurate transmission can also be used to analyze ciphers designed to render
transmission and recovery difficult. Indeed, the general objective of a system of
encryption is to render a message completely random, so that its entropy is maximal.

Shannon’s theory makes two important and fundamental contributions.
The first is a precise definition of perfect security in an encryption system.
His theory also gives conditions that imply such security. The second
contribution is a quantitative relation between the redundancy of a language

as measured by entropy and the degree of security offered by a specific
encryption system. The greater the redundancy, the easier it is to break
a code.
This chapter presents the essentials of Shannon’s theory and relates it

to some familiar ciphers and to some practical considerations.

12.1 Perfect Security

In a cryptosystem let M denote a plaintext message, C the ciphertext representing the
encrypted message, and K the key. The key is simply an intermediate element that
guides the translation of the message M into the encrypted version C.

In cryptography theory it is assumed that the form of the encryption system is
known by all parties: the sender, the receiver, and an outsider seeking to break the
code. The encryption system is completely defined once the key is known, and at the

186

“ch12” — 2006/2/6 — 18:47 — page 187 — #2

� �

� �

S e c t i o n 12.1 P E R F E C T S E C U R I T Y • 187

outset at least, this key is known only to the sender and intended receiver, not the
outsider.

It is assumed that there are a finite number of possible messages and keys with
known probabilities. Usually it is assumed that the key and message are probabilisti-
cally independent. The initial (a priori) probability of a message M is p(M).

The outsider sees only C, and from this seeks to deduce M. The outsider will
therefore compute the conditional probability p(M|C).

Perfect security. A system is perfectly secure if

p(M|C) = p(M) (12.1)

for all possible messages M and all sets of a priori probabilities of messages.

According to this definition, the probability of any message is not changed by
observation of the ciphertext.

Example 12.1 (Single Caesar cipher). Consider the Caesar cipher used to transmit
a single letter. The set of messages is the set of 26 alphabet letters, the set of keys is
the 26 possible shifts, and the set of possible ciphertexts is again the set of 26 letters.
Suppose the probabilities of the message letters correspond to their natural English
frequencies, and assume that the keys are chosen with equal probabilities (each equal
to 1/26). Then the probability p(M|C) of any given one-letter message M given a
cipher letter C is again p(M). Hence, this system has perfect secrecy.1 This is not true
if the probabilities of the key letters are unequal.

There is a useful test for perfectly secure systems, stated below.

Lemma 12.1. A system is perfectly secure if and only if

p(C|M) = p(C) (12.2)

for every possible message and every possible ciphertext.

Proof: By Bayes’ rule2

p(M|C) = p(C|M)p(M)

p(C)
.

For perfect security we require p(M|C) = p(M) for all M and all probability
distributions p(M). Hence, it must follow that P(C|M) = p(C). Conversely, if
P(C|M) = p(C), it is clear that the system is perfectly secure.

1Here is a short formal proof. By definition

p(M|C) = p(C|M)p(M)

p(C)
.

Clearly p(C|M) = 1/26 since the key letters are equally probable. Also p(C) = ∑
M p(M, K = C − M),

where C − M denotes the amount of shift between the letters C and M. Since the key is independent of
M, this says that p(C) = ∑

M p(M)/26 = 1/26. Hence, p(M|C) = p(M).
2See section 5.3.

“ch12” — 2006/2/6 — 18:47 — page 188 — #3

� �

� �

188 • C h a p t e r 12 C R Y P TO G R A P H Y T H E O R Y

Example 12.2 (Caesar for two letters). Consider a system similar to that of the
previous example except that now each message consists of pairs of letters m1m2,
but the same Caesar shift key applies to both letters. If all two-letter combinations
are possible in messages, then all two-letter combinations are possible ciphertexts.
However, if the message M is a doubleton such as aa, the ciphertext will also be a
doubleton. Other ciphertext combinations are not possible. Hence p(C|M) �= p(C)
for that message M. Hence the system is not perfectly secure.

The above two examples illustrate a basic condition for perfect security; namely,
the number of keys must be at least as great as the number of possible messages. This
basic result is stated formally below.

Theorem 12.1. A necessary condition for a system to be perfectly secure is that the
number of possible keys be at least as large as the number of possible messages.

Proof: For simplicity, suppose the system is not homophonic; that is, corresponding
to a fixed key and message, there is a unique ciphertext. Suppose there are n possible
messages. Let K be a certain fixed key. Then K maps the n messages M1, M2, . . . , Mn

into n distinct ciphers C1, C2, . . . , Cn and for convenience assume that Mi is mapped
to Ci for each i = 1, 2, . . . , n.

Assuming perfect security, p(C1) = p(C1|M1) > 0 since the key K maps M1 into
C1. Now consider some j �= 1. For perfect security p(C1|Mj) = p(C1) > 0. Hence
there must be a key that maps Mj into C1. This key is of course different from K.
Likewise for every i there is a key that maps Mi into C1. These keys are all different
and hence there must be at least n possible keys.

It must be remembered that the number of keys is the total number of possible
combinations. For example, in a Vigenère cipher with key length L, there are 26L

possible keys. If the message is of length N , there are 26N possible messages. A
necessary condition for perfect security is therefore 26L ≥ 26N or equivalently L ≥ N .

12.2 Entropy Relations

Encryption can be viewed in terms of entropy as well as in terms of probabilities.
Indeed, it follows almost immediately that the condition for perfect security can be
restated in entropy terms.

Theorem 12.2. A system is perfectly secure if and only if for every set of
probabilities

H(M|C) = H(M). (12.3)

Proof: We have

H(M|C) = −
∑
i, j

p(Mi, Cj) log p(Mi|Cj) by definition

= −
∑
i, j

p(Mi, Cj) log p(Mi) by perfect security

= −
∑

i

p(Mi) log p(Mi) the sum over Cj’s is 1

= H(M).

“ch12” — 2006/2/6 — 18:47 — page 189 — #4

� �

� �

S e c t i o n 12.2 E N T R O P Y R E L AT I O N S • 189

This proves that the system is perfectly secure only if H(M|C) = H(M). Conversely,
for this to hold for any set of probabilities, it must be true that p(Mi|Cj) = p(Mi) for
all i and j.

The equation H(M|C) = H(M) can be interpreted as saying that no information
about the message is conveyed by the ciphertext. The mutual information3 I(M; C) =
H(M) − H(M|C) = 0. It is as if the encryption system is a completely noisy channel,
from which it is impossible to deduce any information about the input.

Entropy can also be used to quantify the degree of security offered by systems that
are not perfectly secure. The analysis is based on the following basic relation.

Theorem 12.3. For any encryption system with K and M independent,

H(K|C) = H(K) + H(M) − H(C). (12.4)

Proof:

H(K|C) = H(K , C) − H(C) by the definition of conditional entropy

= H(M, K , C) − H(C) since M adds nothing to K and C

= H(M, K) − H(C) since C adds nothing to K and M

= H(M) + H(K) − H(C) since M and K are independent.

(Second-step detail: H(M, K , C) = H(M|K , C) + H(K , C) = H(K , C).)

Unicity Point

Suppose that a key chosen from a finite set is used to encrypt messages of variable
length. For example, a Caesar cipher has a key chosen from the set of 26 letters, but
can be used to encrypt a message of any length. It is of interest to know how long, on
average, a message must be in order that the message and the key can be deduced by
cryptanalysis of the ciphertext.

For simplicity we consider only systems in which the key length is fixed and does
not vary with the length of the message, and in which the message and key uniquely
determine the ciphertext.

Denote the message of length n by Mn and the corresponding ciphertext by Cn.
Equation (12.4) becomes

H(K|Cn) = H(K) + H(Mn) − H(Cn).

If the key is chosen randomly from NK possibilities, then H(K) = log NK . A good
approximation4 for H(Mn) is H(Mn) = n H where H is the per-symbol entropy of the
language. Finally, if there are NC possible ciphertext symbols and the cipher system is

3See chapter 5.
4This works well for large n, since H = limn→ H(Mn)/n.

“ch12” — 2006/2/6 — 18:47 — page 190 — #5

� �

� �

190 • C h a p t e r 12 C R Y P TO G R A P H Y T H E O R Y

sufficiently complex, then the ciphertext appears random and a good approximation
is H(Cn) = n log NC . Combining these substitutions,

H(K|Cn) = log NK + n(H − log NC). (12.5)

The unicity point is the value of n that, on average, reduces the number of possible
keys to one—or equivalently, reduces the entropy of the key given the ciphertext to
zero. This value is found by setting the above equation to zero. Hence

nunicity ≈ log NK

log NC − H
. (12.6)

Example 12.3 (Caesar cipher). Consider the possibility of breaking a Caesar cipher
of English using frequency analysis. Then NK = 26, NC = 26, and H = 4.2, which
is the first-order entropy of English based on the frequency of letters (see chapter 3).
Hence

nunicity ≈ log 26

log 26 − 4.2
= 4.7

4.7 − 4.2
= 4.7

.5
= 9.4.

This means that about 9 or 10 ciphertext letters should be sufficient to determine the
key of a Caesar cipher using frequency analysis.

Example 12.4 (Vigenère cipher). Consider a Vigenère cipher with a key of length
LK . Assuming the length were known, one could attack the cipher by frequency
analysis applied to each group of letters separated by LK letters, as suggested in
chapter 11. The analysis is therefore the same as that of a Caesar code on each of
the key symbols. Hence, we conclude that a message of about 10 times the length
of the key should be sufficient to break a Vigenère cipher, and this is in accord with
experience with the method of chapter 11 for these ciphers.

Example 12.5 (Substitution cipher). Consider a full substitution cipher of English,
producing cryptograms. In this case the number of possible keys is 26! ≈ 4 × 1026.
We know that frequency analysis alone is not effective for breaking such codes, but
use of word structure can be very effective. Accounting for this, it is appropriate to
use the estimate discussed in chapter 4, section 4.2, that the entropy of English is
about 1.5 bits per letter. This then gives the unicity point as

nunicity ≈ log 26!
log 26 − 1.5

= 88.4

4.7 − 1.5
= 88.4

3.2
= 27.6.

Hence it is expected that most cryptograms of roughly 30 letters can be broken, and
again this is in accord with experience.

The unicity measure assumes unlimited computing time, whereas the methods
typically used to break these ciphers use quite limited computing capacity. It is thus
perhaps surprising, and gratifying, that the unicity measure agrees quite well with
actual practice.

“ch12” — 2006/2/6 — 18:47 — page 191 — #6

� �

� �

S e c t i o n 12.2 E N T R O P Y R E L AT I O N S • 191

Formula (12.5) can also be used to determine the strength of a cipher when the
message length is shorter than the unicity length.

Example 12.6 (A long key). Suppose that a Vigenère cipher has key length 100 and
message length 130. Then NK = 26100 giving H(K) = 100 log 26 = 470. Assuming
that an attack uses the full structure of English, one may again set H = 1.5. Equation
(12.5) gives

H(K|C130) = 470 − 130(4.7 − 1.5) = 470 − 416 = 54.

This means that the remaining entropy in the key is 54, equivalent to there being 254

spurious keys. That is, there remain 254 reasonable keys (down from 26100 = 2470)
that if applied backward to the ciphertext would produce meaningful English. If the
message were as long as 150 letters, the unicity point would be reached.

Redundancy

Shannon defined the redundancy RL of a language by the formula

RL = 1 − H

log NM
,

where H is the per-symbol entropy of the language and NM is the number of symbols
in the language’s alphabet. If, for example, every possible sequence of letters were
possible and equally probable, then H = log NM and the redundancy would be zero.
If the entropy is less than the maximum possible for the size of the alphabet, the
redundancy will have a value satisfying 0 < RL < 1.

If for English H = 1.5, the corresponding redundancy is RL = 1 − 1.5/4.7 = .68.
Hence English is approximately 70 percent redundant.

The unicity point can be expressed neatly in terms of redundancy. For a substitution
cipher NC = NM and if one takes HC = log NC , then (12.6) yields

nunicity = log NK

log NM − H
= log NK

RL log NM
.

Hence low redundancy implies a large unicity point. In the limit, if the language
has zero redundancy, the unicity point is infinite.

Note that if the entropy of English is 1.5 bits per letter, this same entropy would
be approximately achieved by a language with an alphabet of only three letters
(instead of 26) if any combination of letters were a legitimate message in the lan-
guage. Hence, a redundancy of 70 percent represents a significant departure from the
absolute minimum requirements of a language.

Approaching Unicity*

In actuality, equation (12.5),

H(K|Cn) = log NK + n(H − log NC),

“ch12” — 2006/2/6 — 18:47 — page 192 — #7

� �

� �

192 • C h a p t e r 12 C R Y P TO G R A P H Y T H E O R Y

cannot hold for all n if H−log NC < 0 since it would give a negative value to H(K|Cn)
for large n. Hence the unicity point is based on only a rough approximation of the
rate of decrease of H(K|Cn).

A more refined approach is based on examination of each step separately. Let Mn

and Cn denote the n-th transmitted message symbol and corresponding cipher text,
distinguished from Mn and Cn, which are, as before, the sequences of the first n such
symbols. Let K be the key. Then

H(K|Cn) = H(K , Cn) − H(Cn)

= H(K , Cn|Cn−1) + H(Cn−1) − H(Cn)

= H(K|Cn−1) + H(Cn|K , Cn−1) + H(Cn−1) − H(Cn)

= H(K|Cn−1) + H(Mn|K , Cn−1) − H(Cn|Cn−1)

= H(K|Cn−1) + H(Mn|Mn−1) − H(Cn|Cn−1). (12.7)

This shows that H(K|Cn) varies from H(K|Cn−1) by the addition of the single-step
entropy of the message minus the single-step entropy of the ciphertext. As the key
becomes known, the difference between the entropy of the message and that of the
ciphertext falls, so the entropy of the key does not change very much, and learning
becomes more gradual.

Example 12.7 (Binomial decryption). Let us apply this recursive formula to the
binary case. Take the case where the message alphabet consists of just 0 and 1 with
probabilities p and 1 − p, respectively. Successive symbols are independent. The
entropy of the source is then H(Mn|Mn−1) = H(p) ≡ −p log p − (1 − p) log (1 − p).

The key is fixed at either 0 or 1, and the ciphertext is Cn = Mn + K mod 2.
Thus the message 0’s and 1’s are either all received correctly or they are all received
incorrectly. From the perspective of an analyst trying to break the cipher, the key is
initially unknown and hence the key values of 0 and 1 are assigned probabilities q0
and 1 − q0, both 1/2.

Later, when the probability of the key being 0 is q, the probability of a ciphertext
symbol being 0 is pq + (1 − p)(1 − q). See figure 12.1.

0

1

p

1−p

Message

0

1

q

1 − q

Key

0

1

q

1 − q

Ciphertext

pq + (1 − p)(1 − q)

(1 − p)q + p(1 − q)

FIGURE 12.1 Binomial message. A message is either 0 or 1; it is added to either 0 or 1
(mod 2) to produce the ciphertext.

“ch12” — 2006/2/6 — 18:47 — page 193 — #8

� �

� �

S e c t i o n 12.3 U S E O F A O N E - T I M E PA D * • 193

1.0

0.8

0.6

0.4

0.2

0
0 10 20 30 40 50

H(qn)

qn

n

FIGURE 12.2 Decrease in key entropy and convergence of qn with length of observed
ciphertext. Entropy decreases in an exponential fashion as more ciphertext is made
available.

Basically, as one watches the stream of ciphertext, it is possible to refine the
estimated probability of q until it is found that q = 0 or q = 1. After n − 1 ciphertext
symbols have been observed, the corresponding estimate qn−1 translates into a value
of H(K|Cn−1) through H(K|Cn−1) = H(qn−1).

The recursion (12.7) can be expressed in terms of the qn’s as

H(qn) = H(qn−1) + H(p) − H(pqn−1 + (1 − p)(1 − qn−1)). (12.8)

This can be regarded as a recursion for qn except that there is always a choice of two
possible values, each giving the same entropy. This choice would be resolved by the
specific ciphertext, but for the recursion we can take the lowest value (which means
that qn will converge to 0). The result of such a recursion using p = .3 is displayed in
figure 12.2, which shows both qn and H(qn) as a function of n. The standard unicity
value n is defined as

n = HK

HC − HM
= 1

1 − H(.3)
= 8.4.

At that point the actual entropy has dropped only to about one-half of its initial value.

12.3 Use of a One-Time Pad*

Suppose a one-time pad is used for encryption, with successive key letters chosen
randomly. According to theorem 12.1, perfect security requires that the number of
possible keys be at least as great as the number of possible messages. Hence, the

“ch12” — 2006/2/6 — 18:47 — page 194 — #9

� �

� �

194 • C h a p t e r 12 C R Y P TO G R A P H Y T H E O R Y

alphabet used in the one-time pad must be the same size as or larger than that of the
message alphabet. Generally, for English the ordinary alphabet is used for both, or
for computer systems the two-symbol alphabet of 0 and 1 is used for both.

If the key symbols are chosen completely randomly, then p(M|C) = p(M), as
shown in example 12.1, and the one-time pad is perfectly secure.

It is important that the key symbols in a one-time pad be random, but from a
practical point of view it is not entirely clear how to accomplish this while securely
distributing the pad to both receiver and sender. If the random numbers are generated
by the sender, they must be transmitted to the receiver, and this message itself may
be intercepted by an enemy. In practice, the key sequence is produced by both sender
and receiver using a predetermined pseudorandom number generator. Hence only
the design of the generator need be known by the communicating parties. Two such
generator methods are discussed here.

Shift Registers

Shift registers (see chapter 6) can generate pseudorandom sequences, and this
method is often applied to binary encryption systems where the message, key, and
ciphertext alphabets consist of 0 and 1. An individual message symbol mi is encrypted
by adding the random key symbol ki to produce the cipher symbol ci = mi + ki with
addition carried out modulo 2.

A general linear shift register of order n is shown in figure 12.3. It is determined
by the n coefficients a1, a2, . . . , an and the initial conditions, which need not be those
of the figure. Usually, it is understood that in an n-th order shift register an �= 0,
for otherwise the performance would be that of an (n − 1)-th order register, simply
delayed one step.

Three important properties of linear shift registers are easily stated.

1. The maximum possible period length of an n-th order linear shift register
is 2n − 1.

A period ends when the register combination is identical to one that occurred
earlier. Subsequent combinations will repeat those that were derived earlier from

1 0 0

a1 a2 an

FIGURE 12.3 General linear shift register. The general linear shift register of length n
has n feedback coefficients (which are zero or one) and n initial conditions.

“ch12” — 2006/2/6 — 18:47 — page 195 — #10

� �

� �

S e c t i o n 12.3 U S E O F A O N E - T I M E PA D * • 195

that combination. The n registers can hold only 2n distinct combinations, cor-
responding to 2n binary numbers. However, if the combination of all zeros is
obtained, the shift register will generate 0 in all subsequent steps, and hence the
period length will be 1. Hence, the best case is for 2n − 1 combinations to be
generated.

2. If a linear shift register of order n has a period of length 2n − 1, then the output of
a complete cycle will consist of exactly 2n−1 ones and 2n−1 − 1 zeros. (That is,
the number of ones and the number of zeros are almost equal.)
If the period is 2n − 1, then the shift registers hold all combinations of length-n
binary numbers except the combination of all zeros. In the entire set of binary
numbers exactly half end in 0 and half in 1. The shift register does not include one
of these; namely the one with all zeros. Hence there are the full 2n−1 ones and one
less zero.

3. For any n there is a linear shift register with period 2n − 1.
We shall not prove this statement, but in fact it is relatively easy to construct

such shift registers.

Shift registers are simple to implement and if designed to have maximal period,
they can produce long sequences of pseudorandom numbers. For example, a shift
register of order 25 is fairly simple and yet, if it has maximal period, that period will
be 225 − 1 = 33, 554, 431, which is much longer than most messages. Shift registers
provide convenient keys, for it is necessary only that the sender and receiver agree on
the n feedback coefficients and n initial conditions, a total of 2n values, rather than
each having an entire list of 2n − 1 random digits.

A weakness of shift registers in encryption, however, is that their structure can be
deduced if a few message symbols are correctly identified. Knowing 2n (appropriate)
output values (deduced perhaps from knowledge of the 2n corresponding message
symbols), the 2n parameters of an n-th order shift register can be calculated, and the
entire cipher decoded.

There are more complex techniques, using for instance nonlinear feedback, that
offer greater security; but still, systems with keys generated this way are not immune
from dedicated attacks.

Linear Congruences

Another simple and popular method for generating sequences of random numbers is
based on linear congruences with modular mathematics. Specifically, a sequence of
random numbers is generated from a recursion of the form

ri+1 = ari + b mod m,

where m is termed the modulus, a is the multiplier, and b is the increment. The
process is initiated with a seed r1.

Not every choice of parameters is suitable, since the resulting series of numbers
may have a short period. For example, taking m = 10, a = 1, b = 5, and r1 = 1
leads to the series 1 6 1 6 1. . . , which is quite degenerate.

“ch12” — 2006/2/6 — 18:47 — page 196 — #11

� �

� �

196 • C h a p t e r 12 C R Y P TO G R A P H Y T H E O R Y

However, some combinations lead to periods of length m − 1 and have good
randomness properties. For instance m = 23, a = 5, b = 7, and r1 = 1 produces a
sequence having a period of 22.

In practice much larger numbers are used. For example, m = 120,050, a = 2,311,
b = 52,367 is reported to be a good set of constants.

Because it is easy to implement and the resulting sequences have good randomness
properties, the linear congruence method is often used for simulating a series of
random events. However, the method is not perfectly secure when used in encryption,
for like shift registers, it suffers from the fact that it is possible to deduce the constants
of the recursion from knowledge of relatively few terms.

More secure random number generators have been developed, using the mathe-
matical techniques discussed in the next chapter.

12.4 The DES and AES Systems

The Data Encryption Standard (DES) was initially developed at IBM and (with minor
modifications) adopted by the U.S. government in 1976. It served as a useful standard
method of encryption for 20 years, although it is now superseded by the Advanced
Encryption Standard (AES) and the modern public key methods discussed in the next
chapter.

DES is based on a series of substitutions and transpositions determined by a key
of 64 binary bits, eight of which are parity checks. The effective key size is therefore
56 bits.

A primary weakness of DES is that there are (only) 256 ≈ 7.2 1016 (72 quadrillion)
possible keys. There are, therefore, fewer keys than that of a single simple substitution
code of 26 letters, of Jefferson’s wheel cipher, or of the Enigma machine. Indeed,
in the late 1990s a huge DES “cracker" machine was able to break DES-encoded
messages in a few hours, showing that it was time to develop a stronger standard. The
result is the AES system.

The AES system has three versions with key sizes of 128, 192, and 256 bits.
The 128-bit AES system has 2128 = 3.4 1038 possible keys as compared to the
256 = 7.2 1016 of DES. Hence, there are about 1021 times more AES keys than DES
keys. To illustrate this magnitude, suppose that it were possible to test all DES keys
in 1 second. At that speed, it would take 149 trillion years to check all AES keys. The
age of the universe is estimated to be only(!) 13.7 billion years.

“ch12” — 2006/2/6 — 18:47 — page 197 — #12

� �

� �

S e c t i o n 1 2 . 5 E X E R C I S E S • 197

12.5 EXERCISES

1. (Secure condition) Show that a necessary and sufficient condition for perfect security is
H(C|M) = H(C) for every set of probabilities.

2. (Homophonic keys) Prove theorem 12.1 for homophonic systems.

3. (Coding identity) Show that for any cryptosystem

H(K , C) = H(M) + H(K),

where M is the message, K is the key, and C is the ciphertext.

4. (Identities*) Show that for a cryptosystem

H(M|C) = H(M, C, K) − H(K|M, C) − H(C)

and
H(K|C) = H(M|C) + H(K|M, C).

5. (More identities) Show that for a cryptosystem

H(C|M) = H(M, K , C) − H(M) − H(K|C, M) = H(K) − H(K|C, M).

6. (Unicity of transposition) Notice that for a transposition cipher, the resulting letters maintain
their original frequency distribution. From this, deduce the unicity point of a transposition
cipher of period p.

7. (How big?) What is the unicity point of a one-time pad?

8. (Chessboard unicity) A transposition code is devised that permutes the letters in each block
of 64 letters according to a key that is a fixed permutation used for each of the blocks.
(Perhaps the transposition is constructed by randomly assigning the numbers 1–64 onto the
squares of a chessboard, and then reading them out by row.) This transposition cipher will
of course not change the frequency distribution of the letters. Find the unicity point for
this cipher. Use the data below to the extent that it is helpful. (Entropy values are per-letter
values.)

(a) Zero-th order entropy of English = log 26 = 4.7.
(b) First-order (frequency) entropy of English = 4.2.
(c) Entropy of English = 1.2.
(d) log 26! ≈ 88.
(e) log 64! ≈ 300.

9. (Running cipher) One method for increasing the security of Vigenère-type encryption is
to use a running text as key. For example, the key might be the letters, in order, from an
obscure novel that is possessed by both the sender and intended receiver of the message. The
message itself is encoded by the Vigenère system—encoding the i-th letter of the message
by shifting the alphabet by an amount determined by the i-th letter of the key. Both the
message and the key are in the same language, which has L letters in its alphabet, and
which has a redundancy of rL . As an approximation, assume that the resulting ciphertext is
essentially completely random, with all letters having the same probability and each letter
being independent of the others.

“ch12” — 2006/2/6 — 18:47 — page 198 — #13

� �

� �

198 • C h a p t e r 12 C R Y P TO G R A P H Y T H E O R Y

(a) What is H(Cn)?
(b) What are H(Mn) and H(Kn)?
(c) What degree of redundancy rL (a percentage) of the language is necessary in order

that this code system be breakable?
(d) Is the system breakable if the language is standard English?

10. (Homophonic cipher) Suppose that a language using an alphabet of J letters has the property
that the i-th letter has a frequency of ki/N , for each i, where the ki’s and N are integers
with

∑
i ki = N . A homophonic cipher is made up of exactly N symbols, with ki of these

assigned to the i-th letter of the alphabet (and with no duplications). When a letter i is to be
encrypted, one of the ki cipher symbols assigned to it is chosen at random. This will make
all N code symbols appear with probability 1/N .
To determine the unicity point of such a code, it is necessary to modify the basic relation
for H(K|C) because H(C|M, K) is not zero.

(a) Show that in general

H(K|C) = H(C|M, K) + H(M) + H(K) − H(C).

(b) Show that for the situation of this exercise

H(C|M, K) =
J∑

i=1

ki

N
log ki.

(c) If the language has an entropy determined only by the frequency of its letters, can
the homophonic cipher be broken?

(d) The number of ways of assigning symbols for this cipher is

W = N !
k1!k2! · · · kJ ! .

If the entropy of the language is H per letter, what is the unicity point of the cipher?
(e) Assuming that the entropy of English is 1.5 bits/letter and that the homophonic

code of 100 symbols in the text is used, what is the unicity point? (Note that
log W = 377.)

11. (Maximal period shift register) Show that if a linear shift register has maximal period, then
a sequence having that period is generated by any nonzero initial condition of the registers.

12. (Two shift registers) Construct two third-order shift registers (and initial conditions) such
that the period of one of these is 1 and the other is 7. Always take a3 = 1 so that the registers
are fully third-order.

12.6 Bibliography

Shannon’s basic paper originating the theory of classical cryptography is [1]. The
extension of the concept of unicity to the notion of spurious keys is due to Hellman
[2]. The step-by-step analysis of H(K|Cn) for the binary language is apparently new.
See [3] for a good discussion of crypto-identities such as those of exercises 3, 4,
and 5 and other aspects of the theory. A comprehensive treatment of cryptography
is [4].

“ch12” — 2006/2/6 — 18:47 — page 199 — #14

� �

� �

S e c t i o n 12.6 B I B L I O G R A P H Y • 199

References

[1] Shannon, Claude E. “Communication Theory of Secrecy Systems.” Bell System
Technical Journal 28 (1949): 656–715.

[2] Hellman, M. E. “An Extension of the Shannon Theory Approach to Cryptogra-
phy.” IEEE Transactions on Information Theory 23 (1977): 289–94.

[3] Welsh, Dominic. Codes and Cryptography. Oxford: Oxford University Press,
1988.

[4] Schneier, Bruce. Applied Cryptography. 2nd ed. New York: Wiley, 1996.

“ch11” — 2006/2/6 — 20:22 — page 163 — #1

� �

� �

P AR T III

ENCRYPT ION
Security through Mathematics

“ch11” — 2006/2/6 — 20:22 — page 164 — #2

� �

� �

“ch11” — 2006/2/6 — 20:22 — page 165 — #3

� �

� �

11
CIPHERS

S
ecret communication is probably as old as human history. We can imagine that
cave men whispered secrets, and that some symbols written on cave walls were
intended only for close friends. Actual evidence of written ciphers goes back over

four thousand years to a hieroglyphic substitution written by Egyptian scribes on
the walls of the tomb of a nobleman. Such ciphers were intended to enhance the
significance of the message or to serve as puzzles, but nevertheless they contained
the elements of cryptography.

One of the most famous cipher incidences is recorded in the Old Testament in the
book of Daniel. At a banquet held by King Belshazzar for a thousand of his lords,
the “fingers of a human hand appeared, writing on the plaster wall of the palace.”
No one could interpet the riddle of the Aramaic words Mene, Mene, Tekel, Upharsin.
Finally, Daniel was summoned and he easily read “the writing on the wall,” and
for this he was made one of the three leaders of the government. Although Daniel’s
interpretation was not strictly a decipherment, he is widely credited as perhaps being
the first cryptanalyst.

Ciphers and cryptography often played a decisive role in history. Mary Queen
of Scots was held in the Tower of London on suspicion of treason. Because of her
stature she could not be executed unless there was definitive proof of her treachery.
She communicated with her outside page by means of a complex cipher. This cipher
was eventually broken, and her correspondence revealed her role in a plot to kill
Queen Elizabeth and overtake the throne. This clinched the judgment, leading to
Mary’s beheading.

Ciphers are crucial in military campaigns. The first known use of military
encryption is associated with the Spartans, who used a transposition device known
as a scytale that scrambled the letters of a message. Julius Caesar used a simple
substitution code for both military and domestic communication.

At the end of the eighteenth century, Thomas Jefferson created a wheel cipher
that was far advanced for its time. Unfortunately, his idea was filed away and only
rediscovered among his papers in 1922. Because of its strength, the system was

165

“ch11” — 2006/2/6 — 20:22 — page 166 — #4

� �

� �

166 • C h a p t e r 11 C I P H E R S

subsequently used by various agencies of the government and the military. Thomas
Jefferson is accordingly called the father of American cryptography.

One of the most infamous ciphers is the dreaded Enigma cipher used by the
Germans in World War II. It was implemented by a complex Enigma machine that
scrambled and substituted text using a series of complex wheels and circuits. It was
considered unbreakable, and for this reason the Germans relied on it. Its analysis
and eventual breaking by a British agency was one of the most important military
achievements of the war and is credited with shortening the war by at least two years.

Today encryption is a vital part of everyday life. Sensitive phone messages are
scrambled, Internet communication is encrypted, and smart credit card and digital
cash transactions are secured by encryption techniques far superior to those of early
ciphers, even superior to the mysterious Enigma. The fascinating development of
encryption is explored in the next few chapters.

11.1 Definitions

A generic cipher system is shown schematically in figure 11.1. The plaintext is
the original message. It is encrypted to produce the corresponding ciphertext. This
ciphertext may appear to be a jumble of letters, or it may be a series of entirely different
symbols, such as ♠∇� � § ♠♦ ◦ ♥ �∞ ��$. Once the ciphertext is received by
the intended party, it is decrypted to reproduce the original plaintext. Of course the
sender and receiver must both agree on the encryption process.

As a rule, a particular cipher method is but one of a family of similar ciphers,
each separate member of the family being distinguished by a key. The key governs
the encryption process and also the decryption. In practice, the strength of a cipher
system is related to the number of possible keys.

11.2 Example Ciphers

It was as long ago as 500 bc that the Spartan government encoded messages with
a scytale (pronounced SITalee), which was a cylinder of fixed radius. The sender
spiraled a strip of parchment around the cylinder and wrote across it, each letter being
placed on adjacent turns of the parchment. When the strip was unwound, the order
of the letters was mixed up. The message was decrypted by generals in the field who
possessed a duplicate scytale with the same radius. See figure 11.2.

For example, if the circumference of the scytale were equivalent to four letters of
text, a strip with the ciphertext ROEOERNMICTINESNFMCG could be decrypted

Encryption
CiphertextPlaintext

Decryption

Original
plaintext

FIGURE 11.1 Cipher process. Plaintext is encrypted into ciphertext, and this is sent to
the receiver, who decrypts it to recover the original plaintext.

“ch11” — 2006/2/6 — 20:22 — page 167 — #5

� �

� �

S e c t i o n 11.2 E X A M P L E C I P H E R S • 167

FIGURE 11.2 The scytale. A message is written across the spiraled parchment and
then unwound. The scrambled message is decrypted by use of a duplicate scytale. This
figure shows the start of a message that would progress across other rows as well.

by spiraling the message on a cylinder of circumference equal to four letters (to give
REINFORCEMENTS . . .).

The scytale is an example of a transposition cipher in which the ciphertext consists
of the same letters as the plaintext but physically transposed in some systematic
fashion. The key of the scytale is its radius.

Transposition Ciphers

Practical transposition ciphers are similar to those produced by a scytale, but generated
on the interleaving principle discussed in chapter 6 in the context of error-correcting
codes. The plaintext message is written letter by letter in a matrix row by row, but con-
verted to ciphertext by reading the letters out column by column. For good measure,
the columns can be permuted.

Suppose a five by five array is used. The message THE INVASION WILL BEGIN
TODAY is read in by rows as shown below.

2 4 3 1 5
T H E I N
V A S I O
N W I L L
B E G I N
T O D A Y

The message is read out by columns to obtain the ciphertext. A keyword can be used
to mix the order of the columns. In this case we have selected the keyword MONEY
to define the order. Remembering a word is easier than remembering a specific order.
The keyword is translated into digits by following the alphabetical order of the letters
in the keyword. Since E is the lowest letter in the MONEY, it becomes 1, M is the
second lowest, so it is 2. Following this procedure with each letter, the keyword
translates to 24315. This is the order to be used when writing out the columns.
The resulting ciphertext is IILIA TVNBT ESIGT HAWEO NOLNY, which can be
spaced differently so as not to reveal the column size, to say, IIL IAT VNB TES
IGT HAW EON OLN YDL with two letters added to fill out the last apparent three-
letter word.

“ch11” — 2006/2/6 — 20:22 — page 168 — #6

� �

� �

168 • C h a p t e r 11 C I P H E R S

A general transposition cipher of order p reorders a block of p plaintext sym-
bols according to a given permutation. Interleaving is a simple way to construct such
a permutation, but it does not include all possible permutations. For example, the
symbols could be read into a triangular array row by row and read out column by
column. There are in fact p! possible permutations of order p and hence p! transpo-
sition ciphers of order p.1 Said another way, there are p! possible keys (a key being a
permutation) associated with transposition codes of order p.

Substitution Ciphers

The most common simple ciphers are substitution ciphers where each letter of
plaintext is transformed into another letter or symbol, but the order of the letters is
not changed.

The Caesar cipher is one of the simplest and most well known of the substitution
ciphers. In this cipher each letter of the alphabet is shifted by, say, three letters. Thus:
a becomes D, b becomes E, and so forth. At the end of the alphabet, the shifting is
wound around back to the beginning. The complete set of substitutions is therefore

plaintext a b c d e f g h i j k l m n o p q r s t u v w x y z
ciphertext D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Of course shift lengths other than three can be used. The length of the shift is the key,
and knowing its value enables one to decrypt the plaintext message.

A modern-day version of this shift cipher is embodied by the Unix operator ROT
13, which shifts all letters by 13. Decryption is achieved by applying the same operator
again, since two shifts by 13 produces a shift of 26.

Alternative Alphabets

A substitution cipher may employ a different alphabet for the ciphertext than that of
the plaintext. One example is the pigpen cipher, said to have been used by
Confederate soldiers in the Civil War and still a favorite of school-age children. It

is confusing to someone who does not know the secret, but easily reconstructed
by those who do. The substitution is made by drawing two simple figures: one

being the same set of four lines used in a tic-tac-toe game, and the other
being a large X. Letters of the alphabet are entered in pairs into the

spaces created by these figures, as shown in figure 11.3.
A letter is encoded as the outline of the area in which it is contained. For

example, the letter A is encrypted as . If the letter is the second of the pair

1There are p ways to select the new location of the first letter, p − 1 ways to select the new location of
the second, and so forth.

“ch11” — 2006/2/6 — 20:22 — page 169 — #7

� �

� �

S e c t i o n 11.4 C R Y P TO G R A M S • 169

A, B C, D E, F

G, H I, J K, L

M, N O, P Q, R

S, T

Y, Z

U, V W, X

FIGURE 11.3 Pigpen cipher. The placement of letters defines symbols used in the
ciphertext.

in the space, a “pig” is included in the form of a dot. Thus, B is encrypted as . A
complete message might be

which is easily decrypted.

11.3 Frequency Analysis

Simple substitution codes, such as the Caesar cipher, are vulnerable to attack based
on frequency analysis using the known letter frequencies of English. For example, it
is known that the most common letters, in order from most common, are E T A O
I N S. When attacking the ciphertext of a substitution code, one first determines the
most common letters. For the ciphertext

Z N K I N K I Q OYOT Z N K S G O R

K, N, O, and Z each occur three times, while the others occur only once or twice. It
is natural to assume that one of these most frequent symbols represents the letter e.
Trying K = e and then guessing all letters are shifted by six in a Caesar code, causes
everything to fall in place, producing the message, “The check is in the mail.”

More complex substitution codes are designed to increase the number of possible
keys and render frequency analysis less potent.

11.4 Cryptograms

Advanced substitution codes substitute letters or symbols of the ciphertext alphabet
according to an arbitrary pattern. That is, a general substitution cipher may repre-
sent the letter a by K, b by X, c by F, and so forth, with the correspondence being
unique in each direction. Symbols other than letters can be used for the cipher alpha-
bet. In any case, there are 26 different symbols, each corresponding to a plaintext
letter. If ordinary letters are used for the cipher alphabet, the code system can be

“ch11” — 2006/2/6 — 20:22 — page 170 — #8

� �

� �

170 • C h a p t e r 11 C I P H E R S

described by a permutation of the 26 letters of the alphabet, as shown in the example
below.

Plaintext A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Ciphertext F J W S N O B K M U E I H Z X C Q R D T A V L Y P G

If spacing between words and punctuation is preserved, the ciphertext of such a
system is termed a cryptogram. A cryptogram is vastly more complex than a Caesar
cipher or even a pigpen cipher, for while there are 26 possible Caesar cipher keys,
corresponding to the 26 possible shifts of the alphabet, there are 26! ≈ 4 × 1026

possible cryptogram keys corresponding to the 26! different permutations of the
alphabet. This is an enormous number of possibilities.

One approach to breaking a substitution code is by trial and error, trying each
possible key until a result makes sense. We can imagine a fast computer applied to
the problem of solving a cryptogram by this trial-and-error procedure. The computer
would cycle through the possible permutations of 26 letters, checking if the result
were reasonable. Assuming that the computer could check 100 million permutations
per second (which is optimistic since there would be considerable effort to determine
if the result were reasonable), it would take about 2 × 1026/108 = 2 × 1018 seconds
to check one-half of the permutations (which on average is all that would need to be
checked). There are 60×60×24×365 = 31, 536,000 seconds in a year. So it would
take 2×1018/(.31536×108) ≈ 6×109 = 6 billion years to complete the computation.

Despite the complexity of a general substitution code, it preserves much of the
character of plaintext language. Letter frequencies are preserved, being merely trans-
lated to the substitute letters or symbols. If e is coded as K, then K will likely appear
more frequently than any other letter in the cipher, and this will suggest that K is
the substitute for e. Word structure is also preserved. For example, double letters in
plaintext appear as double letters in the ciphertext.

Edgar Allan Poe heightened public curiosity about cryptograms with publication
of his engaging and now classic short story The Gold Bug, in which Captain Kidd’s
treasure is discovered with the help of a special species of golden bug and the breaking
of a cryptogram left by Kidd. Poe was fascinated by cryptograms and in his regular
column in the Philadelphia newspaper Alexander’s Weekly Messenger he challenged
readers to submit cryptograms and boasted that he would solve them all. He was
inundated with submissions, but he readily solved all that were legitimate.

Poe’s method was the same that amateur fans of cryptograms use today, a combi-
nation of frequency analysis and word structure analysis, although there is evidence
that Poe emphasized the latter over the former.

Example 11.1 (An important message). To attack the ciphertext

GFX XCXRU WK QJKWGWJCXD JC GFX FWVV GJ GFX XBKG

we first perform a frequency analysis, realizing that it may not be accurate for such a
short message. The following counts are obtained:

X 7 G 6

J 4 F 4

W 4 C 3

K 2 V 2

“ch11” — 2006/2/6 — 20:22 — page 171 — #9

� �

� �

S e c t i o n 11.5 T H E V I G E N È R E C I P H E R • 171

All the rest have counts of 1.
Frequency analysis suggests X = e and G = t. Then the fact that the word GFX

appears three times suggests that it is the, the most common three-letter word. This
gives F = h. We note that the two-letter word GJ starts with t under our assumption,
and it is logical therefore to assume the word is to, which gives J = o. This means
that the two-letter word JC starts with an o and hence it likely that C = n.

The two-letter word WK contains no t, o, h, or n. Hence, a likely choice is is,
which gives W = i and K = s. At this point we have the message

t h e e n e i s o s i t i o n e
G F X X C X R U W K Q J K W G W J C X D

o n t h e h i t o t h e e s t
J C G F X F W V V G J G F X X B K G

From here it is easy to fill in the missing letters to obtain the message: the enemy is
positioned on the hill to the east.

This approach has been duplicated in a computer program for solving cryptograms,
which includes a dictionary of the 1,000 most common words in English, partitioned
into words of different lengths and different structure. For example THAT, HIGH,
and AREA are in the same group because the first and fourth letters agree in each
of these words. The method systematically tries letter assignments in an attempt to
maximize the number of words that match those in the dictionary.

Cryptograms of about 30 letters in length appear in puzzle books as challenges,
and most can be easily solved by hand in half an hour or so.

11.5 The Vigenère Cipher

The substitution ciphers discussed so far are termed monoalphabetic since there
is a single alphabet (and single substitution order) used to construct the cipher. By
the sixteenth century, the weakness of this type of cipher was recognized, and more
complex ciphers that varied the substitution process from letter to letter were proposed.
Such ciphers are termed polyalphabetic since more than one alphabet substitution is
used. The most practical and popular of these was invented by Blaise de Vigenère in
about 1562.

The Vigenère cipher uses a keyword to vary the substitution formula with each
new letter. Each substitution is determined by a simple shift of the alphabet as in a
Caesar cipher, but the length of the shift is determined by the key. To assist in the
process of shifting, one may use the Vigenère table of table 11.1.

As an example, suppose the keyword is chosen to be CODE. To encrypt a message,
it is written letter by letter with the keyword lined up above it and repeated over and
over so that it spans the entire message. The keyword letter that is written above
the plaintext letter is the shift as determined by table 11.1. An example is shown
below.

Keyword C O D E C O D E C O D E C O D E C O D E C O D E C O D E C O D E C O D E
Message T H E P R E S I D E N T I S I L L W I T H A H I G H F E V E R T O D A Y
Ciphertext V V H T T S V M F S Q X K G L P N K L X J O K M I V I I X S U X Q R D C

“ch11” — 2006/2/6 — 20:22 — page 172 — #10

� �

� �

172 • C h a p t e r 11 C I P H E R S

TABLE 11.1
Vigenère Table. Each row is a shift of the one above it.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A a b c d e f g h i j k l m n o p q r s t u v w x y z
B b c d e f g h i j k l m n o p q r s t u v w x y z a
C c d e f g h i j k l m n o p q r s t u v w x y z a b
D d e f g h i j k l m n o p q r s t u v w x y z a b c
E e f g h i j k l m n o p q r s t u v w x y z a b c d
F f g h i j k l m n o p q r s t u v w x y z a b c d e
G g h i j k l m n o p q r s t u v w x y z a b c d e f
H h i j k l m n o p q r s t u v w x y z a b c d e f g
I i j k l m n o p q r s t u v w x y z a b c d e f g h
J j k l m n o p q r s t u v w x y z a b c d e f g h i
K k l m n o p q r s t u v w x y z a b c d e f g h i j
L l m n o p q r s t u v w x y z a b c d e f g h i j k
M m n o p q r s t u v w x y z a b c d e f g h i j k l
N n o p q r s t u v w x y z a b c d e f g h i j k l m
O o p q r s t u v w x y z a b c d e f g h i j k l m n
P p q r s t u v w x y z a b c d e f g h i j k l m n o
Q q r s t u v w x y z a b c d e f g h i j k l m n o p
R r s t u v w x y z a b c d e f g h i j k l m n o p q
S s t u v w x y z a b c d e f g h i j k l m n o p q r
T t u v w x y z a b c d e f g h i j k l m n o p q r s
U u v w x y z a b c d e f g h i j k l m n o p q r s t
V v w x y z a b c d e f g h i j k l m n o p q r s t u
W w x y z a b c d e f g h i j k l m n o p q r s t u v
X x y z a b c d e f g h i j k l m n o p q r s t u v w
Y y z a b c d e f g h i j k l m n o p q r s t u v w x
Z z a b c d e f g h i j k l m n o p q r s t u v w x y

The Vigenère cipher destroys ordinary frequency and word structure. A given
plaintext letter is likely to be encrypted differently in its several occurrences in the
message. Likewise a double letter will not appear as a double letter. The Vigenère
cipher is therefore much more difficult to attack than a standard monoalphabetic sub-
stitution code. The strength of the cipher, however, depends on the length of the key.
If the key is short, the cipher may be broken by using an enhancement of frequency
analysis.

Cryptanalysis of the Vigenère Cipher

Vigenère ciphers with relatively short keywords can be attacked by using the numer-
ical values of relative letter frequencies. A table of such frequencies is shown in
table 11.2.

Suppose a received message is

CMFUSBIEXKLMDETGNU.

“ch11” — 2006/2/6 — 20:22 — page 173 — #11

� �

� �

S e c t i o n 11.5 T H E V I G E N È R E C I P H E R • 173

Assume first that the length of the keyword is known. Suppose it is three. Then
the collection of every third letter can be analyzed as if these were produced by a
simple shift cipher. That is, one looks only at the letters 1, 4, 7, 10, For the
sample message above these letters are CUIKDG.

A variation of frequency analysis can be applied to this collection of letters using
a simple optimization procedure. A certain keyword letter is proposed and the letters
in the collection are transformed by this shift. Then each letter in this transformed
collection is assigned a value equal to its standard occurrence frequency as given in
table 11.2.

The first three key letter possibilities are shown in table 11.3. If the key letter were
A, the letters in the collection would be identical to the corresponding cipher letters.
The first section of the table lists these letters together with their standard frequencies
(as a percent). These values are summed to obtain a total score of 19.582. Next,
assuming the key letter were B, the message letters would have been shifted forward
by one letter to construct the cipher letters, so now they are shifted backward by one

TABLE 11.2
Letter Frequency Occurrences in English. The frequen-
cies are given as percentages.

A 8.167 J 0.153 S 6.327
B 1.492 K 0.772 T 9.056
C 2.782 L 4.025 U 2.758
D 4.253 M 2.406 V .978
E 12.702 N 6.749 W 2.36
F 2.228 O 7.507 X 0.15
G 2.051 P 1.929 Y 1.974
H 6.094 Q 0.095 Z 0.074
I 6.966 R 5.987

TABLE 11.3
Analysis of a Vigenère Cipher. Actual frequency
values are assigned to each possible shift and the
maximum is indicative of the possible key letter.

Key Letter

A B C

C 2.782 B 1.492 A 8.167
U 2.758 T 9.056 S 6.327
I 6.966 H 6.094 G 2.051

K .772 J .153 I 6.966
D 4.253 C 2.782 B 1.492
G 2.051 F 2.228 E 12.702

Score 19.582 21.805 37.705

“ch11” — 2006/2/6 — 20:22 — page 174 — #12

� �

� �

174 • C h a p t e r 11 C I P H E R S

letter to obtain the hypothetical message letters. These are shown in the second section
together with their corresponding scores. The total score under the assumption that
B is the key letter is 21.0805. Similarly, the score under the assumption that C is the
key letter is found to be 37.705. This procedure can be carried out for each possible
key letter, producing a score for each one. In this example, it turns out that the key of
C gives the highest score, so it is a prime candidate for the actual key letter.

The same process can be carried out for the collection consisting of the letters
in positions 2, 5, 8, 11, 14, 17 and for the collection of letters in positions 3, 6, 9,
12, 15, 18. The maximum scores for these sets are obtained by the key letters A
and B respectively, implying that the entire keyword is CAB. Indeed, using this as
the keyword converts the message to AMESSAGEWILLBESENT, or A MESSAGE
WILL BE SENT.

This simple technique may not always be successful on messages as short as this
example, but it is highly successful on messages that have a length at least 10 times
the key length.

If the length of the keyword is not known, this procedure can be repeated for
various lengths until a high total score is achieved, indicating the true key or at least
the true length.

The entire procedure can be easily carried out in a spreadsheet program.

The Autokey Cipher

An ingenious variation of the Vigenère cipher that does not require a long key but has
some of its advantages, is the autokey cipher also devised by Vigenère. In this cipher,
the message itself is used as the key. The process is started with a seed key, which could
be as short as a single letter, but it is better to use a longer one. When as many letters as
in the seed key have been encrypted, new key letters are taken from the message itself
starting at the beginning. For example, if the key is the single letter C and the message
is “We have captured a spy,” The actual key would be CWEHAVECAPTUREDASP,
producing the ciphertext YALHVZGCPINLVHDSHN.

11.6 The Playfair Cipher

Another way to confound frequency analysis is to encode letters in pairs rather than
singly. For example, the pair th might be encrypted as 356, and the pair te by 12. In
its most general form, specification of a symbol for each pair requires a table of size
262 by 262, which is quite unwieldy. However, such a table can be constructed so that
the resulting cipher is completely immune from first-order frequency analysis, and
second-order analysis would be effective only on lengthy messages.

The Playfair cipher is a simple procedure for encrypting pairs. It was popularized
by Lyon Playfair, first Baron Playfair of St. Andrews, but it was actually invented by
his good friend Sir Charles Wheatstone, a scientist of unusual breath and creativity.
Wheatstone’s contributions to telegraphy and his influence on the invention of the
telephone are mentioned briefly in chapters 19 and 20.

“ch11” — 2006/2/6 — 20:22 — page 175 — #13

� �

� �

S e c t i o n 11.7 H O M O P H O N I C CO D E S • 175

8 J E Q D N 5 O

P U 3 A R F L W

4 V C 2 T M B I

K 7 Z S G X H Y

FIGURE 11.4 A Playfair matrix.
The matrix defines a pair-wise
substitution cipher that is diffi-
cult to break.

The cipher is defined by an array such as shown in figure 11.4. Any size
array is suitable as long as it has at least two columns and two rows and
contains at least 26 elements (or 25 if i and j are considered identical). The
figure shows a four by eight array constructed by scattering the alphabet
among the cells and filling the remainder with integers.

A message to be encrypted is first partitioned into pairs of adjacent letters.
If this would lead to a double letter, an X is inserted between the two. For
example, the message LET US MEET AT NOON is rewritten as

LE TU SM EX ET AT NO ON.

An X is inserted between the two Es, but not between the two Os, which are in
different pairs. If there is a final single letter, an X is appended.

A pair of letters is encoded according to the following rules:

1. If the letters are in the same row, encode the letters by using those to the
immediate right in the same row. If at the right end, use the first letter
in the row (that is, consider that the rows wrap from the right end to the
left). For example, the pair TI is encrypted as M4.

2. If the letters are in the same column, encode the letters by using those
immediately below in the same row. If at the bottom, use the top letter of
the column. For example, the pair RG is encrypted as TD.

3. If the letters appear in different rows and columns, encode each as the
letter in the same row but in the column of the other letter. For example,
the pair LE is encrypted as 35.

The message LET US MEET AT NOON becomes, when grouped in fours, 35VR
X2NZ DCR2 5885.

The Playfair cipher is easy to implement but extremely difficult to break. For
this reason Wheatstone and Playfair described the system to the under secretary of
the Foreign Office, suggesting that it was ideal for field work. The under secre-
tary complained that the system was too complex. Wheatstone said that he could
readily teach it to three out of four elementary school boys in 15 minutes, but the
under secretary responded, “That is very possible, but you could never teach it to
attachés.”

11.7 Homophonic Codes

Standard frequency analysis is powerless against a homophonic code that assigns
more than one symbol to each letter in such a way that the frequency of the code
alphabet is uniform. If 100 symbols are used (such as the two-digit numbers from 00
to 99), the number of symbols assigned to a letter can be chosen to closely match the
relative frequency of that letter. For example, since the letter A occurs approximately
8 percent of the time, 8 symbols are assigned to it. Likewise, E which occurs approx-
imately 12 percent of the time is assigned 12 symbols. Table 11.4 shows such a code.
During encryption the particular symbol to be used to represent a letter is chosen

“ch11” — 2006/2/6 — 20:22 — page 176 — #14

� �

� �

176 • C h a p t e r 11 C I P H E R S

TABLE 11.4
A Homophonic Code. If the symbols assigned
to a letter are selected randomly when encrypt-
ing that letter, each symbol will occur with
approximately equal probability, rendering ordi-
nary frequency analysis virtually useless.

A 04, 25, 30, 43, 45, 47, 68, 86
B 51
C 67, 72, 93
D 22, 41, 55, 84
E 02, 12, 36, 48, 50, 53, 59, 66, 70, 77, 82, 89
F 06, 71
G 23, 29
H 11, 17, 52, 74, 78, 96

I 16, 20, 27, 46, 49, 62, 99
J 87
K 69
L 09, 32, 54, 73

M 44, 85
N 00, 14, 21, 33, 56, 90
O 01, 34, 37, 57, 61, 80, 91
P 07, 94
Q 63
R 05, 19, 28, 38, 58, 60
S 08, 24, 39, 65, 95, 81
T 10, 18, 26, 35, 42, 75, 76, 79, 83, 88
U 15, 40, 64
V 13

W 31, 97
X 98
Y 03
Z 92

randomly from those assigned to the letter, randomness being applied on each occur-
rence. The great mathematician Gauss is reported to have discovered the homophonic
code and believed it to be unbreakable. (It is not.)

11.8 Jefferson’s Wheel Cipher

Thomas Jefferson probably invented his wheel cipher during the 1790s. He described
his invention in his personal papers, but apparently never put it to practical use.
According to his description, the wheel is made from a wooden cylinder about
2 inches in diameter and 6 inches long, with a 1/4 inch hole bored through the
center. This cylinder is sliced up into 36 disks, each about 1/6 of an inch thick.
Around the circumference of each disk are inked the 26 letters of the alphabet in ran-
dom order, each disk with a different order. The disks are then threaded through their
center holes onto a shaft. The series of disks then define 26 rows, each of 36 random
letters. A message of up to 36 characters is encoded by rotating the disks one at a

“ch11” — 2006/2/6 — 20:22 — page 177 — #15

� �

� �

S e c t i o n 11.9 T H E E N I G M A M AC H I N E • 177

F
KR
OP

M

C
N

W
H

S
N

G
Q

A

B

D

T

U
S

V
R

A
T

H

P

L

D
E

J
Z

T

V

S

Y

A
L

E
N

C

O

J

F

B
S

C
D

K

C

H

T

V
W

Q
O

A

X

Z

W

I
G

M
A

T

A

H

S

B
G

R
X

D

K

C

J

O
H

M
P

A

X

Z

A

W
S

Y
B

W

J

L

Q

A
H

D
V

N

FIGURE 11.5 Simplified Jefferson’s wheel cipher. The disks can be threaded on in any
order.They are then rotated so as to spell out a message, and the ciphertext is taken as the
text of any other row.

time so that one of the rows (and it does not matter which row) matches the text of the
message. Once in position, Jefferson suggests locking the arrangement with a screw.
The ciphertext is then taken to be the letters read across any other row. See figure 11.5
for a simplified version with only 12 disks.

This ciphertext is decrypted by the intended recipient, who has an identical wheel,
by rotating the disks so as to match the ciphertext across one of the rows. The recipient
then locks the disks in that position and turns the whole apparatus until a message
that makes sense is observed across a row.

The disks of the wheel are numbered, and they can be threaded onto the shaft
in numerous orders. The threading order is the key of the cipher system. Jefferson
realized that there are 36! orders and computed (correctly) that this is about 3.72×1041

possible keys.2

Jefferson’s wheel cipher is extraordinarily difficult to break. However, he appar-
ently felt that it was too complex, and mysteriously, he selected instead a Vigenère
cipher as the official cipher for the Lewis and Clark expedition. Had his wheel cipher
been adopted by the U.S. government, it would certainly have been the most advanced
encryption device available well into the 20th century.

11.9 The Enigma Machine

In 1918 the German inventor Arthur Scherbius filed a patent for a mechanical encryp-
tion machine that became known as the Enigma machine. It was not the first
encryption machine, for seeds of the Enigma concept were contained in the early
scytale, in Thomas Jefferson’s cipher wheel, and in several other cipher machines.
However, the Enigma remains the most advanced machine of that type actually
manufactured, and was to play a vital (even pivotal) role in World War II.

The machine looks like an overgrown typewriter, for in fact the message is typed in
on typewriter keys. (See figure 11.6.) The machine contains several other features, but
the most important is the series of three disks (termed rotors) that implement complex

2The exact answer is 371,993,326,789,901,217,476,999,448,150,835,200,000,000.

“ch11” — 2006/2/6 — 20:22 — page 178 — #16

� �

� �

178 • C h a p t e r 11 C I P H E R S

FIGURE 11.6 The Enigma machine. The machine has typewriter keys for entry, three
rotors to define a letter substitution, a plugboard to implement a further substitution, and
finally, lightbulbs to indicate the result.

substitutions. The rotors, similar to Jefferson’s disks, have circumferences divided
into 26 segments. The Enigma rotors are made of nonconducting material such as
hard rubber or ceramic. On the face of each rotor are 26 electrical contacts evenly
spaced near the outer rim to match the 26 divisions. These contacts are electrically
connected in pairs, one on the front face of the rotor, the other on the back face, but
these pairs are in a random pattern. The first contact on the front might be connected
to the sixteenth on the back. A rotor therefore defines a substitution cipher. If the
machine were made with only a single rotor of this type, it would be arranged so
that striking a keyboard key would apply voltage to the corresponding contact on the
front face of the disk, and that current would pass to the corresponding contact on
the back face, which would activate a lightbulb connected to that contact. Twenty-six
lightbulbs are arranged in the same configuration as keys, so that each bulb represents
letters by their position.

“ch11” — 2006/2/6 — 20:22 — page 179 — #17

� �

� �

S e c t i o n 11.9 T H E E N I G M A M AC H I N E • 179

The three rotors are connected in series. Each rotor has a different arrangement of
inner connections and thus represents a different set of permutations. When a key is
struck, an electrical circuit passes through the first rotor, into and through the second,
then into and through the third.

Now the true enigmatic nature comes to play. After a key is struck and a bulb lit,
the first rotor rotates one space, thereby changing the permutation of the first rotor
for the next letter. The second rotor rotates a single space after the first rotor makes a
complete cycle of 26 spaces, like an automobile odometer; the third rotor steps one
space only after the second makes a complete cycle.

The rotors are numbered 1, 2, and 3 and are themselves interchangeable. Thus the
rotors might be placed in the machine in order 3, 1, 2. In later models a total of five
rotors were available, from which three were chosen for a given setting.

There is a fourth disk termed a reflector that does not rotate and has 26 contacts
only on one face. These contacts are connected in pairs so that current entering one
contact emerges from another, sending the current back through the other three rotors
along a path different from that taken in the forward direction. When it completes its
circuit, the current lights one of 26 lamps, which indicates the encrypted version of the
typed letter. The reflector adds no new complexity but greatly simplifies decryption
because now an electrical path from a typewriter key (say Z) to a bulb (say K) is the
same as the path from key K to bulb Z. Hence a message can be decoded by keying
in the ciphertext, with the bulbs now giving the plaintext. The basic Enigma structure
is illustrated in figure 11.7.

There is yet another complication. A plugboard allows for the interchange of two
letters before they enter the rotors. This is accomplished by plugging the ends of a
cable into holes corresponding to two letters. In later models, a total of up to 13 pairs
of letters could be swapped in this way. In practice only 10 were used.

Finally, another complication is that associated with each rotor is a ring with a
notch that determines when in a rotor’s cycle it advances the next rotor. This would
be like an odometer that advances the next digit on, say mile 4, instead of mile 0. The
rings can be set at any of the 26 possibilities.

In practice, the German military provided a list of basic settings for each day,
consisting of three ordered rotor numbers, ring settings, initial rotor positions, and
plugboard arrangement. Then each message during the day varied only the initial
rotor positions, which were sent as the first part of the message.

The number of possible Enigma keys is enormous. The number can be computed
in steps, the largest contribution being from the plugboard.3

Rotor choice = 5!/(2! 3!) = 10 (selecting 3 from 5)

Rotor order = 3! = 6

Rotor positions: = 263 = 17,576

Ring positions: = 262 = 676 (since only the first two matter)

Plugboard combinations = 26!/[6! 10! 210] = 150, 738, 274, 937, 250

3The total number of combinations when n cables are used is 26!/[(26 − 2n)!(2n!)] (the number of ways
to select 2n holes from 26), times (2n)! the number of ways of inserting 2n cable ends), divided by 2n

(because connecting A to B is the same as connecting B to A), divided by n! (the number of ways the
cables can be ordered).

“ch11” — 2006/2/6 — 20:22 — page 180 — #18

� �

� �

180 • C h a p t e r 11 C I P H E R S

Q W E R T Z U I O

A S D F G H J K

P Y X C V B N M L

RotorsReflector

Lamps

Keyboard

K

FIGURE 11.7 Basic Enigma structure. Pressing key Z completes an electrical circuit
that passes through the three rotors, the reflector, and back through the rotors to light
lamp K that indicates the encrypted version of Z. The path is reversible so that pressing
K will light lamp Z. The actual Enigma includes additional complications of a plugboard
and rings.

The total number of keys is therefore the astronomical number 107, 458, 687, 327,
250, 619, 360, 00 ≈ 1.0 × 1023.

Actually the number of keys, though huge, is less than the 26! ≈ 4 · 1026 keys of
a single substitution code of 26 letters and much less than that of Jefferson’s wheel
cipher. Most of the Enigma keys are due to the plugboard substitutions. If these
substitutions constituted the entire encryption, the Enigma would be susceptible to
elementary frequency analysis and hence could be easily broken. The strength of the
Enigma is that it scrambles the message in so complex a manner that basic letter
frequency and word structure are effectively obliterated.

The Enigma served as the primary encryption system for the entire German military
beginning in about 1928. During the war years, the Germans purchased over 30,000
Enigmas. The first successful attack on the Enigma was accomplished by the Polish
cryptologist Marian Rejewski in about 1932. He had obtained design specifications
for the early version of the machine used at that time. This used only three rotors and
six plugboard possibilities. His method exploited a protocol of German messages that
required each message to begin by repeating a three-letter rotor key to be used for
that message. This minor redundancy was enough to decode the message by the use
of a complex machine termed a bombe that Rejewski had built for the purpose.

When the Enigma was enhanced in 1938 by the addition of two more Enigma
rotors, from which to select three, and the number of plugboard cables was increased

“ch11” — 2006/2/6 — 20:22 — page 181 — #19

� �

� �

S e c t i o n 11.10 T H E O N E - T I M E PA D • 181

from six to 10, this additional complexity was enough to render Rejewski’s method
impotent.

During the Second World War the later models of the Enigma provided essentially
complete security for the German military. It was used to issue orders to submarines,
coordinate land and air battles, respond rapidly to special situations, and in general
direct the war in a way that was potentially devastating. Hundreds or thousands of
messages were sent each day, all with perfect secrecy.

During the war, the British established a cryptography center at Bletchley Park
to attempt to decipher German messages. The brilliant Alan Turing was recruited
for the effort. Turing was a young mathematician who had already answered one
of the greatest mathematical–philosophical questions of the time by showing, with
the invention of an imaginary computer termed a Turing machine, that there are
mathematical propositions that mathematics itself cannot resolve. At Bletchley Park,
in a feat of tremendous genius and hard work, Turing devised a method for decoding
the German transmissions. His method relied on an insightful analysis of the structure
of the coded messages produced by the Enigma, the use of guesses or knowledge of the
plaintext fragments (such as the German word WETTER, which appeared regularly
in daily weather reports), and the development of a huge machine, again termed a
bombe, that tried the large number of combinations that remained after incorporation
of the first two method of attack. Turing’s method was operational during 1940 – 42,
and the British were able to read a high percentage of German communications. Of
course, it was critical that the Germans not know that their “unbreakable system” had
been broken. A challenge faced by the British then was to decide whether and how
to intervene in military operations without raising the suspicion that the Enigma had
been breached.

It is generally agreed that the war was shortened by about two years because of
the breaking of the Enigma system using Alan Turing’s method.

When the war ended, Turing worked at the National Physical Laboratory in
London, and in 1948 he became the deputy director of the Computing Laboratory
at Manchester, where the first electronically programmable computer was built. But
later, Turing was not celebrated as a hero. Instead, this man who solved one of the
most outstanding mathematical–philosophical problems of the age, played a deci-
sive role in the war effort, and helped launch modern computing was arrested and
had his secret clearance suspended because he admitted to having a homosexual
relationship (which was illegal at the time). In 1954 at the age of 42 Alan Turing
died from potassium cyanide poisoning widely believed to have been purposely
self-administered.

11.10 The One-Time Pad

The strength of the Vigenère cipher increases with the length of the key: frequency
characteristics and word structure are essentially eliminated. In fact, if the key is as
long as the message, and itself completely random, the associated ciphertext will be
random as well, with absolutely no structure that can form the basis for cryptanaly-
sis. This special version of the Vigenère cipher is termed a one-time pad, the name
coming from the practice of writing the random key letters on a pad of paper and
using this pad to encrypt messages. Each page of a pad contains a different random

“ch11” — 2006/2/6 — 20:22 — page 182 — #20

� �

� �

182 • C h a p t e r 11 C I P H E R S

sequence, and each key letter is used once only. When an entire pad has been used, it
is discarded. A one-time pad provides perfect secrecy according to the precise defi-
nition given in the next chapter. It is mathematically impossible to decrypt it without
the key.

Because of the ultimate security provided by the one-time pad, it has often been
used in sensitive situations. In the military, the pads of random key letters took the
form of a codebook, with a separate page to be used for each date. Capture of an
enemy codebook was a great military prize.

The security of the one-time pad is sometimes approximated by using an actual
published book such as a novel, with the letters of the novel used sequentially to
define the Vigenère shift of successive message letters. The key letters are not strictly
random in this case, and this may compromise the code’s security.

Although the one-time pad is ideal in theory, there are number of practical dif-
ficulties that discourage it from being used widely. How can the random letters be
generated? How can the long sequences be distributed to the various communicating
parties who are a great distance apart? What if the pad falls into enemy hands? If the
same pad is used by all communicating parties on any one day, doesn’t that introduce
redundancy that the enemy might use to advantage? These questions highlight the
fundamental issue associated with classical encryption methods. Security rests with
the key, and the question of distributing keys is itself an issue of secret communica-
tion. It is this question that motivated the development of the entirely new approach
to encryption described in chapter 13.

“ch11” — 2006/2/6 — 20:22 — page 183 — #21

� �

� �

S e c t i o n 1 1 . 1 1 E X E R C I S E S • 183

11.11 EXERCISES

1. (An easy cipher) Decode the following:

ZNOY OY GT KGYE IOVNKX ZU YURBK

2. (Autokey cipher) The following message was coded with the autokey system using a seed
only one letter long. What is the message?

PCN LMI ZNVQ WAL WWIH?

3. (Transposition cipher) Consider a transposition cipher that uses a five by five matrix and
permutes the columns before reading them out.

(a) How many keys are possible in such a cipher?
(b) Decrypt the following.

HTASL LEEOT ASWME TSSAP EMGCE.

4. (Beaufort cipher) Let k = (k1, k2, . . . , kn) be a keyword of length n, and let p =
(p1, p2, . . . , pn) be a plaintext message of length n. The Beaufort encryption of the message
is the ciphertext c = (c1, c2, . . . , cn) = (k1−p1, k2−p2, . . . , kn−pn), where ki −pi denotes
a backward shift of ki by the shift corresponding to the letter pi. For example, if k = (H, I)
and p = (B, Y), then c = (G, K).

(a) Encode the message HELLO with the keyword JUMPS.
(b) Show that encryption and decryption of a Beaufort cipher are identical processes.

That is, to decipher it is only necessary to encrypt the ciphertext with the same
keyword.

5. (Vigenère and transposition) Suppose a Vigenère cipher is constructed with a key that is
three letters long. The result of this first encryption is further encrypted with a Vigenère
cipher, with another three-letter key.

(a) How many possible keys are embodied in the final ciphertext?
(b) Suppose that after the first Vigenère encipherment, the resulting text is transformed

by a transposition code that reads the text into a three by three matrix row by row
and reads it out column by column after the columns are permuted. Effectively how
many possible keys are embodied in the resulting double-encrypted ciphertext?

(c) Suppose that after the Vigenère encryption and the transposition encryption, the
text is subjected to another Vigenère cipher with a key of length 3. How many
possible keys are embodied in this final result?

(d) Suppose that after the first Vigenère cipher, the transposition cipher, and the second
Vigenère cipher, the transposition is reversed (perhaps because the transposition
key is discovered). The result is then equivalent to a compound Vigenère cipher.
What is the length of the keyword in this compound Vigenère cipher?

(e) How many possible keys are embodied in this compound Vigenère cipher?

6. (Affine ciphers) Let a be an integer between 1 and 26, and let x be the integer corresponding
to one of the 26 letters of the alphabet. The corresponding linear cipher transforms the
message x into the ciphertext y by

y = ax mod 26.

For example, if a = 3 and the message is “d,” the ciphertext is y = 3 × 4 = 12. If the
message is “k,” the ciphertext is y = 3 × 11 mod 26 = 33 mod 26 = 7.

“ch11” — 2006/2/6 — 20:22 — page 184 — #22

� �

� �

184 • C h a p t e r 11 C I P H E R S

To be acceptable, the value of a must be invertible mod 26, such that the correspondence
from x to y can be uniquely inverted. A case that does not have this property is a = 4, for
then both x = 3 (for “c”) and x = 16 (for “p”) lead to y = 12. An a is invertible if it has no
common factor, other than 1, with 26. Hence, 4 is not invertible since both 4 and 26 share
the factor 2. (See section 13.5.)

(a) List the acceptable values of a.
(b) Decipher the following linear ciphertext:

13 9 9 10 7 10 20 11 20 9.
(c) An affine cipher is of the form y = ax+b mod 26, where both a and b are integers

between 1 and 26, with a being one of the values in part (a). How many keys are
there in affine ciphers?

(d) An affine cipher can be combined with a Vigenère cipher by fixing a but using k
different values of b and cycling through these b values, letter by letter. How many
keys are there in this compound cipher?

7. (Hill cipher) Hill devised a cipher that extends both transposition and linear ciphers. It has
the form

y = xA mod 26

where A is an n × n matrix of integers. The n-dimensional message (row) vector x is
transformed into the ciphertext vector y. For example, with

A =
[

11 8
3 7

]

the message x = (8, 9) can be transformed by the Hill transformation as

y = (8, 9)

[
11 8
3 7

]
= (88 + 27, 64 + 63) mod 26 = (11, 23).

To decipher the result, the inverse of the matrix A (mod 26) is applied. This inverse will
exist if the determinant of A has no common factor, except 1 and 26, with 26. Often
it is arranged that the determinant of A mod 26 is in fact 1. For example, the determi-
nant of the matrix A given above is 11 × 7 − 8 × 3 = 53 = 2 × 26 + 1 → 1 in mod
26 terms.

(a) Find the inverse of the A matrix given above. (Recall that the inverse of a two by
two matrix is

[
a11 a12
a21 a22

]−1
= 1

D

[
a22 −a12

−a21 a11

]

where D is the determinant of A.)
(b) Decipher the ciphertext (1, 2).

11.12 Bibliography

There are a number of excellent presentations of classical cryptography, including
the elementary and entertaining [1], [2], and [3] and the more advanced [7]; as well
as the texts referenced for chapter 12. Comprehensive histories of cryptography and
its role in significant life circumstances are the large and wonderful books [4] and
[5]. A computer program to solve cryptograms was outlined in [6]. See [7] for a good
discussion of the affine, Hill, and Beaufort ciphers.

“ch11” — 2006/2/6 — 20:22 — page 185 — #23

� �

� �

S e c t i o n 11.12 B I B L I O G R A P H Y • 185

References

[1] Gardner, Martin. Codes, Ciphers, and Secret Writing. Mineola, N.Y.: Dover,
1984.

[2] Pickover, Clifford A. Cryptorunes: Codes and Secretc writing. Rohnert Park,
Calif.: Pomegranate Communications, 2000.

[3] Beutelspacher, Albrecht. Cryptology. Trans. J Chris Fisher. Washington, D.C.:
Mathematical Association of America, 1996.

[4] Kahn, David. The Code Breakers. New York: Scribner, 1996.
[5] Singh, Simon. The Code Book. New York: Doubleday, 1999.
[6] Hart, George W. “To Decode Short Cryptograms.” Communications of the ACM

27, no. 9 (1994): 102–8.
[7] Mollin, Richard A. An Introduction to Cryptography. Boca Raton: Chapman &

Hall/CRC, 2001.

“CH10” — 2006/2/6 — 18:36 — page 143 — #1

� �

� �

10
INTERACTION

I
nterpersonal interaction is a fundamental characteristic of human endeavor, and
information profoundly shapes that interaction. Interaction is guided by both micro
information (bank balances, temperatures, stock prices, sales forecasts, or grade-

point averages) and macro information (CD sales, Internet availability, or software
design). This chapter briefly surveys some particular aspects of both the micro and
macro levels of interpersonal interaction.

Game theory provides one framework for the study of interaction. This theory
began, indeed, with the study of simple games, such as matching pennies or elemen-
tary card games, but soon advanced to the analysis of military strategy and simple
economic situations. The theory has continued to advance, to the point where today
it is used to study quite complex situations, especially those in an economic setting.
In a general formal game, players (or parties) have a set of possible actions, and the
reward to each player depends on the joint action of all players and possibly on one
or more random events. For example, the winner in a game of chess is decided by the
joint actions of the two players. A company’s profit may depend on what other firms
do and on random economic events.

As game theory evolved, the nature of the information possessed by the players
was found to be a critical consideration in the formulation of strategy. In some cases,
the advantage of a player is determined almost entirely by special knowledge. Playing
a game of cards with a marked deck is a good example.

The information structure of a game can be classified as either symmetric or
asymmetric, depending on whether all players have the same information or not.
Games with symmetric information structure are easier by far to analyze than those
that are asymmetric because when different players have different information, their
actions can reveal information. This point is emphasized and illustrated in this chapter.

One difference between multiperson interaction and single-person decision making
is that information may have negative value in a multiperson setting. Consider, for
example, two farmers: farmer A’s crop needs sun and will perish in rain; farmer B’s
crop needs rain and will perish in sun. Suppose there is a 50–50 chance of sun or rain

143

“CH10” — 2006/2/6 — 18:36 — page 144 — #2

� �

� �

144 • C h a p t e r 10 I N T E R AC T I O N

and the profit to each farmer will be $100 or $0, depending on the weather. The two
farmers could execute a contract that would share their profits. They would then each
be guaranteed $50. If they are risk-averse, $50 for sure is preferable to a 50–50 chance
of $100 or $0. Suppose now that before the contract is signed, a soothsayer offers to
announce the future weather. How much is that information worth to the farmers? Each
farmer will attach negative value to it, for certainly after it is announced, the contract
will not be executed (since one farmer will be certain of $100). If the soothsayer is
engaged, then before his announcement, each farmer again faces the 50–50 chance of
$100 or $0 with no chance of sharing profit. Hence both farmers would not want the
soothsayer to announce the future weather before they sign the sharing agreement.

Study at the macro level focuses on interactions associated with information
products or services rather than on specific information content. Some of the most
important issues are so-called network effects, whereby information services become
more valuable to each customer as more people join the network. Here the relevant
interaction is indirect, in that each new customer joins for his or her own benefit but
by doing so benefits others as well. It will be seen that the principles of economics
studied in earlier chapters can be augmented to provide an analytic characterization
of this phenomenon.

10.1 Common Knowledge

If I know something you don’t know, you might be able to deduce what I know
from my actions. For example, if you see me running to the bus stop, you might
deduce that the bus is due to arrive soon, even though you did not previously know

the schedule. Things get more complex, however, in a game situation. If I bet
high in a game of poker, you might deduce that I have a good hand;

but then again I might be bluffing in an attempt to deceive you.
While playing bridge with you as my partner, on the other hand,

I try to bid in such a way as to transmit as much information to
you as possible, while simultaneously optimizing our likely

score. In either case, my actions are designed to both advance my
position in the game and manage my private information. Games of

this sort, asymmetric games where information is not equally known
to all players and where actions may reveal information, can be exceedingly difficult
to analyze.

To avoid the complexity of the interactions between information and action, one
focuses on those (symmetric) games in which all players have the same information.
This is formalized by the concept of common knowledge.

A piece of information is said to be mutual information1 if all players know it.
You and I both may know (because of an inadvertent exposure by the dealer) that
the bottom card of a deck of cards is the ace of clubs. That knowledge is mutual
information. However, more is required for information to be common knowledge.

Information is said to be common knowledge if all players know the information,
each player knows that all other players know it, each player knows that all others

1This notion of mutual information is unrelated to the standard information-theoretic concept of chapter
5 and used in chapter 9.

“CH10” — 2006/2/6 — 18:36 — page 145 — #3

� �

� �

S e c t i o n 10.1 CO M M O N K N O W L E D G E • 145

know that all others know it, and so forth, ad infinitum. If I did not notice that you
saw the ace of clubs on the bottom of the deck, then, even though we both know the
card and so it is mutual information, that knowledge is not common knowledge.

To see why we need the infinite sequence of “I know that you know that I know that
you know . . . ,” imagine that annual salaries are recently established at a company.
If they are listed on a bulletin board for all to read and everyone knows that all
employees see the list, then these salaries are common knowledge among employees.
On the other hand, if each employee receives a sealed envelope with his or her salary
stated inside, then the salaries are not common knowledge. However, it is possible
that some employees visit the department secretary who shows them a master list of
salaries. In fact it may happen that each employee independently observes this master
list. Then everyone knows all the salaries. Salaries are now mutual information, but
they are not common knowledge because each employee does not know who else
knows. There may, however, be a second list (compiled by the secretary) with the
names of those who saw the first list, and some employees might see that second list.
They would know who knew the salaries, but they would not know who saw that
second list. A third list might contain the names of those who saw the second list, and
so forth. Only if everyone saw the entire infinity of lists would salaries be common
knowledge.

The following example presents a wonderful puzzle that illustrates an aspect of
common knowledge.

Example 10.1 (Inner council). On a small Pacific island a tribe of natives practices
an important ritual to determine members of the tribal council. The group of eligible
men sit in a circle around a fire. The chief goes around the circle and places his
thumb on each man’s forehead, but he secretly uses either his right or left thumb to
do so. His right thumb is covered with ash that leaves a mark on the foreheads it
touches. The men cannot tell which thumb was used and hence cannot tell whether
they have the mark on their own forehead although they can see whether or not others
do. The special mark signifies that that man has been chosen to be elevated to the
council.

When the chief completes his path around the circle, he announces that at least
one man has the special mark, and that any man who knows he has the mark should
stand up to be received into the council. Of course, a man who does not have the mark
must not stand, for that would be presumptuous and forever ruin his reputation in the
community.

No one stands after the chief’s announcement, so the chief beats a drum and asks
again. Still no one stands. He beats the drum and asks again. This continues, until
finally, all at once, a group of men stand, and they are precisely the men who have
the special mark. How did the men know to stand?

The answer is found by induction. Suppose k men have the mark. If k = 1, the
man with the mark will surely deduce that he has it because he sees no one else with
a mark, and the chief announced that at least one man was marked. Hence, he will
stand up immediately.

If k = 2, then a man with a mark, seeing one marked forehead, will reason that
if he does not have a mark, the man who does will stand up immediately. Noticing
that the marked man did not stand up at the first round, he concludes that there must
be two marked men and he must be one of them. So he (and the other marked man)

“CH10” — 2006/2/6 — 18:36 — page 146 — #4

� �

� �

146 • C h a p t e r 10 I N T E R AC T I O N

stand up at the second round. If k = 3, this same logic will cause the three men with
marks to stand on the third round, and so forth. In general, if k men are marked, they
will all stand at the k-th round.

Initially, the pattern of marks was not common knowledge. But actions (or lack
of action) revealed enough information so that the distribution of marks eventually
became common knowledge.

Games where all knowledge is common knowledge can be analyzed without con-
sidering that actions might reveal secret information. For example, in the popular
game of Monopoly, everyone knows the odds of the dice, the mixed composition of
the Chance and Community Chest cards, and the rules of the game. There is common
knowledge with respect to these elements. Good strategic play is not concerned with
hiding private information but rather with management of property. Poker, on the
other hand, is definitely not a game with common knowledge, and management of
private information is a critical element of smart play.

Example 10.2 (Betting). Suppose two players A and B are arranging a bet between
them on the outcome of the toss of an unevenly weighted coin: A will bet on heads
and B on tails. It is agreed that A will wager $100 on heads, but they will negotiate the
odds to be used. Players evaluate a particular bet on the basis of the expected value
of the outcome. The actual probability of heads of this special coin is 1/3, but this
probability is not common knowledge. Fair odds for the bet would be 1:2 since the
probabilities are 1/3 and 2/3.

If player A knows the probability but does not know whether B knows it, A will
propose odds more favorable than 1:2 and use as much guile as possible to obtain
good odds. B will also draw on his or her negotiating skill to get odds that favor B. It
is impossible to predict what odds will eventually be set.

On the other hand, if the probability of heads is common knowledge, the two
players most likely will quickly agree on odds of 1:2.

10.2 Agree to Disagree?

People often disagree about the probability of an event. For example, you and I may
assign different probabilities to the chance that it will rain tomorrow, or to the chance
that the price of XYZ stock will increase by five points within a week. We can discuss
these matters, and in the spirit of friendship agree to disagree, each of us respecting
the beliefs of the other—or can we?

Robert Aumann showed that in certain rather general cases, if the respective prob-
abilities of an event held by different people are common knowledge, then they must
be equal. In other words, under the assumption of common knowledge it is impossible
to agree to disagree.

Formally, we assume that there are a finite number of possible states of the world,
such as rain, clouds, or sun tomorrow. Individuals A and B initially agree on the prob-
abilities of each of these states. These are termed the prior probabilities. In the case
of weather, these priors may be based on the 100-year statistics for weather for the day
of the year in question. Focusing on a particular event E (such as rain tomorrow),
A and B will initially agree on the probability of E. Next A and B separately obtain

“CH10” — 2006/2/6 — 18:36 — page 147 — #5

� �

� �

S e c t i o n 10.2 AG R E E TO D I S AG R E E ? • 147

additional information. For weather, A may consult his barometer, and B may look
at the sky. Based on their separate information, A and B update their probabilities
concerning the event E to new values termed their posterior probabilities, which are
denoted qA and qB respectively. In general these may be different. However, if both
qA and qB are common knowledge, they must be equal. That is, if A knows qB and B
knows qA and each knows that the other knows and so forth, then qA = qB.

This striking result is illustrated by the following example.

Example 10.3 (Hidden money). Four large cards are placed on a table. They have
distinctive shapes (square or round) and colors (white or gray) as shown in figure 10.1.
Under the first and fourth cards is $1,000 in cash. Two players A and B (say Alice
and Bob) are brought into the room. The setup of the cards and money is known to
both, and is in fact common knowledge.

One card is secretly selected at random by a third party (perhaps by flipping two
coins). The probability of any one card being chosen is 1/4. These prior probabilities
are common knowledge. Neither A nor B knows which card is chosen.

Next, A is told whether the selected card is gray or white, and B is told whether
it is square or round. Neither A nor B hears what the other is told but they know the
possibilities. From the information they have, A and B each work out their respective
posterior probability that the chosen card covers $1,000.

Suppose in particular that the card chosen is card number 1. A will know that the
chosen card is gray, and will set her posterior probability at qA = 1/2. B will know
that the card is square and will set his posterior probability at qB = 1/3.

A deduces that B knows that the card is square, and hence A will compute qB|A (the
conditional probability of qB given A’s information) as qB|A = 1/3. B will know that
no matter whether A was told gray or white, A must assign a posterior of qA = 1/2.
Hence qA|B = 1/2. Therefore qA|B = qA and qB|A = qB. Thus the posteriors qA and
qB are mutual information in the sense that both A and B know their values, and
they are different.

The reason the posteriors are different is that they are not common knowledge. A
easily deduces the value that B assigns to qA is 1/2; that is, q[A|B]|A = 1/2. However,
B does not know what value A assigns to qB. That is, B does not know qB|A. As far as
B knows, the chosen card may be number 3. This is consistent with B’s information

$1000

1 2 3 4

$1000

FIGURE 10.1 Agreement experiment. A card is secretly selected by a neutral party.
Player A is told the color of a card and player B is told the shape. If the actual card is
number 1, the players will each know what probability the other assigns to the chance that
the card covers $1,000. But these probabilities are not equal since they are not common
knowledge. If each probability were common knowledge, they would be equal; that is,
the players would agree, and in this case they would agree that the probability is 1/2.

“CH10” — 2006/2/6 — 18:36 — page 148 — #6

� �

� �

148 • C h a p t e r 10 I N T E R AC T I O N

about the shape. If it is card number 3, then A would have been told that the color was
white, in which case she would deduce that B was told the shape was square or round.
In that situation A would conclude that qB = 1/3 (if card 3 was chosen) or qB = 1 (if
card 4 was chosen), each with probability 1/2. Thus B does not know that A knows
what B knows, and qB is not common knowledge. These inferences are summarized
in the following table:

A qA = 1/2 qB|A = 1/3 q[A|B]|A = 1/2
B qB = 1/3 qA|B = 1/2 q[B|A]|B = 1/3 or 1

If A tells B that she knows that qB = 1/3, then B will revise his posterior to
qB = 1/2. A will know that B will do this and so qA and qB will be common knowledge,
and they will be equal.

Aumann’s result shows that the assumption of common knowledge about prob-
abilities simplifies analysis of game situations, avoiding issues that arise when
probabilities are different.

Proof of the Result∗

Suppose there are n possible states of the world with prior probabilities pi for i =
1, 2, . . . , n that are common knowledge. The set of all these states is denoted �. An
event is a subset E ⊂ �. In the hidden money example, � is the set of four cards,
and E is the subset of the two cards 1 and 4.

Each player has an information set that is a partition of � into disjoint subsets.
In the hidden money example, A’s partition is the two sets {1, 2}, {3, 4} for gray and
white, and B’s partition is {1, 2, 3}, {4} for square and round. These are illustrated
in figure 10.2. A and B are told which set in their respective partition contains the
chosen point i.

1 2

3 4

EA B

FIGURE 10.2 Partitions. Player A’s partition consists of the two subsets of � = {1, 2, 3, 4}
defined by the two rectangular shaped sets. B’s partition consists of the two subsets defined
by the rounded sets. The event E consists of those cards covering $1,000, the two points in
the elliptical region.

“CH10” — 2006/2/6 — 18:36 — page 149 — #7

� �

� �

S e c t i o n 10.3 I N F O R M AT I O N A N D D E C I S I O N S • 149

Let P be the smallest subset of � such that i ∈ P and P = ∪j P j
A for some members

P j
A of A’s partition, and also P = ∪k Pk

B for some members Pk
B of B’s partition. In the

example shown in figure 10.2, P is equal to � for any i, but in general P may be a
strict subset of �.

Let qA be A’s posterior probability of E. For qA to be common knowledge, qA must
be the same for every P j

A in the set of partitions defining P. This is the condition that
results from following the chain of “A knows what B knows, B knows that A knows
that. . . . ” (This condition is proved explicitly in Aumann’s paper.)

The condition that qA be constant in all P j
A means that qA = Prob{E∩P j

A}/Prob{P j
A}

for each P j
A. Hence Prob{E ∩ P j

A} = qA Prob{P j
A}. Summing these over the (disjoint)

P j
A’s leads to Prob{E∩P} = qA

∑
j Prob{P j

A} = qA Prob{P}. Likewise, Prob{E∩P} =
qB Prob{P}, and so qA = qB.

10.3 Information and Decisions

There are two main components of information in interactive situations: the states of
nature and the actions of individuals. In a given situation, a player may have partial
information about either of these.

Actions

A classic example of the problem associated with ignorance of actions is the pris-
oner’s dilemma. The situation is that two fellows are arrested for having stolen
property in their possession. They are questioned in separate rooms, but they both
know that there is not enough evidence to convict them of robbery unless one of them
confesses. If both stay quiet they will be charged with possession of stolen goods
and serve short sentences. On the other hand, if both confess, they will both get long
prison sentences. However, if only one confesses and turns state’s evidence, he will go
free and the other will get an even more severe sentence than if they both confessed.

The dilemma arises because each prisoner is ignorant of the other’s action. If they
could cooperate, they could obtain the best solution for both. The prisoner’s dilemma
has been extensively studied because there is no clear obvious solution—because of
the lack of action information.

States of the World

The term “state of the world” is a bit overblown. In a game situation it refers to
values of random variables and past actions that are relevant to the current decisions
of the game. In a game of checkers, for example, the state involves only the current
configuration of pieces on the board, not the stock market average or the weather. In
a game of poker, the state is the current distribution of cards: in players’ hands and in
the deck. In general, players have only partial information about the state, and each
player has different information, leading to the possibility that players’ actions reveal
information. Players must account for that in developing their strategies.

“CH10” — 2006/2/6 — 18:36 — page 150 — #8

� �

� �

150 • C h a p t e r 10 I N T E R AC T I O N

A special situation, frequently analyzed, is where the only uncertainty is the private
information held by a single player, say player 1, and the other player (or other
players) are required to act first, followed by player 1. In this case the actions of these
other players do not reveal information, for they had none to reveal. There are many
interesting examples of this kind of situation.

Example 10.4 (Adverse selection). Consider an insurance company that offers
insurance against car theft. The company knows that the aggregate probability of car
theft is 1 percent. Ignoring administrative costs, the fair odds price of the insurance
is 1 percent of the insured value. Assuming that the insurance industry is highly
competitive, the price will be driven down to the fair odds price.

However, not everyone faces the same probability of theft, and it is reasonable to
assume that each individual knows the probability he or she faces but the insurance
company does not.

If the company offers insurance at a price 1 percent of the value of coverage, it
is likely that the high-risk individuals will purchase more insurance than low-risk
individuals, and this will, of course, change the average probability of theft among
those who purchase insurance, raising the probability above 1 percent. Consequently,
the insurance company will lose money. This is the phenomenon of adverse selection.
People self-select on the basis of their private information in a way that is adverse to
the company.

However, the insurance company acts first in this situation by setting the terms
of the contract. The company forecasts the likely responses of various individuals to
tentative contracts, and then designs the contract to maximize the overall expected
profit associated with the likely responses.

10.4 A Formal Analysis*

To generalize the above discussion, assume that each player seeks to maximize the
expected value of a certain objective function which might represent profit, personal
preference, or political advantage. The function depends on the actions of all players
and on some random events. For simplicity, assume that there are only two players
A and B with possible action sets A and B and objective functions UA and UB,
respectively. A selects a ∈ A and B selects b ∈ B. There is also a random event e.
Player A’s payoff is, then,

EA[UA(a, b, e)],

where EA denotes expectation relative to the probabilities that A has for event e and
action b. Likewise, B’s payoff is of the form

EB[UB(a, b, e)].
A significant feature of the game is the nature of the information about the random

variable e that the two players possess. That may differ among the players. Another
significant feature of the game is the order of the actions. If B acts first, for example,
then the expectation EA is computed with b as given, while EB must account for A’s
reaction to b. General problems of this form are difficult to solve.

“CH10” — 2006/2/6 — 18:36 — page 151 — #9

� �

� �

S e c t i o n 10.4 A F O R M A L A N A LY S I S * • 151

These situations are less difficult when, as mentioned before, (1) player B first
selects b ∈ B and this action is observed by A before selecting a ∈ A; and in addition,
(2) B knows nothing about e that A does not already know.

Example 10.5 (Duopoly). Suppose two companies A and B compete in a market.
Both have constant marginal cost m and select production levels qA and qB, respec-
tively. The overall demand function is linear but with an unknown additive constant.
That is,

p = e − q,

where p is the price, q is the total quantity q = qA + qB, and e is a random constant
whose value is revealed only after the production decisions are made. The expected
profits for A and B are

πA = EA[p qA − m qA] = EA[(e − m − qA − qB)qA]

πB = EB[p qB − m qB] = EB[(e − m − qA − qB)qB].

If B selects qB first and then A selects qA, the expectation that A forms will be
influenced by the observed qB chosen by B, and B must account for that. Generally
the problem is highly complex.

On the other hand, if the information about e is common knowledge, the expec-
tations of e viewed by both A and B are identical and equal to, say, e. Hence, A can
solve the problem

max
qA

[(e − m − qB)qA − q2
A],

leading to

qA = 1
2 (e − m − qB).

Knowing how A will respond, B will select qB to solve

max
qB

[e − m − 1
2 (e − m − qB) − qB]qB,

leading to qB = 1
2 [e − m] and qA = 1

4 [e − m].

The Use of Types

To formalize the relatively nice situations described earlier where player B acts first
and B knows nothing relevant that A does not know, it is convenient to assume that
there are a finite number of possible states, denoted t1, t2, . . . , tn. Player A knows the
state exactly. Player B assigns probabilities pi to the occurrence of each ti. Player B
(who does not know the state) must act first, and player A responds. The finite state
possibilities t1, t2, . . . , tn are termed types because they are associated identically with
A’s knowledge. One says that A is of type ti, if ti is the state.

This framework includes the models used earlier in the study of bundling, versions,
adverse selection, and other situations where customers were characterized by their
types. The other party, B (often a firm), designs price schedules for the various types.

“CH10” — 2006/2/6 — 18:36 — page 152 — #10

� �

� �

152 • C h a p t e r 10 I N T E R AC T I O N

A’s problem is simple to solve, since A has perfect information about the type and
about B’s (previous) action b. If A is of type ti, A’s problem is

max
a∈A

UA(a, b, ti),

where b is known. The result of this optimization is ai, which can be expressed using
the max−1 notation2

ai = max
a∈A

−1UA(a, b, ti).

B maximizes the expected value of UB by realizing that A will react according to
type as above. Thus, B’s problem is

max
a1,a2,...an,b

n∑
i=1

piUB(ai, b, ti)

subject to

ai = max
a∈A

−1UA(a, b, ti), for i = 1, 2, . . . , n.

This problem says that B must consider all possible types, and take the expectation
with respect to them. B must also account, type by type, for A’s reaction ai to B’s
action b. These reactions ai are entered into the objective function. The constraints
insure that the reactions ai that B uses in the objective function are those that type i
would use.

Example 10.6 (Print shop pricing). A print shop has two types of customers that
occur in equal proportions. Type 1 has objective function U1 = c1q − 1

2 d1q2 − pq
for a quantity q of a print run at price p per unit. Likewise, type 2 has objective
U2 = c2q − 1

2 d2q2 − pq.
The print shop has a cost function of F + mq. Ideally, the shop would work out

the maximum profit price for each customer, but the shop does not know the type of
any particular customer. Instead the shop decides to post a unit price schedule (so
that the total cost is pq) of the form p = K − Lq that will apply to all jobs, and will
maximize average profit. (See figure 10.3.) This schedule charges no one a setup fee
and gives a discount to high-volume customers. For simplicity (and to avoid some
technical difficulties) the shop fixes L and optimizes K .

Each customer will optimally respond to the price schedule, according to that
customer’s type. In particular, type 1 customers will solve

max
q

c1q − 1
2 d1q2 − (K − Lq)q,

leading to

q1 = c1 − K

d1 − 2L
.

A similar expression holds for type 2.

2In general, if x∗ is the value of x that achieves max f (x), one writes x∗ = max−1 f (x).

“CH10” — 2006/2/6 — 18:36 — page 153 — #11

� �

� �

S e c t i o n 10.5 M E TC A L F E ’ S L AW • 153

q

p

p = K − Lq

K/L

K

FIGURE 10.3 Price for printing. The print shop price decreases with volume.

The print shop’s problem is therefore

max
K

1

2
(p1 − m)q1 + 1

2
(p2 − m)q2 (10.1)

subject to

q1 = c1 − K

d1 − 2L
q2 = c2 − K

d2 − 2L

p1 = K − Lq1 p2 = K − Lq2.

As a specific case, suppose the parameters are

c1 = 24, d1 = 2

c2 = 14, d2 = .5

m = 4

L = .2.

If a single price were used, the maximum profit would be $61.25, achieved at a unit
price of $9. One the other hand, solving (10.1) yields a profit of $91.875, achieved at
K = $12.00—a 30 percent increase in profit.

10.5 Metcalfe’s Law

Interaction of information also takes place at a macro level, as in demand for products,
computer virus propagation, compatibility standards, and signal interference. One of
the most important interactions is the positive feedback associated with participation
in an information network. The value of a network to a participant tends to grow as
others join. For example, the telegraph and telephone networks became increasingly
valuable as additional lines were constructed and more subscribers joined the network.
More recently, the growth of the Internet has made it more useful to everyone.

During his Ph.D. studies at Harvard University, Robert M. Metcalfe left to work at
Xerox’s Palo Alto Research Center (PARC). There he read about a new concept for

“CH10” — 2006/2/6 — 18:36 — page 154 — #12

� �

� �

154 • C h a p t e r 10 I N T E R AC T I O N

1

2

3

4

5

6 6

5

4

3

2

1

(a) (b)

FIGURE 10.4 Metcalfe’s law. In a network of N nodes, each node can be connected to
N −1 other nodes, as shown in (a) for node 1. Altogether there are 1

2 N(N −1) possible node
connections, as shown in (b).

communication embodied in the ALOHA network linking the Hawaiian Islands.3 In
this network, messages were divided into small packets each sent separately, although
a certain percentage of these packets collided and were lost. (Chapter 22 studies this
system.) Inspired by the general idea, Metcalfe returned to Harvard to apply queuing
theory to packet flow so as to vastly improve the performance of the ALOHA net-
work method. This work was his Ph.D. thesis, and the alternative system he developed
was termed the Ethernet. Metcalfe later founded the 3Com Corporation, which pro-
duces networking hardware. To promote his vision of a universal network, Metcalfe
expressed the value of a network in terms of a simple rule. Usually, the rule as stated
as follows.4

Metcalfe’s Law. The value of a network to each of its N users is approximately
proportional to N2.

The reasoning behind this “law” is shown in figure 10.4. Each of the N users can
potentially connect to N − 1 others. There are thus N(N − 1) possible ordered pairs
of users. This number must be divided by 2 because communication between users
i and j is accounted for in communication between users j and i; therefore there are
1
2 N(N − 1) possible interconnections. If it is assumed that each of these connections
is roughly of equal value, the value of the overall network is proportional to N(N −1),
or approximately to N2 for large N .

Looser forms of the law can be formulated that assume, for instance, that each
person’s possible interactions are limited or that some interconnections are more
valuable than others. Some of these alternative formulations imply that value grows

3Developed by Prof. Norman Abramson, author of Information Theory and Coding, one of the first
popular texts on information theory. (See the reference in chapter 2.)

4The original form of the rule may have been the following: “The power of the network increases
exponentially by the number of computers connected to it. Therefore, every computer added to the network
both uses it as a resource and adds resources in a spiral of increasing value and choice.”

“CH10” — 2006/2/6 — 18:36 — page 155 — #13

� �

� �

S e c t i o n 10.6 N E T W O R K E CO N O M I C S * • 155

less fast than N2, but still faster than N . However, Metcalfe’s law is not intended as
a precise statement of value, but rather as a simple expression of the fact that each
addition to the network tends to enhance the value to those already participating. It
points out the interaction that one individual’s decision has on others’ value. A careful
analysis of value must be based on economic principles, and that is addressed in the
next section.

10.6 Network Economics*

Economists say that networks exhibit externalities because the value to an individual
of a unit of network usage (such as a month of telephone service) depends on how
many other people purchase units. This is different from, say, the value of an apple
to a consumer, which does not depend on how many people eat apples.

If a network’s externalities are positive,5 with additional users enhancing every-
one’s value, it is most efficient to have a single standard, or single system, serving
as many people as possible. However, there are, as with most information prod-
ucts, questions of how the network service should be priced to maximize benefit. A
simplified model illustrates the methods used to analyze such issues.

Let the willingness-to-pay for the n-th unit (say the n-th connection or the n-th
customer) be p(n, n) when people expect there to be n customers. For a fixed value of
n the function p(n, n) is like an ordinary WTP function, and measures the willingness-
to-pay for the n-th unit assuming that the other n − 1 have already been purchased.
This function decreases with n and serves as a demand function. At price p(n, n)
consumers as a group will purchase n units.

This WTP function is predicated on a certain expected number of units sold,
n. Imagine, for example, that the network’s administration announces that market
research indicates that 100,000 people will sign up, and as a result everyone assigns the
value n = 100,000 for their expectation. Then the demand curve will be p(n, 100,000).

A WTP curve (or demand curve) can be constructed for each value of n, resulting
in a family of curves, as shown in figure 10.5. The figure assumes that there is a
maximum possible network size nmax. It also assumes that each demand curve is
downward sloping and, for simplicity, linear. It also assumes that customers prefer a
larger network over a smaller one, which means that the demand curves shift upward
with increasing values of n.

Fulfilled Expectations

As the network evolves, people revise their expectations about total network size on
the basis of actual sign-ups, and eventually produce a fairly accurate estimate n of n.
In fact, in equilibrium the estimate n will be exact, with n = n. The expectations of
individuals are then said to be fulfilled. What they expect is what actually happens.

5An example of a negative externality is congestion—on a road or a communication network. There,
more users make the network less desirable to each individual.

“CH10” — 2006/2/6 — 18:36 — page 156 — #14

� �

� �

156 • C h a p t e r 10 I N T E R AC T I O N

p

nmax n

D5

D4

D2

D1

Di(n) = p(n,ni)

D3

FIGURE 10.5 Network demand curves. For each level of expected usage, there is an
associated demand curve.

This equilibrium condition implies that the demand curve p(n, n) only applies
where n = n. In other words, at equilibrium, n = n, and hence the demand point
must satisfy p = p(n, n).

The curve in figure 10.6 traces out the points p(n, n) on the family of demand
lines. In order to rule out explosive demand it is assumed that p(n, n) goes to zero
as n goes to infinity. The resulting p(n, n) curve therefore rises initially but even-
tually falls.

Competitive Solution

Suppose that the marginal cost of supplying a unit of service is the constant m. If m
is low enough so that it cuts the p(n, n) curve, as it does in the figure, it is possible to
have marginal cost pricing,6 which is characteristic of perfect competition. For the
situation shown in the figure, there are three possible solutions: (a) n = 0, which
applies if fixed costs cannot be recovered from sales, (b) the first intersection of
the marginal cost line with the p(n, n) curve, which corresponds to n3 in the figure,

6See chapter 7.

“CH10” — 2006/2/6 — 18:36 — page 157 — #15

� �

� �

S e c t i o n 10.6 N E T W O R K E CO N O M I C S * • 157

p

m

n1 n4n3n2 n5 nmax n

D5

D4

D2

D1

p(n,n)

Di(n) = p(n,ni)

D3

FIGURE 10.6 Fulfilled-expectations curve. Expectations are fulfilled when n = n. This
condition defines a single point on each demand curve, and the family of these points
defines the curve p(n,n) of points consistent with fulfilled expectations.

and (c) the second intersection, corresponding to n5. The first intersection point is
unstable because a small increase in n leads to both increased consumer surplus and
increased profit, so the network will tend to expand. The second intersection point is
stable, for it represents the standard case of a decreasing demand curve and constant
marginal cost.

For a network to operate at its stable level under competition it is necessary
that the volume of service increase to the equilibrium point. For this reason, net-
work administrators may elect to set price below marginal cost and then slowly
raise the price as the network expands by moving up the p(n, n) curve. Indeed, this
strategy of setting initial price low to capture market share seems to be favored
by companies hoping to make their network, system, or software the industry
standard.

Example 10.7 (Quadratic network). Suppose p(n, n) = [A − an]n. Each demand
curve (with fixed n) is linear, and the curves shift upward as n increases. For this
arrangement, nmax = A/a, and p(n, n) = An − an2, which is a parabola.

“CH10” — 2006/2/6 — 18:36 — page 158 — #16

� �

� �

158 • C h a p t e r 10 I N T E R AC T I O N

An0

n

p(n,n)
m

0 A/(2a) n0 nmax = A/a

A2/(4a)

An0 − a(n0)2 = m

FIGURE 10.7 Network example. It is possible to find explicit values for the case
p(n, n̄) = [A − an]n̄.

The level n0 corresponding to price equal to marginal cost satisfies p(n0, n0) = m,
or more specifically,

An0 − an2
0 = m.

The solution is illustrated in figure 10.7.
As a specific example, suppose A = 150, a = 1, and m = 5,000. Then nmax = 150

and n0 = 100.

The competitive solution corresponding to marginal cost pricing is not optimal
from a social surplus viewpoint because of the positive externality. When individuals
consider joining the network, they count only their own benefit without reckoning the
benefit that their joining would bestow on others. The marginal benefit to society is
greater than the marginal benefit to any one individual. This implies that the socially
optimal size of the network is larger than the size resulting from competition. This is
an argument for the government to subsidize important networks, although the form
of subsidy is not clear.

Monopoly control of the network would lead to a network smaller than that of
competition and hence inferior in terms of social welfare.

“CH10” — 2006/2/6 — 18:36 — page 159 — #17

� �

� �

S e c t i o n 1 0 . 7 E X E R C I S E S • 159

10.7 EXERCISES

1. (Hidden money) For the hidden money game, suppose that the card selected at random is
#2. Are the probabilities qA and qB mutual information? Are they common knowledge?
Repeat for the cases where the selected card is #3 and #4.

2. (Prisoner’s dilemma) The prisoner’s dilemma is represented concretely by the diagram
in figure 10.8. Each prisoner selects either Q (for quiet) or C (for confess). Prisoner A’s
decision determines a row and prisoner B’s decision determines a column. Together their
two decisions determine a box in the square, which lists the pair of penalties (a, b), for
prisoners A and B, respectively.

If they could confer and reach agreement, they likely would both elect to be Quiet.
However, when they are separated, A fears that B may switch to Confess, which would
have disastrous consequences for A. B has the same fears about A’s action. The police
interrogators will perhaps seek to make these feared outcomes credible by suggesting that
the other prisoner is about to confess. If prisoner A must act first and this act is reported
correctly to B, what penalties will the two obtain?

3. (Big profit) A consumer has utility function for the quantity of a commodity given by
U(q) = q − 1

2 q2 − pq, where p is the unit price.
(a) If a monopolist with zero marginal cost charges a fixed unit price, what is the

maximum producer surplus?
(b) Suppose that the monopolist charges according to the price schedule p = K − Lq.

Show that by proper choice of K and L, the producer can get arbitrarily close to
double the surplus of part (a). Hint: Solve this problem graphically, noting that
p(q) = K − Lq, but the quantity q satisfies 1 − q = K − 2Lq. A further hint is that
K should be nearly 1.

4. (Random duopoly) Consider a market that is shared by two firms A and B. The demand
curve is p = e − q, where q is the total quantity produced and e is a constant that is either
e1 or e2. The marginal cost of both firms is m.

(a) Suppose that B goes first and selects qB. Then after observing qB, A follows and
selects qA. Both firms know the demand curve. What are qA and qB?

(1, 1) (10, 0)

(9, 9)(0, 10)

Q

C

Q C
B

A

FIGURE 10.8 Prisoner’s dilemma. Prisoner A selects a row, and B selects a column. Then
A gets a penalty equal to the first entry in the corresponding pair and B gets the second.

“CH10” — 2006/2/6 — 18:36 — page 160 — #18

� �

� �

160 • C h a p t e r 10 I N T E R AC T I O N

(b) Now suppose that the value of e is known to A, but B knows only that e has the
possible values e1 and e2 with probabilities p1 and p2 = 1 − p1, respectively.
Define e = p1e1 + p2e2. Again B must select qB first and A selects qA after
observing qB. Assuming A and B each act to maximize the expected value of
profit, find qB and qA.

5. (The quadratic network*) In the quadratic network, p(n, n) = An − an2. At a point n, the
consumer and producer surpluses are

CS = [An − p(n, n)]n/2,

π = [p(n, n) − m]n.

(a) Show that the social surplus is

SS(n) = − 1

2
an3 + An2 − mn.

(b) Show that the derivative of the social surplus with respect to n is

SS′(n) = 3

2
[An − an2] + 1

2
An − m.

(c) Evaluate the sign of the derivative at these three points:
I. At the marginal cost solution n0.

II. At the maximum point nmax = A/a.
III. At n = 0.

Accounting for the fact that SS′(n) is quadratic, determine the value of n that maximizes
social surplus.

10.8 Bibliography

The classic paper [1] by Aumann is surprising in that it is only three pages long! (plus
references). A comprehensive review of subsequent developments and examples of
the theory of common knowledge is in [2]. A somewhat advanced introduction to
information structures and game theory is [3]. Several applications of game theory are
presented in [4]. Metcaffe’s [5] application of queuing theory to networks is contained
in his dissertation. The general model of networks presented here is adopted from [6].

References

[1] Aumann, Robert J. “Agreeing to Disagree.” Annals of Statistics 4 (1976):
1236–39.

[2] “Common Knowledge.” In Stanford Encyclopedia of Philosophy, http://plato.
stanford.edu.

[3] Rasmusen, Eric. Games and Information: An Introduction to Game Theory.
New York: Basil Blackwell, 1989.

[4] Luenberger, David G. Microeconomic Theory. New York: McGraw-Hill, 1995.
[5] Metcalfe, Robert M. “Packet Communication.” Ph.D. diss., Harvard University,

Project MAC-TR-114, December 1973.
[6] Economides, Nicholas. “The Economics of Networks.” International Journal

of Industrial Organization 16 (1996): 673–99.

“CH10” — 2006/2/6 — 18:36 — page 161 — #19

� �

� �

S U M M A R Y O F PA R T I I • 161

S U M M A RY O F PA R T I I

A fundamental difficulty associated with information products is that competitive
markets do not always reward the creators of the products. There are two reasons for
this. First, competition tends to drive the price of a product down to its marginal
cost, and this is low (often almost zero) for information products. Hence, producers
cannot recover their fixed cost of creation and production. The second reason is
that information products are often easy to copy, and this can destroy the market
for the original product. These issues and some resolutions are analyzed by using
standard economic concepts of producer, consumer, and social surplus, which
provide means for tracing how value accrues to different market participants.

Copyright and patent law provide a degree of protection that allows producers of
information products to obtain some profit. A single (monopolistic) producer can
obtain a profit (without accounting for fixed costs) of about one-half of what is the-
oretically available. Producers can obtain even more by employing more advanced
pricing schemes. Discrimination by age, locale, or sex, charging different amounts
to different groups, is one method. Bundling of distinct products into packages
sold as a unit is another. Bundling is used, for example, to price magazine sub-
scriptions, season theater tickets, and university degree programs. Another scheme
is versioning, where various quality levels of a single product are offered at dif-
ferent prices, such as high- and low-resolution photos, professional and academic
versions of software, and orchestra versus balcony symphony tickets. Many of
these methods rely on indirect discrimination, whereby individuals sort themselves
out according to their willingness-to-pay values, which producers cannot directly
observe.

Soon after Shannon published his theory of communication, researchers consid-
ered whether a notion of information value, similar to entropy, could be formulated.
The question has its natural setting in the evaluation of decisions that have measurable
economic consequences. In this context it is natural to define (as in chapter 5) the
notion of a channel that transforms (through measurement, tests, or questionnaires)
uncertainty at an unobservable source A to an observed outcome B. The transfor-
mation is defined by a system of conditional probabilities. Value can be imputed to
the variable B by determining the amount by which the expected value of a decision
whose consequences depend on A is improved by observation of B. The techniques
for carrying out these calculations form a useful methodology for actual decision
making.

A generalized entropy of a variable X can be defined by a concave function G(X)
of the probabilities of X. Many of the notions and results of classical information
theory can be extended to generalized entropy.

A fundamental complexity associated with information and economics arises
whenever different individuals possess different information about an event and there
is an element of competition among the individuals. The complexity arises because
actions tend to reveal information as well as directly govern rewards. This complex-
ity occurs in card games, bidding situations, employer–employee relations, insurance
contracts, and indeed many human interactions. The complexity largely disappears in

“CH10” — 2006/2/6 — 18:36 — page 162 — #20

� �

� �

162 • S U M M A R Y O F PA R T I I

the case of common knowledge, where everyone knows the same thing, and every-
one knows everybody else knows it, and so forth. The formulation of optimal actions
is then not confounded by differences in information.

Another simplifying case is when player A has special information, termed the
player’s type, but player B acts first. Then for any decision contemplated by player B,
B can anticipate the response that A will have as a function of A’s type. Hence B can
account for that response when selecting a decision. Bundling and versioning pricing
schemes are based on this model.

Economic considerations are also important in information networks. Metcalfe’s
law states that the value to each participant of an information network increases
with the number of participants. This loose statement can be made more precise by
considering network service as an economic product.

“CH09” — 2006/2/6 — 18:35 — page 130 — #1

� �

� �

9
VALUE

I
nformation has value—or more correctly, some information in some situations has
value to some people. An obvious indication of this value is that people routinely
buy or sell information through newspapers, stock reports, telephone calls, Internet

traffic, written correspondence, music performances, and many other forms of com-
munication. However, it is usually difficult to objectively assign a value to a specific
piece of information from knowledge of its general characteristics. The value of most
information is subjective, frequently valued differently by different people. In this
regard information is similar to most other commodities; its price is established by a
complex process of supply and demand.

It is possible to assign an objective value to information when the information
influences economic action. The value then is equal to the difference in economic
reward of an informed action over an uninformed one. For example, if you are
about to purchase an item for $100 and a friend tells you that you can get it next
door for $75, that information is worth $25, provided that you change your action
accordingly. Situations such as this can be analyzed quantitatively. In fact, a kind
of calculus of value is available for assigning value to information associated with
economic decisions.

This chapter deals with the value of information in those terms. There must be
an action potentially influenced by the information, and the consequences of action
must be measured in monetary terms or some other scale of value. Hence music, in
the absence of a potentially altered action, although pleasing and valuable in a broad
sense, does not have value of the type discussed in this chapter. A weather forecast
that may influence a farmer’s decision to plant crops is of the type considered, for
that information may have tangible value. However, if the farmer would plant his
crop no matter what the weather forecast reported, the forecast has no objective
value. It is simply a curiosity, or entertainment. On the other hand, if the farmer
would not plant a crop if the forecast is unfavorable and would if the forecast is
favorable and there is some chance that either will be reported, then the forecast has
value.

130

“CH09” — 2006/2/6 — 18:35 — page 131 — #2

� �

� �

S e c t i o n 9.1 CO N D I T I O N A L I N F O R M AT I O N • 131

9.1 Conditional Information

One aspect of the situations discussed in this chapter is that useful information is
usually received through a channel: a test procedure, a newspaper report, a signal
from Mars, a talk with a friend or expert, a survey result, or a laboratory sample. Each
of these may provide information about something that could influence a decision
and its consequent action. In terms of chapter 5, it is mutual information, but in the
context of decision making the value assigned to information is measured monetarily,
not in terms of bits. However, the notion of a channel and its probabilistic structure
is the same as in chapter 5.

The role of conditional information can be illustrated concretely with a simple
example of an oil-drilling project, an example that is used throughout the chapter.

Example 9.1 (Red–Black Oil site). The Red–Black Oil company (so named because
the company may go in the red or the black) has located a somewhat promising site
to drill for oil. It will cost $120 (under some nominal scaling) to drill for oil. It is
estimated that there is a probability of 1/3 that oil will be discovered and a probability
of 2/3 that it will not. If oil is discovered, the ultimate payoff (over many years) is
worth $600. If no oil is discovered, the payoff is zero.

The situation is shown graphically in figure 9.1 by a simple tree of possibilities.
The value of such a venture is, for simplicity, taken to be the expected value of the
payoff minus the cost. In this case the expected value of the payoff is $200 and the cost
is $120; hence the value is $80. This is a baseline. There is no channel information yet.

The action possibilities in this example are simply to drill or stop. Currently, it
might be considered a marginally attractive project.

$120

$600

$0

1/3

2/3

Oil

Dry

FIGURE 9.1 Red–Black Oil well.
It costs $120 to drill and there is
a 1/3 chance that oil will be dis-
covered. If there is oil, the reward
will be $600; otherwise zero. Hence
the value of the well is currently $80.

Example 9.2 (A possible test). A standard geological test is available
that, if positive, indicates a strong possibility that oil is present. The test
represents an information channel from the actual state of oil at the site
to a test result.

Let A denote the random variable with two possible outcomes Oil and
Dry depending on whether there is oil at the site. The two possibilities
have probabilities 1/3 and 2/3, respectively. Let B be the random vari-
able defining the test result. It has two possible outcomes, Positive and
Negative.

The reliability of the test is defined by the conditional probabilities of
various test results as a function of the actual situation. These conditional
probabilities are listed in the table below. For example, the probability of
a positive test result, given that there is oil, is .75.

p(B|A) Positive Negative
Oil .75 .25
Dry .25 .75

Figure 9.2 shows two alternative graphical representations of the channel informa-
tion. Because the conditional probabilities in the chart are symmetric, this particular
channel is a binary symmetric channel (BSC), as defined in chapter 5.

“CH09” — 2006/2/6 — 18:35 — page 132 — #3

� �

� �

132 • C h a p t e r 9 VA LU E

Start

1/3

2/3

Oil

Dry

Positive
3/4

1/4

Negative

1/4

3/4

Positive

Negative
Start

1/3

2/3

3/4

3/4

1/4 1/4

Positive

Negative

Oil

Dry

FIGURE 9.2 Test channel. Left: tree representation. Right: traditional channel representa-
tion. The nature of the test is defined by the set of conditional probabilities.

The decision of whether or not to drill is made after seeing the results of the test. An
intelligent decision should, however, be based on the revised probabilities of whether
or not there is oil. These are found by flipping the channel.

Flipping the Channel (or Tree)

As discussed in section 5.3, the flipping operation is accomplished with Bayes’ rule.
The probabilities of the output B are

p(bj) =
∑

i

p(bj|ai)p(ai)

for j = 1, 2, . . . , m, which expresses p(bj) as the sum of the probabilities of all ways
that bj can occur.

Next, Bayes’ rule is used to calculate the backward probabilities as

p(ai|bj) = p(bj|ai)p(ai)/p(bj).

Example 9.3 (Flipping Red–Black). The probabilities of the two test outcomes at
Red–Black Oil are

p(Pos) = p(Pos|Oil)p(Oil) + p(Pos|Dry)p(Dry)

= (3/4)(1/3) + (1/4)(2/3) = 5/12

p(Neg) = 1 − p(Pos) = 7/12.

The backward probabilities are calculated with Bayes’ rule.

p(Oil|Pos) = p(Pos|Oil)p(Oil)/p(Pos)

= (3/4)(1/3)/(5/12) = 3/5

p(Oil|Neg) = p(Neg|Oil)p(Oil)/p(Neg)

= (1/4)(1/3)/(7/12) = 1/7

p(Dry|Pos) = p(Pos|Dry)p(Dry)/p(Pos)

= (1/4)(2/3)/(5/12) = 2/5

p(Dry|Neg) = p(Neg|Dry)p(Dry)/p(Neg)

= (3/4)(2/3)/(7/12) = 6/7

“CH09” — 2006/2/6 — 18:35 — page 133 — #4

� �

� �

S e c t i o n 9.2 I N F O R M AT I V I T Y A N D G E N E R A L I Z E D E N T R O P Y • 133

Start

1/3

2/3

Oil

Dry

Pos 1/4
3/4

1/4

Neg 1/2

1/4

3/4

Pos 1/6

Neg 1/12
Test

5/12

7/12

Pos

Neg

Oil 1/4
3/5

2/5

Dry 1/2

1/7

6/7

Oil 1/12

Dry 1/6

FIGURE 9.3 The oil tree and its flipped version. Note that the center two end nodes
represent different combinations in the two trees. However, the end probabilities match
for identical combinations such as (Oil, Neg) and (Neg, Oil).

The original tree and its flipped version are shown in figure 9.3. The end nodes
represent joint events, and their probabilities must match. For example, the top node
in both trees is the joint event (Oil, Positive). The joint event (Oil, Negative) is second
from the top in the left tree and third from the top in the right tree.

9.2 Informativity and Generalized Entropy*

An interesting sidelight (which can be omitted at first reading) relates intuitive notions
of the relative usefulness of channel information to entropy concepts.

Suppose there is a random variable X and information about X in the form of a
random variable Y . Y can be regarded as channel information about X, and the short-
hand for this is X ⇒ Y . Now suppose that there is an alternate source of information
Z about X , expressed as X ⇒ Z . For example, X may be a condition of someone’s
heart with Y and Z being alternate tests designed to reveal information about that
condition. It is natural to consider which of the two tests is better.

We say that Y is more informative than Z (about X) if all the probabilistic infor-
mation about X given by Z is contained in Y . This somewhat vague statement is made
precise by its consequence. Y is more informative than Z about X if the variables X,
Y , Z have the channel structure

X ⇒ Y ⇒ Z .

Hence Z is merely a probabilistic transformation, of Y . For instance, Z may be a
corrupted version of Y .

The condition of Y being more informative than Z implies that when making
inferences about X or making decisions whose outcomes are governed by X, one
would always prefer to know Y rather than Z . For example, to estimate the temperature
outside your window, a thermometer would be more informative than noting whether
or not it is snowing.

“CH09” — 2006/2/6 — 18:35 — page 134 — #5

� �

� �

134 • C h a p t e r 9 VA LU E

Generalized Entropy

If Y is more informative than Z about X, it seems plausible that the mutual information
I(X; Y) (see section 5.4) is greater than or equal to the mutual information I(X; Z).
Indeed, this is proved as follows.

H(X|Y , Z) = H(X|Y) since Z adds nothing to Y about X.

H(X|Y , Z) ≤ H(X|Z) since conditioning never increases entropy.

H(X|Y) ≤ H(X|Z) combining the two above.

Hence
I(X; Y) ≡ H(X) − H(X|Y) ≥ H(X) − H(X|Z) ≡ I(X; Z),

which shows that I(X; Y) ≥ I(X|Z).
This result can be generalized and then used as an alternative characterization

of informativity. A generalized entropy function G(X) is a concave function1 of
the probabilities of X. An example is G(X) = ∑

i pi log (1/pi), equal to the normal
entropy H(X). Another example is G(X) = 1 − max{ p1, p2, . . . , pn}.

Associated with a generalized entropy function is a notion of generalized
conditional entropy defined as

G(X|Y) = E[G(X)|Y].
This is the expected value (before Y is observed) of the generalized entropy of X that
will hold after Y is observed. If G = H, the usual entropy, then G(X|Y) is the usual
conditional entropy H(X|Y). Likewise, the generalized mutual information is

IG(X; Y) = G(X) − G(X|Y).

It is not hard to prove that for any generalized entropy function G, there holds
IG(X; Y) ≥ 0 and IG(X; Y) ≥ IG(X; Z) when Y is more informative than Z about
X . (See exercise 2.)

Example 9.4 (Funny die). Let X be result of the toss of a die producing a number
between 1 and 6. Define the generalized entropy function as G(X) = ∑6

i=1 pi(1−pi).
The generalized entropy of X is then G(X) = (1/6)(5/6) × 6 = 5/6.

Let Y be the information about X that tells whether X is in the Lower half (1,
2, or 3) or the Upper half (4, 5, or 6). Given that Y says Lower, the probabilities
of 1, 2, 3 are each 1/3, and hence the generalized entropy conditional on Lower is
(1/3)(2/3) × 3 = 2/3. The same holds symmetrically when Y says Upper. These
each happen with probability 1/2, so the average conditional generalized entropy
is G(X|Y) = 2/3. Hence IG(X; Y) = 5/6 − 2/3 = 1/6 = .167.

Suppose Z has the same two signals as Y except that there is a 1/4 chance that
any reported signal is incorrect. Clearly Y is more informative about X than is Z . If
Z reports Lower, the probabilities of the low numbers are each (1/3)(3/4) = 1/4
(rather than 1/3) and those of the Upper numbers are (1/3)(1/4) = 1/12. These are

1Suppose x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are vectors. A function f (x) is concave if for all
such vectors and all α with 0 ≤ α ≤ 1 there holds f (αx + (1 − α)y) ≥ αf (x) + (1 − α)f (y).

“CH09” — 2006/2/6 — 18:35 — page 135 — #6

� �

� �

S e c t i o n 9.4 T H E S T R U C T U R E O F VA LU E • 135

reversed if Upper is reported. Hence, the average conditional generalized entropy is
(1/4)(3/4)×3+(1/12)(11/12)×3 = 19/24 = .79. Thus IG(X; Z) = 5/6−19/24 =
.042, which is less than the earlier IG(X; Y) = .167, consistent with Y being more
informative than Z .

A deeper result is the following, which closely relates generalized entropy to
informativity.

Theorem 9.1. Y is more informative than Z about X if and only if IG(X; Y) ≥
IG(X; Z) for all concave generalized entropy functions G.

This is an elegant result, establishing a full and symmetric relation between
generalized information and informativity.

9.3 Decisions

Channel information can influence decisions because such information changes the
probabilities that are assigned to relevant events. Decisions can be matched to infor-
mation. It is this opportunity for decision matching that is responsible for the value
of the channel information. In fact, channel information has value only if a decision
will vary depending on the specific outcome obtained. The variation of decision with
channel outcome is termed a strategy.

Example 9.5 (Red–Black drilling decision). From figure 9.3 one can compute the
best decisions and their associated net payoffs. For example, if the test is Positive,
then the probability of Oil is 3/5. Assuming that the decision is to Drill, the expected
payoff is (3/5)$600 − $120 = $240. If the test is Negative, the expected payoff for
drilling is (1/7)$600−$120 = −$34.29. Considering the other possibilities, one may
construct the following table of net payoffs as a function of the decision Drill or Stop.

Net Payoff Drill Stop
Postive $240 $0

Negative −$34 $0

From this it is clear that the decision should be to Drill if the test is Positive and Stop
if the test is Negative.

The value of the project using the derived strategy can be calculated, and this
calculation is carried out in figure 9.4. The resulting expected net profit is $100.
Hence, the value of the project has increased from $80 to $100. The difference of $20
is the value of the test information (before the test is made).

9.4 The Structure of Value

We have emphasized that conditional (channel) information can have value if it
has the potential to influence a decision. This section summarizes how the value
of information is measured, generalizing the ideas illustrated in the earlier examples.

“CH09” — 2006/2/6 — 18:35 — page 136 — #7

� �

� �

136 • C h a p t e r 9 VA LU E

Test

5/12

7/12

Pos

Neg

Oil
3/5

2/5

1/7

6/7

Drill

Stop

Dry

Oil

Dry

600

0

0

0

0

240

100

FIGURE 9.4 Red–Black valuation. The numbers at the end are the final payoffs at the
corresponding nodes assuming the optimal decision strategy is followed. The value of
$240 at top center is found from (3/5)$600−$120=$240, since $120 must be paid upon
drilling.

Suppose that the underlying source of uncertainty is the random variable A with
possible values (a1, a2, . . . , an). There is a decision set D from which a decision d
can be selected. Finally, there are net payoffs v(ai, d) that depend on the event A and
the decision d.

For each event ai there is a maximum payoff defined by

v∗(ai) = max
d∈D

v(ai, d).

In Red–Black Oil, v∗(Oil) = $600 − $120 = $480 and v∗(Dry) = $0.
It can be useful, in itself, to determine these optimal values of events, for those

values bound the overall possible value. If your car is acting up and the mechanic
tells you that it is either the clutch or the brakes, and repair of the clutch would cost
$1,500 and the brakes $1,000, you may decide to trade the car in for a new one
without bothering to get more information. Knowledge of the bounds is as far as you
need go.

Value of A

The baseline situation is the value defined by the random variable A, its probabilities,
its payoffs, and its decision set. This value is

V∗(A) = max
d∈D

n∑
i=1

p(ai)v(ai, d).

In this definition, a single d ∈ D is selected to maximize the expected value of the
payoff. In the Red–Black Oil problem, this is determined by the best overall decision,
which is to drill. The associated value is V∗(A) = (1/3)$480 − (2/3)$120 = $80.

“CH09” — 2006/2/6 — 18:35 — page 137 — #8

� �

� �

S e c t i o n 9.4 T H E S T R U C T U R E O F VA LU E • 137

The Value of Perfect Information

Additional concepts of value depend on the nature of the information available. The
best information is perfect information—that is, perfect knowledge of the specific
event in A, known before the decision must be made. The associated value can be
written as V∗(A|ai) for a particular ai. Clearly,

V∗(A|ai) = v∗(ai)

because if ai is known to be the event, the decision can be optimized for it.
The value with perfect information is V∗(A|A), which is the expected value of

V∗(A|ai) with the expectation taken with respect to the various ai’s. Thus V∗(A|A) =∑
i V∗(A|ai)p(ai).
For Red–Black Oil, the value with perfect information is (1/3)($600 − $120) +

(2/3)$0 = $160, because one can drill if there is oil and stop if there is not. These
occur with probabilities 1/3 and 2/3, respectively.

The value of perfect information is the maximum amount a decision maker would
pay for perfect information. It is

VI(A|A) = V∗(A|A) − V∗(A).

A nice way to speak about this is in terms of a clairvoyant. The value of perfect
information is the amount one would pay for the services of clairvoyant who, before
a decision is required, could reveal exactly which event in A occurs.

The Value of Channel Information

If information about A is given by B, the new overall value with B is denoted V∗(A|B).
It is defined as

V∗(A|B) =
mp∑
j=1

p(bj)

[
max
d∈D

n∑
i=1

p(ai|bj)v(ai, d)

]
.

The interpretation is straightforward. Once B is observed as some bj, the new prob-
abilities for the events in A are given by the conditional probabilities p(ai|bj). With
knowledge of bj one maximizes the expected payoff, using a single decision for that
bj. This is done for each bj and the results averaged according to the probabilities of
the bj’s.

This procedure was earlier carried out in example 9.5 for Red–Black Oil when
B was the outcome of a geologic test. The value with the test was found to
be $100.

“CH09” — 2006/2/6 — 18:35 — page 138 — #9

� �

� �

138 • C h a p t e r 9 VA LU E

The value of information B about A is the difference

VI(A|B) = V∗(A|B) − V∗(A).

For Red–Black Oil, this difference is $100 − $80 = $20.

Nonnegative Value of Information

The value resulting from a particular information outcome may be either positive or
negative. In Red–Black Oil, a positive test result leads to a new valuation of $240
instead of the original $80. However, a negative test result leads to a new valuation
of $0, a big decrease. Nevertheless, the new expected value, before the test is carried
out, is $100, which is an increase. This is true in general,2 as shown below.

Nonnegative value of Information. The value of information is always non-
negative.

Proof:

V∗(A|B) =
m∑

j=1

p(bj)

[
max
d∈D

n∑
i=1

p(ai|bj)v(ai, d)

]

≥ max
d∈D

⎡
⎣ m∑

j=1

p(bj)
n∑

i=1

p(ai|bj)v(ai, d)

⎤
⎦

= max
d∈D

⎡
⎣ m∑

j=1

n∑
i=1

p(ai|bj)p(bj)v(ai, d)

⎤
⎦

= max
d∈D

⎡
⎣ m∑

j=1

n∑
i=1

p(ai, bj)v(ai, d)

⎤
⎦

= max
d∈D

[
n∑

i=1

p(ai)v(ai, d)

]
= V∗(A).

Hence V∗(A|B) ≥ V∗(A).

Hence, just as conditional information never increases overall entropy (and thus
mutual information is always nonnegative), the value of conditional information is
always nonnegative.

2It is true in general for single decision-maker situations. Information can have negative value to a group
in some situations.

“CH09” — 2006/2/6 — 18:35 — page 139 — #10

� �

� �

S e c t i o n 9.5 U T I L I T Y F U N C T I O N S * • 139

9.5 Utility Functions*

When faced with a prospect whose payoff depends on a random event, many people
evaluate the prospect at less than its expected value because of the associated risk. For
example, a 50–50 chance at $1,000 or $0 might be valued at less than $500. Aversion
to risk can be incorporated into decision making by defining a utility function U(v)
for money v. The function U is increasing; that is, v2 > v1 implies U(v2) > U(v1):
more money is preferred to less. A popular form is the exponential utility function
U(v) = −e−av, where a > 0 is a risk aversion coefficient. Notice that for this
function, −1 < U(v) < 0 for v > 0, but of course a constant can be added to make
U(v) positive.

Once a utility function is selected, decisions are made so as to maximize expected
utility. The best decision for the situation described by the random variable A and
decision set D is found by solving

U
∗
(A) = max

d∈D

n∑
i=1

p(ai)U(v(ai, d)).

A utility value U
∗

can be converted into equivalent monetary units V∗. The proper
V∗ is the value that satisfies U(V∗) = U

∗
. This value is called the certainty equiv-

alent since it is the risk-free amount that has the same utility as the expected utility
of the risky prospect. For an exponential utility function the certainty equivalent V∗
of utility level U

∗
satisfies U(V∗) = −e−aV∗ = U

∗
. Hence V∗ = − ln (−U

∗
)/a,

(which is positive if −1 < U
∗

< 0).
Suppose now that information in the form of a random variable B is available

before the decision is made. The value of that information is the maximum amount
that one would pay (as a fee to a testing company, perhaps) for the information while
maintaining the same level of U

∗
. The information must be purchased in advance,

independent of the outcome. If F is the fee for information, then the new payoff
functions are v(ai, d) − F, for each i.

The exponential utility function has the analytical advantage that U(v − F) =
U(v)eaF, which simplifies calculations. (See exercise 7.)

Example 9.6 (Red–Black Oil with utility). For the situation of example 9.1 suppose
the decision maker uses the utility function U(v) = −e−.001v. First, let us find the
value without channel information. It is

U
∗
(A) = max

{
−1

3
e−.001(480) − 2

3
e−.001(−120), −1

3
e−.001(0) − 2

3
e−.001(0)

}
= −.9579257 (since the first choice is best)

V∗(A) = − ln (.9579257)/.001 = $42.99,

which because of aversion to risk is less than the $80 value when expected value
rather than the utility function is used as the criterion for evaluation.

Now let us calculate the value with the test information of examples 9.2 and 9.3. We
let b1 and b2 denote Positive and Negative test results, respectively. The calculations

“CH09” — 2006/2/6 — 18:35 — page 140 — #11

� �

� �

140 • C h a p t e r 9 VA LU E

are identical to those above, except that the probability of oil is changed according to
the test result, as shown in the second tree of figure 9.3.

U
∗
(A|b1) = max

{
−3

5
e−.001(480) − 2

5
e−.001(−120), −3

5
e−.001(0) − 2

5
e.001(0)

}

= −.8222686

U
∗
(A|b2) = max

{
−1

7
e−.001(480) − 6

7
e−.001(−120), −1

7
e.001(0) − 6

7
e−.001(0)

}

= −1.00

U
∗
(A|B) = − 5

12
.8222686 − 7

12
1.00 = −.9259453

V∗(A|B) = − ln (.9259458)/.001 = $76.94.

The value with information is therefore V∗(A|B) = $76.94, which compares with
$100 found earlier.

The value of the information is the value of F that reduces V∗(A − F|B) to V∗(A).
In this case (because of the special properties of the exponential utility function)
this is the difference $76.94 − $42.98 = $33.96. Note that the value of informa-
tion is substantially greater than the $20 found earlier using expected value as the
measure of value—even though the values V∗(A) and V∗(A|B) are each less than
before.

9.6 Informativity and Decision Making*

It might be intuitively clear that if information B is more informative than C about
A, then B is more valuable as well (or at least as valuable as C). This is true, and is
proved by the following steps, which are similar to those used to prove the generalized
entropy relation in section 9.2.

V∗(A|B, C) = V∗(A|B) since C adds nothing to B

V∗(A|B, C) ≥ V∗(A|C) additional information never reduces value

V∗(A|B) ≥ V∗(A|C) combining the above.

In a certain sense the converse of this result is also true. Loosely it states that
if all decision makers (facing a variety of situations with payoffs determined by
A) are better off knowing B rather than C, then B is more informative than C
about A.

Hence, there are three characterizations of B being more informative than C about
A: (1) there is a channel representation A ⇒ B ⇒ C, (2) generalized mutual infor-
mation satisfies IG(A; B) ≥ IG(A; C), and (3) the value of B is greater than the value
of C for decisions whose outcome is determined by A.

“CH09” — 2006/2/6 — 18:35 — page 141 — #12

� �

� �

S e c t i o n 9 . 7 E X E R C I S E S • 141

9.7 EXERCISES

1. (Mutual oil information) Find the mutual information I(A; B) of the Red–Black Oil situation.

2. (Generalized mutual information*) Let G(X) = G(p(x1), p(x2)), where p(x1) and p(x2)
are the probabilities of the two possible values x1, x2 of X. Suppose G is concave. The
generalized entropy of X conditional on Y is

G(X|Y) = E[G(X)|Y]
= p(y1)[G(p(x1|y1), p(x2|y1)] + p(y2)[G(p(x1|y2), p(x2|y2)].

Show that
(a) G(X|Y) ≤ G(X).
(b) IG(X; Y) ≥ 0.

3. (Odd entropy) Work example 9.4 using the generalized entropy function G = 1 −
max{p1, p2, p3, p4, p5, p6}. Find IG(X; Y) and I(X; Z). Which is greater and why?

4. (The diligent professor) Professor Earnesto is designing a final exam for his class. He
believes that 40 percent of the students are excellent and deserve As while the other, average,
students deserve Bs. However, Earnesto does not know which students are which. He is
designing an exam that will help distinguish them, but currently he has two versions. For
version 1, he believes that excellent students have a 70 percent chance of scoring high on
the exam while only 30 percent of the average students will score high. For version 2, he
believes that 80 percent of the excellent students will score high, while 50 percent of the
average students will score high. He intends to give As to those who score high and Bs
to the others. Earnesto wants to maximize the match of grades: As to excellent students
and Bs to average students. Which exam should he use, and in expected value terms, what
percentage of grades will match?

5. (Virus test) A certain exotic virus cannot be detected with certainty, but a simple saliva
bleach test is available that is somewhat reliable. If the virus is present, the test gives a
positive result 60 percent of the time and a negative result 40 percent of the time. If the
virus is not present, the test gives a (false) positive result 20 percent of the time. The test is
only administered to people who have symptoms characteristic of the virus infection, and
it is known that 30 percent of the people with these symptoms actually have the virus.

(a) What is the probability that someone with the symptoms will have a positive test
result?

(b) What is the mutual information I(A; B) where A is the state of the virus, and B is
the test result?

(c) Suppose that if you have the virus and are treated, you recover 100 percent of the
time. However, it is not a comfortable treatment and you will have to terminate
your vacation. The treatment has a negative value to you whether or not you have
the virus. On the other hand, not treating the virus will mean a difficult time, which
has a much greater negative value. You might construct the payoff structure shown
in the table below.

Value Treat Wait
virus −10 −50
clear −10 0

Find the value V∗(A) of the original situation without the test.

“CH09” — 2006/2/6 — 18:35 — page 142 — #13

� �

� �

142 • C h a p t e r 9 VA LU E

(d) Find the value V∗(A|B), which is the value with the test information.
(e) Find the value of information.

6. (Information value) Show that the value of information is nonnegative when decisions are
made with a utility function.

7. (Exponential utility) Show that if utility is U(v) = −e−av, then the value of information is
VI(A|B) = V∗(A|B) − V∗(A).

9.8 Bibliography

A number of researchers were inspired by Shannon’s theory of information to expand
the concept to general notions of economic value. One of the earliest papers is [1].
The concept was greatly expanded and made practical in the field of decision analysis
[2]. See also [3]. The concept of a source of information Y being more informative
than Z and characterizing this situation as Z being a probabilistic transformation of
Y (through a channel) was presented by Blackwell [4]. The relation of this concept
to generalized entropy is due to DeGroot [5], and the relation to decision making is
due to Bohnenblust et al [6]. Accessible presentations of all three concepts are [7]
and [8].

References

[1] Marschak, Jacob. “Remarks on the Economics of Information.” Cowles
Foundation Paper 146. Reprinted in Contributions to Scientific Research in
Management, Los Angeles: University of California, 1960.

[2] Howard, Ronald A., and James E. Matheson, eds. Readings on the Principles
and Applications of Decision Analysis. Menlo Park, Calif.: Strategic Decisions
Group, 1983.

[3] Keeney, Ralph L., and Howard Raiffa. Decisions with Multiple Objectives:
Preferences and Value Tradeoffs. Cambridge: Cambridge University Press,
1993.

[4] Blackwell, David. “Equivalent Comparison of Experiments.” Annals of Math-
ematical Statistics 24 (1953): 265–72.

[5] DeGroot, M. “Uncertainty, Information, and Sequential Experiments.” Annals
of Mathematical Statistics 33 (1962): 813–20.

[6] Bohnenblust, H., L. Shapley, and S. Sherman, “Reconnaissance in Game
Theory.” Research Memorandum RM-208, RAND Corporation, 1949.

[7] Kihlstrom, R. E. “A Bayesian Exposition of Blackwell’s Theorem on the Com-
parison of Experiments.” In: M. Boyer and R. E. Kihlstrom, eds., Bayesian
Models in Economic Theory. Amsterdam: North-Holland, 1984.

[8] Weber, Thomas, “The Value of Information.” Working paper, Department of
Management Science and Engineering, Stanford University, 2005.

“CH08” — 2006/2/6 — 18:35 — page 114 — #1

� �

� �

8
PRICING SCHEMES

C
reators of information products face considerable challenges when seeking com-
pensation for their work. A free competitive market, coupled with low marginal
(or copying) cost, leads to vanishingly small transaction profits that may not cover

the fixed cost of production nor be sufficient to fairly reward the artists, writers, and
designers who created the work. Yet these products are often valuable as gauged by
potential social surplus. The challenge faced by the producer of an information prod-
uct is to participate creatively in the market in order to extract a significant share of
the social surplus potentially available.

Copyright and patent laws and voluntary contributions provide possible mecha-
nisms for appropriate recompense, but as described in the previous chapter, these are
partial solutions, suitable for some products but not for all. If creators relied solely
on them, many socially worthwhile products would not be produced.

These observations invite exploration of sophisticated marketing procedures—
special schemes—to increase social surplus and arrange for producers to garner much
of this social surplus as producer surplus. This chapter discusses some methods that
are used for this purpose.

8.1 Discrimination

From a producer’s viewpoint the ideal selling technique is to discriminate by negotiat-
ing each transaction separately with knowledge of each customer’s willingness-to-pay.
The producer will then charge each customer the full willingness-to-pay, provided
only that this is greater than the marginal cost. This procedure yields the maximum
possible social surplus, and all of this surplus accrues to the producer. Figure 8.1
illustrates the rewards of this perfect discrimination procedure.

Perfect discrimination is sometimes approximated by public auctions or by per-
spicacious street vendors, but these methods are usually impractical for selling large
quantities. Furthermore, some forms of discrimination are illegal. Nevertheless, per-
fect discrimination is a useful benchmark, and its consideration motivates a search
for some, perhaps imperfect, method that captures significant surplus.

114

“CH08” — 2006/2/6 — 18:35 — page 115 — #2

� �

� �

S e c t i o n 8.1 D I S C R I M I N AT I O N • 115

q

w

m

π

FIGURE 8.1 Perfect discrimination. By charging customers their full willingness-to-pay,
a producer obtains maximum surplus.

w

q

(a)

w

q

(b)

FIGURE 8.2 Serving two types. (a) Customers of type A with high WTP; (b) customers of
type B with low WTP. Both are served if the producer can discriminate.

One important and sometimes practical form of discrimination is discrimination
by an observable factor. An example is the offering of discounts to senior citizens,
with “age” being the observable factor in that case. Many other factors are commonly
employed. Individuals are often categorized into types, with each type being defined
by a specific willingness-to-pay (WTP) level or interval. An observable factor (or
factors) may reveal information about an individual’s type.

The situation depicted in figure 8.2 illustrates the potential of this kind of discrim-
ination. There are two types of individuals, A and B, and we suppose that their type
can be easily identified (perhaps by their age or home address). Type As tend to have
higher WTP than type Bs. The overall demand curves of the two types are the linear
ones shown in the two parts of the figure. If a monopoly producer can discriminate
between these types, establishing separate prices for each type and setting each as a

“CH08” — 2006/2/6 — 18:35 — page 116 — #3

� �

� �

116 • C h a p t e r 8 P R I C I N G S C H E M E S

monopolist would, the resulting producer surplus will be the sum of the two shaded
areas in the figure. If, however, the producer cannot discriminate, the best single
price will be close to that of that of type A, and most type Bs would not buy. In this
simple example, discrimination leads to greater social surplus, greater profit, greater
consumer surplus, and greater numbers of individuals served. In other words, it is a
win–win–win procedure.1

Examples of factors used to discriminate include the following:

1. Location. Prices for ordinary commodities (such as toothpaste or soda)
are often higher at resorts, and part of the reason is that most people
at resorts are more affluent than the average population, and hence have
greater willingness-to-pay. Prices also vary in different sections of the
world according to general cost-of-living indices.

2. Sex. Although it is not legal to explicitly discriminate by sex, it is com-
monly done implicitly. Women’s clothing is frequently priced higher than
men’s for items of comparable cost of manufacture, for example.

3. Age. We mentioned senior discounts, but there are also child discounts
for food, entertainment, and clothing. Student discounts are also avail-
able for many information goods such as software, theater and museum
attendance, and books.

4. Business structure. Nonprofit organizations are often accorded discounts
for goods and services in business-to-business transactions.

5. Saturday stay-over. Airlines offer heavy discounts to travelers whose
travel includes a Saturday night stay at a destination. The stay-over is
an observable factor, which is significantly correlated with nonbusiness
travel.

As the last example illustrates, it can be highly profitable to find an observ-
able factor that is correlated with an underlying characteristic distinguishing the
willingness-to-pay of different customers.

8.2 Versions

Although discrimination by observable factors can be effective, it is more subtle,
more practical, and often even more profitable to arrange things so that prospec-
tive consumers reveal their type through their own market actions. This general idea
goes under the heading of the revelation principle. A marketeer using this principle
realizes that customers seeking to maximize consumer surplus will act in a manner
characteristic of their type, and the marketeer accounts for this when establishing the
price system—designing it so as to maximize producer surplus. That is, the marke-
teer accounts for customer maximization when solving his or her own maximization
problem.

One class of schemes based on this general idea is versioning, where the avail-
ability of two or more versions of a product allows customers of different types to
select the version that is best for them and also provides more profit.

1However, type A consumers face a higher price than when there is no discrimination.

“CH08” — 2006/2/6 — 18:35 — page 117 — #4

� �

� �

S e c t i o n 8.2 V E R S I O N S • 117

Examples of versions include the following:

1. Hardcover and softcover books. Usually there is a delay in release of the
latter version of a book, so customers anxious for the book will purchase
the hardcover edition, while others will wait for the lower-priced softcover
version.

2. Real-time stock data and 20-minute delayed data. Serious day-traders are
willing to pay a premium for real-time data, while lower prices attract
other customers.

3. Movies in theaters versus videotapes or DVDs. This is similar to hardcover
and softcover books.

4. First-class and coach air fares.

5. Professional and academic software. Some companies issue a discounted
academic version of their software, which is actually more costly to man-
ufacture because certain functions must be disabled to justify the lower
academic price.

6. High- versus low-resolution photographs. People wishing professional
pictures buy more expensive high-resolution pictures than casual users.

Example 8.1 (Two versions). Suppose there are two types of people, A and B, and
they are equal in number (normalized to 1 each). Type As have a high willingness-to-
pay for a certain product, and type Bs have a low WTP. Specifically the WTP values
are wA = 9, wB = 5. Assume that the product is produced by a monopolist with zero
marginal cost.

If the price is set high, at p = 9, only the type As will purchase it. Consumer
surplus CS is zero, producer surplus π is 9, social surplus SS is 9, and only type As
are served.

Suppose instead that the price is set at p = 5. Then As and Bs will both buy, and as
a result CS = 4, π = 10, SS = 14, and everyone is served. This is better for everyone,
and is a case where monopoly yields maximum possible social surplus.

Now suppose that a lower-quality version of the same product is introduced. The
high- and low-quality versions are labeled H and L, respectively. Suppose that the
willingness-to-pay values are w H

A = 9, w L
A = 6, wH

B = 5, and w L
B = 4, as shown

schematically in figure 8.3.
As a first attempt at assigning prices to the two versions, consider pH = 9, pL = 4.

If As buy H and Bs buy L, the producer surplus is π = 9 + 4 = 13, which is an
improvement over the π = 10 achieved with one version. However, this solution is
not in accord with the revelation principle because As will choose to buy L instead
of H and obtain a corresponding consumer surplus of 6 − 4 = 2 instead of 0.

The better solution is to set pH low enough so that the type As will not migrate to
L. The price scheme pH = 7, pL = 4 will in fact induce self-selection and maximize
profit. (In the case where two CS values are the same, it is assumed the better product
is chosen, since a small change in price would insure that.) At this solution CS = 2,
π = 11, SS = 13, and everyone is served. Compared to the single-version situation,
producers are better off, but consumers lose some surplus.

“CH08” — 2006/2/6 — 18:35 — page 118 — #5

� �

� �

118 • C h a p t e r 8 P R I C I N G S C H E M E S

A B

willingness-to-pay

9

6

5

4

FIGURE 8.3 Versions. The willingness-to-pay figures are shown for two types of con-
sumers and two versions of a single product. The upper values are for the high-quality
version.

A B

willingness-to-pay

12

6

5

4

FIGURE 8.4 Revised versions. New willingness-to-pay figures are shown in which the
high-end product is very attractive to type A consumers.

Example 8.2 (Two other versions). Suppose everything is the same as in the pre-
vious example except that the willingness-to-pay values are wA = 12, wB = 5. The
monopolist will set the price at p = 12. In this case, CS = 0, π = 12, SS = 12, and
only type A customers are served.

Now suppose that a lower-quality version is introduced, so that the willingness-
to-pay values are w H

A = 12, wL
A = 6, w H

B = 5, wL
B = 4, as shown in figure 8.4.

“CH08” — 2006/2/6 — 18:35 — page 119 — #6

� �

� �

S e c t i o n 8.3 B U N D L I N G • 119

Analysis similar to that of the previous example shows that the prices that yield the
most profit are pH = 10, pL = 4. The two types will self-select, with As choosing
H and Bs choosing L. The result is CS = 2, π = 14, SS = 16. Thus, CS, π , and SS
have all increased.

8.3 Bundling

One of the most important pricing techniques is bundling, where several items or
services are sold as a bundle at a fixed price. There are many familiar examples of
bundling:

1. Software suites. Some software firms (such as Microsoft) sell individual
products separately and also bundled together as a “suite” that is priced
at a substantial discount over the sum of the prices for the individual
components.

2. Nuts and bolts. These are frequently sold in packages of fixed amounts.

3. Automobile options. It is common to bundle together several accessories
into an option package that is sold as a unit.

4. Travel packages. Air travel, hotel, and sightseeing are offered at a con-
siderable discount relative to the sum of individual prices.

5. Round-trip airfares. The price of a round-trip ticket is usually less than
the price of two one-way tickets. In fact, sometimes the round-trip fare is
even less than the one-way fare.

6. Season tickets. Opera, sports events, and theater offer season tickets at
prices that are well discounted over the same number of individual tickets.

7. Subscriptions. Subscriptions to magazines, newspapers, book clubs,
premium television channels, and music clubs are all forms of bundling.

8. Economy-size packages. Large packages of laundry soap, large tubes of
toothpaste, and economy sizes of all sorts of things are a form of bundling.

9. Amusement park tickets. Disneyland originally sold tickets to individ-
ual amusements, but later charged a fixed park entry fee that essentially
bundles all amusements into a single package.

Given the right circumstances, bundling can significantly increase a firm’s revenue,
and as the preceding examples indicate, these circumstances are commonplace. Three
prototypical situations are discussed in this section.

Complementary Preferences

Traditional bundling theory is based on the existence of a diversity of preferences
among consumers. The idea is this: Suppose there are two types of consumers, A
and B, having different preferences for two goods, 1 and 2. If the products are sold
separately, the consumers may separate by their type and each purchase a single

“CH08” — 2006/2/6 — 18:35 — page 120 — #7

� �

� �

120 • C h a p t e r 8 P R I C I N G S C H E M E S

product. But if the two products are bundled together both types may purchase the
complete package. An example is cable TV packages. Some people may not care
for all of the channels in a package, but they buy the package if it contains enough
channels that they do want and it is priced attractively.

Example 8.3 (Goods bundle). Suppose type A individuals have willingness-to-pay
values w1

A = 5, w2
A = 1, for goods 1 and 2 respectively, while type B individuals have

values w1
B = 1, w2

B = 5. These values are represented graphically in figure 8.5(a).
The two axes in the figure are the WTP values for good 1 and good 2, respectively.

The dots represent the two potential customer types. Type A has WTP values of 5
and 1 and hence is represented by the dot at 5 on the first axis and 1 on the second.
Customer B has WTP values of 1 and 5 and is represented accordingly.

Assume there are equal numbers of type As and Bs (normalized to 1 each). If the
two goods are sold separately, it is apparent that the best prices are p1 = 5, p2 = 5,
yielding CS = 0, π = 10, SS = 10.

If the two goods are bundled and sold for a single price, the best price is p1&2 = 6,
yielding CS = 0, π = 12, SS = 12. Thus the producer is better off. Consumer
surplus remains zero, but consumers acquire both goods.

Bundling of this kind is most effective when customers have complementary pref-
erences, with one group having strong preferences for one good, and another group
having strong preferences for another good, as in the foregoing example. In fact
with two goods it is possible, depending on the nature of consumer preferences, that
bundling can increase by nearly 50 percent the producer surplus compared to the
unbundled case. (See exercise 4.) Now consider the situation where preferences are
not complementary.

Example 8.4 (No bundle). Suppose everything is the same as in example 8.3 except
that the preferences are those of figure 8.5(b). Although the WTP values are different,
they are aligned along the 45-degree diagonal through the origin. It should be apparent

1 5

good 2

B

A

good 1

1

5

(a)

1 5

good 2

B

A

good 1

1

5

(b)

4

4

FIGURE 8.5 Bundling. (a) Sold individually, each good will be priced at 5. The bundle can
be sold for 6. (b) If preferences are aligned, bundling is not effective.

“CH08” — 2006/2/6 — 18:35 — page 121 — #8

� �

� �

S e c t i o n 8.3 B U N D L I N G • 121

that there is no advantage to bundling, and the producer should price for A, obtaining
the producer surplus π = 16.

Averaging

People frequently purchase more items when bundled than they would buy if sold
separately, even at the same unit cost. For example, magazine subscriptions are bun-
dles (of written articles) that people purchase in great volume. A recently discovered
principle of averaging at least partially explains this phenomenon, and the princi-
ple may become a useful tool for pricing information products. The concept can be
explained in terms of an example.

Imagine a producer of technical articles written for a fairly broad audience, and
imagine that these are offered for sale, for example on the World Wide Web, at a fixed
price per article. The marginal cost is zero. The perceived value of such an article to a
potential customer will typically vary from article to article. To be concrete, suppose
that a customer’s willingness-to-pay for such an article varies uniformly between
$0 and $10. That is, if you are such a customer, then when you see a collection of
these articles advertised, you are likely to assign different willingness-to-pay values
to different articles: $1 to one of them, $9 to the next, $4 to the next, and so on, with
these values being essentially uniformly distributed between $0 and $10. Figure 8.6 (a)
shows the probability density of various WTP values. The figure shows the continuous
version where any value between $0 and $10 can occur, but a discrete version works
just as well.

This WTP pattern is the same for all customers, but the values assigned by different
customers are independent. Your neighbor may be interested in different articles than
you, but he or she also has the probability structure shown in the figure.

As shown in section 7.6, the corresponding demand curve is a straight line. In
this case, the price p per article must satisfy 0 ≤ p ≤ 10. If price p is charged, then
on average a fraction 1 − p/10 of potential customers will purchase the article. For
example at $5, half of the customers will buy, at $8, 20 percent will buy. Demand
falls linearly as price is increased. This demand curve is shown in figure 8.6(b).

0 10

Probability

WTP

1/10

(a) WTP

0 1

Price

Quantity
0

10

(b) Demand

FIGURE 8.6 Variable willingness-to-pay. The WTP of various articles varies uniformly
between $0 and $10 for each person.

“CH08” — 2006/2/6 — 18:35 — page 122 — #9

� �

� �

122 • C h a p t e r 8 P R I C I N G S C H E M E S

The quantity is expressed in terms of the percentage of the total customer population;
thus at $0, everyone will buy (q = 1).

From chapter 7, the monopolist solution2 (which is applicable here because there
is a single source for the articles) is to set the price at the midpoint; namely, at $5.
At this price, half of the customers buy each article. The overall profit per consumer
therefore averages $2.50.

Now suppose that articles are bundled into a large lot, perhaps in the form of a
yearly subscription. The WTP of a customer varies over the individual articles just
as before. However, when viewed as a collection, the average WTP is $5 per article.
If a customer purchases the large bundle, he or she will value it on average at $5 per
article, and hence to acquire the bundle that customer is willing to pay $5 times the
number of articles in the bundle. In fact, every customer will place nearly the same
$5 per article value on the bundle.

Because all consumers value the bundle identically, the producer can set the price
at (or near) $5 and all customers will buy the bundle. The profit per consumer is
now π = $5 per article, which is twice what it was without bundling. Bundling has
effectively made all customers appear equal on a per article basis. (See exercise 8 for
further analysis of this method.)

Note that this method parallels Shannon’s basic idea of bundling message symbols
into metasymbols to achieve lower average code length per symbol.

Blocking Entry*

Bundling can be a powerful weapon of competition, blocking potential competitors
attempting to enter the market with similar products. An excellent application of this
is the area of software. For example, a large software firm that sells several application
packages separately may benefit by bundling them into a “suite” at a greatly reduced
price over the total price of individual programs. A competitor that produces one of
these products could be a potential threat in head-to-head competition in the market
for that single product, but the existence of the bundle can thwart the competitor’s
challenge.

To formalize this argument, suppose there are two products, 1 and 2. Consumers
are characterized by a pair (w1, w2) of WTP values. Such a pair defines a point on
a diagram that has WTP values for product 1 on one axis and for product 2 on the
second axis. Assume that there are many potential customers and that their respective
WTP values vary from $0 to $1, more or less randomly from customer to customer.
In other words, the points on the two-dimensional diagram are scattered uniformly in
a unit square, as shown in figure 8.7(a). Each point in the shaded region is a possible
customer point, and they are evenly distributed.

Given this distribution of WTP values, a monopolist using separate prices for the
two products will select the midpoint WTP values; namely3 p1 = $.50, p2 = $.50.
Half of the consumers will buy the first product and half will buy the second, although

2The solution can be worked out easily. The profit is π = p(1 − p/10), which by elementary calculus is
found to have a maximum at p = 5.

3The monopolist maximizes price p times quantity 1 − p, which is p(1 − p). This gives p = $.50.

“CH08” — 2006/2/6 — 18:35 — page 123 — #10

� �

� �

S e c t i o n 8.3 B U N D L I N G • 123

0 0$1 $1

Product 2 Product 2

0 0

(a) WTP Distribution (b) Sales regions

$1 $1

Product 1 Product 1

FIGURE 8.7 Pairs of points. (a) The WTP points are evenly distributed in the unit square. (b) A monopolist sets both
prices at $.50, and sells product 1 to everyone to the right of the vertical at $.50 and product 2 to everyone above the
horizontal at $.50. Customers in the darkly shaded region purchase both products.

the two halves are not totally distinct. This is made clear in figure 8.7(b). The total
average profit (per possible consumer) is π = $.25 + $.25 = $.50.

Suppose that a potential competitor (a challenger) plans to enter the market with
a version of one of these products, say product 1. If the challenger sets a price of
p1 = $.50 − ε, for some small ε > 0, this challenger will (in theory) capture the
entire market for product 1, leaving the original producer (the incumbent) with only
product 2. The incumbent’s profit would be cut in half to π = $.25. The incumbent
could of course cut the price of product 1 below that of the challenger, but this cycle of
price cutting could continue until the price nearly reaches the duopoly price of $.33.

Consider instead the scheme where the incumbent sells the bundle of the two
products at a price of $1, and does not sell the products separately. The challenger
sells product 1 for $.50. Consumers buy either nothing, product 1, or the bundle; the
decision among these being made according to the maximum of $0.00, WTP1 −$.50,
or WTP1 + WTP2 − $1. If only product 1 is chosen, then WTP1 − $.50 > WTP1 +
WTP2 − $1 which means WTP2 < $.50. Hence the challenger is able to sell only to
those customers having WTP1 ≥ $.50 and WTP2 < $.50. The incumbent will sell to
everyone else whose WTP values sum to over $1, and whose WTP2 > $.50. The result
is shown in figure 8.8. The incumbent gets the darkly shaded area and the challenger
gets the lightly shaded area. The incumbent’s profit is now π = $.25 + $.125 =
$.375, which is greater than the value of π = $.25 + $.33/3 = $.36 obtained
without bundling in the face of a potential duopoly. Notice also that more products
are sold in this bundled and partially competitive solution than in the monopoly
solution.

A complete analysis allows both the incumbent and the challenger to adjust prices,
and it turns out to be optimal for both to lower their prices somewhat. However, the
incumbent’s net producer surplus remains very close to the figure given above. (See
exercise 7.)

“CH08” — 2006/2/6 — 18:35 — page 124 — #11

� �

� �

124 • C h a p t e r 8 P R I C I N G S C H E M E S

0 $1

Product 2

0

$1

Product 1

Challenger’s sales

Incumbent’s sales

FIGURE 8.8 Blocking. By bundling, the incumbent blocks a challenger’s access to much
of the market.

8.4 Sharing

Another characteristic of some information products is that they are easily shared.
Sharing may involve copying, but it can also be physical sharing of a single copy.
Library borrowing, video rentals, used-book sales, book club offers, software site
licenses, and interlibrary loans are all examples of sharing. Historically, creators of
information products have greatly feared the institution of such sharing, but usually
those fears have been unwarranted. In fact, in the past, producers frequently benefited
enormously from sharing. Libraries were initially feared by publishers, but libraries
motivated millions of people to read, and book sales skyrocketed. Motion picture
studios fought the introduction of videotape machines that could duplicate movies,
but introduction of videotapes and DVDs produced large increases in motion pic-
ture revenues. The subject is complex, and it constantly changes as new technology
facilitates opportunities to share information products.

A simple model can be used to investigate the economic consequences of sharing.
To fix ideas, consider the possibility of sharing a book among
a number of potential readers indexed by y = 1, 2, . . . , n.
Each reader is characterized by a willingness-to-pay for the
opportunity to read the book. Individual y has WTP w(y), and,
without loss of generality, the individuals are ordered so the
w(y) values range from highest to lowest as y goes from 1 to n.
The marginal cost of book production is constant at m, and

there is a fixed cost F.
If all books are sold at a single price p, this p will equal the

WTP of the last customer to buy the book. More exactly, p will
satisfy w(y) ≥ p > w(y + 1), where all consumers, 1, 2, . . . , y buy the book. For
example, if the consumers have WTP values [9, 8, 7, 6, 5, 4] and the price is p = 7,
then consumers 1, 2, and 3 purchase the book.

The producer, acting as a monopolist, will find the number y of books to sell by
solving

max
y

w(y)y − my − F. (8.1)

Denote the optimal value of y by yb. This problem and its solution is illustrated in
figure 8.9.

“CH08” — 2006/2/6 — 18:35 — page 125 — #12

� �

� �

S e c t i o n 8.4 S H A R I N G • 125

y

WTP

w(yb)

yb

m

πb

FIGURE 8.9 Monopoly solution.The optimal number of books sold is yb when there is no
sharing.

Now suppose that the consumers form book clubs, each consisting of k members.
A club purchases at most one copy of the book and circulates it among its members.
All members of the club contribute the same amount toward purchase of the book.
There may be transaction costs as well (for example mailing costs if the members are
some distance from each other), so suppose that each member pays transaction cost
t in addition to a proportionate share of the book price.

A club purchases a book only if the net (after transaction cost) price p is no greater
than the lowest WTP of a member of the club. For example, suppose again that the
consumers have WTP values [9, 8, 7, 6, 5, 4]. If two-person clubs form as (9, 8)
(7, 6) (5, 4) and there are no transaction costs, then at price p = 12 the first two clubs
will purchase the book, since each member must pay 6 and this is the WTP of the
last individual. If instead the clubs form as (9, 8) (7, 5) (6, 4) only the first club will
purchase the book at p = 12.

Club formation is considered efficient if the WTP of every individual in a club that
purchases the book is greater than the WTP of any individual in a club that did not
purchase the book. If formation were not efficient, some member of a club that did
not purchase the book would be willing to pay a member of a club that did purchase
it to switch places. In the example suppose the clubs form as (9, 8) (7, 5) (6, 4) and
F = 10. Then two clubs purchase but individual 4 (with WTP = 6) would be inclined
to switch with individual 5 (with WTP = 5). We assume club formation is efficient.

According to the preceding framework, if yc people read, then yc/k books are sold.
The consumer with the lowest WTP in clubs that purchase the book is individual yc.
That last individual has a net willingness-to-pay of w(yc) − t after accounting for
the transaction cost. The proportionate book price per member can be no higher than
this, which means that the book price itself can be no higher than k[w(yc) − t]. The
situation is shown in figure 8.10, which shows groups of three.

“CH08” — 2006/2/6 — 18:35 — page 126 — #13

� �

� �

126 • C h a p t e r 8 P R I C I N G S C H E M E S

y

WTP

w(yc)

yc

FIGURE 8.10 Clubs. Clubs consisting of three people are shown by the outlined dots. One
book will be sold to each club with members 1 through yc.

The producer’s problem in the club situation is

max
yc

(number of books sold)(price) − cost

= max
yc

(yc/k)[k(w(yc) − t)] − m(yc/k) − F

= max
yc

w(yc)yc − (t + m/k)yc − F. (8.2)

This problem has the same form as (8.1) except that the marginal cost is changed
from m to m′ = m/k + t. Here yc is the number of people served, and the number of
books sold is yc/k.

If m′ < m (for instance if t = 0, m > 0, and k > 1), the following conclusions
follow concerning the shared solution relative to the original solution:

(a) Producer surplus is increased.

(b) More people are served.

(c) Consumers pay less per reading.

(d) Consumer surplus is increased.

Conclusion (a) follows because with m′ < m the producer could use the old solution
yb, and that itself would increase profit. Conclusion (b) is easy to see since when
marginal cost is lowered, a monopolist will increase supply. (For a formal proof, see
exercise 9.) Conclusions (c) and (d) follow from (b).

This analysis is highly simplified, but it indicates that, after the market adjusts,
sharing is not necessarily harmful to producers, and in fact producers as well as
consumers may benefit from it.

“CH08” — 2006/2/6 — 18:35 — page 127 — #14

� �

� �

S e c t i o n 8 . 5 E X E R C I S E S • 127

8.5 EXERCISES

WTPB

WTPA

12

0
0 7

FIGURE 8.11 Figure for
exercise 6.

1. (Price discrimination) A firm with constant marginal cost sells in two markets with demand
functions

p1 = A1 − a1q1, p2 = A2 − a2q2.

(a) Suppose the firm sets the same price in both markets, and selects that price to
maximize the combined profit. How much will it sell?

(b) Suppose the firm sets separate prices in the two markets, each set to maximize
profit in its corresponding market. How much in total will the firm sell?

(c) Show that the difference in profit in the two cases is

�π = (A1 − A2)2

4(a1 + a2)
.

2. (Some versions) Suppose there are three consumer types A, B, C equal in number. A certain
firm sells two products 1 and 2 and has zero marginal cost. The willingness-to-pay values
are wA = (6, 2), wB = (4, 3), wC = (9, 3), and consumers purchase at most one version.
What prices should the firm set for the two versions? What are the resulting CS, π , and SS?

3. (An attractive bundle) A firm sells two products, each of which has zero marginal cost.
There are four customers (or four customer types in equal amounts) with willingness-to-pay
combinations (40, 70), (70, 30), (10, 100), and (20, 40).

(a) What price p1 should the firm set for the first product to obtain maximum profit
for that product?

(b) What price p2 should the firm set for the second product?
(c) Suppose that the firm sells the two products together as a bundle with a fixed price.

What price pB should the firm set for the bundle?
(d) Compare the total profits for the bundled and unbundled cases.

4. (High-profit bundling) Show that bundling two items can sometimes increase producer
surplus by up to 50 percent as compared to no bundling.

5. (Extreme bundling) Suppose that a vendor sells articles for which all potential customers
have willingness-to-pay of either $0 or $10, each with probability 1/2. The customers’
valuations of a particular article are independent. The vendor’s marginal cost of an article
is zero. What is the best price per bundle and associated profit if the articles are sold in
bundles of 2?

6. (Alternate product competition) Firm A produces product A. Firm B produces an alternative
product B. Firm A sets the price of product A at pA = 3 and firm B sets the price of product
B at pB = 6.

The willingness-to-pay values for the two products are distributed evenly on the rectangle
shown in figure 8.11, with a total number of people equal to 7 × 12 = 84. (The exact
positions are not known. Each person’s position is random, but uniform over the rectangle,
and independent of everyone else’s.) The WTP values for the two products correspond
to a person’s coordinates in the rectangle. (A person at the upper-right-hand corner has
WTPA = 7 and WTPB = 12.)

A person might buy A or B, but never both.
(a) Show the region in the square corresponding to people who purchase A, and another

region for those who purchase B.
(b) Compute the areas of these two regions.
(c) Assuming zero marginal cost, find the expected producer surpluses πA and πB.

“CH08” — 2006/2/6 — 18:35 — page 128 — #15

� �

� �

128 • C h a p t e r 8 P R I C I N G S C H E M E S

7. (Block bundle) Refer to the blocking entry example. Ignoring the existence of a challenger,
what is the optimal price if the two items in the example are sold as a bundle (and not
separately)?

8. (How close to average?*) We wonder how many items must be bundled to obtain the major
benefits of averaging. Is it only a few, or a thousand? The averaging bundling method in
section 8.3 is based on the law of large numbers from probability theory; namely

x1 + x2 + · · · + xn

n
−→ x,

where the xi’s are the individual WTP values for items and x is the expected value of each
xi. The central limit theorem says that

x1 + x2 + · · · + xn

n
≈ x + N(0, σ/

√
n),

where N(0, σ) denotes a normal (Gaussian) random variable with mean zero and standard
deviation σ ≡

√
[E(x − x)2]. If each xi is a uniform random variable from 0 to $10, then

σ = $2.88. Suppose n items are bundled, and let p denote the price for the bundle. The
per-article profit for the bundle is approximately

π (n) = p
∫ ∞

p
e− n

2 (x−5)2/σ 2
dx.

The producer will choose p to maximize π (n). Make a table (using a spreadsheet optimizer)
of the optimal π (n) for n = 2, 4, 8, 16, 32, . . . until the result is close to $5. How many
items are needed to form a highly effective bundle?

9. (Club sharing) Consider the problems

max
y

v(y) − may (8.3a)

max
y

v(y) − mby, (8.3b)

where mb < ma. Show that the corresponding solutions ya and yb satisfy yb > ya. Hint:
First write the inequality that states that ya is better than yb for problem (8.3a), and then
write the equation that states that yb is better than ya for (8.3b). Combine.

8.6 Bibliography

A nice nontechnical (nonmathematical) discussion of methods for enhancing the
producer surplus of information goods is [1]. A mathematical treatment of the type
in the early part of this chapter is [2]. For general theory of economics and pricing
rules see [3] or the excellent treatment of nonlinear pricing [4]. The innovative
analysis of averaging in bundling was presented in [5]. The role of bundling in entry
blocking was presented in [6]. The theory of information sharing (as in a book club)
discussed in this chapter is based on [7].

References

[1] Shapiro, Carl, and Hal R. Varian. Information Rules. Boston: Harvard
Business School Press, Boston 1999.

“CH08” — 2006/2/6 — 18:35 — page 129 — #16

� �

� �

S e c t i o n 8.6 B I B L I O G R A P H Y • 129

[2] Varian, Hal R. “Versioning Information Goods.” Working paper, University of
California, Berkeley, March 13, 1997.

[3] Luenberger, David G. Microeconomic Theory. New York: McGraw-Hill, 1995.
[4] Wilson, Robert R. Nonlinear Pricing. Oxford: Oxford University Press, 1993.
[5] Bakos, Yannis, and Erik Brynjolfsson. “Bundling Information Goods: Pricing,

Profits, and Efficiency.” Management Science 45 (1999): 1613–30.
[6] Nalebuff, Barry. “Bundling.” Yale ICF Working Paper No. 99-14, November

22, 1999.
[7] Varian, Hal R. “Buying, Sharing, and Renting Information Goods.” Working

paper, University of California, Berkeley, August 5, 2000.

“CH07” — 2006/2/6 — 18:34 — page 91 — #1

� �

� �

P AR T II

CONOMICS
Strategies for Value

“CH07” — 2006/2/6 — 18:34 — page 92 — #2

� �

� �

“CH07” — 2006/2/6 — 18:34 — page 93 — #3

� �

� �

7
MARKETS

I
nformation has both micro and macro manifestations. At the micro level are bits
and bytes, codes and errors, capacity and compression. As shown in previous
chapters, the concept of entropy provides a basis for analysis of many of these micro

issues.
At the macro level are information products and services: books and movies,

software and music, art and theater, telephone service and cable, consulting and
research, insurance and guarantees. At this level, a high degree of organization and
order is more important than randomness, and quality is not measured in bits, but
more often in economic terms. It is products and services that people pay for.

From an economic perspective information products are fundamentally different
from most other commodities because it is easy to produce them in large quantity
from an initial version. In fact, in many cases the cost of producing additional copies
is essentially zero. Economists say that the marginal cost of an additional copy is
small.

Additionally, most information products can be used repeatedly. Books can be
read more than once, music CDs can be played often, and software can be used
everyday. Furthermore, most information products, including books, music, movies,
and computer files, can be easily duplicated without authorization and passed on
to other people. Yet the original creation of these products may entail considerable
expense. How then, with all these difficulties, can such products survive in a free
market? How can the creators be properly compensated?

We know that compensation does occur in practice, for these products and services
are available in the market. Sometimes compensation rests on copyright protection,
which essentially grants monopoly rights to the creator. There are other methods as
well; but one may well ask whether existing methods of distribution and compensa-
tion are socially efficient. Perhaps the exclusive right granted by copyright leads to
excessive prices, denying access to people who could benefit from the information.
Or perhaps the opposite holds, and copyright laws do not provide enough incentive
to produce some socially valuable materials.

93

“CH07” — 2006/2/6 — 18:34 — page 94 — #4

� �

� �

94 • C h a p t e r 7 M A R K E T S

Basic economic theory provides a framework for addressing these questions, allow-
ing one to systematically trace economic value delivered to consumers, firms, and
society as a whole. This chapter introduces this framework and applies it to some
of the questions raised in the previous paragraphs. The analysis provides general
conclusions, some of which may be surprising at first, and provides a stepping stone
for analysis of the innovative methods that have evolved for marketing information
products.

7.1 Demand

Consider a single individual contemplating the purchase of some item. Our interest is
primarily directed toward information items, but here the item can be anything that is
sold. Assume that the individual, referred to as a consumer, assigns a value w, termed
the willingness-to-pay, to the item. This value is the maximum amount the consumer
would pay to obtain the item. If the item is priced at or below w, the consumer will
purchase the item. If the price is higher than w, he or she will not purchase it. This
is the basic model of consumer behavior used in many economic analyses. We state
it here.

Consumer rule. A consumer has a willingness-to-pay (WTP) w for an item. If the
price p of the item satisfies p ≤ w, then the consumer purchases the item. If p > w,
the consumer does not purchase it.

Often it makes sense for a consumer to purchase more than one unit of the same
item. This is true of tomatoes, cans of Coca-Cola, or bags of cement. In some cases it
can be thought of as being true of books and CDs as well. For instance, someone may
wish to get several identical CDs for gifts or several copies of a software package for
a group.

When a consumer might possibly purchase more than one unit, he or she is consid-
ered to have a willingness-to-pay for each successive unit of that item. That is, there
is a willingness-to-pay w1 for the first unit, w2 for the second, w3 for the third, and
so forth. Usually, successive values decrease since each one assumes that previous
units have already been obtained.1 Under this assumption, the willingness-to-pay for
the second unit is less than the first, the third less than the second, and so forth. The
consumer is therefore characterized by the decreasing sequence of willingness-to-pay
values w1, w2, . . . , as shown in figure 7.1. If the price per unit is p, the consumer will
purchase the number i of units such that wi ≥ p and wi+1 < p.

Now return to the case where a consumer will acquire at most one unit of the
item, but consider several consumers, each with perhaps different willingness-to-pay
values. If these willingness-to-pay values are rank-ordered from greatest to smallest
and plotted, the result will again look something like that of figure 7.1. Hence the
aggregate willingness to pay is similar to that of an individual who might purchase
several units of the item.

1In some cases, the willingness-to-pay may increase after a consumer has experienced the product. This
is why, for example, some firms offer low-cost trials.

“CH07” — 2006/2/6 — 18:34 — page 95 — #5

� �

� �

S e c t i o n 7.1 D E M A N D • 95

1 2

w

3 4 5 6

FIGURE 7.1 Willingness-to-pay. The willingness-to-pay usually decreases with each
additional unit.

Continuous Approximation

When the item under consideration is a commodity, such as sugar, that can be divided
into arbitrarily fine units, it is assumed that the consumer assigns a willingness-to-
pay value for each tiny quantity increment �q. Letting �q go to zero, a marginal
willingness-to-pay function w(q) is defined. At quantity q, the willingness-to-pay for
an additional amount �q is w(q)�q. Figure 7.2 shows a typical marginal willingness-
to-pay function.

q

w

Marginal WTP (w(q)

Total WTP

FIGURE 7.2 Marginal willingness-to-pay. The marginal willingness-to-pay function w(q)
is defined so that w(q)�q is the WTP for adding �q to q. The total WTP for an amount q is
the area under the w(q) curve.

“CH07” — 2006/2/6 — 18:34 — page 96 — #6

� �

� �

96 • C h a p t e r 7 M A R K E T S

Again, a similar diagram applies when there are many consumers, even if each
would acquire at most a single unit. In that case the scale of q is considered to be large
compared to one unit, so that a single unit is essentially a tiny quantity. For example,
the available quantity of a certain CD album might be measured in tens or hundreds of
thousands, with each consumer buying at most one. The total willingness-to-pay for
an amount q is the sum of the willingness-to-pay values for every unit acquired. In the
continuous approximation, it is equal to the area under the marginal willingness-to-pay
curve, as shown in the figure. In equation form,

Total WTP(q) =
∫ q

0
w(s) ds. (7.1)

The relation between several individuals’ marginal willingness-to-pay functions
and that of the corresponding aggregate group is a bit complex, but there is a simple
case. Suppose that n people in a group all have identical marginal willingness-to-pay
functions wi(q). Then the marginal willingness-to-pay for the group of these n people
is the function2 wg(q) = wi(q/n) because an amount q for the group translates into
q/n for each person.

Demand Curve

If a fixed price p is established for all units of a commodity, then in aggregate the
group of consumers will purchase the quantity q, satisfying w(q) = p, where w(q) is
the aggregate willingness-to-pay. If the price is varied from a high price downward,
the total amount bought will vary as well, with more being purchased as the price is
lowered. The relation w(q) = p is termed the demand curve, since implicitly it gives
the quantity purchased as a function of price.

Consumer Surplus

Suppose a fixed price p is set per unit and that w(q) is the aggregate marginal
willingness-to-pay function. As stated above, the amount q will be sold that sat-
isfies w(q) = p. For most of the units purchased the marginal willingness-to-pay will
be higher than p. Hence, consumers as a group pay less than it is worth to them. For
instance, many consumers might be willing to pay $30 for a new CD; if it is priced
at $12, those consumers get $18 in extra value. This extra value is termed consumer
surplus. In terms of the marginal willingness-to-pay curve, the total consumer surplus
is equal to the area under the curve and above the horizontal line at p, as illustrated
in figure 7.3. As a general rule, consumer surplus is the difference between the total
willingness-to-pay for a quantity and the amount paid.

2It is not equal to nwi(q/n). We have WTPg(q) = ∫ q
0 wg(q′)dq′ = ∫ q/n

0 nwi(q
′)dq′. Differentiation gives

wg(q) = wi(q/n).

“CH07” — 2006/2/6 — 18:34 — page 97 — #7

� �

� �

S e c t i o n 7.2 P R O D U C E R S • 97

q

w

Marginal WTP w(q)

Total amount paid

Consumer surplus

p

FIGURE 7.3 Consumer surplus. The extra value to consumers, above the price paid, is the
consumer surplus.

7.2 Producers

Producers, too, are concerned with value. However, they are on the opposite side of the
economic equation, seeking profit that depends on payments from consumers and on
production costs. Accordingly, to analyze producers’ actions, one must characterize
their costs.

The cost of production of an item is a function of how many units are produced. A
typical cost function for information products is shown in figure 7.4. There is fixed
cost associated with merely getting ready for production. In book publication, for
example, the fixed cost includes the cost of manuscript preparation, editing, art work,
typographical composition, and press setup. It may also include marketing costs.
Once production is begun, there are additional costs that depend on how many units

q

cost

F

FIGURE 7.4 Cost function. Total cost increases with the quantity q. There is a fixed cost
that must be paid at any nonzero production level.Then costs tend to rise smoothly.

“CH07” — 2006/2/6 — 18:34 — page 98 — #8

� �

� �

98 • C h a p t e r 7 M A R K E T S

are produced. For a book these are press charges, paper costs, bindery costs, and
shipping. Total cost increases as additional units are produced.

The incremental cost associated with increasing production by a small amount is
termed the marginal cost, and is usually denoted m(q). Formally, if production is
increased from the level q to q + �q, the increase in cost is m(q)�q.

The marginal cost function m(q) can be viewed as defining the cost of each suc-
cessive unit. In book production, the cost of the first copy is likely to be very large
even after the fixed setup costs, while the cost of a second copy may be smaller; the
cost of a third copy smaller yet. Generally the cost of an additional copy (the marginal
cost) decreases as the number of units increases, finally reaching a relatively small
value associated with large production runs and efficient distribution. Indeed, infor-
mation products are typically characterized by high fixed cost followed ultimately by
low marginal cost at high production levels. Decreasing marginal cost is reflected in
figure 7.4 by the flattening of the cost curve as q is increased.

Marginal cost is the slope of the total cost curve c(q). That is,

m(q) = c′(q). (7.2)

This can be turned around to obtain

c(q) = F +
∫ q

0
m(s)ds. (7.3)

The fixed cost F is c(0).
Decreasing marginal cost is shown more explicitly by the marginal cost curve,

illustrated in figure 7.5. The total cost is the fixed cost plus the integral from 0 to q of
the marginal cost, as expressed in (7.3).

Production processes for many traditional commodities, such as wheat, are char-
acterized by marginal cost curves that increase rather than decrease, because at high
levels of production less efficient resources (such as poor land) must be employed.
This difference in the nature of marginal cost curves is one reason that information
products are economically distinct from many traditional commodities.

q

Marginal cost curve

Total cost (above fixed cost)

FIGURE 7.5 Cost. The marginal cost is the cost for an additional unit. The total cost is the
sum, or integral, of all marginal costs plus the fixed cost.

“CH07” — 2006/2/6 — 18:34 — page 99 — #9

� �

� �

S e c t i o n 7.3 S O C I A L S U R P LU S • 99

Constant Marginal Cost

Cost functions of information products frequently can be approximated by constant
marginal cost, written as m(q) = m. In that case the total cost function is

c(q) = F + m · q. (7.4)

Because production of many information products entails extremely low marginal
cost, it is sometimes assumed as an approximation that m = 0. For example, the
marginal cost of a CD is a fraction of a cent, and that of a hardback book is a few
dollars. The marginal cost of an Internet message is practically zero.

Profit and Producer Surplus

q

p

m
π

FIGURE 7.6 Profit. Prod-
ucer surplus is the shaded
area representing the
price minus the marginal
cost times the quantity.

Producers are interested in profit: the amount of money received minus the cost of
production. If the total quantity sold is q and all units are sold at price p, then the total
amount received is p · q. Hence the total profit is

Profit = p · q − c(q).

If marginal cost is constant, as is typical of information products, then c(q) = F+m·q,
and profit is

p · q − F − m · q = (p − m) · q − F.

The producer surplus π is the part of profit that does not include the fixed cost
F. In the case of constant marginal cost the producer surplus is π = (p − m)q. This
portion of the profit is shown as the shaded area in figure 7.6. It is the total amount
received by producers beyond what they would receive at marginal cost.

Typically, both consumers and producers try to maximize their respective surplus
measures, and of course these objectives are to a large extent conflicting.

7.3 Social Surplus

Consumer surplus is value to consumers, and producer surplus is value to producers.
The sum of these is termed social surplus; it is total value to all.3 This definition of
social surplus is general in the sense that it is independent of how transactions are
carried out: through competition, monopoly, or individual negotiation. Social surplus
is associated with each transaction and then summed, exactly the way the consumer
and producer surpluses are associated with each transaction and summed.

The most important case is when all items are sold at a common price p. Consumer
and producer surplus are then equal to the areas defined by the marginal willingness-
to-pay curve and marginal cost curve. Figure 7.7 shows the situation when marginal
cost is a constant m.

The quantity sold at price p is determined by the demand curve (identical to the
marginal willingness-to-pay curve). Consumer surplus is therefore the area of the

3If payments are made to the government (as from taxes), these would be added to the definition of social
surplus.

“CH07” — 2006/2/6 — 18:34 — page 100 — #10

� �

� �

100 • C h a p t e r 7 M A R K E T S

q

Marginal WTP

Social surplus

p

m

CS

π MC

FIGURE 7.7 Social surplus. At a fixed price p, consumers purchase a quantity q such that
p = marginal WTP; that is, p is determined by the demand curve. The associated consumer
surplus is the area between that curve and the horizontal line at p. Producer surplus π is
equal to the area of the rectangle of height p − m and width q. Social surplus is the sum of
these two.

shaded triangular-shaped region above the horizontal line at p and under the demand
curve. Producer surplus π = p · q − m · q is the area of the shaded rectangle. Hence
social surplus is the total of the two shaded areas.

From the perspective of society, a transaction is valuable if the associated social
surplus is positive. It does not matter whether the value accrues to consumers or to
producers since (1) firms are owned by individuals and firms’ profits are distributed to
the owners, and (2) value to either consumers or producers can, at least in theory, be
redistributed through tax mechanisms. On the other hand, from the same perspective,
a product is socially valuable if the associated social surplus is greater than the fixed
cost, for then the net gain to society is positive.

7.4 Competition

Most goods and services are sold through competition, but competition is an
exceedingly complex process, taking many forms. In order to analyze economic

issues, economists idealize the complex process, simplifying
it while capturing its primary characteristics.
In an idealized form of competition, termed perfect
competition, there is a single price p for all items of a given
kind. This price is determined in ways that are difficult or
impossible to model, but for purposes of analysis economists
often simply assume that there a common price determined
by market forces.
It is also assumed that each producer’s and consumer’s market

participation is small compared to the size of the overall mar-
ket, and there is no collusion. It follows that each party is a price taker in the sense
that any individual’s or firm’s market action does not affect the price.

“CH07” — 2006/2/6 — 18:34 — page 101 — #11

� �

� �

S e c t i o n 7.5 O P T I M A L I T Y O F M A R G I N A L CO S T P R I C I N G • 101

For our purposes, we also assume that all producers have identical cost structure,
with constant marginal cost.

These idealizing assumptions are sufficient to draw a significant conclusion about
the nature of the competitive price p.

Marginal cost pricing. Under perfect competition, if a product is produced, its price
is equal to its marginal cost.

Proof: As stated, marginal cost is assumed to be a constant m, although the con-
clusion is true more generally. Suppose first that p < m. Then no producer will
produce because to do so would entail an immediate loss that could be avoided by
not producing. Hence, it follows that p ≥ m.

Suppose next that p > m. Then any producer could offer the item at a lower
price p′ < p and virtually all consumers would move their business to that producer,
increasing that producer’s profit enormously. Other producers would react by lowering
their price below p′, and this would continue until p = m.

Marginal cost pricing has important implications for information products. If price
equals marginal cost, producer surplus is zero, which means that actual profit, account-
ing for the fixed cost, is negative. Hence, a typical information product sold in a
competitive environment will garner strictly negative profit. Who would want to
produce under these conditions?

Competition is viable for goods with increasing marginal cost, such as wheat,
because profits can be made. But, when marginal cost is constant (or worse yet,
decreasing), as is the case for most information products, the overall profit associated
with marginal cost pricing is negative.

7.5 Optimality of Marginal Cost Pricing

Competition, with its attendant marginal cost pricing, is not desirable from a pro-
ducer’s perspective, but it is highly desirable from a social perspective. When a product
is sold at a common fixed price p per unit, setting that price equal to marginal cost
yields the maximum possible social surplus. This optimality result can be established
algebraically or by the simple graphical analysis shown in figure 7.8.

The graphical analysis is explained in the figure caption. The algebraic derivation
is also straightforward. If consumers select q such that w(q) = p, it follows that

CS(q) =
∫ q

0
(w(s) − w(q))ds

π (q) = (w(q) − m)q

SS(q) =
∫ q

0
w(s)ds − mq.

Setting the derivative of the social surplus with respect to q to zero produces

w(q) = m.

“CH07” — 2006/2/6 — 18:34 — page 102 — #12

� �

� �

102 • C h a p t e r 7 M A R K E T S

q

Marginal WTP

Social surplus

p

m

CS

π A MC

FIGURE 7.8 Maximum social surplus. If the price p in the figure is reduced to m, the
associated social surplus will increase by the area of the small triangular region A. If the
price is reduced further, to the level of dashed line, consumer surplus will increase, but
producer surplus will be negative and equal in magnitude to the area defined by the
dashed rectangle. The net effect is to reduce social surplus. The maximum social surplus is
obtained at p = m, although producer surplus is zero at that point.

Since p = w(q), the price is p = m, which is marginal cost pricing. We reach the
following conclusion about optimal pricing.

Optimality of marginal cost pricing. In a single-price system, social surplus is
maximized when price is equal to marginal cost.

It is clear that there is an economic dilemma associated with constant (or decreas-
ing) marginal cost. Perfect competition is optimal from a social perspective, but yields
negative profit to producers. How then are books, music, motion pictures, software,
or the vast assortment of other information products to be sold?

7.6 Linear Demand Curves

For purposes of analysis, it is convenient to use demand curves—the marginal cost
curves—that are downward sloping straight lines. A straight line is a reasonable
approximation in many cases, and it occurs naturally in some situations.

Consider a product that is either purchased as a unit or not at all. Nobody purchases
more than one unit. For instance, the product may be a book, a magazine subscription,
or a software program. With reference to this product, a consumer is characterized
by his or her single willingness-to-pay value. The collection of all consumers is
accordingly characterized by the distribution of these WTP values.

Assume that there are many consumers; so many that it is reasonable to describe
their WTP values as distributed continuously on a value axis. A special case of such
a distribution is shown in figure 7.9(a). This figure implies that the WTP values are

“CH07” — 2006/2/6 — 18:34 — page 103 — #13

� �

� �

S e c t i o n 7.7 CO P Y R I G H T A N D M O N O P O LY • 103

A

Density

WTP

1/a

(a) WTP density

A/a

p

q

A

(b) Demand curve

FIGURE 7.9 Linear demand from uniform density. A uniform density of WTP values
implies a linear demand curve.

distributed uniformly between 0 and A. For instance, one-fourth of the people have
WTP less than or equal to A/4. The total number of people in any �W range of WTP
is �W/a. The total number of people is A/a. For example, the WTP for a book may
range between $0 and A = $40, and the total number of people considered might be
A/a = 40/a = 1 million, and hence a = 4 × 10−5.

The uniform distribution of WTP values leads to the linear demand curve of
figure 7.9(b). To see that, consider first the lowest price that can be set such that
no one will buy the item. Clearly, that price is A, for no one has a WTP figure higher
than that. Hence the demand curve intersects the price axis at p = A. Next, it is easy
to see that the maximum quantity that can be sold (at p = 0) is A/a since that is the
total number of people in the market.

The demand curve moves down linearly between the p = A and q = A/a units.
This is because at, say p = A/4, one-fourth of the people will have WTP greater than
or equal to p and hence, exactly A/4a people will buy.

7.7 Copyright and Monopoly

Before the advent of the printing press, copying of manuscripts was tedious but rarely
of legal concern. However, in 567 an Irish monk copied from a neighboring monastery
the abbot’s Psalter without permission. When the monk refused to return the copy,
the abbot appealed to the king, who ordered the copy returned.

The printing press was introduced into England in 1476 and that same year a
law was established that required printers to license books they printed. This law
effectively granted a monopoly to printers, not to authors.

The first real copyright law was the Statute of Anne of 1710, which established
the principles that the copyright belongs to the author and that the term of protection
is limited.

“CH07” — 2006/2/6 — 18:34 — page 104 — #14

� �

� �

104 • C h a p t e r 7 M A R K E T S

These principles were embodied in the U.S. Constitution with the phrase, “the
Congress shall have power . . . to promote the progress of science and useful arts,
by securing for limited times to authors and inventors the exclusive right to their
respective writings and discoveries.” The term of copyright was originally set by
Congress in 1790 as 14 years plus a possible renewal of 14 years. U.S. copyright
law has subsequently been modified several times, but the latest version is embodied
in the Sonny Bono Copyright Term Extension Act, which extended copyright pro-
tection to life of the author plus 70 years, and for works made for hire to 95 years
(which many say was so that the Disney corporation could maintain control of Mickey
Mouse).

Copyright law is intended to increase social welfare (that is, social surplus) by
enabling authors and producers to make profit sufficient to cover the fixed costs
of socially desirable products. It is fair to ask, however, to what extent such law
resolves the dilemma inherent in information products: that competition leads to zero
producer surplus and hence no incentive to expend initial resources for creation of an
information product. Fortunately, there is a nice answer to this question (at least for
the single-period case), which can be deduced by simple graphical reasoning or by
elementary calculation.

A monopolist has the power to set the price of a product, rather than being forced
to accept the price set by the market. An astute monopolist will therefore set price
to maximize profit. To see what this entails, first assume, for simplicity, that demand
is linear, as shown in figure 7.10. Also assume that marginal cost is a constant,
m. The monopolist can select any price, and the corresponding quantity will be

q

p

m

π

(A + m)/2

(A − m)/2a (A − m)/a A/a

FIGURE 7.10 Monopoly pricing. To maximize profit when the demand curve is linear, a
monopolist with constant marginal cost sets the quantity at one-half the quantity asso-
ciated with marginal cost pricing. The producer surplus is then one-half of the maximum
possible social surplus. The total social surplus at that price is three-fourths of the maxi-
mum possible. However, only half as many consumers are served as would be under perfect
competition.

“CH07” — 2006/2/6 — 18:34 — page 105 — #15

� �

� �

S e c t i o n 7.7 CO P Y R I G H T A N D M O N O P O LY • 105

determined by the demand line. The associated producer surplus π is the area of
the rectangular region bounded by the vertical axis, the marginal cost line, and the
demand curve.

The quantity that maximizes profit is one-half the quantity associated with marginal
cost pricing. This choice is shown in the figure.

Using calculus, it is easy to prove that the halfway point is best. Let the demand
curve be p = A − aq, which means that A is the largest price point (with q = 0) and
A/a is the largest quantity point (with p = 0). The quantity associated with perfect
competition is the quantity where p = m, leading to m = A − aq, or equivalently,
q = (A − m)/a.

At an arbitrary price p the producer surplus is

π = (p − m)q = (A − m − aq)q.

Setting the derivative of this to zero yields

A − m − 2aq = 0,

or equivalently

q = (A − m)/(2a),

which is the halfway point on the q axis to the quantity associated with marginal cost
pricing. The corresponding p is p = A − 1

2 (A − m) = 1
2 (A + m).

The producer surplus associated with this solution is exactly one-half the area
under the demand curve and above the marginal cost line. Hence the producer surplus
is one-half the maximum possible social surplus. The consumer surplus is half of the
producer surplus. The total social surplus at this solution is therefore three-fourths
of the maximum possible. The quantity produced is only one-half of what would be
produced under perfect competition. In the case where each consumer buys at most
one unit, this means that only half as many people are served as would be under
perfect competition.

This result has important social implications. A product is socially desirable if the
potential social surplus exceeds the fixed cost. From an economic perspective, society
should encourage the production of such products. Competition does not provide that
encouragement because marginal cost pricing yields zero producer surplus and hence
negative net profit.

If producers are granted monopoly rights, they can earn producer surplus equal to
one-half the potential social surplus. If fixed costs are less than this, producers will
produce. However, if fixed costs are greater than one-half the potential social surplus,
a monopolist will have no incentive to produce, even if the potential social surplus
exceeds the fixed cost. Only products with fixed cost less than one-half the potential
social surplus will be produced. The granting of monopoly rights is therefore only

“CH07” — 2006/2/6 — 18:34 — page 106 — #16

� �

� �

106 • C h a p t e r 7 M A R K E T S

a partial solution to the problem of encouraging production of useful products. This
result is summarized below.

Monopoly profit. When demand is linear and marginal cost is constant, a monopo-
list can collect producer surplus equal to one-half of the potential social surplus. Only
one-half of the quantity that would be sold under marginal cost pricing will be sold
under monopoly.

Nonlinear Demand

The results about monopoly can be generalized to demand curves that are nonlinear
but convex as in figure 7.11: starting out nearly vertical and gradually becoming more
horizontal. Many real demand curves are of this shape.

The optimal combination of price and quantity is some point on the curve, and
the producer surplus is equal to the area of the rectangle defined by that and the
marginal cost line. Suppose at that point a line tangent to the curve is constructed
as shown in the figure. From the analysis for a linear demand curve, we know that
the area of the rectangle is at most one-half the area of the triangle defined by the
tangent line down to the marginal cost. It is easily seen that the area of this triangle
is at most equal to the area under the curve above the marginal cost. Hence, producer
surplus is no more than one-half the potential social surplus, just as in the linear
case.

This general result implies that other methods should be sought to encourage the
development of information products that are beneficial to society but which have
large fixed cost.

q

p

m

π

Demand curve

FIGURE 7.11 Monopoly profit. When the demand curve is convex, a monopolist can earn
at most one-half the available consumer surplus, and the quantity sold is less than one-half
that which would be sold under marginal cost pricing.

“CH07” — 2006/2/6 — 18:34 — page 107 — #17

� �

� �

S e c t i o n 7.8 OT H E R P R I C I N G M E T H O D S • 107

7.8 Other Pricing Methods

A variety of pricing methods have been proposed to encourage the production of
socially beneficial products that could not otherwise withstand the pressure of com-
petition. One alternative is for the government to fund the development of these
products and make them available at their marginal cost. This funding can take the
form of government laboratories, university research grants, or business tax cred-
its for research and development. Two other useful methods are discussed in this
section.

Regulated Monopolies

On the one hand, competition is infeasible as a practical matter when marginal costs
are constant or decreasing. On the other hand, monopoly does not yield maximum
social surplus. An alternative lying between these two extremes is the regulated
monopoly. In this arrangement a regulating agency explicitly sets price to maximize
social surplus subject to the constraint that fixed costs are recovered.

The regulated solution reduces the price to the point where the producer surplus
is just equal to the fixed cost F. This maximizes consumer surplus while providing
an incentive to produce.

Regulated monopolies are common arrangements for postal services and energy
production, but are rare in information products, partly because it is difficult to
determine demand curves and costs.

Voluntary Payment

Some information products such as public television, church services, street perfor-
mances, and some teaching are supported by voluntary contributions. To see how
this method of support fits into the general framework, suppose for simplicity that
marginal cost is zero and that all consumers of a product voluntarily contribute an
amount equal to one-half of their willingness-to-pay. The resulting producer surplus
is then equal to the shaded triangular region indicated on the diagram of figure 7.12.
It is easy to see that this producer surplus is one-half of the maximum possible social
surplus. This is exactly the profit that a monopolist would obtain. However, with vol-
untary contributions, the total social surplus is the entire area below the demand curve.
This is better than under monopoly, where the social surplus is only three-fourths this
amount. Furthermore, everyone is served under a voluntary system. Hence, if the
same profit can be generated under either system, the voluntary system is preferable
to a monopoly.

In practice, of course, consumers may contribute less than half their consumer
surplus, owing to the free rider effect: that is, without contributing themselves,
consumers can obtain the benefit of everyone else’s contributions. Low contributions
considerably reduce the producer surplus, but the social surplus is still maximal
provided that contributions are sufficient to cover fixed cost.

Other useful mechanisms for pricing information products are discussed in the
next chapter.

“CH07” — 2006/2/6 — 18:34 — page 108 — #18

� �

� �

108 • C h a p t e r 7 M A R K E T S

q

p

π

Demand

Contributions

FIGURE 7.12 Voluntary contributions. The diagram assumes that marginal cost is zero.
When contributions are voluntary, everyone is served, and total social surplus is equal
to the maximum possible. If the average rate of contribution is one-half of a consumer’s
willingness-to-pay, the producer surplus is equal to that which would be obtained by a
monopolist.

7.9 Oligopoly

There are situations intermediate between perfect competition (with many producers)
and monopoly (with one producer). A market in which there are a limited number of
producers is an oligopoly. The simplest is a duopoly, where there are two producers,
and we shall study that form first.

Assume that there are two producers, each with marginal cost m. If they produce
quantities q1 and q2, respectively, their corresponding producer surpluses are

π1 = p(q1 + q2)q1 − mq1 (7.5a)

π2 = p(q1 + q2)q2 − mq2. (7.5b)

The profit to each producer depends, therefore, not only on its own production level
but also on that of the other producer. Neither producer can maximize its producer
surplus without knowing what the other will do.

One way they might proceed is by collusion, agreeing on a total quantity and then
dividing that among themselves. The best total quantity would be the monopoly quan-
tity. The oil cartel OPEC attempts to operate this way. However, within a regulated
economy such collusion is not allowed.

A more realistic assumption is that suggested by the economist Augustin Cournot
in 1838. In a Cournot equilibrium each producer maximizes its own profit assuming
that the quantity produced by its competitor is fixed, but fixed at what would be that
competitor’s optimal quantity. In other words, the producers maximize separately but
simultaneously.

“CH07” — 2006/2/6 — 18:34 — page 109 — #19

� �

� �

S e c t i o n 7.9 O L I G O P O LY • 109

To work this out in detail, assume a linear demand function p(q) = A − aq. The
producer surpluses (7.5) are then

π1 = (A − a(q1 + q2))q1 − mq1 (7.6a)

π2 = (A − a(q1 + q2))q2 − mq2. (7.6b)

The first of these is maximized by setting its derivative with respect to q1 to zero.
Likewise, the second is maximized by setting its derivative with respect to q2 to zero.
The result is the two simultaneous equations

A − m − 2aq1 − aq2 = 0 (7.7a)

A − m − 2aq2 − aq1 = 0. (7.7b)

These are easily solved by noting that symmetry implies q1 = q2. Thus

q1 = A − m

3a
, q2 = A − m

3a
.

The corresponding price can be found to be

p∗ = A + 2m

3
.

This solution is illustrated in figure 7.13.
Analysis of an oligopoly with n identical competing firms is similar to that for a

duopoly. With the same demand function as above and marginal cost m, the optimal
quantity for each firm is

qi = A − m

(n + 1)a
,

with corresponding price

p∗ = A − n(A − m)

n + 1
.

Notice that p∗ → m as n → ∞, which is marginal cost pricing, corresponding to
perfect competition.

The concept of a Cournot equilibrium was extended by the brilliant mathematician
John Nash4 to a basic result in game theory involving several players. The players
each have payoff functions that may depend on the actions of all players. The Nash

4Nash became schizophrenic while quite young, but he was later awarded a Nobel Prize for his work
in game theory. His life is reported in the best-selling biography and popular motion picture A Beautiful
Mind.

“CH07” — 2006/2/6 — 18:34 — page 110 — #20

� �

� �

110 • C h a p t e r 7 M A R K E T S

q

p

m

π1

(A − m)/3a (A − m)/a A/a

A

p*

π2

FIGURE 7.13 Duopoly. In a duopoly of identical producers, the equilibrium price p∗
is lower than under monopoly. Hence the overall producer surplus is less than under
monopoly, but social surplus is greater.

equilibrium, like its predecessor the Cournot equilibrium, is the result of simultaneous
individual optimization.

Example 7.1 (Entry blocking). Suppose a monopolist in a certain product is chal-
lenged by a potential entrant to the market. How can the monopolist discourage such
entry? One strategy is for the monopolist to lower price, so that entry will be less
attractive.

The monopolist will not want to reduce his or her profit below that which
would hold under duopoly, but that is a good benchmark for the strategy. Assume
a linear demand function p(q) = A − aq and zero marginal cost. The price p∗
under duopoly would be p∗ = A/3, and the quantity produced by each producer
would be A/3a. Hence the producer surplus to the firm under duopoly would
be π1 = A2/9a.

As a monopolist, the firm can achieve this same surplus at a q satisfying

π = p(q)q = (A − aq)q = Aq − aq2 = A2/9a.

The solution to this quadratic equation is

q = 1

2a

[
A ±

√
A2 − 4A2/9

]
= A[3 ± √

5]
6a

.

Of the two solutions, the one with a plus sign is the one needed for blocking
(why?). This gives q = .873A/a. The corresponding price is p = .127A as com-
pared to p∗ = .33A under duopoly. This low price may discourage the potential
entrant.

“CH07” — 2006/2/6 — 18:34 — page 111 — #21

� �

� �

S e c t i o n 7 . 1 0 E X E R C I S E S • 111

7.10 EXERCISES

1. (Sharing the cost∗) Two people with identical preferences for e-services decide that they
will each purchase individual levels of service, then place a joint order for the total and
share the cost equally (as is often done when dining out with friends). Specifically, each
person has marginal willingness-to-pay of w(x) = 10−x for service level x. There is a fixed
unit cost of $6.00 per unit level of service. The marginal production cost of the service is
$5.00. (By symmetry, each person purchases the same amount x.)

(a) If the two people did not share the cost, but each paid for his or her own order,
how much would each purchase? What is the consumer surplus for each person?
What is the profit to the service provider for each person? What is the total social
surplus per person?

(b) Under the sharing arrangement, how much will each purchase?
(c) What is the consumer surplus of each person in this arrangement?
(d) What is the profit to the service provider for each person, and what is the total

social surplus per person?

2. (Superior product) Currently, the industry for delivering complex financial data is highly
competitive with a marginal cost of M. A firm has just devised a new technology for
delivering this data at a marginal cost of m < M. The firm can either enter the market
directly on its own, or license the technology by charging other firms a fixed fee for each
sale they make. Show that the firm can make at least as much by licensing as by entering
the market on its own.

3. (Two markets) A book publisher sells in two distinct markets: A and B. The marginal cost
of books is essentially zero. The demand functions in the two markets are different. They
are pA = 600 − 3qA and pB = 400 − 2qB, respectively.

(a) If the publisher uses the same price in each market, what is the effective demand
function for the total? Restrict attention to pT < 400. (Hint: it is of the form
pT = T − tqT .)

(b) Under the conditions of part (a), what is the total profit of the publisher?
(c) Now assume that the publisher is able to discriminate by charging differ-

ent prices in the two markets A and B. What is the maximum profit to the
publisher?

4. (Taxes) Suppose that an information product is produced with zero marginal cost and sold
with perfect monopoly power. Each consumer purchases either one or zero units of the
product. The overall demand curve is p = A − aq. However, the government taxes the
product an amount t dollars per unit. The tax is paid by the producer, so that p is the actual
price paid by consumers.

(a) Find the amount sold and the selling price.
(b) Find the producer surplus, consumer surplus, and total tax revenue received by the

government. Call the sum of these T .
(c) How does T compare with the total social surplus S that would be obtained without

taxes?

5. (Copyright term*) Recently the Supreme Court upheld Congress’s right to extend the term
of basic copyright protection to 95 years. There has been a great deal of debate about
whether this serves the public welfare. This exercise suggests a (highly simplified) model
of the issue.

“CH07” — 2006/2/6 — 18:34 — page 112 — #22

� �

� �

112 • C h a p t e r 7 M A R K E T S

q

p

A

FIGURE 7.14 Yearly rate of demand for copyrighted material.

Suppose that the yearly rate of demand for a creative work is constant and follows the linear
curve shown in figure 7.14. The area in the triangular region is A. The marginal cost of
production is zero.

It follows that the yearly rate of producer surplus, if the product is actually produced, is
π = A/2, and if the producer values future surpluses by discounting at the rate r, the total
surplus to time T is

π =
∫ T

0
π (t)e−rtdt = A

2r

(
1 − e−rT

)
.

The originator will produce the item only if the producer surplus exceeds the fixed cost F
of creation. Assume that over the vast assortment of information products with the demand
rate of the figure, the cost F is uniformly distributed between 0 and some maximum M.
Hence the probability that a given work will be created and marketed is proportional to
the total available producer surplus π . Likewise, the expected value F of the fixed cost
given that this cost is less than π is π/2. Argue that the expected net benefit to society is
proportional to

B = {(SS over 0 ≤ t ≤ T) + (SS over t > T) − F} · prob(π ≥ F).

(a) Assuming that society uses the same discount rate r, give an explicit expression
for B (to within a constant multiple).

(b) Show that there is no finite time that maximizes the social objective.
(c) Suppose that the actual demand curve slopes outward at the lower end as indicated

by the dashed curve so that the total area under the curve is ρA where ρ > 1. Find
the optimal value of T .

(d) Find T when ρ = 1.2 and r = .05.
(e) What is the limit of T as ρ → ∞ in terms of r? Compare with the original 14-year

term set by Congress in 1790.

6. (Asymmetric duopoly) The demand curve for a certain product is

p = 10 − q.

Two firms operate as a duopoly in this market. Firm 1 has constant marginal cost m1 = 2
and firm 2 has constant marginal cost m2 = 3. If the firms operate as a Cournot equilibrium
(each firm maximizing profit while assuming the other firm’s output is fixed), what are their
respective output levels q1 and q2?

“CH07” — 2006/2/6 — 18:34 — page 113 — #23

� �

� �

S e c t i o n 7.11 B I B L I O G R A P H Y • 113

7. (Cartel cheating) Suppose that a product has a demand curve p = A − aq and the marginal
cost is zero. Suppose also that a cartel of two identical firms controls this product.

(a) If the two firms act together and divide the market equally, what is the maxi-
mum profit (ignoring fixed costs) that each firm can obtain, and the corresponding
production quantities?

(b) Suppose that one firm faithfully produces the quantity of part (a). Show that the
other firm has an incentive to break the agreement by producing more than agreed
to. What is the maximum profit this second firm can obtain?

8. (Convex demand*) Suppose the demand function for a certain information product is

p = 10 − 7q + q2.

However, there is a maximum quantity q = 2 that the market can absorb. The product is
manufactured with zero marginal cost.

(a) What is the quantity that would be sold under perfect competition?
(b) What is the quantity that would be sold if the firm had a monopoly in that product?

7.11 Bibliography

Most of the material in this chapter is included in the subject of intermediate microe-
conomics. Three texts on the subject (in order of increasing difficulty) are [1], [2], [3].
A theory of the economics of information, including the material on the advantage of
copyrights, is presented in [4]. [5] is a biography of John Nash.

References

[1] Pindyke, Robert S., and Daniel L. Rubinfeld. Microeconomics. 2nd ed., New
York: Macmillan, 1992.

[2] Varian, Hal R. Intermediate Microeconomics. New York: Norton, 1987.
[3] Luenberger, David G. Microeconomic Theory. New York: McGraw-Hill, 1995.
[4] Bell, Hanan S. “A New Approach to Incentives for Information Creation

and Distribution.” Ph.D. diss. Department of Engineering-Economic Systems,
Stanford University, May 1989.

[5] Nasar, Sylvia. A Beautiful Mind. New York: Touchstone, 1998.

“CH06” — 2006/2/6 — 18:33 — page 70 — #1

� �

� �

6
ERROR-CORRECTING CODES

E
rrors inevitably occur during the transmission of information, arising in electronic
circuits subject to heat or outside disturbance, during audio reception near back-
ground noise, while light waves pass through murky media, when blurry type

is read, as automatic transcription fails, and in the course of many other modes of
information transmission. Errors are ubiquitous, but it is possible to guard against
them and to some extent even correct them automatically. How to most effectively
accomplish this was the central issue that concerned Shannon when he embarked on
the development of his theory of communication.

This chapter addresses the issue of code character errors, errors that cause a given
character to be received as different from that which was sent. The frequency of these
errors depends on the nature of the physical environment, and is often determined
by the signal-to-noise ratio—the power that carries the signal divided by the power
associated with noise. For example, if a binary message is sent electronically, with a
1 being represented by a voltage of one volt and a 0 being represented by zero volts,
the receiver is likely to observe some intermediate value such as .82 volts. Using a
nearest-neighbor criterion, the receiver might consider anything over .5 volts to be
the binary signal 1 and anything less than .5 volts to be the binary signal 0. If the noise
level is small on average, most transmissions will be interpreted correctly. However,
there generally remains a chance that an intended 1 will be received as .47 volts and
hence interpreted incorrectly as a 0. The probability of such an error is related to the
magnitude of the signal-to-noise ratio.

There are two principal ways to increase the reliability of communication. One
is to improve the reliability of the physical environment by increasing the signal-to-
noise ratio. That is why, for example, audiophiles purchase high-power amplifiers,
why noise filters are installed in telephone lines, why you want a quiet room when
talking on the telephone—all to improve the signal-to-noise ratio.

The second way to improve communication reliability is to use a coding scheme
that is tolerant of errors; a coding scheme that allows the receiver to automatically
detect errors and correct them. This chapter is the study of such coding methods.

70

“CH06” — 2006/2/6 — 18:33 — page 71 — #2

� �

� �

S e c t i o n 6.1 S I M P L E CO D E CO N C E P T S • 71

These methods are used in daily life, although usually we are unaware of their
behind-the-scenes work. But nevertheless, we rely on them in data transmission, in
codes for identifying or cataloging books, and in audio and visual equipment.

6.1 Simple Code Concepts

There are some simple techniques for improving the reliability of codes that are in
common use. Their study introduces basic concepts that are used in more elaborate
schemes.

Repetition Codes

If there are two symbols A and B in a source alphabet and binary coding is used,
the straightforward way to send them is to assign, say, 0 to A and 1 to B. This is
straightforward but has no error protection.

Protection can be provided easily with the repetition code, discussed briefly in
chapter 2. In the simplest version, each code character is repeated, so that 0 is replaced
by 00 and 1 by 11. If a single error occurs, the receiver might receive, for example,
01 and could detect the presence of an error. The receiver would, however, not be
able to correct the error, since 01 could have been 00 or 11. More repetition improves
reliability.

Check Sums

A more efficient means of error detection and correction is obtained by the use of
parity check sums.

A parity check bit is a bit adjoined to a binary codeword that assures that the
sum of the bits (in modulo 2 arithmetic) is a fixed value. For example, a bit can be
adjoined to the codeword 0110 to make the sum zero. The new word is 01100, where
the underlined bit is the parity bit. The sum of the individual bits is zero (in mod 2
arithmetic), or equivalently, there is an even number of 1’s. If the codeword were
1110, the same scheme would produce the new word 11101 to keep the number of
1’s even. This scheme is termed even parity. There is of course also the less often
used odd parity that keeps the sum of the 1’s odd.

Example 6.1 (Four symbols). Consider encoding four source symbols A, B, C, D
with a binary code. These can be encoded by the simple binary code shown below.
When the codewords are augmented by a parity bit, the code can detect a single error.

Simple Code with
Symbol Binary Code Parity Check

A 00 000
B 01 011
C 10 101
D 11 110

The concept of a parity bit can be extended in several ways. The following example
illustrates an extension to a code based on an alphabet of 10 characters.

“CH06” — 2006/2/6 — 18:33 — page 72 — #3

� �

� �

72 • C h a p t e r 6 E R R O R - CO R R E C T I N G CO D E S

Example 6.2 (ISBN numbers). The International Standard Book Number (ISBN)
is printed on most books. Usually it is a 10-digit number assigned by the publisher.
For example, the number may be

0-691-12418-3,

although the pattern of dashes differs somewhat from book to book. The first digit
indicates the language in which the book is written (0 indicates English). The second
three (or sometimes two) digits indicate the publisher (691 denotes Princeton Univer-
sity Press). The next six digits represent a book number assigned by the publisher. The
final digit is a check digit, which can take the values 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, X with
X representing 10. The check digit is designed so that a certain linear combination of
all digits is zero modulo 11 (or briefly, mod 11), meaning that the combination is a
multiple of 11. Specifically,1

x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 + 7x7 + 8x8 + 9x9 + 10x10 = 0 mod 11.

That is, the sum on the left is an integral multiple of 11.
For example, for the ISBN number given above, we have

1 · 0 + 2 · 6 + 3 · 9 + 4 · 1 + 5 · 1 + 6 · 2 + 7 · 4 + 8 · 1 + 9 · 8 + 10 · 3

= 198 = 11 · 18 = 0 (mod 11).

Note that −10 is the same as 1 in mod 11 arithmetic (since −10 = −1 · 11 + 1, and
1 = 0 · 11 + 1). Therefore one can solve for x10 as

x10 = −10x10 = x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 + 7x7 + 8x8 + 9x9 mod 11.

Hence for our example,

x10 = 1 · 0 + 2 · 6 + 3 · 9 + 4 · 1 + 5 · 1 + 6 · 2 + 7 · 4 + 8 · 1 + 9 · 8

= 168 = 11 · 15 + 3 = 3 (mod 11),

as it should.
The remarkable property of the ISBN code is that it can detect a single error in

any digit or an interchange of two digits. It is the coefficients in the check sum that
permit the detection of an interchange. This is a practical code, for it has been found
experimentally that single-digit errors and transpositions are the most common errors
people make when transcribing ISBN numbers.

Rectangular and Triangular Codes

More than one check sum can be incorporated into a code, with each sum check-
ing a different combination of code symbols, or applying different weights to the
symbols. Generally, each check provides additional error detection and correction
capability.

1In general, the term x mod n is equal to the remainder after x is divided by n. For example, 25 mod
11 = 3.

“CH06” — 2006/2/6 — 18:33 — page 73 — #4

� �

� �

S e c t i o n 6.2 H A M M I N G D I S TA N C E • 73

1
0
0
1
0
1
0
1

0
0
0
0
1
0
0
1

0
0
1
0
1
1
1
0

1
1
1
1
1
0
1
0

1
1
0
0
1
1
0
0

1
1
0
0
1
1
0
0

0
1
1
1
0
1
1
1

0
0
1
1
1
1
1
1

1
1
1
0
1

0
1
0
1

1
0
0

1
1

1

FIGURE 6.1 A rectangu-
lar code. Each grayed bit
provides a parity check
for its respective row or
column. The bit in the
lower left corner provides
a parity bit for both the
first column and the last
row.

An interesting class is made up of the rectangular codes, an example of which
is shown in figure 6.1. The message symbols are the nongrayed symbols forming a
rectangle. The grayed bits in the left column are parity bits assigned so that the sum
of the corresponding row has even parity. Likewise, the grayed bits in the last row
are assigned so that the sum of each column has even parity.

The rectangular code can correct one error no matter where it appears in the array.
For example, if the error is in the third row and fourth column, the parity check of the
third row and the fourth column will not be even, and hence these checks will indicate
the position of the error. An error in one of the check bits can also be corrected.

A similar idea is contained in the triangular code illustrated below.

1
1
1
0
1

0
1
0
1

1
0
0

1
1

1

Here the parity bits are defined so that the sum of elements in both the row and column
of the bit has even parity. For example, the bit at the end of the second row is 1, so
that the sum of the second row and the fourth element of the first row is even. We
leave it to the reader to see that any single error can be found and corrected.

6.2 Hamming Distance

Most early work on error-correcting codes concentrated on block codes (codes in
which all codewords have the same length), and the basic foundation of this work is
presented in the next few sections.

The Hamming distance between two codewords in a block code is the number
of symbols by which the two words differ. For example, the words 11000010 and
10010010 are a distance two apart, since they differ in the second and fourth binary
digit. Two words are identical if and only if the Hamming distance between them
is zero.

Codewords for different source symbols must, of course, differ from each other
by a distance of at least one; otherwise the code is singular. Codes that are resistant
to errors consist of words separated by greater distances.

Most decoding procedures use a distance criterion to select the most likely intended
codeword. Specifically, when receiving a word, the decoder searches for the valid
codeword closest to the word received in the sense of having the smallest Hamming
distance. If there is a single closest codeword, it is assumed to be the intended code-
word. If there are ties for the minimum distance, the error is simply detected, but not
corrected.

Example 6.3 (A short set of codewords). Consider the codewords for a four-
symbol source shown below:

s1 0 0 0 0

s2 1 1 0 1

s3 0 1 1 0

s4 1 0 1 1

“CH06” — 2006/2/6 — 18:33 — page 74 — #5

� �

� �

74 • C h a p t e r 6 E R R O R - CO R R E C T I N G CO D E S

Suppose that the sequence 0001 is received. To decode this we look for the word in
the code table that is closest to it. This is the word 0000 for s1, which is a distance of
one from the received sequence. All other codewords are a greater distance than one
from the received pattern.

Suppose, however, that 0100 is received. There are two closest codewords: 0000
(for s1) and 0110 (for s3), both at a distance of one. Hence, although an error can be
detected, it cannot be corrected using the minimum-distance criterion.

Clearly, an important characteristic of a code is the minimum distance d between
any two words. In the example above, this minimum distance is two, achieved by the
distance between s1 and s3. In general, the minimum distance determines the degree
to which a code is immune from errors.

To quantify the relationship between a code’s minimum distance and its error
tolerance, multiple error detection and multiple error correction are distinguished.
For an integer e, the term e-error detection means that if at most e errors exist in a
received word, the receiver can detect that the word has errors but cannot necessarily
correct those errors. For an integer f the term f-error correction means that if at most
f errors exist in a received word, the receiver can both detect and correct those errors
using the closest distance criterion.

It is easy to see the difference between these two notions in the case of single
errors. If a single error is made, it can be detected if the minimum distance between
codewords is d = 2. This is because a single error causes the received word to be
a distance one from the intended codeword, but there is no codeword that close.
Hence the error is detected. However, this error cannot always be corrected when
d = 2 because there may be more than one valid codeword at a distance one from the
received word.

A minimum distance of d = 3 assures that the receiver can both detect and correct
a single error. If the received codeword is a distance one from the intended word (due
to the single error), it will be at least a distance two from every other valid codeword.
Hence, there is a unique codeword closest to the received word and that indeed must
be the word intended.

An example of a code where the distance between codewords is five is shown
schematically in figure 6.2. It should be clear that up to four errors can be detected
and up to two can be both detected and corrected.

This analysis is generalized by the following fundamental relationship.

codewordsnon-codewords

FIGURE 6.2 Codewords are separated by a Hamming distance of 5. An error in four
or less binary digits cannot result in a new codeword, and hence such an error can be
detected. However, at most two errors can be corrected by the majority rule procedure.

“CH06” — 2006/2/6 — 18:33 — page 75 — #6

� �

� �

S e c t i o n 6.3 H A M M I N G CO D E S • 75

TABLE 6.1
Hamming Distance d Required for e-error Correction
or f-error Correction.

d 2 3 4 5 6 7 8
e 1 2 3 4 5 6 7
f 0 1 1 2 2 3 3

Detection and correction distances. A code with minimum distance d is e-error
detectable if and only if d ≥ e+1. The code is f -error correctable only if d ≥ 2f +1,
as shown in the little chart in table 6.1.

Code Size

A binary block code of length n can consist of at most 2n distinct codewords. How-
ever, because it is necessary to separate codewords by a distance greater than one
to obtain error tolerance, practical codes have fewer words than this maximum. It
is conventional to characterize a block code by the triple (n, M, d), where n is the
length of the codewords, M is the number of words in the code, and d is the minimum
distance of the code. For example, the code of example 6.3 in this notation is a (4,
4, 2) code. In some cases the d is dropped and the code is characterized by just the
two numbers (n, M).

Good block codes are those that maximize M for given values of n and d. Much
of coding theory is devoted to a development of methods for achieving this kind of
efficiency.

6.3 Hamming Codes

A systematic treatment of parity checks for block codes was presented by Hamming
in 1950.2 Suppose we want a binary code of length n that will correct a single error in
any codeword. We approach this by partitioning the n available bits into two groups:
k are devoted to the message and q are devoted to parity checks. The structure is
therefore as shown here:

n︷ ︸︸ ︷
x x x · · · x x︸ ︷︷ ︸

k

x · · · x︸ ︷︷ ︸
q

.

If the code is able to correct a single error, the q parity checks must be able to
locate it. Since the error can occur in any of the n places, or in no place, there must
be a total of n + 1 combinations of parity check combinations. In other words, a
requirement is

2q ≥ n + 1.

A popular combination is q = 3, n = 7, which leads to k = 4. The structure of
a codeword is x1 x2 x3 x4 x5 x6 x7, where x1, x2, x3, x4 are message bits and x5, x6, x7
are devoted to parity checks.

2Independently proposed by Golay a year earlier.

“CH06” — 2006/2/6 — 18:33 — page 76 — #7

� �

� �

76 • C h a p t e r 6 E R R O R - CO R R E C T I N G CO D E S

A parity check is the sum of certain bits in the word, arranged so that the mod 2
sum is zero for an actual codeword. When applied to a received version of a word, a
nonzero value of this sum signals that an error is present. If there are several checks,
their pattern defines a syndrome3 associated with the received version of the word,
and this can be used to diagnose and correct the error.

A nice idea embodied in Hamming codes is that it is possible to construct the parity
checks so that the syndrome, when its zeros and ones are interpreted as an integer
in binary form, directly indicates the location of the error. The code with n = 7
will have three parity checks with values s1, s2, s3 that define the syndrome, and this
three-place binary number s1s2s3, represents an integer between 0 and 7. Specifically,
the syndrome s3, s2, s1 defines the number 4s1 +2s2 + s3. For example, the syndrome
110 is 4 + 2 + 0 = 6, in the Hamming code this number gives the location of the
error bit in the corrupted word or gives 0 if there is no error. For this to be true, it is
required that

s3 signals positions 1, 3, 5, 7
s2 signals positions 2, 3, 6, 7
s1 signals positions 4, 5, 6, 7.

For example, 6 is signaled by s1 = 1, s2 = 1, s3 = 0. Together the redundant bits
x5, x6, x7 must be defined to make

s3 = x1 + x3 + x5 + x7 = 0 mod 2

s2 = x2 + x3 + x6 + x7 = 0 mod 2

s1 = x4 + x5 + x6 + x7 = 0 mod 2.

These represent three equations in the three unknowns x5, x6, x7, and these equa-
tions can be solved using ordinary algebra modified to account for mod 2 arithmetic.
The solution is

x5 = x2 + x3 + x4 mod 2 (6.1a)

x6 = x1 + x3 + x4 mod 2 (6.1b)

x7 = x1 + x2 + x4 mod 2. (6.1c)

The top equation (for s3) can be verified by the calculation

s3 = x1 + x3 + x5 + x7

= x1 + x3 + (x2 + x3 + x4) + (x1 + x2 + x4)

= 2x1 + 2x2 + 2x3 + 2x4 = 0 mod 2

because 2x is identically zero (mod 2) for any binary number x.
There are 16 codewords in the resulting Hamming code, corresponding to the

16 words possible with four message bits. The minimum distance must be at least
three since the code is single-error correcting. In fact the minimum distance is exactly
three. Hence the resulting Hamming code is a (7, 16, 3) code (often referred to as
an [n, k] = [7, 4] Hamming code). The 16 codewords are shown in the following
table 6.2. To construct them, the first four bits (on the left) define the sequence of

3Syndrome, a medical term for a pattern of symptoms characteristic of a disease; here applied to a diseased
word.

“CH06” — 2006/2/6 — 18:33 — page 77 — #8

� �

� �

S e c t i o n 6.4 L I N E A R CO D E S • 77

TABLE 6.2
The Sixteen Hamming Codewords.

0000000 0100101 1000011 1100110
0001111 0101010 1001100 1101001
0010110 0110011 1010101 1110000
0011001 0111100 1011010 1111111

binary numbers 0000, 0001, 0010, 0011, and so forth up to 1111. Three parity bits are
adjoined on the right to each of these using the equations (6.1). For example, starting
with 0001, equations (6.1a, b, c) give x5 = x6 = x7 = 1. Hence the codeword is
0001111, the second word in the first column.

To see how syndrome decoding works, suppose the sequence 0101000 is received.
The check sums (mod 2) are evaluated to find s1 = x4 + x5 + x6 + x7 = 1 + 0 + 0 +
0 = 1, s2 = 1 + 0 + 0 + 0 = 1, s3 = 0 + 0 + 0 + 0 = 0. When arranged as a
three-place binary number, the syndrome is s1 s2 s3 = 110, which corresponds to six
in binary. Hence there is an error, and it is in position six. The correct codeword is
found by changing this bit, obtaining 0101010, the sixth word in the code.

There are other Hamming codes with larger values of n, all of which are single-error
correcting. More importantly, the Hamming code structure suggests other directions
for code development.

6.4 Linear Codes

The Hamming code discussed in the previous section can be viewed in terms of the
parity check matrix

P =
⎡
⎣ 0 0 0 1 1 1 1

0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎤
⎦ . (6.2)

The rows of this matrix correspond to the three parity checks in the Hamming code.
For example, the top row defines the syndrome s1. In matrix terms a valid codeword
c = (c1, c2, · · · , c7) must satisfy

PcT = 0 (mod 2),

where cT is the column vector that is the transpose of c and 0 denotes a three-
dimensional vector of zeros. Indeed, any c that satisfies that equation is a valid
codeword since the parity checks are all satisfied.

This idea can be generalized to define other codes. Beginning with a matrix P
having n columns and n − k rows, one defines the code C as consisting of all binary
words (rows) c of length n that satisfy PcT = 0 mod 2. Note that if c1 and c2 are two
words satisfying PcT = 0 mod 2, then their sum (mod 2) also satisfies the equation
and hence is a codeword. A code that satisfies this property is termed a linear code.
Using a P matrix as above is one way to produce a linear code. Conversely, given a
linear code, there is always some matrix P that generates it in this sense. Most of the
important block codes are linear.

“CH06” — 2006/2/6 — 18:33 — page 78 — #9

� �

� �

78 • C h a p t e r 6 E R R O R - CO R R E C T I N G CO D E S

Example 6.4 (The short set of codewords). The codewords of example 6.3 are
listed below.

c1 = 0 0 0 0
c2 = 1 1 0 1
c3 = 0 1 1 0
c4 = 1 0 1 1

These words comprise a linear code because, for example, c2 +c3 = c4, c3 +c4 = c2,
c2 + c2 = c1. By trial and error one finds the corresponding parity check matrix

P =
[

0 1 1 1
1 1 1 0

]

that produces the code.
One important property of binary linear codes is that the minimum distance of the

code can be determined relatively easily. The weight of a binary codeword is the sum
of its characters (not in mod 2). Thus the weight of the codeword 1001010 is 3, since
there are three ones. This definition is used in the following result.

Minimum distance criterion. The minimum distance of a binary linear code is
equal to the weight of the nonzero codeword of least weight.

Proof: Suppose that the minimum distance is achieved by the distance between the
codewords c1 and c2. Since the code is linear, the difference c1 − c2 (which is the
same as c1 + c2 in binary) is a codeword. The weight of this word is the minimum
distance. Clearly no other nonzero word can have smaller weight, for then its distance
to zero would be less than d.

For example, now that we know that the short code of example 6.4 is linear, it
follows that the minimum distance is two since c3 is the nonzero codeword with
minimum weight, and that weight is two.

6.5 Low-Density Parity Check Codes

These codes (abbreviated LDPC codes) were first introduced by Robert Gallager
in his 1960 MIT Ph.D. thesis. However, because of the limits of computing power
at that time, the codes were considered impractical, and they were all but forgot-
ten. Now, however, with greater computing power available, LDPC codes have had
a recent revival and are among the best-performing codes in low signal-to-noise
situations.

LDPC codes are linear codes in which the parity check matrix is sparse, having
very few nonzero elements. A regular (n, s, r) LDPC code is defined to be a block
code of length n having a parity check matrix with exactly r 1’s per column and s 1’s
per row and where r and s are small compared to n.

“CH06” — 2006/2/6 — 18:33 — page 79 — #10

� �

� �

S e c t i o n 6.6 I N T E R L E AV I N G • 79

An example parity check matrix for an (n, s, r) = (10, 4, 2) LDPC code is shown
below, which happens to be an (n, M, d) − (10, 26, 3) code:

P =

⎡
⎢⎢⎢⎢⎣

1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

⎤
⎥⎥⎥⎥⎦ . (6.3)

The special feature of Gallager LDPC codes is the manner in which they are
decoded. The parity check matrix is viewed as involving each codeword bit in exactly
r parity conditions. Likewise, each parity check involves exactly s codeword bits.

The simplest way to decode is by an iterative flipping method. First, the parity
checks are all evaluated. Then each codeword bit is examined and is changed if it
is involved in more than a fixed number of violated parity checks. Then the parity
checks are reevaluated and the process continues until all parity checks are satisfied.
Although this method is not guaranteed to correct all errors, it works well in many
situations.

A more complex decoding procedure is based on the assignment of probabilities
to each codeword bit being 0 or 1. These probabilities are determined iteratively
by considering the information transmitted by other bits through the parity check
equations.

Sparsity of the parity check matrix facilitates the decoding in both methods by
limiting the computational chore of evaluating parity checks and of updating codeword
bits associated with a parity check equation.

Gallager codes and the decoding methods have been extended to irregular LDPC
codes where the parity check matrix is sparse but the number of nonzero elements in
rows or columns may not be constant. The concept has also been extended to codes
with alphabets other than binary. In some situations, the length n of a LDPC codeword
is 1 million or more.

6.6 Interleaving

Errors sometimes occur in bursts, caused, for example, by sudden outside distur-
bances, defects in recording media, or outright interruptions. In such environments
some codewords may suffer numerous errors while, still, on average the error rate is
low. The effects of error bursts can be ameliorated by a process of interleaving that
spreads out the characters of a particular codeword, sprinkling them between the char-
acters of other words. The errors are then diffused among several codewords rather
than concentrated in a few. Then a modest level of error protection in all codewords
can work in concert to correct the burst. The necessary diffusion can be accomplished
by an interleaver.

There are several versions of interleavers, but one of the simplest is illustrated in
figure 6.3. In this interleaver, codewords of length four are read into a matrix row
by row. The matrix is then read out column by column to produce new groups of
length four. It is these groups that are transmitted and subjected to possible error. For
decoding, the groups received are read into a corresponding matrix column by column

“CH06” — 2006/2/6 — 18:33 — page 80 — #11

� �

� �

80 • C h a p t e r 6 E R R O R - CO R R E C T I N G CO D E S

x1

x5

x9

x13

x2

x6

x10

x14

x3

x7

x11

x15

x4

x8

x12

x16

(x1 x5 x9 x13)
(x3 x7 x11 x15)

(x2 x6 x10 x14)
(x4 x8 x12 x16)

FIGURE 6.3 A simple interleaver. Codewords of length 4 are read in row-wise and read
out column-wise. The receiver reverses this process. If the code has single-error correction
capability, the interleaved system can correct a burst of up to four characters in length.

Delay

x1 x2 x3 x4 x5 x6 x7 x1 x3 x2 x5 x4 x7 x6

FIGURE 6.4 Delay interleaver. The switches change position with each character causing
the characters to be interleaved.

and then read out row by row. If no error occurs, the original codewords appear. If
there is a burst of four sequential errors and the code can correct one error in each
codeword, the system employing the interleaver can correct the burst because the four
errors will be spread evenly across the original codewords.

Many variations are possible. Larger matrices and more complex patterns of read-
in and read-out can be devised. One popular method is to read the word characters
one by one into a large matrix and then read them out in a more or less random order,
an order known by both the sender and receiver.

Another type of interleaver employs a delay system; a simple version is shown
in figure 6.4. Incoming characters are alternately directed to the upper branch or
the lower branch, and likewise the output is alternatively taken from the upper or
lower branch. The lower branch contains a delay of one-character duration so that
a character entered at the left is not immediately available for output. The result is
that the symbols become intermixed. The figure shows an example of how a stream
entered on the left is transformed.

Actual delay interleavers are much more complex, involving several alternative
paths with different delay lengths, some as long as 20 or more symbol periods.

6.7 Convolutional Codes

Convolutional codes are generated by linear shift registers, which are arrangements
of delays, mod 2 summations, and feedback paths. An example of a third-order linear
shift register is shown in figure 6.5. It has three registers, which delay the output
from the input by one time unit (say a millisecond), and several taps and summations
points. The value at each point is either 0 or 1, and the additions are carried out mod 2.

“CH06” — 2006/2/6 — 18:33 — page 81 — #12

� �

� �

S e c t i o n 6.7 CO N V O LU T I O N A L CO D E S • 81

+

+

+

+

Delay DelayDelay
c

w1 w2

w3 w4

v2

v1

FIGURE 6.5 A convolutional encoder made from a third-order linear shift register.
Message bits cycle through the delay and feedback system, resulting in a complex output
pattern. Additions are carried out mod 2 so that all characters are either 0 or 1.

TABLE 6.3
Results of Convolutional Encoder. As the binary bits move
through the delay and feedback system, a complex pattern of
outputs is generated.

Step w1 w2 w3 w4 v1 v2

0 1 0 0 0 1 0
1 0 1 0 0 1 0
2 1 0 1 0 1 1
3 1 1 0 1 1 1
4 1 1 1 0 0 1
5 0 1 1 1 0 0
6 0 0 1 1 1 0
7 1 0 0 1 0 1
8 0 1 0 0 1 0
9 1 0 1 0 1 1

The arrangement in the figure serves as a rate 1/2 convolutional encoder because two
output symbols are generated for every one input symbol. These two output symbols
are sent side by side as (v1, v2). A convolutional encoder can be constructed to have
only a single output, but there is no net code redundancy in the resulting code. Hence,
single-output shift registers (or equivalently, convolutional encoders) are used only
as components of more complex encoding systems (as discussed in the next section,
for example).

The effect of a single input symbol in the encoder of figure 6.5 is easily traced.
Suppose specifically that a 1 enters the encoder at time zero, and that the 1 is followed
by a long sequence of 0’s. The resulting sequence of values at the four points in the
center w1, w2, w3, w4 as well as the two outputs v1, v2 is shown in table 6.3.

There is a simple process for updating the table. The bits w2, w3, w4 are equal to
w1, w2, w3, respectively, from the previous step. The bit w1 is the binary sum of w3
and w4. Then v1 is the binary sum of w1, w2, and w4; and v2 is the binary sum of w3
and w4.

“CH06” — 2006/2/6 — 18:33 — page 82 — #13

� �

� �

82 • C h a p t e r 6 E R R O R - CO R R E C T I N G CO D E S

Notice that the line for step 8 is identical with that of step 1, and hence step 9
will be identical to step 2, and so on. Without new nonzero input, the system will
cycle.

Convolutional codes can be decoded by using a similar convolutional process
matched to the encoder. Today, convolutional encoders are used frequently because
they have excellent error-correcting capabilities.

6.8 Turbo Codes

A tremendous advance in coding occurred in 1993 with the invention of turbo codes
by Berrou, Glavieux, and Thitimajshima. The success of turbo codes stems from the
fact that a given message symbol influences the transmission pattern over extremely
wide intervals of symbols and in multiple ways. Subsequent decoding is complex,
but for many applications the results are worth the effort.

A turbo encoder is formed by interleaving two convolutional encoders constructed
as linear shift registers. One possible structure is shown in figure 6.6. The encoder of
the figure is termed a rate 1/3 turbo encoder because three code bits are formed for
every input bit, so the redundancy is three. Turbo encoders can be constructed with
other rates by using more or fewer convolutional encoders.

The two convolutional encoders may have relatively low dimension, but the inter-
leaver typically has high dimension, which spreads the effect of a message character
over many code positions and tends to separate the influence of the two convolu-
tional encoders. The two convolutional encoders may or may not be identical in
structure. As a simple example, they may both have the structure shown earlier in
figure 6.5.

Decoding is carried out iteratively, where an approximation to the message is
first formed and then gradually improved by subsequent passes of the result through
a complex algorithm. The success of turbo codes seems to illustrate the fact that
effective coding must, by nature, be extremely complex.

Convolution encoder 1

Convolution encoder 2

Interleaver

s

c1

c0

c2

FIGURE 6.6 Turbo encoder structure. The raw bit symbols are sent through three paths.
The three output symbols form three symbols of the code.

“CH06” — 2006/2/6 — 18:33 — page 83 — #14

� �

� �

S e c t i o n 6.9 A P P L I C AT I O N S • 83

6.9 Applications

Error-correcting codes have had a great impact on modern technology, making
possible communication over interplanetary distances, recording and playing of
high-fidelity music, reliable wireless transmissions, and many other information
services.

In many applications the transmission system first encodes the raw data with source
coding. This is simply compression (such as Huffman coding) applied to the message
data to reduce inherent redundancy. The resulting source-coded bit stream is then
nearly random. This stream is next transformed by an error-correcting code that puts
redundancy back in, but in the systematic way called for by the code.

Space Missions

Transmission of messages during space missions has been a major challenge. The
source, on a small space probe for example, has low power, the transmission distances

are enormous, and the signal must pass through the corrupting influence
of the earth’s atmosphere. Imagine trying to listen on Earth to a radio

located on Mars powered by a small battery.
Photographs of another planet were first transmitted during the Mariner
4 mission in 1965. Each photograph was divided into 200×200 pixels (as
compared with the 400×525 pixels of commercial television). Each
pixel was encoded into one of 64 possible brightness levels (equivalent to six

bits). Therefore, the total number of bits per photograph was 200×200×6 = 240, 000.
At a rate of 8.5 bits per second, it took eight hours to transmit a single photograph.

Subsequent Mariner missions obtained improved picture resolution. A Reed–
Muller (32, 64, 16) code was used, which having d = 16 provides significant error
correction capability. As a result, data transmission rates were increased to 16,200
bits per second.

Voyager missions began in 1977. A Voyager full-color image in digital form con-
sisted of 15,360,000 bits. By this time, convolutional codes were found to be most
effective at the low signal-to-noise ratios inherent in interplanetary communication. It
was long recognized, however, that planetary images are highly redundant, and good
compression algorithms (based on prediction) could achieve a compression factor of
about 2.5. Use of compression was attractive, of course, since it could potentially
improve transmission rates. However, decompression processes are highly suscep-
tible to errors, a single error causing effects propagating over several pixels. The
encoding system employed on Voyager missions therefore consisted of two parts: a
convolutional code followed by a Reed–Solomon code that cleaned up errors intro-
duced by the convolutional coder. This combination has proved to be highly effective
and has since been used in many applications.

The Cassini was built in the mid-1990s and attained an orbit of Saturn in 2004.
It also employed a convolutional code and sent beautiful pictures of Saturn to Earth.
However, by the time Cassini reached Saturn orbit, turbo codes and low-density parity
check codes were available. Some versions of LDPC codes achieve rates at near the
Shannon capacity, with extremely low error rates. These codes are likely to be used
in future space missions as well as in satellite television and mobile communication
systems.

“CH06” — 2006/2/6 — 18:33 — page 84 — #15

� �

� �

84 • C h a p t e r 6 E R R O R - CO R R E C T I N G CO D E S

Compact Disc Players

The compact disc for music recordings is one of the most notable applications
of coding theory because it is used by millions of people everyday, and the dif-
ference in quality compared to earlier techniques of phonograph records or tapes
is strikingly apparent. Compact discs are widely known for their superb fidelity
and lack of background noise. This clarity is largely due to error correction
coding.

Two kinds of errors occur in a CD player: errors that occur randomly from time
to time, and error bursts that occur in bundles caused by surface imperfections or
errors in the optical reading device. Some surface imperfections are manufacturing
defects. A standard CD holds about 650 megabytes, which is about 5 gigabits. So a
manufacturing error rate of one per million results in about 5,000 errors. Other surface
imperfections are due to fingerprints, scratches, and so forth.

The information on a CD is coded by interleaved (n, M, d) = (32, 28, 5) and
(28, 24, 5) Reed–Solomon codes with interleaving delays of up to 27 characters.
This interleaved code has excellent error-correction capabilities, for it is capable
of correcting bursts of up to 4,000 sequential errors. If you experiment by scratching

the surface of a CD with a sharp pointed object, you will find
that there is no loss of fidelity. Indeed normally, after heavy
scratching the player will stop altogether rather than deliver

a scratchy sound. Similar codes are used in DVD players, bar
codes, microwave links, and digital television.

Modems

Commercial voice band modems in 1962 operated at a rate of 2,400 bits per second.
Gradually, the rate was increased 9,600 bits per second, which was then considered to
be the maximum possible rate over standard telephone lines. However, the invention
of trellis coding (a precursor to turbo coding) in the late 1970s made further gains
possible, and rates of 14,400 and 19,200 were obtained. More recently, rates have
climbed to 28,800, 31,200, 33,600, and 56,000 bits per second.

Frequency Hopping Systems

Some communication systems operate by periodically hopping from one base fre-
quency to another (as discussed in chapter 21). Such systems allow several channels
over the same waveband, for if a receiver is programmed to follow the hopping pattern
of a certain sender, other patterns will cause little interference. The system is best
if the hopping patterns have as little overlap as possible. An analogy with codes is
clearly apparent. If the frequency bands are assigned numbers, say 0, 1, 2, . . . , q − 1,
a hopping pattern is a sequence such as (3, 6, 0, . . . , 9) of q symbols. The separation
between the patterns is their Hamming distance. Reed–Solomon codes have been
used to construct efficient hopping patterns.

“CH06” — 2006/2/6 — 18:33 — page 85 — #16

� �

� �

S e c t i o n 6 . 1 0 E X E R C I S E S • 85

6.10 EXERCISES

1. (Rectangular code) Show that the parity bit in the lower-left-hand corner of the rect-
angular code is consistent in both directions. That is, if it should be a 1 to make the
bottom row have correct parity, it should also be 1 to make the left column have correct
parity.

2. (ISBN correction) Find the missing digit in the ISBN numbers below.
(a) 0-385-49531-?
(b) 0-201-1?794-2

3. (ISBN code)
(a) Show that the ISBN code can detect an error that is either a transposition of two

digits or a numerical error in a single digit.
(b) Show that if the position of a single error is known, it can be corrected.
(c) Show that the ISBN code is a (nonlinear) (10, 109, 2) code.

4. (Syndrome parity bits) Derive the formulas for the parity bits x5, x6, x7 of the Hamming
[7, 4] code.

5. (Hamming code error) A message is sent using the [7, 4] Hamming code. The first word
received is 0001111, which has no errors. Assuming that subsequent words are either
correct or have at most one error, what are the correct versions of the following received
words?

(a) 0101101
(b) 0100111

6. (Code shortening) Suppose a binary code of length n has M words and a minimum distance
d—an (n, M, d) code. The set can be shortened by using only the words that agree in a
certain position. For example, one may consider all the words in the code that have 0 in the
second position. Taking this subset of words and dropping the selected position produces a
set of words of length n−1 but still with minimum distance no greater than d. Produce a set
of eight words of length six by applying this technique to the first position of the Hamming
[7, 4] code.

7. (Code lengthening) A code can be lengthened by one bit by adjoining a parity bit. If this
is done, what happens to d and to the error-correcting and error-detecting properties of the
code?

8. (Even-weight codes) An even-weight binary code of length n consists of all possible words
of length n that have even weight (that is, have an even number of 1’s).

(a) How many codewords are there in an even-weight code of length n?
(b) The dual of a code C whose words are of length n is the code C⊥ consisting of all

words of length n orthogonal to C. (A word w is in C⊥ if and only if w · c = 0 for
all codewords c in C, where here w · c is defined as

∑n
i=1 wici. mod 2.) Find C⊥

for the even-weight code C of length n.

9. (Linear code*) A certain linear code is defined by the parity matrix

P =

⎡
⎢⎢⎣

1 1 0 0 0 1
1 0 0 0 1 1
0 1 1 1 0 1
1 0 1 0 0 1

⎤
⎥⎥⎦ .

“CH06” — 2006/2/6 — 18:33 — page 86 — #17

� �

� �

86 • C h a p t e r 6 E R R O R - CO R R E C T I N G CO D E S

(a) Find the corresponding codewords. Hint: It may be useful to perform row
operations on the matrix to put it in nearly triangular form.

(b) How many errors can this code detect?
(c) How many errors can this code correct?

10. (Team wagers) A series of four football games is to be played. Each game is played to
conclusion, so that there is always a winner. You have the opportunity to participate in a
betting exchange. To do so, you submit a list forecasting the winners of each of the four
games.

(a) How many different lists must you submit to be sure that at least one list correctly
forecasts at least three out of four winners?

(b) In each game one team is a home team and the other an away team. Hence a
forecast can simply indicate H or A, and a complete list might be, for example,
(H, A, A, H). Show a set of lists that satisfies part (a).

11. (Rate of LDPC) A binary block code that translates k message bits into codewords of length
n is said to have rate R = k/n (which is k bits of information for every n transmitted binary
digits. Shannon’s theorem states that for R < C (where C is the capacity of the channel)
and ε > 0, there is a code of some finite length n that attains rate R with a probability of
error less than ε.

(a) Show that parity check matrix (6.3) is singular (mod 2).
(b) What is the rate of the LDPC code defined by parity check matrix (6.3)?

12. (Dual code) Referring to exercise 8, find the dual code of the code with words 0000, 0110,
1001, 1111.

13. (The famous hat problem*) Recently there has been wide fascination among coding theorists
with the hat problem: Suppose there are n people in a room, and each is given either a
red or blue hat. The hat colors are determined by n separate coin flips. People can see
everyone’s hat except their own. Next, each person in turn must either guess the color of
his or her hat or must pass. The group of n people will win $1 million if at least one person
guesses correctly and no one guesses incorrectly. The group is able to agree on a strategy
before the hats are assigned. What is the probability that the group wins, and how is that
probability achieved? (The usual first reaction is that this probability is one-half—which is
incorrect.)

(a) First consider n = 3. Suppose each person responds as follows: if the other two
hats are the same color, then the person guesses the opposite color. If the other two
hats are different, the person passes. Everyone passes after one person guesses.
What is the probability of the team winning? Hint: Consider the number of possible
hat color configurations, and the number of these for which the team will lose.

(b) What is the ratio the number of codewords in a Hamming code of length 3 to the
total number of possible words of length 3?

(c) Suppose n = 7. Consider the strategy whereby each person determines whether
there is a choice of his or her hat color that in conjunction with the others would
form a codeword in an (n, M, d)-(7, 16, 3) Hamming code (using 0 for red and
1 for blue). If there is such a choice, the person guesses the opposite color; if not,
he or she passes. What is the probability of winning in this case?

6.11 Bibliography

Excellent introductory treatments of error-correcting codes are found in [1], [2],
[3], [4] (with a nice geometric interpretation of Hamming codes), and [5] (with a
discussion of applications such as the Mariner missions). The original published
paper on LDPC codes is [6]. Turbo codes were presented in [8]. Book treatments of

“CH06” — 2006/2/6 — 18:33 — page 87 — #18

� �

� �

S e c t i o n 6.11 B I B L I O G R A P H Y • 87

modern convolutional, trellis, turbo, and low-density parity check codes are [7], [9],
[10], and [11]. Reed–Solomon codes and their applications, including error correction
coding in music CDs, are presented in [12].

References

[1] Roman, Steven. Introduction to Coding and Information Theory. New York:
Springer, 1996.

[2] Cover, Thomas M., and Joy A. Thomas. Elements of Information Theory. New
York: John Wiley and Sons, 1991.

[3] Welsh, Dominic. Codes and Cryptography. Oxford: Oxford University Press,
1988.

[4] Hamming, Richard W. Coding and Information Theory. Englewood Cliffs, N.J.:
Prentice-Hall, 1980.

[5] Hill, Raymond. A First Course in Coding Theory. Oxford: Oxford University
Press, 1986.

[6] Gallager, Robert. “Low-Density Parity-Check Codes.” IEEE Transactions on
Information Theory (1962): 21–28.

[7] Schlegel, Christian. Trellis Coding. New York: IEEE Press, 1997.
[8] Berrou, C., A. Glavieux, and P. Thitimajshima. “Near Shannon Limit

Error-Correcting Coding and Decoding: Turbo Codes.” Proceedings of the
International Conference on Communications (1993): 1064–70.

[9] Vucetic, Branka, and Jinhong Yuan. Turbo Codes: Principles and Applications.
Boston: Kluwer Academic Publishers, 2000.

[10] Blahut, Richard E. Algebraic Codes for Data Transmission. Cambridge:
Cambridge University Press, 2003.

[11] Soleymani, M. R., Y. Gao, and U. Vilaipornsawai. Turbo Coding for Satellite
and Wireless Communications. Dordrecht, The Netherlands: Kluwer, 2002.

[12] Wicker, Stephen, and Vijay K. Bhargava, eds. Reed–Solomon Codes and Their
Applications. New York: IEEE Press, 1994.

“CH06” — 2006/2/6 — 18:33 — page 88 — #19

� �

� �

“CH06” — 2006/2/6 — 18:33 — page 89 — #20

� �

� �

S U M M A R Y O F PA R T I • 89

S U M M A RY O F PA R T I

Shannon introduced the concepts of information and entropy to express the idea
that learning that a rare event occurred carries more information than learning that
a common event occurred. The entropy of a source with events having probabilities
p1, p2, . . . , pn is defined as H(p1, p2, . . . , pn) = − ∑n

i=1 pi log pi. The use of the
base-2 logarithm is standard, and when it is used, the entropy has the units of bits. In
many instances, the events are letters of the alphabet derived from a textual message.

Entropy plays an important role in a surprisingly large number of situations. It
occurs naturally in each of the five parts of this text, motivating, characterizing, and
setting fundamental limits on analytic and computational methods.

One application of the concept, and indeed the one that motivated Shannon’s work,
is the representation of events (such as letters in text) by codewords using zeros and
ones as code symbols. Shannon’s first theorem states that the average codeword
length of a code, in symbols per event, must be greater than or equal to the entropy
of the source.

The average codeword length can be as low as the source entropy, but this may
require that coding be applied to long sequences rather than single instances of events.
Coding and decoding may then become complex, and there may be a long delay
between transmittal and final interpretation of corresponding codewords.

The minimum average codeword length for a source with a finite number of inde-
pendent events is obtained by Huffman coding. However, this length is still greater
than the entropy of the source except in special cases.

English text is highly redundant because letter frequencies are uneven, and there
is a great deal of grammatical structure. Instead of the 4.755 = log 27 bits per letter that
would apply if all letters (plus a space) were independent and of equal probability,
the entropy of English is only about 1.5 bits per letter. This redundancy implies
that lengthy bodies of English text can be compressed by a factor of about three by
suitable coding. An especially elegant and practical class of compression methods
work by building a dictionary of previously encoded short sequences of letters. When
a sequence occurs a second time, a short dictionary reference is sent in place of
the sequence itself. These dictionary methods are universal in the sense that the
underlying probability structure need not be known in advance, and yet in the limit
of long sequences they achieve the compression ratio predicted by entropy.

Shannon also introduced the notion of an information channel, which probabilis-
tically transforms input events into output events. A given input event can produce
one of several possible output events, each with its own probability. A channel might
represent the probabilistic path from disease to medical symptom, from student abil-
ity to test results, from oil deposits to geological configurations, or from electrical
signals to telephone output. An important method for analysis of channels is flipping
with Bayes’s rule. A flipped channel gives the probabilities of various inputs for each
output.

Associated with any two random variables X and Y are the entropies
H(X) and H(Y), and the joint entropy H(X, Y). The conditional entropy is
H(X|Y) ≡ H(X, Y) − H(Y), interpreted as the entropy of X given Y . The mutual
information of X and Y is I(X; Y) = H(X) − H(X|Y), interpreted as the information

“CH06” — 2006/2/6 — 18:33 — page 90 — #21

� �

� �

90 • S U M M A R Y O F PA R T I

about X revealed by knowledge of Y . For example, if X is the input of a channel and
Y is the output, I(X; Y) is the average amount of information about the input given by
observation of the output. Mutual information is always nonnegative and symmetric;
that is, 0 ≤ I(X; Y) = I(Y ; X).

Shannon defined the capacity of a channel as the maximum possible value of
mutual information of input and output, where the maximum is taken with respect to
the input probabilities. Shannon’s second theorem states that it is possible to send
information with arbitrarily good reliability at any rate less than the channel capacity.
However, he did not supply a specific coding scheme that achieves this rate.

The general issue of designing codes for sending information reliably through
channels that are subject to error is termed error correction coding, and a great
deal of effort has been devoted to such design. Error-correcting codes are typically
applied to messages that have first been coded efficiently with a compression algorithm
such as Huffman coding. Error-correcting codes add back redundancy in a controlled
manner so that the result is somewhat immune from errors. The simplest way to add
redundancy is to repeat message symbols several times. A more effective method is
to add parity checks. Several other sophisticated methods have been developed. The
most effective methods, however, tend to be those, such as convolutional, turbo,
and low-density parity check codes, that spread the influence of any particular input
symbol over many disparate output symbols in complex ways. Decoding these codes
is complex and must be delayed until the full effect of a particular symbol has been
received. Effective block codes may be one million bits or more in length.

“CH05” — 2006/2/6 — 18:32 — page 55 — #1

� �

� �

5
CHANNELS

I
t is amazing how much has been accomplished using only Shannon’s basic definition
of entropy. The formalization and implementation of compression, the understand-
ing of redundancy, and creative approaches to coding of discrete sources are all

derived from this basic notion. Yet much more can be done by considering the struc-
tural connection between different random variables. In a physical or operational sense
this structure takes the form of an information channel, as illustrated in figure 5.1.
In mathematical terms, the structure is defined by conditional probabilities relating
the output probabilities to the input. This probabilistic structure is a useful model of
many real situations, and it is the structure addressed by Shannon’s powerful second
theorem stating that information can pass through a channel almost without error at
rates bounded by the channel’s capacity.

The notion of a channel is more general than a traditional communication sys-
tem. It can represent any situation where observation of one random variable reveals
something about another. Medical tests are a good example. An underlying random
variable may be the condition of a patient’s arteries. A cholesterol measurement
reveals something (probabilistic) about that condition. The link from artery condi-
tion to cholesterol level is an information channel. Likewise some geologic tests are
information channels probabilistically linking geologic structure to the presence of
an oil deposit. A household smoke alarm is a channel from the presence or absence of
fire to the possible sounding of a loud mechanical squeal. Opinion surveys can also
be regarded as channels, with a survey result giving probabilistic information about

channel
output

Y

input

X

FIGURE 5.1 An information channel. The channel transmits information about the
random variable X to the random variable Y.

55

“CH05” — 2006/2/6 — 18:32 — page 56 — #2

� �

� �

56 • C h a p t e r 5 C H A N N E L S

attitude of the general population. The concept of a channel is a prefound construct,
and it is used in several chapters of this book.

5.1 Discrete Channel

A discrete channel is defined with reference to a finite number of input and output
events or symbol sets X and Y , respectively. These might be, for example, the binary
alphabet 0, 1, the normal English alphabet, medical conditions and test results, or the
amount that the price of a stock changed during the week.

The channel is defined by a set of conditional probabilities p(y|x) for all x ∈ X
and y ∈ Y . The conditional probability p(y|x) is interpreted as the probability of y
occurring at the output when x is the input to the channel. The conditional probabilities
are, in the context of a channel, called transition probabilities. A channel with r
input symbols and s output symbols is characterized by s × r transition probabilities.

A channel defined as above is called a discrete memoryless channel because
there are a finite number of possible inputs and outputs and the probability p(y|x) is
assumed not to depend on previous input symbols.

0
1−p

p

p

X

1−p
1

Y

0

1

FIGURE 5.2 Binary symmet-
ric channel (BSC). There are
two input symbols and two
output symbols. Proper trans-
mission corresponds to hor-
izontal progress across the
graph. There is a probability p
of an error, where a symbol is
misdirected diagonally across
the graph. This error prob-
ability is the same for each
symbol.

A simple, but important channel is the binary symmetric channel (BSC), which
is characterized by the graph shown in figure 5.2. This channel has binary 0, 1 input
and output symbols, and the transition probabilities are 1 − p for an input symbol
to pass directly through the channel to its corresponding output symbol, and p for
an input symbol to be diverted to its opposite symbol. The channel is said to have a
probability of error equal to p.

For a general discrete channel with symbol alphabets of large size, the graph
showing the transition probabilities is more complex. A general channel with four
input and four output symbols is shown in figure 5.3. The diagram implies that any
input symbol may with some positive probability be received as any output symbol.
In practice, the set of input and output symbols may be identical, such as A, B, C, D;

x1 y1

p(y1|x1)

x2 y2

x3 y3

x4 y4

p(y2|x1)

FIGURE 5.3 Discrete channel. Each input symbol may be received as any one of the
output symbols. The channel is characterized by its set of transmission (or conditional)
probabilities. In general, the number of output symbols may be less than, equal to, or more
than the number of input symbols.

“CH05” — 2006/2/6 — 18:32 — page 57 — #3

� �

� �

S e c t i o n 5.2 CO N D I T I O N A L A N D J O I N T E N T R O P I E S • 57

0
0

1
1

p

1−p

p

q

1−q

q

0

1

0

1

0

1
1−p 1−q (1−p)(1−q) + pq

(1−p)(1−q) + pq

(1−p)q + (1−q)p

FIGURE 5.4 A channel with internal structure. The two BSCs combine to form a single BSC.

they may be different; they may differ in number; and the error rates may differ among
symbol combinations.

A channel may have a complex inner structure with internal or intermediate
variables. For example, one might transmit a code to a first station that then relays
it to the final destination, each transmission being governed by a binary symmetric
channel, but with different error probabilities. The net result is an overall BSC as
shown in figure 5.4. Even more complex structures may arise when describing the
path between an underlying medical condition and its several consequences before
influencing an observed symptom. However, intermediate stages can be collapsed to
produce net transition probabilities from input to output.

5.2 Conditional and Joint Entropies

Conditional entropy is defined relative to two random variables X and Y , which may
or may not be related to a channel. The conditional entropy of Y given X is written
H(Y |X) and is interpreted as the average entropy in Y given knowledge of X.

The formal definition is built in stages. First, suppose that the specific value xi of X
is known. The entropy of Y given this knowledge is, according to the basic definition
of entropy,

H(Y |xi) =
∑

yj

p(yj|xi) log
1

p(yj|xi)
.

For example, the entropy associated with the toss of a die Y is H(Y) = log 6 =
2.59 bits. If we are told that the outcome is a high number (either 5 or 6), then the
conditional entropy given that knowledge is H(Y |high) = log 2 = 1 bit.

The overall conditional entropy is obtained by averaging with respect to all
possibilities xi in X according to their probabilities. The formal definition is as follows.

Conditional entropy. The conditional entropy H(Y |X) is

H(Y |X) =
∑
xi∈X

H(Y |xi)p(xi). (5.1)

“CH05” — 2006/2/6 — 18:32 — page 58 — #4

� �

� �

58 • C h a p t e r 5 C H A N N E L S

In detail,

H(Y |X) =
∑
xi∈X

H(Y |xi)p(xi)

=
∑
xi∈X

∑
yj∈Y

p(yj|xi)p(xi) log
1

p(yj|xi)

=
∑
xi∈X

∑
yj∈Y

p(xi, yj) log
1

p(yj|xi)
. (5.2)

The last line of the definition uses the joint probability p(xi, yj), the probability
that both xi and yj occur, which satisfies p(xi, yj) = p(yj|xi)p(xi).

Example 5.1 (The toss of a die). Let Y be the outcome of the toss of a die with six
possible outcomes, and let X be the two events High (5 or 6) and Not high (1, 2, 3,
or 4). The conditional entropy is

H(Y |X) = 1

3
log 2 + 2

3
log 4 = 5

3

because after X is known there is a one-third chance that either 5 or 6 will
remain as possible values of Y , and a two-thirds chance that 1, 2, 3, or 4

will remain. This conditional entropy is lower than the entropy of 2.58 bits of Y
itself, and this is a general property, as stated by the following lemma.

Lemma 5.1 Entropy reduction. 0 ≤ H(Y |X) ≤ H(Y).

This lemma is established in section 5.4. It states that the entropy of a variable Y is,
on average, never increased by knowledge of another variable X.

Example 5.2 (Two dice). According to lemma 5.1, knowledge of X tends to decrease
the entropy of H(Y) to a lower value H(Y |X). Suppose, however, that I try to guess
the outcome of a toss of a die Y by observing the outcome of a different die X. We can
safely assume that X and Y are independent; neither influences the other. This means
that p(yj|xi) = p(yj) = 1/6 for all xi and yj. It follows that p(xi, yj) = p(xi)p(yj) =
1/36.

We have

H(Y |X) =
6∑

i, j=1

1

36
log 6 = log 6

= H(Y).

In other words, the entropy of Y conditional on a variable that is independent of Y is
the entropy of Y itself. Knowledge of irrelevant events does not change entropy.

Example 5.3 (Binary symmetric channel). Suppose that for the BSC the input X
and output Y both consist of the symbols 0 and 1. The conditional entropies of Y

“CH05” — 2006/2/6 — 18:32 — page 59 — #5

� �

� �

S e c t i o n 5.2 CO N D I T I O N A L A N D J O I N T E N T R O P I E S • 59

given x = 0 or given x = 1 are

H(Y |0) = H(p) ≡ −[p log p + (1 − p) log (1 − p)]
H(Y |1) = H(p).

In this case, the overall conditional entropy is

H(Y |X) = H(Y |0)p(0) + H(Y |1)p(1) = H(p),

which is independent of the input probabilities.

Joint entropy. The joint entropy of the random variables X and Y is the entropy of
the pair (X , Y).

If there are r possible xi’s and s possible yj’s, there will be r × s possible pairs
in (X, Y). These pairs are characterized by the joint probabilities p(xi, yj). Such pairs
might consist of two consecutive letters of the alphabet in English prose, as discussed
in chapters 3 and 4. Or in the present context, they might be all possible input and
output symbol pairs in a channel. The joint entropy can similarly be defined for any
finite number of random variables X1, X2, . . . , Xn.

There is an important relation between joint and conditional entropy.

Lemma 5.2. H(X , Y) = H(Y |X) + H(X).

In words, this lemma says that the joint entropy of X and Y is the entropy of X
plus the entropy of Y given X. Stated this way, it makes intuitive sense.

The proof of the formula is obtained by mechanical manipulation of the formulas
for individual terms.

Proof:

H(Y |X) + H(X) =
∑

(xi ,yj)∈(X,Y)

p(xi, yj) log
1

p(yj|xi)
+

∑
xi∈X

p(xi) log
1

p(xi)

=
∑

(xi ,yj)∈(X,Y)

p(xi, yj) log
1

p(yj|xi)
+

∑
(xi ,yj)∈(X,Y)

p(xi, yj) log
1

p(xi)

=
∑

(xi ,yj)∈(X,Y)

p(xi, yj) log
1

p(xi, yj)

= H(X, Y).

Example 5.4 (Conditional die). Consider again example 5.1. Y is the outcome of
a die toss that can be any of the six numbers (1, 2, 3, 4, 5, 6). X has the two possible
values High (5 or 6) or Not high. H(X, Y) can be computed two ways, using either
the conditional entropy H(Y |X) or H(X|Y). According to the first way

H(Y |X) = 1

3
log 2 + 2

3
log 4 = 5

3

H(X) = 1

3
log 3 + 2

3
log

3

2
= log 3 − 2

3

H(X , Y) = H(Y |X) + H(X) = 5

3
+ log 3 − 2

3
= 1 + log 3.

“CH05” — 2006/2/6 — 18:32 — page 60 — #6

� �

� �

60 • C h a p t e r 5 C H A N N E L S

According to the second way

H(X|Y) = 0

H(Y) = log 6

H(X, Y) = H(X|Y) + H(Y) = 0 + log 6 = 1 + log 3.

5.3 Flipping a Channel

Perhaps surprisingly, the direction of a channel can be reversed (or flipped), as
illustrated in figure 5.5. We hasten to remark that it is the probabilistic structure
of information that is reversed, not the underlying physical process if there is one.
For example, a small radio receiver cannot transmit back to the radio station. It is
the information inferences that can be reversed. However, the channel can be flipped
only when the probabilities of the input events or symbols are known.

An example (see exercise 2) is the relation between a person’s height and weight.
If we know someone’s height, then on average we know something about his or her
weight. There is a channel between height and weight. On the other hand, knowledge
of a person’s weight tells us something, on average, about his or her height, and this
is the reverse channel from weight to height.

Once the input probabilities are specified, it is possible to calculate the correspond-
ing output probabilities and treat them as input probabilities for the reverse direction.
If the input is the random variable X and the output is the random variable Y , the
output probabilities are found from the transition probabilities as

p(yj) =
n∑

i=1

p(yj|xi)p(xi).

Once the probabilities of X and Y are known, one may compute the reverse
probabilities of the channel—the conditional probabilities p(xi|yj). The appropriate
formula, known as Bayes’ rule, is

p(xi|yj) = p(yj|xi)p(xi)

p(yj)
. (5.3)

One way to remember this formula is start with p(xi, yj) = p(xi|yj)p(yj) = p(yj|xi)
p(xi), giving two ways to express p(xi, yj). Dividing by p(yj) gives Bayes’ rule.

These reverse probabilities are important from the receiver’s viewpoint, for they
allow the receiver to deduce the probability of input symbols based on the received
output symbol. This is true of communication systems where the receiver wishes to
deduce the original message, it is true of medical tests, where a physician wishes to

channel
output output

Y

input

X
flipped channel

Y

input

X

FIGURE 5.5 A channel and its flipped version.

“CH05” — 2006/2/6 — 18:32 — page 61 — #7

� �

� �

S e c t i o n 5.3 F L I P P I N G A C H A N N E L • 61

SAFE
80%

OK

BAD

.98

.02

.05

.95
NOT SAFE

20%

SAFE OK
79.4%

BAD
20.6%

.987

.078

.0126

.922
NOT SAFE

FIGURE 5.6 A water tester channel. As shown at the top, it has a 5 percent probability
of reporting OK when actually the water is not safe. However, the flipped channel (shown
at the bottom) shows that there is only a 1 percent chance that if the tester reports OK, the
water is not safe.

make a diagnosis, and it is also true of investors in oil wells who from geologic and
other data wish to estimate the probability that there is oil at a site.

Example 5.5 (Safe water). Suppose you are going out into the wild where the
quality of the water is suspect. You have an inexpensive water tester that indicates
either OK or BAD to inform you if the water is potable. However, the tester is not
100 percent reliable. The water itself is either SAFE or UNSAFE and the tester may
give false readings of either kind: indicating BAD when the water is actually SAFE,
and OK when the water is actually UNSAFE. Research on the tester has quantified
the probabilities of these errors to be 2 percent and 5 percent respectively. You have
learned that there is a 20 percent chance that water in this region is not safe. The water
tester channel is shown in figure 5.6. The input is the actual condition either SAFE
or UNSAFE and the output is the tester result OK or BAD. You are concerned about
the 5 percent probability of one of the errors.

Your real interest, however, is the probabilities of the flipped channel, for you want
to know the probability of the water being safe if the test says OK. You first calculate
the output probabilities:

pOK = .98 ∗ .80 + .05 ∗ .20 = .794

pBAD = .02 ∗ .80 + .95 ∗ .20 = .206.

Then you calculate the reverse transition probabilities:

p(SAFE|OK) = .80 ∗ .98/.794 = .987

p(UNSAFE|OK) = 1 − .987 = .0126

p(UNSAFE|BAD) = .95 ∗ .20/.206 = .922

p(SAFE|BAD) = 1 − .922 = .078.

“CH05” — 2006/2/6 — 18:32 — page 62 — #8

� �

� �

62 • C h a p t e r 5 C H A N N E L S

Hence there is only(!) about a 1 percent chance of water being UNSAFE when the
test says OK.

5.4 Mutual Information

Mutual information is the information about one variable revealed by knowledge of
another.

Mutual information. The mutual information of a random variable X given the
random variable Y is

I(X; Y) = H(X) − H(X|Y). (5.4)

The formula of the definition has a simple interpretation. The original uncertainty
in X is embodied in the entropy H(X). Observation of Y reveals something more
about X . On average, the new entropy of X given knowledge of Y is the conditional
entropy H(X|Y). Knowledge of Y causes (on average) the entropy of X to drop from
H(X) to H(X|Y), and hence the entropy is reduced by H(X)−H(X|Y). This reduction
in entropy measures, on average, the information supplied by knowledge of Y . Thus
I(X; Y) is the information about X transmitted by Y .

Lemma 5.3 (Properties of mutual information).

1. I(X; Y) = H(X, Y) − H(X|Y) − H(Y |X)

2. I(X; Y) = H(X) − H(X|Y)

3. I(X; Y) = H(Y) − H(Y |X)

4. I(X; Y) is symmetric in X and Y

5. I(X; Y) = ∑
x
∑

y p(x, y) log
p(x, y)

p(x)p(y)

6. I(X; Y) ≥ 0

7. I(X; X) = H(X).

Proof: Item 2 is the definition. It is used to prove item 1.

I(X; Y) = H(X) − H(X|Y)

= H(X) + H(Y |X) − H(Y |X) − H(X|Y)

= H(X, Y) − H(X|Y) − H(Y |X) from lemma 5.2.

Items 3 and 4 follow immediately from 1. Item 5 is proved by using 1 to write

I(X; Y) =
∑
x∈X

∑
y∈Y

p(x, y)

[
log

1

p(x, y)
− log

1

p(x|y)
− log

1

p(y|x)

]

=
∑
x∈X

∑
y∈Y

p(x, y)

[
log

1

p(x, y)
− log

p(y)

p(x, y)
− log

p(x)

p(y, x)

]

=
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
.

“CH05” — 2006/2/6 — 18:32 — page 63 — #9

� �

� �

S e c t i o n 5.4 M U T UA L I N F O R M AT I O N • 63

To prove 6, item 5 is used to write

I(X; Y) =
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y) −
∑
x∈X

∑
y∈Y

p(x, y) log p(x)p(y).

Notice that both p(x, y) and p(x)p(y) are probability densities on (X, Y). They both
sum to 1 when summed over all x and y. Thus, by lemma 3.1 (chapter 3) I(X; Y) ≥ 0.
Item 7 follows from 2 and H(X|X) = 0.

The symmetry of mutual information may not seem obvious at first. It says that
knowledge of Y gives as much information about X as knowledge of X gives about
Y . Both are I(X; Y). However, studying examples will make this more intuitive.

Example 5.6 (Mutual die information). If I do not know the outcome Y of a die,
the original entropy is H(Y) = log 6 = 2.59 bits. If I am told X, which is whether
the outcome is High (5 or 6) or Not high (1, 2, 3, or 4), the new entropy is on
average H(Y |X) = 5/3 = 1.67 bits from example 5.1. The mutual information is the
difference: I(Y ; X) = H(Y) − H(Y |X) = log 6 − 5/3 = log 3 − 2/3 = .918 bits,
since the entropy dropped from log 6 to 5/3.

This value may also be computed by reversing the roles of X and Y as I(X; Y) =
H(X) − H(X|Y) = H(X) − 0 = 1

3 log 3 + 2
3 log 3/2 = log 3 − 2/3 = .918, the same

as before.

The fact that mutual information is always nonnegative implies that knowledge of
Y always gives nonnegative information about X on average (but not necessarily in
every instance). This result, by the way, establishes lemma 5.1, stated in section 5.2,
that 0 ≤ H(Y |X) ≤ H(Y), since I(X; Y) = H(Y) − H(Y |X) ≥ 0.

The relations between various entropy concepts can be represented on a Venn
diagram as shown in figure 5.7. The complete circles represent the entropies H(X)
and H(Y). The portion of a circle that does not overlap the other circle is the conditional

H(X|Y) H(Y|X)

H(Y)H(X)

I (X;Y)

FIGURE 5.7 Venn diagram of entropy concepts. The circles represent the entropy of
X and Y, respectively. The portion of a circle that does not overlap represents the condi-
tional entropy. The region of overlap is the mutual information. Hence, according to the
diagram, I(X; Y) = H(Y) − H(Y|X) = H(X) − H(X|Y).

“CH05” — 2006/2/6 — 18:32 — page 64 — #10

� �

� �

64 • C h a p t e r 5 C H A N N E L S

entropy. H(Y |X), for example, is the part of the H(Y) circle that does not overlap the
H(X) circle. The part that does overlap is the mutual information H(Y) − H(Y |X).
The figure implies that mutual information is symmetric, since the intersection can
be computed also as H(X) − H(X|Y).

Example 5.7 (The Oregon weather channel). In the state of Oregon the general
weather condition G is either SUNNY, CLOUDY, or RAINY, with probabilities .5,
.25, .25, respectively. The temperature condition T is either HOT, WARM, or COLD,
and the probabilities of those temperatures are related to the general conditions as
shown in figure 5.8.

Let us answer the following questions:

1. What is the entropy of the general weather condition G?

2. What is the entropy of the temperature condition T?

3. On average, how much information about the general weather condition
is conveyed by knowledge of the temperature condition?

4. What is the conditional entropy H(T |G)?

5. On average, how much information about the temperature condition is
conveyed by the general weather condition?

Here are the solutions:

1. H(G) = H(.5, .25, .25) ≡ .5 log 2 + .25 log 4 + .25 log 4 = .5 + .25 ×
2 + .25 × 2 = 1.5 bits per symbol.

2. The conditional entropy of T given any general condition in G is seen to
be 1. Hence, the weighted sum of these defined by the probabilities in G
is also 1. Hence, H(T |G) = 1.

3. It is easy to calculate the probabilities: PHOT = .25, PWARM = .25 +
.25 × (.5 + .5) = .5, PCOLD = .25. Then H(T) = H(.5, .25, .25) = 1.5
bits per symbol.

4. I(T ; G) = H(T) − H(T |G) = 1.5 − 1.0 = .5 bits per symbol.

5. By symmetry we know that I(G; T) = I(T ; G) = .5 bits per symbol.

SUNNY .5 HOT
.5

CLOUDY .25

RAINY .25

WARM

COLD

G T

.5

.5

.5 .5

.5

FIGURE 5.8 Oregon weather. The general weather G on the left is associated with
temperature conditions T on the right.

“CH05” — 2006/2/6 — 18:32 — page 65 — #11

� �

� �

S e c t i o n 5.5 C A PAC I T Y * • 65

5.5 Capacity*

Shannon’s deepest and most surprising results explicitly address the problem of
communicating reliably through channels subject to error. We recall that before
his work, experts believed that reducing the error rate toward zero implied that

the rate would go to zero as well. Shannon changed that conclusion.
He showed that to every communication channel there corresponds

a capacity, which is a rate at which reliable communication is
possible. The definition of that capacity is straightforward,

following from the concept of mutual information.

Capacity. The capacity of a channel is the maximum possible mutual information
that can be achieved between input and output by varying the probabilities of the
input symbols. Mathematically, if X is the input of the channel and Y is the output,
the capacity C is

C = max
input probabilities

I(X, Y). (5.5)

The mutual information about X given Y is the information transmitted by the chan-
nel per symbol on average, and this depends on the probability structure. The input
symbol probabilities can be adjusted by suitable coding of the underlying sources;
the transition probabilities are fixed by the properties of the channel; and the output
probabilities are determined by the input and transition probabilities. Therefore it is
the input probabilities that determine the mutual information, and they can be varied
by coding. The maximum mutual information with respect to these input probabilities
is the channel capacity.

Example 5.8 (Capacity of BSC). For the BSC we know from example 5.3 that
H(Y |X) = H(p). Hence I(X, Y) = H(Y) − H(Y |X) = H(Y) − H(p), and thus

C = max
X probabilities

{H(Y) − H(p)}.

The entropy H(p) is fixed but H(Y) can be varied indirectly by changing the input
probabilities. The maximum possible value of H(Y) is 1, and this is achieved when
the probabilities of the two input symbols are each 1/2. Therefore, the capacity of
the BSC is

C = 1 − H(p).

Let us check some special cases. If p = 0, then H(0) = 0, and C = 1 consistent
with the ability to reliably send one bit of information with each symbol. Likewise, if
p = 1, again C = 1. The worst case is p = 1

2 , since then H(p) = 1 and hence C = 0.
It is impossible for the receiver to deduce whether a 0 or a 1 was sent.

Example 5.9 (The Oregon weather). Consider the structure of example 5.7. As
originally stated, this is not really a communication channel, since we cannot vary
the input probabilities. However, just for fun, suppose that they can be adjusted.
For this structure we found H(T |G) = 1, independent of the input probabilities.

“CH05” — 2006/2/6 — 18:32 — page 66 — #12

� �

� �

66 • C h a p t e r 5 C H A N N E L S

Hence
C = max

input probabilities
H(T) − 1.

The maximum possible value of H(T) would be H(T) = log 3 if we could achieve
equal probabilities in the temperature conditions. However, this is impossible (as we
shall see shortly). Suppose probabilities α, β, and 1 −α −β are assigned to the three
input probabilities in G. The corresponding output probabilities can be easily found
to be α/2, 1/2, (1−α)/2, which shows that it is impossible to achieve 1/3, 1/3, 1/3.
The capacity is therefore

C = max
α

{
−

(α

2

)
log

(α

2

)
− 1

2
log

1

2
−

(
1 − α

2

)
log

(
1 − α

2

)}
− 1

= max 1
2 [H(α) + 2] − 1 = max 1

2 H(α)

= 1/2,

where the maximum is achieved by α = 1
2 . Hence the channel as originally presented

operates at maximum capacity.

5.6 Shannon’s Second Theorem*

The definition of capacity presented in the previous section follows logically from
the formal concept of mutual information. However, that definition does not say what
information is transmitted through the channel. Conceivably, if the capacity is, say .5
bits per symbol, the message may be garbled so that only half of it gets through, on
average. Shannon’s second theorem states that, in fact, it is possible to communicate
almost perfectly at a rate equal to the channel capacity. This theorem is considered
to be Shannon’s greatest achievement. It is the answer to the perplexing problem of
whether reliable communication can be achieved through unreliable channels.

Theorem 5.1 (Shannon’s second theorem). Suppose a discrete channel has capac-
ity C and the source has entropy H. If H < C, there is a coding scheme such that
the source can be transmitted over the channel with an arbitrarily small frequency of
error. If H > C, it is not possible to achieve arbitrarily small error frequency.

Shannon presented a schematic characterization of the theorem that, although not
the basis of a formal proof, shows the concept underlying the theorem in a simple
way. A version of his schematic is shown in figure 5.9 for the BSC.

As with Shannon’s first theorem, the key idea is to consider long blocks of message
symbols to define “meta messages.” We go through the argument for the BSC channel
where the basic symbols are 0 and 1 and one symbol is transmitted per second. In this
case the capacity is C = 1−H(p) bits per second, where p is the probability of error.

If the message blocks have length T , there are a total of 2T possible blocks. These
blocks are represented by the dots on the left side of the figure. Likewise there are 2T

possible output blocks, represented by the dots on the right side.
When a particular block is sent, it may be corrupted by error, which occurs with a

probability p per symbol. In a long block of length T , it is highly likely that about pT
errors will occur. The number of different blocks with this many errors is equal to the
number of ways that pT positions can be chosen from the T available positions. The

“CH05” — 2006/2/6 — 18:32 — page 67 — #13

� �

� �

S e c t i o n 5.6 S H A N N O N ’ S S E CO N D T H E O R E M * • 67

2T possible received blocks

2H(Y|X)T
reasonable effects

from each M

2H(X)T
high probability

 messages

FIGURE 5.9 BSC channel representation. There are 2T possible input blocks and 2T

output blocks. Associated with each input is a fan of 2TH(p) highly probable output blocks.
Hence for the fans to be disjoint we must use less than 2T−TH(p) input blocks.

number of these is about 2TH(p).1 One can think of a message block as generating a
fan of 2TH(p) likely effects or output blocks, as shown in the lower part of the figure.

If the fans do not overlap, one can look backward from a received block and tell
with certainty which message was sent. To insure that the fans do not overlap, the
system must use fewer than the 2T available message blocks. In fact, since there are
2T possible output blocks and each message generates a fan of 2TH(p) highly probable
outputs, a condition for nonoverlap is that the number M of fans times the size of each
fan must be less than 2T . Thus M2TH(p) ≤ 2T . Equivalently, M ≤ 2T (1−H(p)) = 2TC ,
where C = 1 − H(p) is the capacity of the channel.

The rate R of information transmission in bits per second when M blocks are used
every T seconds is R = [log M]/T . If M satisfies the condition for nonoverlap, then
R ≤ log 2TC/T = C. If R < C, it is possible to arrange things so that the fans do not
overlap, and hence it is possible to communicate reliably at this rate.

Random Codes

One of the most disquieting yet provocative aspects of Shannon’s proof of the
second theorem is his coding method. The schematic discussion of the second
theorem, presented above, does not demonstrate that a suitable coding scheme
exists; it only gives a condition on the number of codewords necessary to avoid
overlap of the highly probable received blocks. Shannon showed that there is a suit-
able code, and he did so by selecting codes randomly and showing that at least
one (actually many) of these would work. He did not show how to construct a
specific code.

Shannon extended his theory to continuous channels, channels in which signals
are functions of time rather than sequences of symbols. These results are every bit as
important as those of this chapter, and are presented in chapter 21.

1The number of ways is actually
(T
pT

) ≡ T !
(T−Tp)!(Tp)! . By Stirling’s approximation T ! ≈ TT , and from

this we find log
(T
Tp

) ≈ −T [p log p + (1 − p) log (1 − p)] = TH(p). Hence,
(T
pT

) ≈ 2TH(p).

“CH05” — 2006/2/6 — 18:32 — page 68 — #14

� �

� �

68 • C h a p t e r 5 C H A N N E L S

5.7 EXERCISES

1. (Die rolls) A fair die is rolled. If the outcome is 1, 2, or 3, it is rolled once more; otherwise
not. How much information about the number of rolls (one or two) is conveyed by telling
whether the final outcome is odd or even?

2. (Height and weight channel) Consider the relation between height L and weight W shown
in figure 5.10, indicating that tall people tend to be heavier than short people.

(a) What is the entropy of L?
(b) What is the conditional entropy H(W |L)?
(c) Find the probabilities of the weight categories.
(d) Flip the channel to find the reverse transition probabilities.
(e) Find the mutual information I(L; W), which is how much information, on average,

about a person’s height is given by his or her weight.

3. (Single-side error) A source X sends 0’s and 1’s with probabilities π and 1−π , respectively,
to a receiver Y . The 1’s are transmitted without error, but 0’s are changed to 1’s with
probability p and remain as 0’s with probability 1 − p. What is the mutual information of
the source and receiver?

4. (One error only) Consider a source X that has two symbols. These are coded in binary as
00 and 11 respectively. Each X symbol (two-bit word) has probability 1/2. When these
two-bit words are sent through a certain channel, there is a probability p that one of the
two bits will be changed by an error to the opposite binary bit before it is received at Y .
For example, 00 may be received as 00 with probability 1 − p, 01 with probability p/2, or
10 with probability p/2. There is no probability of two errors in a word. (Throughout the
exercise use the notation H(p) = −p log p − (1 − p) log (1 − p).)

(a) Find H(Y |X).
(b) Find H(Y).
(c) What is the mutual information I(X; Y)?

Very heavy

Heavy

Average

Light

Very light

Very tall 1/8

Tall 1/4

Average 1/4

Short 1/4

Very short 1/8

Height (L) Weight (W)

FIGURE 5.10 The transitions between categories are shown. The heavy lines corre-
spond to probabilities of 1/2. The light lines correspond to probabilities of 1/4. The
probabilities of the height categories are listed on the left.

“CH05” — 2006/2/6 — 18:32 — page 69 — #15

� �

� �

S e c t i o n 5.8 B I B L I O G R A P H Y • 69

5. (Function) Suppose that the source X is mapped into the source Y having values yj = g(xi)
for xi ∈ X.

(a) Show that H(Y) ≤ H(X). Under what conditions will there be equality?
(b) Under what conditions is H(X|Y) = 0?

6. (Binary erasure channel) Consider a channel in which some bits are lost during transmission.
The receiver knows which bits are lost but cannot recover them. The situation is shown in
figure 5.11. Find the capacity of the channel.

01−α

α

1−α 1

e

0

1

α

FIGURE 5.11 The binary erasure channel.

5.8 Bibliography

Shannon fully described the nature of channels, conditional entropy, mutual informa-
tion, and channel capacity in his original paper [1]. This material is covered in the
information theory textbooks cited in earlier chapters. The procedure for flipping a
channel is widely used in other application areas (as illustrated in chapters 9 and 18).

Reference

[1] Shannon, Claude E. The Mathematical Theory of Communication. Urbana:
University of Illinois Press, 1949.

“CH04” — 2006/2/6 — 19:57 — page 35 — #1

� �

� �

4
COMPRESSION

C
ompression is any procedure that reduces data requirements of a file (or message)
without seriously degrading the integrity of that file. Compression is an important
part of modern information technology and is commonly used to reduce the file size

of text, music, graphics, video, and large data sets. There are dozens of compression
techniques, each with its advantages and areas of application, but many can be best
understood by reference to information theory.

4.1 Huffman Coding

One of the first university courses in information theory was offered
by Prof. Fano at MIT in 1951. He gave each student the option of
writing a term paper or taking a final exam. As the subject for the

term paper he suggested the problem of finding instantaneous
codes of minimum average length L (which was known to satisfy
H ≤ L ≤ H +1). David A. Huffman elected to write the term paper.

Unaware that both Shannon and Fano had themselves attempted to
solve the problem, he worked diligently for several months,
apparently getting nowhere. Just before the course was about
to end, he discovered the simple method leading to what has

ever since been termed Huffman coding.
Given a number of source symbols and their probabilities, the Huffman procedure

produces a code with average length L as close as possible to the source entropy H.
The result of the procedure is not always unique, for there may be several codes with
the same minimum average length, but any one of these is termed a Huffman code.
Today, Huffman coding forms the basis of many compression methods, and even
when it is not used, it provides a numerical benchmark to evaluate other methods.

The basic idea of the Huffman coding algorithm for binary codes is to start with a
small number of symbols and work up. It is easy to code a source with two symbols

35

“CH04” — 2006/2/6 — 19:57 — page 36 — #2

� �

� �

36 • C h a p t e r 4 CO M P R E S S I O N

no matter what their respective probabilities: the two codewords must simply be 0
and 1, giving an average length of 1. No better code exists. For three symbols, the
situation is slightly more complicated, but the best way to proceed is to temporarily
combine the two symbols of lowest probability into a single composite symbol with
probability equal to the sum of the individual symbols. This composite together with
the remaining symbol defines a new two-symbol source, which is easily coded. Then
the composite symbol is split into its components and coded by adjoining 0 and 1,
respectively, to the code character that has already been assigned to the composite.
Hence if 0 is the composite, the final three codewords are 00, 01, 1. In general, when
there are some number m of symbols, they are reduced by forming composites over
and over again until only two symbols remain. Coding is then carried out sequentially
by working backward, splitting the composites and adding code characters two at a
time. When all composites have been split, the original source symbols are obtained,
together with assigned codewords. The procedure is simple, but it is best understood
in the context of an example.

Example 4.1 (Five symbols). Consider the source of five symbols, with probabili-
ties .3, .2, .2, .2, .1. The entropy of this source is H = −[.3 log .3 + (3 × .2) log .2 +
.1 log .1] = 2.246. The first step of the Huffman procedure is to order the probabilities
by decreasing magnitude. In this example, they are already so ordered (ties do not
matter). The symbol names and their probabilities make up the first two columns of
figure 4.1.

The procedure has two phases. The first part is the reduction phase. The bottom
two symbols are combined and their probabilities summed. This composite symbol
is then treated like any other symbol, and a new ordered list is constructed. In the
example, the two bottom symbols, with probabilities .2 and .1, are combined to form
a symbol of probability .3, and this is placed in the new ordered list. In the example,
it may be placed either first or second on the list, since there is another symbol of
probability .3. We have elected to place it second. The lines in the figure keep track
of the composites. In the example, three stages of reduction are required to obtain the
final two composite nodes.

The second part of the procedure, the splitting phase, is shown in figure 4.2. This
splits the combined symbols and assigns codewords. The two symbols in the final list

s1

s2

s3

s4

s5

.3

.2

.2

.1

.3 .4 .6

.2

.2

.3

.2

.3

.3

.4

FIGURE 4.1 Huffman reduction phase. At each stage the two symbols of lowest prob-
ability are combined to form a single composite symbol. This is continued until only two
symbols remain.

“CH04” — 2006/2/6 — 19:57 — page 37 — #3

� �

� �

S e c t i o n 4.1 H U F F M A N CO D I N G • 37

s1

s2

s3

s4

s5

.3

.2

.2

.1 011

010

11

01

00 .3 00 1 0.4 .6

.2

.2 10

.310

11.2

.3 00

.3 01

.4 1

FIGURE 4.2 Huffman splitting phase. The two symbols in the last list are coded with 0
and 1. These are then taken backward to the previous list. One of the symbols must be
split, and the existing codeword is appended with a 0 and a 1, respectively, to separate the
symbols. In the example, the symbol with .6 probability is coded with 0. When it is split, the
two components are 00 and 01.

are assigned the codewords 0 and 1 respectively. These are carried back to the next
previous list of three symbols. The two symbols that were combined are now split,
and the codeword previously assigned to the composite is now appended with a 0 for
one of these components and a 1 for the other. In the example, the final node with
a .6 probability was assigned the codeword 0. In the next list (going backward) this
symbol is split, and the two components are coded as 00 and 01. The procedure moves
back one list at a time until the original symbol list is obtained. The final codewords
represent the Huffman code.

In this example, the final word lengths are 2, 2, 2, 3, 3. The average length is
therefore

L = (2 × .3) + (2 × .2) + (2 × .2) + (3 × .2) + (3 × .1) = 2.3,

which can be compared with the entropy H, which is 2.246.
It is often helpful to represent the code by its code tree, as shown in figure 4.3.

0 1

00 01 10 11

010 011

s1 s2 s3

s4 s5

FIGURE 4.3 Huffman code tree. The code for the example can be shown on a tree.

“CH04” — 2006/2/6 — 19:57 — page 38 — #4

� �

� �

38 • C h a p t e r 4 CO M P R E S S I O N

Proof That Huffman Codes Are Efficient*

As mentioned in section 3.1, a code is said to be efficient if its average length is as
short as possible. Huffman codes are efficient in this sense.

Dead branch

FIGURE 4.4 Dead branch.
An efficient code can have
no dead branches.

How can we prove that Huffman coding provides the minimum possible average
length L? Suppose that a different efficient code for the same source has average
length L′ less than the value L for a Huffman code. We consider the code trees for
both. It is clear, first, that in an efficient code there can be no dead branches, as
illustrated in figure 4.4 (that is, there can be no final nodes that could be pushed back
toward the beginning of the tree). This implies that codewords having the maximum
length must appear in pairs, each pair emanating from a common predecessor node.
Furthermore, these codewords must correspond to symbols of minimum probability
or else the average length could be reduced by exchanging any one of these for a
symbol of lower probability. It can be assumed that in the efficient code, the two
symbols of lowest probability are pairs with the same predecessor, for if not, symbols
having maximum length could be exchanged so that this is true.

Now imagine reducing the code trees of both the efficient code and Huffman code
by combining the two lowest probability nodes, taking them back to their predecessor
nodes. The word length of each of the nodes is reduced by 1. Hence the average word
length of the reduced set of symbols in the efficient code is L′ − (pq + pq−1), where
pq and pq−1 are the two lowest probabilities. The Huffman code tree will be reduced
in a similar way by combining nodes of probability pq and pq−1, although, in the
case of ties, these nodes may be different from those of the efficient code. Hence,
the average word length of the Huffman code is reduced to L − (pq + pq−1). This
argument applies at every stage of the reduction, with both the efficient code and
the Huffman code being reduced by the same amount at each step. The final result
for the Huffman code is a code for two symbols, and an average length of 1. The
corresponding value for the efficient code would be less than 1, since L′ < L. This is
impossible, so we must have L′ = L.

Nonuniqueness of Huffman Codes

There is flexibility in the Huffman coding algorithm whenever there are ties
among symbol (or composite symbol) probabilities because these symbols can be
interchanged in the ordered lists. Alternative orderings generally produce different
code assignments, and often produce different word length combinations, but all
resulting codes have the same average word length. This is illustrated by the fol-
lowing example. The reader is encouraged to actually go through the procedure to
construct the codes.

Example 4.2 (Two ways). Two efficient codes are shown below for a five-symbol
source.

Source Symbol Probability Code 1 Code 2
s1 .4 1 00
s2 .2 01 10
s3 .2 000 11
s4 .1 0010 010
s5 .1 0011 011

“CH04” — 2006/2/6 — 19:57 — page 39 — #5

� �

� �

S e c t i o n 4.1 H U F F M A N CO D I N G • 39

These are both instantaneous codes constructed by the Huffman procedure. In con-
structing code 1, composite nodes were always placed at the lowest position in the
list consistent with proper ordering, while in constructing code 2, composite nodes
were always placed at the highest possible position. (For example, at the first step,
the composite will have probability of .1 + .1 = .2, and hence there are actually three
possible positions for it in the next list.) The average lengths of the two codes given
in the table are, respectively,

L1 = (.4 × 1) + (.2 × 2) + (.2 × 3) + (.1 × 4) + (.1 × 4) = 2.2

L2 = (.4 × 2) + (.2 × 2) + (.2 × 2) + (.1 × 3) + (.1 × 3) = 2.2.

Thus, although the word lengths are different, both codes have the same (minimum)
average word length.

Example 4.3 (Powers of A,B). Consider the source S consisting of two symbols A
and B with probabilities pA = 3/4, pB = 1/4. The entropy of this source is

H = −
[

3

4
log

3

4
+ 1

4
log

1

4

]
= log 4 − (3/4) log 3

= 2 − (3/4) log 3 = 2 − .75 × 1.5849 = .8118.

The Huffman code for this simple source assigns 0 to A and 1 to B, giving a minimum
average length of L = 1.

The source S2 consists of the four pairs AA, AB, BA, and BB with probabilities
found by multiplication. The source S3 consists of eight triples AAA, AAB, ABA,
and so forth. The Huffman codes for each of these sources can be constructed. The
resulting codes and their average lengths are shown in table 4.1. As the number of
symbols in the compound source is increased, the average (per symbol) length of the
Huffman code approaches the entropy of the source.

TABLE 4.1
Huffman Codes for Powers of a Source. As the number of combinations is increased,

the average per-symbol length of the Huffman code approaches the entropy of the source,
H = .8118.

Symbol Probability Code Symbol Probability Code Symbol Probability Code

A 3/4 0 AA 9/16 0 AAA 27/64 1
B 1/4 1 AB 3/16 10 AAB 9/64 001

BA 3/16 110 ABA 9/64 010
BB 1/16 111 BAA 9/64 100

ABB 3/64 00000
BAB 3/64 00001
BBA 3/64 00010
BBB 1/64 00011

L =1 L/2 = .84375 L/3 = .8229167

“CH04” — 2006/2/6 — 19:57 — page 40 — #6

� �

� �

40 • C h a p t e r 4 CO M P R E S S I O N

Universal Coding

The Huffman coding procedure requires knowledge of the symbol probabilities.
This can be a limitation when dealing with specialized material, such as technical
documents, where the actual frequencies of symbol occurrence may differ from stan-
dard probability tables. In such cases the resulting Huffman code does not achieve the
maximum possible compression. Motivated by this concern, various adaptive tech-
niques have been proposed that modify the list of probabilities according to the actual
occurrences in the data. In a sense, these methods learn the frequencies. If an adap-
tive process is continued indefinitely, on an infinite stream of symbol occurrences,
eventually the estimated frequencies will converge to the actual frequencies and the
compression rate will be maximal. Such methods, which do not require that proba-
bilities be given in advance but act in the limit as if they did have them, are termed
universal.

4.2 Intersymbol Dependency

Successive symbols from a source are not always independent. Instead current symbol
probabilities often depend on what symbols occurred before the current one. For
example, in English, an h is more likely to occur if a t was the previous letter than
if a d was the previous letter. This intersymbol dependency must be accounted for in
an accurate measure of entropy. Typically, intersymbol dependency reduces entropy,
and this implies that codes with shorter average word lengths can be constructed.
Indeed, this idea is the basis for many modern compression methods.

English Probabilities

It is not surprising that considerable attention has been devoted to the possibility
of encoding English text efficiently to achieve compression of text documents. An
estimate of the actual entropy of English, accounting for its intersymbol dependencies,
is necessary to predict the possible advantage of such compression.

For convenience it is often assumed that the alphabet consists of just 27 symbols
(26 letters and a space or punctuation). Since 25 = 32, all 27 symbols could be
encoded with a binary block code with each word having length 5. However, 27 is
less than 32, so the actual entropy is less than five bits.

The simplest estimate of the entropy of English (termed the zero-th order esti-
mate) is based on the assumption that all letters of the alphabet are equally likely,
with a probability of 1/27. The corresponding zero-th order entropy, denoted H0, is
therefore

H0 = log 27 = 4.755 bits/letter.

This is an upper bound, since if the probabilities are not uniform, the entropy will be
reduced. However, this bound is an important reference point.

The probabilities of letters of the alphabet as they occur in English text vary
somewhat with the type of document, but these differences tend to be slight. The
probabilities shown in table 4.2 are typical. The table shows, for instance, that the

“CH04” — 2006/2/6 — 19:57 — page 41 — #7

� �

� �

S e c t i o n 4.2 I N T E R S Y M B O L D E P E N D E N C Y • 41

TABLE 4.2
Alphabet Probabilities for English.
Probabilities are computed over thou-
sands of words taken from various sources.

A .064 N .056
B .014 O .056
C .027 P .017
D .035 Q .004
E .100 R .049
F .020 S .056
G .014 T .071
H .042 U .031
I .063 V .010
J .003 W .018
K .006 X .003
L .035 Y .018
M .020 Z .002

Space/punctuation .166

letter E is apparently everybody’s favorite, since it is much more common than any
other letter except punctuation and space.1

The entropy of English using letter probabilities is termed the first-order estimate
and denoted H1. For the probabilities of table 4.2, H1 = 4.194, representing a modest
reduction in entropy over the case of uniform probabilities. Based on this estimate,
one expects that a Huffman code for the alphabet would have an average length closer
to four than to five. Huffman coding is indeed used as a method of compression of
English text, and as expected, documents require about 20 percent less storage than
when the standard ASCII code is used.

It is possible to go further and consider the frequencies of pairs of letters. Indeed,
the 272 = 729 probabilities of pairs have been estimated and these imply an entropy
H2 (per letter, not per pair) of approximately 3.3. Going further to the 273 = 19,683
triples yields an entropy estimate H3 of about 3.1, and since this is only slightly less
than H2, it seems that it is not worthwhile to go further.

Zipf’s Law

Intuitively, the redundancy in English text is deeper and more complex than revealed
by mere letter frequency variations. For example, most people have little trouble
interpreting the corrupted word scho_ l as school, and they do not accomplish this
interpretation through use of letter frequencies.

To get to the more subtle redundancies, Shannon proposed looking at word fre-
quencies instead of letter frequencies. He could then determine the entropy HW of

1A notable exception is the 267-page novel Gadsby by Ernest Vincent Wright, which by design contains
no occurrences of the letter e.

“CH04” — 2006/2/6 — 19:57 — page 42 — #8

� �

� �

42 • C h a p t e r 4 CO M P R E S S I O N

0.1

0.01

0.001

0.0001

0.00001

W
o

rd
 F

re
q

u
en

cy

1 2 4 6 810 20 40 60 100 200 400 1000 2000 4000 10000

Word Order

the

of
and

to

I

or

say

really

quality

FIGURE 4.5 Zipf’s law. The frequency of a word is approximately proportional to the
reciprocal of its word rank.

English words, and from that estimate the per letter entropy of English as H = HW/w̄,
where w̄ is the average length of English words. To carry out this program, Shannon
used an empirically derived relation among word frequencies proposed by George
Zipf in 1949. Zipf’s law holds in a surprisingly broad set of languages, including
Yiddish, Old German, Plains Cree, Norwegian, and English.2 Specifically, Zipf’s
law states that if the words of a language are listed in decreasing order of frequency
(with word 1 being the most frequent and word m being m-th on the list), then the
probabilities of these words approximately satisfy the relation

pm = A

m
,

where A is a constant that depends on the number of active words in the language.
Zipf’s law is usually illustrated by a plot on a log-log graph, using the form

log10 pm = log10 A− log10 m. Such a plot for English is shown in figure 4.5. Shannon
used a value of A = .01, which gives the approximation shown in the figure. This

2The law also holds for many other rankings, including city populations, energy consumption of animals,
and some financial market data.

“CH04” — 2006/2/6 — 19:57 — page 43 — #9

� �

� �

S e c t i o n 4.2 I N T E R S Y M B O L D E P E N D E N C Y • 43

requires that the number of words be M = 12,366, so that the sum of the probabilities
is 1. That is,

∑M
m=1 pm = ∑12,366

m=1
.01
m = 1. Then

HW =
12,366∑
m=1

.01

m
log

m

.01
= 9.72 bits/word.

Using w̄ = 4.5 letters/word as the average word length then gives H = 9.72/4.5 =
2.16 bits/letter. This is a reduction of more than 50 percent over the raw entropy
based on 27 equally probable and independent letters. However, even this figure is
likely still too high because English words are themselves interdependent.

Redundancy

If the letters in English were not interdependent, the entropy of a string of n letters
would be exactly n times the single-letter entropy. This is the additive property of inde-
pendent copies of a source, which is expressed as H(Sn) = n H(S). When successive
symbols are not independent, the source made up of n symbols from S is written as
(S1, S2, . . . , Sn) and the corresponding entropy is written as Hn = H(S1, S2, . . . , Sn).
The average entropy per symbol is then Hn/n. This leads to the definition of the
average per-symbol entropy over long sequences as

H̄ = lim
n→∞

1

n
H(S1, S2, . . . , Sn),

assuming the limit exists. This is the appropriate definition of the entropy of English.
Perhaps the simplest (and best) way to measure entropy is to study fluent native

speakers who process the language in deep ways developed by experience. A useful
experiment is to show a volunteer a partial line of text and ask him or her to guess the
letter that comes next. For example, the volunteer might be shown the partial line3

She was so astonished and bewildered that sh_

Virtually everyone would predict (correctly) that the next letter is e. It is likely that
the following symbol would also be correctly predicted to be a space. However, the
letter after that might be more difficult to predict. It happens to be c, leading to the
rest of the sentence: “could make no reply.”

In this experiment, a subject is shown the last n − 1 letters of text and attempts to
guess the n-th. The probabilities of the possible letters for position n depend on the
previous n − 1 letters. The conditional entropy corresponding to this uncertainty is
denoted H(Sn|S1, S2, . . . , Sn−1), which is the entropy of Sn given knowledge of the
symbols that appeared in S1, S2, . . . , Sn−1. It is generally true (as shown in chapter 5)
that

H(S1, S2, . . . , Sn) = H(Sn|S1, S2, . . . , Sn−1) + H(S1, S2, . . . , Sn−1).

In words, the entropy of the n symbols is the entropy of n−1 symbols plus the entropy
of the next symbol given that the previous n − 1 symbols are known.

3From Cervantes’ Don Quixote, chapter 27.

“CH04” — 2006/2/6 — 19:57 — page 44 — #10

� �

� �

44 • C h a p t e r 4 CO M P R E S S I O N

Suppose that when carrying out this experiment over many strings of text and
using several volunteers, the predictions are correct 75 percent of the time. To be
conservative we might assume that if a prediction is wrong, the volunteer has no
idea what letter it might be, and hence assigns a probability of 1/26 to each of the
remaining 26 possibilities. (See figure 4.6.) The entropy of the uncertainty is then

H = −.75 log .75 − 26 × (.25/26) log (.25/26) = 1.99 bits.

Right

Wrong

Space

A

B

.75

.25

1/26

C

1/26

FIGURE 4.6 The prob-
ability structure after
a guess. The upper
branch denotes the let-
ter guessed. The other 26
possibilities are assumed
to have equal probabili-
ties.

This is the lowest estimate for the entropy of English we have obtained so far.
However, even it may be too large, since if a prediction of the n-th letter is incorrect,
the volunteer is likely to assign unequal probabilities to the remaining choices. In fact,
a reasonable estimate for the entropy of English based on various reported experiments
is approximately 1.5 bits per letter.

Shannon introduced a measure of redundancy to express the degree by which the
entropy of a language differs from the maximum value that its alphabet could have.
He defined redundancy as

R = 1 − H/log M,

where M is the size of the alphabet and H is the true entropy value. Hence for English

R ≈ 1 − 1.5

log 27
= 1 − 1.5/4.755 = 67 percent.

This implies that there is tremendous opportunity for compression of English text. A
text file can, in theory, be compressed to about one-third of its original size.

Our discussion implies, however, that to achieve results close to those that are
theoretically possible, it is necessary to use a complex process of coding and decod-
ing. Huffman coding alone will not get us far, since even coding the 272 = 729
pairs of letters gives only modest compression compared to what is theoretically
possible.

4.3 Lempel–Ziv Coding

Compression practice was advanced significantly by the innovative and clever method
published by Ziv and Lempel in 1977.4 The method is based on the fact that sequences
of letters in English text are not entirely random, but repeat patterns from time to time.
These patterns make up words or even phrases. The Lempel–Ziv method essentially
constructs a dictionary of these common patterns.

The method may at first sight appear to be simply a clever way to take advantage of
patterns, a method almost trivial in its design. In fact, in practice it is quite powerful
and has deep theoretical underpinnings. It can be shown that in its ideal form it
produces, in the limit of long text, a compression factor equal to that predicted by
the entropy of the text. It is therefore a universal compression algorithm, based on a
simple recording scheme.

4Due to a quirk of history, the now usual ordering of the names of the authors associated with the method
differs from the order in the original publication.

“CH04” — 2006/2/6 — 19:57 — page 45 — #11

� �

� �

S e c t i o n 4.3 L E M P E L – Z I V CO D I N G • 45

In the Lempel–Ziv method, both sender and receiver keep a record of what has
already been sent. Then, when preparing to send additional text, the sender looks
back at previously sent text to find a maximum-length duplication of what needs to
be sent next. Then a reference to the past duplicating string is sent instead of the
string itself. For example, if the next portion of text is a word that was sent before,
the sender merely sends a reference to the position of that word in the record of past
letters.

In the ideal method, the entire history of previously transmitted text is kept by
both sender and receiver, but in practice the stored history is restricted to a given
size, located in a search buffer. Likewise, the possible length of string to be sent is
restricted by a look-ahead buffer.

The reference to the past string is transmitted by sending a triple (x, y, z) where
the first entry x is the number of places back in the buffer where the duplicate string
begins, y is the length of the duplicate string, and z is the next letter in the look-ahead
buffer after the duplicated string. For example, the message (5, 3, F) means that the
upcoming text begins with a string that is identical to one that begins 5 letters back,
has length 3, and is then followed (in the new text) by the letter F.

The process is illustrated in figure 4.7 for sending the message, THIS-THESIS-IS-
THE-THESIS. Initially, the search buffer, made up of text previously sent, is empty.
Hence the first letter is sent directly by the message (0, 0, T). Additional single-letter
transmissions continue for a few steps as the search buffer begins to fill up. Finally,
after five steps, the sequence THIS- has been sent, and the sender is preparing to
transmit the next string. The look-ahead buffer begins with TH, which duplicates a
TH sent earlier. Since the beginning T of that two-letter string is five places back in
the search buffer, the message (5, 2, E) is sent, indicating also that E is the next letter.
This message has effectively transmitted the three letters THE. Next, the single letter
S is sent. After that, there is a good deal of duplication, and letters are sent in groups
of three, six, and seven in the final three steps.

It is possible for the duplicated string to be long enough that it spills over onto the
look-ahead buffer. That means that a message such as (5, 9, R) might be sent, with
the second entry being larger than the first. That is fine, for the receiver can figure out
the entire duplicated sequence.

T H I S - T H
T
E

H
S

I
I

S
S

-
-

T
I

T
H
S

H
E
-

I
S
T

T
S
I
H

H
-
S
E

T
I
T
-
-

H
S
H
I
T

I
-
E
S
H

T
S
T
S
-
E

T
H
-
H
I
T
S

T
H
I
T
E
S
H
I

T
H
I
S
H
S
-
E
S

T
H
I
S
-
E
I
I
-
.

T
H
I
S
-
T
S
S
S
T

H
I
S
-
T
H
I
-
-
H

I
S
-
T
H
E
S
I
T
E

S
-
T
H
E
S
-
S
H
S

-
T
H
E
S
I
I
-
E
I

T
H
E
S
I
S
S
T
-
S

H
E
S
I
S
-
-
H
T
.

E
S
I
S
-
I
T
E
H

S
I
S
-
I
S
H
-
E

I
S
-
I
S
-
E
T
S

S
-
I
S
-
T
-
H
I

-
I
S
-
T
H
T
E
S

I
S
-
T
H
E
H
S
.

S
-
T
H
E
-
E
I

-
T
H
E
-
T
S
S

T
H
E
-
T
H
I
.

H
E
-
T
H
E
S

E
-
T
H
E
S
.

-
T
H
E
S
I

T
H
E
S
I
S

H
E
S
I
S
.

E
S
I
S
.

S
I
S
.

I
S
.

S
.

.0
0
0
0
0
5
5
7

10
14

0
0
0
0
0
2
1
2
5
6

T
H
I
S
-
E
I
I
-
.

T
H
I
S
-
THE
SI
S-I
S-THE-
THESIS.

Message Search Buffer Look-Ahead Buffer

FIGURE 4.7 Lempel–Ziv (LZ77) coding. The sender looks back to find a maximum-length duplication of a string
that is about to be sent.

“CH04” — 2006/2/6 — 19:57 — page 46 — #12

� �

� �

46 • C h a p t e r 4 CO M P R E S S I O N

Variations

There are several variations of the basic Lempel–Ziv procedure. In the original paper
and method, referred to as LZ77, the buffers are each of finite size. Hence if a pattern
repeats but the previous instance of it is more distant in the past than the length of
the search buffer, it cannot be referenced. There is a trade-off between the size of the
buffers (which use storage and require search and processing time) and the efficiency
of the procedure in terms of the number of patterns that can be referenced.

Another consideration regards the sending of the triple (x, y, z). With large buffers,
both x and y take on values in a large range, and hence may require a large number
of bits to transmit. Frequently, these are coded with another compression technique,
such as Huffman coding, to achieve greater overall efficiency.

Several popular compression algorithms found on personal computers, including
ZIP, PKSip, LHarc, PNG, gzip, and ARJ, are based on the Lempel–Ziv LZ77 method
together with compression coding of the reference information. Good compression
ratios are achieved by these packages. For example, the LaTeX file of this chapter
when compressed with ZIP is less than one-third the size of the uncompressed version.

The LZW Method

To get around the disadvantage inherent in the use of a finite buffer in the LZ77
method, Ziv and Lempel proposed a variation in 1978 (now termed LZ78) that builds
an explicit dictionary of previously sent letter patterns. The LZ78 method was itself
modified by other researchers, the most popular of these modifications being that
proposed by Terry Welch and now referred to as LZW.

To begin the LZW method, a dictionary is loaded with a set of basic letters and
words. When about to send a symbol, the sender looks ahead for the longest possible
sequence that starts with that symbol and which is in the dictionary. The sender then
transmits the entire sequence by referencing its dictionary index. In many cases,
however, only a single symbol can be sent. An example is shown in figure 4.8, where
again the message is THIS-THESIS-IS-THE-THESIS.

In this example, the alphabet consists of the symbols E, H, I, S, T, and –. These
are entered into the dictionary initially. At the first step, the sender sees that the first
symbol T can be sent by reference to the library but the longer string TH cannot.
Hence, the sender sends the message 5 (to send the T) and records the string TH in
the dictionary as entry number 7. Next, a 2 is sent to reference H in the dictionary and
the string HI is recorded as entry number 8. These single-letter transmissions continue
for a few steps while the dictionary is built up. Finally, when reaching the beginning
of the word THESIS, the sender can send a reference to entry 7, to send TH, followed
by the letter E. The sender will also append THE to the dictionary as entry 12. As the
dictionary expands, longer strings in the dictionary are frequently sent.

The receiver likewise carries out the dictionary building as transmissions are
received. Hence, the receiver can decode the message as it is received.

Optimality*

Remarkably, it can be shown that the Lempel–Ziv method achieves the optimal rate
of transmission in the long run. To see what this means, suppose a binary alphabet of

“CH04” — 2006/2/6 — 19:57 — page 47 — #13

� �

� �

S e c t i o n 4.3 L E M P E L – Z I V CO D I N G • 47

T

5

H

2

I

3

S

4

-

6

T H

7

E

1

S

4

I S

9

-

6

I S -

15

T H E

12

- T

11

H

2

E S

13

I S

9

1
2
3
4
5
6
7
8
9

10

E
H
I
S
T
-
TH
HI
IS
S-

11
12
13
14
15
16
17
18
19
20
21

-T
THE
ES
SI
IS-
-T
IS-T
THE-
-TH
HE
ESI

Index Entry Index Entry

FIGURE 4.8 LZW example. The Lempel–Ziv–Welch method builds a dictionary as it trans-
mits, so that if a pattern in the dictionary is later encountered, only its dictionary index
need be sent. The receiver is able to build the dictionary as it receives messages, and hence
is able to decode the transmission. The top part of the figure shows the dictionary as it
is constructed from the message. The bottom shows how the message is compressed by
reference to dictionary entries.

0’s and 1’s is used and suppose there are at least n past message symbols. We look at
the future sequence beginning with the current symbol and find the maximum length
of that sequence that is duplicated in the past n symbols. The length of this longest
duplicating sequence is denoted Ln. For example, consider the data below, showing
k as the position step and xk as the message symbol.

k = −4 −3 −2 −1 0 1 2 3 4 5 6 7 . . .

xk = 0 1 0 1 1 0 1 0 1 1 0 0 . . .

At k = 0, we have L4 = 3 because within the last n = 4 steps there is a sequence of
length 3 that duplicates the three message symbols x0, x1, x2 and that is the longest
duplication. Likewise, at that position L3 = 3 and L2 = 1. One step later, at k = 1, we
have L4 = 2 because there is a duplicating sequence of length 2 starting at k = −2;
the symbol at k = −4 cannot be considered since it is five symbols back. Likewise,
L3 = 2 and L2 = 0. However, at k = 1, we have L5 = 6, because there is a duplicating
sequence of length 6 (which spills over into the current and future symbols, and that
is allowed).

It can be shown that

log n

Ln
−→ H as n −→ ∞, (4.1)

where H is the entropy of the source defined by

H = lim
n→∞

1

n
H(S1, S2, . . . , Sn),

which accounts for intersymbol dependencies. Expression (4.1) means that the lengths
of the duplicating strings increase substantially as the span of history is increased. It
also implies that the compression factor is the one predicted by entropy.

“CH04” — 2006/2/6 — 19:57 — page 48 — #14

� �

� �

48 • C h a p t e r 4 CO M P R E S S I O N

To show how (4.1) translates into a compression ratio, consider the following
simple example. Suppose the 0’s and 1’s of the message are generated completely at
random, so that H = 1. And suppose there is an accumulated history of n = 1,024
symbols. Then (4.1) says that (log 1024)/Ln ≈ 1. In the upcoming sequence one can
expect to find, using (4.1), that about the next ten symbols (since log 1024 = 10) will
form a sequence that is somewhere duplicated symbol by symbol in the history.5 It is
necessary only to reference the starting position and length of that duplicating string,
rather than the string itself. However, reference to the duplicating sequence requires
sending a number between 1 and 1,024, and this takes log 1024 = 10 bits.6 Thus
10 bits of position information must be sent to reference a 10-symbol string. That
averages to one bit per symbol, which is what could be done by directly sending the
symbols one by one.

However, suppose that the 0’s and 1’s in the sequence are not completely random,
but are such that the entropy is H = 1/2. Then, from (4.1), with n = 1, 024 one expects
to find a duplicating sequence of length Ln ≈ (log n)/H = 20. Still only 10 bits must
be sent to locate the duplication, but now the 10 bits of position information convey
20 message symbols. Hence, on average, each symbol requires only one-half a bit.
Perfect compression has been achieved, reducing the required bits per symbol to the
entropy.

Note also that the process itself makes no reference to the statistics of the sequence.
It is therefore a universal process, in that it achieves the optimum performance even
if the entropy and probabilities are not known.

4.4 Other Forms of Compression

In addition to text, compression is also applied to graphs, pictures, speech, and
video, where the data generally are expressed as numerical values rather than abstract
symbols. A simple graph may represent an intensity variable over one dimension,
characteristic of speech or music patterns. A color photograph has two spatial dimen-
sions and two intensity dimensions corresponding to brightness and color. Video has
several intensity levels defined over time and space.

It is common to process these kinds of data by first discretizing the time and spatial
dimensions as well as the intensity levels. For example, speech levels may be recorded
every millisecond to within eight-bit accuracy, and picture intensities may be recorded
at a few million pixels, each giving 24 bits of color data.

Consider, for example, the graph in figure 4.9. The continuous curve is approx-
imated by first discretizing the x-axis into a number of points. Next, the intensity
(the y value) at each of those points is quantized by a rounding operation, using the
closest vertical point on a grid. The resulting approximation is shown in the figure
as the series of dots, and each dot can be encoded with a few bits. Obviously, both

5Here is an intuitive (nonrigorous) way to see that the maximum duplicated length is about 10. A particular
sequence of length 10 will occur with probability of (1/2)10 since each symbol has probability 1/2. Hence
if we look at 210 different starting points of history, it is quite likely that we will find a duplication because
the number of sequences we are looking at times their probabilities is 1; that is, (1/2)10210 = 1. In
actuality, the result of (4.1) is much stronger, for it says that in the limit of large n, Ln will be exactly 10.

6The length Ln must also be sent, but since this value is around 10, it does not add much to the requirement.

“CH04” — 2006/2/6 — 19:57 — page 49 — #15

� �

� �

S e c t i o n 4.4 OT H E R F O R M S O F CO M P R E S S I O N • 49

y

x

FIGURE 4.9 Quantization of a graph. At regular intervals on the x-axis, the y values of
the graph are approximated by the nearest grid point.

y

x

FIGURE 4.10 Quantization with prediction. A prediction of y, represented by an open
circle, is made by drawing a dotted line between the two previous points and extending it
to the next x value. Then it is only necessary to transmit the prediction error, which in the
figure is often zero, and never more than two units (plus or minus).

the degree of approximation and the associated number of bits increase as the grid is
made finer in either dimension.

Prediction Methods

It is possible to take advantage of the continuous nature of the data in graphs, pic-
tures, voice, and so forth by predicting new points on the basis of points already
known. For example, consider the graph used before, but now plotted in figure 4.10

“CH04” — 2006/2/6 — 19:57 — page 50 — #16

� �

� �

50 • C h a p t e r 4 CO M P R E S S I O N

14
12
12
18
12
14
50
55

12
12
14
10
12
45
52
56

10
14
12
10
14
48
46
50

18
16
16
12
35
50
55
58

20
18
20
16
40
56

110
112

24
26
24
40
55

114
116
108

A
C

30
32
30
50
60
80
92
94

B
X

(a) Luminance matrix (b) Prediction elements

FIGURE 4.11 Luminance matrix for a picture. Part (a) shows the luminance values. Part
(b) shows the elements A, B, C used to predict the value of X.

with finer y divisions. Reading from left to right, past points can be used to pre-
dict the next ones. One method, illustrated in the figure, computes a straight line
between the two most recent points and extends this line to the next x-axis point;
it then computes the nearest y grid value. This value is the prediction of the next
point, and it can be determined by both sender and receiver. Thus the sender must
merely send a message confirming or correcting the prediction, by say, sending one
of the values −4, −3, −2, −1, 0, 1, 2, 3, 4, indicating the number of vertical
grid points by which the actual value differs from the prediction. The small val-
ues, −1, 0, 1, will be most frequent and hence can be sent efficiently with short
codewords, while the larger, less frequent, numbers can be assigned longer words.
Overall, the average number of bits required per point will be smaller than without
prediction.

The method is easily adapted to two-dimensional information, such as that derived
from photographs. A small version of a luminance array is shown in figure 4.11. The
values in the array can be transmitted one at a time starting at the upper left corner
and moving across the rows. Efficiency is improved if past values are used to predict
successive values. For example, as shown in part b of the figure, the values of A, B,
C can be used to predict the value in X, and then only the error in the prediction must
be sent. A suitable prediction is X = B + C − A.

Standards for compression were established by the committee called the Joint
Photographic Experts Group (JPEG), and these standards are used in the popular
JPEG image compression packages. The committee developed two principal meth-
ods: lossless and lossy. The lossless method faithfully transmits the luminance
and chrominance arrays using the prediction method discussed above. Modest
compression is obtained by this lossless scheme, but substantial compression is
obtained by the more popular lossy method briefly discussed below.

Approximation

Another way to compress continuous data is to approximate it by a simple pattern. For
example, a general curve might be approximated by a polynomial, which is defined by
its coefficients. Figure 4.12 shows a curve approximated by a third-order polynomial

“CH04” — 2006/2/6 — 19:57 — page 51 — #17

� �

� �

S e c t i o n 4.4 OT H E R F O R M S O F CO M P R E S S I O N • 51

y

x

approximation

FIGURE 4.12 Polynomial approximation. The original curve is approximated by a
low-order polynomial. It is then only necessary to send the coefficients of this polynomial
to transmit an approximation of the original curve.

of the form a3x3 + a2x2 + a1x + a0. This approximating curve can be reconstructed
from the four coefficients.

The popular lossy version of JPEG approximates the luminance matrix by a series
of two-dimensional cosine functions, and records the coefficients of that series. The
method is designed so that that even at a 10:1 compression ratio only minor image
degradation is apparent to the human eye.

As an outgrowth of the JPEG committee, the Moving Picture Experts Group
(MPEG) was formed to develop compression standards for efficient encoding of
full motion pictures and high-quality audio. The result was the MPEG1 standard that
can compress both video and audio. The popular music compression standard MP3 is
actually the audio portion of the MPEG1 standard, and it provides music compression
ratios of about 10:1, making the storage and playback of music easily adaptable to
modern computer use. The concept behind these compression standards is sometimes
called perceptual coding because although there is a significant loss of detail as mea-
sured by the number of raw bits used to record the original, the reduction is made in
a way that does not significantly degrade one’s perception of the recording.

“CH04” — 2006/2/6 — 19:57 — page 52 — #18

� �

� �

52 • C h a p t e r 4 CO M P R E S S I O N

4.5 EXERCISES

1. (Six-symbol source) A source has six symbols with the probabilities indicated below.

s1 0.3 s4 0.1
s2 0.2 s5 0.1
s3 0.2 s6 0.1

(a) Find a Huffman code for this source.
(b) What is the average length of the Huffman code?
(c) What is the entropy of the source?

2. (Five-symbol source) Find three different Huffman codes for the source

s1 0.4
s2 0.2
s3 0.2
s4 0.1
s5 0.1

3. (Huffman advantage) The compression advantage of Huffman coding S2 rather than S is
greatest when there are large differences in the source symbol probabilities. For each of the
two cases below, find the source entropy and the average Huffman code length for S and
for S2.

(a)
s1 .60
s2 .40

(b)
s1 .90
s2 .10

4. (Huffman deduction) Consider the source with associated symbols and probabilities

s1 .2 s5 .1
s2 .2 s6 .1
s3 .2 s7 .1
s4 .1

One Huffman code for this source has word lengths of 2, 3, 3, 3, 3, 3, 3. Without using the
Huffman procedure, find an instantaneous minimum average-length binary code for this
source that has these word lengths.

5. (Run-length coding) Consider a source consisting of the symbols 0 and 1, where the proba-
bility p of a 0 is very close to 1. In this case, it might be considered advantageous to assign
symbols to various runs of 0’s. That is, one lets s1 = 1, s2 = 01, s3 = 001 and so forth for
all possible run lengths. Then, for example, the sequence 001010001 would be represented
as s3, s2, s4.

(a) Let H0 be the entropy of the original source, and let HR be the entropy of the
run-length source of symbols. Find the ratio HR/H0.

(b) Find the average length L of the runs, and then the ratio of the entropy per unit
length for the two methods.

Hint: For 0 < r < 1,
∑∞

k=0 rk = 1
1−r and

∑∞
k=1 krk = r

(1−r)2 .

“CH04” — 2006/2/6 — 19:57 — page 53 — #19

� �

� �

S e c t i o n 4.6 B I B L I O G R A P H Y • 53

6. (Card determination) Mary selects a card from a pack of 52 playing cards. John attempts
to determine the card by asking a series of yes-no questions that Mary answers correctly.
In general, how many questions must John ask to be sure he can determine the card? What
questions should he ask to minimize the average number of questions that are required?
(Hint: the first question might be, “Is the card black or red?” Do not try to work out the
Huffman code. Just think about how to ask the questions.)

7. (A special word) A certain language has the property that all letters occur independently
with various probabilities. The Huffman code for this language has average word length L
per letter. One special word of length l occurs quite frequently, with probability p. (That is,
of 100 words, about 100 Pl will be from the special word.) It is suggested that this word
be assigned the symbol 0 and that all other letters be coded with 1 appended by a Huffman
code for this group of letters (also of average length L).

(a) For what values of p is this proposal worthwhile?
(b) Does this seem to be a useful strategy for coding English with the special word the,

(with a space included) assuming that the Huffman code has length 4 per letter, the
word the (with space included) occurs about once every 20 words, and the average
word length is five letters?

8. (Refined estimate) Suppose the volunteer of section 4.2 gets 75 percent of the letters correct
and assigns standard English letter probabilities to the others. What is the revised estimate
of H?

9. (LZ77 example) Decode the message

(0,0,I) (0,0,-) (0,0,M) (3,1,S) (1,1,-) (5,5,L) (5,3,Y).

10. (LZW case*) A special circumstance arises in the LZW procedure when the dictionary
item sent is the last one entered into the dictionary; this item is not yet fully formed by
the receiver. Consider the message ababababab. The initial dictionary consists of 1:a, 2:b.
The message will be sent as 1, 2, 3, 5, . . . , and the dictionary will be 1:a, 2:b, 3:ab, 4:ba,
5:aba…. However, when 5 is sent, the receiver will not yet have completed the construction
of that dictionary entry. After receiving 3, the receiver will know that item 5 is abX, where
X is unknown. So when the next transmission is 5, the receiver can translate it as abX
and realize that the X in the dictionary item must be a because it is the first symbol of the
transmission after receiving 3. This special case is part of the LZW method.

Suppose the initial alphabet is 1:a, 2:d, 3:–. Translate the sequence 2 1 2 3 1 3 4 10 9 5 4.

11. (JPEG) Show that the formula B + C − A = X is a reasonable one for JPEG by forming
linear approximations at A to the partial derivatives of luminance with respect to x and y
coordinates.

4.6 Bibliography

The Huffman coding method was first published in [1], and the story of Huffman’s
term project is reported in [2]. Tables of English letter frequencies appear in many
places. The one used here is from [3]. Zipf’s law for word frequencies was published
in [4]. The experimental way for determining the entropy of English was presented
by Shannon in [5]. Another interesting approach is presented in [6]. The original
LZ77 and LZ78 methods were described in [7] and [8]. For further analyses of the
optimality properties of these algorithms see [9] and [10]. Good general references
on compression methods are the texts [11] and [12].

“CH04” — 2006/2/6 — 19:57 — page 54 — #20

� �

� �

54 • C h a p t e r 4 CO M P R E S S I O N

References

[1] Huffman, David A. “A Method for the Construction of Minimum Redundancy
Codes.” Proceedings of the Institute of Radio Engineers 40 (1952): 1098–1101.

[2] “Profile: David A. Huffman.” Scientific American, September 1991, 54–58.
[3] Welsh, Dominic. Codes and Cryptography. Oxford: Oxford University Press,

1988.
[4] Zipf, George K. Human Behavior and the Principle of Least Effort. Cambridge,

Mass.: Addison-Wesley, 1949.
[5] Shannon, Claude E. “Prediction and Entropy of Printed English.” Bell System

Technical Journal 30 (January 1951): pp 50–64.
[6] Cover, Thomas M., and R. King. “A Convergent Gambling Estimate of the

Entropy of English.” IEEE Transactions on Information Theory 24 (1978):
413–21.

[7] Ziv, J., and A. Lempel. “A Universal Algorithm for Data Compression.” IEEE
Transactions on Information Theory 23 (1977): 337–43.

[8] ———. “Compression of Individual Sequences via Variable-Rate Coding.”
IEEE Transactions on Information Theory 24 (1978): 530–36.

[9] Wyner, Aaron D., and Jacob Ziv. “Some Asymptotic Properties of a Sta-
tionary Ergodic Data Source with Applications to Data Compression.” IEEE
Transactions on Information Theory 35 (1989): 1250–58.

[10] Ornstein, Donald S., and Benjamin Weiss. “Entropy and Data Compression
Schemes.” IEEE Transactions on Information Theory 39 (1993): 78–83.

[11] Wayner, Peter. Compression Algorithms for Real Programmers. San Diego:
Academic Press, 2000.

[12] Sayood, Khalid. Introduction to Data Compression. 2nd ed. San Diego:
Academic Press, 2000.

“CH03” — 2006/2/6 — 18:32 — page 21 — #1

� �

� �

3
CODES

A
lternative definitions of information and entropy, different from those presented in
the previous chapter, could be reasonably postulated. The ones given by Shannon
have intuitive appeal, but their true merit must rest on what new insights and actual

results they help discover. This chapter shows that entropy is in fact closely related to
the design of efficient codes for random sources. It seems unlikely that these results
could be obtained without the concept of entropy.

Some people might think that the study of codes is somewhat arcane—simply a
specialized branch of information theory. But actually, the ideas developed in the
context of coding theory provide the foundation for techniques of compression, data
search, encryption, organization of huge libraries, and correction of communication
errors. Indirectly, they provide a pattern for the study of the economic value of infor-
mation and for extraction of value from data. Shannon’s development of information
theory was originally motivated by issues related to efficient coding of English, binary
sequences, and samples of continuous waveforms. The theory rapidly spread to other
areas. For example, coding theory is essential to the study of some life sciences,
including especially the study of DNA. And today coding theory has a continuing
influence in many directions.

The main result of coding theory, Shannon’s first theorem, is based on two
principal ideas. The first is to use short codes for events that are highly likely. This
is a common idea, for it is clear that it tends to shorten the average length of coded
messages. The second idea is to code several events at a time, treating the group of
these events as a package or metaevent, for this provides greater flexibility in code
design. These two simple ideas are the essence of Shannon’s approach presented in this
chapter. It will be found that the implementation of these ideas leads back to entropy.

3.1 The Coding Problem

In the context of coding, the events of an information source are symbols to be
transmitted, say s1, s2, . . . , sm. There is one symbol for each source event. The
source symbols may be letters of the alphabet a , b, . . . , z, they may be the digits 0

21

“CH03” — 2006/2/6 — 18:32 — page 22 — #2

� �

� �

22 • C h a p t e r 3 CO D E S

through 9, or they may be abstract symbols representing events, like s1 for sunny
weather and s2 for cloudy.

A code consists of codewords made up of characters from a code alphabet. The
code alphabet may be the binary alphabet consisting of zeros and ones, and this is
in fact frequently the case in digital information systems, but it may also be larger.
The number of characters in a code alphabet is denoted r. The sequence 011 is an
example of a possible binary codeword of three characters. The word is read from left
to right, just like English words are read. So in this example, 0 is the first character
of the word.

A code is an assignment of codewords to source symbols. It can be thought of as
a list, with codewords placed next to their corresponding source symbol.

As a specific example, suppose the source has symbols A, B, C and the code
alphabet consists of 0 and 1. The assignment

A −→ 0
B −→ 0 1
C −→ 0 1 0

is a code, mapping source symbols into codewords.
Some codes are used commonly and are familiar to many people. The Morse code

of telegraphy uses dots, dashes, and spaces to encode the alphabet and the digits 0–9.
For example, the letter e is encoded as a single dot. The letter a is a dot followed by a
dash. Each letter has its own unique pattern. Another encoding of the alphabet is the
ASCII code, in which each codeword is a string of seven binary digits. For example,
the codewords for the letters A and B are 1000001 and 1000011, respectively. Items
of merchandise are often marked with an identifying barcode whose character set is
thin and thick vertical lines.

Code Length

An important feature of a code is the lengths of its codewords. Generally, short
codewords are preferred to long ones, everything else being equal. A code in which
all words have the same length is termed a block code. However, as we shall see, it
is often advantageous to use words of various lengths.

A measure associated with a code is its average word length. If there are m
source symbols with probabilities p1, p2, . . . , pm, respectively, and the corresponding
codewords have lengths l1, l2, . . . , lm, the average word length is the weighted average

L =
m∑

i=1

pi li. (3.1)

A code is said to be efficient if it has the smallest possible average word length.
We shall spend a good deal of effort making clear how to achieve this kind of effi-
ciency, and we shall find that the entropy of the source is the proper benchmark for
comparison.

“CH03” — 2006/2/6 — 18:32 — page 23 — #3

� �

� �

S e c t i o n 3.1 T H E CO D I N G P R O B L E M • 23

Example 3.1 (Telephone area codes). As the telephone system expanded, the
seven-digit phone numbers did not provide enough numbers to accommodate all

customers. The Bell system then instituted three-digit area codes to be used as
prefixes to calls directed outside one’s immediate area.

In those days, telephones used the rotary dial system. Dialing a 9 took longer
and caused more wear on the phone and the switching system than dialing a 1
or 2. Hence, to keep the average area code length small (as measured by dialing

time), the lower digits were assigned to highly populated areas: 212 for
New York, and 213 for Los Angeles, for example.

Code Properties

The general definition of a code allows for any assignment of codewords to source
symbols. However, not all assignments are useful. For example, all source symbols
might be assigned identical codewords, rendering the code useless. We say that a code
is nonsingular if every codeword corresponds to a unique source symbol; otherwise it
is singular. If the code is nonsingular, we can uniquely determine the corresponding
source symbol from its codeword. Examples of singular and nonsingular codes are
shown in figure 3.1.

Unfortunately, nonsingularity by itself is not a strong enough condition for a code
to be useful. The reason is that codewords for several source symbols normally will be
sent one after the other, like sending letters of the alphabet to transmit English words,
and it may be impossible for the recipient to know where one word ends and the next
begins. The code breaks down in such a case. To illustrate the problem, suppose that
using the nonsingular code of figure 3.1 we receive the code characters 0010. When
attempting to decode this string of characters, we find that they may correspond to the
symbol sequences s1s4s1 or s3s2 or s1s1s2. The nonsingular code becomes singular
when applied to sequences of source symbols.

Codes that can be decoded uniquely even when arbitrary numbers of source sym-
bols are coded in sequence are termed uniquely decodable, and it is these that we
must use.

Instantaneous Codes

The easiest way to insure that a code is uniquely decodable is to guarantee that every
word can be decoded as soon as it is received. A code with this property is called an
instantaneous code.

Source Symbol Singular Code Nonsingular Code

s1 00

s2 10

s3 01

s4 10

0

10

00

01

FIGURE 3.1 Singular and nonsingular codes. A code is singular if there is not a unique
mapping from codewords back to symbols.

“CH03” — 2006/2/6 — 18:32 — page 24 — #4

� �

� �

24 • C h a p t e r 3 CO D E S

A nonsingular block code (with all codewords of equal length) is an instanta-
neous code because as soon as the proper number of code characters is received,
the corresponding source symbol can be determined. The block code below is an
example.

Source Symbol Codeword
s1 00
s2 01
s3 10
s4 11

If we receive the sequence 01101100, we decode it two characters at a time and
find the message s2s3s4s1. Furthermore, as soon as two characters are received, the
corresponding source symbol can be determined right away—instantaneously.

Block codes are simple to decode, but they are not always efficient. In general, one
wants to assign short codewords to highly probable source symbols. For example,
the Morse code assigns a single dot to the most common letter, e, whereas the less
common letter q is assigned the relatively long codeword “dash dash dot dash.”

Consider now the two codes shown in figure 3.2. We term these the comma code
and the capital code respectively. Clearly both codes are nonsingular, and they are
both uniquely decodable. The first one is uniquely decodable because once a zero is
received, we know that it is the end of a codeword and we can decode the word. For
instance, if we receive 01011100, we can decode it as s1s2s4s1. The zero acts like a
comma, signaling that the word has ended.

The second code is also uniquely decodable because as soon as a zero is received,
we know that it begins a new word. So if we receive 00101110, we again decode
it as s1s2s4s1. Here the zero acts like a capital letter at the beginning of each word,
showing the word separation.

However, the comma code is instantaneous, while the capital code is not. The zero
in the comma code indicates the end of a word, and hence we can decode that word
right away. The zero in the capital code indicates the beginning of a new word, and
hence we can go back one character and decode the previous word. But decoding lags
receipt of the codeword by one character. This code is therefore not instantaneous.

The criterion for a code to be instantaneous is that no codeword be the prefix of
another codeword. If a word were a prefix of another word, a decoder receiving that
prefix would have to wait to see if the subsequent characters form the extended word.
On the other hand, if no word is a prefix of another word, then once the word is
received, it can be decoded. In the capital code, for example, every word except the
last is a prefix of another word.

Source Symbol Comma Code Capital Code

s1

s2

s3

s4

0

10

110

1110

0

01

011

0111

FIGURE 3.2 Comma and capital codes. Both are uniquely decodable, but the capital
code is not instantaneous.

“CH03” — 2006/2/6 — 18:32 — page 25 — #5

� �

� �

S e c t i o n 3.1 T H E CO D I N G P R O B L E M • 25

Code Trees

The nature of instantaneous codes is best illustrated with a code tree. We shall consider
trees for a binary code alphabet consisting of the two characters 0 and 1. Such a tree
is shown in figure 3.3. The construction can be generalized to code alphabets of more
than two characters.

A code tree has an origin that is a single node. From this node, one or two branches
emanate, each leading to another node. Then each of these new nodes produces one
or two more branches, and so on until an end node is reached.

0

1

0

0

1

1

0

1

0
0

0

1

1

0

1

1

1

FIGURE 3.3 A code
tree. Each heavy dot
represents a code-
word. The word itself
is constructed by fol-
lowing the branches
from the beginning of
the tree and record-
ing the 0’s and 1’s
of the branches trav-
eled. For example, the
top dot corresponds
to the word 0001. The
code represented by
this particular tree is
not instantaneous.

The two branches emanating from a node are labeled 0 and 1 for up or down,
respectively. Each heavy dot in a particular tree represents a codeword, defined by
the sequence of zeros and ones on the path from the initial node to that node. For
example, the top node in the tree of figure 3.3 corresponds to the codeword 0001.
The tree of the figure contains eleven codewords, and hence it can serve as a code for
eleven source symbols.

However, the code defined by the tree in the figure is not instantaneous. If
the sequence 01 is received, we do not know if that is a complete word or if it is
the beginning of 011 or 0101 or 0100, all of which are valid codewords. Since the
codeword 01 is a prefix of another (in fact three other) codewords, the overall code
is not instantaneous.

The tree of figure 3.3 can be altered to represent an instantaneous code by omitting
the codeword 01 (corresponding to the leftmost codeword node in the tree). With that
node left blank, no codeword is part of a path that leads to another word, and each
remaining codeword is represented by an end node (but this code can only represent
ten rather than eleven source symbols).

The code tree diagram should make clear that the condition that no codeword is the
prefix of another codeword is equivalent to the condition that all codewords correspond
to end nodes. A prefix is, after all, simply a node part way along a longer path.

The code trees corresponding to the comma and capital codes are shown in
figure 3.4. The difference in terms of the criterion that words should be end nodes is
apparent.

(a) Comma code (b) Capital code

0

1

1

1

1

0

0

0

0 1

Start
Start

FIGURE 3.4 Two code trees. (a) The tree on the left represents the comma code with
words 0, 10, 110, 1110. (b) The tree on the right represents the capital code with words 0,
01, 011, 0111.

“CH03” — 2006/2/6 — 18:32 — page 26 — #6

� �

� �

26 • C h a p t e r 3 CO D E S

The Kraft Inequality

There is a neat mathematical test that completely settles the question of whether a
given set of codeword lengths l1, l2, . . . , lm corresponds to some instantaneous code
for m symbols. The result is known as the Kraft inequality.

Most often the result is applied to binary codes, but the general result stated below
is applicable to codes made up of an arbitrary number r of code alphabet characters.

Kraft inequality. An instantaneous code can be constructed with given lengths
l1, l2, . . . , lm if and only if

m∑
i=1

r−li ≤ 1, (3.2)

where r is the number of code alphabet characters and m is the number of source
symbols.

A special case of this inequality is that of r = 2, in which case the Kraft
inequality is

m∑
i=1

2−li ≤ 1.

Let us consider some examples before looking at the proof of the inequality.

Example 3.2 (Block codes). Suppose we wish to construct an instantaneous code
for m symbols using a binary (0, 1) code that has all codewords of equal length l. The
Kraft inequality requires

m∑
i=1

2−l ≡ m 2−l ≤ 1.

Hence m ≤ 2l. It follows that the maximum number of symbols that can be coded
with an instantaneous code using words of length l is m = 2l. For example, for l = 5
we can code at most 32 symbols. Of course, m = 2l is also the maximum number of
distinct words that can be made that are of length l, so in this case the Kraft inequality
simply gives the inequality on the number of distinct codewords.

Example 3.3 (Two codes). Consider the two binary codes shown below.

Source Symbol Code 1 Code 2
s1 0 0
s2 10 10
s3 110 110
s4 111 11

The first is the comma code but with the final 0 dropped from the fourth codeword. It
is easy to see that it is still an instantaneous code. Its lengths are 1, 2, 3, 3. The Kraft
inequality is

1

2
+ 1

4
+ 1

8
+ 1

8
≤ 1.

In this case the left side is exactly equal to 1, so (as expected) the Kraft inequality is
satisfied.

“CH03” — 2006/2/6 — 18:32 — page 27 — #7

� �

� �

S e c t i o n 3.2 AV E R AG E CO D E L E N G T H A N D E N T R O P Y • 27

Code 2 is a valid nonsingular code. However, the left side of the Kraft inequality is

1

2
+ 1

4
+ 1

8
+ 1

4
= 1

1

8
.

Since this is greater than 1, the Kraft inequality is not satisfied. We know that no
instantaneous code can be constructed with these lengths, so in particular code 2 is
not instantaneous. (In fact, it is not uniquely decodable because 110 = s3 = s4s1.)

Proof of the Kraft Inequality*

The Kraft inequality is proved by considering the code tree. We know that an instan-
taneous code has the property that each codeword is an end node of the tree. Consider
the instantaneous binary code for the four symbols A, B, C, D shown in figure 3.5.
The longest word is three characters long, and so for simplicity, let us impose that as
the maximum length of codewords. There are therefore 23 = 8 possible codewords.
The code of the figure has only four words. Consider the codeword 0 for the sym-
bol A. That assignment effectively excludes from the code all words with paths that
continue through node A. Indeed, putting A where it is uses up a full one-half of the
eight available words, since it excludes all other words that begin with 0. One says
that the usage factor of A is 1/2, or equivalently 2−1; and we note that 1 is the length
of this word.

0

1

1
B

0

1

C

D

A

0

FIGURE 3.5 Illustrat-
ion for Kraft inequa-
lity. The code for A
uses one-half of the
available codewords.

Now consider the word for the symbol B. The placement of B shown in the figure
uses up one-fourth of the possible nodes, since it excludes all other words beginning
with 11. Its usage factor is 1/4, which is equivalent to 2−2; and we note that 2 is the
length of that word.

Finally, the words for C and D each use up one-eighth of the available words. The
usage factors are each 1/8, which is 2−3. It is clear from these cases that the usage
factor of a word of length l is 2−l.

The total usage of all nodes in an instantaneous code must be less than what
is available (which is 1). For the code of the example, the sum of the usages is
1
2 + 1

4 + 1
8 + 1

8 = 1. Some instantaneous codes may have total usage factors less
than 1. To complete the proof, one recognizes that the usage factor is the left side of
the Kraft inequality, and this must be less than 1.

Although this proof applies to binary codes, it easily extends to the general case of r
code characters. Furthermore, although the Kraft inequality was originally developed
to determine whether a code is instantaneous or not, McMillan extended the result,
proving that the same test determines whether or not a code is uniquely decodable.

3.2 Average Code Length and Entropy

The concept of entropy can now be connected to the average code length of efficient
codes. This leads to Shannon’s important first theorem.

We first establish a special mathematical inequality that is used in the proof of the
main result of this section.

“CH03” — 2006/2/6 — 18:32 — page 28 — #8

� �

� �

28 • C h a p t e r 3 CO D E S

Lemma 3.1. Let pi, i = 1, 2, . . . , m and qi, i = 1, 2, . . . , m satisfy
∑m

i=1 pi =∑m
i=1 qi = 1 with all pi > 0, qi > 0. Then

m∑
i=1

pi log pi ≥
m∑

i=1

pi log qi

with equality if and only if pi = qi for each i.

Proof: Suppose the pi’s are fixed. We will use calculus to find the qi’s that

maximize
m∑

i=1

pi log qi

subject to
m∑

i=1

qi = 1.

For this purpose, we introduce a Lagrange multiplier λ for the constraint and form
the Lagrangian

L =
m∑

i=1

pi log qi − λ

[
m∑

i=1

qi − 1

]

= log e
m∑

i=1

pi ln qi − λ

[
m∑

i=1

qi − 1

]
.

A necessary condition for the maximum is found by setting the derivative of L with
respect to each qi equal to zero. This gives

∂L
∂qi

= (log e)pi

qi
− λ = 0, for each i.

Equivalently, pi = λqi/log e for all i. Since the pi’s sum to 1 and the qi’s are required
also to sum to 1, we conclude that qi = pi for all i. Hence, the inequality of the lemma
statement is true.

We now come to the first relation between entropy and average code length.

Code length inequality. The average length L of a binary instantaneous code
satisfies

L ≥ H,

where H is the entropy of the source.

Proof: Let l1, l2, . . . , lm be the word lengths of an instantaneous code. Consider the
numbers

qi = 2−li∑m
j=1 2−lj

.

“CH03” — 2006/2/6 — 18:32 — page 29 — #9

� �

� �

S e c t i o n 3.2 AV E R AG E CO D E L E N G T H A N D E N T R O P Y • 29

These qi’s are positive and sum to 1. Application of the inequality of the lemma gives

H = −
m∑

i=1

pi log pi ≤ −
m∑

i=1

pi log qi

= −
m∑

i=1

pi

⎡
⎣log 2−li − log

m∑
j=1

2−lj

⎤
⎦

=
m∑

i=1

pi

⎡
⎣li + log

m∑
j=1

2−lj

⎤
⎦ ≤

m∑
i=1

pi li = L.

The last step uses the Kraft inequality
∑n

j=1 2−lj ≤ 1, which means that

log
∑n

j=1 2−lj ≤ 0. Hence H ≤ L.

Thus entropy sets a lower bound on the average code length. It is possible to
achieve this bound in certain cases, as shown by the next important example.

Example 3.4 (Power one-half probabilities). Suppose that the source symbol

probabilities are all of the form pi = (1
2

)ki for various integers ki. Of course, the
probabilities must sum to 1. For example, the probabilities might be 1

2 , 1
4 , 1

4 or
1
4 , 1

4 , 1
8 , 1

8 , 1
8 , 1

16 , 1
32 , 1

32 . In such cases one can set li = ki. These lengths are valid
choices because the sum on the left of the Kraft inequality becomes

∑m
i=1 2−li =∑m

i=1 2−ki = 1.
The entropy of the source is

H =
m∑

i=1

2−ki log 2ki =
m∑

i=1

2−ki ki.

On the other hand, the average word length is

L =
n∑

i=1

2−ki li.

Since ki = li, we have H = L. Hence, for sources with probabilities that are powers
of one-half, instantaneous codes exist with L = H.

Example 3.5 (A classic example). A specific example of the preceding situation is
the classic one shown below.

Source Symbol Probability Codeword
s1 1/2 0
s2 1/4 10
s3 1/8 110
s4 1/8 111

“CH03” — 2006/2/6 — 18:32 — page 30 — #10

� �

� �

30 • C h a p t e r 3 CO D E S

The entropy of the source is

H = 1

2
+ 1

4
2 + 1

8
3 + 1

8
3 = 7

4
.

On the other hand, the average code length is exactly the same:

L = 1

2
+ 1

4
2 + 1

8
3 + 1

8
3 = 7

4
.

Shannon Coding

If the source probabilities are of the form pi = (1
2

)ki , the word lengths that achieve
the lower bound are li = ki, as shown above. Another way to write this is li = log 1

pi
.

If the source probabilities are not powers of one-half, one can still evaluate l′i =
log 1

pi
for each i. These numbers may not be integers, and hence cannot serve as actual

word lengths, but they do satisfy the Kraft inequality. Evaluation of the appropriate
sum gives

m∑
i=1

2−l′i =
m∑

i=1

2log pi =
m∑

i=1

pi = 1.

Following an idea of Shannon’s, each of these l′i’s is increased to the next highest
integer (that is, the l′i’s are rounded up) and the new values are denoted as li’s. Since
each of these li’s is greater than the corresponding l′i, this new set of word lengths
also satisfies the Kraft inequality. Hence, there is an instantaneous code with these
code lengths.

It follows that li < log 1
pi

+ 1 for each i. Hence the average word length satisfies

L <

n∑
i=1

pi

(
log

1

pi
+ 1

)
= H + 1.

Combining the lower bound and this upper bound leads to the following conclusion
about bounds.

Average length bounds. A source with entropy H can be coded with an
instantaneous binary code of average length L satisfying

H ≤ L < H + 1.

The next chapter explains how to find instantaneous codes with L as small as
possible. For now, the bound is all that is required.

3.3 Shannon’s First Theorem

As stated earlier, there are two main ideas leading to Shannon’s first theorem. The first
is to design codes with various word lengths, assigning short words to highly prob-
able symbols and longer words to rarely occurring symbols. This idea was explored

“CH03” — 2006/2/6 — 18:32 — page 31 — #11

� �

� �

S e c t i o n 3.3 S H A N N O N ’ S F I R S T T H E O R E M • 31

in the past few sections. The second idea is to group symbols together, forming
metasymbols. Coding these metasymbols provides additional flexibility.

The composite (or meta) symbols are sequences of the original symbols. One might
consider two coin flips at a time, or even 10 at a time. An entire month of California
weather reports might be sent bundled together. English words rather than individual
letters might be encoded.

The formalism for forming the composite symbols was presented in chapter 2. The
square of a source S consists of pairs of symbols, taken as if they were independent,
and this new source is denoted S2. Likewise, a source made up of independent groups
of n symbols from S is denoted Sn.

According to the additive property of section 2.4, the entropy of the source Sn is
H(Sn) = n H(S).

Now suppose Sn is coded instead of S. This is the “big package” concept discussed
in the introduction to this book. In the case of codes, sequences of symbols form
packages that can be coded as a unit. Specifically, an instantaneous code for Sn can
be found that has an average codeword length L satisfying

H(Sn) ≤ L ≤ H(Sn) + 1.

Equivalently,

n H(S) ≤ L ≤ n H(S) + 1.

Dividing by n produces

H(S) ≤ L/n ≤ H(S) + 1/n.

Note that L is the average codeword length for a symbol from Sn and hence is the
average codeword length for a sequence of n independent symbols from S. Therefore,
L/n is the average length per symbol of S. The upper bound on this length has been
reduced from H(S) + 1 to H(S) + 1/n.

Note, too, that the code is instantaneous with respect to Sn, not necessarily with
respect to S. Hence, an entire sequence of n original symbols is decoded after receipt
of the whole sequence, not one at a time.

Finally, using both of the ideas for designing efficient codes, the average word
length can be made essentially equal to the entropy of the source by increasing n.
This is the content of Shannon’s first theorem.

Shannon’s first theorem. By coding sequences of independent symbols (in Sn), it
is possible to construct decodable codes such that

lim
n→∞

Ln

n
= H,

where H is the entropy of the source S, n is the length of the symbol sequences, and
Ln is the average length of the codewords corresponding to Sn.

“CH03” — 2006/2/6 — 18:32 — page 32 — #12

� �

� �

32 • C h a p t e r 3 CO D E S

Hence, it is possible to get an average codeword length Ln/n as close as desired
to H. The price paid for such improvement is increased coding complexity due to
the increased dimension of the source and increased delay in the decoding process,
since an entire sequence must be processed at once. Nevertheless, this is a remarkable
result, and establishes the importance of the concept of entropy in information theory.

Example 3.6 (Two days of California weather). Suppose that California weather
is sunny (S) with probability 7/8 and cloudy (C) with probability 1/8. Suppose

also that the weather conditions on successive days are independent.
To send one day’s weather report with a binary code would require a

code of at least one character per day, since the best that can be done is
use a single symbol for each weather condition. Hence L = 1.
If two days are sent together, the modified comma code might be

used as shown below:

Source Symbol Probability Code
SS 49/64 0
SC 7/64 10
CS 7/64 110
CC 1/64 11

The average length of this code is

L = 49

64
+ 2 × 7

64
+ 3 × 7

64
+ 3 × 1

64
= 87

64
.

The average length per daily report is therefore

L/2 = 87

128
= .68.

The added flexibility has considerably reduced the average length of the code. By
considering longer sequences, an average length close to the entropy H = .54 found
for this source in chapter 2 can be achieved.

“CH03” — 2006/2/6 — 18:32 — page 33 — #13

� �

� �

S e c t i o n 3 . 4 E X E R C I S E S • 33

3.4 EXERCISES

1. (Code lengths). Which of the following code lengths are feasible for constructing an
instantaneous binary code for five symbols?

(a) 2 2 2 3 3
(b) 1 2 2 4 5
(c) 1 2 3 4 4
(d) 1 2 3 3 8

2. (Decodable?) Is the following code uniquely decodable?

A 0 1
B 1 0
C 0 1 1
D 1 0 1

3. (Explicit) Show explicitly that the code represented by the tree in figure 3.3 is not uniquely
decodable.

4. (Braille) In Braille, each character consists of a pattern of raised dots. There are six positions
in a character, each of which can be either flat or raised. This gives a total of 26 or 64 possible
letters that can be described by a single Braille character.

For standard English there are more than 64 symbols to be described; a to z in both
lower and upper case, 0 to 9, and standard punctuation (space, comma, etc.). Thus, some
symbols require more than one Braille character.

Suppose 8 percent of letters are capitalized and 12 percent of letters are digits.
(a) In Grade 1 Braille, lowercase letters and standard punctuation all require a single

character. There is also a special character that indicates that the following character
will describe a capital letter. Similarly, there is a special character to indicate that
the following character will describe a digit.

What is the expected number of Braille characters used to describe a standard
English letter?

(b) In Grade 2 Braille, in addition to the characters denoting capitals and digits, there
are single characters that are used to denote common groups of letters (for example,
the, and, ing). Suppose that each group of letters is three long and that 20 percent of
standard English text comes from one of the common letter groups used in Grade
2 Braille.

What is the expected number of Braille characters used to describe a standard
English letter?

5. (Double code) Suppose that as a small measure of security against eavesdroppers, the
symbols of a source S are each assigned two codewords, and during transmission the word
to send is chosen randomly, each with a 50 percent probability. Of course the code must
still be uniquely decodable. In terms of the entropy H(S), what is the lower bound on the
average codeword length of the code?

6. (Classic code) For the classic example code of example 3.5, show that the probability of a
0 being transmitted at any time is .5.

7. (Three-word characters) Consider the source shown below:

s1 1/3 s5 1/27
s2 1/3 s6 1/27
s3 1/9 s7 1/27
s4 1/9

“CH03” — 2006/2/6 — 18:32 — page 34 — #14

� �

� �

34 • C h a p t e r 3 CO D E S

(a) Using base-3 logarithms, compute the entropy of this source.
(b) Assuming that there are three characters 0,1,2 in the code alphabet, find a code for

the source that has average length equal to its base-3 entropy.

3.5 Bibliography

Basic coding theory is covered in all introductory texts on information theory. In
addition to the references of chapter 2, the three below are excellent.

References

[1] Ash, Robert B. Information Theory. New York: Dover, 1990.
[2] Welsh, Dominic. Codes and Cryptography. Oxford: Oxford University Press,

1988.
[3] Roman, Steven. Introduction to Coding and Information Theory. New York:

Springer, 1997.

“CH02” — 2006/2/6 — 18:31 — page 7 — #1

� �

� �

P AR T I

NTROPY
The Foundation of Information

“CH02” — 2006/2/6 — 18:31 — page 8 — #2

� �

� �

“CH02” — 2006/2/6 — 18:31 — page 9 — #3

� �

� �

2
INFORMATION DEFINITION

C
ataclysmic events are rare in the development of applied mathematics, but the
theory of information published by Claude E. Shannon deserves to be cataloged
as such an occurrence. The theory was immediately recognized as so elegant, so

surprising, so practical, and so universal in its application that it almost immediately
changed the course of modern technology. Yet, unlike many other technological revo-
lutions, the theory relied on no equipment, no detailed experiments, and no patents, for
it was deduced from pure mathematical reasoning. Upon its publication, researchers
and students applied it to all sorts of areas, and today it remains a central concept
in information technology, providing a foundation for many information-processing
procedures, a performance benchmark for information systems, and guidance for how
to improve performance.

Shannon developed his theory in response to a vexing problem faced for years at
the Bell Telephone Laboratories, where he was employed. Imagine that one wishes
to send a long message consisting of zeros and ones by means of electrical pulses
over a telephone line. Due to inevitable line disturbances, there is a chance that an
intended zero will be received as a one, and likewise that a one will be received as a
zero. There will be errors in communication. Engineers sought ways to reduce those
errors to improve reliability.

A standard approach to this problem was to repeat the message. For example, if
an intended zero is sent three times in succession and the disturbance level is not too
great, it is likely that at least two out of the three zeros will be received correctly.
Hence, the recipient will probably deduce the correct message by counting as zero
a received pattern of either two or three zeros out of the three transmissions. The
analogous majority-voting procedure would be applied to the interpretation of ones.

However, there is some chance with this repetition method that in a sequence of,
say three zeros, two or more might be corrupted and received as ones. Thus, although
repeating a digit three times reduces the chance of errors, it does not reduce that
chance to zero.

Reliability can be further improved, of course, by repeating each message symbol
several times. A hundred-fold repetition is likely to lead to an extremely small chance

9

“CH02” — 2006/2/6 — 18:31 — page 10 — #4

� �

� �

10 • C h a p t e r 2 I N F O R M AT I O N D E F I N I T I O N

of error when a majority vote between zeros and ones is used by the receiver to decide
on the likely symbol. But such repetition carries with it a huge cost in terms of trans-
mission rate. As reliability is increased by greater repetition, the rate at which message
symbols are sent decreases. Thus high reliability entails a low rate of transmission. In
the limit of perfect reliability, the rate of transmission goes to zero, for it would take
forever to send just a single message symbol, repeated an infinite number of times.

Shannon’s brilliant theory showed that for a given level of disturbance, there is,
in fact, an associated rate of transmission that can be achieved with arbitrarily good
reliability.

Achievement of Shannon’s promised rate requires coding that is much more sophis-
ticated than simply repeating each symbol a number of times. Several symbols must
be coded as a group and redundancy incorporated into that group.

The general idea can be understood by thinking of sending an English sentence. If
one sends a single letter, say T, there is a chance that it will be corrupted in transmission
and received as, say R. The T might have to be sent many times before it is received
and interpreted as T with high reliability.

Instead, suppose that the T is part of the intended word message THIS. If that
word is sent, there is again a chance that the T will be corrupted and received as R.
However, if the other three letters are received correctly, the recipient would realize
that RHIS is not a valid English word, and could deduce that the R should be a T. This
explanation is not complete, but the rough idea is there. Namely, by sending blocks
(or words) of symbols, new avenues for error correction become available.

2.1 A Measure of Information

Messages that are unusual and not easily predicted carry more information than those
that are deemed likely even before they are received. That is the key idea of Shannon’s
measure of information.

For example, the message, “It is sunny in California today” normally embod-
ies little information, because (as everyone knows) it is nearly always sunny in
California. On the other hand, the message, “It is cloudy in California” represents
significant information, since (as everyone knows) that is a rare occurrence.

As another example, if I verify that my watch is working, that is less
information than if I find that it is not working.

Information is quantified by considering the probabilities of various
possible messages. A message with low probability represents more
information than one with high probability. For example, since cloudy

weather in California has low probability, the message that it
is cloudy represents a good deal of information.
Once the probability p of a message is specified, the associated

information can be defined.

Information definition. The information associated with a message of probability
p is

I = log (1/p) ≡ −log p, (2.1)

where log stands for logarithm.

“CH02” — 2006/2/6 — 18:31 — page 11 — #5

� �

� �

S e c t i o n 2.1 A M E A S U R E O F I N F O R M AT I O N • 11

Any base can be used for the logarithm (such as the base e of the natural logarithms,
base 10, or base 2). Different bases simply give different units to the information
measure.

Notice that if p is small, 1/p is large and hence the information I will be large.
This is in accord with the general notion that a report of an unlikely event provides
more information than a report of a likely event.

Logarithms to the base 2 are used most often in information theory, and then the
units of information are bits. If p = 1/2, then I = − log2 (1/2) = log2 2 = 1 bit. As
an example, if I flip a coin and tell you the outcome is heads, I have transmitted one
bit of information because the probability of heads is one-half.

The measure of information in equation (2.1) was originally proposed by
R.V.L. Hartley, who used base-10 logarithms, and when that base is used, it is cus-
tomary to call the units of information Hartleys.

It is easy to transform from one base to another through the relation1

logb x = loga x/loga b. (2.2)

In particular, when using base-2 logarithms, it is convenient to use log2 x = ln x/ ln 2,
where ln denotes logarithms to the base e. Since ln 2 = .693, we can write log2 x =
ln x/.693.

Since base 2 is used most of the time in information theory, the explicit reference
to the base is usually omitted and one simply writes log x for log2 x. (However, one
must be careful, since most general purpose calculators and references use log x to
mean log10 x.)

Additivity of Information

Suppose I flip a coin twice, and the result is heads on the first flip and tails on the
second. If I transmit this fact to you, how much information have I sent? There are, of
course, four equally likely possibilities for the outcome of the two flips, namely HH,
HT, TH, and TT. The particular outcome HT has probability 1/4, so the information
content of that message (using base-2 logarithms) is I = log[1/(1/4)] = log 4 =
2 bits. This is also the sum of the information that would be transmitted by reporting
the outcome of each flip separately—one bit each. Hence the information of the
compound message is the sum of the information in the two individual messages.

The additive property is true in general for independent events.

Additive Property. If event A has probability pA and event B has probability pB and
these are independent in the sense that one is not influenced by the other, then the
probability of the joint event A and B is pApB. The corresponding information is

IAB = −log pApB = −log pA − log pB = IA + IB.

We might receive the message that it is sunny in California and John won the
bowling tournament. The information content of this compound message is the sum

1To prove the relation, we write blogb x = aloga x . Taking the loga of both sides yields (logb x) loga b =
loga x. Hence logb x = loga x/loga b.

“CH02” — 2006/2/6 — 18:31 — page 12 — #6

� �

� �

12 • C h a p t e r 2 I N F O R M AT I O N D E F I N I T I O N

of the information that it is sunny and the information that John won the bowling
tournament, assuming that the weather does not affect the tournament and vice versa.

Strong support for the definition of information as the logarithm of 1/p is given by
the additive property. Indeed, the definition seems quite intuitive, but its importance
will later become even more apparent.

2.2 The Definition of Entropy

We know how to measure the information of a particular message or event, such as
the report that the weather is sunny, or that a coin flip was heads. Information is
associated with knowledge of an event that has occurred. Entropy is a measure of
information that we expect to receive in the future. It is the average information taken
with respect to all possible outcomes.

Suppose, for example, that there are two possible events (such as sunny or cloudy
weather). The first will occur with probability p and the second with probability
1 − p. If the first event occurs, a message conveying that fact will have an amount of
information equal to I1 = −log p. Likewise, if the second occurs, the corresponding
information will be I2 = −log (1 − p). On average, event 1 occurs with probability
p, and event 2 occurs with probability 1 − p. Hence, the average information is
pI1 + (1−p)I2. This average information is the entropy of the two event possibilities.
This leads to the following definition.

Entropy definition. For two events with probabilities p and 1 − p, respectively, the
entropy is

H(p) = −p log p − (1 − p) log (1 − p). (2.3)

Entropy has the same units as information, so when information is measured in
bits (using base-2 logarithms), entropy is also measured in bits.

Example 2.1 (Weather). As a specific weather example, suppose that weather in
California is either sunny or cloudy with probabilities 7/8 and 1/8, respectively. The
entropy of this source of information is the average information of sunny and cloudy
days. Hence

H = − (7/8) log (7/8) − (1/8) log (1/8)

= − 1

8
[7 log 7 − 7 log 8 − log 8]

= − 1

8
[7 × 2.81 − 7 × 3 − 3]

= − 1

8
[19.65 − 21 − 3] = 1

8
[4.349] = .54 bits.

(In this calculation log 8 is 3 because 23 = 8. The log of 7 is found from log27 =
ln 7/ln2 = 1.459/.693 = 2.81.)

The entropy of two events is characterized by the probability p of one of the events
since the other event must have probability 1−p. The function H(p) given by equation
(2.3) is plotted as a function of p in figure 2.1.

“CH02” — 2006/2/6 — 18:31 — page 13 — #7

� �

� �

S e c t i o n 2.2 T H E D E F I N I T I O N O F E N T R O P Y • 13

1.00

.75

.50

0

.25

H(p)

p0 .25 .50 .75 1.00

FIGURE 2.1 Entropy H(p) as a function of p. Entropy is symmetric about the point 1/2,
where it attains a maximum of 1 bit. Entropy is 0 if p is zero or one.

If p is either zero or one, the event outcome is completely determined. The entropy
is zero since if the outcome is certain, no information is conveyed by a report of what
occurred.

Entropy is symmetric about the point p = 1/2 because p and 1 − p can be inter-
changed. That is, it makes no difference whether the labels of the two events are
interchanged with event 1 being called event 2 and vice versa.

Finally, entropy is maximized at p = 1/2, where its value is 1 bit. This is the
entropy of a single coin flip having a 50-50 chance of being heads or tails. A 50-50
chance represents the greatest uncertainty for two events, and hence the greatest
entropy.

We may verify that H(p) achieves a maximum at p = 1/2 by a simple application
of calculus. A maximum occurs at the point where the derivative of H(p) is zero. It
is easiest to use logarithms to the base e and divide by ln 2. Thus, in terms of bits, we
may write

H(p) = −[p ln p + (1 − p) ln (1 − p)]/(ln 2).

Then, since the derivative of ln p is 1/p, setting the derivative of H(p) to zero yields

0 = dH(p)

dp
= −

[
ln p + p

p
− ln (1 − p) − 1 − p

1 − p

]/
ln 2

= [−ln p + ln (1 − p)
]
/ ln 2.

This implies that ln p = ln (1 − p), and this in turn implies p = 1 − p or, finally,
p = 1/2.

“CH02” — 2006/2/6 — 18:31 — page 14 — #8

� �

� �

14 • C h a p t e r 2 I N F O R M AT I O N D E F I N I T I O N

2.3 Information Sources

An information source or simply a source is defined to consist of the possible
(mutually exclusive) events that might occur together with their probabilities; and
the definition of entropy is easily extended to sources with several possible events.
Suppose there are n possible events in a source, with the i-th event having probability
pi (for i = 1, 2, . . . , n). None of the probabilities are negative and they must sum to 1.
The information of the message that event i occurred is Ii = log (1/pi). The entropy
is the average information of these.

Entropy of an n-event source. The entropy of an n-event source with probabilities
p1, p2, . . . , pn is

H = p1 log (1/p1) + p2 log (1/p2) + · · · + pn log (1/pn) (2.4)

= − [p1 log p1 + p2 log p2 + · · · + pn log pn].
This function is sometimes denoted H(p1, p2, . . . , pn).

The following example illustrates the straightforward calculation of entropy.

Example 2.2 (Three-event source). Suppose there are three events with probabil-
ities 1/2, 1/4, 1/4. The corresponding entropy is

H(1/2, 1/4, 1/4) = (1/2) log 2 + (1/4) log 4 + (1/4) log 4

= 1/2 + (1/4) × 2 + (1/4) × 2

= 3/2.

The basic properties of entropy exhibited by figure 2.1 for the case of two events
generalize to properties of entropy for n events.

Two properties of entropy.

1. (Nonnegativity) H(p1, p2, . . . , pn) ≥ 0.
Since 0 ≤ pi ≤ 1, each log pi ≤ 0. Hence −pilog pi ≥ 0 for each i, which
means H ≥ 0.

2. H(p1, p2, . . . , pn) ≤ log n.
As in the case with n = 2, the maximum of H occurs when all probabilities
are equal, with pi = 1/n for each i. Hence H ≤ ∑n

i=1 (1/n)log n = log n.

Example 2.3 (20 questions). The popular parlor game of 20 questions illustrates
one facet of entropy. One person selects an object and tells another only whether the
object is classified as animal, vegetable, or mineral. The other person may then ask
up to 20 questions, which are answered either yes or no, to determine the object.

Clearly two possible objects, say A and B, can be distinguished with a single
question, such as “Is it A?” (although if the answer is no, the question “Is it B?” must
be asked to complete the game even though the answer is already known). One of four
objects can be determined with two questions. In general one out of 2n objects can be
determined with n questions. The strategy for determining the one object from 2n is of
course to repeatedly divide in half the group of objects remaining under consideration.

“CH02” — 2006/2/6 — 18:31 — page 15 — #9

� �

� �

S e c t i o n 2.4 S O U R C E CO M B I N AT I O N S • 15

If we suppose that the 2n objects are equally likely (each with probability 1/2n),
the entropy of this source is the sum of 2n terms

1

2n
log 2n + 1

2n
log 2n + · · · + 1

2n
log 2n = log 2n = n.

Thus the number of questions to determine the object is equal to the entropy of the
source.

This is true only when the number of objects is a power of 2, in which case the
entropy is an integer. For other cases, the entropy figure must be increased to the
nearest integer to obtain the number of required questions to assure success.

As an interesting calculation, we note that 220 = 1,048,576, which is the number
of objects that can be distinguished with 20 questions (although only 219 can be
definitely distinguished and stated as a final question).

2.4 Source Combinations

Entropy is additive in the same way that information itself is additive. Specifically,
the entropy of two or more independent sources is equal to the sum of the entropies of
the individual sources. For example, the entropy of two coin flips is twice the entropy
of a single flip. The entropy of the California weather report and the report of John’s
performance in the bowling tournament is the sum of entropies of the two events
separately. However, the entropy of the combination of weather conditions (sunny
or cloudy) and outside temperature (warm or cool) is not the sum of the individual
entropies because weather condition and temperature are not independent—sunny
weather is likely to imply warm temperature, for example. Additivity of information
depends on the two sources being independent.

Mathematically, two sources S and T are independent if the probability of each
pair (s, t) with s ∈ S, t ∈ T is pst = pspt , where ps and pt are the probabilities of
s and t, respectively. Additivity follows from the property of logarithms; namely,
log pspt = log ps + log pt .

Formally, the product of two sources S and T is denoted (S, T) and consists of
all possible pairs (s, t) of events, one from S and one from T . We mentioned earlier
the example of the source made up of California weather and John’s bowling record,
a product source of four events.

Additive property of entropy. If the sources S and T are independent, then the
entropy H(S, T) of the product source (S, T) satisfies

H(S, T) = H(S) + H(T).

The proof of the property is obtained by simplifying the expression for the com-
bined entropy. Suppose that the probability of an event s in S is ps and the probability
of an event t in T is pt . Then an event (s, t) in (S, T) has probability pspt . The entropy
of the product source is

H(S, T) = −
∑

s∈S,t∈T

pspt log pspt = −
∑

s∈S,t∈T

pspt [log ps + log pt]

= −
∑
t∈T

pt

[∑
s∈S

ps log ps

]
−

∑
s∈S

ps

[∑
t∈T

pt log pt

]
= H(S) + H(T).

“CH02” — 2006/2/6 — 18:31 — page 16 — #10

� �

� �

16 • C h a p t e r 2 I N F O R M AT I O N D E F I N I T I O N

It is always true, even if S and T are not independent, that H(S, T) ≤ H(S)+H(T).
For example if two channels of TV both reported the California weather, the entropy
would be equal to just one of them, not two. Proof of the general inequality is given
in chapter 5, where conditional entropy is discussed.

An important special case where independence holds is when the product source is
the result of independent repetitions of a single source—like two flips of a coin, or two
unrelated days of weather reports. If the original source is denoted by S, the product
source, consisting of independent pairs of events from S, is denoted S2. Likewise
we can consider a source that is the product of any number n of independent events
from S and denote this source by Sn. For example, if S is derived from the heads and
tails of a coin flip, then S3 consists of three independent coin flips. We easily find the
following result.

Entropy of Sn. When independent samples are taken from a source S with entropy
H(S), the entropy of the resulting source Sn is

H(Sn) = nH(S).

Mixture of Sources

Two or more sources can be mixed according to fixed probabilities. Let the indepen-
dent sources S1 and S2 have entropies H1 and H2, respectively. They can be mixed
with probabilities p and 1 − p by selecting a symbol from S1 with probability p or
a symbol from S2 with probability 1 − p. For example S1 might be a coin, and S2 a
six-sided die. The mixed source would with probability p flip the coin to obtain Heads
or Tails or otherwise (with probability 1 − p) throw the die to obtain 1, 2, 3, 4, 5, or
6. The resulting source has possible symbols Heads, Tails, 1, 2, 3, 4, 5, 6. In general,
if S1 is chosen, then a specific item is selected from it according to the probabilities
of items in S1; likewise for S2 if it is chosen.

Mixture entropy. The entropy of the source obtained by mixing the independent
sources S1 and S2 according to probabilities p and 1 − p, respectively, is

H = pH1 + (1 − p)H2 + H(p),

where H1 is the entropy of S1 and H2 is the entropy of S2.

For example, if each source has only a single element so that H1 = H2 = 0, the
resulting entropy is not zero, but rather H(p). (See exercise 5.) For the coin and
die example, if p = 1

2 , then

H = 1

2

(
1 + log 6

)
+ H

(1

2

)
= 2 + 1

2
log 3.

2.5 Bits as a Measure

The bit is a unit of measure frequently used in the information sciences. However,
it has at least two slightly different meanings. In its most common use, a bit is a
measure of the actual number of binary digits used in a representation. For example,

“CH02” — 2006/2/6 — 18:31 — page 17 — #11

� �

� �

S e c t i o n 2.6 A B O U T C L AU D E E . S H A N N O N • 17

the expression 010111 is six bits long. If information is represented another way, as for
example, by decimal digits or by letters of the alphabet, these can be measured in bits
by using the conversion factor of log2 10 = 3.32 and log2 26 = 4.7. Thus the string
457832 consists of 6 × 3.32 = 19.92 bits. In general anything that has n possibilities
is commonly said to have log2 n bits. Conversely, k bits can represent a total of 2k

things. This usage does not directly reflect information or entropy. For instance, the
expression 010001 representing the California weather report for six specific days,
with 0 for sunny and 1 for cloudy, contains far less than six bits of information.
Likewise, the entropy of six days of weather (the average of the information over any
six days) is less than six bits. In general, the direct measure of bits as they occur as
symbols matches the entropy measure only if all symbols occur equally likely and
are mutually independent.

Neither the raw combinatorial measure of bits nor the entropy measure says any-
thing about the usefulness of the information being measured in bits. A string of 1,000
bits recording the weather at the South Pole may be of no value to me, and it may
have low entropy, but it is still 1,000 bits from a combinatorial viewpoint.

A bit is a very small unit of measure relative to most information sources, and hence
it is convenient to have larger-scale units as well. In many cases the byte is taken as a
reference, where one byte equals eight bits. Common terms for large numbers of bits
are shown in table 2.1.

TABLE 2.1
Terms Defining Large
Numbers of Bits.

byte = 8 bits
kilobyte = 103 bytes

megabyte = 106 bytes
gigabyte = 109 bytes
terabyte = 1012 bytes

petabyte = 1015 bytes
exabyte = 1018 bytes

zettabyte = 1021 bytes
yottabyte = 1024 bytes

Some of these are huge numbers representing enormous quantities of information.
To provide a concrete comparison, two and a half kilobytes is roughly one page of
text; a megabyte is about the equivalent of a 400-page book. A gigabyte is equivalent
to a short movie at TV quality.

A popular unit is the LOC, representing 20 terabytes, which is roughly the contents
of the U.S. Library of Congress when converted to digital form.

Information (at least in combinatorial bits) is being created at an enormous rate.
It is estimated that during one year the information created and stored is on the order
of one exabyte. Of this total, printed materials account for only about .003 percent.

Although human-generated and recorded information is vast, it is small compared
to that in nature. The DNA of an amoeba contains about 109 bits of information.
Human DNA potentially holds about one exabyte.

Our interest is primarily in human-generated information. This information is
stored, manipulated, transported by various means, and absorbed by the human mind.
Information theory helps us do this efficiently.

2.6 About Claude E. Shannon

Claude Elwood Shannon was born in 1915 in Petoskey, Michigan. He attended the
University of Michigan, where he obtained the degrees of both bachelor of science
of electrical engineering and bachelor of science in mathematics. He then attended
the Massachusetts Institute of Technology and obtained the S.M. degree in electrical
engineering and the degree of doctor of philosophy in mathematics in 1940 (both at
the same time).

His master’s thesis was extremely innovative and important. Some have called it
the most important master’s thesis ever written in the area of digital circuit design.

“CH02” — 2006/2/6 — 18:31 — page 18 — #12

� �

� �

18 • C h a p t e r 2 I N F O R M AT I O N D E F I N I T I O N

Basically, he showed how to systematize the design of complex circuits by the use of
Boolean algebra. For this work he was awarded the Alfred Noble Prize, an engineering
award given to young authors.

His Ph.D. dissertation was no less novel. In it he showed how to depict genetic
information with mathematical structures. His methods enabled calculations and con-
clusions that had not been possible previously. However, the paper describing his
work was never published, and Shannon was too busy with new ideas to continue to
pursue it.

Shortly after graduation from MIT, Shannon joined Bell Telephone Laboratories,
where he worked for 15 years. It was here that he developed his theory of communi-
cation, carried out his study of the structure of the English language, and developed
his theory of encryption. These theories are presented within the chapters of this text.
The profound impact of this work on the field of information science is illustrated by
the many applications and extensions of it that we shall highlight.

Shannon was somewhat shy, but he was also playful; and he was as creative in play
as in technical work. It was not unusual to see him riding a unicycle in the hallways of
Bell Labs. Juggling was one of his primary hobbies, and he was quite accomplished at
it. He wrote a paper on the scientific aspects of juggling and built automatic juggling
machines (one using a stream of air to propel objects upward). He also wrote papers
on game-playing machines of various types, including one on chess.

Shannon’s Approach to Problem Solving

Shannon’s playful hobbies and his technical work shared the common attribute of
reducing issues to their simple essence. He discussed this approach to problem solving
in a talk that he gave in 1953:

The first one [method] I might speak about is simplification. Suppose that you
are given a problem to solve, I don’t care what kind of problem—a machine
to design, or a physical theory to develop, or a mathematical theorem to
prove or something of that kind—probably a very powerful approach to this
is to attempt to eliminate everything from the problem except the essentials;
that is, cut it down to size. Almost every problem that you come across is
befuddled with all kinds of extraneous data of one sort or another; and if you
can bring this problem down into the main issues, you can see more clearly
what you are trying to do and perhaps find a solution. Now in so doing you
may have stripped away the problem you’re after. You may have simplified
it to the point that it doesn’t even resemble the problem that you started with;
but very often if you can solve this simple problem, you can add refinements
to the solution of this until you get back to the solution of the one you started
with.

Shannon’s approach of abstraction to an essence should become clear as we study
his contributions throughout this text. His work is a testament to the power of the
method.

“CH02” — 2006/2/6 — 18:31 — page 19 — #13

� �

� �

S e c t i o n 2 . 7 E X E R C I S E S • 19

2.7 EXERCISES

1. (Four-event source) Consider a source with four events having probabilities 1/5, 1/5, 1/5, 2/5.
(a) What is the information in bits conveyed by a report that the first event occurred?
(b) What is the entropy of the source?

2. (Change of base) What is the general formula for entropy Hb(S) using base-b logarithms in
terms of entropy Ha(S) using base-a logarithms?

3. (A counterfeit coin*) A certain counterfeit half-dollar has a probability p of being heads
and 1 − p of being tails, where p �= 1/2. John flips the coin and tells Jane the outcome.

(a) What is the entropy associated with the statement that John makes to Jane?
(b) On the next flip, Jane realizes that there is a probability q that after the flip John

will reverse the coin before reporting the (altered) outcome. Is the new entropy of
John’s statement less than, equal to, or greater than that of part (a)? Prove your
answer. This says something about the effect of mixing two sources.

4. (Maximum entropy) Show explicitly that the maximum possible entropy of a source of
n events is log n bits and is attained when the events have equal probabilities.

5. (Source mixing) Prof. Babble is writing a mathematical paper that is a combination
of English and mathematics. The entropy per symbol of his English is HE and the entropy
of his mathematics (using mathematical symbols) is HM . His paper consists of a fraction λ

of English letters and a fraction 1 − λ of mathematical symbols.
(a) Show that the per-symbol entropy of his paper is

HP = λHE + (1 − λ)HM + H(λ).

(b) The professor is proud of the fact that he mixes English and mathematics in such
a way that his papers have maximum per-symbol entropy. Find the value of λ that
he uses.

6. (Playing cards)
(a) What is the amount of information in bits transmitted by announcing the name of

a chosen card from a deck of 52 playing cards?
(b) What is the total number of ways that a deck can be ordered? Hint: Find the

logarithm of the number first.
(c) What is the entropy in bits of a source consisting of a random deck of cards?

7. (Amoeba smarts) The DNA string of an amoeba holds roughly 109 bits of information. This
tells the amoeba how to make its enzymes and indeed how to carry out all other functions
for its life. If this information were translated into a written instruction manual for amoebas,
about how many volumes would be required?

8. (Tree combination) Consider the three-event source with labels A, B, C and corresponding
probabilities 1/2, 1/4, 1/4. By introducing an intermediate event D, this source can be
constructed from the tree shown in figure 2.2. Let S be the source with events A and D and
let P be the source with events B and C as seen from D (that is, the source P occurs only if
D occurs).

A

B C

D
½ ½

½ ½

FIGURE 2.2 A decom-
position of a source into
two sources.

Find the entropy of the original source in terms of the entropies of S and P. Compare
with the direct calculation of the entropy of the original source.

“CH02” — 2006/2/6 — 18:31 — page 20 — #14

� �

� �

20 • C h a p t e r 2 I N F O R M AT I O N D E F I N I T I O N

2.8 Bibliography

The classic paper on information theory is Shannon’s original paper of 1949 [1].
Two basic textbook references are [2] and [3]. Quantitative estimates of the amount
of data in various media are presented in [4]. An interesting study of the role of
information theory in the study of biological systems is the book [5]. Shannon’s vast
collected works and a brief biography are found in [6]. A good survey of his work
and philosophy is in the final project paper [7]. Shannon’s talk on creativity was
published in [8].

References

[1] Shannon, Claude E. The Mathematical Theory of Communication. Urbana:
University of Illinois Press, 1949.

[2] Abramson, Norman. Information Theory and Coding, New York: McGraw-Hill,
1963.

[3] Cover, Thomas M., and Joy A. Thomas. Elements of Information Theory. New
York: Wiley, 1991.

[4] Lyman, Peter, Hal R. Varian, James Dunn, Aleksey Strygin, and Kirsten
Swearingen. “How Much Information?” 2000. www.sims.berkeley.edu/how-
much-info.

[5] Loewenstein, Werner R. The Touchstone of Life. Oxford: Oxford University
Press, 1999.

[6] Shannon, Claude E. Collected Papers. Ed. N.J.A. Sloane and D. Wynar.
Piscataway, N.J.: IEEE Press, 1993.

[7] Chui, Eugene, Jocelyn Lin, Brok Mcferron, Noshirwan Petigara, and
Satwiksai Seshasai. “Mathematical Theory of Claude Shannon.” Final project
paper in MIT course The Structure of Engineering Revolutions, 2001.
http://mit.edu/6.933/www/Fall 2001/Shannon1.pdf.

[8] Shannon, Claude E. “Creative Thinking.” Mathematical Sciences Research
Center, AT&T, 1993.

“CH01” — 2006/2/6 — 18:29 — page 1 — #1

� �

� �

1
INTRODUCTION

T
his is the information age. Advances in information technology are transforming
civilization more profoundly and more quickly than any other technical revolution
in history. Yet if pressed to explain what defines the information age, we can’t give

a single answer: it is the technology of the Internet; it is the ability to access vast and
diversified data with relative ease; it is greater freedom to communicate directly with
others; and it is new forms of business, entertainment, and education.

Today many people wish to participate fully in the promise of the information age
and contribute to its advance, and they seek knowledge and skills that will prepare
them. Such preparation should emphasize fundamentals as well as details. But what
are the fundamentals of information?

In this book there are five fundamentals of information, and the text is therefore
divided into parts, each devoted to one of the five. The five essentials, the five E’s,
are the following:

1. Entropy. The foundation of information. It is the study of classi-
cal information and communication theory, based on bits, bandwidth,
and codes, which underlies modern technology. The concept of entropy
appears naturally in most aspects of information.

2. Economics. Strategies for value. Information is different from other
commodities, such as apples or automobiles, since it is usually not con-
sumed or worn out when it is used and often is easily duplicated. This
has profound implications for how information is produced, priced, and
distributed.

3. Encryption. Security through mathematics. Much of modern commu-
nication relies on secure transmission provided by encryption, enabling
such advances as digital signatures and digital cash. This area has
advanced profoundly in recent years.

4. Extraction. Information from data. Data is not the same as informa-
tion. In practice, data must be organized, stored, searched, filtered, and

1

“CH01” — 2006/2/6 — 18:29 — page 2 — #2

� �

� �

2 • C h a p t e r 1 I N T R O D U C T I O N

modeled in order that useful information can be obtained. The techniques
for accomplishing this are expanding rapidly and are providing powerful
ways to extract information.

5. Emission. The mastery of frequency. A large fraction of the information
we obtain is transmitted electromagnetically, through radio, television,
telephones, cell phones, or computer networks. These devices rely on
electric currents, radio frequency waves, or light. Advances in our
understanding and mastery of frequency have profoundly shaped the
information age.

Certainly there are important aspects of information beyond these five, including,
for example, the study of linguistics and the analysis of human information-processing
capabilities. But as a general rule, study of the principles discussed in this text will
prepare one for study of many important aspects of information science.

Abstract principles alone, however, do not provide a full understanding of infor-
mation. It is important to study specific application issues, such as how coding theory
has facilitated cell phones, compact disks, and pictures transmitted from satellites
and surface modules we have sent to distant planets; how economic principles are
combined with technology to invent new methods of pricing music and other infor-
mation products; how encryption facilitates secure transmissions, electronic cash,
and digital signatures; how large data banks are organized, searched, and analyzed;
how advances in technology provide new services, cell phones, and access to vast
stores of data. These examples give life to the principles and may inspire future
creations.

It is helpful also, and sometimes entertaining, to study bits of history related to the
development of information science. Of special interest are accounts of individual
struggles, insights, successes, and disappointments of some of the people who have
made contributions. These little stories add a special dimension to one’s study, putting
ideas in perspective and showing the excitement of the field.

The subject of information is a lacework of individual subtopics. This book hopes
to convey appreciation for the overall patterns of this lacework. Such an apprecia-
tion will enrich the study of any one of the subtopics, and may provide a gateway to
detailed study of related subjects. Engineering students may find that economics is
fascinating and important. Scientists may find that there is great science in the study
of information. Economists may find that understanding the technological principles
of information helps in the formulation of efficient means for allocating informa-
tion goods. Familiarity with the entire pattern enhances general understanding and
highlights unifying principles.

Important principles and concepts are portable in that they can be applied in varied
areas. This text emphasizes the portable concepts of information science.

1.1 Themes of Analysis

Several themes of analysis recur in the study of the five E’s, and it is useful to watch
for them.

1. Average performance. A basic concept used in the analysis of information is
that of average performance. Often performance is measured, not with respect to a

“CH01” — 2006/2/6 — 18:29 — page 3 — #3

� �

� �

S e c t i o n 1.1 T H E M E S O F A N A LY S I S • 3

particular instance, which may vary from other instances, but rather by averaging
over many or all possible instances. This has two major consequences. First, and
most obvious, is that an average characterizes, in a single number, performance over
several instances. This is convenient and useful. The second consequence is more
profound, and results from changing the definition of an instance. If several instances
are grouped to form a single “big” instance, then by focusing on these new instances
we may be able to improve performance. For example, suppose you mail packages
of various sizes to the same person and you keep track of the average postage costs.
This is done by averaging over the (small) instances of each package. Suppose instead
that you redefine an instance as two consecutive packages that you repackage as a
single large package. The cost of sending the two is often less than the sum of costs
for the two individual packages. If you average over these big packages, you will
likely find that the average cost is less than before. This simple idea is quite powerful.
Indeed, it is one of the first concepts we encounter in Shannon’s brilliant analysis of
communication. Shannon showed that the average performance of a communication
system can be improved by using big packages.

2. Optimality. The idea of finding an optimum arises frequently in information sci-
ence. One may seek the lowest cost, the maximum profit, the minimum average time
to completion, the maximum compression, the shortest search time, the maximum
transmission rate, and so forth. The principle of optimization is now deeply rooted in
analysis, and the basic analytical techniques of optimization are accessible to most
people who will study this text; the main result being that the maximum or minimum
of a function occurs at a place where the derivative of that function is zero. Constraints
are treated with Lagrange multipliers. Sometimes, however, such as in combinatorial
problems, special arguments must be used to characterize optimality.

3. Complexity. Much attention in information science is devoted to computational
complexity. Surprisingly, complexity is regarded as bad in some cases but good in
others. When it comes to finding a solution to a problem or computing something
of interest, we desire simplicity. When protecting the security of messages, on the
other hand, we want our code to be difficult for others to decipher, and hence we seek
encryption methods that produce a high degree of complexity.

Standard measures of complexity are based on the average (or best or worst case)
time required to carry out a task. This time is generally a function of the size of
the components of the task. For example, the time that it takes to multiply two
numbers together depends on how many digits they contain. Two main possibili-
ties are distinguished for a function that measures time as a function of problem
size: polynomial time and nonpolynomial time. A polynomial time algorithm com-
pletes its execution in a time proportional to a polynomial in the size variable. For
example, multiplication of two numbers each with n digits can be attained on a
sequentially operating computer in time proportional to n2 (or less). Tasks that can
be completed in polynomial time are generally considered fast and not terribly com-
plex. As a converse example, the time required to factor an integer with n digits
is roughly e(log n)1/3

which is not polynomial. Thus factoring is considered complex
(and hard).

Complexity is important in modern information science because of the huge mass of
data that is processed by sorting, searching, coding, decoding, and so forth. Efficiency
requires low complexity, which is generally taken to mean polynomial time.

“CH01” — 2006/2/6 — 18:29 — page 4 — #4

� �

� �

4 • C h a p t e r 1 I N T R O D U C T I O N

4. Structure. Structure often reduces complexity. Without structure, there is chaos,
and most likely attendant complexity. Of particular interest in information science
are techniques for structuring relationships among data or among mathematical
variables.

One of the most useful structures is that of a graphical tree, consisting of various
nodes and branches that lead from node to node. An example of a tree is a code tree,
like that shown in figure 1.1 and used in chapter 3. Trees are indeed used in many
instances in the text. They facilitate study of the structure of codes (as in the figure),
they represent possible stages of action or information, and they symbolize ways to
arrange data.

0

1

0

0

1

1

0

1

0
0

0

1

1

0

1

1

1

FIGURE 1.1 A code
tree. Trees of various
sorts are used fre-
quently in information
science.

Another common structure is a matrix or table—a two-dimensional array. A matrix
may be used in the strict mathematical sense as relating vectors, or it may be simply
a table of relationships, as for example a database matrix with students listed down
the columns and classes taken listed across the rows. Sometimes trees are converted
to matrices and vice versa.

Another structure is a system of equations. For example, the equations may describe
the actions of several producers of information and how their profits depend on each
other’s actions. Or the equations may relate an output code to an input message.

One frequently attempts to tame a complex situation by seeking or imposing
structure.

1.2 Information Lessons

Complementing methods of analysis are the results, general insights, and conclu-
sions that analysis provides. Some of the general lessons obtained about information
stand out.

1. The measure of information. Entropy (defined in chapter 2) proves itself repeat-
edly as a fundamental measure of information. Shannon originally introduced this
measure in the context of efficient transmission of information, first in a noise-free
environment and then in the presence of noise.

It is a short step from the basic definition of entropy to its application to data
compression, which reduces the storage required to save data or increases the rate at
which information can be sent. Standard compression methods for text, pictures, and
music are based on entropy concepts.

Entropy provides a fundamental bound on the average time required to find a
specific piece of data within a data file, and it suggests structures to best represent
data to facilitate searches.

Entropy also provides the bound for the rate of information transmission through
inherently noisy electromagnetic media, relating the transmission rate to the frequency
bandwidth used.

Indeed, entropy is so basic that it arises in the study of all five E’s of information.

2. The value of information. The value of a specific piece of information may
be quite distinct from its information-theoretic content. You may find a certain
long-winded book to have little personal value, even though it has a lot of words.
Entropy cannot measure the value you place on the book’s content. It cannot quantify

“CH01” — 2006/2/6 — 18:29 — page 5 — #5

� �

� �

S e c t i o n 1.2 I N F O R M AT I O N L E S S O N S • 5

the “real” information in books, movies, and music. Yet the assignment of value can
be approached systematically in many cases.

There are two main approaches. The first is based on economic supply and demand.
Roughly, if lots of people want a certain piece of information and are willing to pay
for it with time, money, or effort, it is deemed valuable. This viewpoint can be used
to determine what information to produce and sell, and how to organize large masses
of data so that what most people want is easily found.

Again the idea of averaging plays a role. A producer’s profit may depend on the
average value that people place on a product. But the producer can also use the
big-package idea and increase average profit by selling products bundled together.

The second approach to assigning value is to measure its effect on decisions. For
example, if knowledge of how much oil exists at a certain underground site would
influence your decision to drill or not, then the value of that information can be related
to the oil profit you might make. Again, this value of information is best defined as
an average; in this case over all possible oil reports you are likely to receive.

The issue is more complex when one considers more than a single individual.
Information can actually have negative average value in some group situations.

3. Encryption. Encryption can be achieved in basically two complementary ways.
The first method is derived from the concept of entropy. The idea is to make the
message appear completely random to an outsider (seeking to intercept and read
the message). That is, the encrypted message should have no information content;
it should have maximum entropy. The message must, of course, be decipherable
by the intended recipient, and this generally requires that the sender and the recip-
ient agree on a special key that is used to initially encrypt the message and later
recover it.

The second method is based on complexity. A sender scrambles the message in a
manner prescribed by the intended recipient, but it is extremely difficult to unscramble
it for anyone who does not know the operation that is the inverse of the scrambling
method. Some of these methods are called public key systems since the scrambling
key can be made public, but the descrambling key is known only by the intended
recipient. Some early mechanical coding devices, such as the Enigma machine used
in World War II, employed both methods, making both the entropy and the complexity
fairly high.

Future encryption methods may be based on quantum effects of light, and are likely
to employ notions of either entropy or complexity.

4. Storage, searching, and modeling. These topics are essential in the information
age and make up a huge segment of information science. Perhaps more than any
of the other five E’s, extraction uses to great advantage all the analytical principles
discussed earlier: average performance, optimality, complexity, and structure. Huge
masses of data in Internet files, in libraries, and in database systems for business and
government are almost overwhelming in their sheer size and apparent complexity. The
first attack on such masses of data is the imposition of structure. Structure renders
the data manageable for storage, retrieval, intelligent searching, and ultimately for
extraction of useful information.

Fortunately, the benefits of structure often can be quantified. We may deduce the
average time required to search for an item in a database, the degree of security
provided by a system of encryption, the probability that a classification scheme will

“CH01” — 2006/2/6 — 18:29 — page 6 — #6

� �

� �

6 • C h a p t e r 1 I N T R O D U C T I O N

correctly identify similar items, the closeness of fit of a simplified representation of
data, or the amount of compression achieved by an algorithm.

5. Physical and mathematical understanding. Modern communication is largely
carried out by electromagnetic media. Although the details are complex, many of
the general information science principles are applicable to the understanding of this
important aspect of information as well.

The continuing thread of achievement in information transmission has been what
can be termed the “mastery of frequency.” Continuous signals such as those of speech
can be dissected into their frequency components. The understanding of this principle
led to the conscious manipulation of frequency. Today frequency waves are altered
by filters, modulated with speech, shifted higher or lower in the frequency spec-
trum, sampled and reconstructed, narrowed or spread in bandwidth, and purposely
mixed with noise. These techniques led to radio, television, cell phones, beautiful
pictures from Mars, and computer networks. This mastery is one of the highlights of
information science.

“ch22” — 2006/2/6 — 18:49 — page 393 — #1

� �

� �

22
NETWORKS

A
great portion of the organized information we receive is transmitted through net-
works that can interconnect various combinations of users. The telephone network,
wide area computer networks such as ARPAnet, local area networks such as

ethernets, and the World Wide Web are examples.
The earliest networks sliced up the available channel capacity and allocated the

pieces to various users, the actual information flow being guided by circuit switches
or frequency allocation. Today, many large networks allocate shares of capacity by
packet switching, whereby a message is itself divided into small individual packets
that are sent separately through the network. This has the advantage that capacity is
allocated dynamically according to demand. The Internet is the prime example of a
network based on packet switching.

Today’s Internet grew out of the ARPAnet. Although several individuals envisioned
something like it, the most influential vision of distributed computing through a
network was proposed in 1962 by Joseph C. R. Licklider of MIT in the form of a
“Galactic Network.” The first paper on packet switching theory was published in 1961
by Leonard Kleinrock based on his MIT Ph.D. dissertation. His colleague, Lawrence
Roberts, soon went to ARPA (Advanced Research Projects Agency) to implement
Licklider’s network concept using Kleinrock’s packet technology.

The basic concept of packet switching is simple—but development of a truly
effective system is far from trivial. How large should the
packets be? How often will packets collide? How long
will the queues be when packet congestion is high? What
route should the packets take? The quantitative analysis of
these questions makes up much of the modern theory of
communication networks.
Queueing theory provides the basis for a large portion of

the required analysis. And fortunately for our purposes, some
important aspects of packet technology can be explored with

only the simplest concept from queueing theory; namely, a
model describing the probabilistic character of packet origination.

393

“ch22” — 2006/2/6 — 18:49 — page 394 — #2

� �

� �

394 • C h a p t e r 22 N E T W O R K S

22.1 Poisson Processes

The generation of packets by network users is frequently modeled as a Poisson pro-
cess. Such a process describes the random times at which events (such as packet
origination) occur. The process is defined by a single parameter λ > 0 that is the aver-
age rate of event occurrence. Specifically, in a Poisson process events are assumed
to occur independently in time, with the probability of occurrence within any small
interval �t being1

Prob{occur} = λ�t + o(�t).

The probability of two or more occurrences in an interval �t is assumed to be on the
order of o(�t).

From this basic definition, the probability of any number of events occurring within
a finite interval τ can be computed. For our purposes, however, it is only necessary
to know the probability P0(τ) of no occurrence within a finite time segment of length
τ > 0.

To find P0(τ), the time segment [0, τ] is divided into m small intervals of length
τ/m. The probability of no occurrence in all of these together is the product of the
probabilities that no event occurs in each of the small segments, which is (1−λτ/m+
o(1/m))m. Letting m → ∞ and using the general fact that for any x, limm→∞ (1 +
x/m)m = ex , it follows that

P0(τ) = e−λτ . (22.1)

Although P0(τ) is the only probability that is needed in the following section, the
probability Pn(τ) of n occurrences in an interval of length τ also can be found, as
shown in exercise 1, to be

Pn(τ) = λntn

n! e−λτ .

The average time between event occurrences can also be easily calculated. Suppose
there is an occurrence at time 0, and let t be the time of the next occurrence. Clearly
Prob (t ≥ τ) = P0(τ). Hence, Prob(t ≤ τ) = 1 − e−λτ . The probability density of t
is by definition

d

dτ
Prob(t ≤ τ) = λe−λt .

Hence the average value of t is

t =
∫ ∞

0
tλe−λtdt = 1/λ. (22.2)

Therefore, the average time between events is 1/λ and, correspondingly,2 events are
generated at an average rate of λ per unit of time.

1As before, o(�t) represents terms that go to zero faster than �t.
2See exercise 2.

“ch22” — 2006/2/6 — 18:49 — page 395 — #3

� �

� �

S e c t i o n 22.2 F R A M E S • 395

22.2 Frames

In packet switching each message is broken into a number of packets of fixed length.
Each packet is treated by the network as a separate unit and passed along from one
network node to another until it reaches its intended destination. In some cases the
packets of a given message are sent on different routes and may in fact arrive at
the destination out of order, and thus must be reassembled to produce the original
message.

To aid in the handling of packets, there is appended to each packet additional
information such as beginning and end indicators, and a header that includes source
and destination addresses as well as the sequence number of the packet. The specific
requirements and configuration depend on the system, but in general the overall large
package consisting of message packet and additional information, as illustrated in
figure 22.1, is termed a frame.

It is assumed that frames are generated randomly by a large number of users as
shown in figure 22.2. If the frames of m users are generated independently, each
according to a Poisson process with parameter µ, then the events corresponding to
initiation of any frame are themselves a Poisson process with parameter λ = mµ.

It is convenient to express time in frame units; that is, the duration of a frame is
taken to be one unit. Suppose that the collection of all users generates frames at a
rate of λ per unit time (frame time). Clearly if λ > 1, frames are generated faster on

Start Header Packet Stop

Time

FIGURE 22.1 A frame. A frame consists of a packet of message information as well as
additional information to assist with proper identification and transmission of the packet.

Time

1

Time

2

Time

3

FIGURE 22.2 Frames generated by three users. If the users each generate packets
according to independent Poisson process, the resulting overall process is also Poisson.

“ch22” — 2006/2/6 — 18:49 — page 396 — #4

� �

� �

396 • C h a p t e r 22 N E T W O R K S

average than they can be transmitted even if they are sequenced one after the other.
So, λ < 1 is necessary for stable operation of the network. Nevertheless, some frames
will collide. These frames must be retransmitted, which increases the effective rate
of frames entering the network. This rate, which includes original frame generation
and the rate of retransmission, is denoted G. Clearly G ≥ λ.

22.3 The ALOHA System

The ALOHA system was one of the first networks, after the ARPAnet, to use packet
switching. It was built under the leadership of Professor Norman Abramson as a
network to allow people at the several campuses of the University of Hawaii on
various islands to communicate with the main computer using local terminals. It was
not practical to use undersea cables to connect the islands, so radio links were used.
This meant that, unlike the ARPAnet, which used telephone lines, everyone shared a
common channel, defined by a radio frequency. Hence there was a strong possibility
of frame collision. If there was a collision, the two frames were sent again, after a
random delay. (In that system, a packet corresponded to one line of text, and it was
sent to the network when the carriage return key was pressed.)

The first step in the analysis of the ALOHA system is to determine the probability
that any frame introduced for transmission (or retransmission) is successfully trans-
mitted without collision. In a pure ALOHA system, frames are initiated at any time,
without restriction. It is like drivers entering a freeway while blinded, not being able
to detect existing traffic. Certainly there is a high chance of collision unless the traffic
level is low.

The situation for data frames is illustrated in figure 22.3. Imagine that frame A
is introduced into the system as shown. If another frame, frame B, is introduced
anytime during the period of frame A and one entire period before frame A begins, it
will collide with frame A and both frames will be sent back for retransmission. The
vulnerability period is therefore two frame periods in duration.

The throughput S of the system is the rate at which frames are successfully trans-
mitted through the channel, measured in frames per unit frame time. (According
to this convention, if frames were sent one right after the other, continuously, the
throughput would be S = 100 percent.) In the case analyzed above, the throughput
is equal to the rate that frames are presented for transmission times the probability

Time

Frame B

Frame A

vulnerability region

FIGURE 22.3 Vulnerability region. The vulnerability region is twice the duration of a
single frame.

“ch22” — 2006/2/6 — 18:49 — page 397 — #5

� �

� �

S e c t i o n 22.3 T H E A LO H A S Y S T E M • 397

that a frame is in fact successfully transmitted. Thus, using the formula for P0(2), the
probability that no additional packet is generated within two frame periods, we find

S = G × P0(2) = Ge−2G.

The point of maximum throughput can be found by setting the derivative to zero, as

dS

dG
= dGe−2G

dG
= e−2G − 2Ge−2G = 0,

which gives G = 1/2. The corresponding maximum throughput is S = 1/(2e) ≈
0.184. In other words, the system has a maximum efficiency of only 18.4 percent.
The value of S versus G for pure ALOHA is shown as the lower curve in figure 22.4.

An alternate version of ALOHA, termed slotted ALOHA, has greater throughput.
In this system, time is divided into a series of discrete intervals each of which can
accommodate one frame. Each sender can initiate a frame only at the beginning of
an interval (a slot). Hence if a packet is ready for transmission, it must wait until
the current slot is completed before actually entering the network. A collision occurs
only if two or more senders present a packet during a given slot. If a collision should
occur, access to a later slot is purposely delayed according to a random draw, so that
the colliding frames will not immediately collide again.

Since a slot interval is one frame in length, the vulnerability period is only one
frame length instead of two as with pure ALOHA. Hence the throughput of the slotted
system is

S = Ge−G. (22.3)

This achieves a maximum at G = 1 with a corresponding value of 1/e ≈ .368, which
is twice the throughput of pure ALOHA. The throughput as a function of G is shown
in figure 22.4.

0.40

0
0 1.0 1.5 2.0

0.30

0.25

0.20

0.15

0.10

0.05

.5 3.0

Slotted ALOHA0.35

2.5

S

G

Pure ALOHA

Equilibrium points

λ

FIGURE 22.4 Throughput for ALOHA systems.

“ch22” — 2006/2/6 — 18:49 — page 398 — #6

� �

� �

398 • C h a p t e r 22 N E T W O R K S

The preceding analyses leads to the concept of equilibrium for an ALOHA system.
In equilibrium, the throughput rate S must equal the rate λ at which frames are
originated. The equilibria for slotted ALOHA with a certain parameter λ are shown
in figure 22.4. There are two equilibria, corresponding to the two places where S
crosses the horizontal line at height λ. The one with the lowest value of G is the most
desirable, since the one with a high value of G implies that there is, on average, a
large backlog of frames waiting to be retransmitted, and hence long average delays.

However, the simple analyses and the corresponding curves based on averages
ignore important dynamic effects, and in reality these equilibria are not stable. After
a heavy run of collisions, the backlog may increase to the point where more transmis-
sions are attempted than can be served, which means that practically all transmissions
will result in collision.

Several schemes have been proposed to stabilize slotted ALOHA. Most are based
on the idea of varying the characteristics of the random delay purposely introduced
before retransmission, increasing the average delay when the system is congested and
decreasing it when the system is idle.

22.4 Carrier Sensing

The maximum throughput of the slotted ALOHA system is 1/e, which is rather
disappointing, but it is perhaps not surprising, since there is no real opportunity for
coordination by the various sources. Each source simply transmits when it has a
packet, independent of what others are doing; as a natural consequence, collisions are
highly likely. In some situations, such as local area networks, it is possible for senders
to detect the carrier signal corresponding to a busy channel. Each user can then wait
until the channel is clear before attempting transmission. If all parties behave this
way, higher throughput is possible.

The situation is analogous to a driver who is able to see directly in front of a
freeway ramp when planning to enter traffic. This is better than being completely
blinded (analogous to ALOHA); nevertheless, the entrance may look clear, but when
moving forward, the car may be hit by an oncoming vehicle.

Data network systems of this type are termed Carrier Sense Multiple Access
(CSMA) systems, and there are several versions. To analyze these systems, we assume
that the frame duration is the same for each packet, and that the one-way propagation
of signal between any source–destination pair is a, measured in frame units. Thus if
a transmission is initiated by a source, other users detect its presence in the system
only after a delay of a. Typically, a is small.

If a source detects that the channel is clear, it might attempt to transmit. However,
the attempt will fail if another source began to transmit a frame a short time (less
than a) earlier.

Various versions of CSMA follow different strategies for transmission and retrans-
mission. In persistent CSMA, a sender whose frame collides retransmits the frame at
the next sensed idle period. In nonpersistent CSMA, a sender whose frame collides
schedules a future attempt according to a specified random delay function, repeating
this process until successful.

“ch22” — 2006/2/6 — 18:49 — page 399 — #7

� �

� �

S e c t i o n 22.5 R O U T I N G A LG O R I T H M S • 399

0.9

0
0 5

0.7

0.6

0.5

0.4

0.3

0.1

1 8

Slotted ALOHA

0.8

6

S

G

Pure ALOHA

CSMA a = .01

0.2

2 3 4 7

CSMA a = .1

FIGURE 22.5 Comparison of throughput for various packet-switched systems.

The throughput of nonpersistent CSMA can be shown to be

S = Ge−aG

G(1 + 2a) + e−aG
. (22.4)

This value assumes that attempted transmission or retransmission occurs according to
a Poisson process with parameter G. The value of G is determined by the underlying
rate λ of frame generation and the retransmission delay strategy.

Depending on the delay time a, the throughput S for nonpersistent CSMA can be
much greater than for ALOHA systems. For example, at a = .01, which is perhaps
typical, the throughput can approach 83 percent. Figure 22.5 compares the throughput
of various systems.

22.5 Routing Algorithms

Good network management attempts to minimize the transit time of packets while
maximizing the throughput of the system and allocating capacity to different parties
in a fair manner. Such management requires a variety of tools. It is much like the
management of a road system: it is useful to have signals, carpool lanes, speed limits,
and one-way streets rather than allowing a free-for-all that leads to congestion and
collisions. And like a road system, there is no simple plan for communication networks
that accommodates all of the sometimes conflicting goals.

The overall issue is typically approached by studying the different aspects inde-
pendently. This alone produces a good first step, provides valuable insight, and is
the foundation for further work. The remainder of this chapter discusses the routing
problem: determining which path to use for each packet.

There are two major distinctions for how a path is selected. In the virtual circuits
approach, a route is chosen for an entire message; that is, all packets that make up that

“ch22” — 2006/2/6 — 18:49 — page 400 — #8

� �

� �

400 • C h a p t e r 22 N E T W O R K S

message follow the same path. In the datagram approach, packets are considered to
be separate entities and are individually routed, different packets perhaps following
different paths. Many of the principles used for determining paths are common to
both approaches.

Flooding

One of the simplest routing methods is flooding. In this method every packet arriving
at a node is forwarded along every outgoing link except the one by which the packet
arrived. It is clear that every packet is sure to eventually get to every node provided
only that the network is fully connected so that it is possible to reach every node
from any node. However, it is also clear that a great number of duplicate packets are
likely to be sent. This duplication can be ameliorated by including in the frame header
a counter that is decremented at each node. This counter is initialized at a number
known to be greater than the minimum number of links separating the sender and
receiver; then later as frames are sent scurrying through the network, those frames for
which the counter is zero are discarded. Although flooding is inefficient, its simplicity
is an advantage and may be useful in networks with relatively low levels of traffic.
Flooding is also useful for broadcasting a common message to all sites.

22.6 The Bellman–Ford Algorithm

Optimal routing methods are typically based on some form of generalized path length.
This may be the actual length, or more often, a measure of transit time, including
delays due to buffering at congested nodes. Once a measure of length is defined,
the objective of the routing procedure is, ideally, to minimize the total (generalized)
distance traveled by each packet. There are a number of algorithms designed for this
purpose, but one of special interest is the Bellman–Ford algorithm described in this
section.

The network is assumed to consist of a number of nodes, numbered 1 through n.
These nodes are connected by links. The distance of a link from node i to node j
is denoted dij. It is assumed that all dij ≥ 0. If there is no direct link from i to j,
then dij = +∞. It is allowed that dij �= dji; but if there is a link from i to j (that
is, dij < ∞), then there is a reverse link (dji < ∞). It is also assumed that dii = 0
for all i.

The total length of a path is assumed to be the sum of the lengths of the links
traversed.

Consider a certain node, say node 1. Suppose we wish to find the shortest path
length to node 1 from every other node. Denote the shortest path length from node
i to node 1 by Di. The Bellman–Ford algorithm finds the Di’s by first considering
only paths traveling over at most one link. The corresponding minimum distance is
denoted D1

i . Clearly D1
i = di1.

Next, given Dk
i (the minimum distance from i to 1 using at most k links), the

distance Dk+1
i is defined as

Dk+1
i = min

j
(dij + Dk

j). (22.5)

“ch22” — 2006/2/6 — 18:49 — page 401 — #9

� �

� �

S e c t i o n 22.7 D I S TA N C E V E C TO R R O U T I N G • 401

This says that the minimum path length using at most k + 1 links is equal to the
minimum path length from a node j using at most k links plus the distance from i to
j; and this is minimized with respect to all intermediate nodes j. The iteration (22.5)
converges to the actual minimum path length Di from i to 1 in at most n steps, since
a minimum path will have no more than n links.

The algorithm can be carried out separately for each of the destination nodes in
order to calculate the shortest path lengths to every node.

Note that in the minimization step Dk+1
i = minj (dij + Dk

j), the values of j can be
restricted to those j’s that are directly linked to i, for otherwise dij = +∞. It is this
property that allows the algorithm to be implemented in a somewhat decentralized
form. Node i only needs to know (1) the value of the dij’s for its neighboring j’s, and
(2) the values Dk

j which can be reported from the neighboring j’s. Thus a node need
only communicate with its neighbors to compute the minimum path length.

22.7 Distance Vector Routing

The Bellman–Ford algorithm was the basis of the routing method originally used in
ARPAnet, and it has been used in the Internet under the name RIP. It is understood that
traffic conditions in the network constantly change, which means that the effective
link lengths (defined usually as transit time) also change, and this in turn means that
the shortest paths change.

The actual routing algorithm based on the Bellman–Ford method, termed distance
vector routing, periodically repeats one step of the iteration (22.5) so that each node
can determine an estimate of the minimum path lengths. The values determined in
practice are always estimates because the algorithm never actually converges, owing
to the fact that network conditions change between iteration steps. Nevertheless, the
estimates obtained are useful and the method produces good, if not ideal, routing.

The calculation employed in the Bellman–Ford algorithm and its dynamic version
of distance vector routing can be supplemented by a bookkeeping operation that keeps
track of the first link in a shortest path—that is, it keeps track of the minimizing j in
(22.5). This is all that is needed to be known at a node, for that node can send a packet
along that first link and let the receiving node decide where to send it next.

Example 22.1 (Small network). An example of the operations carried out at a node
is shown in figure 22.6. The left side shows the network. We look at the situation from
the point of view of node D. D has three neighbors: A, C, G. D receives from each
of these their estimates of the shortest path lengths to every node in the network. For
example, node A reports that the length from A to A is 0 (by definition), the length
from A to B is 30, and so forth.

Node D uses this information to compute its own best estimate of the minimum
path lengths by using one step of the Bellman–Ford algorithm. D first obtains direct
estimates of the lengths to its three neighbors. In the case where length is transit time,
estimates might be obtained by sending a test packet that should be immediately
returned by the neighbor, and the round-trip time can be divided in half to estimate
the one-way transit time. In the example, it is assumed that these direct estimates are
dDA = 18, dDC = 14, dAG = 10, indicated in the shaded boxes. D finds its updated

“ch22” — 2006/2/6 — 18:49 — page 402 — #10

� �

� �

402 • C h a p t e r 22 N E T W O R K S

B E

D H

A C F

G

0
30
26
20
42
38
30
45

24
15
0

16
22
12
18
33

30
35
20
10
17
8
0

15

A
B
C
D
E
F
G
H

To

From
A C G

18
19
14
0

27
18
10
15

A
C
C
-
G
G
G
G

Estimated
Length Start

FIGURE 22.6 Distance vector routing. Node D receives shortest length estimates from its three neighbors, as
shown in the first table. D also obtains direct estimates of the lengths to its neighbors. All these estimates are
combined to produce a new table of estimates for D.

estimates of shortest paths from D to other nodes by using the Bellman–Ford update
step. For example, D calculates the shortest path from D to B as the minimum of
dDA + 30, dDC + 15, DDG + 35; in other words, the minimum of 48, 19, 45, which
is 19. This minimum is achieved by going first to C, and hence A will route to C all
packets destined for B.

At the next update cycle D will send the result of its calculations (the first column
in the last table) to the three neighbors A, C, and G, and they will use these estimates
as part of their own next updating procedure.

An important issue associated with this method is that in pure form it is subject
to instability. If a certain link is not congested and has a short length, all nodes may
send traffic to that link, causing a high degree of congestion. When this condition is
reflected in the next stages of the algorithm, traffic will not be sent that way. Hence,
a link’s traffic level can oscillate wildly, and the paths used will be far from optimal.
Such oscillation can be smoothed by damping the updating algorithm by lessening the
impact of new estimates. The full procedure when modified by damping has proved
to be reasonably effective in major networks.

22.8 Dijkstra’s Algorithm

Dijkstra’s algorithm is another shortest-path algorithm and has the advantage that, in
theory, it requires less computation than the Bellman–Ford algorithm.

Suppose one wishes to find the shortest path from node 1 to all other nodes. The
idea of the algorithm is to find the shortest paths from 1 to nearby nodes and then
expand outward.

In outline, the general procedure is this: Nodes are successively labeled with
the current best estimate of the minimum path length from node 1. Some of these
labeled nodes are marked permanent since their estimates are actually optimal. The
estimation process progresses until all nodes are labeled permanent.

Example 22.2 (A Dijkstra solution). A network and successive stages of the algo-
rithm are shown in figure 22.7. The objective is to find the shortest path from A to G.

“ch22” — 2006/2/6 — 18:49 — page 403 — #11

� �

� �

S e c t i o n 22.8 D I J K S T R A’ S A LG O R I T H M • 403

(3, B)

(3, B)

(3, B)

B

G

A E F

C D

H I

4 5

2 1 4 5 2

8 4 2 2 2

4 5

B (2, A)

G (8, A)

A E F

C D

H I

B (2, A)

G (8, A)

A E F

C (6, B) D

H I

B (2, A)

G (7, E)

A E F

C (6, B) D

H (5, E) I

B (2, A)

G (6, H)

A E F (7, H)

C (6, B) D

I (6,H)H (5, E)

FIGURE 22.7 Dijkstra algorithm to find the shortest path from G to A. Nodes are successively labeled and
successively become permanent.

In this example, initially the shortest path to A is from A, and so that node is
labeled permanent with a solid circle. Next, the neighbors of A are considered and
labeled with their distances from A, and the previous node in the corresponding path
is also noted, as shown in the diagram below the first one. Of these labeled nodes, B
has the shortest path, so it is labeled permanent. Next the neighbors C and E of this
newly labeled permanent node B are labeled with current estimates. E is the shortest
of all labeled but nonpermanent nodes, so it is marked permanent. Notice that on the
next step, the estimate at G and its noted predecessor node are revised, but G is still
not permanent. Finally, at the next step G is revised again and becomes permanent.
The path to G can be found by going backward through the labels: G ← H, H ← E,
E ← B, B ← A. If the algorithm is continued for another two steps, all nodes will
be permanent and hence the shortest paths from A to all nodes will be found.

In 1979 the routing algorithm of ARPAnet was changed to what is termed link
state routing in which each node individually computes the shortest path from it to
every other node. Nodes gather information about the transit times to its neighbors
by direct experimentation. Then on a periodic basis (roughly once a minute), these

“ch22” — 2006/2/6 — 18:49 — page 404 — #12

� �

� �

404 • C h a p t e r 22 N E T W O R K S

estimates are broadcast to every other node by flooding. Each node then uses a variant
of Dijkstra’s algorithm to compute the minimum path to every other node, and uses
that to route the packets that it receives. Like distance vector routing, this algorithm
also must be supplemented with stabilization measures.

22.9 Other Issues

This chapter provides only a brief introduction to some of the issues associated with
packet-switched networks. In addition, the queues that form at nodes due to backlogs
must be accounted for in design, algorithms for allocating capacity to various users
must be implemented, stabilization procedures must be incorporated, protocols must
be standardized, coding and encryption techniques must be added, and of course the
physical characteristics of a link (such as bandwidth and noise) must be related to
capacity requirements.

The principal lesson from this chapter, however, is that packet switching represents
yet another way to use frequency for communication. Packets are not merely isolated
little bundles of information; at root they are signals that use frequency spectrum and
a share of channel capacity.

Most importantly, the study of packet switching illustrates that an advanced
mastery of frequency involves electrical engineering, economics, optimization algo-
rithms, queueing theory, and many other disciplines from engineering and science.
It illustrates that depth in any one aspect of information science is likely to require
broad understanding of all five E’s.

“ch22” — 2006/2/6 — 18:49 — page 405 — #13

� �

� �

S e c t i o n 2 2 . 1 0 E X E R C I S E S • 405

22.10 EXERCISES

1. (Poisson probabilities) Let Pn(t) be the probability that a Poisson process with parame-
ter λ has n events in an interval of length t. Let h denote a very small interval of time
(like �t).

(a) Argue that

Pn(t + h) = Pn(t)P0(h) + Pn−1(t)P1(h) + o(h).

(b) Substitute expressions for P1(h) and P0(h).
(c) Let h → 0 and derive a differential equation involving P′

n(t), Pn(t), and Pn−1(t).
(d) Try a solution of the form Pn(t) = cntne−λt and evaluate cn.

2. (Poisson rate*) Given a Poisson process with parameter λ, use the probabilities Pn(t) of
exercise 1 to find the expected number of events in unit time.

3. (Finite users) Suppose there are a finite number M of users of a slotted ALOHA system.
User m generates a frame (original or retransmitted) in any given slot with probability
Gm. The users’ generations are independent of one another and independent frame by
frame. Let Sm be the probability that a packet from user m is successfully transmitted
in a slot.

(a) Find Sm in terms of the Gi’s.
(b) Assume that the users are statistically identical, and each Gm = G/M. Find the

overall throughput S in terms of G and M.
(c) Let M → ∞ and show that the limiting throughput is the same as that of

equation (22.3).

4. (Limiting throughput) What is the throughput (equation 22.4) of CSMA in the limiting
cases a → 0 and G → ∞?

5. (Bellman–Ford) For the network of figure 22.8 find the shortest path from node A to node C
using the Bellman–Ford algorithm.

6. (Dijkstra example) For the network of figure 22.8, find the shortest path from node A to
every other node using Dijkstra’s algorithm.

A

G

D F

CB

H I

2 15

4

1

3 2

E
7

1

1

8

10

4

2

13

6

3

FIGURE 22.8 Find the shortest path.

“ch22” — 2006/2/6 — 18:49 — page 406 — #14

� �

� �

406 • C h a p t e r 22 N E T W O R K S

22.11 Bibliography

The classic reference on network communication is Kleinrock’s pioneering [1]. An
outstanding and comprehensive text is [2]. A quite accessible and thorough intro-
duction is the popular text [3]. For information about ALOHA see [4]. For the basic
theory of CSMA see [5]. For a history of the Internet, see [6] and many sites on the
Internet.

References

[1] Kleinrock, Leonard. Queueing Systems. Vol. 2, Computer Applications. New
York: Wiley, 1976.

[2] Bertsekas, Dimitri, and Robert Gallager. Data Networks. 2nd ed. Upper Saddle
River, N.J.: Prentice-Hall, 1992.

[3] Tanenbaum, Andrew S. Computer Networks. 4th ed. Upper Saddle River, N.J.:
Prentice-Hall, 2003.

[4] Abramson, Norman. “Development of the ALOHANET.” IEEE Transactions
on Information Theory 31 (1985): 119–23.

[5] Kleinrock, Leonard, and Fouad Tobagi. “Random Access Techniques for
Data Transmission over Packet-Switched Radio Channels.” Proceedings of the
National Computer Conference (1975): 187–201.

[6] Leiner, Barry, et al. “A Brief History of the Internet.” Communications of the
ACM 40 (1997): 102–8.

“ch22” — 2006/2/6 — 18:49 — page 407 — #15

� �

� �

S U M M A R Y O F PA R T V • 407

S U M M A RY O F PA R T V

Shannon’s theory of communication includes a theory for continuous random vari-
ables and for continuously time-varying signals. This theory contains a formula
relating the capacity of a channel to available bandwidth and signal-to-noise level.

Now, in hindsight, the relations are seen to have played a role even during the
development of the telegraph, especially in undersea cables. The blurring of dots and
dashes can be traced to the loss of bandwidth due to the capacitance of the line.
William Thompson was able to analyze these lines using the then relatively new tool
of Fourier series, which is the mathematical device for transforming analysis to the
frequency domain.

Alexander Graham Bell struggled tirelessly to understand the role of frequency in
human voice and how it could be transmitted electrically. He was not an academic,
but he consulted the works of the great professor Helmholtz, who had carried out
extensive experiments that showed that indeed the human voice could be considered
to be composed of various frequencies. This led Bell to conceive of a harp telephone
that would decompose a human voice message into a set of frequencies, transmit
them separately, and then recombine them at the receiver. Bell’s actual first telephone
used the duality of the electromagnetic effect, whereby movement of a coil through a
magnetic field produces current, and dually, a current produces movement. However,
the phone system he built on this principle had low signal power and hence low
communication capacity. Amplification of the signal at the sending end was what
finally produced a workable telephone.

Edison’s phonograph taught everyone that music and the human voice can
be represented as a single wavy line. The very name phonograph suggests this
visualization.

For centuries people have experienced continuous single tones through plucked
strings, flutes, and so forth, but although radio waves were predicted by Maxwell’s
theory, no one had concrete evidence that such waves existed—until Hertz. Hertz’s
demonstration of radio waves ushered in the field of modern communication. The first
practical radio system was that of Marconi, who was able to send a radio signal across
the Atlantic. Early radios like Marconi’s were spark radios that radiated a series of
short radio frequency pulses generated by the discharge of a large capacitor across a
spark gap. The Fourier transform of such a pulse shows that the pulse occupies a
broad bandwidth. At the time, this was inimical to wide use of radio, for pulses from
a number of different radios, even if tuned differently, competed and polluted the
airwaves, causing chaos. Today, it is understood that a broad bandwidth has greater
capacity than a narrow one, but it takes techniques more sophisticated than those
available to Marconi to efficiently share this bandwidth.

Order was instilled in the field of radio by the development of generators and later
by circuits that could produce continuous radio waves of a single constant frequency.
This basic carrier wave could be modulated in amplitude with the resulting wave
occupying only a relatively narrow bandwidth. This innovation allowed several sta-
tions to broadcast simultaneously on nonoverlapping channels, and for signals to be

“ch22” — 2006/2/6 — 18:49 — page 408 — #16

� �

� �

408 • S U M M A R Y O F PA R T V

received as continuous waveforms rather than bursts. Both the generation and the
reception of radio waves were substantially improved by de Forest’s invention of the
triode vacuum tube and the discovery that it could be used in a feedback circuit to
produce oscillations as well as to greatly amplify the signal.

Edwin Armstrong’s several inventions transformed the young field of radio into
a sophisticated, practical, and ubiquitous part of life. His superheterodyne receiver
design remains even today the standard for AM receivers. He learned to control
frequency: modulating it, shifting it with the heterodyne principle, and developing
feedback oscillation circuits. His greatest technical achievement was the develop-
ment of FM modulation, which he believed, contrary to the theoretical analyses of
others, would be more resistant to noise than AM. He also believed that a broad band-
width would be better than a narrow one, which contradicted conventional wisdom
that claimed that the greater total noise in a broad bandwidth would be detrimental.
Armstrong’s belief was born out in practice and is now substantiated by Shannon’s
theory.

Shannon developed information theory for continuous signals by logically extend-
ing his theory for finite sources: he approximated continuous variables by discretized
versions and took the limit. He used the sampling theorem to represent a contin-
uous wave by a series of discrete samples. Putting it all together, he developed the
capacity theorem for a channel subject to additive Gaussian white noise that is the
basis for much of modern communication theory. One innovation that surely would
have been inconceivable to early pioneers is multiaccess systems that purposely add
pseudonoise to spread the spectrum of a signal.

It is perhaps also an interesting twist of history that modern network communica-
tion is based on packets. Early telegraph and telephone systems provided a degree of
multiplexing, but most pairwise connections were established by circuit switching,
providing, at least temporarily, a dedicated connection between the pair. Now, almost
like dots and dashes, information is sent in discrete packets. Packets from different
messages may collide, requiring them to be sent again. The performance of these sys-
tems is largely based on queuing theory. Large communication networks, such as
the Internet, also use a minimum-distance routing algorithm to send each packet effi-
ciently to its intended receiver. Two such algorithms are based on the Bellman–Ford
and the Dijkstra shortest path algorithms.

Years ago, who could have imagined that modern communication systems would
exploit light frequencies, communicate to remote planets, have telephones without
wires, send pictures electronically, purposely add pseudonoise to signals to spread the
spectrum, and send competing packets through a network? We enjoy the fruits of those
before us who had the brilliance and perseverance to improve our mastery of the gift
of frequency.

“a-index” — 2006/1/27 — 11:06 — page 409 — #1

AUTHOR INDEX

Index contains names found in end-of-chapter references.

Abo, Alfred V., 263
Abramson, Norman, 20, 406
Adair, Gene, 349
Adleman, Leonard, 219
Aitken, Hugh G. J., 372
Aitken, William, 349
Appleyard, Rollo, 372
Ash, Robert B., 34
Aumann, Robert J., 160

Baeza-Yates, R., 299
Bakos, Yannis, 129
Baldi, Pierre, 326
Bell, Hanan S. , 113
Bell, Timothy C., 299
Berrou, C., 87
Berry, Michael J. A., 326
Bertsekas, Dimitri, 406
Beutelspacher, Albrecht, 185, 219, 235
Bhargava, Vijay, 87
Blackwell, David, 142
Blahut, Richard E., 87
Bohnenblust, H. , 142
Boyer, M., 142
Bracewell, Ronald N., 349
Bray, John, 372
Brin, S., 300
Bruce, Robert V., 349
Brynjolfsson, Erik, 129
Burns, Ken, 372

Chaum, David, 235
Chui, Eugene, 20
Clarke, Arthur, 349
Coe, Lewis, 349
Cormen, Thomas H., 263
Cover, Thomas M., 20, 54, 87, 392

Date, C. J., 283
DeGroot, M., 142
Diffie, W., 219
Dunham, Margaret H., 326
Dunn, James, 20

Economides, Nicholas, 160

Fiat, Amos, 235
Fisher, J. Chris, 219

Frailey, Jarrell D., 349
Frank, Eibe, 326
Fransconi, Paolo, 326

Gallager, Robert G., 87, 300, 406
Gao, Y., 87
Gardner, Martin, 185
Garg, V. K., 392
Glavieux, A., 87
Golomb, S. W., 300

Hamming, Richard W., 87
Han, Jiawei, 326
Hand, David, 326
Harrington, J. L., 283
Hart, George W., 185
Hauskrecht, Milos, 326
Hellman, M. E., 199, 219
Hijiya, J. A., 372
Hill, Raymond, 87
Hoff, M. E., 326
Hopcroft, John E., 263
Howard, Ronald A., 142
Huffman, David, 54
Hughes, David, 392
Hunt, Bruce J., 372

Israel, Paul, 349

Kahn, David, 185
Kamber, Micheline, 326
Keeney, Ralph L., 142
Kihlstrom, R. E., 142
King, R., 54
Kleinberg, J. M., 300
Kleinrock, Leonard, 406
Knuth, Donald E., 219, 263

Lee, Steve, 392
Lehmann, D. J., 219
Leiner, Barry, 406
Leison, Charles E., 263
Lempel, A., 54
Levy, Steven, 219
Lewis, T. G., 263
Lewis, Tom, 372
Lin, Jocelyn, 20

“a-index” — 2006/1/27 — 11:06 — page 410 — #2

410 • AU T H O R I N D E X

Linoff, Gordon, 326
Loewenstein, Werner R., 20
Luenberger, David G., 113, 129, 160
Lyman, Peter, 20

MacLaurin, W. J., 372
Mannila, Heikki, 326
Marschak, Jacob, 142
Matheson, James E., 142
McCarthy, J., 326
Mcferron, Brok, 20
Metcalfe, Robert M., 160
Moffat, Alistair, 299
Mollin, Richard A., 185, 219

Nahin, P. J., 372, 392
Nalebuff, Barry, 129
Nasar, Sylvia, 113
Noll, A. Michael, 349

Ornstein, Donald, 54

Page, Larry, 300
Petigara, Noshirwan, 20
Pickover, Clifford A., 185
Pindyke, Robert S., 113
Pohlig, S. C., 219
Pollard, J. M., 219
Proakis, John G., 392

Rabin, M. O., 219
Raiffa, Howard, 142
Rasmusen, Eric, 160
Reingold, Edward M., 263
Ribeiro-Neto, B., 299
Rivest, Ronald L., 219, 235, 263
Roman, Steven, 34, 87
Rosenblatt, F., 326
Rubinfeld, Daniel L., 113

Sayood, Khalid, 54
Schlegel, Christian, 87
Schneier, Bruce, 199, 219, 235
Seely, S., 372
Seshasai, Satwiksai, 20
Shamir, Adi, 219, 235
Shannon, Claude E., 20, 54, 69, 199, 292, 326
Shapiro, Carl, 128
Sherman, A. T., 235
Singh, Simon, 185, 219

Skilling, H. H., 349, 372
Sloan, N. J. A., 20
Smith, Harry F., 263
Smith, M. Z., 263
Smith, Ralph J., 372
Smolik, K., 392
Smyth, Padhraic, 326
Soleymani, M. R., 87
Stallings, W., 392
Standage, Tom, 349
Stein, Clifford, 263
Stinson, Douglas R., 219
Strygin, Aleksey, 20
Swearingen, Kirsten, 20

Tanenbaum, Andrew S., 406
Thitimajshima, P., 87
Thomas, Joy A., 20, 87, 392
Tobagi, Fouad, 406
Trappe, Wade, 235

Ullman, Jeffrey, 263, 283

Van Voorhis, D. C., 300
Vapnik, V. N., 326
Varian, Hal, 20, 128, 129
Velayas, James M., 349
Vilaipornsawai, U., 87
Vucetic, Branka, 87

Washington, Lawrence C., 235
Wayner, Peter, 54
Weber, Thomas, 142
Wedlake, G.E.C., 372
Weiss, Benjamin, 54
Welch, Dominic, 34, 54, 87, 199
Wicker, Stephen, 87
Widom, J., 283
Widrow, B., 326
Wilkes, J. E., 392
Wilson, Geoffrey, 349
Wilson, Robert R., 129
Witten, Ian H., 299, 326
Wynar, D., 20
Wyner, Aaron D., 54

Yuan, Jinhong, 87

Zipf, George, 54
Ziv, J., 54

“s-index” — 2006/1/27 — 14:10 — page 411 — #1

S U B J E C T I N D E X

A priori
algorithm, 304–6
probability, 187

Abbot’s Psalter, 103
Abramson, Norman, 154, 396
Acyclic graph, 317
ADALINE, 320
Additive

property of entropy, 15
property of information, 11
white Gaussian noise, 384, 389

Address book example, 264–65,
281

exercise, 281
Adleman, Leonard, 209
Advanced Encryption Standard (AES), 196,

215
Adverse selection, 150
AES. See Advanced Encryption Standard
Affine cipher, 183, 217
Agree to disagree, 146–49

game, 147–48
proof of theorem, 148–49

Alarm example, 317–19
exercise, 325

Alice and Bob puzzle, 200–201
alternate solution, 208–9

ALOHA network, 154, 396–98, 405
equilibrium, 397–98
pure, 396–98
slotted, 397–98
throughput, 396–97

Alternate products, 127
AM. See Amplitude modulation
Amoeba, 17, 19
Amperé, André Marie, 350
Amplitude modulation, 358, 361, 363–65,

408
exercise, 370
and heterodyne, 366
and sampling theorem, 382

Antenna, 354–55
exercise, 369
Marconi’s, 356

Antheil, George, 385
Area codes, 23

Armstrong, Edwin Howard, 362, 365–68,
372, 386, 408

feedback, 362
FM, 367–68
heterodyne, 365

ARPAnet
routing, 403
switching, 393, 396

ASCII code, 22, 41
Asymmetric

cipher system, 221
duopoly, 112
game, 144
key system, 210

Attributes, 264
Auctions, 114
Audion, 362, 363
Aumann, Robert, 146
Authentication, 231–33
Autokey cipher, 174, 183
Average

code length, 27–32
path length, 250–51
performance, 2
word length, 22

Averaging, in bundles, 121–22
exercise, 128

AWGN. See Additive white Gaussian noise

Balanced tree, 250
exercise, 262

Bandwidth, 373
AM, 364, 370
spark radio, 357, 369
spreading, 386

Baritone, 366, 382–83
Base 2 logarithm, 12
Base 3 logarithm, 34
Bayes’ rule, 60, 89, 132, 187, 304

for Bayesian methods, 314–19
for channel flipping, 60, 89, 132
for market basket analysis, 304
for security proof, 187

Bayesian belief networks, 314–19,
328

alarm example, 317

“s-index” — 2006/1/27 — 14:10 — page 412 — #2

412 • S U B J E C T I N D E X

BCNF. See Boyce–Codd normal form
Beat frequencies, 364
Beaufort cipher, 183
Bell, Alexander Graham, 342–46, 363,

407
telephone invention, 342–46
inventive nature, 363

Bell, Alexander Melville, 342
Bellman–Ford algorithm, 400–402, 405,

408
Bernoulli model, 292
Berroou, C., 82
Bible, 285, 287, 293
Binary

code, 22, 26
erasure channel, 69
number, 76, 77

Binary search tree, 248–52, 258, 289, 327
average path length, 250–51
in indexing, 289
in quicksort, 258

Binary symmetric channel, 56, 58
capacity of, 65

Binary tree, 245
Binns, Jack Robert, 357
Birthday attack, 234
Bit commitment, 234
Bits, 11, 16–17
Bletchley Park, 181
Blinded digital signature, 223–24, 238

example, 224
Block code, 22, 26, 90
Blocking entry, 110, 122–24
Boltzman’s constant, 383
Bombe, 180, 181
Book clubs. See Club
Boyce–Codd normal form, 272–77, 281, 282

algorithm, 275–76
example, 275
exercise, 281, 282

Braille, 33
Broadcasting

radio, 362–63
network routing, 400

BSC. See Binary symmetric channel
BST. See Binary search tree
Bubble sort, 255–56, 262, 327
Bundling, 119–24, 127, 128, 161

averaging, 121–22, 128
extreme, 127

Bursts of errors, 79, 84
Byte, 17

Caesar cipher, 168, 169, 187, 188, 189, 190,
237

security of, 187, 188
unicity point, 190

Capacity, channel. See Channel capacity
Capacity, electrical, 336, 337, 354,

358
Capital code, 24–25
Cardano, Geronimo, 228

his formula, 228
Cards

playing, 19, 53, 144, 217
smart, 231–35, 238

Carrier, 363–65, 367–68, 407
Carrier sense multiple access, 398–99,

405
Cartel, 112
Case-based reasoning, 324
Cash, digital, 225–26, 238
Cassini, 83
Cat’s whisker, 361
CD. See Compact disc
Central limit theorem, 128
Certainty equivalent, 139
Cesàro estimate, 218
Challenge method (security), 227–33
Channel, 55–69, 89, 161

flipping, 60–62, 89
Red–Black Oil, 132
weather, 65–66

Channel capacity, 65–67, 83, 90
of band-limited channel, 384–85
of binary symmetric channel, 65
gain from spreading, 386
of Gaussian channel, 376–78
of multiple access systems, 389–91

Chappe, Claude, 334
Characteristic equation, 351
Characteristic frequency, 354
Chaum, David, 225
Check sum, 71–72
Chess, 18, 143, 197
Children, 272, 281

nodes, 244, 310
Chinese remainder theorem, 217–18
Chipping code, 387–88
Cholesterol, 310–11
Chowning, John M., 368
Cipher, 165–82

affine, 183–84, 217
autokey, 174, 183
Beaufort, 183

“s-index” — 2006/1/27 — 14:10 — page 413 — #3

S U B J E C T I N D E X • 413

Caesar, 168, 169, 187, 188, 189, 190, 237
cryptogram, 237
Hill, 184
homophonic, 175–76, 197, 198
key, 166, 237
one-time pad, 181–82, 237
pigpen, 168–69
public key, 200–215, 217, 220–26, 232,

237, 238
running, 197
substitution, 168–77, 190, 237
transposition, 167–68, 183, 237
Vigenère, 177, 183, 190, 237

Ciphertext, 166
Circuit

parallel, 371
resonant, 354

Clairvoyant, 137
Classic code, 29–30, 33
Classification, 301
Classification trees, 310–14

cholesterol example, 310–11
Clinic example, 265–67

exercise, 281
Closure, 281
Club, 124–26

exercise, 128
Clustering, 301

K-means, 325
Codd, Edgar F., 264, 272
Code(s), 21–34

alphabet, 22
area, 23
ASCII, 22
block, 22–90
capital, 24
comma, 24
convolutional, 80–84, 90
dual, 86, 87
efficient, 22, 38
error-correction, 70–87
gamma, 299
Golomb, 299
Hamming, 75–77, 85
Huffman, 35–40, 52, 89, 90
instantaneous, 23–40
ISBN, 72, 85
length, 22–32
lengthening, 85
linear, 77–79, 85–86
low-density parity check, 78–79, 83,

86, 90

Morse, 22
random, 67
rectangular and triangular, 72, 85
Reed–Muller, 83
Reed–Solomon, 83–84, 87
shortening, 85
singular, nonsingular, 23
size, 75
tree, 4, 25, 27
trellis, 84, 87
turbo, 82–83, 84, 90
unary, 291–92
uniquely decodable, 23
universal, 40
weight, 78

Code division multiple access, 388–90,
391

Codeword, 22, 25
Collection, 285
Collision

hash function, 223
network switching, 396, 398

Collusion, 108
Comma code, 24–25
Common knowledge, 144–49, 161
Compact disc, 84, 93, 143
Competition, 100–101, 161

perfect, 100–101
Competitive solution, 158
Complementary preferences, 119–21
Complexity, 3, 5
Compression, 35–54

dictionary methods, 44–48
Huffman, 35–40
inverted file, 291–98
picture, speech, video, 48–51

Conditional entropy, 16, 43, 89
defined, 57–60

Conditional independence, 315, 317
Conditional probability

in Bayesian networks, 315–19
in channel, 55–57

Confidence, 304
Congestion, 155, 402
Congruence, linear, 195–96, 237
Constant coefficients, 351
Consumer rule, 94
Consumer surplus, 96, 126, 161

in clubs, 126
in discrimination, 117–22

Convex demand, 113
Convolutional code, 80–84, 90

“s-index” — 2006/1/27 — 14:10 — page 414 — #4

414 • S U B J E C T I N D E X

Copyright, 93, 103–4, 114
term, 104, 111–12

Cosine pulse, 348
Cosine ranking method, 296
Cost, 98

fixed, 97
function, 97
marginal, 98, 161

Counterfeit coin, 19
Counting sort, 261
Cournot, Augustin, 108
Cournot equilibrium, 108–10
Crawler, 297
Cryptogram, 169–71, 237

number of keys, 170, 180
Crystal radio, 360
CSMA. See Carrier sense multiple access

Daniel, 165
Data Encryption Standard (DES), 196

number of keys, 196
Data mining, 301–24, 328

Bayesian belief networks, 314, 317–19,
328

case-based reasoning, 324
classification trees, 310–14
fuzzy logic, 323
least-squares, 306–9, 325
market basket analysis, 301–6, 325
memory-based reasoning, 323–24
naive Bayes, 315–16
neural networks, 323
regression trees, 312–14

Data structures, 241–61
arrays, 241
See also List
See also Sorting

Database systems, 264–80
keys, 267–68
languages, 279–80
normal forms, 272–77

Datagram, 400
de Forest, Lee, 361–63, 372, 408

audion/triode, 361–63
patent disputes, 362

Decision matching, 135
Decision trees. See Classification trees
Decreasing marginal cost, 98
Delay, 80
Demand curve, 94, 96

convex, 113
linear, 102–3

nonlinear, 106
straight line, 121

DES. See Data Encryption Standard
Dictionary, 254
Dictionary methods, 46–48, 89

exercise, 53
Lempel–Ziv, 44–48, 89
LZW, 46–47

Die example, 58, 59–60, 63, 68, 134
Difference, 269, 281
Differential equation, 351–53
Diffie, Whitfield, 200, 209
Diffie–Hellman key exchange, 200, 203–5
Digital cash, 225–26, 238
Digital signatures, 220–24, 238

blinded, example, 224
Digraphs, 217
Dijkstra’s algorithm, 402–4, 405, 408

example, 402–3
Diligent professor, 141
Diode, 361
Direct spreading of bandwidth, 387
Discrete

logarithm, 202–5, 237
square root, 230–31

Discrimination, 114–19, 127, 161
observable factor, 115
perfect, 115

Distance vector routing, 400–402
DNA, 17, 19, 21
Document, 285, 327
Dot product, 295. See also Inner product
Double code, 33
Dual code, 86–87
Dunwoody, Henry H. C., 361
Duopoly, 108–10

blocking, 123
exercise, 112, 113, 159–60

Duplex, 342

Economics, 1, 93–162
Edison, Thomas Alva, 342, 345, 346, 360,

361, 407
phonograph, 346
telegraph, 342

Edison effect, 361, 362
Efficiency

of binary search tree, 251
of club formation, 125
of code, 22, 38
of sorting, 256, 257, 260, 261
radiation, 355

“s-index” — 2006/1/27 — 14:10 — page 415 — #5

S U B J E C T I N D E X • 415

Eigenvector, 297, 298
Electromagnet, 334, 335, 343, 346
Elliptic curve, 215
Ellis, Alexander, 342
Email, 267
Encryption, 1, 5, 165–238, 359
End node, 25
Energy, 341, 356

distribution, 341
Energy spectral density, 341, 358–59

of spark radio, 358–59
English

coding, 21
entropy, 40–44, 53
experiment, 43–44, 53
lowest entropy estimate, 44
probabilities, 40–44, 173
redundancy, 43

Enigma machine, 5, 166, 177–81, 237
breaking, 180, 181
number of keys, 179–80

Entropy, 1, 4, 89
additive property, 15
for ciphers, 188–93
conditional, 16, 57
continuous variable, 373–76
of database, 277
of data mining, 301, 328
definition, 12
of English, 40–44
experiment, 43–44, 53
function, 13
of Gaussian density, 375
general definition, 43
generalized, 133–35, 161
generalized conditional, 134
inequality lemma, 28
joint, 59, 89
in market basket analysis, 325
maximum, 13, 14, 19, 376, 391
mixture, 16
of multidimensional Gaussian, 325
of n-event source, 14
properties, 14
reduction, 58
of Sn, 16
of uniform density, 375

Equi-join, 282
Equilibrium

ALOHA, 397–98
Cournot, 108
network, 155–58

Equivalence, modular, 205
Error bursts, 79, 84
Error-correcting codes, 70–87

convolutional, 80–84
Hamming, 75–77, 85
ISBN, 72, 85
linear, 77–79, 85–86
low-density parity check, 78–79,

83, 86
rectangular and triangular, 72, 85
Reed–Muller, 83
Reed–Solomon, 83–84, 87
trellis, 84, 87
turbo, 82–83, 84

Estimation, 301
Ethernet, 154
Euclidean algorithm, 206–7, 237

extended, 216
Even parity, 71
Exabyte, 17
Exponential, 351

time, 214
utility, 139, 142

Externality, 155
Extraction, 1, 241–48
Extreme bundling, 127

Factoring, 3, 210, 238
difficulty, 214
exercise, 234

Fair odds price, 150
Fano, Robert, 35
Faraday, Michael, 350
Farads, 337, 353
Farmers example, 143–44
Feedback, 362, 408
Fermat’s theorem, 207–8, 237
Fessenden, Reginald, 360, 365
Fiat, Amos, 230
Field (in data), 241, 301
Five E’s, xiii, 1–2
Fixed cost, 97
Fleming, John, 361
Flipping a channel, 60, 89, 132
Flooding, 400
FM. See Frequency, modulation
Football prediction, 316
Forward file, 285–87, 294, 327
Fourier, John Baptist Joseph, 332,

336
Fourier representation, 332, 338

coefficients, 338–47

“s-index” — 2006/1/27 — 14:10 — page 416 — #6

416 • S U B J E C T I N D E X

Fourier series, 336, 338–39, 407
of FM, 367
in sampling, 379, 380–81

Fourier transform, 339–41, 347, 407
identities, 348
of pulse, 340
in sampling theorem, 379
spark radio, 358
of square wave, 348

Frame, 395
Free rider, 107
Frequency

analysis of ciphers, 169–71, 173–74
concepts, 331–47
defined, 338
division multiple access, 388–90, 391
hopping, 84, 385
matrix of document, 286
modulation, 367–68, 386, 408

Frequency spectrum, 339
AM, 364
FM, 368
hertz, 355

Fullfilled expectations, 155–58
Functional dependency, 271, 272, 327

nontrivial, 271, 272
Fuzzy logic, 323

Gale, Leonard, 335
Gallager, Robert, 79
Game

common knowledge, 144–49, 161
symmetric, 143, 144
theory, 143–53

Gamma code, 299
Gaussian density

for bundling bound, 128
in continuous channels, 373, 375
as maximal entropy, 376
multidimensional, 325
for naive Bayes method, 316

Gaussian noise, 376
GCD. See Greatest common divisor
Generalized entropy, 133–35, 141, 161,

conditional, 134
Generalized mutual information, 141
Generator, 203, 218
Geological test, 131
Geometric distribution, 292
Gigabyte, 17
Glavieux, A., 82
Golay, MJE, 75

Gold bug, 170
Golomb, Solomon W., 292
Golomb code, 292–93, 299
Gray, Elisha, 342, 345
Great Eastern, 336–37
Greatest common divisor (GCD), 206

Euclidean algorithm for finding, 206–7,
237

Grid, 362
Group willingness-to-pay, 96

H(p), 13
Hamming, Richard, 75
Hamming code, 75–77, 85

distance, 73–78
Harmonic telegraph, 343
Harmonics, 338, 339
Harp telephone, 345, 407
Hartleys, 11
Hash function, 221–23

properties, 222–23
Hat problem, 86
Heap, 254, 260
Heapsort, 260, 327

performance, 260
Heaviside, Oliver, 350
Height and weight example, 68, 307–8
Heisenberg uncertainty principle, 215
Hellman, Martin, 200, 209
Helmholtz, Hermann von, 343, 407
Henry, Joseph, 334
Henrys, 353
Herrold, Charles, 363
Hertz, frequency measure, 355
Hertz, Heinrich Rudolph, 350, 354, 355,

407
Heterodyne, 365–66
Hidden money game, 147–48, 159

results, 148
Hill cipher, 184
Hitler, Adolf, 385
Hoff, Marcian (Ted), 320
Homogeneous equation, 351, 369
Homophonic code, 175–76

exercises, 197, 198
Housing example

exercise, 325
least-squares, 308–9
regression tree, 312–14

Huffman, David A., 35
Huffman coding, 35–40, 52, 89, 90

nonuniqueness, 38–39

“s-index” — 2006/1/27 — 14:10 — page 417 — #7

S U B J E C T I N D E X • 417

reduction phase, 36–37
splitting phase, 36–37

Hughs, Charles Evans, 363
Hyperplane, 320

Identification, 226–28
Imaginary number, 338–39
Incidence matrix, 285, 286
Independent sources, 15
Index, 299
Indexing, 287–90
Inductance, 354, 358
Information, 1, 89

additive property, 11
definition, 10
mutual, 62–67, 89
nonnegative, 142
private, 144
set, 149
source, 14
value. See Value of information

Informativity, 133, 140
Inner council example, 145–46
Inner product, 295. See also Dot product
Inorder, 247, 263
Insert operation, 241
Insertion sort, 256–57, 327
Instance, 264
Instantaneous code, 23–30
Instructor’s manual, xiv
Insurance, 150
Interaction, 143–58

agree/disagree, 146–49
common knowledge, 144–49
decisions, 149–53
networks, 153–69

Interleaver, 79–80, 84
Intersection operation, 269, 281
Inverse, modular, 209, 217, 224
Inverted file, 285–87, 289, 327

compression of, 291–98
Invertible mod m, 207

uniqueness, 217
ISBN numbers, 72, 85, 90

Jefferson, Thomas, 165, 176
Jefferson’s wheel cipher, 165, 176–77, 237

number of keys, 177–80
Join, 270, 276, 277–79

equi, 282
natural, 276
theta, 282

Joint density, 317
Joint entropy, 59, 89
Joint probability, 58
JPEG, 50–51, 53
Juggling, 18
Julius Caesar, 165

Kelvin, Lord (William Thompson), 336, 352
Key, 166, 281

cipher, 237
exchange, 200, 203–5
of list, 327
primary, 267
of relation, 267
and security, 188
spurious, 191–96
value, 242, 249, 259

Kilobyte, 17
Kleinrock, Leonard, 393
K-means clustering, 325
Kraft inequality, 26–27

example, 29

Lagrange multiplier, 3, 28
Lagrangian, 28
Lamarr, Hedy, 373, 385, 392
Law of large numbers, 128
LDPC. See Low-density parity bit codes
Leaf node, 244, 310
Least-squares, 306–9, 325

comparison with classification tree, 314
height–weight example, 307–8
housing example, 308–9

Legendre, Adrien-Marie, 211
Lempel, A, 44
Lempel–Ziv coding, 44–48

optimality, 47–48
Lempel–Ziv–Welch method, 46, 47
Lewis and Clark expedition, 177
Lexicon, 285
Library, 124
Library of Congress, 17, 242, 285
Licklider, Joseph C. R., 393
Lift, 304
Light, speed of, 355
Linear code, 77–79, 85–86
Linear congruence, 195–96, 237
Linear demand curve, 102–3
Linear shift register, 80–82, 237

exercises, 198
period, 195, 198
pseudorandom sequences, 194–95

“s-index” — 2006/1/27 — 14:10 — page 418 — #8

418 • S U B J E C T I N D E X

Linear time sort, 261
Link state routing, 403
Linked list, 243–44, 288
List, 241–44, 327

key, 327
pointer, 327
searching, 250
sorting, 255–61

LNR rule, 248
Locate operation, 241
Lodge, Oliver, 359
Logarithm, 11

base, 10–11, 19
base 2, 11
base 3, 34
discrete, 202

Low-density parity check codes, 78–79, 83,
86, 90

LZ77, 46, 53
LZ78, 46
LZW, 46, 53

Mandl, Fritz, 385
Marconi, Guglielmo, 355, 361–62, 407
Marginal cost, 98, 161

constant, 99
decreasing, 98

Marginal cost pricing, 101–2, 158
Marginal willingness-to-pay, 95
Mariner, 83, 84
Market basket analysis, 301–6

entropy, 325
example, 305–6

Markets, 93
Mary Queen of Scots, 165
Maximal. See Optimal
Maxwell, James Clerk, 350, 407
Mayer, Louis B., 385
McMillan, B., 27
Megabyte, 17
Memory-based reasoning, 323
Merge, 261, 289
Meta symbols, 31
Metcalfe, Robert M., 153–54
Metcalfe’s law, 153–54, 162
Micky Mouse, 104
Microphone, 343, 344, 345, 346
Minimum distance

codes, 74, 78
routing, 400–404

Mixture of sources, 16
Prof. Babble exercise, 19

Modular
equivalence, 205
inverse, 207, 209, 217

Modular mathematics, 71–77, 202
Fermat’s theorem, 207–8
inverses, 207
main properties, 205–6
matrix, 184
in proof of RSA, 211
square and multiply, 212

Modulation, 333
amplitude, 363–65
frequency, 367–68

Modulus, 195
Monoalphabetic cipher, 171
Monopoly, 103–8, 117–26, 158, 161

in clubs, 124–26
the game, 146
regulated, 107

More informative. See Informativity
Morse, Samuel F. B., 334–35, 363
Morse code, 22, 334, 342, 343, 359
MP3, 51
Multiple access systems, 388–90
Music synthesizer, 368
Mutual information, 62–67, 89, 131,

141
as defining capacity, 65
in game, 144

Naive Bayes classifier, 315–16
football example, 316

Nash, John, 109, 112
Nash equilibrium, 110
Natural join, 269, 276, 277–79
Network, 153–58, 393–404

economics, 155–58, 162
quadratic, 157–58, 160
rankings, 296–98

Neural network, 323
Newton’s law, 351
Next operation, 241
Nixon, Richard Milhouse, 272
Node, 25, 244, 310
Noise, thermal, 383–84, 391
Nonhomogeneous equation, 352
Nonlinear demand, 106
Nonnegative value of information, 62–63,

138, 142
violated, 143–44

Nontrivial functional dependency, 271,
272, 281

“s-index” — 2006/1/27 — 14:10 — page 419 — #9

S U B J E C T I N D E X • 419

Normal distribution, 316. See also Gaussian
density . . .

Normal forms, 271–77
Boyce–Codd, 272–77

Nyquist–Shannon sampling theorem, 333,
378–80, 408

generalized, 380–83
in capacity theorem, 384

O, � notation, 251
Observable factor, 115
Odd parity, 71
Oersted, Hans Christian, 334, 350
Ohm, 337, 353
Oligopoly, 108–10
One-time pad, 181–82, 237

generating, 193–96
One-way function, 201–2, 223
Optimal, 3

compression, 29–32, 35–48, 291–92
decision, 135–40, 141, 142, 150–53
distribution, 14, 19, 65–67, 376, 384
path, 399–404, 405
surplus, 101–2, 104–5, 108–13, 156–60

Ordered trees, 245
Orthogonal, 347

codes, 388–89
Oscillation, 353, 358, 408
Oscillator, 354, 356, 362

Package, 3, 5, 31, 119
Packet switching, 393–404
Page, Lawrence E., 296
PageRank, 296, 299
Parallel circuit, 371
Parent node, 244
Parity, 71

bit, 71–72, 90
check matrix, 77–79

Parking lot example, 242–44
Parseval’s theorem, 341
Partially ordered tree, 252–53, 327

example, 253
Password, 227
Patent dispute, 342, 345, 362, 372
Path length of BST, 250–51, 262
Path length generalized, 400
Pendulum, 351–52
Perceptron, 320
Perceptual coding, 51
Perfect

competition, 100–101

discrimination, 115
security, 186–88, 237

Periodic function, 338, 339
Permanent node, 402
Personal identification number (PIN), 227, 231
Petabyte, 17
Phonograph, 346, 407
Photograph

compression, 48
from space, 83
versions, 117

Photophone, 346
Pigpen cipher, 168–69
PIN. See Personal identification number
Pivot, 259
Plaintext, 166
Playfair, Leon, 174, 175
Playfair cipher, 174–75
Playing cards, 19, 53, 144, 217
Plugboard, 178
PN. See Pseudonoise
Poe, Edgar Allan, 170
Pointers, 327
Poisson process, 394, 395, 405
Polyalphabetic cipher, 171
Polynomial approximation, 50–51
Polynomial time, 3, 214, 256, 260
Posterior probability, 147
Power, 376

one-half probabilities, 29
of source, 31, 39
spectral density, 383

Prediction, 301
for compression, 49–50
of letters, 43–44, 53

Preece, Sir William, 355–56, 361
Prefix of a word, 24–27
Preorder, 247, 263
Previous, data operation, 241
Price taker, 100
Primary key, of relation, 267
Prime

exercise, 218
finding, 213–14
relative, 206
testing, 213–14

Prime number theorem, 213
Primitive values, 203–4
Print shop example, 152–53
Prior probabilities, 146
Priority queue, 252
Prisoner’s dilemma, 149, 159

“s-index” — 2006/1/27 — 14:10 — page 420 — #10

420 • S U B J E C T I N D E X

Private information, 144
Private key, 210, 238
Probability

a priori, 187
conditional, 55
density, 373
Gaussian, 128, 316, 325, 373, 375
geometric, 292
posterior, 147
prior, 146
reverse, 60
transition, 56
uniform, 121, 122, 375

Producer surplus, 99, 161
in clubs, 126

Producers, 97
Product of sources, 15, 31, 39
Product operation, of data, 270, 277, 279
Profit, 99
Projection operation, of data, 269
Proof. See Theorem
Protocols, 220–35, 238
Pseudonoise (PN), 387
Pseudorandom sequence, 237
Public key, 210, 238
Public key cryptography, 200–15, 237

exercise, 217
protocols, 220–27, 227, 232

Pulse, 340, 356, 381
cosine, 348
energy, 348

Push down process, 253
Puzzle, Alice and Bob, 200–201, 208–9

Q of circuit, 369, 370
Quadratic network, 157–58, 160
Quadratic program, 322
Quadruplex, 342
Quantization, 48–49
Quantum cryptography, 215
Queen Elizabeth, 165
Queries

database, 279–80
documents, 293–96

Queue, 244
Queueing theory, 393, 408
Quicksort, 260, 263, 327

Rabin–Miler method, 213, 218
Radio, 350–68

crystal, 360
spark, 356–60

Random codes, 67
Ranking methods, 294–96
Rayleigh’s energy theorem, 341, 348
Record, of data, 241, 301
Rectangular code, 72, 85
Red–Black Oil example, 131, 132–33,

135, 136
decision, 135
with utility, 139–40

Redundancy of English, 43, 89, 191
Reed–Muller code, 83
Reed–Solomon code, 83–84, 87
Reflector (in Enigma), 178
Regeneration, 362
Regression trees, 312–14
Regulated monopoly, 107
Rejewski, Marian, 180
Relation, 265, 302
Relational database, 264–67, 327
Relatively prime, 206
Reliability, 9, 70
Rental car example, 242–44
Repetition code, 9, 10, 71
Republic, 357
Resistance, electrical, 337, 344
Resonance, 333, 342, 369–70
Resonator, 354–55
Retrieval. See also Data mining

indexing, 284–91, 299
queries, 292–99

Revelation principle, 116
Reverse probabilities, 60
Risk aversion, 139
Rivest, Ronald L., 209
RLC circuit, 352–53, 354
Root node, 244, 310
Rotors, 177
Routing, of packet frames, 399–404
RSA method, 217, 221,

digital signature, 221–24
example, 210
general applications, 226–27, 230–33
implementation, 211–14
main theory, 209–11, 238
performance, 214, 215

Run–length coding, 52, 291
Running cipher, 197

Sn, 16
Safe water example, 61
Sampling theorem. See Nyquist–Shannon . . .

Sarnoff, David, 372

“s-index” — 2006/1/27 — 14:10 — page 421 — #11

S U B J E C T I N D E X • 421

Scherbius, Arthur, 177
Schmidt, 363
School example, 273–75
Scytale, 165, 166–67
Sea rescues, 357
Search tree, binary, 248–52

searching, 5, 242
Secret sharing, 234
Security

defined, 197
perfect, 186–88, 237
protocols, 220–35

Seed key, 174
Selection operation, 269
Separation, 325
Shamir, Adi, 209, 230
Shannon, Claude E., 9, 10, 17–18, 35, 44, 89,

186, 373, 408
approach to problems solving, 18
coding, 30, 291
continuous capacity theorems, 376–78,

384–85
first theorem, 21, 30–32
sampling theorem, 378–80
second theorem, 55, 66–67, 89, 90

Sharing, 111
books, 124–26, 128
secrets, 234

Shift register. See Linear shift register
Sidebands, 364–65
Signal-to-noise ratio, 70, 377–78, 384–85
Signature

blinded, 223–24
digital, 220–24, 238

Sinc function, 379–80
Singular code, 23
Sinusoid, 331, 338, 351, 352, 357–58
Smart cards, 231–35, 238
Social surplus, 99–100, 101, 158, 161

maximal, 101–2, 105, 107, 111–12
Sonny Bono Copyright Act, 104
Soothsayer, 144
Sorting, methods and properties, 242,

255–61
binary search tree, 250–51
bubble, 255–56, 262, 327
efficiency, 260
entropy, 257
heapsort, 260, 327
insertion sort, 256–57, 327
linear sort, 261
quicksort, 257–60, 327

Sort-based indexing, 288–90
Source(s), 14

coding, 83
combinations, 15
independent, 15
mixture, 16, 19
powers, 31, 39
product, 15

Space missions, 83
Spark radio, 356–60, 386, 407

bandwidth, 357, 369
Sparsity, 79
Spartan government, 166
Spectral density

energy, 358
power, 383

Spectrum
AM, 364
energy, 341
FM, 368
frequency, 339

Speech scrambler, 371
Speed of light, 355
Spell checking, 254
Splitting

strategy (for node), 312
phase of Huffman coding, 36–37

Spread-spectrum, 373, 385–91
Spurious keys, 191
SQL, 279–80
Square and multiply, 211–13, 224

example, 212–13
Square root, discrete, 230–31
Square wave, 348
Stack, 244
Standard deviation, 128, 308
States of the world, 149–50
Statute of Anne, 103
Strategy, 135
Structured query language (SQL),

279–80
Substitution cipher, 168–77, 190, 237

unicity point, 190
Superheterodyne receiver, 366, 408
Superkey, 267, 271, 272, 281
Support, 304
Support vector machine, 319–23, 328
Surplus

consumer, 96, 161
in discrimination, 117–22
producer, 99, 161
social, 101–2, 161

“s-index” — 2006/1/27 — 14:10 — page 422 — #12

422 • S U B J E C T I N D E X

Symmetric game, 143, 144
Symmetric key system, 210
Syndrome, 76–77, 85

Tartaglia, Niccolò Fontana, 228, 235
his formula, 228

Taxes, 99, 111
Team wagers, 86
Telegraph, 334–38

duplex, 342
harmonic, 343
quadruplex, 342

Telephone, 342–46
area codes, 23
harp, 345–46, 407
photophone, 346

Terabyte, 17
Term, 285, 327
Terrachrona, 285, 286
Theorem (or result). See also Optimal

agree to disagree impossibility, 148
a priori algorithm, 304–5
Bellman–Ford algorithm, 400–401
Boyce–Codd normality algorithm, 276
capacity of channel with AWGN, 384
capacity of Gaussian channel, 378
club sharing, 124–26, 128
Dijkstra’s algorithm, 402–4
entropy inequality lemma, 28
Fermat’s theorem, 208
Huffman code efficiency, 38
key and ciphertext entropy, 189
key exchange, 204
Kraft inequality, 27
Lempel–Ziv optimality, 47
marginal cost pricing optimality, 101
minimum distance criterion, 78
monopoly profit result, 104–6
oligopoly equilibrium, 109
path length bound, 250–51
perfect security conditions, 187, 188
RSA, 211
sampling theorem, 379
Shannon’s first theorem, 31–32
Shannon’s second theorem, 66–67

Thermal noise, 383–84, 391
Theta join, 282
Thitimajshima, P., 82
Thompson, William (Lord Kelvin), 336–38,

407
Throughput

of ALOHA, 405

of CSMA, 399, 405
of pure ALOHA, 396–97
of slotted ALOHA, 397

Time division multiple access, 388–90
Titanic, 357
Training set, 310
Transition probabilities, 56
Transposition cipher, 167–68, 183, 237

unicity point, 197
Traversal, 247
Tree, 244–55, 327

balanced, 250, 262
binary search tree, 248–52, 327
classification, 310–14
code, 4, 25
heap, 254, 260
ordered, 245–48
partially ordered, 327
representation, 245–46
traversal of, 247–48
trie, 254–55, 293

Trellis code, 84, 87
Triangular code, 72
Trie. See Tree
Triode vacuum tube, 361–63, 408
Tuned circuit, 352–53
Tunnel, 229–30
Tuple, 264
Turbo codes, 82–83, 84, 90
Turing, Alan, 181
Turing machine, 181
Twenty questions, 14–15
Type(s), 115, 151–53, 161

of WTP, 115

Unary code, 291–92
Unicity point, 189–93, 197, 237

and redundancy, 191
refined, 191–93

Unicycle, 18
Uniform density. See Probability, density
Union operation, 268
Uniquely decodable, 23, 33
Universal coding, 40, 89
Utility function, 139–40, 159

exponential, 139, 142

Value of information (economic), 4, 130–58
channel information, 138
of/with perfect information, 137
See also Nonnegative value . . .

Vectors, weighted, 295–96

“s-index” — 2006/1/27 — 14:10 — page 423 — #13

S U B J E C T I N D E X • 423

Venn diagram for information, 63
Versions, 116–19, 127, 161–62
Vigenère, Blaise de, 171
Vigenère cipher, 171–74, 177, 181, 183,

190, 237
breaking, 173–74
unicity point, 190

Virtual circuits, 399
Virus test, 141
Volta, Alessandro, 334
Voluntary payment, 107–8
Voyager, 83

Walsh codes, 388–89, 391
Water tester, 61
Watson, Thomas, 342
Wavelength, 355
Weather example, 12, 17, 32, 64, 65–66, 378
Weight of code, 78
Weighted vectors, 295–96
Welch, Terry, 46
Wheatstone, Sir Charles, 174, 175
Wheel cipher, 165, 176–77, 237

White noise, 383
Widrow, Bernard, 320
Williams, Charles, 342
Willingness-to-pay, 94, 161

applied, 114–26
in clubs, 124–26
continuous version, 95
distribution, 102–3
group, 96
in network, 155
marginal, 95
types, 115, 151–53, 161

Word length, 22
WTP. See Willingness-to-pay

Yottabyte, 17

Zero-knowledge proofs, 228–31
Zero-th order entropy, 40
Zettabyte, 17
ZIP, 46
Zipf’s law, 41–43
Ziv, J., 44

