


Model-Driven 
Software Development: 
Integrating Quality Assurance

Jörg Rech
Fraunhofer Institute for Experimental Software Engineering, Germany

Christian Bunse
International University in Germany, Germany

Hershey • New York
InformatIon scIence reference



Director of Editorial Content: Kristin Klinger
Senior Managing Editor:  Jennifer Neidig
Managing Editor:  Jamie Snavely
Assistant Managing Editor: Carole Coulson
Typesetter:   Jennifer Neidig
Cover Design:  Lisa Tosheff
Printed at:   Yurchak Printing Inc.

Published in the United States of America by 
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue, Suite 200
Hershey PA 17033
Tel: 717-533-8845
Fax:  717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

and in the United Kingdom by
Information Science Reference (an imprint of IGI Global)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax:  44 20 7379 0609
Web site: http://www.eurospanbookstore.com

Copyright © 2009 by IGI Global.  All rights reserved. No part of this publication may be reproduced, stored or distributed in any form or by 
any means, electronic or mechanical, including photocopying, without written permission from the publisher.

Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or companies does 
not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

Library of Congress Cataloging-in-Publication Data

Model-driven software development : integrating quality assurance / Jörg Rech and Christian Bunse, editor.

       p. cm.

  Summary: "This book provides in-depth coverage of important concepts, issues, trends, methodologies, and technologies in quality 
assurance for model-driven software development"--Provided by publisher.

  Includes bibliographical references and index.

  ISBN 978-1-60566-006-6 (hardcover) -- ISBN 978-1-60566-007-3 (ebook)

 1.  Computer software--Development. 2.  Model driven architecture (Computer science)  I. Rech, Jörg. II. Bunse, Christian. 

  QA76.76.D47M624 2009

  005.1--dc22

                                                            2008009115

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book set is original material. The views expressed in this book are those of the authors, but not necessarily of 
the publisher.

If a library purchased a print copy of this publication, please go to http://www.igi-global.com/agreement for information on activating 
the library's complimentary electronic access to this publication.



Foreword .............................................................................................................................................xiii

Preface  ................................................................................................................................................. xv

Acknowledgment ................................................................................................................................ xix

Section I
Introduction: MDSD and Quality

Chapter I
Managing the Quality of UML Models in Practice  ............................................................................... 1
 Ariadi Nugroho, Leiden University, The Netherlands
 Michel Chaudron, Leiden University, The Netherlands

Chapter II
Quality in Model Driven Engineering .................................................................................................. 37
 Teade Punter, Embedded Systems Institute, The Netherlands
 Jeroen Voeten, Embedded Systems Institute, The Netherlands & Eindhoven University
      of Technology, The Netherlands
 Jinfeng Huang, Eindhoven University of Technology, The Netherlands

Chapter III
Examples and Evidences ....................................................................................................................... 57
 Sowmya Karunakaran, MDA Research Initiative, Chennai, India

Chapter IV
Integrating Quality Criteria and Methods of Evaluation for Software Models .................................... 78
	 Anna	E.	Bobkowska,	Gdańsk	University	of	Technology,	Poland

Table of Contents



Section II
Evaluating the Model Quality

Chapter V
Evaluating Performance of Software Architecture Models with the Palladio Component Model ....... 95
 Heiko Koziolek, Universität Oldenburg, Germany
 Steffen Becker, University of Karlsruhe, Germany
 Ralf Reussner, University of Karlsruhe, Germany
 Jens Happe, Universität Oldenburg, Germany

Chapter VI
Integrating Measures and Redesigns in the Definition of Domain Specific Visual Languages .......... 119
 Esther Guerra, Universidad Carlos III de Madrid, Spain
 Juan de Lara, Universidad Autónoma de Madrid, Spain
 Paloma Díaz, Universidad Carlos III de Madrid, Spain

Chapter VII
Measuring Models .............................................................................................................................. 147
 Martin Monperrus, ENSIETA & University of Rennes 1, France
 Jean-Marc Jézéquel,  University of Rennes 1 & INRIA, France
 Joël Champeau, ENSIETA, France
 Brigitte Hoeltzener, ENSIETA, France

Section III
Improving the Model Quality

Chapter VIII
Model-Driven Software Refactoring .................................................................................................. 170
 Tom Mens, University of Mons-Hainaut, Belgium
 Gabriele Taentzer, Philipps-Universität Marburg, Germany
 Dirk Müeller, Chemnitz University of Technology, Germany

Chapter IX
A Pattern Approach to Increasing the Maturity Level of Class Models ............................................. 204
 Michael Wahler, IBM Zurich Research Laboratory, Switzerland

Chapter X
Transitioning from Code-Centric to Model-Driven Industrial Projects: Empirical Studies 
in Industry and Academia ................................................................................................................... 236
 Miroslaw Staron, IT University of Göteborg, Sweden



Chapter XI
From Requirements to Java Code: An Architecture-Centric Approach for Producing Quality 
Systems ............................................................................................................................................... 263
 Antonio Bucchiarone, IMT of Lucca, Italy
 Davide Di Ruscio, University of L’Aquila, Italy
 Henry Muccini, University of L’Aquila, Italy
 Patrizio Pelliccione, University of L’Aquila, Italy

Chapter XII
Quality-Driven Model Transformations: From Requirements to UML Class Diagrams ................... 302
 Silvia Abrahão, Valencia University of Technology, Spain
 Marcela Genero, University of Castilla-La Mancha, Spain
 Emilio Insfran, Valencia University of Technology, Spain
 José Ángel Carsí, Valencia University of Technology, Spain
 Isidro Ramos, Valencia University of Technology, Spain

Chapter XIII
A Framework for Understanding and Addressing the Semiotic Quality of Use Case Models ........... 327
 Pankaj Kamthan, Concordia University, Canada

Section IV
QA for MDSD in Specific Domains

Chapter XIV
Assuring Maintainability in Model-Driven Development of Embedded Systems ............................. 352
 Stefan Wagner, Technische Universität München, Germany
 Florian Deissenboeck, Technische Universität München, Germany
 Stefan Teuchert, Durchstreichen, MAN Nutzfahrzeuge AG, Germany
 Jean-Francois Girard, Durchstreichen, MAN Nutzfahrzeuge AG, Germany

Chapter XV
Quality Improvement in Automotive Software Engineering Using a Model-Based Approach .......... 374
 Tibor Farkas, Fraunhofer Institute FOKUS, Germany

Chapter XVI
Quality-Aware Model-Driven Service Engineering ........................................................................... 400
 Claus Pahl, Dublin City University, Ireland
 Marko Boškovic, University of Oldenburg, Germany
 Ronan Barrett, Dublin City University, Ireland 
 Wilhelm Hasselbring, University of Kiel, Germany



Chapter XVII
Model-Driven Integration in Complex Information Systems: Experiences from Two Scenarios....... 431
	 Sven Abels, Abelssoft GmbH, Germany
	 Wilhelm Hasselbring, University of Kiel, Germany
	 Niels Streekmann, OFFIS – Institute for Information Systems, Germany
	 Mathias Uslar, OFFIS – Institute for Information Systems, Germany

Chapter XVIII
High-Quality Software Models of the Mid-Infrared Instrument for the James Webb Space 
Telescope.............................................................................................................................................. 447
	 Jane M. C. Oh, Jet Propulsion Laboratory, California Institute of Technology, USA
	 Martin S. Feather, Jet Propulsion Laboratory, California Institute of Technology, USA
	 Mori A. Khorrami, Jet Propulsion Laboratory, California Institute of Technology, USA

Compilation of References ............................................................................................................... 461

About the Contributors .................................................................................................................... 494

Index.................................................................................................................................................... 504



Foreword..............................................................................................................................................xiii

Preface .................................................................................................................................................. xv

Acknowledgment................................................................................................................................. xix

Section I
Introduction: MDSD and Quality

Chapter I
Managing the Quality of UML Models in Practice ................................................................................ 1
	 Ariadi Nugroho, Leiden University, The Netherlands
	 Michel Chaudron, Technische Universiteit Eindhoven, The Netherlands

The quality of a model can be considered from many different perspectives. This chapter considers the 
following perspectives: First, is the model complete in the sense that it describes the information that 
developers need to know about a system? Second, to which degree does a model of a system corresponds 
with its implementation.

Chapter II
Quality in Model Driven Engineering................................................................................................... 37
	 Teade Punter, Embedded Systems Institute, The Netherlands
	 Jeroen Voeten, Embedded Systems Institute, The Netherlands & Eindhoven University
	     of Technology, The Netherlands
	 Jinfeng Huang, Eindhoven University of Technology, The Netherlands

Model Driven Engineering looks like a promising approach to addressing the late integration and the 
difference in development productivity between disciplines in embedded systems design. This chapter 
provides a conceptual framework for understanding the possibilities and the flaws in quality assurance 
in the MDE design flow.

Detailed Table of Contents



Chapter III
Examples and Evidences........................................................................................................................ 57
	 Sowmya Karunakaran, MDA Research Initiative, India

This chapter aims at highlighting the increased development productivity and quality that can be achieved 
by Model Driven Software Development (MDSD). The above statement is substantiated by discussing 
many experiments and case studies in the field of Model Driven development. The main emphasis lies 
on case studies for the measurement of the quality of the models.

Chapter IV
Integrating Quality Criteria and Methods of Evaluation for Software Models..................................... 78
	 Anna E. Bobkowska, Gdańsk University of Technology, Poland

Successful realization of the model-driven software development visions in practice requires high-qual-
ity models. This chapter focuses on the quality of the models themselves and discusses context-free and 
context-dependent quality criteria for models. It then moves on to methods of evaluation that facilitate 
checking whether a model is good enough.

Section II
Evaluating the Model Quality

Chapter V
Evaluating Performance of Software Architecture Models with the Palladio Component Model........ 95
	 Heiko Koziolek, University of Oldenburg, Germany
	 Jens Happe, University of Oldenburg, Germany
	 Steffen Becker, University of Karlsruhe, Germany
	 Ralf Reussner, University of Karlsruhe, Germany

Techniques from model-driven software development are useful for analyzing the performance of a 
software architecture during early development stages. This chapter provides an overview of the Pal-
ladio Component Model (PCM), a special modeling language targeted at model-driven performance 
predictions. Software architects can use the results of the analytical models to evaluate the feasibility 
of performance requirements, identify performance bottlenecks, and support architectural design deci-
sions quantitatively.

Chapter VI
Integrating Measures and Redesigns in the Definition of Domain Specific Visual Languages........... 119
	 Esther Guerra, Universidad Carlos III, Spain
	 Juan de Lara, Universidad Autónoma de Madrid, Spain
	 Paloma Díaz, Universidad Carlos III, Spain

This chapter describes work to facilitate the task of integrating measurement and redesign tools in 
modeling environments for Domain Specific Visual Languages (DSVLs). The developed DSVL called 



SLAMMER includes generalizations of some of the more commonly used types of product metrics and 
frequent model manipulations, which rely on visual patterns for the specification of the elements that 
should be measured in each metric type.

Chapter VII
Measuring Models............................................................................................................................... 147
	 Martin Monperrus, ENSIETA, France
	 Jean-Marc Jézéquel,  IRISA, France
	 Joël Champeau, ENSIETA, France
	 Brigitte Hoeltzener, ENSIETA, France

One way of assessing quality in a given domain is to define domain metrics. This chapter presents the 
S metric, which is generic across metamodels and allows the easy specification of an open-ended, wide 
range of model metrics.

Section III
Improving the Model Quality

Chapter VIII
Model-Driven Software Refactoring................................................................................................... 170
	 Tom Mens, University of Mons-Hainaut, Belgium
	 Gabriele Taentzer, Philipps-Universität Marburg, Germany
	 Dirk Mueller, Philipps-Universität Marburg, Germany

This chapter explores the emerging research domain of model-driven software refactoring that raises 
many new challenges. Based on a concrete case study with a state-of-the-art model-driven software 
development tool, AndroMDA, some of these challenges are explored in more detail. Furthermore, it 
proposes solutions to some of the encountered problems by relying on well-understood techniques of 
meta-modeling, model transformation, and graph transformation.

Chapter IX
A Pattern Approach to Increasing the Maturity Level of Class Models.............................................. 204
	 Michael Wahler, IBM Zurich Research Laboratory, Switzerland

Class models are typically specified at a high level of abstraction and subsequently refined with textual 
constraints requiring significant expertise and effort. In this chapter, typical refinement problems for 
class models are identified and it is shown how a list of refinement tasks can be automatically compiled 
from a given model.

Chapter X
Transitioning from Code-Centric to Model-Driven Industrial Projects: Empirical Studies 
in Industry and Academia.................................................................................................................... 236
	 Miroslaw Staron, IT University of Goteborg, Sweden



This chapter presents empirical data on several issues related to transitioning from code-centric (CC) 
to MDSD projects in industry. It first presents results from a set of experiments that evaluate how a do-
main-specific notation affects the effectiveness and efficiency of reading techniques used for inspecting 
models. Second, it presents a comparison of productivity increase when changing to MDSD projects 
from one of the large Swedish companies. Finally, it presents a short survey on the prioritization of 
products, projects, and resource metrics in MDSD projects.

Chapter XI
From Requirements to Java Code: An Architecture-Centric Approach for Producing Quality 
Systems................................................................................................................................................ 263
	 Patrizio Pelliccione, University of L’Aquila, Italy
	 Davide Di Ruscio, University of L’Aquila, Italy
	 Henry Muccini, University of L’Aquila, Italy
	 Antonio Bucchiarone, IMT of Lucca, Italy

Model-based specifications of a component-based system permit to explicitly model the structure and 
behavior of components as well as their integration. This chapter proposes an architecture-centric 
model-driven approach to validate required properties and generate the system code. Requirements are 
elicited and used for identifying expected properties the architecture shall express. The architectural 
compliance to the properties is formally demonstrated, and the produced architectural model is used to 
automatically generate the Java code.

Chapter XII
Quality-Driven Model Transformations: From Requirements to UML Class Diagrams.................... 302
	 Silvia Abrahão, Valencia University of Technology, Spain
	 Marcela Genero, University of Castilla-La-Mancha, Spain
	 Emilio Insfran, Valencia University of Technology, Spain
	 José Ángel Carsí, Valencia University of Technology, Spain
	 Isidro Ramos, Valencia University of Technology, Spain

Usually, there are several ways to transform a source model into a target model. Alternative target mod-
els may have the same functionality but may differ in their quality attributes (e.g., understandability, 
modifiability). This chapter presents an approach to dealing with quality-driven model transformations. 
Specifically, it focuses on a specific set of transformations to obtain UML class diagrams from a require-
ments model.

Chapter XIII
A Framework for Understanding and Addressing the Semiotic Quality of Use Case Models............ 327
	 Pankaj Kamthan, Concordia University, Canada

In this chapter, a semiotic framework for understanding and systematically addressing the quality of 
use case models is proposed. The quality concerns at each semiotic level are discussed and process- and 
product-oriented means to address them in a feasible manner are presented.



Section IV
QA for MDSD in Specific Domains

Chapter XIV
Assuring Maintainability in Model-Driven Development of Embedded Systems.............................. 352
	 Stefan Wagner, Technical University of Munich, Germany
	 Florian Deissenboeck, Technical University of Munich, Germany
	 Stefan Teuchert, MAN Nutzfahrzeuge AG, Germany
	 Jean-Francois Girard, MAN Nutzfahrzeuge AG, Germany

The automotive industry has already applied model-driven approaches for some time (usually in the 
form of Matlab/Simulink) and proves to be a fertile ground for advancing assurance methods for the 
maintainability of model-based systems. This chapter describes a two-dimensional quality metamodel 
and presents an instance that defines maintainability for MDSD with Matlab/Simulink and TargetLink. 
It exemplifies how such a model serves as the basis of all quality assurance activities and reports on 
experiences made in an industrial case study.

Chapter XV
Quality Improvement in Automotive Software Engineering Using a Model-Based Approach........... 374
	 Tibor Farkas, Fraunhofer Institute FOKUS, Germany

In the domain of automotive software engineering, there is a lack of automated checking for standard 
conformance. In this chapter, the model-based design of automotive vehicle functions is taken as an 
example to show how textual rules describing development standards to be met can be transformed into 
a formal notation using the open standards Meta Object Facility and Object Constraint Language.

Chapter XVI
Quality-Aware Model-Driven Service Engineering............................................................................ 400
	 Claus Pahl, Dublin City University, Ireland
	 Marko Boškovic, University of Oldenburg, Germany
	 Ronan Barrett, Dublin City University, Ireland 

Service-oriented architecture is a recent approach to software systems integration where quality aspects 
ranging from interoperability to maintainability and performance are of central importance for the in-
tegration of heterogeneous, distributed, service-based systems. This chapter presents an approach for 
addressing the quality of services and service-based systems at the model level in the context of model-
driven service engineering.

Chapter XVII
Model-Driven Integration in Complex Information Systems: Experiences from Two Scenarios....... 431
	 Sven Abels, FlexaDot Information Systems, Germany
	 Wilhelm Hasselbring, University of Oldenburg, Germany
	 Niels Streekmann, OFFIS-Institute for Information Systems, Germany
	 Mathias Uslar, OFFIS-Institute for Information Systems, Germany



This chapter introduces model-driven integration in complex information systems by giving two practi-
cal examples from the public utilities domain. The purpose of the first project (MINT) was to provide 
an integration approach allowing interoperability among several different legacy systems. Hence, the 
project itself only acted as a “bridge” between the systems. The second project (DER) was built from 
scratch and approached the challenge of integrating several existing third-party systems into the newly 
designed system. In this project, the main system is a core element and only needed to integrate existing 
legacy systems for specific tasks.

Chapter XVIII
High-Quality Software Models of the Mid-Infrared Instrument for the James Webb Space 
Telescope.............................................................................................................................................. 447
	 Jane M. C. Oh, Jet Propulsion Laboratory, California Institute of Technology, USA
	 Martin S. Feather, Jet Propulsion Laboratory, California Institute of Technology, USA
	 Mori A. Khorrami, Jet Propulsion Laboratory, California Institute of Technology, USA

This chapter examines model-based design in the context of development of critical software in NASA’s 
James Web Space Telescope. The chapter discusses the context and nature of this software develop-
ment effort, and why they motivated the choice of model-based development approach. Illustrations 
are provided of the elements of model-based design that are proving to be beneficial. The chapter also 
considers how software assurance practices are being adapted to work with this approach.

Compilation of References ............................................................................................................... 461

About the Contributors .................................................................................................................... 494

Index.................................................................................................................................................... 504



  xiii

Foreword

Modern model-driven development in its current, widely recognized form was born 10 years ago when 
the UML 1.0 proposal was submitted to the OMG. As a unification of the leading object-oriented methods 
existent at that time, UML 1.0 set aside trivial notation debates and galvanized the software engineering 
community into exploring the true potential of modeling. In the early years, models were primarily seen 
as an aid to analysis and design activities. By providing compact and easy-to-understand depictions of 
system properties, models were found to be useful for communicating ideas to customers and fellow 
developers, and for exploring design ideas. However, they were not regarded as central artifacts in the 
development process, but rather as imprecise, auxiliary visualizations of the “true” product – the code. 
As a result, there was little point in worrying about the quality of models – it was the quality of the code 
that mattered.

With the advent of true model-driven development during the last few years, however, all this has 
changed. Not only has the UML gone through several revisions, giving it a much more precise and well-
documented abstract syntax and semantics, but a new generation of tools and transformation languages 
have emerged, which largely automate the translation of models into code. UML models therefore 
have a much tighter and well-defined relationship to code and are no longer regarded as unimportant, 
supplemental artifacts. Indeed, the day is not far off when models will become the primary development 
artifacts and traditional source code will be regarded as supplemental. But as the role of models becomes 
more central and more important, so does their impact on the overall quality of the software product. 
This means that instead of being of marginal interest, in the years to come the quality of models will 
play an ever more central role for the success of software projects and products.

Assuring quality in model-driven development is much more challenging and multi-faceted than 
quality assurance at the code level, however. First, model-driven development involves a lot more views 
and diagram types than code-level representations of software, and keeping all these different views 
consistent and optimized is much more difficult than maintaining a single, textual view of a software 
product. Second, since model-driven development regards the definition of model transformations as 
a normal part of software engineering, these are primary development artifacts in their own right, and 
must be subject to the same defect detection and quality assurance activities as other human-defined 
documents. Third, since the abstraction gap between primary (i.e., human-developed) artifacts and ex-
ecution platforms is much greater when models are used to describe software rather than source code, 
the relationships between model properties and product properties is much more tenuous and ill-defined. 
A whole new genre of quality metrics therefore needs to be defined and their value as quality indictors 
needs to be established and experimentally confirmed. And last but not least, there is the issue of the 
expressive power and representation fidelity of the modeling notations themselves. Although the UML 
was a significant step forward over previous notations, it is certainly not the last word in visual repre-



xiv  

sentation languages, and a great deal of work still needs to be done to evaluate which notations best 
convey different types of information and are the least prone to errors.

Although the field is in its infancy, this book demonstrates that a lot of work has already been done 
and there is an active and vibrant research community studying the quality aspects of model-driven 
development. With the creation of this book, the editors and authors have compiled one of the most 
comprehensive and authoritative overviews of the state of the art in model-driven quality assurance 
available to date. The book therefore represents an important step in the evolution of model-driven 
development and helps turn it into a mature engineering discipline. There is currently no better or more 
extensive body of knowledge on quality assurance in model-driven development, and I hope you will 
be able to learn from the book as I have. 

Colin Atkinson
University of Mannheim
May 2008



  xv

Preface

The success of the Unified Modeling Language (UML) reflects a growing consensus in the software 
industry that modeling is a key ingredient in the development of large and ultra-large software systems. 
Recent developments to industrialize the software development process are also using technologies 
such as components, model-driven architectures (MDA), and product lines. These technologies drasti-
cally alter the software development process, which is characterized by a high degree of innovation and 
productivity. MDA and model-driven software development (MDSD) focus on the idea of constructing 
software systems not by programming in a specific programming language but by designing models that 
are translated into executable software systems by generators. These characteristics enable designers 
to deliver product releases within much shorter periods of time compared to the traditional methods. 
In theory, this process makes it unnecessary to worry about for an executable system’s quality, as it is 
“optimized” by the generators.

However, proponents of MDSD must provide convincing answers to questions such as “What is the 
quality of the models and software produced?” The designed models are a work product that requires a 
minimal set of quality aspects (e.g., the maintainability of models over a longer life-time). Furthermore, 
models created in the earlier phases of development (e.g. analysis and design) are often only used as an 
abstract template for the software and typically are of little value, unless they can be readily mapped to 
correct and efficient executable forms, which means high-level object-oriented programming languages. 
Any problem in the transformation path from requirements via models to code not only has a negative 
impact on the quality of the delivered software system, but also obstructs its future maintenance and/or 
reuse. 

Quality assurance techniques such as testing, inspections, software analysis, model checking, or 
software measurement are well researched for programming languages, but their application in the 
domain of software models and model-driven software development is still in an embryonic phase. In 
general, quality assurance is related to all phases of the software lifecycle, is needed within all applica-
tion domains, and comes in many different flavors, ranging from reviews and inspections via metrics 
and quality models to holistic approaches for the quality-driven development of software systems. The 
goals of quality assurance for model-driven software development are diverse and include the improve-
ment of quality aspects such as maintainability, reusability, security, or performance. Quality assurance 
for model-driven software development will play an important role for the future wide-spread usage of 
model-driven architectures in general, as well as in specific application domains. 

In order to foster the development of quality assurance research in MDSD and to give a solid over-
view of the field, we have brought together research and practice in this book.



xvi  

Model-driven Software developMent

Model-driven software development methods aim at supporting software engineers in producing large 
and ultra-large software systems that are very flexible, portable, and of high value to their customers. 
Basically, programmers are freed from the burden of tedious standard tasks, which are also a source 
of errors. It is envisioned that by systematically applying MDSD, the quality of software systems, the 
degree of reuse and thus, implicitly, the development efficiency will improve. 

The core idea of MDSD is that models are becoming the “source code” of a system from which the 
executables are simply generated. Thus, models cover different abstraction layers, ranging from con-
ceptual diagrams in the problem space to detailed low-level models adapted to a specific platform. In 
general, model-driven software development is the process of generating executable software systems 
from formal models, starting with computational independent models (CIMs) that are extended to plat-
form independent models (PIMs) to be adapted into platform specific models (PSMs) and finally result 
in source code (e.g., Java). In other words, models now bridge the traditional gap between, human-read-
able requirements and source code. Contemporary approaches of MDSD also create platform specific 
skeletons (PSS), which have to be completed by programmers.

Typically, models have had a long tradition in software engineering and are used in many software 
projects. However, there is not one commonly used language for models used in software develop-
ment. Software models may range from sketches on a whiteboard via UML diagrams to mathematical 
specifications. 

In order to enable the automatic generation of executable models, these models have to follow a pre-
cisely defined syntax and semantic. One widespread language for depicting such models is the Unified 
Modeling Language (UML), but model-driven development is not necessarily bound to the UML. Other 
modeling languages (e.g., Petri-nets, MathLab, Modelica, etc.) are successfully applied and have their 
value. And while the UML provides a large selection of diagram types and a more formal specification 
language (e.g., OCL), the information contained within a model is often not sufficiently concise and 
precise (i.e., UML models often have to be enriched by textual specifications). 

Nevertheless, by using the full power of the UML diagrams on different abstraction layers with ac-
companying textual specifications, we can model complete systems today. However, as with other work 
products such as source code, this opens the question of how to assure quality within model-driven de-
velopment. Quality assurance in MDSD has to address quality issues at different abstraction levels and 
has to face the challenge of the very richness (and complexity) of the UML. Today, quality assurance 
is often used as a synonym for testing, but in reality it is a much wider discipline – it includes other 
techniques such as inspections or metrics. Even though model-based testing is a well-known way to use 
models for quality assurance, modeling has much more potential in this regard: Models can be verified 
before code is generated, requirements can be modeled and checked against design models, etc. 

overall objective of the book

This book aims at providing an in-depth coverage of important concepts, issues, trends, methodologies, 
and technologies in quality assurance for MDSD. It focuses on non-testing approaches for quality as-
surance and discusses quality in the context of MDSD. This premier reference source presents original 
academic work and experience reports from industry that can be used for developing and implementing 
high-quality model-based software. 



  xvii

It is a comprehensive guide that helps researchers and practitioners in the model-driven software 
development area to avoid risks and project failures that are frequently encountered in traditional and 
agile software projects. The whole development process and the developed products (i.e., CIMs, PIMs, 
PSM, etc.) must be analyzed, measured, and validated from the quality point of view.

target audience

The topic of integrating quality assurance into model-driven software development is broad and comes 
in many different flavors. However, when applying model-driven development and quality assurance, 
the basic principles and concepts have to be known to all participants of such a project. This book pro-
vides a comprehensive overview to those who are interested in studying the field of quality assurance 
for model-driven software development. However, this book is not meant to be a textbook that supports 
lectures or self-studies for novices. This book is aimed at researchers, project managers, and developers 
who are interested in promoting quality assurance for model-driven software development, in further 
educating themselves, and in getting insights into the latest achievements. 

voluMe overview

The following chapters provide significant details about the topics outlined in this introduction. All 
chapters describe innovative research and, where possible, experience collected in industrial settings. 
Therefore, this book provides significant contributions to both the research and practice of assuring 
quality in model-based development. Several case studies are presented as a means for illustrating ap-
proaches, methods, and techniques in order to provide evidence. Most authors use or refer to the Unified 
Modeling Language (UML) in their chapters as a means for modeling the problem or solution domain. 
However, it appears that the latest version of the UML (version 2.1.1) is not used consistently. Thus, it 
is important to note that all references to the UML cover versions 1.x to 2.x. In summary, the book is 
organized as follows:

•	 Section I gives an introduction to quality in model-driven software development, which is presented 
in four chapter (Chapters I to IV). The chapters cover quality in general, quality aspects, and quality 
models for quality assurance in model-driven software development.

•	 Section II presents three chapters (Chapters V to VII) that are concerned with the evaluation of 
software models. They cover techniques for obtaining objective information from models that 
support the measurement, evaluation, and assessment of the model’s quality.

•	 Section III covers the improvement of a model’s quality. Six chapters (Chapters VIII to XIII) 
present different techniques such as refactoring, inspections, and constraint checking that help to 
improve the quality of a model. The chapters address approaches from the viewpoint of quality 
criteria and describe how model-driven development might become quality-driven model-based 
development.

•	 Section IV presents four chapters (Chapters XIV to XVIII) on using quality assurance techniques 
for model-driven development in specific application domains. Most papers are devoted to the do-
main of embedded systems (esp. in the automotive domain) and report about experience collected 
in specific industrial environments. 



xviii  

In summary, this book provides an overview of state of the art approaches to quality assurance in 
model-driven software development and presents the main challenges surrounding the subject. Each of 
the following chapters presents a set of issues and problems commonly encountered when performing 
research on or applying model-driven development. All authors share their vision about the importance 
of quality issues and agree that quality has a strong impact on system development and deployment. 
We hope that the insights and experiences described in this book will provide readers with new research 
directions and valuable guidelines. 

Jörg Rech and Christian Bunse
Editors



  xix

Acknowledgment

Our vision for this book was to gather information about methods, techniques, and applications for qual-
ity assurance in MDSD that does not focus on testing, but on other quality assurance techniques. This 
important field will see more attention in the future, and we wanted to collect and share this information 
with the community. Furthermore, we hope that this book will foster the distribution and exchange of 
ideas, experiences, and evidence across projects and organizational boundaries. 

This vision has become a reality only because of the hard work of the chapter authors, and we want 
to thank them for their contributions. Many of the authors also served as reviewers for chapters written 
by other authors. Thanks go to all those who provided constructive and comprehensive reviews. 

Furthermore, we want to thank the publishing team at IGI Global for their continuing support 
throughout the whole publication process. Deep appreciation and gratitude is due to Jessica Thompson, 
editorial assistant at IGI Global, and Julia Mosemann, editorial assistant at IGI Global, who supported 
us and kept the project on schedule. 

Jörg Rech and Christian Bunse
The Editors
May 2008



Section I
Introduction:

MDSD and Quality

This introductory section presents several chapters that provide an overview of quality in general, its 
management, and its evaluation in the context of model-driven software development.



  �

Chapter I
Managing the Quality of
UML Models in Practice

Ariadi Nugroho
Leiden University, The Netherlands

Michael R. V. Chaudron
Leiden University, The Netherlands

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

abStract

Many studies have been carried out to investigate what makes up good quality software. Some of the 
early	models	that	define	the	quality	of	software	come	from	Boehm	(1976)	and	McCall	(1977).	Works	in	
this	field	of	quality	models	have	traditionally	focused	on	quality	of	the	final	software	product.	Since	the	
1970’s	models	of	software	have	been	used	and	this	has	recently	attracted	much	attention	through	the	
popularity of model-driven	software	development	(MDSD).	However,	quality	of	software	models	has	
rarely	been	considered	(Lange	&	Chaudron,	2005).	In	the	software	development	life	cycle,	the	ability	
to assure software quality long before the testing phase may save a lot of money since less defects found 
in the testing phase will mean less effort to be allocated for rework. Currently, the importance of model 
quality is starting to gain attention from computer scientists. Work in this area has since focused on 
developing tools, metrics, and frameworks to improve the quality of models that guide implementation, 
particularly in the context of UML modeling which has become the de facto standard for building object 
oriented software. Quality of models can be considered from many different perspectives. In this chapter, 
we will consider the following perspectives: Firstly, is the model complete in the sense that it describes 
the information that developers need to know about a system? Secondly, we look at the degree in which 
a model of a system and an implementation correspond. This degree of correspondence indicates to what 
extent analyses of—or predictions based on the model are valid for the implementation. We present the 
main	findings	from	case	studies	into	quality	of	modeling	in	the	software	industry	as	well	as	findings	from	
a survey amongst professional software developers. We also provide a discussion on the contemporary 
methods for design quality assessments. 



�  

Managing the Quality of UML Models in Practice

introduction

Despite the fact that the notions of good quality 
software have been around since four decades ago, 
many software companies are still struggling to 
get their software product into production without 
numerous defects. Defects can be interpreted 
as deviation from specification or expectation 
(Fenton & Neil, 1999). 

Since defects will eventually affect the opera-
tion of software as the final product, the discussion 
on defects cannot neglect the notion of software 
quality. In general terms, the notion of quality 
is the absence of defects. Thus, if defect means 
deviations from specification or expectation, we 
can perceive quality as a conformance to speci-
fication and requirements/expectations. 

In their search of qualifying aspects in software 
quality, computer scientists have come up with 
quality models that are generally constructed 
by quantitative approaches. Two of the most re-
nowned quality models came from the work of 
Boehm, Brown, and Lipow (1976) and McCall, 
Richards, and Walters (1977). Boehm’s quality 
model is shown in Figure 1.

While quality models are generally more fo-
cused on the quality characteristics of the final 
software product, many efforts have been devoted 
to prescribe standard procedures and processes 
so that eventually software will have the quality 
attributes as have been defined in many quality 
models. In this regard, SEI (Software Engineering 
Institute) has come up with the Capability Matu-
rity Model (CMM) that is currently becoming the 

Figure	1.	Boehm’s	quality	model	(©2007	Ariadi	Nugroho.	Used	with	permission)



  �

Managing the Quality of UML Models in Practice

de facto standard in the area of software process 
improvement to achieve good quality software 
(Runeson & Isacsson, 1998).

The CMM prescribes five evolutionary stages, 
i.e. Initial, Repeatable, Defined, Managed, and 
Optimizing, which indicate the maturity level of 
an organization’s software process. The CMM is 
particularly important to mention here because 
it defines software quality assurance as one of 
the key process areas in CMM level 2. The key 
components of the CMM’s quality assurance is 
the presence of review and audit to assess the 
compliance of software process and the resulted 
products to a defined standards and procedures 
from which manager can react upon. 

Another quality model that deserves attention 
is the ISO 9126. This quality model is based on 
McCall’s model. Figure 2 illustrates the ISO 9126 
quality model.

Below are the main two concepts that are 
important in concluding our discussion on soft-

ware quality. Figure 3 visualizes how these two 
concepts are put into the perspective of software 
development:

1. Software quality model is a set of software 
quality characteristics and their associations. 
These characteristics are generally quan-
tifiable so that eventually a quality model 
can be a basis for assessing the quality of 
software products. Consequently, the nature 
of quality models is more product-oriented, 
i.e. in the form of final software product or 
transitional products of certain phases in 
the software development lifecycle.  

2. The effort to assure that software will have 
certain quality attributes have led to the 
emergence of the so-called Software Qual-
ity Assurance. Instead of focusing merely 
on the products, SQA also put emphasis on 
the procedures and activities to assure the 
quality of the final products. It defines sets 

Figure	2.	The	ISO	9126	(©2007	Ariadi	Nugroho.	Used	with	permission)



�  

Managing the Quality of UML Models in Practice

of activities or procedures to monitor and 
control a product during its development 
lifecycle so that at the end it will possess 
the expected quality attributes.

Figure 3 shows a software development life-
cycle where each phase delivers a milestone that 
can be assessed in terms of its quality. These as-
sessments can be quantitative in nature (e.g. using 
metrics) or qualitative through informal assess-
ments such as peer review though the former is 
generally more preferable since it provides more 
objective and measurable results. Nevertheless, 
in order to be effective, these methods or tech-
niques have to be organized into a well defined 
procedures and activities. These procedures and 
activities for instance, may prescribe guidelines 
in reviewing or auditing products, reporting 
the results, and following-up the recommenda-
tions. The quality assessments together with the 
procedures of how they must be done, reported, 
and followed up are essentially the very notion 
of software quality assurance.

Having discussed all the above notions, the 
main purpose of this chapter is to provide a dis-
cussion on how the efforts on managing software 
quality vary in theory and practice. However, 
special attention is given particularly on the ef-
fort in managing the quality of UML models. The 

structure of this chapter is as follows. In Section 2 
we discuss the contemporary methods for design 
quality assessments. In Section 3 we discuss a 
case study of quality assurance in UML model-
ing. Subsequently, future trends, conclusion, and 
future research direction will be discussed in 
Section 4, 5, and 6 respectively.

conteMporary MethodS for 
deSign Quality aSSeSSMentS

As the focus of this chapter is on design quality 
assurance, i.e. the activity to monitor and con-
trol design’s conformance to requirements and 
specifications, in this section we will discuss the 
methods and techniques for maintaining the qual-
ity of software design. From our observation in 
the literature, we identified three mainstreams in 
design quality assessment: design measurements, 
design inspections, and the use of formal methods. 
Thus, in the following passages we will further 
explore these approaches in terms of methods, 
characteristics, and how they can improve the 
quality of software designs.

Figure	3.	SQA	and	software	quality	assessment	in	software	development	(©2007	Ariadi	Nugroho.	Used	
with	permission)



  �

Managing the Quality of UML Models in Practice

Quality Models for uMl Models

A framework for quality of UML models was 
proposed by Lange and Chaudron (2005). This 
quality model differs from the traditional models 
of Boehm, McCall and the ISO 9126 in that it con-
siders UML models as an intermediate product of 
software development that derives it quality from 
the degree by which it supports other software 
engineering activities. Figure 4 depicts Lange’s 
quality framework of UML models.

A related, but more general approach to defin-
ing the quality of software models is the approach 
proposed by Lindland, Sindre, and Sølvberg 
(1994). Their approach distinguishes three cat-
egories: syntactic, semantic and pragmatic. As 

such these criteria are not directly related to any 
specific goal, nor to any specific modeling nota-
tion. Leung and Bolloju (2005) have specialized 
this framework to evaluate UML models produced 
by novice software engineers.

design inspection

Fagan’s seminal work (Fagan, 1976) laid the 
very foundations of current software inspec-
tion methodologies. Inspection was defined as 
a formal, efficient, and economical method of 
findings errors in design and code, and which 
main aim is to detect and correct defects as close 
as possible to the point where they were created. 
He proposed that software inspection must be 

Figure	4.	Lange’s	framework	for	quality	of	UML	models	(©2007	Ariadi	Nugroho.	Used	with	permis-
sion)



�  

Managing the Quality of UML Models in Practice

performed continuously and defects found in 
every intermediate product should be corrected, 
and meet the exit criteria before the products can 
be handed over to the next phase of the process. 
Fagan also stresses the importance of people who 
perform the inspection, i.e., moderator, author, 
reader, and tester, and the process of the inspec-
tion. Table 1 provides a summary of the phases 
in Fagan’s inspection process and their main 
objectives (Fagan, 1986).

Additionally, it is worth noting other quality 
assurance method, namely walkthrough. Walk-
through is very similar to inspection except that 
it does not practice repeatable process and data 
collection (Fagan, 1986). Thus, walkthrough can 
be considered as an informal inspection.

The Development of Inspection 
Methods

One of the problems with inspection is that the 
defects found are often trivial or cosmetics in 
nature (Laitenberger, 2002). This might be due 
to inexperienced reviewers or the absence of 
clear guidelines in the inspection process (e.g., 

uncertainty of which types of error to find). Ad-
ditionally, the study from Dunsmore, Roper, and 
Wood (2001) revealed that most reviewers perform 
assessment in a sequential order. It is presumed 
that with this approach contents at the end of a 
document would not get as much attention as 
those at the beginning of the document. 

Nowadays there exist variances of inspec-
tion methods that were proposed to improve the 
effectiveness of inspection in finding defects. 
Table 2 provides a comparison of six well-known 
inspection methods and Fagan’s, based on the 
study of Aurum, Petersson, and Wohlin (2002). 
The black bars (except that of Fagan) indicate 
the phases in which the listed methods have 
proposed improvement from Fagan’s inspection. 
For instance, Active Design Review (Parnas & 
Weiss, 1985) proposed different approach in the 
preparation and the inspection meeting.

Reading Techniques

This section focuses on reading techniques that aid 
reviewers to effectively inspect and find defects 
in software artifacts. 

Table 1.  Summary of Fagan’s inspection process

Operations Objectives

Planning Preparing the right material, people, time, and place.

Overview Group education over what to be inspected and role assignments to participants.

Preparation Participants learn the material and prepare their respective roles for the inspection.

Inspection Find errors.

Rework Fix errors.

Follow-up Ensure all fixes are applied correctly.



  �

Managing the Quality of UML Models in Practice

Reading technique is “a series of steps or pro-
cedure which purpose is to guide an inspector in 
acquiring a deep understanding of the inspected 
software product” (Laitenberger, 2002). As noted 
previously, the way a reviewer reads a document is 
influential to the effectiveness in finding defects. 
Recalling the previous example, when a document 
is read sequentially it might be that the contents 
inspected later will get less attention as the atten-
tion level of a reviewer is degrading over time. 
Table 3 lists five well-known reading techniques 
for inspecting software artifacts. 

  

Design Measurement 

Fenton (1999) provides a formal definition of 
measurement:

Measurement is the process by which numbers or 
symbols are assigned to attributes of entities in 
the real world in such a way as to describe them 
according	clearly	defined	rules	(p.	20).	

With the above definition, Fenton suggests that 
when we measure an entity, we actually measure 

Table 2. Well-known inspection methods and their processes 

Planning Overview Preparation Inspection
Meeting Rework Follow-up

1976 Fagan’s 
Inspection

1985 Active Design
Review

1989 Two-person
Review

1990 N-fold
Inspection

1993 Phased
Inspection

1993 Inspection 
without meeting

Collection

1993 Gilb inspection

Process



�  

Managing the Quality of UML Models in Practice

the attributes of that entity. We do not measure a 
car, but we measure the attributes of a car, e.g., 
height, width, speed, acceleration, or weight. 
Understanding the attributes of an entity helps 
us to understand the entity better.

For the same reason, measurement is increas-
ingly being applied to software designs. In general, 
design measurement is the application of measure-
ment to a design artifact. By employing measure-
ment to a design we can characterize and describe 
certain aspects of the design in quantitative terms. 
However, design artifacts, e.g., UML models, are 
only intermediate products of a software system. 
Therefore, the application of design measurement 
is primarily aimed at understanding, predicting, 
controlling, or improving the quality attributes 
of the final software product. 

The emphasis of this chapter is on quality 
assurance of UML designs. Therefore, for the 
rest of this section we restrict our discussion to 
object-oriented design measurement. 

object-oriented design Metrics

The practices of measurement in software design 
have been primarily revolving around the use of 

metrics (Chidamber & Kemerer, 1994). We can 
define design metrics as some measures of design 
properties. The importance of design metrics is 
highly related to the necessity to assess software 
quality properties as early as possible in the 
software development process. This is primarily 
beneficial since the ability to fix defects earlier will 
be less expensive than to fix them later in the devel-
opment process. By measuring the characteristics 
of an object-oriented design, it is expected that 
the quality attributes of the final software product 
can be predicted and/or improved. In this respect, 
previous study by Briand, Wüst, Daly, and Porter 
(2000) and Abreu and Melo (1996) investigated 
the relationships and impacts of object-oriented 
design metrics on software quality.

The most renowned design metrics to date 
originate from the work of Chidamber and Ke-
merer (1994). They developed six object-oriented 
design metrics that are still widely used in various 
design measurement activities nowadays. Table 
2.4 provides brief definition of these metrics. 

Many of these metrics have been the subjects 
of further investigation to reveal their relations 
with system quality attributes such as reliability, 
maintainability, and understandability. The work 

Table 3. A summary of reading techniques

Reading Technique Description

Ad-hoc Reading Informal procedures of inspecting design documents. No clear guideline is defined 
for the process.

Checklist More systematic way of assessing a document. Some questions are formulated and 
must be answered by reviewers.

Active Design Review 
(ADR)

This method requires active involvement from the reviewers (e.g., writing code 
fragment of models) in addition to answering review questions.

Scenario-based Reading Using scenario to guide inspectors in detecting defects. Each reviewer uses 
different, systematic techniques to search for different, specific classes of faults.

Perspective-based Reading Focus on the point of view or needs of the customers or consumers of a document. 
Thus this method encourages quality assessments from various perspectives.



  �

Managing the Quality of UML Models in Practice

of Briand, Daly, Porter and Wüst (1998) inves-
tigated the relation of object-oriented metrics 
with the probability of fault detection in system 
classes. Likewise, the work of Basili, Briand, and 
Melo (1996) validated Chidamber and Kemerer’s 
metrics as predictors of error-prone classes. El-
Emam, Melo and Machado (2001) proposed a 
prediction model of faulty classes using object-
oriented metrics. Harrison, Counsell, and Nithi 
(2000) specifically investigated the impact of 
inheritance to the maintainability of object-ori-
ented systems. 

Although the above previous works confirmed 
the usefulness of metrics in predicting quality 
attributes such as maintainability and reliabil-
ity, there are some well-known cautions for 
using them. Metrics seldom provide a complete 
explanation of a quality property. As stated by 
Harrison, et al. (2000) for instance, DIT metric 
does not provide us with a complete view of the 
inheritance hierarchy of a system––thus, DIT 
metric alone does not provide clear explanations of 
system quality attributes such as maintainability 
or understandability. Additionally, researchers 
regularly find a correlation between a metric and 

a quality property, but this does not necessarily 
provide a causal explanation. See the work of 
Fenton and Neil (1999) for further observation 
in this particular issue.

With the potential of metrics for predicting 
some quality aspects of object-oriented systems, 
employing them for monitoring and controlling 
design quality will be beneficial. However, this 
activity will be quite time-consuming if performed 
manually. Although there exist many tools that 
support metrics evaluation from code, few have 
been developed to analyze design metrics, e.g., 
SDMetrics (www.sdmetrics.com) and MetricView 
(www.win.tue.nl/empanada/metricview). These 
tools can read XMI files produced by UML CASE 
tool in order to calculate metrics values of UML 
design documents. With the metrics data of the 
designs, further design quality analysis can sub-
sequently be performed.

the use of formal Methods for 
design Quality assessment

In the previous sections we have discussed design 
inspection and design measurements as methods 

Table 4. Chidamber and Kemerer’s metrics suite for object-oriented design

Metrics Definition

Weighted Method per Class (WMC) The sum of weighted methods in a class. Each method is weighted based 
on its complexity value.

Depth of Inheritance Tree (DIT) The length of inheritance tree of a class.

Number of Children (NOC) The number of immediate subclasses of a class in the inheritance 
hierarchy

Coupling between Object Classes 
(CBO) The number of other classes to which it is coupled. 

Response for a Class (RFC) The number of methods that can be potentially executed in response to a 
message received by an object of that class.

Lack of Cohesion in Methods 
(LCOM)

The degree of similarity between methods in a class. The similarity is 
determined by the use of common instance variables.



�0  

Managing the Quality of UML Models in Practice

to assess the quality attributes of design docu-
ments. In this section we discuss the application 
of mathematically rigorous approach to assure 
design quality.

The term formal methods refer to the use of 
mathematically based techniques for describing 
system properties. Using formal methods, people 
can specify, develop, and verify systems in a 
systematic, rather than ad hoc, manner (Wing, 
1990). One of the features formal methods have 
to offer is preciseness in design specifications. It 
is argued that the imprecise semantics of most 
current object-oriented methodologies and graphi-
cal techniques often leads user and analysts to 
ambiguous interpretation, which at the end results 
in the introduction of defects (Aleman & Alvarez, 
2000). In this particular respect, many works, e.g., 
from France, Evans, Lano, and Rumpe, (1998) 
and from McUmber and Cheng (2001), have been 
devoted to formalizing object-oriented design no-
tations, to increase their preciseness. It is promised 
that with a formalized modeling notation, UML 
models become amenable to rigorous analysis, 
e.g., consistency check within and across models 
(France et al., 1998).

A study that proposed a method and techniques 
for checking the consistency of UML model 
comes from the work of Engels, Kuster, Heckel, 
and Groenewegen (2001). He proposed a method 
for specifying and analyzing consistency of ob-
ject-oriented models, particularly with respect to 
their behavioral aspects. For this purpose a tool 
called Consistency Workbench (Engels, Heckel, & 
Kuster, 2003) has been developed. The consistency 
checking is performed using partial translations 
of models into a formal method, through which 
the formulation and verification of semantic 
consistency conditions are possible. 

Another attempt to create more precise UML 
models was performed using the OCL (Object 
Constraint Language). The OCL is part of the 
UML standard and was introduced to enforce the 
creation of more precise and unambiguous mod-
els. An experimental investigation conducted by 

Briand, Labiche, Penta, and Yan-Bondoc (2005) 
reported that OCL could significantly improve 
engineer’s ability to understand, inspect, and 
improve UML models. Provided that the use 
of OCL requires intensive user training, it has 
become a consideration as to what degree the 
benefits of using OCL can offset the efforts and 
costs for the necessary training. 

Another use of formal methods with regard 
to quality assessment is verification. Two well-
established approaches to verification are model 
checking and theorem proving (Clarke & Wing, 
1996). Model checking has been primarily used 
in hardware, protocol verification, and, also, to 
analyze software specifications. Theorem prov-
ing, on the other hand, is increasingly used in the 
mechanical verification of safety-critical proper-
ties of hardware and software designs (Clarke 
& Wing, 1996). With regard to object-oriented 
design, the study from David, Moller, and Yi 
(2002) proposed a formal verification of UML 
state charts. The work of Traore and Aredo (2004) 
proposed to include model-based verification into 
structured review.  

Although the use of formal methods to specify 
and verify design artifact offers high precision 
and correctness, there seems to be few works 
have been devoted to examine its effectiveness 
and benefits in the industry. For instance, the 
work of Pfleeger and Hatton (1997) revealed that 
there is no compelling quantitative evidence that 
formal design techniques alone produce a higher 
quality of code than informal design techniques. 
Additionally, they also learnt that formal speci-
fication and design are effective under some but 
not necessarily all circumstances. 

To improve the practicality of formal methods, 
some important developments have been done, 
which include the introduction of more user-
friendly notations and more comprehensible feed-
backs of the model analysis results (Heitmeyer, 
1998). The advance of formal methods into this 
direction is very beneficial because the existence 
of methods and tools that can encapsulate the 



  ��

Managing the Quality of UML Models in Practice

complexity of formal methods will improve its 
practicality and acceptance in the industry. 

Modeling conventions

Another approach to enforce a good quality de-
sign is the use of modeling conventions. As with 
programming conventions, modeling conventions 
provide some rules or guidelines to guide design-
ers in creating models of a system. Although 
this approach is not as popular and mature as 
programming conventions, an empirical study of 
the effectiveness of UML modeling conventions 
conducted by Lange, DuBois, Chaudron, Demeyer 
(2005) shows that the use of modeling conventions 
might potentially reduce defects in UML models. 
Ambler (2005) also provides thorough guidelines 
of how to create more effective UML diagrams.

Some pitfalls of using modeling conventions 
exist. As with other types of conventions, the 
commitment from people who use them is vital. 
In order to assure user commitment, it was also 
proposed that conventions must be tailored to 
a particular context and created by those who 

will use them. Additionally, an overly specified 
modeling convention may distract designers from 
addressing the main solution in the first place. 
Thus, modeling conventions must be concise yet 
effective to avoid common mistakes and inef-
ficiencies in modeling.

Table 5 provides a summary of design qual-
ity assessment methods that we have discussed 
in this section.

a caSe Study on 
Quality aSSurance in 
uMl Modeling

research context and Scopes

The findings discussed in this paper come from 
case studies and a survey. The case studies were 
conducted in two IT organizations in the Nether-
lands, whereas the survey was performed online 
and includes several IT organizations from the 
Netherlands as well as from other countries. For 
confidentiality purpose, in this paper we will not 

Table	5.	Summary	of	contemporary	methods	in	design	quality	assessment

Design Quality Assessments Descriptions

Quality Models for Software Models Describe important model quality attributes and their relations with the 
quality of the final software product.

Design Inspection Design inspection includes methods and techniques to detect and 
remove defects in software models. 

Design Measurements

Focus on the attempts to measure and quantify some measurable 
attributes of model entities. It is believed that by doing so will allow 
better control and prediction over the quality of the final software 
product.

Formal Methods Formal methods provide more rigorous approach of assessing model 
quality. It uses mathematical techniques to verify the quality of models.

Modeling Conventions 
Modeling conventions focus on the enforcement of conventions and 
rules in modeling. Having these rules or conventions, designers are 
expected to develop more consistent and complete software models.



��  

Managing the Quality of UML Models in Practice

mention the names of those organizations. One of 
the two companies within which the case studies 
were conducted has diverse application domains 
that include finance, insurance, e-government, 
and space. The other company mainly focuses 
on e-government systems.

As we have mentioned earlier, the main pur-
pose of this chapter is to investigate how software 
developers manage the quality of UML designs. 
To this aim, we examined four software projects 
from the above two organizations. These software 
projects vary in size, status, and their engagement 
with off-shoring activities. Nevertheless, all of 
the projects were using UML in specifying the 
software design. Table 3.1 provides an overview 
of the project’s characteristics.

The projects were chosen based on three main 
criteria. First, those projects to a large degree were 
using UML in specifying the design. Second, the 
projects were chosen because of the availability of 
information sources––for instance, many of the 
project members are still working in the company, 
thus information and clarifications can be obtained 
relatively easy. Finally, the projects used UML 

CASE tool to create the design. Many CASE tools 
now support UML data exchange through XMI. 
Given this support, it was possible to export the 
UML data to other tools for further analysis.

Although none of the four projects has fully 
adopted a full-fledged model-driven development 
approach, one project was, to a certain degree, 
using automatic code generation from UML 
models. The rest of the projects mainly used 
UML models to communicate system designs to 
software developers. 

research Questions and research 
Methods

The main research question we wanted to answer 
in this case study is as follows:

“How do software developers manage the quality 
of UML models?”

To answer this question, we started by investi-
gating how UML is used in software development. 
The investigation involves exploring issues and 

Table	6.	Project	characteristics

Characteristics Project 1 Project 2 Project 3 Project 4

Project size (man-years) 20 10 10 50

Approx. number of staff 25 20 30 30

(Expected) duration (years) 2.3 3 1 6.5

Off-shored Yes Yes Yes No

Status Finished Finished Finished Development

Model Size (in use case) 104 10 100 More than 80

UML tools used XDE XDE XDE RSA



  ��

Managing the Quality of UML Models in Practice

problems related to the use of UML in software 
projects, particularly with regard the management 
of design quality. We provide further discussions 
over the issues in the sections that follow.

In this study we conducted three types of data 
collection, namely interview, survey, and UML de-
sign artifacts collection. The interview was mainly 
intended for designers, although in fact we also 
performed interviews with developers and project 
managers. The interview was semi-structured, 
wherein the same set of questions were asked to 
all interviewees. The questions were grouped into 
four categories: 1) project context, 2) the use of 
UML in the project, 3) design quality assurance 
in the project and, 4) the use of UML tooling. 
All of the interviews were tape-recorded, and 
subsequently transcribed. In total we interviewed 
fifteen people from all the projects.

The survey was primarily aimed at software 
developers. It was conducted online and the par-
ticipants were not limited to the two organizations 
studied in this case study. At the end we received 
65 participants from various IT organizations 
originated from 10 countries. 

The collection of project artifacts was focused 
on UML design documents and inspection docu-
ments. Although the interviews involved designers 
and developers from all the projects, because of 
confidentiality reasons we could not have access 
to the UML design artifacts of Project 4. This 
has prevented us from conducting further design 
analysis for this particular project. Nevertheless, 
we decided to use the results of the interviews 
with the project members when necessary and 
relevant.

issues and challenges in Managing 
uMl design Quality

The essence of model-driven development lies on 
two fundamental aspects—that is, raising the level 
of abstraction and raising the level of automation in 
developing software (Selic, 2006). Higher level of 
abstraction allows more focus on problem domains 

rather than on implementation domains. On the 
other hand, code generation enables automatic 
model translation into code. Nevertheless, the 
practice of model-driven development varies. In 
the most pragmatic approach, models are used to 
generate code; once the code has been generated 
the models are seldom concerned. More rigorous 
approach not only uses models to generate code, 
but also keep the models updated as the code 
changes. In the fully automated approach develop-
ers only work with models and never directly deal 
with the implementation code (Selic, 2006).

 The issues discussed in this paper primarily 
relevant to the practice of model-driven develop-
ment where not all of the implementation code is 
automatically generated; hence software develop-
ers still have the role in writing some portions of 
the code or solving code integration issues. In fact, 
to the best of our knowledge this practice is the 
most commonly observed in the industry.

From our investigation, many software de-
signers regard UML design quality as important. 
In bringing up the issue of design quality in the 
discussions with software designers, we introduce 
two aspects that we believe pertain to the quality 
of a UML design:

•	 The proportion and completeness of UML 
designs

•	 The design – code correspondence

The Proportion and Completeness of 
UML Designs

Design completeness is related to the decisions 
taken by software designers in modeling a soft-
ware system––that is, the degree to which a design 
specifies the required elements of a system being 
developed. For example, designers might choose 
to model certain parts of a system while hiding 
others. This is sometimes done proportionally, 
which takes into account certain aspects of those 
parts. This practice is very common because ex-



��  

Managing the Quality of UML Models in Practice

haustively modeling all parts of a system takes 
considerable time and modeling effort. 

The notion of design proportion emphasizes 
the presence of conscious decisions with regard 
to completeness in modeling. Use cases, for in-
stance, are one of the units of analysis to determine 
proportionality. In this respect, designers might 
decide not to model CRUD (create, retrieve, 
update, delete) use cases in their design. When 
there is no particular reason that can explain the 
absence or existence of some system parts, it is 
very likely that design proportion is not taken 
into account in the modeling process.

According to Lange’s framework in Figure 
2.1, maintaining design completeness is primarily 
related to the purposes of prediction, implemen-
tation, and code generation. As the framework 
suggests, design completeness influences predic-

tion, implementation, and code generation. These 
three concepts are part of the use of models in 
development phase. In other words, in develop-
ment phase design completeness is particularly 
important for the purpose of quality prediction, 
basis for (manual) implementation, and code 
generation.

One aspect of design completeness concerns 
the consistency between diagrams. In capturing 
a design it is common to use multiple diagram 
types. Each diagram type captures the same design 
from different angle or perspective. For instance, 
in describing how the functionality of a use case 
is realized in an object-oriented design, we can 
use a sequence diagram to depict the interaction 
between objects, and a class diagram to capture 
the structure and relationships of the object’s 
classes. The use of multiple diagrams leads to 

Figure	5.	An	illustration	of	UML	design	completeness	(©2007	Ariadi	Nugroho.	Used	with	permission)



  ��

Managing the Quality of UML Models in Practice

overlapping design elements, e.g., a method that 
exists as a message in a sequence diagram also 
appears as a method of a class in a class diagram. 
These overlapping elements, if properly specified, 
increase the consistency amongst diagrams and 
add to the clarity and preciseness of the concept or 
design construct being specified. Figure 5 provides 
an illustration of the above description.

As Figure 5 illustrates, a use case that is present 
in a use case diagram must have a corresponding 
sequence diagram(s) describing its dynamics. 
Likewise, classes that are mentioned in a sequence 
diagram must also be present in the corresponding 
class diagram. A higher degree of completeness 
can be achieved by modeling additional diagrams 
to add clarity to a design construct. In elaborating 
a use case for instance, instead of only modeling 
sequence diagrams, which show only the ordering 
of messages, a designer can also model collabora-
tion diagrams to show the links and interactions 
between objects. 

As there can be many factors that influence the 
decisions of design proportion and completeness, 
our main question in this respect is: 

“What is the main rationale behind the practice 
of creating proportionate and complete UML 
designs?”

Additionally, we also sought to answer the 
following question: 

“How do developers experience the degree of 
design completeness in their projects, and how do 
they prefer proportion and completeness realized 
in a design?”

The Rationale Behind Design Proportion and 
Completeness
From the interviews that we have performed, all 
designers agreed that they should not model all 
parts of a system in an equal level of detail. To 
give an overview of what designers regard as the 
main rationale behind their decisions to design a 
system in particular level of details, in Figure 3.2 
we illustrate the main factors and their influences 
to the design decision-making process.

In Figure 6 we point out three main factors 
behind the decision toward design proportion and 
completeness: comprehensiveness, simplicity, 
and time constraint. Comprehensiveness is the 
drive to design a software system as clear as pos-
sible. A client for instance, may require a system 
documentation that covers all main functionalities 
in great details. Additionally, implementers of a 
design might also ask for more extensive designs. 

Figure	6.	Rationale	behind	design	proportion	and	completeness	(©2007	Ariadi	Nugroho.	Used	with	
permission)



��  

Managing the Quality of UML Models in Practice

In this respect, designers are encouraged to create 
more complete and comprehensive designs.

The second factor is simplicity. In designing 
a system designers generally try to be as concise 
and simple as possible and yet try to capture the 
essence of the solution. In this regard, we identi-
fied two qualifications that are commonly used 
by designers in justifying their decisions to model 
certain parts of a system:

•	 Component complexity: Complexity re-
flects the level of difficulty of certain parts 
to be understood and, later, implemented. 
Hence, the need to focus on more complex 
parts of a system is to make sure that other 
parties (e.g., implementers) can easily un-
derstand difficult design constructs.

•	 Component importance: Designers model 
certain system elements because of its criti-
cality to the functioning of a system. Design-
ers want to make sure that these important 
elements are understood and implemented 
correctly to avoid system failures.

The last factor is time constraint. As with any 
other phases in software development process, 
design activities must be performed within a 
certain time frame. Thus, designers must make 
economical choices in order to assure that designs 
have an appropriate degree of completeness and 
are delivered within the scheduled time. 

As illustrated in Figure 6, designer’s design 
decisions can be somewhere within the design de-
cision spectrum, which consists of two extremes: 
comprehensiveness and simplicity. These two 
factors have influence on the design decision as 
if pulling it to be leaning toward their respective 
sides. It is generally the case that designers will cre-
ate a design as concise and simple as possible. On 
the contrary, other parties, e.g., implementers, may 
ask for more extensive designs. Here, designers 
must accommodate the requests by increasing the 
level of detail. Nevertheless, in doing so designers 
must also take the third factor, time constraint, 
into account. Figure 6 illustrates two decisions: 
one leaning toward comprehensiveness and the 
other leaning toward simplicity. This suggests that 

0

10

20

30

40

50

60

Very low Low Somewhat
low

Somewhat
high

High

P
e
rc

e
n

ta
g

e
 o

f 
re

s
p

o
n

d
e

n
ts

Figure	7.	The	average	degree	of	design	completeness	in	UML	projects	(©2007	Ariadi	Nugroho.	Used	
with	permission)



  ��

Managing the Quality of UML Models in Practice

designer’s design decisions are polarized between 
being comprehensive and concise at the same time; 
and time constraint seems to be the determining 
factor in justifying the right balance.

Developer’s Experience on UML Design 
Proportion and Completeness
In order to understand developer’s experience 
with regard to UML designs completeness, we 
present the findings from a survey that we have 
conducted. In analyzing the data, we decided to 
also include responses originated from sources 
outside the companies being studied in order to 
increase the representation of the results to a 
broader population.

The first finding concerns the degree of com-
pleteness of UML designs. We asked developers to 
rate (on average) the degree of design completeness 
in their projects. The results in Figure 3.3 reveal 
that nearly half of the respondents, 49 percent, 
rate the degree of UML design completeness in 
their UML projects as somewhat low. Further, 
18 percent of the respondents rate the degree of 
completeness as low; and only 15 percent and 9 
percent of the respondents regard the degree of 
completeness as somewhat high and high respec-
tively. Finally, only 7 percent of the respondents 
opted low for the degree of completeness of UML 
designs in their projects. 

The next finding is especially related to design 
proportion. While in the previous section we in-
vestigated designer’s design decisions with regard 
to design proportion and completeness, here we 
present developer’s preference over the level of 
details in UML designs. We asked developers to 
indicate their agreements over four statements 
that reflect different approaches of designing 
a software system as shown in Table 3.2 For 
each statement, we asked developers to indicate 
their agreement: disagree – somewhat disagree 
– neutral – somewhat agree – agree. The results 
are given in Figure 8.

The results in Figure 8 show that the major-
ity of the respondents agree that complexity 

and criticality of system components should be 
the basis of determining the level of detail, i.e., 
more complex or critical parts should be given 
more emphasis. This is shown by the fact that 55 
percent and 63 percent of the respondents agree 
on the second and third statements respectively 
(See table 7). For the last statement, which sug-
gests freedom for developer to determine imple-
mentation details, 35 percent of the respondents 
agree, whereas slightly lower, 33 percent, express 
somewhat agree. Although in total these figures 
account for 68 percent of the respondents lean-
ing toward an agreement, the high percentage of 
those opted for somewhat agree may indicate that 
there is uncertainty amongst developers as to what 
extent the freedom can be exercised. Lastly, the 
first statement, which suggests equality of details 
for all system parts, is not very popular amongst 
developers. Forty percent of the respondents 
disagree and 26 percent somewhat disagree on 
the idea to specifying all system parts in an equal 
amount of detail.

 The above findings show that in principle 
developers believe that a UML design must 
concentrate on certain design elements, which 
are selected based on their characteristics of 
complexity and importance. This is obviously 
consistent with designer’s perspective on design 
proportion and completeness discussed earlier. 
Yet, the finding in Figure 7 also reveals that 49 
percent of the developers participated in our survey 
still consider the degree of completeness of UML 
designs in their project as somewhat low. Thus, 
this again confirms the importance of designer’s 
role in finding the right design decisions, which 
include paying attention to feedback from other 
parties such as developers.

The Model: Code Correspondence

In the previous section, we have discussed how 
software designers and developers thought and 
dealt with the issue of design proportion and 
completeness. In this section the issue of design 



��  

Managing the Quality of UML Models in Practice

– code correspondence will be discussed. We 
first introduce the notion of correspondence and 
subsequently address the issue in practice.

At the level of classes we say that a class 
or group of classes in an implementation cor-
responds to a class in the model if the former 
class(es) implement(s) the latter. There is a high 

degree of correspondence between a UML model 
and an implementation if a large percentage of 
the elements of the model, in particular classes 
and associations, corresponds to elements of 
the implementation. There are several reasons 
for maintaining model – code correspondence. 
First, a software design is often a representation 

Table	7.	List	of	statements	on	design	proportion

Labels Statements

Equal details for all parts All parts of a system should be specified in an equal amount of detail.

Focus on complex parts Different parts of a system should be specified in a level of detail that is 
proportional to the complexity of the parts being modeled.

Focus on critical parts Parts that are more critical for the functioning of the system should be specified 
in more detail.

Programmers determine details A model should explain how the system works, but allow programmers 
freedom to determine implementation details.

Figure	8.	Developer’s	agreement	over	approaches	in	design	proportion	(©2007	Ariadi	Nugroho.	Used	
with	permission)

 

0

10

20

30

40

50

60

70

Equal details for
all parts

Focus on
complex parts

Focus on critical
parts

Programmers
determine

details

P
e
rc

e
n

ta
g

e
 o

f 
re

sp
o
n

d
e
n

ts

Disagree

Somewhat Disagree

Neutral

Somewhat agree

Agree



  ��

Managing the Quality of UML Models in Practice

of the intended solution to address a certain set of 
requirements. When an implementation deviates 
from its designs, there is a risk that the implemen-
tation will not satisfy the requirements. Second, 
the model is a roadmap for understanding the 
implementation. A model provides a high level 
overview from which it is easier to understand the 
big picture. This information is chiefly beneficial 
for understanding systems in their maintenance 
phase, e.g., for adding or changing functionality. 
If there is low correspondence, then the model 
cannot serve this purpose. Hence, if there are 
good reasons to change an implementation, then 
these changes must be reflected back into the 
model ––otherwise it becomes obsolete. 

Lange’s framework in Figure 2.1 also depicts 
correspondence as a characteristic that influences 
comprehension of a system. When a model is 
obsolete––no longer corresponds to the code, 
we lose the main benefit of model as a source of 
architectural information. 

Figure 9 gives an illustration of model – code 
correspondence between model and implemen-
tation classes. It shows how three classes from 
the model, i.e., letterClass, aClass, and 
bClass are exactly mapped into their imple-
mentation classes. The correspondence can be 
recognized from their similarity in properties 

such as name, operation set, attribute set, or 
relations. Nevertheless, there is a class in the 
model without a clear corresponding class in the 
implementation, i.e., cClass. Likewise, there 
are three implementation classes that have no 
corresponding classes in the model. Considering 
its association to bClass, it may be the case that 
cClass has evolved or changed into the zClass 
in the implementation. Class bb1Class and 
bb2Class, however, seem to be introduced in 
the implementation.

Until now, only few methods and techniques 
have been proposed to maintain correspondence. 
One of the latest works we can find in the literature 
proposed the use of a metric based on inter-module 
couplings (CMB) to assess software design (Tvedt, 
Costa, & Lindvall, 2002). Earlier works in this 
subject include the works from Sefika, Sane and 
Campbell (1996), Antoniol, Caprile, Potrich, and 
Tonella (2000), and Murphy, Notkin, and Sullivan 
(2001). However, despite the scarcity of methods 
that aid software engineers, present UML CASE 
tools, such as IBM Rational (XDE and Rational 
Software Architect) and Poseidon, have introduced 
an automated round-trip engineering feature that 
promises to maintain the design (i.e., UML mod-
els) in sync with the implementation code. As we 

Figure	9.	An	illustration	of	model	–	code	correspondence	(©2007	Ariadi	Nugroho.	Used	with	permission)



�0  

Managing the Quality of UML Models in Practice

will see later, the presence of these features does 
not solve correspondence problems. 

Our main concerns with regard to model – code 
correspondence can be expressed as: 

“How important is this model – code correspon-
dence in the eyes of software engineers?” 

“What methods are used in practice to maintain 
correspondence, if any?” 

“Do developers think correspondence should be 
different for different elements of the model?”

Designer’s Attitude towards Correspondence 
When we asked software designers about design 
– code correspondence, most of them confirmed 
its importance. From the designer’s point of view, 
we identified two main perspectives with regard 
to correspondence. The first perspective views 
correspondence as applicable only for some 
significant elements of a system. Here, too, we 
encountered the notion of disproportion, which 
is considered in maintaining correspondence. 
The second perspective views correspondence 
as another form of traceability. It suggests that a 
correspondence is satisfied as long as elements 
in an implementation can be traced back to the 
models. 

Nevertheless, there is an opinion against the 
practice of maintaining correspondence. The main 
argument was that maintaining correspondence 
is time consuming. It was argued that the most 
important thing is to make sure that the imple-
mentation meets the requirements.

Although there are different opinions amongst 
designers as to what degree correspondence 
should be enforced, most designers believe that 
a higher degree of correspondence contributes 
to the quality of the final software product. This 
is particularly shown by developer’s opinion: by 
maintaining model – code correspondence, design 
decisions are consistently conveyed down to the 
implementation. At the end, this will result in a 

software system that reflects the decisions taken 
during the analysis and design phase.

Method Used in Maintaining 
Correspondence
From all the projects we studied, there is no spe-
cial method used in maintaining model  – code 
correspondence. Most designers mention manual 
review, i.e., manually inspect the actual imple-
mentation code and update the UML model when 
there are changes, as an approach to maintain 
correspondence. Some also mention that they 
requested developers to inform any changes in the 
implementation so that necessary modification to 
the corresponding models can be performed. In 
project 4 we identified a practice of using naming 
convention to ease correspondence checking. For 
instance, the names of classes in the implementa-
tion must remain the same as in the model.

The use of manual review to check model 
– code correspondence is in fact popular amongst 
software engineers. From our survey, as shown in 
Figure 10, 46 percent of the responses indicate the 
use of manual review. This figure is still higher 
compared to the use of reverse engineering and 
roundtrip engineering together (38 percent). 
This shows that the use of systematic methods 
to maintain correspondence is still less common 
than the use of manual review. The result also 
shows that a small number of responses, 14 per-
cent, indicate the absence of activity to maintain 
correspondence. 

Although the result of our survey also confirms 
manual review as the most commonly used ap-
proach in maintaining correspondence, there is 
no evidence as to explain the effectiveness of this 
method compared to others. Nevertheless, there 
are two reasons that might explain the popularity 
of manual review amongst software engineers. 
First, although some UML CASE tools already 
support the round-trip engineering features, we 
recognized that many designers are reluctant to 
use them because of their immaturity. Second, 
manually checking the correspondence between 



  ��

Managing the Quality of UML Models in Practice

source models (reverse-engineered code) of a 
large system and its models is a delicate and te-
dious activity. More advanced tools are required 
in order to perform the activity effectively and 
efficiently.

Strictness in Correspondence for Different 
Constructs
To investigate the extent to which developers value 
correspondence, we asked developers to indicate 
how strict certain UML design constructs should 
be implemented. We asked software developers to 
indicate how strictly they thought the following 
statements should be applied:

•	 The package structure in an implementation 
should correspond to the package structure 
in the design.

•	 The dependencies between classes in an 
implementation should correspond to the de-
pendencies between classes in the design.

•	 The inheritance relations in an implementa-
tion should correspond to the inheritance 
relations in the design.

•	 The names of classes and methods in an 
implementation should correspond to names 
in the design.

•	 The order of method calls in an implemen-
tation should correspond to the order of 
messages in the design.

 The results of this questionnaire are shown 
in Figure 11. These results show that maintaining 
correspondence of inheritance relations is often 
regarded important to be strictly applied—that is, 
46 percent of the respondents confirmed. Some-
what less, 27 percent of the respondents chose 
somewhat strict for this statement. However, in 
total (73 percent), the percentage is slightly lower 
than that of maintaining dependency relations, 
which accounts for 78 percent—that is, 38 percent 
and 40 percent for strictly and somewhat strict 
respectively. The correspondence of class and 

Figure	10.	Methods	used	in	maintaining	correspondence	(©2007	Ariadi	Nugroho.	Used	with	permis-
sion)

 

0

5

10

15

20

25

30

35

40

45

50

No special effort Manual review Reverse
engineering

Round-trip
engineering

P
e
rc

e
n

ta
g

e
 o

f 
re

sp
o

n
se

s



��  

Managing the Quality of UML Models in Practice

method names follows in the third place with 32 
percent for strictly and 33 percent for somewhat 
strict. Next, the correspondence of package struc-
ture with 30 percent for strict and 32 percent for 
somewhat strict. Finally, the correspondence of 
method-call order accounts for 27 percent for both 
strict and somewhat strict. Also note that this 
statement has the highest percentage (25 percent) 
for somewhat loosely or loosely applied.  

The above findings show that developers 
regard inheritance and dependency relations as 
should be followed more rigorously than the other 
UML design constructs. For instance, developer’s 
conformance to these constructs surpasses the 
conformance of class and method names. This is 
especially interesting because class and method 
names are the most obvious elements to trace 
model—code correspondence. Although pri-
oritizing inheritance and dependency relations 
is understandable—misapplying both concepts 
in an implementation can cause high coupling 
between objects, there has to be similar awareness 

that lack of class name correspondence might also 
damage system maintainability.

Further, our study of the project’s UML design 
artifacts revealed that the level of detail used in 
modeling might be a factor that contributes to the 
strictness of implementing it. Models with a low 
level of detail leave more freedom for developers 
to implement. This, for instance, applies to trivial 
classes and methods such as getters and setters. 
Additionally, in models with a low level of detail 
package structures are often either not taken into 
account or not organized according to implementa-
tion considerations. This is particularly the case 
with Project 2 in which models are packaged 
according to their use case associations.

The Relation between Design Completeness 
and the Degree of Strictness in Maintaining 
Model  – Code Correspondence
As with level of detail, we believe that the degree 
of model completeness also has consequences on 
developer’s strictness in implementing design 

Figure	11.	The	strictness	in	implementing	UML	design	constructs	(©2007	Ariadi	Nugroho.	Used	with	
permission)

 

0

5

10

15

20

25

30

35

40

45

50

Package
structure

Dependency
relations

Inheritance
relations

Class and
method
names

The order of
method calls

P
e
rc

e
n

ta
g

e
 o

f 
re

s
p

o
n

d
e
n

ts

Loosely

Somewhat loosely

Neutral

Somewhat strict

Strictly



  ��

Managing the Quality of UML Models in Practice

constructs—that is, the higher the degree of 
completeness of a model, the higher developer’s 
conformance is to a design. To explore this as-
sumption, we performed a correlation analysis 
between the strictness of implementing design 
constructs and the average degree of UML design 
completeness (shown previously in Figure 8).

Table 8 indicates the correlation between the 
average degrees of UML design completeness 
in software projects and developer’s strictness 
in implementing various design constructs. We 
can see from the table that, except for the package 
structure, the strictness in implementing all of the 
design constructs is significantly correlated with 
the degree of UML design completeness. The 
table reveals that the strongest correlation exists 
between design completeness and the strictness 
of implementing class and method names. Yet, 
this only accounts for 16.9 percent (R square = 
0.169) of the variability in the strictness of imple-
menting class and method names––hence other 
factors account for 83.1 percent of the variability. 
Although the correlation coefficient does not in-
dicate the direction of causality, we believe that 
model completeness affects developer’s strictness 
in implementing modeling constructs.  

Although the above findings seem to confirm 
our assumption, please note that design complete-
ness is only one of the factors that might drive 
developer’s strictness in implementing a design. It 
contributes for 16 percent, 13 percent, 10 percent, 
and 7 percent for the strictness in implementing 

class and method names, the order of method 
calls, inheritance relations, and dependency rela-
tions respectively. Other factors may include the 
level of detail used, developer’s experience, tool 
support, and so forth. Nevertheless, this is an in-
dication of how design quality affects developer’s 
conformance to a design. 

techniques and Methods in design 
Quality assurance

In this section we discuss the methods and 
techniques that are used in practice to assess the 
quality of the UML models. In this respect, we 
especially focus on the methods used to assure 
design completeness and proportion as well as 
model – code correspondence. 

Peer Review as an Assessment Method for 
UML Design Documents
Of the four projects being studied, all have a 
‘formal’ approach to inspect UML design docu-
ments. In assessing the quality of the models these 
projects used review checklists. This review pro-
cess is normally performed by architects or other 
experienced designers––this is why the process 
is also called peer review. Nevertheless, having 
reviewed the checklists, only the ones from Project 
1 are proven to have comprehensively assessed 
the quality properties of the designs documents. 
Apart from these checklists, we did not see any 
well-defined inspection process. The process 

Table 8. Pearson correlation between strictness and model completeness

Package 
structure

Dependency
relations

Inheritance
relations

The order of 
method calls

Class and 
method names

Design Completeness
R-square

0.090
0.81

0.266**
0.07

0.329**
0.108

0.363**
0.131

0.411**
0.169

**	Indicates	significance	at	p	=	0.01



��  

Managing the Quality of UML Models in Practice

seems to be informal wherein checklists are cre-
ated and given to some inspectors who later come 
up with feedbacks about the model.

From Project 1’s design review documents, we 
identified some interesting checkpoints that are 
related to model completeness and proportion. 
These checkpoints were drawn from three design 
checklists, i.e., design model, design subsystem, 
and design class, out of seven design checklists 
that were available (we found that these checklists 

were adopted from the RUP – the Rational Unified 
Process – design review checklists).

Table 9 shows a selection of design checkpoints 
that are relevant to the issue of model proportion/
completeness and design – code correspondence. 
In the design model, i.e., checkpoint 1 – 4, the 
checkpoints are somewhat in a high level. They 
suggest how in general the modeling practice 
must be performed. Recalling the rationale behind 
model proportion and completeness discussed 

Table	9.	A	selection	of	Project	1’s	peer	review	checklists

Checkpoints

Design Model

1. The model is at an appropriate level of detail given the model objectives.

2. The model’s use of modeling constructs is appropriate to the problem at hand.

3. The model is as simple as possible while still achieving the goals of the model.

4. The design is appropriate to the task at hand (neither too complex nor too advanced).

Design Subsystem

5. Each operation on an interface realized by the subsystem is utilized in some collaboration.

6. Each operation on an interface realized by the subsystem is realized by a model element (or a 
collaboration of model elements) within the subsystem.

Design Class

7. The class satisfies the behavioral requirements established by the use-case realizations.

8. The demands on the class (as reflected in the class description and by the objects in sequence diagrams) 
are consistent with the class’s state machine.

9. Class names follow the naming conventions specified in project design guidelines.

10. The state machine and operations completely describe the behavior of the class.

11. Each operation is used by at least one use-case realization.

12. All relationships of the class are required to support some operation of the class.

13. The role names of aggregations and associations describe the relationship between the associating and 
associated classes.



  ��

Managing the Quality of UML Models in Practice

earlier, the checkpoints in the design model re-
ally reflect designer’s opinion to be selective in 
modeling. For instance, checkpoint 1 and 2 are 
very relevant to the notion of proportion in mod-
eling, i.e., appropriately using amount of detail 
and modeling constructs by taking into account 
the objectives and problems being addressed by 
the model.

The remaining checkpoints, except for check-
point 9, are related to model completeness at 
the diagram level. They generally suggest that 
certain design elements in a diagram must have 
corresponding elements in the other relevant dia-
grams, e.g., checkpoint 7: a class must satisfy the 
behaviors of its instances in use case realizations 
(sequence diagrams). Further, checkpoint 10 sug-
gests completeness in a class level by introducing 
state chart diagram to describe the behaviors of a 
class. Nonetheless, of all the review checkpoints 
observed, only checkpoint 9 that is somewhat 
relevant to the notion of correspondence. It sug-
gests the use of class naming convention in the 
model. This is particularly true because without 
introducing class-naming conventions early in 
the design phase, the risk of having poor model 
– code correspondence might be higher. 

The review checklists we discovered from 
the other projects are basically focusing at the 
same themes: simplicity, understandability, and 
completeness. However, an interesting practice 
that we encountered in Project 4 is to maintain 
code traceability by enforcing the use of use case 
references in the implementation code. In this 
project, this practice is assessed and required as 
an exit criterion for the code unit review. This 
kind of practice is claimed by one interviewee 
to be common in identifying the links between 
designs and implementation. 

Tool Supports in Design Quality Assurance
All the projects we studied used UML CASE 
tools from IBM, i.e., IBM Rational XDE and 
IBM Rational Software Architect (RSA). In terms 
of model completeness, these tools offer some 

basic checking features. For instance, Rational 
XDE prevents designers to manually add or edit 
the class reference of an instance in a sequence 
diagram. For this purpose, the tool provides an 
automatic referencing mechanism to the existing 
classes, thus preventing designers from creating 
inconsistent models. We believe that this kind of 
features also present in other UML CASE tools 
like Rational Rose, Power Designer, and so forth. 
Moreover, as with other tools, Rational XDE and 
RSA also provide model validation features that 
will warn designers when certain UML models 
are incomplete, e.g., operations in a sequence 
diagram that do not exist in the corresponding 
class diagrams.

In terms of model – code correspondence, both 
Rational XDE and RSA offer a round-trip engi-
neering feature. With this feature designers can 
create UML models of a system and subsequently 
generate the code elements. Developers can then 
add implementation details and modify the code 
elements as necessary. Eventually, to get the actual 
picture of the implementation code, designers can 
reverse engineer the code back to the model. With 
this feature, model – code correspondence can be 
improved and maintained.  

 Despite the above features that are available in 
most present UML CASE tools, we were interested 
to understand the extent to which the tools/features 
help in maintaining model quality. Surprisingly, 
when asked about how the tools help in assuring 
the quality of UML designs, most designers ex-
pressed their disappointments. Most of the disap-
pointments, however, are not related to the role 
of the tool in maintaining model quality, e.g., the 
usability and stability of the tools. Nonetheless, 
some designers stated that they had difficulties 
to use the round-trip engineering feature. It was 
not easy for them to have it set up and running. 
At the end, the feature was never used.

In spite of the above facts, few designers 
indeed mentioned that the tools do help because 
they can validate the UML models they have 
created. One designer who was using Rational 



��  

Managing the Quality of UML Models in Practice

XDE to develop a .NET application, especially 
liked the integration of the tool with Visual Stu-
dio .NET. It gave him an integrated development 
environment for both designing and coding the 
application. This also implies that it was easier 
for the designers and developers to keep the code 
and model consistent. 

Although many UML CASE tools like the ones 
from IBM Rational have provided useful features 
to assure the quality of the UML models, there is 
no clear evidence that explains how effective those 
features are in practice. This is especially true if 
we consider some designer’s experience in setting 
up the round-trip engineering features. Moreover, 
as far as model completeness is concerned, the 
use of model validation or verification will not 
be effective if the UML designs are in low level 
of detail where many details are hidden for sim-
plicity reason. Running the validation tool in this 
particular situation will only result in hundreds 
of meaningless errors and warnings.

Some Reflections over the Issues

In the previous sections we have discussed the 
issues of design proportion and completeness as 
well as model code – correspondence and how 
software designers and developers thought them 
and dealt with them. In this section we highlight 
what we have learnt from these studies.

Realizing Complete and Proportional 
Designs
We have learnt that time constraint is almost 
always a determining factor in any software de-
velopment activities. Thus, creating exhaustive 
models of a software system might be at odds 
with the schedule. Nevertheless, this should not 
be a justification of being over-simplistic in mod-
eling. The fact that most developers still regard 
the degree of model completeness as somewhat 
low also supports this argument.  Thus, software 
designs must be proportionally complete, meaning 
that designers must strategically choose which 

aspects to be modeled more extensively in order 
to capture the most appropriate level of abstrac-
tion. To our knowledge, the design inspections 
performed have addressed little, if any, issues of 
completeness and proportion. In fact, of all the 
projects we studied, only one project found to be 
quite aware of these issues.

The above evidence has led us to the following 
recommendations. First, the level of complete-
ness and proportion targeted in a project should 
be established in dialogue between the creators 
and users of the model. This dialogue must be 
established early enough in order to help designers 
estimating and targeting the most appropriate level 
of abstraction that meet the identified constraints, 
such as time schedule and developer requests. 
Second, design inspection must be applied in a 
way that it will assure design completeness and 
proportion. The use of checklist for instance, can 
be improved in such a way that it also captures 
multiple perspectives in a particular project, 
e.g., implementer’s-, tester’s-, and maintainer’s 
perspectives. By understanding the needs of the 
users of the models, inspection checklists can then 
be tailored to address the required aspects. 

 
More Rigorous Approaches toward 
Correspondence
In this study, we found that designers and devel-
opers agree on the importance of model – code 
correspondence. In spite of this fact, we did not 
see any well-defined activities or procedures to 
enforce correspondence in the projects we studied. 
We learnt that this might due to the following 
reasons. First, most designers and developers put 
more emphasis on more general types of corre-
spondence, e.g., correspondence to requirements, 
than a specific, low-level type of correspondence, 
such class or method names. Second, it is often 
the case that developers receive models in a low 
level of detail. This encourages developers to 
conform only on modeling constructs that are 
more resilient or less likely to change, e.g., in-
heritance and dependency relations. Finally, the 



  ��

Managing the Quality of UML Models in Practice

features in current UML CASE tools that might 
help maintaining correspondence, e.g., reverse 
engineering and round-trip engineering, are not 
yet mature. This tends to discourage designers 
and developers to spend their time and effort to 
set up and use them.

Considering the above factors, we recommend 
the following approaches. First, maintaining cor-
respondence is not necessarily time consuming 
and tedious activity. By introducing class-naming 
convention early in the design phase for instance, 
the correspondence of model and code can be 
improved. Second, integrating correspondence 
checking with code inspection activities might 
give more insights to designers and/or architects 
over deviations in an implementation. Inspectors 
can perform this activity relatively cheaply and 
easily by comparing model and code metrics with 
tools like SDMetrics and DICTool (Opzeeland, 
2005). Finally, given its importance, the notions 
of maintaining correspondence should be trans-
formed into a well-defined activity, which later 
can be integrated with the software development 
process.

In summary, techniques for assessing model 
quality and model – code correspondence are 
immature. Also, activities for quality assurance 
of models are generally not or poorly integrated 
in development processes.

future trendS

We identify the following future trends in qual-
ity assurance of models. The first trend concerns 
broader application of formal methods in model 
quality assessments. Formal methods allow more 
rigorous assessment of quality checking of mod-
els. As noted earlier in this paper, the advance 
of formal methods has enabled assessments of 
models to be executed by people without advanced 
mathematical knowledge, which is mainly attrib-
utable to the presence of more user-friendly tools 

that can automate the process and encapsulate 
the complexity of analysis in formal methods. 
Therefore, future trend in this direction would 
be toward the integration of formal methods into 
CASE tools, which will also foster the application 
of more formal quality assessments of models in 
software development process.

Other trend in the area of quality assurance 
of models is the use comprehensive model test-
ing. While many model validation approaches 
generally focus only on behavioral aspects of 
models, comprehensive model testing provides 
better assessments by taking into account other 
views of models (e.g., static structure). This is 
particularly important since the behavior of a 
system will be constrained by its static structure, 
which in the UML is specified in class diagrams. 
The work of Pilskalns et al. (Pilskalns, 2007) 
for instance, proposed a method that integrates 
multiple UML views, generates an integrated 
model from it, generates test cases of the model, 
and finally executes the model on the test cases. 
Thus, future quality assessments of models with 
model testing will not only take into account the 
behavioral aspects of models (e.g., behavioral 
consistency), but also involve broader aspects of 
models such as their static structure.

Additionally, we underline the importance of 
the findings of this study for quality assurance of 
models. The notion of design proportion is very 
practical for selecting the candidates for automatic 
generation. Automatic code generation requires 
design elements to be more formally and precisely 
modeled. However, not every design element de-
serves low-level of abstractions. Only those that 
can be beneficial for automation are eligible for 
comprehensive modeling (Mellor, Clark, Futa-
gami, 2003). In this chapter we have discussed 
two of the candidates: 1) complex design elements 
and, 2) critical design elements.  The benefit of 
focusing on complex and critical design elements 
for code generation is two-fold. First, automating 
the generation of complex design elements can 
reduce the complexity for implementing them. 



��  

Managing the Quality of UML Models in Practice

Second, automatic generation of critical design 
elements can assure that the implementation is 
addressed correctly, hence mitigating the risk of 
system failures. These will consequently result 
in increased productivity and improved software 
quality.

 One of the challenges in model-driven devel-
opment is the traceability of design artifacts (Ai-
zenbud-Reshef, Nolan, Rubin, & Shaham-Gafni, 
2006). With immense design documents created 
during development, manually maintaining and 
tracking changes amongst related design docu-
ments can be tricky and tedious, especially when 
models are created with different CASE tools. The 
practice of checking correspondence with tool 
support can somewhat reduces this traceability 
problem. As with checking model – code corre-
spondence, checking the links amongst models 
can be performed by comparing some design 
element properties, such as classifier names or 
metric profiles. These data can be exported from 
CASE tools in XMI format (currently available 
in most UML CASE tools). By linking design 
artifacts based on their similarities, we can track 
changes that occur in models as well as compare 
different versions of models.

concluSion

In this chapter we reported the main findings 
from our case study into quality assurance of 
model-based software development. The results 
are based on four UML projects from two IT 
organizations in the Netherlands. Additionally, 
we also reported the findings from an online 
survey we have performed. Both the case study 
and survey were aimed at investigating issues 
related to the management of model quality. 
Further, this chapter also provides a discussion 
on contemporary design quality assessments 
methods. We explored the use of design inspec-
tions, design measurements, and formal methods 

for the purpose of inspecting quality attributes of 
design documents. 

From the case studies we identify the follow-
ing findings:

•	 Both designers and developers agree that 
a model must be proportional and com-
plete––that is, design elements that are 
important and complex must be modeled 
more extensively than the trivial ones. 
Furthermore, we learnt that modeling de-
cisions are influenced by three factors: 1) 
the drive for being simplistic, 2) the drive 
for being comprehensive, 3) time pressure. 
The decision concerning proportion and 
completeness is eventually a compromise 
between these three factors. 

•	 Although most designers agreed that model 
– code correspondence is important, few 
attempts have been performed to maintain 
it. 

•	 Despite the fact that most designers agreed 
on the importance of model quality, few 
considerations have been given to develop 
well-defined design inspection processes to 
assess model quality. So far we only see the 
use of checklists to inspect design documents 
without clear procedures or guidelines that 
guide the activity.

•	 We discovered that the level of detail and 
the degree of completeness of models might 
affect developer’s strictness in implementing 
them. Both a low level of detail and a low 
degree of completeness tend to result in low 
conformance in implementing modeling 
constructs. Additionally, we suspect that 
these also contribute to the ineffectiveness 
of UML CASE tools used to perform model 
validation.



  ��

Managing the Quality of UML Models in Practice

future reSearch directionS

For future works, we encourage more research 
to be directed toward the development of frame-
works that will aid designers in justifying their 
modeling decisions. Particularly with regard to 
the issue of design proportion and completeness, 
we have not seen any clear guidance that can be 
used to effectively address the issues. Relevant 
checklists that were found merely cope with the 
issue in a general way. Hence, frameworks that 
provide well-defined guidelines and measure-
ments of model proportion and completeness 
will contribute to the practice of maintaining the 
quality of software designs.

With regard to the issue of model – code 
correspondence, we particularly underline the 
absence of well-established and effective methods 
to maintain model – code correspondence. In this 
respect, it is well known that current methods and 
tools to maintain correspondence often suffer from 
their delicacy and ineffectiveness. Thus, future 
work in this area is required to define which types 
of correspondence need to be preserved, their 
implications, and ways to measure them. Having 
addressed these questions, further work should 
be carried out to develop correspondence assess-
ments methods and techniques accordingly.

Finally, further investigations must be car-
ried out to disclose the factors that can improve 
developer’s conformance to a model. We have 
discovered that the level of detail and the degree 
of model completeness are two of the potential 
factors that influence developer’s strictness in 
implementing modeling constructs. 

referenceS

Abreu, B. F., & Melo, W. (1996). Evaluating the 
impact of object-oriented design on software 
quality. Third International Software Metrics 
Symposium	(METRICS	‘96), 90-99. 

Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., & 
Shaham-Gafni, Y. (2006). Model traceability. 
IBM	Systems	Journal,	45(3), 515-526.

Aleman, J.L.F., & Alvarez, A.T. (2000).  Can in-
tuition become rigorous? Foundations for UML 
model verification tools. Proceedings of the 11th 
International Symposium on Software Reliability 
Engineering, 344-345.

Ambler, S.W. (2005). The elements of UML 2.0 
style. New York: Cambridge University Press.

Antoniol, G., Caprile, B., Potrich, A., & Tonella, 
P. (2000). Design-code traceability for object-ori-
ented system. Annals for Software Engineering, 
9, 35-58

Aurum, A., Petersson, H., & Wohlin, C. (2002). 
State-of-the-art: software inspection after 25 
years. Software	 Testing	 Verification	 and	 Reli-
ability,	12(3), 133-154.

Basili, V.R., Green, S., laitenberger, O., 
Lanubile,F., Shull, F., Sørumgård, S., et al. (1996). 
The empirical investigation of perspective-based 
reading,	Empirical	Software	Engineering,	1(2), 
133-164.

Boehm, B.W., Brown, J.R., & Lipow, M. (1976). 
Quantitative evaluation of software quality, Pro-
ceedings of the 2nd international conference on 
Software Engineering, 592-605.

Bowen, J.P., & Hinchey, M.G. (1995) Ten com-
mandments of formal methods. IEEE Computer, 
28(4), 56-63.

Briand, L.C., Daly, J., Porter, V., & Wüst, J. (1998). 
A comprehensive empirical validation of design 
measures for object oriented system. Proceed-
ings of the 5th International Software Metrics 
Symposium, 246-257. 

Briand, L.C., Wüst, J., Daly, J.W., & Porter, D.V. 
(2000). Exploring the relationships between design 
measures and software quality in object-oriented 
systems, The Journal of Systems and Software, 
51(3), 245-273.



�0  

Managing the Quality of UML Models in Practice

Briand, L.C., Labiche, Y., Penta, M.D., Yan-Bon-
doc, H.D. (2005). An experimental investigation 
of formality in UML-based development. IEEE 
Transactions	 on	 Software	Engineering,	 31(10), 
833-849

Chidamber, S.R., & Kemerer, C.F. (1994). A 
metrics suite for object oriented design. IEEE 
Transaction	 on	 Software	 Engineering,	 20(6), 
476-493. .

Clarke, E.M., & Wing, J.M. (1996). Formal meth-
ods: State of the art and future directions, ACM 
Computing	Survey,	28(4), 626-643.

David, A., Möller, M.O., & Yi, W. (2002). Formal 
verification of UML statecharts with real-Time 
extensions, Lecture Notes in Computer Science, 
2306, 208-241.

Dunsmore, A., Roper, M., & Wood, M. (2001).. 
Systematic object-oriented inspection—an empir-
ical study. Proceedings of the 23rd International 
Conference on Software Engineering, 135-144.

El-Emam, K., Melo, W., & Machado, J.C. (2001). 
The prediction of faulty classes using object-
oriented design metrics. Journal of Systems and 
Software,	56(1), 63-75.

Engels, G., Küster, J.M, Heckel, R., & Groenewe-
gen, L. (2001). A methodology for specifying 
and analyzing consistency of object-oriented 
behavioral models. ACM SIGSOFT Software 
Engineering	Notes,	26(5), 186-195.

Engels, G., Heckel, R., & Küster, J.M. (2003). The 
consistency workbench: A tool for consistency 
management in UML-based development. Lecture 
Notes	in	Computer	Sciences,	2893, 356-359.

Fagan, M. (1976). Design and code inspection 
to reduce errors in program development. IBM 
Systems	Journal,	15(3), 182-211.

Fagan, M. (1986). Advances in software inspec-
tions. IEEE Transactions on Software Engineer-
ing,	12(7), 744-751.

Fenton, N.E. (1999). Software metrics, a rigorous 
approach. London: Chapman & Hall.

Fenton, N.E., & Neil, M. (1999). Software metrics: 
Successes, failures, and new directions. Journal 
of	Systems	and	Software,	47(2-3), 149-157.

France, R., Evans, A., Lano, K., & Rumpe, B. 
(1998). The UML as a formal modeling nota-
tion. Computer	 Standards	&	 Interfaces,	 19(7), 
325-334.

Harrison, R., Counsell, S., & Nithi, R. (2000). 
Experimental assessment of the effect of inheri-
tance on the maintainability of object-oriented 
systems.	Journal	of	Systems	and	Software,	2(3), 
173-179.

Heitmeyer, C. L. (1998). On the need for practical 
formal methods. In FTRTFT	’98:	Proceedings	of	
the	5th	International	Symposium	on	Formal	Tech-
niques in Real-Time and Fault-Tolerant Systems, 
pages 18–26, London, UK. Springer-Verlag.

Lange, C.F.J., & Chaudron, M.R.V. (2005). Man-
aging model quality in UML-based software 
development, Proceedings of IEEE Conference on 
Software Technology and Engineering Practice 
2005	(STEP), 7-16.

Lange, C.F. J., DuBois, B., & Chaudron, M.R.V. 
(2005). Experimentally investigating the effec-
tiveness and effort of modeling conventions for 
the UML. Lecture Notes in Computer Science, 
4364, 91-100.

Laitenberger, O. (2002). A survey of software in-
spection technologies. In Handbook on Software 
Engineering and Knowledge Engineering. World 
Scientific Publishing.

Laitenberger, O., Beil, T., & Schwinn, T. (2002). 
An industrial case study to examine a non tradi-
tional inspection implementation for requirements 
specifications. Empirical Software Engineering, 
7(4), 345-374.



  ��

Managing the Quality of UML Models in Practice

Leung, F., & Bolloju, N. (2005). Analyzing the 
quality of domain models developed by novice 
systems analysts. Proceedings of the 38th Hawaii 
International Conference on System Sciences, 
188b-188b.

Lindland, O. I., Sindre, G., & Sølvberg, A. (1994). 
Understanding quality in conceptual modeling. 
IEEE	Software,	11(2), 42-49.

McCall, J.A., Richards, P.K., & Walters, G.F. 
(1977). Factors in software quality, vol. 1-3 of 
AD/A-049-015/055. Springfield.

McUmber, W.E., & Cheng, B. (2001). A general 
framework for formalizing UML with formal 
languages. Proceedings of the 23rd International 
Conference	on	Software	Engineering	(ICSE	’01), 
433-442.

Mellor, S.J., Clark, A.N., & Futagami, T. (2003). 
Model-driven development – Guest editor’s in-
troduction. IEEE	Software,	20(5), 14-18.

Murphy, G.C., Notkin, D., & Sullivan, K.J. 
(2001). Software reflexion models: Bridging the 
gap between design and implementation. IEEE 
Transactions	 on	 Software	 Engineering,	 27(4), 
364-380.

Opzeeland, D.J.A. (2005). Automated techniques 
for reconstructing and assessing correspondence 
between UML designs and implementations. Un-
published master thesis, Technische Universiteit 
Eindhoven, Eindhoven, The Netherlands.

Parnas, D.L., & Weiss, D.M. (1985). Active design 
review: Principles and practices. Proceedings 
of the 8th international conference on Software 
engineering, 132-136.

Pfleeger, S.L., & Hatton, L. (1997). Investigating 
the influence of formal methods. IEEE Computer, 
30(2), 33-43.

Pilskalns, O., Andrews, A., Knight, A., Ghosh, 
S., and France, R. (2007). Testing uml de-
signs. Information and Software Technology, 
49(8):892–912.

Porter, A.A., Siy, H.P., Toman, C.A., Votta, L.G. 
(1997). An Experiment to assess the cost-ben-
efits of code inspections in large scale software 
development. IEEE Transactions on Software 
Engineering,	23(6), 329-346.

Runeson, P., & Isacsson, P. (1998). Software 
quality assurance – concept and misconception. 
Proceedings of the 24th. EUROMICRO Confer-
ence	(EUROMICRO’98),	2, 853-859.

Sefika, M., Sane, A., & Campbell, R. H. (1996). 
Monitoring compliance of a software system 
with its high-level design models. Proceedings 
of the 18th International Conference on Software 
Engineering, 387–396.

Traore, L., & Aredo, D.B. (2004). Enhancing 
structured review with model-based verification. 
IEEE Transactions on Software Engineering, 
30(11), 736-753.

Tvedt, R.T., Costa, P., & Lindvall, M. (2002). 
Does the code match the design? Proceedings 
of the International Conference on Software 
Maintenance	(ICSM), 393-401.

Wing, J.M. (1990). A specifier’s introduction to 
formal methods. IEEE	Computer,	23(9), 8-24.

additional readingS

This paper reports on a controlled experiment 
(consisting	of	two	parts	at	different	institutes)	that	
investigates the impact of UML documentation 
on software maintenance. The results show that 
for complex tasks and past a certain learning 
curve, the availability of UML documentation 
may	 result	 in	 significant	 improvements	 in	 the	
functional correctness of changes as well as the 
quality of the design. There seems not be a sav-
ings in time.

Arisholm, E., Briand, L.C., Hove, S.E., & Labiche, 
Y. (2006). The impact of UML documentation on 



��  

Managing the Quality of UML Models in Practice

software maintenance: An experimental evalua-
tion, IEEE Transactions on Software Engineering, 
32(6), 365-381.

This paper describes techniques for analyzing 
large UML models. It describes heuristics and 
processes gathered from industrial projects for 
creating semantically correct UML analysis- 
and	 design	models.	One	 of	 its	 findings	 is	 that	
just evaluating UML models provides important 
lessons that are invaluable for improving the 
modeling process.

Berenbach, B. (2004). The evaluation of large, 
complex uml analysis and design models. Pro-
ceedings	 of	 the	 26th	 International	Conference	
on Software Engineering (pp. 232–241). IEEE 
Computer Society

This is a workshop paper that presents prelimi-
nary results on the measured benefits of follow-
ing guidelines for style and design of software. 
Early results indicate that style guidelines are 
often violated and that - in contrast with common 
claims- one the use of design patterns - can lead 
to more change prone classes.

Bieman, J.M., Alexander, R., Munger III, P.W., & 
Meunier, E. (2001). Software design quality: Style 
and substance. Proceedings of the Workshop on 
Software	Quality	(WoSQ). ACM, 2001.

This is one of the earliest papers that proposes a 
quality model for software based on a iterative 
decomposition of the notion of quality into fac-
tors and metrics. The resulting tree-structure is 
common to most software quality models.

Boehm, B.W., Brown, J.R., Kaspar, H., Lipow, 
M., Macleod, G.J., & Merrit, M.J. (1978). Char-
acteristics of software quality, volume 1 of TRW 
Series of Software Technology. Amsterdam: 
North-Holland Publishing Company.

This paper provides an overview of the state-of-
the-art	 (d.d.	 1999)	 in	 empirical	 knowledge	 on	
object-oriented software development methods 
and processes and suggests research directions.

Briand, L.C., Arisholm, E., Counsell, S., Houdek, 
F., & Th ́evenod-Fosse, P. (1999). Empirical studies 
of object-oriented artifacts, methods, and process-
es: State of the art and future directions. Empirical 
Software Engineering, 4(4), 387–404.

This paper presents an experiment that studies 
the	effect	of	design	guidelines	(such	as	cohesion,	
coupling, clarity of design, depth-of-inheritance, 
simplicity)	on	the	maintainability	of	OO	designs.	
Within the limits of the experiment, the paper 
reports a positive impact.

Briand, L.C., Bunse, C., & Daly. J.W. (2001). 
A controlled experiment for evaluating quality 
guidelines on the maintainability of object-ori-
ented designs. IEEE Transactions on Software 
Engineering,	27(6), 513–530.

This paper formalizes the structure of UML 
models	using	OCL-predicates	(a	bit	like	a	meta-
model	 approach).	 If	 a	 change	 is	 performed	 to	
one diagram of a model, predicates may become 
false which points to places that also need to be 
adapted in order to maintain correct structure of 
the UML model. This is presented as an impact 
analysis method.

Briand, L.C., Labiche, Y., O’Sullivan, L., & S 
ówka, M.M. (2006). Automated impact analysis of 
UML models. Journal of Systems and Software, 
79(3), 339–352.

This paper applies model-checking techniques to 
detecting errors in behavioral descriptions.

Campbell, L.A., Cheng, B.H.C., McCumber, W.E., 
& Stirewalt, R. E. K. (2002). Automatically de-



  ��

Managing the Quality of UML Models in Practice

tecting and visualising errors in UML diagrams. 
Requirements Engineering, 7, 264–287.

This paper compares different reading techniques 
that are tailored to UML models.

Cantone, G., Colasanti, L., Abdulnabi, Z.A., 
Lomartire, A., & Calavaro, G. (2003). Evaluat-
ing checklist-based and use-case driven reading 
techniques as applied to software analysis and 
design UML artifacts, LNCS,	2765, 142–165.

This paper examines the expressiveness of OCL as 
a	language	for	defining	queries	over	UML	models.	
It concludes that OCL has enough expressivity.

Chimiak-Opoka, J., & Lenz, C. (2006). Use of 
OCL in a model assessment framework: An 
experience report. Proceedings of OCLApps 
workshop, 53-67.

The paper describes an experiment performed at 
Ericsson	in	Norway	to	evaluate	the	cost-efficiency	
of tailored OORTs in a large-scale software proj-
ect.	The	results	showed	that	the	OORTs	fit	well	
into an incremental development process, and 
managed to detect defects not found by the exist-
ing reading techniques.

Conradi, R., Mohagheghi, P., Arif, T., Hedge, 
L.C., Bunde, G.A., & Pedersen, A. (2003) Object-
oriented reading techniques for inspection of UML 
models – an industrial experiment. Proceedings 
of the European Conference on Object-Oriented 
Programming	ECOOP’03,	LNCS,	2749, 483–501. 
Springer.

The next two papers address approaches for 
analyzing extra-functional quality properties of 
systems described at an architecture level by UML 
diagrams. The approaches have in common that 
they add annotations to commonly used UML 

diagrams, and then provide a systematic transla-
tion from the annotated UML design to a model 
for performance or reliability.

Balsamo, S., Marco, A.D., Inverardi, P., & 
Simeoni, M. (2004). Model-based performance 
prediction in software development: A survey. 
IEEE Transactions on Software Engineering, 
30(5), 295-310.

Cortellessa, V., Singh, H., & Cukic, B. (2002). 
Early reliability assessment of UML based soft-
ware models. Proceedings of the 3rd international 
workshop on Software and performance, pages 
302–309, New York: ACM Press.

This paper describes result from a survey under 
industrial software engineers as to the manner in 
which the UML is used.

Dobing, B., & Parsons, J. (2005). Current prac-
tices in the use of UML. Proceedings of the 1st 
Workshop on the Best Practices of UML, LNCS. 
Springer.

This paper describes a technique and a support-
ing tool that automatically performs a number of 
consistency checks on a UML model. It emphasizes 
the performance of the proposed implementation. 
It claims interactive checking is possible during 
the creating of the design.

Egyed, A. (2006). Instant consistency checking for 
the UML. Proceedings of the 28th International 
Conference	on	Software	Engineering	(ICSE‘06), 
381–390. ACM.

This paper presents an approach to check the com-
pliance of OO design with respect to source code. 
The process works on design artifacts expressed 
in	(the	pre-UML)	OMT	notation	and	accepts	C++	
source code. It recovers an “as is” design from the 
code, compares recovered design with the actual 



��  

Managing the Quality of UML Models in Practice

design and points out regions of code which do not 
match with design. The recovery process exploits 
regular expression and edit distance to bridge the 
gap between code and design. 

Fiutem, R., & Antoniol, G. (1998). Identifying 
design-code inconsistencies in object-oriented 
software: A case study. Proceedings of the Inter-
national Conference on Software Maintenance, 
94-102.

Classic paper that discusses different views on 
product quality.

Garvin, D. (1984). What does ‘product quality’ 
really mean? Sloan	Management	Review,	26(1), 
25–45.

The paper explores - based on a controlled 
experiment - how early metrics which measure 
internal attributes, such as structural complexity 
and size of UML class diagrams, can be used as 
early class diagram maintainability indicators. 
The experiment has a small sample size. The 
conclude that early indicators for maintainability 
can be based on UML metrics, but are careful to 
generalize based on the small sample size of the 
experiment.

Genero, M., Piattini, M., Manso, E., & Cantone, 
G. (2003). Building UML class diagram main-
tainability prediction models based on early 
metrics. Proceedings of the Ninth International 
Software	Metrics	Symposium	(METRICS	2003), 
263–275. IEEE.

This book has over the years remained an popolar 
reference for professional software engineers 
because it provides practical guidelines for per-
forming software inspections.

Gilb, T., & Graham, D. (1993). Software Inspec-
tion. Addison Wesley Publishing. 

This paper provides quantitative approach to 
determine the cost effectiveness of quality as-
surance	in	software	(i.e.,	when	to	stop	testing).	
It gives insights to answer questions related to 
quality in modeling.

Huang, L., & Boehm, B. (2005). Determining 
how much software assurance is enough? A 
value-based approach. International Symposium 
on Empirical Software Engineering, p. 10.

This book attempts to provide full coverage on 
metrics and models in software quality engineer-
ing. A recommended reading for both academics 
and practitioners who are interested in software 
measurements.

Kan, S.H. (2002). Metrics and models in software 
quality engineering. Addison Wesley Profes-
sional.

This is a classic paper that provides sound discus-
sion on the term of “software quality” and why 
its	definition	must	be	targeted	toward	a	specific	
goal.  

Kitchenham, B., & Pfleeger, S.L. (1996). Software 
quality: The elusive target. IEEE	Software,	13(1), 
12–21.

This paper provides a good overview of software 
inspection methods and come up with a taxonomy 
that can help practitioners identify inspection 
experience directly related to a particular life-
cycle stage.

Laitenberger, O., & DeBaud, J. (2000). An en-
compassing life-cycle centric survey of software 
inspection. Journal of Systems and Software, 
50(1), 5-31.



  ��

Managing the Quality of UML Models in Practice

This paper discusses the notion of completeness 
in UML designs; a very useful reference to start 
with model quality assessments.

Lange, C.F.J., & Chaudron, M.R.V. (2004). An 
empirical assessment of completeness in UML 
designs. Proceedings of the 8th International 
Conference on Empirical Assessment in Software 
Engineering	(EASE‘04), 111–121.

A paper based on an experiment that reveals the 
effects of syntactic defects in UML models. It 
also provide a ranking of  the defects based on 
their impacts.

Lange, C.F.J., & Chaudron, M.R.V. (2006). Effects 
of defects in UML models - an experimental inves-
tigation. In Proceedings of the 28th International 
Conference	on	Software	Engineering	(ICSE‘06), 
401–411. ACM.

Based a survey and industrial case study, this paper 
uncovers common problems in UML models and 
techniques for controlling their quality.

Lange, C.F.J., Chaudron, M.R.V., & Muskens, J. 
(2006). In practice: UML software architecture 
and design description. IEEE	 Software,	 23(2), 
40–46.

This paper proposed some techniques to analyze 
UML models, particularly related to inconsistency 
and incompleteness issues. 

Lange, C.F.J., Chaudron, M.R.V., & Muskens, J., 
Somers, L.J., & Dortmans, H.M. (2003). An em-
pirical investigation in quantifying inconsistency 
and incompleteness of UML designs. Proceedings 
of the 2nd Workshop on Consistency Problems in 
UML-based Software Development, 26–34.

This paper discusses the result of an experiment 
that investigated the effect of using modeling 
conventions in creating UML models. The factors 
measured were syntactic quality and the effort 
spent in modeling.

Lange, C.F.J., DuBois, B., Chaudron, M.R.V., & 
Demeyer, S. (2006). An experimental investiga-
tion of UML modeling conventions. In Oscar 
Nierstrasz, Jon Whittle, David Harel, and Gianna 
Reggio (Ed.), Proceedings	of	the	9th	International	
Conference on Model Driven Engineering Lan-
guages	and	Systems	(MoDELS	2006),	LNCS	4199, 
27–41, Heidelberg: Springer.

This paper discusses a replicated experiment that 
investigated the impact of complexity metrics in 
state charts on their understandability—another 
useful	reference	 that	 justifies	model	quality	as-
surance.  

Miranda, D., Genero, M., & Piattini, M. (2003). 
Empirical validation of metrics for UML stat-
echart diagrams. Proceedings of the Fifth Inter-
national Conference on Enterprise Information 
Systems	(ICEIS’03), 87–95

A very relevant paper with respect to design-code 
correspondence. It reports on design-code cor-
respondence analysis of industrial case studies 
using a correspondence tool.

van Opzeeland, D.J.A., Lange, C.F.J., & Chaudron, 
M.R.V. (2005). Quantitative techniques for the 
assessment of correspondence between UML de-
signs and implementation. In Houari A. Sahraoui, 
Coral Calero, Michele Lanza, Geert Poels, and 
Vernando Brito e Abreu (Ed.), Proceedings of 
the	9th	ECOOP	Workshop	on	Quantitative	Ap-
proaches in Object-Oriented Software Engineer-
ing	(QAOOSE’05), 1–18



��  

Managing the Quality of UML Models in Practice

This paper is one of the classic papers that initi-
ated discussion on model-based measurements. It 
is a good reference for readers who are interested 
in early ideas and practices in design measure-
ments. 

Rombach, H.D. (1990). Design measurements: 
Some lessons learnt. IEEE	Software,	7(2), 17-25

This paper evaluates the cost of software quality 
by	proposing	some	metrics	to	measure	its	benefits.	
The report was based on a real case study of 
software quality improvement initiative.

Slaughter, S.A., Harter, D.E., & Krishnan, M.S. 
(1998). Evaluating the cost of software quality. 
Communications	of	the	ACM,	41(8), 67–73.

From a survey amongst software developers, this 
paper reported 30 problems in using the UML 
1.3, which categories include inconsistency and 
ambiguity.

Simons, A.J.H., & Graham, I. (1999). 30 things 
that go wrong in object modeling with UML 1.3. 
In H. Kilov, Bernhard Rumpe, and I. Simmonds 
(Ed.), Behavioral	 Specifications	 of	 Business	
and Systems, chapter 17, pages 237–257. Kluwer 
Academic Publishers.

This paper provides a good introduction to 
Model-driven	 Engineering	 (MDE),	 its	 future,	
and challenges. 

Schmidt, D.C. (2006). Model-driven engineering. 
Computer,	39(2), 25–31.

This paper reports on the result of an experiment 
that	assesses	the	qualitative	efficacy	of	UML	dia-
grams in aiding program understanding.

Tilley, S.R., & Huang, S. (2003). A qualitative 
assessment of the efficacy of UML diagrams 
as a form of graphical documentation in aiding 
program understanding. Proceedings of the 21st 
International Conference on Systems Documenta-
tion	(SIGDOC	2003), 184–191. ACM.

This paper discusses the results of an experiment 
that suggests how models with higher level of 
abstraction are more resilient toward some types 
of changes.

Verelst, J. (2005). The influence of the level of 
abstraction on the evolvability of conceptual mod-
els of information systems. Empirical Software 
Engineering,	10(4), 467– 494.

This paper is related to the notion of design-code 
correspondence. It proposed an approach to 
analyze the evolution of software from its logi-
cal design. 

Xing, Z., & Stroulia, E. (2005). Analyzing the 
evolutionary history of the logical design of 
object-oriented software. IEEE Transactions on 
Software	Engineering,	31(10), 850–868.



  ��

Chapter II
Quality in Model Driven 

Engineering
Teade Punter

Embedded Systems Institute, The Netherlands

Jeroen Voeten 
Embedded Systems Institute, The Netherlands & Eindhoven University of Technology, 

The Netherlands

Jinfeng Huang
Eindhoven University of Technology, The Netherlands

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

abStract

This chapter argues that embedded systems design faces several challenges of which late integration and 
the difference in development productivity between disciplines are major ones. Model driven engineer-
ing	(MDE)	looks	a	promising	approach	to	address	these	challenges.	However,	MDE	is	a	new	approach	
which	has	to	be	defined	and	implemented	in	close	interaction	by	academia	and	industry	the	near	future.	
We	therefore	provide	a	conceptual	framework	to	understand	the	possibilities	and	the	flaws	in	quality	
assurance	in	the	MDE	design	flow.

introduction to eMbedded 
SySteM’S deSign

a. embedded Systems

Model Driven Engineering as we deal with it 
in this chapter is related to embedded systems 
design. An embedded system is the information 
processing and controlling part that is embedded 
in another (the embedding) systems, e.g., a copier 

or MRI scanner. The embedded system plays a 
controlling or monitoring role in the embedding 
(or hosting) system. Typically, embedded systems 
communicate to their embedding systems by 
actuators and sensors, not by human communi-
cation. This makes embedded systems different 
from information systems. Nowadays, embedded 
systems can be found everywhere. For example 
in cars, copiers, cameras, cell phones.



��  

Quality in Model Driven Engineering

Embedded systems are complex, because of 
for example, but not constrained to, their het-
erogeneity, concurrency and power constraints.  
One reason that they are complex is simply that 
they are big systems, e.g.,: the effort to develop 
them is huge, they contain many lines of code. 
Embedded systems are heterogeneous because 
they are built out of various components, includ-
ing software processes, processors, accelerators, 
memories, busses and networks. To design a 
component, assumptions have to be made about 
other (heterogeneous) components in the system. 
Since embedded systems observe and control 
many parts of their embedding system, multiple 
processes have to run in parallel. This requires 
concurrent handling. Many embedded systems 
have limited power supplies such as batteries. 
Battery use stresses the importance of energy 
constraints in embedded systems. For example, 
because they are portable (like cell phones), are 
implanted in humans (like medical devices) or 
are used in isolated areas (like wireless detec-
tion devices).

characterizing embedded 
Systems design

Embedded systems design aims at the design of 
complex information processing (sub)systems that 

will meet their requirements (functional as well 
as non-functional). The design should be done 
in a cost-effective way and should deliver the 
product in time (time-to-market). An embedded 
system design will therefore be judged by three 
main criteria: quality, effort and time. Because of 
the growing system complexity, a methodological 
approach or design flow is needed to meet these 
criteria. The design	 flow is the set of design 
activities (cf. method or development process, 
like Rational Unified Process (RUP)) needed 
to develop the system. An example of a design 
flow is the ordered set of activities: requirements 
definition, design and development, integration 
& testing and releasing, as shown in figure 1.a. 
Other appearances of a design flow exist. For ex-
ample, because of the experience that phases are 
not strictly separated but are intertwined (figure 
1.b) or because of that other terminology is used 
for defining the phases (figure 1.c).  Software 
tools are used to support the implementation of 
a design flow.

Embedded system design is often charac-
terized as co-design of hardware and software 
(Wolf, 2003). For example, computer architec-
ture provides designers with information about 
performance and energy consumption of proces-
sors. Knowledge about hardware components, 
and their cost, is needed to design software in a 

Figure	1.	Examples	of	design	flows	(©2007	Teade	Punter,	Jeroen	Voeten,	and	Jinfeng	Huang.	Used	with	
permission)



  ��

Quality in Model Driven Engineering

way that a cost-efficient system results that will 
meet its requirements. The embedding system 
might include involvement of other disciplines 
as well. Often disciplines are involved such as 
control engineering, electrical engineering and 
mechanical engineering. Taking more disciplines 
into account than software and hardware is de-
noted as multidisciplinary approach (Heemels 
& Muller, 2006). Each of these disciplines uses 
its own terminology, models of computation and 
tools. Knowledge about each of the disciplines and 
its interaction with other disciplines is needed to 
design embedding systems, such as a printer.

 In this chapter, we focus on the design flow of 
embedded systems, more specifically: hardware 
and software co-design. This design flow will 
often be part of the development process of an 
embedding system. Therefore there will be an 
interaction of the design flow with multidisci-
plinary development. After having specified the 
(high-level and low-level) system requirements, 
the design phase starts which involves disciplines 
such as mechanical engineering, electrical en-
gineering and software engineering. Although 
these disciplines are tightly coupled in the final 
system, their development is traditionally carried 
out in a rather mono-disciplinary and independent 
fashion, and the engineering results are delivered 
in a sequential way. Conventionally, first the me-
chanical subsystem is designed, then the hardware 
and finally the software.

challenges for embedded 
Systems design

The need for Model Driven Engineering is often 
advocated by the problems that embedded systems 
design faces. Many problems can be distinguished. 
We focus on two of them in particular, namely: 
late integration and productivity.

Late integration – Working with several dis-
ciplines requires tuning. Choices made in one 
discipline, concerning for instance control rates 

and the position of sensors and actuators, have an 
impact on the required functionality and might 
increase system’s complexity. Problems arising 
from this complexity often become visible during 
integration and testing, when the components/
subsystems have to work together. So, while test-
ing the subsystems in the separated disciplines 
proceeds without severe problems, the integration 
phase results in major problems that have to be 
solved, which take time that might cause project 
delays (Punter et al, 2002).

System design follows the design flow as 
indicated in figure 1, where system integration 
is performed inevitably in a late design stage. 
Due to the heterogeneity of the systems, many 
(design) errors are detected during integration. 
This might lead to substantial design iterations. 
In addition, the later an error is detected, the more 
costly it is to solve it (Boehm, 1989; Liggesmeyer 
et al, 1998). Further, during integration, verifica-
tion and quality assessment is mainly performed 
by testing the physical realization or prototype. 
This is difficult because of uncontrollability and 
unobservability and because of the Heisenberg 
principle in testing (Vranken, 1998; Huang et al, 
2002). Therefore, late integration is a challenge 
in embedded system design.

Differences in productivity amongst disci-
plines – another challenge is the difference in 
productivity amongst the disciplines, see e.g. 
(Corporaal, 2006a). This trend is seen by industry 
as a problem. For example, at ASML -world’s larg-
est producer of wafer steppers- the technologies 
for servo’s and lenses is considered to be cutting 
edge, in the leading group. Meanwhile software is 
considered as being in the rear. These differences 
in technology productivity will have a negative 
impact on quality, time and effort: decreasing 
quality, increasing effort and time-to-market. “For 
each new generation of a waferstepper the number 
of software developers is doubled” (Roos, 2006). 
The following figure shows that also hardware 
productivity does not pace up with the total pro-



�0  

Quality in Model Driven Engineering

cess productivity. However, software productivity 
grows slower than hardware productivity; see also 
(Genuchten, 1991; 2007).

The problems of late integration and low 
productivity are only two examples to advocate 
Model Driven Engineering (MDE). With MDE, 
the abstraction level of systems and software de-
velopment is raised meanwhile making important 
implicit structures more explicit. This enables 
architects and engineers in having a better system 
overview, which is also available more early in 
the development process.

Others argue that MDE is promising to ad-
dress platform complexity and the inability 
of third-generation languages to alleviate this 
complexity (Schmidt, 2006). We perceive the 
benefits of MDE in its assumption of yielding 
significantly shorter design times. We are aware 
of the danger of advocating a “silver bullet”, like 
software reuse has been advertised in the past as 
being the solution for low software productivity. 
Little empirical data about the impact and added-
value of Model Driven Engineering exist. At this 
moment MDE is more a belief. In this chapter we 
do not advocate that MDE is the ultimate solu-
tion. Instead we focus on how to organize MDE 

to assure its process quality as well as the quality 
of the resulting system. The following section 
introduces Model Driven Engineering.

Model driven engineering 
(Mde)

Model Driven Engineering (MDE) refers to the 
systematic use of models as primary engineering 
artifacts throughout the engineering lifecycle1. 
Modeling a system might focus on its behavior 
(any event or action that the system performs), its 
structure or system functionality. To model we 
need a particular language (formalism as well 
as notation) to express the domain concepts of a 
discipline effectively.

A model transformation takes as input a 
(source) model and produces as output a (target) 
model. Both models might be restricted by the 
requirement that they conform to a source or 
target meta-model. The transformation might be 
conducted to refine the model into a model of a 
lower abstraction level or from a lower abstraction 
level to a higher one, e.g. reverse engineering. Even 
the abstraction level might not change during the 

Figure 2. Differences in software and hardware productivity compared to general process productivity. 
Taken	from	(Corporaal,	2006b).



  ��

Quality in Model Driven Engineering

transformation, e.g., if the model is re-factored. 
The transformation from higher level models to 
lower level models is often addressed as vertical 
transformation. For example the transformations 
from platform independent models (PIM) to plat-
form specific models (PSM) in software discipline, 
e.g., (Gool et al, 2006). The transformation on the 
same or similar abstraction level is than addressed 
as horizontal transformation, e.g., the migration 
of an architecture (with its related platform), e.g., 
(Nieuwelaar, 2004; Graaf et al, 2005).

A transformation takes a source model as input 
and transforms it into target model or other arte-
fact, which means often that source and target are 
different. However, in case of a model redesign the 
source and target model are the same. (Software) 
synthesis is a particular form of model transfor-
mation during which a model is transformed into 
an implementation, e.g., code.

A third element of MDE is view, which is a 
graphical representation that provides a perspec-
tive on the system. Views are related or derived 
from particular paradigms or models of compu-
tation. They are a set of “laws” that govern the 
interaction of components in a system. Several 

models of computation exist, e.g., (Hylands et al, 
2003). In the software discipline behavior and 
structure of software can be modeled by different 
paradigms, like input output processes and finite 
state automata.

A fourth element of MDE is executable models, 
which enable the execution of a behavioral model 
by a simulator (a tool that simulates the model). 
Executable models are especially important to 
deal with concurrent and timed behavior in an 
embedded system.

The way how MDE is used within a design 
flow is determined by the way how models are 
used by the involved disciplines. We think that 
two basic strategies for applying MDE exist.

Strategy 1 starts by defining an integrated 
system model, at a manageable abstraction level. 
From this (unique) model, incremental transfor-
mation to less abstract and more detailed models 
should be possible. These detailed models are the 
starting points for code generation and synthesis 
as well as for modeling in other disciplines. This 
strategy requires a modeling language that can 
cope with abstract system modeling in a system-
atically refined way until synthesizable models 

Figure	3.	Possible	directions	for	model	transformations	(©2007	Teade	Punter,	Jeroen	Voeten,	and	Jin-
feng	Huang.	Used	with	permission)



��  

Quality in Model Driven Engineering

can be generated. This is a feasible approach 
for (digital) hardware development, but not for 
multidisciplinary development of embedding 
systems yet.

 Strategy 2 starts from the idea that disciplines 
will remain in parallel to each other during design. 
Models are defined within these separate disci-
plines. Information of the models is exchanged 
to models in other disciplines to ensure coherent 
development of a system. The difference with the 
conventional design flow (see figure 1.a) is that 
early feedback is given to each of the disciplines. 
Disciplines use each other for simulation purposes. 
So, simulators that execute model behavior for 
other disciplines, e.g., “hardware-in-the-loop”, 
are necessary. This approach of MDE is advo-
cated by the Ptolemy project (Ptolemy, 2007). 
This is also addressed as co-simulation in which 
the interfaces between different domain-specific 
modeling languages are defined, e.g., of Matlab 
Simulink to Rose Real Time (Hooman et al, 2004).  
Strategy 2 is not only used for multi-disciplinary 
development. See for example in UML, where a 
software system is specified by using different 
models (e.g. class diagrams, sequence diagrams, 
etc.), and mechanisms should be provided in order 
to guarantee their consistency.

An example of MDE is the design of the soft-
ware part of a mechatronic system: a complex 
production cell system (Huang et al, 2007a). The 
design consisted of two major parts: systematic 
modeling and correctness-preserving synthesis. 
On the one hand, the design has to provide solu-
tions to deal with concurrency and timeliness 
issues of the system. On the other hand, it has to 
glue different disciplines (such as software, control 
and mechanics) of the system as a whole.  The 
modeling stage was divided into four steps, which 
focused on different aspects (such as concurrency, 
multiple disciplines and timeliness) of the sys-
tem respectively.  The modeling process started 
from an informal description (called handshake 
diagrams) of the system, where the system was 
considered to be a set of concurrent components 

(called players). Based on the proposed guidelines, 
the players could be intuitively identified and their 
interaction patterns could be easily constructed. 
Following that, a concurrency model was derived 
from the handshake diagram, where the un timed 
interactions between different players could 
be formally checked by using verification and 
simulation techniques. The concurrency model 
has formal semantics, which allowed us to use 
existing verification tools such as SPIN to do the 
verification. At the same time, the model is also 
executable it is naturally ready for simulation. 
After that the interactions between especially the 
software and control engineers were investigated 
in a refinement (multi-disciplinary model) of the 
concurrency model. In the end, the quantitative 
properties (real-time properties) were analyzed in 
the refinement of the multi-disciplinary model. 
Furthermore, the consistency between the models 
at the different abstraction levels could be main-
tained so that properties that were analyzed at a 
higher level model were still valid in the models 
at lower abstraction level.

After the specification of the important system 
aspects and an analysis (of the unified model) a 
software implementation was automatically syn-
thesized from the model, which correctness was 
ensured by construction. The synthesis is formally 
proven in (Huang et al, 2007b). The approach 
was perceived as effective because it divides the 
system behavior into different aspects which can 
be modeled easily while the consistency between 
the different models is maintained. The develop-
ment of the production cell system shows that 
the 75% design time could be reduced using this 
MDE approach. 

Having defined the principles of MDE we 
now look back at the two problems expressed 
in section 2 for which MDE promises to be the 
answer. MDE’s answer to the problem of late in-
tegration is by providing models that facilitate a 
better understanding of the design problem. These 
models provide possible solutions for design which 
enables simulation earlier than waiting untill the 



  ��

Quality in Model Driven Engineering

implementation is available. This advances the 
integration and test phase of the design flow.

MDE’s answer to increase software productiv-
ity is by its increasing of the levels of abstraction 
which avoids implementation of platform specific 
details. This will yield significantly shorter de-
sign times. An illustration is the “documentation 
problem” that we noticed in some embedding 
system projects. Following a waterfall-like way 
of designing a system (see figure 1.a) the technical 
software documents that will be produced will 
be hard to verify at once. Because the system 
requirements will change over time as well as 
because integration and testing will give new 
insights to improve design, it will be likely that 
the technical documentation will be not up-to-date 
soon. This has a negative impact on the software 
productivity. By documenting design as a set of 
models, and generating (or synthesizing) code 
from them, it will be likely that the design can 
be maintained up-to-date. 

Model Driven Engineering looks a promis-
ing approach to address particular problems in 
embedded systems design. This chapter further 
focuses on the question how to establish quality 
in an MDE design flow. We believe this has an 
impact on system quality, although we are aware 
that the relation between process and product 
quality is still not completely understood. 

Quality aSSurance in the Mde 
deSign flow

The MDE design flow is a process. We therefore 
want to apply concepts about the quality of pro-
cesses to the design flow. We do not look at the 
maturity of processes and process improvement 
as expressed in, e.g., the Capability Maturity 
Model (SEI, 2007). Instead we look at more 
fundamental principles of processes as applied 
in system’s theory  that was elaborated for the 
software engineering domain by (Punter, 2001; 
Punter et al, 2004).

System theory considers a process as a system 
with an input and an output. Executing a process 
means that an input is transformed into an output. 
Key in this approach is the control of processes. 
Control is needed to generate an output that meets 
expectations. In terms of the design flow: a design 
that meets customer expectations, passing verifi-
cation and validation phases. From this theory we 
formulated a framework of thinking to analyse 
design flow by looking at four elements.

1. Goal formulation – controlling a process 
means that the process aims at achieving 
particular goals. For example, in process 
approaches like done with CMMi (SEI, 
2007) and ISO15504/Spice this principle is 
effectuated by the idea that a process should 
be conformant to baseline- or key practices. 
To be able to achieve goals, they should be 
well-formulated to be able to steer the pro-
cess in the right direction. Well-formulated 
means e.g., that the goals are specific and 
measurable, see e.g., (Park et al, 1996) as well 
as (Mannion and Keepence, 1995). We know 
that goals will by principle change over time. 
Goal formulations that once were mentioned 
by stakeholders as being important might 
have less weight after a while, and vice versa. 
Also new goal formulations might appear. 
This is especially an issue for processes that 
last for longer periods. Changing of goals 
has an impact on the iterations in a design 
process. Each iteration starts from a goal 
formulation. When the goal formulation has 
changed, a new iteration starts.

2. Integrated activities – a process in control 
means also that the activities are related 
to each other. This implies that outputs of 
activities are input for its successor activity 
or activities. Unclear or non-existing rela-
tionships between activities cause activities 
that are conducted in isolation; meanwhile 
uncertainty exists about whether activity 
outputs will be applied by successor activi-



��  

Quality in Model Driven Engineering

ties. Managing such a process is not pos-
sible, because the relations between goals 
and activities are not specified explicitly. 
Therefore a controlled process requires 
integrated activities.

3. Trade-off between goals and resources 
– resources are needed to perform activities. 
The appropriate resources should be chosen 
to achieve the goals. People as well as tech-
niques are the main categories of process 
resources. The trade-off between goals and 
resources is about setting the right goals with 
the available resources or to acquire addi-
tional resources to achieve the stated goals. 
It might be necessary to reformulate goals if 
the appropriate resources are not available. 
The trade-off mechanism is necessary to 
find the right balance between goals and 
resources. To achieve quality assurance in 
a process, this mechanism should be active 
continuously. When goal formulations are 
available and the supportive resources are 
known, the trade-off should start. But when 
the trade-off is set for a process, disturbances 
in the process, e.g., changes in goals or lack 
of resources might imply a mismatch, which 
requires the setting of a new trade-off.

4. Feedback – quality assurance of processes 
implies also the monitoring of processes. 
This is needed to determine if the process 
moves into the right direction and will (prob-
ably) achieve the defined goals. Monitoring 
requires feedback information about the 
process. If deviations are discovered, then 
steering actions are required to achieve the 
desired result(s) after all.

In the following sections we explain what these 
factors imply for the MDE design flow.

goal forMulation

Goal formulation is essentially the specification 
of why a design flow is conducted. In section 5 

we will see that activities in a design flow can 
be of two types: analysis and design activities. 
Design activities are part of the design flow in 
the way that they result in the blue print of the 
system. Analysis (or aspect) models are about an 
aspect of the design, e.g., performance. The goals 
for the respective activities are therefore different 
by their type. The goal formulation of the analysis 
activities for the design flow will be related to 
what is commonly addressed as the specification 
of quality characteristics, like reliability. In the 
software discipline non-functional requirements, 
e.g., (Chung et al, 2000) or the ISO-standard 
for software product quality (ISO 9126, 2001) 
applied. For systems engineering other proper-
ties are required, e.g., addressing evolvability 
and dependability; see for an example proposal 
(Muller, 2004). Goal formulation that applies to 
design activities is about the phases in the design 
process, such as synthesis and verification.

The goals for a design flow should be derived 
from or should be related to business goals, such 
as time-to-market, quality and effort. Guidelines 
for refining business goals into sub goals are 
provided by (Park et al, 1996) and (Punter et al, 
2004). Goals cannot be formulated right while 
not looking at the information about the system 
and design context. A framework that will help to 
define goals for multidisciplinary development is 
the CAFCR-method for embedded systems archi-
tecting (Muller, 2004). Key views of this method 
that help goal setting are: customer objectives, 
application and functional areas.

In embedded systems design –focusing on the 
hardware and software discipline– we distinguish 
analysis activities in a design flow; see next sec-
tion. To define the goals for analysis activities 
explicitly, a template might be helpful, just like 
the goal measurement template in the Goal Ques-
tion Metric (GQM) approach (Basili and Weiss, 
1984). We therefore propose to formulate goals 
by applying this GQM template as expressed in 
table 1. The template consists of 4 topics: object, 
quality focus, purpose and viewpoint. The object 



  ��

Quality in Model Driven Engineering

specifies the activities in the design flow upon 
which the analysis will focus. Quality focus is 
about the type of analysis that will be conducted. 
Purpose expresses the ambition of the analysis in 
the design flow. It is just to understand the design 
or if analysis is needed e.g., to verify or to synthe-
size an implementation.  Viewpoint expresses the 
stakeholder(s) that will use the analysis results.

integrated activitieS

The main purpose of models is to help engineers 
understand the interesting aspects of the future 
system. Models are therefore widespread used by 
engineers in a variety of disciplines. For example, 
hardware engineering apply models in notations/
languages like VHDL 

Integration of activities in an MDE design 
flow deals with models at different abstraction 
levels and the transformation(s) between them. 
We distinguish here two types of models: aspect 
(or analysis) models and design models, which are 
related to two types of activities in the design flow, 
namely analysis and design activities respectively. 
These are mutually inverse activities that are 
continuously performed during the design flow. 
Design activities aim at refinement, which try to 
add more implementation details to the design 
models, thereby reducing the gap between the 
implementation (e.g., code) and design model. 

Analysis activities try to remove (or hide) as much 
as possible irrelevant information by abstract-
ing from the design models. This improves the 
comprehensibility of the existing design models 
and facilitates the evaluation of different design 
solutions. Where design models are characterized 
as being the core of the design flow, analysis mod-
els provide additional information to the design 
models that enables the analysis of the design. 
Design models are the “first class citizens” of the 
design flow, see figure 4. The aspect models are 
abstracted from the design models. This enables 
designers to look at particular aspects, such as 
concurrency and performance, which provide a 
feedback to the design.

This distinction impacts the organization 
of the models. Design models are organized 
and categorized according to different levels of 
abstraction. Aspect (or analysis) models apply 
information from different design models and 
therefore have to cope with information that is 
related to different levels of abstraction.

guidelines for integrating activities

An MDE design process can be carried out in a 
stepwise or/and piecewise manner in multi-stages. 
During a stepwise design stage, a series of design 
decisions is made at different abstraction levels. 
At each abstraction level, only a subset of the 
desired properties of the system is investigated. 

Table	1.	Proposal	to	formulate	analysis	goals	in	a	design	flow

Object <design, synthesis, etcetera> 

Quality focus <reliability, performance, dependability, 
evolvability> 

Purpose
<understanding, improving, verification & 
validation, synthezise (an implementation out of 
models)>

Viewpoint <project leader, engineer, architect>



��  

Quality in Model Driven Engineering

To make such a design process smoother, it is 
crucial for MDE to support predictability, al-
lowing desired properties to carry over between 
different abstraction levels of the system. As a 
consequence, the properties of interest verified 
at one level of abstraction can be preserved into 
another level in a stepwise manner. During a 
piecewise design stage, the system is constructed 
by the recursive composition of separately ex-
ploited components.

Each component only contains a part of the 
total functionality of the system. To ensure that 
design decisions made in a component are still 
valid in the integrated system, compositionality 
is considered as a key feature of the MDE empha-
sizing semantic independency of components. As 
a consequence, the behavior of each component 
remains unchanged during the integration, and 
properties of the integrated system can be derived 
from those of the components. Design of a complex 
system can involve both stepwise and piecewise 
design processes.

The transformation of a system from one 
abstraction level to another can be achieved by 
a set of independent transformations of its com-
ponents. Compositionality ensures that the trans-
formation of each component can be carried out 
independently. On the other hand, the integration 
of components is usually reasoned about on the 
basis of the integration of their abstractions, which 
is ensured by predictability. Therefore, composi-
tionality and predictability are two interdependent 
and indispensable features of MDE.

Executability is an important characteristic 
of the model during system design, because in 
the executable model, different aspects (such as 
interaction diagrams, class diagrams and state 
diagrams of UML) of the system can be naturally 
integrated, where inconsistency between different 
aspects can then be located (Huang et al, 2004).  
As a result, many design errors can be corrected 
in an early development stage, avoiding costly 
and time-consuming iterations.

Figure	4.	Two	types	of	activities	in	a	design	flow:	analysis	and	design	activities	(©2007	Teade	Punter,	
Jeroen	Voeten,	and	Jinfeng	Huang.	Used	with	permission)



  ��

Quality in Model Driven Engineering

experiences with transformation in 
the Software discipline

MDE requires transformation. In this subsection 
we present our experiences with a “vertical” 
transformation (see section 2) in the software 
discipline. We focused on modeling coordination 
of the machine by software functionality. Input for 
this is a definition of high-level services (abstract 
behaviors) of a waferstepper in terms of low-level 
services (resources behaviors) and the machine 
parts (resources) that are needed to execute them. 
In the existing situation the platform runs C-code, 
while a higher level specification was written in 
Word documents without using specific modeling 
techniques (Punter et al, 2007).

The model transformation case study was 
conducted to define the lower level specification 
on a higher level of abstract, but also more precise 
than it is done in the word documents. We started 
with specifying the high-level specification of co-
ordination as a set of UML2.0 Activity diagrams 
and Class diagrams. Next step was to specify the 
system at concrete level of abstraction as a set of 
UML2.0 Activity– and Class diagrams. Third step 
was to define the transformation itself. We have 
chosen the Query View Transformation (QVT) 
as a set of rules to define the transformation and 
using Borland Together ® for modeling as well 
as transformation purposes.

The structure (class) models could be relatively 
easily transformed from higher level of abstrac-
tion to concrete models. It was more difficult 
to transform the behavioral (activity) diagrams 
when using QVT.  The arbitrary concepts have to 
be detailed to a level that can unambiguously be 
interpreted by the platform. Therefore language 
constructs were specified that helps to decompose 
behavioral description of higher level into lower 
level. This language is a compositional subset 
of UML 2.0 activity diagrams and consists of 
any activity that can be built with the patterns 
proc, seq, assign, guard, if and 
call (van Gool et al, 2006). It was possible to 

define abstract behavior in their platform-specific 
form that was offered to a scheduling component, 
which tries to execute them in an optimal man-
ner. For each abstract behavior, the scheduling 
component determines the set of resources that 
are needed for its execution and when they are 
needed. Although this is a first step in determin-
ing timing of behaviors, the timing itself is still 
outside of the scope of the implemented model. 
Appropriate timing is the responsibility of the 
scheduling component.

The approach of using a compositional subset 
of a standardized language (UML) turned out 
beneficial. Company’s architects were quickly able 
to understand the language and discuss details 
of a coordination instance that was considered 
very complex. Furthermore, the language’s com-
positionality guided the definition of the model 
transformation.

integrated activities and Multiple 
disciplines

In a multidisciplinary approach the exchange of 
models is required. Software development might 
benefit from simulation of hardware (hardware-in-
the-loop) and vice versa. Therefore we will try to 
understand models in the disciplines as expressed 
to abstraction level, the degree of complexity and 
heterogeneity (or variety) in the design space. The 
general trend to deal with system complexity is 
to make abstractions from reality. Abstractions 
are made to maintain the overview of the system. 
However, abstraction increases also the number of 
possible decisions in the design space, because the 
number of concepts increases. This is denoted as 
heterogeneity of modeling. As such the increase 
in heterogeneity is a good thing, because of the 
variety of modeling concepts that can be applied. 
However, much more interpretation is required 
because of multiple concepts. For example, a 
hardware design that is specified on transistor 
level is easier to interpret because the definition 
is more deterministic than a hardware design 



��  

Quality in Model Driven Engineering

specified on functional level that containing, 
e.g., different processors, various memories and 
specific interfaces.  The price of abstraction is the 
harder effort to define specified behavior: “there 
is no free lunch”.

Figure 5 visualizes the trade-off between ab-
straction and heterogeneity in the design space. 
The consequence of this trade-off for multidisci-
plinary system development is the need of compat-
ibility between models. For example, imagine the 
situation that hardware is modelled by specifying 
with VHDL targeting an FPGA. Can we also use 
this model to simulate software models that are 
expressed in Activity diagrams? To achieve our 
goals we might need parts of different models to 
make a thorough analysis.

 One possibility is to define integrated models 
and derive the models of the individual disciplines 
(hardware, software) out of it. For example, 
(Huang et al, 2007b) presents a model specified 
in the POOSL modeling language on a high level 
abstraction, that covers hardware and software 
concepts.

A second option is to define interfaces between 
models in a way that models can use each other, 
e.g., for “hard-in-the-loop” simulation. We are 
aware that it is still difficult to determine the 
similarity of abstraction levels between mod-
els of different disciplines; the shaded part in 
figure 7 implies modeling at a particular level 
of abstraction. However, a logical scenario for 
model compatibility is to start with models of 
the discipline of physics. Latter discipline will 
deal with the most detailed behavior, continu-
ous control (mechanics discipline) requires low 
level of control but can be specified at a higher 
abstraction than in physics. Discrete event con-
trol (high-level software control) will have the 
least detailed level of abstraction. Knowing the 
dependencies between the disciplines concerning 
the levels of abstraction helps us to understand 
that situation (a), expressed in figure 6, will be 
an unlikely situation to integrate models, because 
the physical model is defined at a high level of 
abstraction, compared to other models, while for 
example the software is specified at a lower level 

Figure	5.	Relation	of	abstraction	level	and	heterogeneity	within	a	discipline	expressed;	plus	an	example	
of	abstraction	levels	for	hardware	discipline	(©2007	Teade	Punter,	Jeroen	Voeten,	and	Jinfeng	Huang.	
Used	with	permission)



  ��

Quality in Model Driven Engineering

of abstraction. In situation (b) also different levels 
of abstraction are due, however here the order in 
levels of abstraction from physics to software 
enables compatibility.

 In this section we have distinguished analysis 
and design activities in a design flow. Design ac-
tivities determine product quality while design de-
cisions are made. Analysis activities pay attention 
to particular aspects (with defining aspect models). 
Although both types of activities impact product 
quality of MDE, we focus on analysis activities 
further in the remainder of this chapter.

trade-off goalS and 
reSourceS

Trade-off is a control mechanism to match ap-
propriate resources to the stated goals. The ap-
propriateness of resources will be mainly, but 

perhaps not completely, determined by three 
factors, namely: effort, accuracy and usability.

Effort – Resources in a design flow are the 
engineers, architects and other people that are 
involved in system design as well as the tech-
niques –like model checking or synthesis tools- 
that they use for (designing and) analyzing the 
system. Applying resources take effort (time, 
person years), which has to be estimated when 
choosing a technique.

Accuracy – Resources in an MDE design flow 
that are especially meant here are the techniques, 
applied to modeling. Models should be build and 
they should be reasonably accurate. The main 
concern here is that the model is a good abstrac-
tion of reality. This implies that an accurate model 
addresses an up-to-date design problem as well 
as that there is a common agreement amongst the 

Figure	6.	Two	situations	of	model	at	different	levels	of	abstraction	in	multiple	disciplines:	(a)	unlikely	
situation,	(b)	more	likely	situation	for	model	compatibility	(©2007	Teade	Punter,	Jeroen	Voeten,	and	
Jinfeng	Huang.	Used	with	permission)



�0  

Quality in Model Driven Engineering

users of the model that the model represents what 
it has to represent.

Usability – Resources, especially meant here 
are the techniques, should be applicable and there-
fore usable. Usability of technique is hard to define, 
because it depends on the “eyes of its beholders”. 
Therefore we think that a number of criteria may 
be applicable to define usability. For example the 
success factors for modeling in industry (Beckers 
et al, 2006) are helpful to identify usability of 
modeling techniques. For example: 

•	 Conceptually simple – easy to understand 
and as such applicable for reasoning and 
communication across disciplines.

•	 Use of conventional paradigms – e.g., of tim-
ing tables and position-time diagrams that 
are in use in the company already. Hence, 
outcomes of the model can be easily com-
municated.

In case we are able to express effort, accuracy 
and usability of MDE- resources we expect to be 
able to match the resources to goals, more specifi-
cally: the purpose of goals, see table 1. However, 
little empirical evidence about MDE resources 
exists today. Most information is scattered and 

incomplete. An exception is an overview of for-
mal methods presented by (Vaandrager, 2006), 
that provides an overview of formal methods, 
see figure 7.

This overview shows that theorem provers, 
such as PVS and Coq require great skills and 
resources but allows one to solve very hard (veri-
fication) problems. Meanwhile, Model checking 
(with tooling like mCRL, SMV and SPIN) provide 
the advantage over theorem proving that once a 
model and a property are specified, analysis is 
in principle fully automatic. This saves some ef-
fort. Automated abstraction can be perceived as 
an addition to model checking to cope with the 
problem of scalability (the problem of state-space 
explosion). Abstractions, like symmetries, data-
path have been proven powerful (Vaandrager, 
2006). The concept of types and the development 
of automatic algorithms for establishing type 
correctness are examples of “invisible” formal 
methods. They are completely invisible to the user, 
but still have a good return on investment, being 
able to find a lot of bugs. This overview shows 
that techniques will be chosen depending on the 
required accuracy and the amount of available ef-
fort that those who want to verify want to spend. 
These criteria apply to other goal ambitions, like 
understanding a system, as well.

Figure	7.	An	example	of	expressing	accuracy	and	effort	of	resources.	Taken	from	Vaandrager,	2006.



  ��

Quality in Model Driven Engineering

feedback

Feedback is a control mechanism that should 
monitor if the design flow is behaving right. More 
specifically: feedback is the identification of the 
most important conflicts in a design as well as 
the structuring of design options in situation of 
incomplete information (uncertainty). Another 
way of saying is to use feedback to determine 
system’s (intermediate) quality , e.g., expressing 
this as performance or dependability: the “quality 
focus” in table 1.

Feedback information will be generated for 
all of the goal purposes as defined in the goal 
template in table 1, but applies to the verifica-
tion and validation. Feedback information can 
be provided in many different ways. It can be 
the simulation information that is provided by 
e.g., “hardware-in-the-loop” models to find the 
constraints for the software discipline. Feedback 
information will be not restricted to the end of the 
design process. Especially in testing or verifica-
tion processes, feedback information is required 
during all stages. An approach is to conduct model 
inspections, e.g., by checking model conventions, 
see e.g., (Lange et al, 2006a&b). This will generate 
design information of draft UML-models. 

Also model checking might be an option. For 
example, by constructing a model in a particular 
process algebra language and check whether 
system meets its requirements, see e.g., (Ploeger 
& Somers, 2006). This approach enables early 
verification and synthesizes an implementation 
from the generated model2.

 A common approach in quality assurance 
would be to apply the feedback information to in-
terpret the quality of the resulting system by using 
a quality model or set of quality characteristics, 
the “-ilities” mentioned before. However, it will be 
often hard to define applicable criteria to evaluate 
non-functional requirements of embedded soft-
ware systems (Punter et al, 2002).  Meanwhile 
the restriction in available design time (related 
to time-to-market and available man power) 

implies that in-depth and often time-consum-
ing modeling and analysis should be performed 
only for the essential and critical issues (Sandee 
et al, 2006).  An alternative approach –so-called 
threads of reasoning- has been applied at Océ 
Technologies (Heemels, Muller, 2006).  It is a 
graph-based iterative technique to identify the 
most important conflicts in the design problem 
and possible solutions. The system architect uses 
the information implicitly to integrate various 
views in a consistent and balanced way, in order 
to design valuable usable and feasible products. 
In fact the threads makes explicit what is already 
available implicit. Details of the method and 
guidelines to apply the method are provided by 
(Sandee et al, 2006). We remark that the “thread 
of reasoning”-method, as well as other ways to 
conduct feedback, depend much on the experience 
of the people involved.

In addition to the feedback mechanism we 
also want to address the importance of a feed 
forward mechanism in a design flow. This applies 
especially to the transformations of higher level 
models into more detailed models, resulting into 
synthesis of code. Dealing with feed forward we 
are interested in the reliability or predictability 
of the transformation. How sure are we that 
the specified model-to-model or model-to-code 
transformation provides the right result? When 
we look at the software discipline we perceive 
that a lot initiatives to transform UML-models 
with a model to code generation purpose focus 
on the syntax of the transformation. However, 
such syntactical transformation cannot always 
guarantee the consistency between the model and 
the implementation. To ensure the correctness by 
construction, the semantics of the implementa-
tion should respect to the semantics of the model. 
For instance, a synthesis approach in which this 
applies is proposed for concurrent real-time sys-
tems in (Huang et al, 2007a). The execution of 
the implementation follows the timing semantics 
of the model by synchronizing the time in the 
physical world and the time in the model.



��  

Quality in Model Driven Engineering

future trendS

We see three main trends that will be relevant 
for successful implementation of model driven 
engineering (MDE), namely: predictability of 
the transformation, heterogeneity of modeling 
languages and getting empirical results.

Predictability of transformations - synthesiz-
ing implementations from models in a predict-
able way is still a challenging research topic. 
The challenge is to preserve the properties of a 
model transformation for a next transformation, 
so that no information will be lost during the 
transformation(s). In section 7 we already ad-
dressed the importance of a property preserving 
transformation approach for concurrent real-time 
systems. There are still many research chal-
lenges in this area. For instance, in a distributed 
system, the software components are distributed 
over a multiple-processor platform instead of a 
single processor platform assumed in (Huang et 
al 2007b). It is still an open issue to ensure the 
correctness consistency for distributed systems 
during code generation.

Heterogeneity of modeling languages – in 
our chapter we have referred to heterogeneity 
of modeling. Some modeling languages and 
techniques for communicating (or parallel) 
processes are CSP, Uppaal, SDL and POOSL. 
Understanding these languages is important to 
implement model driven engineering in the fu-
ture. For example, some companies will not use 
off-the-shelf solutions because of high demands 
on their platforms. Instead they still want to use 
well-supported easy-to-learn design languages 
with a feasible approach to generation of code 
for all kinds of different platforms that are used 
in different versions of their products.

The trade-offs to use a language depends on 
domain, accuracy and scalability. We should be 
able to understand these languages as good as our 
community understands functional or procedural 

programming languages. We also think that this 
discussion on languages applies to the discussion 
between domain specific languages (DSL) and 
a unified modeling language (i.e. UML) in the 
software community, see e.g., (Staron & Wohlin, 
2006).

A hierarchy of communicating languages is 
needed for this purpose. This will organize lan-
guages according to their expressiveness as well 
as their efficiency (timing). Abstract languages 
will than be ranked as good on their expressive-
ness, while they will likely to be worse for their 
efficiency and synthesis capabilities. Finding the 
trade-offs between expressiveness and efficiency 
can be enriched by taking accuracy, effort and 
usability of resources (section 6) into account 
as well. An interesting initiative to characterize 
some languages is provided by (Verhoef and 
Hooman, 2006).

Getting empirical results – model based en-
gineering (MDE) like model based architecture 
(MDA) are approaches that address the increas-
ing complexity of today’s systems. However, 
modeling and dealing with abstraction requires 
developers and engineers that are open-minded 
to the approach. Training people to work with 
models and providing tools that are easy to use 
will than be key factors. In addition there is a 
need for empirical results of application MDE 
techniques in practice, as already noted in sec-
tion 7. This insight is needed to determine when 
to use what technique. With this chapter we aim 
at providing a quality framework to interpret 
those results.

concluSion

Model Driven Engineering (MDE) is the sys-
tematic use of models as primary means for 
the hardware and software discipline. We think 
that Model Driven Engineering addresses chal-
lenges in embedded systems design, such as late 



  ��

Quality in Model Driven Engineering

integration and the difference in development 
productivity. We remark that MDE should be done 
in interaction with a multidisciplinary approach 
-incorporating other disciplines- if applicable. 

In this chapter we have recognized that MDE 
is immature and that there might be the danger 
of advocating a silver bullet. Therefore we have 
provided a framework to think about quality in 
the MDE design flow. The framework applies 
to the process of a design flow. We assume that 
organizing this process properly will be beneficial 
for system (product) quality as well.

The starting point of our framework is the need 
for control in a way that generated output of the 
design flow will meet expectations. Key elements 
of control are: goal formulation, integrated activi-
ties, trade-off between goals and resources and 
feedback. MDE terminology and concepts were 
defined for each of these elements. Successful 
quality assurance requires paying attention to 
each of the four elements.

Concerning activities in an MDE design 
flow we distinguish between design and analysis 
activities. To formulate goals for analysis activi-
ties a goal template was presented. Integration 
of activities in an MDE design flow deals with 
models at different abstraction levels and the 
transformation(s) between them. Based on our 
experiences we found that that compositionality 
and predictability are indispensable features of 
MDE.

To establish the right trade-off between goals 
and resources it will be necessary to identify 
effort, accuracy and usability of resources. Un-
fortunately, little empirical evidence about MDE 
resources exists. The feedback information that 
is generated during a design flow should be 
particularly be fed by data about the system (or 
product) quality. The opposite of feedback -but 
aiming at the same need to control- is feed for-
ward. We think that MDE should be facilitated 
by predictable transformation means to enable 
feed forward.

Today, MDE is still in a kind of research phase. 
It’s future success depends on its technical feasibil-
ity and how to introduce it into organisations. Our 
framework is meant as a means to discuss before 
-and to steer during- introduction of MDE.

referenceS

Basili, V.R., & Weiss, D.M. (1984). A methodology 
for collecting valid software engineering data. 
IEEE Transactions on Software Engineering, 
10(6), 728-738.

Beckers, J.B.C., & Heemels, W.P.M.H., & Buk-
kems, B.H.M. (2006). Effective industrial mod-
eling: The example of Happy Flow. In Heemels, 
W.P.M.H., & Muller, G.J. (Eds.) Model-based 
design of high-tech systems, (pp. 77-88). Eind-
hoven: Embedded Systems Institute.

Boehm, B. (1989). Software Risk Management. 
Los Alamos: IEEE.

Chung, L., & Nixon, B.A., & Yu, E. (2000). Non-
functional requirements in software engineering. 
Boston: Kluwer.

Corporaal, H. (2006a). Embedded System De-
sign. In Progress	White	Papers	2006 (pp. 7-25). 
Utrecht: STW Progress.

Corporaal, H. (2006b), Embedded System De-
sign. STW Progress presentation, May 10, 2006. 
Retrieved 4 March 2007, from:  www.ics.ele.
nl/~heco.

Genuchten, M. van. (1991). Why is Software 
Late? An Empirical Study of Reasons for Delay 
in Software Development. IEEE Transactions on 
Software Engineering, 17 (6), 582-590.

Genuchten, M. van. (2007), The Impact of Soft-
ware Growth on the Electronics Industry. IEEE 
Computer, 40(1), 106-108.

Gool, L. van, & Punter, T., & Hamilton, M. (2006). 
Compositional MDA. In O. Nierstrasz et al (Ed.), 



��  

Quality in Model Driven Engineering

Proceedings	 of	Models	 2006	 LNCS	 4199, (pp. 
126-139). Berlin: Springer.

Graaf, B., & Weber, S., & Deursen, A. van. (2006), 
Migrating Supervisory Control Architectures 
Using Model Transformations. In Proceedings of 
10th European Conference on Software Mainte-
nance	and	Reengineering	CSMR	2006 (pp.153-
164). Los Alamos: IEEE Computer Society.

Heemels, W.P.M.H., & Muller, G.J. (Eds.) (2006). 
Model-based design of high-tech systems, Eind-
hoven, Embedded Systems Institute.

Hooman, J. & Mulyar, N., & Posta, L. (2004). Cou-
pling Simulink and UML models. In Schnieder, 
B., & Tarnai, G. (Eds), Proceedings Symposium 
FORMS/FORMATS 2004, 304-311. Retrieved 29 
October  2007, from http://www.ita.cs.ru.nl/pub-
lications/papers/ hooman/FORMS04.pdf.

Huang, J., & Voeten, J.P.M., & Putten, P. van 
der (2002). Performance Evaluation of Complex 
Real-time Systems: A Case Study. In Proceed-
ings of PROGRESS 2002, (pp. 77-82). Utrecht: 
STW Progress.

Huang, J., & Voeten J.P.M., & Ventevogel, A. 
(2004).  Predictability in Real-Time System Devel-
opment - (1) Semantics Support for Development 
Languages. In Vachoux, A. (Ed.), The Forum on 
Specification	and	Design	Languages	(FDL’04), 
(pp. 123-140). Gières: ECSI.

Huang, J. (2005). Predictability in real-time soft-
ware design (PhD thesis). Eindhoven: Eindhoven 
University of the Technology.

Huang J., & Voeten J.P.M., & Groothuis M., 
(2007a). A Model Driven Approach for Mecha-
tronic Systems. In Proceedings of IEEE Interna-
tional Conference on Application of Concurrency 
to	System	Design	(ACSD) (pp.127-136). Los Ala-
mos: IEEE Computer Society.

Huang, J., & Voeten, J.P.M., & Corporaal, H. 
(2007b). Predictable real-time software synthesis. 
Journal of Real-time Systems, 36 (3), 159-198.

Hylands, C., & Lee, E., & Liu, J. (2003). Overview 
of the Ptolemy project, Technical Memorandum 
UCB/ERL M03/05. Retrieved 21 November 2006, 
from http://ptolemy.eecs.berkeley.edu/.

ISO 9126 (2001). Information technology - Soft-
ware product evaluation, Quality characteristics 
and guidelines for their use. Geneve: ISO/IEC.

Lange, C.F.J., & DuBois, B., & Chaudron, M.R.V. 
(2006a). An Experimental Investigation of UML 
Modeling Conventions. In O. Nierstrasz et al (Ed), 
Proceedings	 of	Models	 2006	 LNCS	 4199, (pp. 
27-41). Berlin: Springer.

Lange, C.F.J., & Chaudron, M.R.V., & Muskens, J. 
(2006b). UML Software Architecture and Design 
Description. IEEE Software, 23(2), 40-46.

Liggesmeyer, P., & Rothfelder, M, & Rettelbach, 
M. (1998). Quality assurance of software-based 
systems (in German). Informatik-Spektrum, 21(5), 
249-258.

Mannion, M. & Keepence, B. (1995). SMART 
Requirements. ACM SIGSOFT Software Engi-
neering Notes, 20(2), 42-47.

Muller, G.J. (2004). CAFCR: A Multi-view Method 
for Embedded Systems Architecting; Balancing 
Genericity	and	Specificity (PhD-Thesis). Delft: 
Delft University of Technology.

Nieuwelaar, B. van den (2004), Supervisory Ma-
chine Control by Predictive-Reactive Scheduling 
(PhD thesis). Eindhoven: Eindhoven University 
of Technology.

Park, R, & Goethert, W., & Florac, W. (1996). 
Goal-driven software measurement - a guidebook 
(SEI report CMU/SEI-96-HB-002). Pittsburg: 
Carnegie Mellon University/Software Engineer-
ing Institute.

Ploeger, S.C.W., & Somers, L. (2006), Analysis and 
Verification	of	an	Automatic	Document	Feeder 
(CS-Report 06-25). Eindhoven: University of 
Technology.



  ��

Quality in Model Driven Engineering

Ptolemy (2007). Ptolemy project site, University 
of California at Berkely. Retrieved October 22, 
2007, from http://ptolemy.eecs.berkeley.edu/.

Punter, T. (2001). Goal-oriented evaluation of 
software (in Dutch) (PhD-Thesis). Eindhoven: 
Eindhoven University of Technology.

Punter, T., & Trendowicz, A., & Kaiser, P. (2002). 
Evaluating Evolutionary Software Systems. In M. 
Oivu, & S. Komi Sirviö (Eds), Proceedings of 
the 4th International Conference PROFES 2002 
LCNS	2559. Berlin: Springer.

Punter, T., & Kusters, R., & Trienekens. J.J.M. 
(2004). The W-Process for Software Product 
Evaluation: A method for goal-oriented imple-
mentation of the ISO 14598 standard. Software 
Quality Journal, 12(2), 137-158.

Punter, T., & Hamilton, M., & Gurzhiy, T. (2007). 
Modeling the coordination idiom. In: Voeten, 
J.P.M. & Engelen, R. van, (Ed), IDEALS: evolv-
ability in high-tech systems (pp.69-79). Eind-
hoven: Embedded Systems Institute.

Roos, N. (2006), No to requirements (in Dutch). 
In Bits & Chips magazine,  Vol. 9. (pp. 24-26). 
Nijmegen: Techwatch.

Sandee, J.H., & Heemels, W.P.M.H., & Muller, 
G.J. (2006). Threads of reasoning. In: Heemels, 
W.P.M.H., & Muller, G.J. (Eds.), Model-based 
design of high-tech systems, (pp. 43-57). Eind-
hoven: Embedded Systems Institute.

Schmidt, D. (2006). Cover feature – Model Driven 
Engineering. IEEE Computer, 39(2), 25-31.

SEI (2007), Software Engineering Institute, 
Carnegie Mellon University, CMMi site. Re-
trieved October 22, 2007, from: http://www.sei.
cmu.edu/cmmi/.

Staron, M., & Wohlin, C.  (2006). An Industrial 
Case Study on the Choice Between Language 
Customization Mechanisms. In Münch, J., & 
Vierima, M. (Eds.), Proceedings	of	7th	Interna-

tional Conference on Product-Focused Software 
Process	 Improvement	 (PROFES	 2006) LNCS 
4034, (pp. 177-191). Berlin: Springer.

Vaandrager, F. (2006), Does it pay-off? Model-
based verification and validation of embedded 
systems! In Progress	White	 Papers	 2006 (pp. 
43-66). Utrecht: STW Progress.

Verhoef, M.H.G.,  & Hooman, J.J.M. (2006). 
Evaluating embedded system architectures. In 
Heemels, W.P.M.H., & Muller, G.J. (Eds.) Model-
based design of high-tech systems, (pp. 151-159). 
Eindhoven: Embedded Systems Institute.

Vranken, H. (1998). Design for test and debug in 
hardware/software systems (PhD thesis). Eind-
hoven: Eindhoven University of Technology.

Wolf, W. (2003). A decade of hardware / software 
co-design. IEEE Computer, 36 (4), 38 – 43.

additional reading 

Broy, M., Jonsson, B., Katoen, J.-P (Eds.) (2005), 
Model-based Testing of Reactive Systems LNCS 
3472. Berlin: Springer.

This book provides a set of lectures on several 
topics that are related to model-based testing. 
Model-based testing will become increasingly 
important when MDE emerges. Topics vary 
from	testing	of	finite	state	machines	and	labelled	
transition systems to test case generation, tools 
and test notation.

Czarnecki, K., & Helsen, S. (2006). Feature-based 
survey of model transformation approaches. IBM 
Systems Journal, 45(3), 621-645.

This paper provides a framework for model 
transformations	 (especially	 about	 the	 software	



��  

Quality in Model Driven Engineering

discipline).	 Model	 transformations	 play	 a	 key	
role in model driven development.

Delnooz, C., Dohmen, L.A.J., Hee, J. van de, 
(2007). The future of embedded real-time systems 
for high volume printing. White paper Océ Tech-
nologies, (pp. 1-20), Retrieved October 31, from 
http://www3.oce.com/jobs/downloads/oce_em-
bedded_systems.pdf

This white paper presents model driven develop-
ment as one of the pillars for improving develop-
ment	at	Océ	Technologies	(producer	of	printers	
and	 copiers).	 Other	 improvement	 pillars	 were	
reference architecture and software reuse.

Heemels, W.P.M.H., & Muller, G.J. (Eds.) Model-
based design of high-tech systems. Eindhoven: 
Embedded Systems Institute.

Presents the results of an applied research proj-
ect on model-driven technologies. This Boderc-
project was conducted at Océ Technologies. It 
shows different examples of modelling and shows 
the	need	for	multidisciplinary	development	(see	
section	2).

Kopetz, H. (1997), Real-Time Systems: Design 
Principles for Distributed Embedded Applica-
tions. Berlin: Springer.

This book provides an introduction to embedded 
(real-time)	systems	design.

Tretmans, J. (Ed.), Tangram: Model-based inte-
gration and testing of complex high-tech systems. 
Eindhoven: Embedded Systems Institute.

Presents the results of an applied research project 
on	integration	and	testing	(Tangram-project)	that	
was	conducted	at	ASML	(producer	of	waferstep-
pers).	This	 is	 interesting	 from	a	perspective	of	
model driven engineering as well as its testing.  

Pretschner, A., & Slotosch, O., & Aiglstorfer, E. 
(2004). Model-based testing for real – The inhouse 
card case study. International Journal on Software 
Tools Technology Transfer, 5 (2), 140-157.

This article provides experiences with model-
based testing.



  ��

Chapter III
Examples and Evidence

Sowmya Karunakaran
MDA Research Initiative, Chennai, India

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

abStract

This chapter aims at highlighting the increased development productivity and quality that can be achieved 
by Model	Driven	Software	Development	(MDSD).	The	above	statement	is	substantiated	by	discussing	
many	experiments	and	case	studies	in	the	field	of	Model	Driven	development.	The	chapter	will	contain	
the	study	of	various	cases	in	which	the	Object	Management	Group’s	(OMG)	Model	Driven	Architecture	
(MDA)	has	been	used	as	a	framework	to	build	different	applications.	The	reader	will	be	provided	with	
an overview of how the MDA paradigm greatly expedites application development with the proper tool 
support. The main emphasis will be on providing case studies for the measurement of the quality of the 
models.

introduction

The software industry remains reliant on the 
craftsmanship of skilled individuals engaged in 
labor intensive manual tasks. However, grow-
ing pressure to reduce cost and time to market, 
and to improve software quality, may catalyze a 
transition to more automated methods. Evaluation 
of these methods will require more experiments 
and practical experience. Establishing of a com-
prehensive collection of benchmark problems 
would be a valuable next step in that direction. 
This chapter will serve as:

• A practical guide for software architects and 
developers as it is peppered with practical 
examples and extensive case studies.

• An Enchiridion for Model driven software 
quality assurance

• A rich resource, containing prominent ex-
amples for constructive Quality Assurance 
(QA) of MDSD

• A handbook of various techniques that can 
be employed for identifying the quality of 
models and model transformations.

• A trend analyzer, as it will give a broad 
overview on the tools and methods used by 
various researchers and professionals



��  

Examples and Evidence

background

MDA has enjoyed high visibility since its formal 
announcement by the OMG in March 2001. In 
three short years, well over 40 companies have 
come forward with software products said to 
implement MDA; while a smaller, but signifi-
cant, number of success stories demonstrate that 
there really is something to this striking new 
concept.

It is no exaggeration to say that MDA has the 
potential to revolutionize the way we create and 
maintain software. Since MDA is becoming so 
popular, it is important to understand clearly what 
it is—and what it is not, but more importantly 
it is necessary to analyze the quality benefits it 
offers.

Let us see what the industry experts have to 
say about MDA:

MDA offers organizations several distinct advan-
tages … One of them which is, Interoperability 
and portability. The platform independence of the 
first	stages	of	MDA	development	makes	it	easier	
to interoperate with, or even move to, different 
middleware. Given that the middleware space is 
crowded with Enterprise Java Beans, CORBA, 
Web Services, SOAP, C#, .NET and others, this 
represents a huge savings in time and cost. (Grady 
Booch)

Customer projects that previously took six months 
to complete are taking four using MDA. (PFPC 
Inc. in Wilmington, Del.)

Sophisticated	 organizations	 see	 the	 benefits	 of	
a model-driven approach, which is the future 
of effective software design. (Peter Young, Vice 
President, SUN ONE Studio Tools, Sun Micro-
systems)

MDA is not about generating complete applica-
tions from diagrams; it’s about generating all the 
linkages	 to	 integrate	applications	 from	Unified	

Modeling	Language	(UML)	diagrams.	It’s	also	
about having a common, high-level UML model 
of integration that can generate whatever proxies, 
bridges, and protocols are required to integrate a 
new application with those already in existence. 
(Wells Fargo Bank; IBM)

In the context of MDSD, the creation of mod-
els and model transformations is a central task 
that requires a mature development environment 
based on the best practices of software engineer-
ing principles. In a comprehensive approach to 
MDSD, models and model transformations must 
be designed, analyzed, synthesized, tested, main-
tained and subjected to configuration management 
to ensure their quality. Working with multiple, in-
terrelated models that describe a software system 
require significant effort to ensure their overall 
consistency. It follows that automating the task 
of model consistency checking and synchroniza-
tion would greatly improve the productivity of 
developers and the quality of the models.

This chapter will give the reader an insight 
on how model driven architecture has been used 
to build different kind of applications that run 
on disparate platforms. It will also highlight the 
benefits like increased productivity, improved 
software quality and reduced complexity that 
were obtained by means of following a MDA 
approach.

The software industry is often ready to profess 
that MDA methodology and tools can produce 
code more quickly than manual hand-coding 
(the traditional way of software development) 
can. But unfortunately the industry is less ready 
to accept that these code generators can produce 
good quality code. The biggest concern is that 
these generators will turn out to be tumescent, 
one-size-fits all and on the whole produce im-
practical code.

 Interestingly, the concerns that the software 
industry currently has parallel those that program-
mers/ software developers had years ago when 
“third generation languages” (3GLs) such as CO-



  ��

Examples and Evidence

BOL started to replace assembly level languages. 
Programmers did not believe that compilers, which 
translated COBOL programs into lower-level as-
sembly language, could produce assembly code 
of the same quality that humans can. In the early 
days of 3GLs, these concerns were rationalized. 
Eventually, though, compilers improved and the 
productivity boost that 3GLs provided over as-
sembly language was so large as to overwhelm 
any lingering concerns about code quality. To a 
programmer using a modern 3GL such as .NET, 
the idea of programming a business application in 
assembly language would seem ludicrous since it 
would require ten times as many lines of code. The 
reasonable question, then, is: “How far have the 
MDA methods and tools advanced in producing 
quality code / models?”

Though there is no prescribed or defined 
way of determining the quality of models and 
model transformations, the various techniques 
used in different experiments and case studies 
will be presented in this chapter, which can be 
used to understand the quality of MDA models 
and tools. 

Mda caSe StudieS
 

In this following section we will discuss two case 
studies in detail. The first one deals with apply-
ing MDA for a Student Loan Origination System 
(LOS) and the second one is about adopting MDA 
for an Air traffic control system. Let us discuss 
them in more detail.

adopting Mda for a Student loS

Background 

Introduction
The Model-Driven Architecture is a develop-
ment paradigm that aims to insulate business 
and application logic from technology evolution. 
It helps to build code quickly, in a middleware-

independent, well architected, consistent and 
maintainable fashion. When fully baked, MDA 
promises to revolutionize software development. 
It could bring greater productivity, quality and 
flexibility – all at the same time. However, the 
industry has to undergo the usual teething pains. 
Thus, this case study aims at ironing out some of 
the impracticalities of adopting MDA. 

The LOS 
The most essential feature of LOS is its Loan 
Application Processing Workflow. Each loan ap-
plication is monitored from the time it is entered 
into the system, and tracked through the vari-
ous work steps of review and approval process. 
LOS allows these work steps to be performed in 
different locations while maintaining control of 
the flow and making sure no required steps are 
being missed. 

The Loan Origination System consists of the 
following modules. 

•  Application Initiation 
• Decision 
• Product Configuration 
• Pricing 
• Application Completeness 
• Disbursement 
• Workflow 
•  Customer Services 

The MDA Pilot 

Based on the domain information, business rules 
and expressions, a LOS domain model has been 
built. We have used UML as a key ingredient to 
underpin the models that we developed at vari-
ous stages. As a first step, the MDA pilot team 
concentrated on just a set of modules which in-
cludes retrieving, displaying and validating loan 
application information. 

Our preliminary results show that using MDA 
as the core element of software composition, leads 
to reduced development complexity, improved 



�0  

Examples and Evidence

system maintainability, and increased developer 
productivity. The qualitative and quantitative 
results will be analyzed by comparing the ef-
ficiencies of the MDA approach with that of 
the traditional Software Development Lifecycle 
(SDLC) approach.(Sowmya, 2005) 

 
The Build 0 Module 

Constituents 
The build 0 module (the initial phase of the project, 
that would consist of the very first build) consists of 
the document retrieval and review processes. The 
basic steps involved in this process are illustrated 
by Figure 1. Initially the supervisor enters into 
the Review documents phase were the promissory 
note verification is done. Based on the outcome 
of this verification process the user updates the 
document status after which the system checks 
whether the document under review should be 
accepted or rejected. 

Pre-Conditions Assumed 
The following conditions were assumed before 
the document review process began:

1.  Application is completed and data is avail-
able 

2.  Documents are received from the appli-
cant 

3.  Document reviewer has logged in to the 
system 

4.  Documents are loaded for reviewing

Retrieve and Display 
Actor initiates document verification by entering 
the document verification section. System loads 
the documents based on the criterion chosen by 
the user. The document status is changed to In 
Review. System logs the status change. Document 
verification will be performed based on main 
document type and these will have individual 
check lists. 

Figure	1.	Major	steps	involved	in	Build	0	Module	(©2007	Sowmya	Karunakaran.	Used	with	permis-
sion)



  ��

Examples and Evidence

Document Verification 
The actor initiates the review of documents. The 
content of document is compared against applica-
tion data in the system. Once the checklist items 
are complete the actor submits the checklist .The 
system identifies the minimum requirements to 
pass the document verification based on check 
list items and calculates the status. A notification 
is sent to the borrower based on the outcome of 
the above event. 

Traditional Strategy 

The traditional strategy team followed the usual 
SDLC lifecycle and more importance was given 
to the technical, platform-specific design rather 
than to building perfect domain specific models. 
They arrived at a high level business process 
diagram (see Figure 2). 

Once this was done the team came out with 
an architecture blueprint. They aimed at an archi-
tecture that could provide scalability, flexibility 
and maintainability. The business rules were 
decoupled from the application code. As per the 
traditional strategy flow diagrams were used to 
represent the various steps in that module. Figure 
3.3 depicts one of the flow diagrams used in this 
approach.

MDA Strategy 

Modeling 
The traditional approach captured all the nec-
essary details but flow diagrams are tools of 
structured programming era, as a solution the 
MDA strategy uses Business Process Modeling 
Language (BPML)—to represent business related 
information and UML—to provide appropriate 

Figure	2.	Architectural	components	(©2007	Sowmya	Karunakaran.	Used	with	permission)



��  

Examples and Evidence

object oriented visual representations. Figure 4 
represents a model of the student loan origination 
retrieval and verification process. 

Code Generation 
The MDA team created a UML Platform-Inde-
pendent Model (PIM) as well as Platform-Specific 
Model (PSM) using their MDA tool. They auto-
generated more of their code than the traditional 
team due to the UML code generation capabilities 
of the MDA approach. The team used a popular 
MDA tool called Arcstyler for this purpose 
(Sowmya, 2005). 

There are, of course, parts of an application 
which cannot be generated because they either 
cannot be expressed appropriately in a UML 
model or are much easier to express in other 
ways. The user must therefore supply the custom 
layout for the front-end’s user interface elements 
and implement appropriate reactions for certain 
events (actions).

EJB Tier 
Figure 5 represents the model developed by 
the MDA team for the Student Loan Origina-

tion System. The R’s in the diagram represent 
the resources (modeled as Entity bean classes). 
LOS-Data-Document contains details relevant 
to document like document id which maps to 
the scanned image stored in the DMS. The LOS-
CheckList class contains the list of all checklist 
items which are of Boolean type (e.g.: IsBorrow-
erSignatureValid). The loan details and the client 
details are contained in their respective classes. 
The P’s in the diagram represent the processes. 
The LOSRetreiver and LOSVerification processes 
are Session beans which perform the retrieving 
and verification operations. The complete details 
bean holds both the Loan details and the client 
details for retrieval process to happen. 

Web Tier 
The Accessor framework of the tool was used 
for developing a web application and the corre-
sponding front end. It supports UML modeling 
of external interfaces of a software system by 
adding design assistants, wizards, property sheets 
and model generators.

Arcstyler Accessor MDA-Cartridges contain 
templates and code generator logic which can 

 

Figure	3.	Flow	diagram	depicting	the	document	verification	(©2007	Sowmya	Karunakaran.	Used	with	
permission)



  ��

Examples and Evidence

produce an almost complete application front-
end from an Accessor model, including all the 
functionality for dispatching events, switching 
between windows in response to certain events 
and mapping resources. 

Results of Case Study

Various inferences can be derived at from this 
case study. These give a holistic view of applying 
MDA to a real time project scenario. 

Figure	4.	Business	process	model	of	retrieve	and	verify	documents	(©2007	Sowmya	Karunakaran.	Used	
with	permission)

• In case of the traditional method maximum 
amount of the project lifecycle was spent on 
coding, whereas in the MDA approach most 
of the code was auto-generated and only the 
code relevant to business logic had to be 
written by the programmer. 

• Though the time taken for developing a 
domain model was slightly more, it was com-
pensated to a great extent by the considerable 
saving in time during the implementation 
phase. The MDA approach took about 1/9th 



��  

Examples and Evidence

Figure	5.	EJB	class	diagram

Figure	6.	Accessor	class	diagram	(©2007	Sowmya	Karunakaran.	Used	with	permission)

of the time required to develop using the 
traditional approach.

• The number of developers involved in the 
MDA approach was just 3, which is very 
small when compared to a regular project 
team size which was approximately 22. 

• Initially the team faced technical difficulties 
due to lack of expertise on the tool, but it 
was not an impediment for long. 

• The percentage purity of MDA in this ap-
proach entirely depends on the tool used. 
The tool ArcStyler was used which followed 
the MDA standards and principles to a great 
extent.

• Tools ought to be more comprehensive and 
MDA specific 

• Maximum effort was spent on building the 
domain model; hence it would serve as a 



  ��

Examples and Evidence

platform for use in another project of the 
same domain. 

• Since the domain model had to be changed 
to reflect every small modification, the 
design was in sync with the implementa-
tion at all times. Addition of new features/ 
deletion of unwanted features can be done 
by just making the corresponding changes 
to the design without messing up with the 
code. This means more flexibility and more 
maintainability. 

 
Conclusion

Based on the results of this case study, the MDA 
team was impressed by the productivity gains 
experienced during this approach. The domain 
models (Platform Independent) have very long 
life span as it survives technology and lasts for 
many years. For more than 2.5 years since the 
generation of models there were only minimal 
changes made to the models and the code. This 
was possible because of the careful design of the 
models. All new requirements were incorporated 
by extending the existing models. Apart from the 
obvious speed advantages from model based code 
generation, the strong emphasis that this approach 
places on modeling and therefore on architecture 
is a huge benefit. The MDA team owes that any 
demerits arousing out of this approach might be 
because of the insufficiencies in the MDA tools 
that were available in 2005 like lack of in built 
compilers for modeling languages. With more 
evolution of the MDA tools, its true flavor can 
be relished.

applying Mda to an Air Traffic 
control System

In this case study we will be considering a pro-
totype model the data sharing mesh (DSM). The 
DSM explores new methods for providing reliable 
data connections in heterogeneous networks. The 
DSM delivers the middleware to connect business 

applications that provide and consume data with 
defined quality levels. The software engineering 
process that comes with the DSM has to allow 
the measurement and feedback of relevant quality 
aspects at every step during development, test, 
and operation. In this section we will see the 
use of MDA in the development of the system 
and how software quality can be measured and 
improved.

 The Air Traffic Control System

The Air Traffic Control System is shown in Figure 
7; it presents a set of business applications and 
the DSMmesh network. The DSMMesh 
network consists of nodes and margins. There 
are two types of nodes: circular nodes and trian-
gular nodes. Circular nodes handle highly secure 
connections only, while triangular nodes do not 
provide specific security mechanisms. A margin 
refers to a network connection with specific char-
acteristics, e.g. bandwidth. Business applications 
are listed on the left and on the right hand sides 
indicating that they are loosely coupled, i.e., they 
do not know anything of each other apart from 
data providing and consuming contracts. Each 
application is connected to at least one network 
node. In our simplified example a business ap-
plication is a sink service that requires a specific 
type of data to work properly; or a source service 
that produces data needed by sink services.

The real-world scenario describes source ser-
vices, like Detector I, Detector II and Meteorologi-
cal tower; and sink services like the Air master 
or the Crash Detection Mechanism (CDM). The 
CDM needs data updates every three seconds. This 
data is provided by reliable detectors that react to 
conditions out of predefined limits. These limits 
are configurable. The Air Master requires reliable 
detector data on demand that must not be older 
than 0.59 seconds, to update the traffic situation 
overview and to coordinate the aircrafts flying 
around the airport. Based on the real-time data 
requirements a new version of the DSMmesh is 



��  

Examples and Evidence

generated, tested, and deployed whenever needed; 
changes are expected on a weekly basis. The range 
of application data demands is very wide, but 
all applications have requirements on reliability, 
timeliness, safety, service quality, failover, per-
formance, maintainability, and flexibility.

 Development of the DSMmesh focuses on 
models to define the business application require-
ments (see Figure 8)

• Agreement defines the communication 
needs of business application systems in the 
DSMmesh. An agreement has to identify 
the application in the network, provide 
syntax of attributes for each message type 
of the system, and specify the way how 
the system handles) and the attributes of 
the agreement (accuracy, confidentiality, 
urgency, priority).

• System capabilities describe the topology 
of the network, connection capabilities like 
capacity and type of connections, and use-
ful information on lower-level middleware 

such as protocols used of the systems that 
contribute to DSMmesh.

• Plan-of-action	 (POA) reflects interests of 
the organizations contributing to DSM and 
DSM-based applications; these specify the 
guidelines the model transformation process 
has to follow when building the system 
configuration plan. Such guidelines involve 
parameters concerning global settings (e.g., 
route secure message over specific secure 
nodes and margins only, the number of 
backup routes for failover), optimization 
criteria (e.g. favor low cost over speed), and 
operator restrictions (e.g. detector data has 
to be routed via a certain node).

• Fail-safe parameters define the failover 
mechanism behavior (automatic or user ac-
tive) of the DSMmesh to adjust to failures 
(e.g., node or margin failure) as well-defined 
graceful performance degradation to the 
business applications and stakeholders.

 

Figure	7.	Air	traffic	control	system



  ��

Examples and Evidence

MDA Quality Assurance

A major issue in safety-critical systems is quality 
measurement, quality assurance, and auditing. We 
describe the key steps in the DSM life cycle that 
deal with QA. Before the models are used as input 
for the DSMFMT they have to pass the first 
QA checkpoint where type checks and semantic 
validation tests ensure formal consistency and 
validity of the models. If the QA finds contradic-
tions, the errors are reported and the result of the 
process is fed back to the model descriptions. The 
configuration plan created by the DSMFMT 
is checked by another QA checkpoint. Here the 
intermediate models have to pass a static validity 
test, i.e., checking whether there is at least one 

contract matching source for each sink or whether 
there is a route between two services. Errors 
are reported, which can be used for correction 
in the models. The set of nodes that builds the 
DSMmesh can be tested in several scenarios 
in a lab environment before rolled out into field 
operation. Status and performance values are sent 
to the administrator, who may change configura-
tion settings of DSMnodes directly. The values 
gained from monitoring the DSMmesh are 
valuable contributions to the work done by the 
DSMTuner and Model Developer. Both roles 
may perform changes based on the results from 
previous calculations in the hope to improve the 
quality of the entire DSMmesh and starting 
from step 1 again.(Sowmya, 2007)

Figure	8.	MDA	software	development	life	cycle	with	QA	steps	(©2007	Sowmya	Karunakaran.	Used	
with	permission)



��  

Examples and Evidence

 First of all the DSMFMT life cycle has been 
designed in a way that allows the installation of 
several quality assurance checkpoints, the usage 
of monitoring components and making improve-
ments in the model descriptions by using quality 
feedback methods offered by the DSMmesh. 
The DSMFMT allows concentrating the com-
plexity of the system at a central part that can be 
maintained by few experts. The advantage is in 
the number of systems using the DSMmesh. 
The result of corrected problems appearing in one 
system configuration affects not just the quality 
of the DSMmesh itself but also any system 
based on DSM.

Conclusion

In the traditional development process, adminis-
trators have just a partial view of the entire system 
and may try to optimize their applications locally. 
This may result in an overall system behavior that 
maybe was not intended. However, the proposed 
MDA approach always has the view over the entire 
system trying to optimize it in a way by which 
each of the participating systems can benefit.

Second, the models themselves may contain 
errors, but similar to specifications in traditional 
engineering these errors could be found with ap-
propriate verification.

An advantage is the fact that those models 
support role-oriented abstraction; thus the system 
models are easier to understand and errors are 
easier to detect. Although the life cycle contains 
several QA checkpoints, the DSM life cycle itself 
may contain errors as well. As these get detected 
and eliminated, the corrected life cycle will have 
a positive impact on all those projects using the 
DSM life cycle.

high Quality Software 
ModelS

 
This section will introduce the reader to various 
applications in which MDA was applied. It will 
give the reader an insight on the diverse fields in 
which MDA can be applied and its benefits can 
be enjoyed successfully without any compromise 
on the QA. The Results section will help in under-
standing the various quality benefits that MDA 
offers and how they are utilized appropriately. 
The implementation specific details have not been 
elaborated as the emphasis is on QA benefits and 
measurements.

 
the Middleware case Study

The Middleware Company released a study 
comparing the productivity of two development 
teams, where one used an MDA tool and the other 
used a more traditional Integrated Development 
Environment (IDE). The study concluded that 
the team using the MDA tool was significantly 
more productive.

The Middleware Company case study high-
lights the increased productivity (nearly 35% 
increase) benefits of MDA for Enterprise Applica-
tion Development Projects. The study compared 
the productivity of two development teams. One 
team used a traditional IDE and the other used an 
MDA tool: Compuware OptimalJ. The organiz-
ers gave each team an identical specification for 
a distributed application, where upon the teams 
started building the application.(Frankel, 2003)

Productivity Results
Table 1 shows the overall productivity results. 
The MDA team finished the application in con-
siderably less time than the traditional team. 
Furthermore, it bested its own hours estimate 
by a substantial margin. This can be attributed 
to the fact that the capabilities of the MDA tool 
used were underestimated.



  ��

Examples and Evidence

Quality Results
Although this was primarily a productivity study, 
the study’s expert organizers inspected the code 
the two teams produced for general quality and 
found the two results were of good and roughly 
comparable quality. An automated check for acy-
clic dependencies, a common indicator of code 
quality, also produced favorable and similar results 
for the two teams. Furthermore, some bugs were 
found in the code produced via the traditional 
approach whereas none were found in the MDA 
team’s code. This can be attributed to the fact that 
the code was generated by the tool with the input 
as the PIMs and PSMs which required very less 
manual intervention (coding).
 
automation with Mda framework

Wisconsin is part of a small but committed group 
of organizations that is turning to Model Driven 
Architecture. Wisconsin is replacing its collec-
tion of disparate mainframe- and client/server 
based unemployment insurance benefits appli-
cations with a Web based system with a MDA 
approach.

The following are the features that were noted 
by and highlighted in the MDA implementer’s 
workshop 2003 (which was an outcome of the 
Wisconsin project case study):

• Ease of transition from one platform to 
another

• Ease of Integration with existing legacy 
applications

• Apply domain specific reference business
• Providing framework for vendor –specific 

transformation mappings
• Extended useful lifetime of system mod-

els
• Support for specialized computing environ-

ments

applying Mda to large Scale 
distributed Systems

There are many challenges in the large-scale 
distributed systems like,

(i)   Increasingly demanding end user require-
ments for quality and functionality

(ii)  Complexities associated with integrating 
large-scale distributed systems composed 
of modular components.

This case study dealt with addressing those 
challenges by means of MDA. The motivation 
to the use of an integrated Model Driven Ar-
chitecture (MDA) and component middleware 
approach to enhance the level of abstraction at 
which distributed systems are developed is to 
improve quality. The purpose of the study was 
to extend their current MDA modeling tools so 
they can perform a two step mapping from the 
domain specific model. 

Table 1. Productivity results

Estimated Hours Actual Hours

Traditional IDE Team 499 507.5

MDA Team 442 330



�0  

Examples and Evidence

Result
The platform-independent component based ar-
chitecture presented the platform- independent 
model to a component-specific implementation. 
This resulted in a marked increase in software 
quality and developer productivity and at the 
same time reduced the complexity of component 
integration.

inventory tracking System

Siemens Corporate Technology and Vanderbilt 
University applied MDA and component middle-
ware software techniques to develop an Inventory 
Tracking System (ITS) that monitors and controls 
the flow of goods and assets in warehouses. Ware-
house modeling, which simplifies the warehouse 
configuration aspect of the ITS system according 
to the equipment available in certain warehouses, 
including moving conveyor belts and various types 
of cranes. These modeling tools can synthesize 
the ITS database configuration and population. 
Modeling and synthesizing the deployment and 
configuration (D&C) aspects of the components 
that implement the ITS functionality were per-
formed. These modeling tools use MDA tech-
nology along with CORBA Component Model 
(CCM) (Nechypurenko, Lu, Deng, Douglas & 
Anirudha , 2003).

Result
The MDA paradigm greatly expedites application 
development with the proper tool support. In the 
ITS project, if the warehouse model is the only 
missing or changing aspect in the system (which is 
typical for end users), little new application code 
must be written. The preliminary results show that 
using MDA tools and component middleware as 
the core elements of software composition leads 
to reduced development complexity, improved 
system maintainability, and increased developer 
productivity.

enterprise application integration

Wells Fargo had large number of mainframe based 
Systems of Record(SOR’s) which are based on 
CICS, COBOL, DB/2, IMS, etc and Client ap-
plications were Win/NT or UNIX based systems 
using object technology. They used CORBA 
middleware to bridge the two processing environ-
ments while meeting the service requirements. 
The structure of their major operations were to 
define the application in a platform independent 
model in UML, generate the appropriate UML 
platform specific models needed by the applica-
tion, augment the model with any additional 
code needed by the application that completes 
the business logic functionality and generate the 
application programs

Result
An object based framework that normalizes the 
disparate SOR’s present in the enterprise into a 
consistent, standard environment or logical system 
was achieved. It also provided a single interface 
to the client application business analyst and 
programmer. The framework was both platform 
and language neutral.

Model driven Software development 
and offshore outsourcing

Faced with a limited budget and a short time-
to-market requirement, M1 Global chose the 
following solution for the software development 
project. First, they would employ Model Driven 
Architecture during the design phase of the 
project. M1 Global rightly identified that MDA 
would help them organize and manage enterprise 
architectures supported by automated tools and 
services for both defining the models and facili-
tating transformations between different model 
types. This enabled the M1 Global process experts 
to encapsulate their intellectual property into a 
PIM of the application. The model represented 
exactly what the software application would do 



  ��

Examples and Evidence

regardless of the complexity of the application 
architecture. The model provided a high degree 
of confidence for both the development organiza-
tion and the “business experts” that the applica-
tion would be built exactly to the requirements 
defined by the team and expressed in the model. 
Additionally, based on the platform independence 
of the model, the intellectual property is not tied 
to a given technology but rather to the business 
logic. Thus, the application behavior captured in 
the model outlasts rapid changes in application 
architecture (OMG, 2004).

Result
M1 Global built an application using MDA, Model-
Driven Development environment (MDE) and 
offshore development resources with impressive 
results. The R&D expense for the software project 
was $1,007,354. M1 Global was able to realize 
a cost saving of $7,500 per month per offshore 
development resource. Given that this was a large 
scale project, M1 had an average team size of 20 
offshore resources over the 12 month period. The 
low cost of the offshore resources resulted in a 
net savings of over $1,200,000 over the life of 
the project. That was just the resource cost, the 
MDA approach brought about another significant 
benefit illustrated in Table 2.

The MDA approach and the MDE tool in-
creased developer productivity by over 50 percent. 
The team’s final productivity for the period was 
177,963 optimized quality source lines of code 
(LOC) for an application that totaled 161 unique 
screens and 45 tables. With an iterative develop-
ment process the team had actually produced over 
3x that number of LOC throughout the project.

Using MDE, the team generated 112,506 LOC 
or just over 63 percent of the final implementa-
tion. This meant the hand written LOC in the 
final version were 65,457 and at a cost of $5.66 
per hand written LOC, the benefits of model 
driven development where clear. Without it, it 
would have taken the same team over 32 months 
to complete the same work that was accomplished 
in 12 months. The total cost would have exceeded 
$6 million. The combination of MDA, MDE and 
offshore resources saved M1 over $5 million in 
development costs and reduced time to market 
by over 62%.

inter-enterprise integration

Government computer based patient record system 
(GCPR) project was a joint effort of the DoD, US 
and Louisiana Medical center to maintain medi-
cal records on patient care. The key to gathering 

 
HAND 

WRITTEN 
LOC 

COST/ 
LOC TIME TOTAL COST PERCENT 

SAVINGS 

Traditional U.S. Based 
Development 177,963 $ 34.83 32 Months $ 6,198,812 N/A

With MDE 65,457 $ 34.83 12 Months $ 2,280,000 272%

With MDE and Offshore 65,457 $ 5.66 12 Months $ 1,007,354 615%

Table 2. Comparison of results 



��  

Examples and Evidence

all the information on a single patient is to have 
a standard format into which information can be 
organized which was previously maintained on 
different computer platforms and have diverse 
ways of organizing, naming and coding .

The GCPR framework involves transforming 
data from various formats into a common one. In 
effect, Litton collaborated with the government 
to ensure that the UML reference model that de-
scribed patient information could be incorporated 
and processed by the framework.

Thus this MDA based framework was useful 
in developing a powerful, generic solution to 
the transformation problem. The GCPR system 
is in the pilot testing phase. It will be ready for 
general use after security and privacy designs 
are implemented.

total business integration

IONA is on the forefront of the move to MDA 
.IONA Global Services uses MDA principles 
to create flexible software solutions for custom-
ers. This involved isolating information and 
processing logic from technology specifics for 
building platform independent models. UML is 
independent of CORBA, COM, EJB, XML, etc., 
and thus is well-suited as a language for describ-
ing these models like mapping these models to 
specific platforms, maintaining the separation at 
the implementation level.

Result
IONA’s Total Business Integration (TBI) requires 
the flexibility for the evolving environment. 
MDA has been important for building such solu-
tions that can be flexibly applied in this kind of 
environment.

Mda applied to web Services and 
federated Systems

Metanology is working on codifying architectural 
frameworks for web services and federated sys-

tems. Federated systems are loosely connected 
systems from different enterprises performing 
portions of the same application. 

It involved Applications PIM  loaded into the 
MDA tool (Application), Codified Architecture 
loaded into MDA tool (Platform), an MDA tool 
that generates 90% of application’s implementa-
tion (Application on platform) and customize 
10% of application

Result
The architectural cost was fixed, the code gen-
eration capability was over 90%, and there was 
a complete elimination of training developers on 
architecture. The complexity was also reduced. 
There were more economic benefits and increased 
adherence to corporate standards.

implementation of web Services, 
Simplified

Sun Microsystems has contributed a series of 
modules supporting MDA to the Net Beans open 
source project. This makes Netbeans platform 
first of its kind to support the MDA.

MDA protects the organizations software in-
vestments by capturing business logic -- business 
processes and their appropriate interactions -- in 
re-usable models. MDA can help significantly 
simplify the implementation of Web services, as 
the architecture insulates models from changes 
in the deployment infrastructure for the services. 
Models use a set of metadata -- the data describ-
ing the structure and characteristics of program 
elements or data.

Result
The MDA represents an advanced approach to 
software design based on models created us-
ing languages such as the UML. As business 
requirements change or evolve components of 
model-driven applications can easily be replaced, 
as long as they are standards based.



  ��

Examples and Evidence

a Model-based architecture for 
data warehouse

The Component Warehouse Model (CWM) 
specification recently adopted by the OMG is an 
important milestone on the way to fully model-
based architectures supporting data warehouse 
interchange.

The diversity of operational data sources 
and target data warehouse engines has made the 
construction and maintenance of data warehouses 
challenging. In these type of configurations, data 
warehouse deployment and maintenance tools 
interface with a shared store containing metadata 
about the structure of various operational data 
sources and target data warehouses as well as 
descriptions of the transformations required to 
move data between them (Tolbert, 2000).

Results
There were substantial savings even when the 
number of operational data sources and warehouse 
targets was as low as 3. There was considerable 
reduction in the number of semantic connec-
tions with which data warehousing tools must 
contend data warehouse applications by making 
them more compliant with a “Component/Con-
nector” architecture in which the tools are the 
components and the shared model store serves 
as the connector.

Mda in wireless (2.5 g)

Verizon used MDA for Code Division Multiple 
Access (CDMA) wireless switching, billing and 
activation with the help of Kabira technologies. 
Migration from Advanced Mobile Phone Service 
(AMPS) to CDMA wireless switching for 1.7 
million customers involves changes to service 
packages, payment process etc.

France telecom mobile has a Short Message 
Directory Service (SMDS) in which name & 
number information is sent to phone via Short 
Message Service (SMS). All message manage-

ment is fully transactional, fully deployed, design 
& development in 9 weeks from UML Models 
and MDA.

Results
There was a considerable reduction in activation 
period from 3 days to 90 minutes and nearly 1600 
hours per day in labor reduction. The support 
was increased to more than 12 million stubs and 
6,000 operators on 6 servers. It is worthwhile to 
mention that it was the world’s first SMS push 
based directory service implementation.

future reSearch directionS
 

The following section will give you guidelines on 
interesting research topics in the MDA space.

Compilers for Modeling Languages. Model-
driven software development has numerous 
advantages over manually developed software. 
The most important are: higher level of abstrac-
tion, facilitated maintainability, less erroneous 
code and higher re-usability. The higher level of 
abstraction allows the developer to concentrate on 
the important parts of the system and to leave the 
details to a compiler. This increases productivity 
because the developer does not need to deal with 
details, creates consistent implementations of de-
signs and facilitates to deploy one design to several 
implementation technologies and/or platforms. 
The advantages of modeling languages compared 
to programming languages are the same as the 
advantages of high-level programming languages 
compared to assembly languages. Therefore the 
availability of compilers for modeling languages 
would lead to the replacement of high-level pro-
gramming languages by modeling languages 
similar to the replacement of assembly languages 
by high-level programming languages.

Systematic empirical studies. Next steps after 
developing the core functionality of the MDA ap-



��  

Examples and Evidence

proach are systematic empirical studies to ensure 
the correctness and sufficient performance of the 
resulting system configurations.(Kan, 2002) An 
important aspect is early modeling for reliability 
design to consistently carry dependability con-
cerns from the early to the late stages of software 
engineering.

Creating perfect models. Since only models 
drive the development they need to be very con-
sistent and accurate. A misinterpretation done at 
a PIM level could affect the subsequent PSM’s 
and the generated code. Hence more work has to 
be done in the field of creating perfect models. 
(Miller, Mukerji , 2007)

Introducing MDA within the organization. 
For organizations that use a traditional systems 
development approach a major question is when 
it is worthwhile to introduce a new development 
approach, such as MDA, which are expected to 
bring benefits to software development like faster 
or more efficient development. Again, empirical 
studies are needed to get evidence on the actual 
benefits and risks in comparable settings.

With all the business benefits and advantages 
that MDA offers it is vital that we understand to 
which type of projects that MDA will be most 
useful. Here are some general considerations to 
keep in mind when making such a decision.

•	 MDA is adopted mostly if there is a signifi-
cant amount of experience with UML or for 
a new project.

•	 MDA may not be best suited for an inter-
mediate stage of a development.

•	 Organizations that want the agility to change 
with the evolving technologies would find 
MDA beneficial.

This list is not exhaustive; there are many more 
instances of projects to which MDA can be ap-
plied. Identifying all these instances would be very 
interesting research area in the MDA space.

The transition plan. A transition plan should 
cover staff development, team organization, and 
updates to the way that IT relates to the business. 
The plan should outline a strategy for a gradual 
transition to MDA that coordinates groundwork 
on all of these tracks.

The plan should also plot a pilot project that 
serves as a mechanism to shake out bugs in the 
new approach and that, when complete, provides 
functionality that the business needs but that is of 
relatively low visibility. The plan should include 
an organized post-mortem to learn from mistakes 
and make corrections along the various tracks of 
the transition.

Importance of domain models. The most 
emphasized advantage that MDA offers is the 
ability to reduce the risk of technology lock-in. 
Since the development is based upon Domain 
models, which are technology independent it is 
possible to derive application models and code 
models based on any technology. This gives a 
considerable amount of versatility in meeting with 
changing business needs and technology. Hence 
progress in development of good and perfect 
domain models would certainly be a good step 
towards future.

Interesting and useful findings in the above 
mentioned research areas will contribute to 
improve the Quality Assurance of MDA based 
systems to a great extent.

inferenceS

The high quality models and case studies discussed 
above give us the idea of the business advantages 
that MDA offered. The following points consoli-
date these advantages:

1.  Preservation of investment in application 
development. As mentioned earlier, MDA 
ensures that rapid changes in technology do 
not render application useless.



  ��

Examples and Evidence

2.  Increased productivity. MDA emphasizes 
on the use of patterns. The use of patterns 
in turn assists the developer in automating 
the repetitive tasks hence reducing the time 
spent on writing code and allows focusing 
on the business perspective.

3.  Increased business agility. MDA gives 
the ability to respond to changing business 
needs by changing the application model 
and the business framework.

4.  Reduced Development Cost and Time to 
Market. MDA simplifies the tasks of main-
taining the software. Since a good number 
of the development tasks are automated the 
development process time is much less.

5.  Improvement in the quality of product. 
Since the use of patterns promotes best 
practices in coding. This in turn reflects 
upon the software as well.

The later a software error is discovered during 
the development process, the more expensive it 
is to fix and the more jeopardized a delivery date 
becomes. MDA model automation and testing has 
helped developers test their applications— at the 
model level, before coding begins. As a result, 
design flaws and application logic errors are un-
covered much further upstream in the development 
process. In addition, many tools allow automation 
and testing of models on the target hardware to 
help uncover platform-specific problems earlier in 
the process. The fundamental simplicity of PIMs 
brings substantially improved system quality. We 
have also seen from this chapter that modeling 
has helped in improving communication between 
team members and facilitates early elimination of 
defects. Thus, it is apt to say that MDA adds lots 
of quality benefits to the resulting product.

concluSion

To ensure that MDA gives the above said qual-
ity benefits certain issues should be dealt with 

properly. The transformations of PIM to PSM 
and then PSM to Code have to be consistent as 
well. Although the PSM to Code transformation 
is common the PIM to PSM is not. It is MDA’s 
initiative to build a methodology that creates code 
from a PIM level. Hence the core of MDA lies 
in the patterns used in these transformations and 
should be the focal point in the MDA develop-
ment scenario. The lack of standards for domain 
patterns can also be a concern.

On the whole, the MDA approach promises a 
number of benefits including improved portability 
due to separating the application knowledge from 
the mapping to a specific implementation technol-
ogy, increased productivity due to automating the 
mapping, improved quality due to reuse of well 
proven patterns and best practices in the map-
ping, and improved maintainability due to better 
separation of concerns and better consistency and 
traceability between models and code.

referenceS

[1].De Miguel, M., Jourdan, J., Salicki, S.:(2002 ) 
Practical Experiences in the Application of MDA. 
In: Stevens, P., Whittle, J., Booch, G. (eds.): The 
6th Int. Conf. on UML, Vol. 2460, Springer-Verlag 
(2002) 128-139.

[2].D’Souza, D., “Model-Driven Architecture 
and Integration: Opportunities and Challenges”, 
Version 1.1. http://www.catalysis.org/publica-
tions/papers/2001mda-reqs-desmond-6.pdf

[3].Frankel,D.S, Model Driven Architecture. 
Applying MDA to Enterprise Computing. India-
napolis, Indiana. Wiley. 2003.

[4].Kan, S.,(2002) Metrics and Models in Soft-
ware Quality Engineering. 2nd Edition; Addison 
Wesley.

[5].Kleppe, A., Warmer, J., & W. Bast (2003) , 
MDA Explained. The Practice and Promise of 
the Model Driven Architecture. Addison-Wesley, 
2003.



��  

Examples and Evidence

[6].Miller, J., & Mukerji, J (January 2007), Model 
Driven	 Architecture	 (MDA),  http://www.omg.
org/docs/ormsc/01-07-01.pdf

[7].Nechypurenko, A., Tao lu., Gan deng. , 
Douglas,C & Anirudha Gokhule (2003) Apply-
ing MDA and Component Middleware to Large 
Scale Distributed Systems, Vanderbilt University, 
Nashville,TN,USA

[8].[Online document] May 2007, Available 
at         http://www.complang.tuwien.ac.at/rich-
ard/SW

[9].Sowmya, K.,(2005) Reflections	on	MDA	Case	
studies,	MDA	Research	Initiative	(MRI),	Chen-
nai, India

[10].Sowmya, K.,(2007) Improving Air traffic 
control management system by adopting the 
MDA strategy, MDA Research Initiative, Chen-
nai, India

[11].Tolbert, D., CWM: A Model-Based Architec-
ture for Data Warehouse Interchange, Workshop 
on Evaluating Software Architectural Solutions 
2000, University of California at Irvine, May, 
2000. http://www.cwmforum.org/uciwesas2000.
htm

additional reading
 

[1]. Stephen J. Mellor & Marc J. Balcer , Ex-
ecutable UML: A Foundation for Model-Driven 
Architecture , Addison Wesley Professional May 
2002 .

This book prescribes the engineering process to 
follow while modeling a software system, and 
thoughtfully walks the reader through this pro-
cess and the various UML models with numerous 
examples and real-world experiences. It provides 
complete executable semantics for an implemen-
tation independent interpretation of how models 
execute on any arbitrary implementation. This 

book	 uses	 a	 specific	 product	 and	 so	 it	 is	most	
useful to BridgePoint tool users or those who are 
evaluating this tool set.

[2]. Evans,E., Domain-Driven Design: Tackling 
Complexity in the Heart of Software Addison 
Wesley Professional August 2003 

This book announces to the world the ability of 
models and shows how the modeling processes 
scale up to very complicated domains. This book 
covers the problem domain space and the abstrac-
tion skills that free programmers to “break out 
of the box” of the implementation domain and 
solution objects into the critical area the business 
domain and corresponding domain objects.  This 
is a great book for developers, business analysts, 
project managers, and anyone in the software 
business.

[3]. Warmer,J., & Kleppe,A., The Object Con-
straint Language: Getting Your Models Ready for 
MDA, second edition. Addison Wesley, 2003.

     

This book focuses on the Business Rules imple-
mentation in MDA, and brings the details needed.
Step by step the book explains the OCL language 
and provides the reader with the knowledge to use 
OCL from a MDA point of view using transforma-
tion examples translating OCL to Java business 
rules. This book through explanations, clear and 
concrete examples and a concise case study shows 
the reader how to take your software engineering 
skills to the next level. It is a boon to students and 
new programmers.

[4]. Larman,C., Applying UML and Patterns: 
An Introduction to Object-Oriented Analysis and 
Design and Iterative Development, Third Edition 
Prentice Hall  October 2004 



  ��

Examples and Evidence

The	author	argues	convincingly	that	Unified	Pro-
cess is best implemented in an iterative process 
that looks more like Extreme Programming than 
the cumbersome waterfall process one typically 
associates with UP. Along the way of learning 
OOA/D,	the	unified	process	and	design	theory,	you	
also learn how to create the most common UML 
diagrams. This includes use cases, domain model, 
interaction, class diagrams and others. This book 
will	be	beneficial	to	researchers	as	it	also	touches	
upon OOAD along with models and UML.
 

[5]. Kontio,M., Softera, Architectural manifesto: 
Choosing MDA tools, Developer Works IBM, 
Sep 2005 http://www.ibm.com/developerworks/
library/wi-arch18.html?ca=drs-

      

This article not just gives an overview of selected 
tools it also categorizes the kinds of tools avail-
able and explain their usefulness in different parts 
of the MDA process. This enables the reader to 
comparatively evaluate tools of the same type, as 
well as let them look at such issues as productiv-
ity,	efficiency,	and	ease	of	use.	This	is	a	must	read	
article before deciding on the MDA tool to use 
for any project or case study.

[6]. Van Gorp, P.; Janssens, D.; Gardner, T. Write 
once, deploy N: a performance oriented MDA case 
study , Enterprise Distributed Object Computing 
Conference, 2004. EDOC 2004. Proceedings. 
Eighth IEEE InternationalVolume , Issue , 20-24 
Sept. 2004 Page(s): 123 – 134

          

This paper shows that Model Driven Architecture 
can become a successful standard for model based 
code generation by offering a set of high quality 
code generation languages. To focus the compari-
son of such languages on criteria that matter in 
practical development, there is an urgent need for 
more, and more realistic, case studies. This paper 
presents a complex middleware performance. 
From this case study the requirements for model 
refinement	and	code	generation	 languages	can	
be derived. 

[7]. Conallen,J., Tropeano,D., & Brown,A,W., 
Practical Insights into MDA: Lessons from the 
Design and Use of an MDA Toolkit, in  Model-
Driven Software Development, pages 403-432, 
S. Beydeda, M. Book, V. Gruhn (Eds.), Springer 
Verlag, 2005.

        

This paper provides a set of practical lessons de-
rived from the design and use of an MDA toolkit. 
It describes the MDA Toolkit and its use, and 
highlights the key lessons in the use of an MDA 
approach from these experiences. It concludes with 
some good observations on the MDA approach.



��  

Chapter IV
Integrating Quality Criteria and 

Methods of Evaluation for
Software Models

Anna E. Bobkowska
Gdańsk	University	of	Technology,	Poland

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

abStract

Successful realization of the model-driven software development visions in practice requires high quality 
models. This chapter focuses on the quality of models themselves. It discusses context-free and con-
text-dependent quality criteria for models and then moves on to methods of evaluation which facilitate 
checking whether a model is good enough. We use linguistic theories to understand groups of criteria and 
their impact on other models, software product and the process of software development. We propose a 
strict distinction of the impacts of visual modeling languages, models of the system and tools for quality 
criteria. This distinction is helpful when designing the methods of evaluation and making decision about 
the point in time, scope and personnel responsible for quality assessment. As the quality criteria and 
several methods of evaluation has usually been considered separately we propose a methodology which 
integrates	them.	Such	an	integrated	approach	provides	the	following	benefits.	It	allows	for	designing	
methods	of	evaluation	based	on	quality	criteria	and	elements	of	the	model	(or	modeling	language)	in	
the	context	of	specific	needs.	It	can	be	applied	for	management	of	the	scope	of	evaluation	with	quality	
criteria	as	well	as	configuration	of	the	method	to	a	specific	situation.	It	allows	for	flexible	and	efficient	
conduct of the evaluation with selection of the methods of evaluation. Finally, this chapter presents case 
studies which illustrate the approach.



  ��

Integrating Quality Criteria for Software Models

introduction

Models play the central role in model-driven 
software development approaches. However, only 
good models really support work of analysts, 
managers and developers. Only good models have 
the potential to facilitate dealing with complexity, 
direct micro-process of software development, 
enable more efficient performance of the difficult 
tasks, facilitate management and increase satis-
faction at work. On the opposite, “bad” models 
may cause mistake, waste time and be annoying 
in use. Despite that, much research has been done 
in the area of technology of model transforma-
tions and tools supporting this task. We argue that 
there is a need to focus on the quality of visual 
modeling languages  (VML), which are used for 
creating the models as well as quality of models 
themselves. 

This chapter takes a practical perspective 
to quality in modeling. In order to improve the 
quality of models one needs to understand qual-
ity criteria for models, know efficient methods 
for conducting evaluation and understand rela-
tions between them for effective configuration 
and management. The level of maturity of the 
technology is not satisfactory nowadays and one 
can observe several problems from the point of 
view of project and general knowledge. 

From the point of view of the software project, 
there are several unrelated methods with limited 
scope of application. It is unclear what could be 
benefits of using them and how they could be 
integrated. Perhaps the most popular method for 
improving model quality are inspections or re-
views with checklists. However, one often needs 
to customize the checklist provided with method-
ologies for a specific project. It is easy to remove 
unnecessary checkpoints, but the problem remains 
when deciding which checkpoints need to added. 
The problem of inflexible methods of evaluation 
appears even more clearly in the perspective of 
the current trend of software process configura-
tion. It assumes that companies do not choose 

a process but rather they make a configuration 
of roles, artifacts and tasks for a given type of 
project within a framework. It means that model 
artifacts, modeling activities and model checking 
activities are objects of configuration. Thus, we 
need objective criteria to make decisions about 
the scope of modeling as well as methods of 
evaluation for software models.

From the point of view of maturity of mod-
eling technology, some objective criteria and 
practical methods of evaluation are needed in 
order to provide frameworks for customization 
of the concrete software projects. There is a need 
to understand criteria why modeling languages 
should have such elements, diagrams, visualiza-
tions, etc. The methods of evaluation are useful 
for making efficient evaluation and quality criteria 
behind such decision allow for  trade-offs when 
compromises are necessary. They could be applied 
by Object Management Group (OMG) members 
working on modeling standards, e.g., Unified 
Modeling Language (UML) and its profiles or 
Business Process Modeling Notation (BPMN). 
As these standards influence advances in prac-
tice, the increase of the maturity of modeling 
technology should result in better perception of 
this technology and more successful application 
in practice. This approach could be useful also 
for committees which work on application-type 
modeling languages, e.g., internet applications; 
special type of models, e.g., task models for user 
behavior modeling; and models for emerging 
technology, e.g., aspect-oriented technology. Fi-
nally, they could be applied in the area of domain 
specific modeling. The tasks of designing and 
evaluating modeling languages in this case are 
performed in software companies which means 
a universal application of the methods of visual 
modeling language evaluation. 

The objective of this chapter is to present an 
approach to dealing with model quality in a way 
which integrates quality criteria and methods 
of evaluation. The quality criteria are useful 
for understanding which aspects are evaluated 



�0  

Integrating Quality Criteria for Software Models

and for managing the scope of evaluation. The 
methods of evaluation are necessary for efficient 
conduct of evaluation. The integrated approach 
should provide the following benefits. It should 
allow for designing methods of evaluation based 
on quality criteria and elements of the model (or 
modeling language) in the context of specific 
needs. It should be applicable for management the 
scope of evaluation with quality criteria as well as 
configuration of the method to a specific situation. 
It should allow for flexible and efficient conduct 
of the evaluation with selection of the methods 
of evaluation. The most important features of the 
solution include:

•	 Improved understanding of the quality 
of models in the perspective of selected 
linguistic theories and separating impacts 
modeling language, model and modeling 
tools for the quality criteria;

•	 Proposition of a methodology for designing 
methods of evaluation based on quality cri-
teria and elements of the model (or modeling 
language).

background

Although several quality criteria and some meth-
ods for evaluating models have been already 
proposed, the practical integrated approach is 
still missing. They solve one kind of problems 
but fail to satisfy other requirements. This section 
discusses related work in the area of identifying 
quality criteria for both models and visual mod-
elling languages, and then available methods of 
evaluation.

Traditionally, software engineering research-
ers proposed technical quality criteria for models 
and visual modeling languages (VML). It was typi-
cal, that they were related to modeling technology 
in general. It can be illustrated with the following 
examples. Models should be expressive enough 
to allow developers to capture all interesting 

strategic and tactical decision (Booch, 1994) and 
notation should allow to create complete, correct 
and consistent models (McGregor,  1998). The 
diagrams should be executable (Martin, 1993). A 
set of characteristics of a good notation include: 
clear and uniform mapping of concepts to symbols, 
ease to draw by hand, good look when printed, 
faxed and copied using monochrome images,  
consistency with past practice and self-consis-
tency, simplicity of common case modeling, not-
to-subtle distinctions, no overloading of symbols 
and suppressible details (Rumbaugh, 1999). More 
attempts to answer the question of the quality of 
models can be found (Firesmith et al. 1996; Hong, 
1993). The set of desirable criteria for models also 
include: precision, constructability, expressive-
ness, executability, traceability, inspectability, 
and usability. A more recent research proposes 
the following key characteristics of engineering 
models (Selic 2003):

•	 Abstraction – possibility to remove or hide 
details irrelevant for a given viewpoint, it 
constitutes the means for coping with com-
plexity;

•	 Understandability – presenting in a form 
that directly appeals to our intuition and 
thus reduces intellectual effort;

•	 Accuracy – true-to-life representation of the 
system;

•	 Predictiveness – possibility to predict 
system’s features;

•	 Small cost – models should be significantly 
cheaper to construct and analyze than mod-
eled system.

Analysis of the proposed criteria suggests that, 
in general, models should be easy to understand 
for software developers, integrators and maintain-
ers, and on the other hand, they should be precise 
enough to allow for automatic transformations 
by the tools. However, it is not clear how these 
criteria could be satisfied. Separating impacts of 
visual modeling language, model and tools can be 



  ��

Integrating Quality Criteria for Software Models

helpful in the analysis and allow for higher level 
of precision and more practical application. Not 
much work on systematic approaches has been 
done. The only exception was an attempt to dis-
tinguish between goals and means in conceptual 
modeling and to define syntactic, semantic and 
pragmatic quality (Lindland et al. 1994).

Many factors have impact on the models. 
The process of creating them, education and 
experience of designers, their purpose of use, 
and developer’s subjective decisions are just a 
few examples. However, models quality depends, 
first of all, on the quality of visual modelling lan-
guages, which define syntax of correct models, 
their semantics and notation. In the area of VML 
evaluation, several methods of evaluation or just 
evaluations has been described in the literature, 
e.g. a method based on cognitive dimensions (Cox, 
2000), comparative studies (De Champeaux et. al. 
1992; Gu et.al. 2002; Kutar et al. 2002), compar-
ing to ontology of systems (Opdahl et al. 2002) 
or evaluation based on a set of model quality 
criteria for business process modelling notation 
(Hommes et.al. 2003). 

Several approaches to checking model qual-
ity has been proposed, e.g. checklists (Rational 
Unified Process, 2001), heuristics (Grotehen), 
object-oriented metrics with thresholds (Lorenz 
et al. 1994). Usually when applying them one 
finds out they are not complete and one misses 
a kind of framework for checking completeness. 
The problem is one does not know according 
to which quality criteria evaluations are made. 
Another problem in current approaches is that it 
is difficult to manage scope of evaluation when 
scope of models in the documentation or type of 
system under development changes. 

The level of understanding of the quality cri-
teria for models and usefulness of the proposed 
methods of evaluation is not satisfactory nowadays 
and the progress in this area is expected. But even 
assuming that universal lists of the quality criteria 
for models are possible to be defined, it is very 
likely that concrete evaluation will require only 

limited scope of them. Therefore, instead of at-
tempting to define yet another “final set of quality 
criteria”, we want to present a kind of framework 
for dealing with these issues. 

configuration of MethodS of 
evaluation baSed on Quality 
criteria

The objective of our research was to provide a 
practical solution for increasing quality in the 
modeling technology. We assume that in order to 
achieve it one can manipulate on models or visual 
modeling languages.  In this section we identify 
the requirements for the methods and their appli-
cation area and then we describe a methodology 
for designing methods of evaluation.

With the current trend in the area of software 
processes to provide a framework with best prac-
tices, e.g. IBM Rational Unified Process, which 
could be customized and configurated for a given 
type of projects depending on its characteristics,  
particular models, modeling and model checking 
activities are  just a result of decisions made by 
process engineer. This observation leads to for-
mulation of the first requirement for the methods 
of evaluation. They should be configurable for 
artifacts under evaluation.

The practice of software project shows that 
most projects are performed in the tough market 
conditions, they must meet limitation of resources 
and increasing quality requirements. On the other 
hand, it is known that quality assessment activities 
are essential, but there is an optimal point on the 
curve describing cost-to-effect. This perspective 
leads to the next requirements for the methods of 
evaluation. They should be as effective and ef-
ficient as possible. Since more advanced methods 
require more time to be performed, the methods of 
evaluation should be additionally manageable with 
respect to the scope and time of evaluation.

Furthermore, process engineer should be 
delivered with a solid knowledge about the con-



��  

Integrating Quality Criteria for Software Models

sequences of using a given method of evaluation. 
Such knowledge would enable making rational 
decisions instead of using a coincidental set of 
checkpoints. 

The above requirements can be fulfilled when 
delivering a methodology for designing methods 
of evaluation customizable for selected objects 
under evaluation which check out these objects 
against desired quality criteria. The methodology 
can be summarized operationally in the follow-
ing steps:

1. Define objectives for your method of evalu-
ation

2. Identify means you can manipulate – objects 
under evaluation

3. Define quality criteria
4. Make configuration of the method of evalu-

ation.

This methodology applied to design of the 
method of evaluation for models during the 
software project can be used by software process 
engineers once during the configuration of the 
process for a given type of projects or when the 
changes to this process are introduced. Then, 
several evaluations of models can be made by 
members of the quality assurance group in several 
projects of this type. The methodology applied 
for designing methods of evaluation for visual 
modeling languages can be used by the members 
of the standard committees as well as language 
engineers working on visual modeling languages. 
The application in the area of support for improve-
ment of the standard modeling languages is not 
a common activity but it has a great impact on 
usefulness of technology used by many users. 
With the increasing popularity of domain specific 
languages, the design of the modeling languages 
and methods of their evaluation becomes a more 
common activity.

Definition of the Objectives and 
Identification of Objects Under 
evaluation 

The first important thing when designing a 
method of evaluation is to define objectives. It 
requires making realistic decisions about expected 
results and elements to be manipulated. Hardly 
ever the process engineer has the freedom to 
make configuration of the process from scratch 
without any limitations. Without this specific 
point of reference, hardly any evaluation can be 
successful. The distinction between quality of 
language and quality of models increases preci-
sion in  evaluation. It is useful to understand a 
language as an expression space and a model as a 
kind of expression. Thus, examples of objectives 
for models include:

•	 Find defects in the design diagrams,
•	 Analyze fit to the purpose of the documented 

system,
•	 Support domain expert in validation of 

analysis documents,
•	 Evaluate understandability of documenta-

tion for a project,
•	 Predict functional quality of a system on 

the basis of its documentation.

Depending on the expected results different 
methods would be useful.

As examples of objectives for visual modeling 
languages one can state:

•	 Evaluate application of a subset of UML for 
a given type of projects with respect to the 
fit to needs,

•	 Evaluate usability of UML diagrams,
•	 Compare expressiveness of several proposi-

tions for a domain specific language,
•	 Compare maturity of modeling technology 

using BPMN and business use case modeling 
including tool support and fit to software 
development process.



  ��

Integrating Quality Criteria for Software Models

It is important to have realistic expectation 
what can be achieved by manipulating VML, 
models and tools. For example, in order to achieve 
“executable diagrams” one needs a VML which 
allows to make executable specifications, then 
models which are precise enough to deliver data for 
transformations, and finally the tools which make 
the transformations to the executable form. When 
attempting to assess correctness with respect to 
syntax it is useful to understand that VML defines 
correct models, then one can check models against 
the syntax, and tools support checking correctness 
against the syntax. They can disable incorrect 
constructions but additional check is needed in 
order to assess lack of incomplete work-in-prog-
ress ones. When evaluating expressiveness, VML 
defines what is possible to express and it can be 
evaluated against the fit of the expression space 
to the domain or purpose of modeling; models 
are kinds of expression within VML and they can 
be evaluated against how they use possibilities of 
VML to represent a system, and the role of tools is 
neutral – they just facilitate making models. When 
evaluating inspectability, VML can be checked 
against ease of defining criteria for inspection 
and relating them the model elements, the most 
important for models is understandability for 
inspectors and tools can be evaluated whether 
they support making inspections. Depending on 
the quality aspect the role of VML, models and 
tools changes.

Quality criteria

Once decided about objectives and objects under 
evaluation the next step is to define quality criteria. 
It is difficult to define an orthogonal and complete 
set of quality criteria. The solution depends on 
several circumstances as well as internal aspects 
of VMLs. In order to understand better impact of 
quality criteria for models we use the following 
linguistic inspirations: 

•	 Distinction into content and expression areas 
- which enables to predict consequences of 
several types of defects; 

•	 Model of syntax, semantics and notation - 
and its application to evaluation of several 
aspects of VML; and 

•	 Pragmatics – a promising approach which 
allows to define context of model usage 
and make more precise context-dependent 
evaluation. 

For describing the quality model one can use, 
for example, McCall’s framework or Goal Ques-
tion Metric (GQM) approach.

Content and Expression Areas

Distinction between content and expression areas 
was inspired by the work of Hjelmslev (semiotician 
and linguist living in 1899-1965).  In his percep-
tion of a language, a sign is a function between 
two forms, a content form and an expression 
form and every sign function is manifested by 
two substances: the content substance and the 
expression substance. The content substance is 
the psychological and conceptual manifestation of 
the sign, whereas the expression substance is the 
material substance wherein a sign is manifested. 
In simple words, it is a distinction between what 
one communicates and the means one uses to 
do it, e.g. sound, text, pictures, sign language, 
gestures, etc. 

The implication for model quality evaluation 
is we can evaluate separtely content of models 
from their expression form. It allows to split 
apart these characteristics which have impact 
on solution from those which are only concerned 
with understanding. In the first group there are: 
completeness, correctness with respect to goals of 
the system etc. While the second group includes 
understandability, precision, adequate symbols 
and simplicity. 

The content has direct impact on the system 
and these criteria can be used in order to predict 



��  

Integrating Quality Criteria for Software Models

quality of software. For example, the lack of com-
pleteness of use case diagram will result in the 
lack of functions in the system, the consequence 
of incorrect class diagram will be incorrect struc-
ture of the system, incorrect dynamic models will 
propagate to incorrect interactions between the 
user and the system. The expression criteria are 
indirectly concerned with the system quality, but 
they indicate for likely problems with understand-
ing by their users and resulting defects.

Syntax, Semantics and Notation

The distinction between syntax, semantics, nota-
tion and pragmatics is inspired  by the work of 
semioticians such as Morris and Peirce and chap-
ters of contemporary books on linguistics which 
study separately syntax (grammar) when dealing 
with relations between signs, semantics concerned 
with relations between signs and reality, differ-
ent forms of expressions and their rules (speech, 
writing, gestures) and pragmatics—dependence 
of communication on interpreters. The distinction 
between syntax, semantics and notation is success-
fully applied in formulation of UML description. 
An attempt to use distinction between syntax, se-
mantics and pragmatics for understanding model 
quality has already been proposed (Lindland et al. 
1994). However, this distinction has much greater 
potential for performing more precise methods of 
evaluation from the perspective of a given area as 
well as the perspective of relationships between 
given two areas.

Pragmatics

Pragmatics is the study of language which focuses 
attention on the users and the context of language 
use rather than on reference, truth, or grammar’ 
(The Oxford Companion to Philosophy). It stud-
ies the use of language in context, and the con-
text-dependence of various aspects of linguistic 
interpretation. Context is the situation in which 
language is used and it includes extralinguistic 

factors: social, psychological and environmental 
ones. One of the topics of debate in linguistics is the 
semantics-pragmatics distinction (Bach). Seman-
tics concerns context-independent meaning (the 
relation of signs to objects) and pragmatics deals 
with context-dependent meaning (the relation of 
signs to their interpreters). This distinction is best 
reflected in the following pairs of expressions: 
sentence vs. utterance; meaning vs. use; context-
invariant vs. context-sensitive meaning; linguistic 
vs. speaker’s meaning; literal vs. nonliteral use; 
or saying vs. implying.

Pragmatics in linguistics allows to deal with 
the context of use. It enables understanding 
aspects dependent on people who take part in 
conversations and their situations. It could play 
similar role in research on modeling in software 
engineering. VMLs also have several kinds of 
users with different social, psychological and 
environmental factors. The perception of models 
might differ depending on expectations related to 
the roles they play in software development activi-
ties. Application of pragmatics in practice would 
require definition and description of pragmatics 
profiles and evaluation of VML in the context of 
these pragmatics profiles. 

design of the Method of evaluation

The input for the method of evaluation are objec-
tives, quality criteria and objects under evaluation 
which can be changed depending on the results of 
evaluation. The results depend on the objectives. 
They include: lists of defects, metrics, suggestions 
of improvement, comparison results etc. The es-
sence of the design of the method of evaluation 
is combination of the all relevant quality criteria 
with objects under evaluation. This can be as 
simple as intersection of criteria and objects under 
evaluation or as difficult as using several basic 
methods supporting the quality improvement and 
integrating them. 

In our opinion, the method of evaluation is 
basically a support for human information pro-



  ��

Integrating Quality Criteria for Software Models

cessing. Although some tools automatically collect 
diagram metrics or automatically discover some 
kinds of low-level defects, still majority of model 
evaluation tasks and almost all VML evaluation 
tasks must be performed by professionals. 

Thus, it is useful to have a look at a cogni-
tive inspiration (without going into details of 
cognitive modeling.) One can notice that within 
an evaluation without any support two different 
types of information processing processes are 
performed: 

•	 An organizational process – which is con-
cerned with issues ‘What shall I do next? 
What should be checked? How to do it? Is 
it enough?’

•	 A checking process – which performs several 
basic checks according to the organizational 
process.

These processes take place concurrently and 
can be informal, implicit and unordered. They 
might be more or less conscious and casual. Main 
problems and most of ‘awaiting’ are associated 
with the organizational process. The role of the 
method of evaluation is to deliver a pattern for 
the organizational process, and, thus, to make it 
more explicit, conscious, ordered and repeatable. 
As the most waste of time is concerned with this 
process, the method should result in improvement 
of the efficiency of evaluation.

Furthermore, modeling concepts and quality 
concepts are usually placed in different conceptual 
models in our minds. The role of the methods of 
evaluation which combine model elements with 
quality criteria is to drive evaluator’s attention 
step by step to facilitate checking all important 
aspects. Any of these combinations is less prone 
for forgetting when there are lots of them or 
evaluator is working in hurry or has another 
motivation to finish the evaluation soon. Thus, 
the method supports effectiveness by forcing 
complete check.

Additionally, some strategies are useful when 
designing methods of evaluation, e.g. ‘most im-
portant things first’ which takes into consideration 
that people get tired during evaluation and their 
productivity can decrease, or the idea of ‘build-
ing evaluators’ knowledge’ and thus checking 
related aspects together in time. A good practice 
is to design a space for ‘other comments’ just in 
case of finding by evaluators defects which are 
not covered by the method or to allow them to 
express their comments on the method.

One more important group of aspects to be 
taken into account when designing methods of 
evaluation are human factors: evaluators, their 
characteristics, their knowledge and their context 
of work. The differences might depend on culture 
or language. The evaluators might prefer e.g. com-
mand style or question style, long questionnaires 
with very simple questions or shorter question-
naires with more open and complex questions, 
discussions with authors or just formal reports 
from evaluation.

An interesting issue related to the design of 
the methods of evaluation is whether it is possible 
to automatically generate appropriate checklists. 
As tools can be designed to support any task, it 
is useful to pose additional questions about the 
quality of the generated checklists and effective-
ness of generation, i.e. comparison of the effort 
required for the development of such tools and 
inserting necessary data with the effort required 
for re-designing the checklists when context of 
application or requirements change. Large benefits 
can be achieved with low-cost manually-made 
methods of evaluation. The tools can add the value 
of easy generation of multiple variants of checklists 
and allow for relating results of evaluation with 
the items of the method and processing them. 
However, one should be skeptical to automatically 
generated checklists and review them carefully 
for accuracy and style.  

The main idea of the method to support orga-
nizational process during evaluator’s work and to 



��  

Integrating Quality Criteria for Software Models

drive their attention seems to be universal, how-
ever more research on strategies and evaluator’s 
preferences would be useful.

caSe StudieS

In order to demonstrate the practical application of 
the methodology of designing methods of evalua-
tion, we present three case studies with design of 
diverse methods of evaluation. Two of them are 
related to models, but they have different objec-
tives. The first method is a simple manageable 
checklist for the purpose of finding defects and the 
second uses every information on the models in 
order to deliver quality predictions (Bobkowska, 
2001). The third case study summarizes a method 
for evaluating visual modeling languages from a 
cognitive perspective (Bobkowska, 2005).

Quality criteria-based checklist

The objective of this method design was to pro-
vide a simple checklist for verification of analysis 
models to be applied in teaching classes of systems 
modeling and analysis. It was required that the 
method fits well to the diagrams under evaluation 
and quality criteria for models should be explicitly 
stated. Additionally, the method should be efficient 
and easy to modify.

 The object under evaluation was documen-
tation of the analysis, which consisted of the vi-
sion of the system (goals, scope, context) in the 
textual form, use case diagram for presentation 
of the system’s functionality, class diagram and 
sequence diagrams for all use cases. Apart from 
the diagrams, non-functional requirements were 
specified in the textual form. 

The quality criteria reflected the distinction 
between content and expression areas. The con-
tent group included: completeness, correctness, 
consistency and fit to the vision of the system. 
The expression group included: understandability 

of diagrams, their elegance, precision, simplicity 
and adequate level of abstraction.

While designing the method we have used 
additionally two ‘strategies’ which allowed for 
effective and efficient evaluation: ‘direct users 
to check most important aspects first’ and ‘order 
questions around the diagrams not the quality 
criteria’. This resulted in a checklist to check 
content of the use case diagram, then content of 
the class diagram and sequence diagrams. Later 
consistency between all diagrams and fit to the 
vision were evaluated, and finally - expression 
criteria for all diagrams. The checklist ended with 
some space for summary. Each subsection related 
to checking a given diagram with a selected qual-
ity criterion included direct instructions for users 
informing them what they should do.

For example, section ‘1. Content of use case 
diagram’ consists of two subsections ‘1.1 Com-
pleteness of use case diagram’ with instruction 
to identify missing actors, missing use cases 
and missing relationships and subsection ‘1.2 
Correctness of use case diagram’ with instruc-
tion to identify incorrect actors, use cases and 
relationships, i.e. spurious, these with wrong 
scope, wrong labels, wrong directions of arrows 
in relationships.  Section ‘6. Expression of use case 
diagram’ consists of the following subsections 
‘6.1. Precision and understandability of labels 
and descriptions’ with instruction to identify 
unclear, vague and difficult to understand labels 
and descriptions, ‘6.2. Elegance of icon place-
ment on the diagram’ with instruction to find 
defects related to placements and aesthetics of 
the diagram, ‘6.3. Simplicity’ with instruction 
to identify unnecessarily complex descriptions 
and constructions on the diagram and finally 
subsection ‘6.4 Adequate level of abstraction’ with 
instruction to identify mismatch of elements in 
respect to level of abstraction, e.g. some elements 
too general or others too detailed. 

This checklist satisfies the requirements for-
mulated when stating objectives. It  is simple, it 
fits exactly for the diagrams under evaluation and 



  ��

Integrating Quality Criteria for Software Models

it explicitly indicates for the criteria of  evaluation. 
It is as efficient as possible and easy to modify 
when documentation or quality criteria change. 
We collected opinions of users of this checklist 
who have also used fragments of general purpose 
RUP checklist for these diagrams. The users 
said that clear instructions in context of these 
subsections facilitate finding defects and give a 
good understanding according to which criteria 
evaluation is made. The checklist was leading 
them through the review and without it they 
wouldn’t find so many defects. They claimed it 
suited better to the diagrams under evaluation 
then the RUP checklist. 

Software Quality prediction

The objective of this method design was to use 
every information on the models indicating for 
quality of the final software to be developed and 
use it in order to make software quality predictions 
in early phases of software development. Such 
predictions should allow managers to control the 
development process with quantitative measures 
of software product (together with measures of 
software process taken from other sources).

The objects under evaluation were documents 
of software analysis and design. The scope of 
analysis was similar to one described in the pre-
vious section, and the documentation of design 
consisted of systems design which consisted of 
subsystem diagram and interactions between sub-
systems, decisions about environment, boundary 
conditions, style and trade-offs. Other documents 
contained user interface design, database design 
and subsystems design.

 Since the objective was to predict quality 
factors of system under development, the mean-
ingful attributes were functionality, maintain-
ability and usability. They needed to be related to 
quality criteria of models such as completeness, 
correctness, precision, adequate structure, flex-
ibility to probable changes, adequacy of designed 
algorithms etc. Additionally, the requirement of 

quantitative measurement leaded to introduction 
of quality metrics for both quality factors and 
quality criteria in scale 0..1.

The schema of the relationships between items 
of the method for software quality prediction is 
shown in Fig. 1. The design integrates the quality 
model (made with the use of McCalls framework 
with its terms of quality factors, criteria and met-
rics) with UML model elements and related textual 
specifications, e.g. these which describe vision of 
the system or system design decisions. 

The link between them consists of elementary 
quality data, which can be diagram metrics and 
their expected values, model evaluation in a scale 
and the lists of defects together with their metrics. 
Diagram metrics cover the idea of measurement of 
the UML diagrams and use of this information to 
reason about quality by comparing the results of 
measurements with expected values, which can be 
derived from historical data about similar projects. 
Diagram metrics are also the basis for local size 
calculation which can be used for defect metrics 
calculation. The diagram metrics are example of 
optimal features, and expected values indicate 
the right range. Evaluations with comments are 
concerned with the criteria that are difficult to 
measure objectively. Evaluations are numbers 
that represent subjective feelings about some 
aspects of the work, e.g. ease of understanding, 
aesthetics, precision, etc. They can be given in the 
scale and described as comments. They represent 
positive features. Defect collection  according to 
the defect classification is an instantiation of the 
negative features in the model. These defects can 
be then counted and combined with the diagram  
size metrics.

Two steps are performed during the quality 
prediction: 

•	 Elementary quality data collection which 
allows to gather elementary quality data on 
the basis of documentation;  

•	 Reasoning about quality, which allows to 
transform elementary quality data into 



��  

Integrating Quality Criteria for Software Models

quality metrics, which can be made manu-
ally by quality expert or can be calculated 
according to formulas with parameters 
which represent the impact of given metrics 
or evaluations.

This method requires more work comparing 
to the previous case study. However, it satisfies 
its goal of delivering quantitative predictions of 
the software quality in early phases of software 
development. It allows to see consequences of 
defects in the documentation for the software 
quality and supports the control of the process of 
software development. The problem of software 
quality prediction is quite complicated and when 
designing a solution one meets the questions of 
missing data and thus uncertainty of predictions 

as well as the problem of subjectivity of evalua-
tions and reasoning. However, with questionnaires 
supporting elementary quality data collection 
and reasoning, even students of experimental 
group have performed predictions with satisfy-
ing results.

evaluating vMls from a cognitive 
perspective 

The objective of this method design was to pro-
pose a tool for visual modeling language (VML) 
evaluation from a cognitive perspective and then 
evaluate with this method use case diagram. It 
is believed that cognitive fit of the technology to 
its users can increase efficiency, decrease cost, 
improve software quality and allow for easier 
learning, use and maintenance. 

Figure	1.	Elementary	quality	data	in	context	of	the	quality	model	and	documentation	with	UML	(©2007	
Anna	Bobkowska.	Used	with	permission)

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Documentation 

Quality model 

Factors 

Criteria 

Quality metrics 

UML diagrams Textual specifications 

Elementary quality data 
Diagram metrics 

 
Expected values 

Defects 
 
Defect metrics 

Evaluation 
 

scale 



  ��

Integrating Quality Criteria for Software Models

Since the methodology is configurable the ob-
ject under evaluation can be any visual modeling 
language or any of its diagrams. In this case study 
we present customization for use case diagram, 
thus we operate are at meta-model level and objects 
under evaluation are UML model elements. 

The quality criteria for this methodology 
were defined by a set of cognitive dimensions 
(Blackwell, Green, 2000):

•	 Viscosity - resistance to change,
•	 Visibility - ability to view components eas-

ily,
•	 Premature commitment - constraints on the 

order of doing things,
•	 Hidden dependencies - important links 

between entities are not visible,
•	 Role-expressiveness - the purpose of an 

entity is readily inferred,
•	 Error-proneness - the notation invites 

mistakes and the system gives little protec-
tion,

•	 Abstraction - types and availability of ab-
straction mechanisms,

•	 Secondary notation - extra information in 
means other than formal syntax,

•	 Closeness of mapping - closeness of repre-
sentation to domain,

•	 Consistency - similar semantics are ex-
pressed in similar syntactic forms,

•	 Diffuseness - verbosity of language,
•	 Hard mental operations - high demand on 

cognitive resources,
•	 Provisionality - degree of commitment to 

actions or marks,
•	 Progressive evaluation - work-to-date can 

be checked at any time,

A schema of the approach to the design of the 
method is presented in Fig. 2. CD-VML template 
is a product of customization of the original cog-
nitive dimensions (CD) questionnaire for visual 
modeling languages. It required some modifica-
tion to increase precision of questions and their 

fit to visual modeling language terminology. 
Then, the next step in design is customization 
for the method of evaluation for a specific visual 
modeling language or one of its diagrams. We 
have designed a  CD-VML-UC questionnaire - a 
product of the CD-VML methodology for the use 
case (UC) model in the default context of use of 
creating models, their usage and change.

In order to give an example, we present 
questions from the section of the questionnaire 
related to error-proneness. It starts with questions 
to find common mistakes whilst modeling and 
using diagrams: ‘Whilst modeling, what kinds 
of mistakes are particularly common or easy 
to make? Which kinds of mistakes you must 
be careful not to make? Whilst using diagrams, 
which misunderstandings are very likely to hap-
pen?’ They were followed by a table with listing 
of all model elements and notation elements 
and space for problem descriptions. The table 
was headed with the questions: ‘Which model 
elements or constructions or notation element or 
visual mechanisms are these mistakes concerned 
with? What are the problems?’ Below the table 
there was a space for explanations, examples, 
comments and suggestions for improvement of 
the VML or suggestions for special features of 
the CASE tool.

This method was verified in an experiment 
with students as participants. Students confirmed 
simplicity and usefulness of use cases, but they 
also discovered a large number of problems, gave 
reasonable explanations to them and quite often 
made suggestions for improvements. Their dis-
coveries covered all the problems reported in the 
related work. The level of detail of the individual 
answers was satisfactory: problems usually were 
described with details and examples and even 
simple diagrams for illustration of the problem 
were added. In the section of comments they stated 
the following strengths of the methodology: the 
precision of questions, large area of covered issues 
and ease of use. Usefulness of the method was 
evaluated as high and results were considered as 



�0  

Integrating Quality Criteria for Software Models

important for use case model improvement. 

future trendS

In our opinion, the following areas need to be 
integrated into the research on quality of software 
models:

•	 Proper configuration of modeling tasks 
and artefacts in the context of software 
project;

•	 Integration of reuse technology with model-
ing technology;

•	 Need for methods which enable evaluation 
of the fit between the problem and modeling 
technology;

•	 Usability of the modeling technology;
•	 Visual modeling language engineering.

There is a need for knowledge which would 
enable proper configuration of the modeling ar-
tefacts and modeling tasks within the software 
project depending on the type of project. Modeling 
takes time and often does not result in increase 
of code (except from the situation where the full 
code is generated by tools). Thus, the suggestion 
is that the use of models is efficient and beneficial 
only to certain limits. Furthermore, unlike sug-

gestions in pure modeling solutions, in realistic 
projects still a lot of documentation is made in the 
textual form. It is worth to mention that quality of 
models and thus the quality of the system which is 
represented by these models depends on whether 
analysts and developers have enough time for mak-
ing them. It depends also on the proper scope of 
modelling. Understanding of this impact requires 
more research and should result in guidelines on 
the scope of application of models in the software 
project depending on the project characteristics. 
Once the development process is customised, the 
proposed methodology of designing methods of 
model evaluation can be used to create proper 
methods of evaluation.

Integration of the reuse technology with the 
modeling technology is the next of the challenges. 
We have a lot of evidence about benefits of re-
use for both efficiency and quality of software. 
However, there are some risks as well. The most 
important reuse solution related to modeling are 
patterns and components. The related questions 
include: How to use patterns effectively for the 
purpose of software development? How to study 
their impact for software quality? How the fit 
between a problem and the applied patterns mat-
ters? How components could be incorporated into 
models?  How to analyse their impact for quality 
of software? The proposed method can facilitate 

Figure	2.	Schema	of	the	CD-VML	methodology	(©2007	Anna	Bobkowska.	Used	with	permission)

Original CD 
 

CD-VML  
template 

CD-VML-XX-YY 

 

(meta-meta-model)

XX  
(meta-model)  



  ��

Integrating Quality Criteria for Software Models

approach to evaluation, but several new factors 
must be defined e.g. fit of the reuse method to the 
solution of the problem.

There is a need for methods which enable 
evaluation of the fit between a problem and given 
technical modeling solution. It is not a surprise 
that a problem which can be difficult in one tech-
nology can be easy to solve in another. Expert’s 
knowledge is necessary to evaluate modeling 
solutions against the problem at hand. Examples 
of decisions include: whether to use UML or 
a domain specific language, object-oriented or 
aspect-oriented solutions; how to choose between 
several technical spaces? It is worth to remember 
that this perspective sets the space of achievable 
effects. 

Much more work should be done on the us-
ability side of modeling methods. Most decisions 
so far are technology-driven and result in difficult 
to use methods and tools. Focus on users of the 
modeling technology could surely result in better 
fit of the technology to support several roles of 
software development process and their activities. 
This area of research can use pragmatics by the 
means of identifying pragmatics profiles and their 
tasks and then evaluating how they are supported 
by modelling technology.

And finally, we would like to support the 
research in the discipline of visual modelling 
language engineering. The technology changes, 
modeling paradigms are passing by, but the ac-
tivity of modeling is useful anyway. The role of 
visual modeling language engineering would be 
to capture the knowledge about modeling which 
is technology invariant. It could collect universal 
and consistent knowledge about models in the 
areas including: 

•	 understanding the role of models; 
•	 quality of models; 
•	 guidelines for creating visual modeling 

languages; 
•	 quality of visual modeling languages; 

•	 guidelines for use of modeling technology 
in the software project. 

The proposed method could be a part of visual 
modeling language engineering.

concluSion

The objective of this chapter was to present an 
approach to dealing with model quality in a way 
which integrates quality criteria and methods 
of evaluation. The methodology for designing 
methods of evaluation customized for selected 
objectives and objects under evaluation which 
check out these objects against desired quality 
criteria fulfills the requirements which were stated 
before it. It is explicitly configurable to different 
objectives and objects under evaluation and thus it 
fits to configurable software development process 
in which particular models, modeling and model 
checking activities are results of decisions made 
by process engineer. With integrating quality 
criteria and methods of evaluation it is easy to 
manage scope of inspection and enable better 
fit to the objects under evaluation. Inspirations 
from linguistic theories provide a framework for 
understanding impact of given criteria for the qual-
ity of software under development and software 
development process. The proposed methodology 
is flexible and universal. The case studies have 
delivered an evidence of feasibility of the meth-
odology and its coverage for a diversity of cases 
as well as usefulness of the results achieved with 
the use of designed methods of evaluation.

referenceS

Bach, K. The Semantics-Pragmatics Distinction: 
What It Is and Why It Matters, Retrieved in June 
2005, from http://userwww.sfsu.edu/~kbach/sem-
prag.html



��  

Integrating Quality Criteria for Software Models

Blackwell, A.F. & Green, T.R.G. (2000) A Cog-
nitive Dimensions questionnaire optimised for 
users. In: Proceedings of the Twelth Annual Meet-
ing of the Psychology of Programming Interest 
Group (pp.137-152). 

Bobkowska, A.E. (2005)  A methodology of Visual 
Modeling Language Evaluation, In: Proceedings 
of	SOFSEM	2005, LNCS 3381 (pp. 72-81).

Bobkowska, A.E. (2001) Software Quality Predic-
tion with UML, Unpublished doctoral dissertation, 
Gdansk University of Technology.

Booch, G. (1994) Object-Oriented Analysis 
and Design with Applications. Benjamin/Cum-
mings.

Cox, K. (2000) Cognitive Dimensions of use 
cases: feedback from a student questionnaire. In: 
Proceedings of the Twelth Annual Meeting of the 
Psychology of Programming Interest Group.

De Champeaux, D.& Faure, P. (1992) A compara-
tive study of object-oriented analysis methods. 
In: Journal of Object-Oriented Programming, 
1(5) 21-33.

Firesmith, D., Henderson-Sellers, B., Graham, I.& 
Page-Jones, M. (1996) OPEN Modeling Language 
(OML). Reference Manual. 

Gu A., Henderson-Sellers B.& Lowe D. (2002) 
Web Modeling Languages: The Gap Between 
Requirements And Current Exemplars. In Pro-
ceedings Of The Eighth Australian World Wide 
Web Conference. 

Grotehen, T. & Dittrich, K.R. The MeTHOOD 
Approach: Measures, Transformation Rules, 
and Heuristics for Object-Oriented Design, 
Technical Report., retrieved in October 2003 
from http://www.ifi.unizh.ch/groups/dbtg/MeT-
HOOD/index.html  

Hommes, B.J.&  van Reijswoud, V. (2000) As-
sessing the Quality of Business Process Modeling 

Techniques, In Proceedings of the 33rd Hawaii 
International Conference on System Sciences.

Hong, S. & Goor, G. (1993) A Formal Approach 
to the Comparison of Object-Oriented Analysis 
and Design Methodologies. In Proceedings of the 
26th	International	Hawaii	International	Confer-
ence on System Sciences.

Kutar, M., Britton, C.& Barker, T. A. (2002) 
Comparison of Empirical Study and Cognitive 
Dimensions Analysis in the Evaluation of UML 
Diagrams. In Proceedings of the Fourteenth An-
nual Meeting of the Psychology of Programming 
Interest Group.

Lorenz, M. & Kidd, J. (1994) Object-oriented 
Software Metrics. A Practical Guide., Prentice 
Hall. 

 Lindland, O.I., Sindre, G. & Sølvberg, A. (1994) 
Understanding Quality in Conceptual Modeling, 
IEEE Software.

Martin, J. (1993) Principles of object-oriented 
analysis and design, Prentice Hall

McGregor, J.D. (1998),  The fifty-foot look at the 
analysis and design models, Journal of Object-
Oriented Programming 11(4) 10-15.

Opdahl, A.L.& Henderson-Sellers, B.  (2002) 
Ontological Evaluation of the UML Using the 
Bunge –Wand –Weber Model. Journal of Software 
and System Modeling, 1.

Rumbaugh, J. (1999) Notation Notes: Principles for 
choosing notation, In Journal of Object-Oriented 
Programming, 12, 4,.

Selic, B. (2003) The Pragmatics of Model-Driven 
Development, IEEE Software 9, 19-25.

Rational Unified Process (RUP) is a trademark 
of IBM

Unified Modeling Language (UML) and Busi-
ness Process Modeling Notation (BPMN) are 
registered marks of OMG

 



  ��

Integrating Quality Criteria for Software Models

additional reading

Basili, V., Green, S., Laitenberger O., Shull F., 
Sorumgaard S., &  Zelkowitz M, (1996) The 
Empirical Investigation of Perspective-Based 
Reading, Empirical Software Engineering: An 
International Journal, vol. 1, 2 (pp.133-164) 
Another approach to reviews which is based on 
perspectives of people involved in the process.

Fenton N.E. & Pfleeger S.L. (1998), Soft-
ware Metrics: A Rigorous and Practical Ap-
proach, Revised, Course Technology; 2 edition 
A book for quick and solid introduction to the 
role of metrics in software engineering.

Gilb T. & Graham D. (1993), Software In-
spection. Workingham: Addison-Wesley. 
An introduction to inspections and reviews in 
software engineering.

Unhelkar B. (2005) Verification	and	Validation	
for Quality of UML 2.0 Models, John Wiley & 
Sons Inc.

  
A book describing checklists for syntactical cor-
rectness, semantics and aesthetics of models.



Section II
Evaluating the 
Model Quality

This section presents several chapters that are aimed at obtaining ob-jective data to support the evalu-
ation of model quality. In general, the papers provide methods, criteria, and metrics that support the 
derivation of quality information from models and the practical use of the quality information obtained 
for steering development.  



  ��

Chapter V
Evaluating Performance of

Software Architecture Models
with the Palladio Component 

Model
Heiko Koziolek

Universität Oldenburg, Germany

Steffen Becker
University of Karlsruhe, Germany

Ralf Reussner
University of Karlsruhe, Germany

Jens Happe
Universität Oldenburg, Germany

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

abStract

Techniques from model-driven software development are useful to analyse the performance of a software 
architecture during early development stages. Design models of software models can be transformed 
into analytical or simulation models, which enable analyzing the response times, throughput, and re-
source utilization of a system before starting the implementation. This chapter provides an overview of 
the	Palladio	Component	Model	(PCM),	a	special	modeling	language	targeted	at	model-driven	perfor-
mance predictions. The PCM is accompanied by several model transformations, which derive stochastic 
process algebra, queuing network models, or Java source code from a software design model. Software 
architects can use the results of the analytical models to evaluate the feasibility of performance require-
ments, identify performance bottlenecks, and support architectural design decisions quantitatively. The 
chapter provides a case study with a component-based software architecture to illustrate the performance 
prediction process.



��  

Palladio Component Model

introduction

To ensure the quality of a software model, develop-
ers need not only to check its functional properties, 
but also assure that extra-functional requirements 
of the system can be fulfilled in an implementation 
of the model. Extra-functional properties include 
performance, reliability, availability, security, 
safety, maintainability, portability, etc. Like 
functional correctness, these properties need to 
be addressed already during early development 
stages at the model level to avoid possible later 
costs for redesign and reimplementation.

Performance (i.e., response time, throughput, 
and resource utilization) is an extra-functional 
property critical for many business information 
systems. Web-based information systems rely on 
fast response times and must be capable of serv-
ing thousands of users in a short time span due 
to the competitive nature of internet businesses. 
Furthermore, the responsiveness of software used 
within companies is important to ensure efficient 
business processes.

Performance problems in large distributed 
systems can sometimes not be solved by adding 
more servers with improved hardware (“kill it 
with iron”). Large software architectures often 
do not scale linearly with the available resources, 
but instead include performance bottlenecks that 
limit the impact of additional hardware. 

Therefore, it is necessary to design a software 
architecture carefully and analyse performance is-
sues as early as possible. However, in the software 
industry, performance investigations of software 
systems are often deferred until an implementation 
of the system has been build and measurements 
can be conducted (“fix it later”). To avoid this 
approach, which might lead to expensive rede-
signs, software architects can use performance 
models for early, pre-implementation performance 
analysis of their architectures. 

This chapter provides an overview of the 
Palladio Component Model (PCM), a domain 
specific modelling language for component-based 

software architectures, which is specifically tuned 
to enable early life-cycle performance predictions. 
Different developer roles can use the PCM to 
model the software design and its targeted resource 
environment. The models can be fed into perfor-
mance analysis tools to derive the performance of 
different usage scenarios. Software architects can 
use this information to revise their architectures 
and quantitatively support their design decisions 
at the architectural level.

The chapter is structured as follows: Section 2 
provides background and describes related work in 
the area of model-driven performance prediction.  
Section 3 introduces different developer roles and 
a process model for model-driven performance 
predictions. Section 4 gives an overview of the 
PCM with several artificial model examples, 
before Section 5 briefly surveys different model 
transformations to analysis models and source 
code. Section 6 describes the performance pre-
diction for an example component-based soft-
ware architecture and discusses the value of the 
results for a software architect. For researchers 
interested working in the area of model-driven 
performance prediction, Section 7 highlights 
some directions for future research. Section 8 
concludes the chapter.

background and 
related work 

Model-driven performance predictions aim at 
improving the quality of software architectures 
during early development stages (Smith et al., 
(2002)). Software architects use models of such 
prediction approaches to evaluate the response 
time, throughput, or resource utilization to be 
expected after implementing their envisioned 
design. The prediction model’s evaluation results 
enable analysing different architectural designs 
and validate performance-related requirements 
(such as maximum response times or minimum 
throughput) of software systems. The advantage of 



  ��

Palladio Component Model

using prediction models instead of testing imple-
mentations is the lowered risk to find performance 
problems in already implemented systems, which 
require cost-intensive redesigns.

Researchers have put much effort into creat-
ing accurate performance prediction models for 
the last 30 years. Queuing networks, stochastic 
process algebras, and stochastic Petri nets are 
the most prominent prediction models from the 
research community. However, practitioners 
seldom apply these models due to their complex-
ity and high learning curve. Therefore, focus of 
the research community has shifted to create 
more developer-friendly models and use model 
transformations to bridge the semantic gap to the 
above mentioned analytical models.

From the more than 20 approaches in this 
direction during the last decade (Balsamo et al., 
(2004)), most use annotated UML models as a 
design model and ad-hoc transformations to create 
(layered) queuing networks as analytical models. 
Tools encapsulate the transformation to the ana-
lytical models and their solution algorithms to limit 
the necessary additional skills for designers. For 
these approaches, the Object Management Group 
(OMG) has published multiple UML profiles (SPT 
profile cf. OMG, (2005); QoS/FT profile; MARTE 
profile) to add performance-related annotations 
to UML models. However, these profiles remain 
under revision, are still immature, and are still 
not known to have been used in practise in a 
broader scope.

Component-based software engineering 
(CBSE) adds a new dimension to model-driven 
performance prediction approaches. CBSE 
originally targeted at improved reusability, more 
flexibility, cost-saving, and shorter time-to-mar-
ket of software systems (Szyperski et al. (2002)). 
Besides these advantages, CBSE might also ease 
prediction of extra-functional properties. Software 
developers may test components for reuse more 
thoroughly and provide them with more detailed 
specifications. These specifications may contain 
performance-related information. 

Hence, several research approaches have 
tackled the challenge of specifying the perfor-
mance of a software component (cf. survey by 
Becker et al., (2006)). This is a difficult task, 
as the performance of a component depends on 
environmental factors, which can and should not 
be known by component developers in advance. 
These factors include:

• Execution environment: The platform 
a component is deployed on including 
component container, application server, 
virtual machine, operating system, software 
resources, hardware resources

• Usage profile: User inputs to component 
services and the overall number of user 
requests directed at the components

• Required services: Execution times of ad-
ditionally required, external services, which 
add up to the execution of the component 
itself

Component developer can only fix the com-
ponent’s implementation, but have to provide a 
performance specification, which is parameteri-
sable for the execution environment, the usage 
profile, and the performance of required services. 
The following paragraph summarises some of the 
approaches into this direction.

Sitaraman et. al (2001) model the perfor-
mance of components with an extension to the 
O-calculus, but do not include calls to required 
services. Hissam et. al (2002) aim at providing 
methods to certify component for their perfor-
mance properties. Bertolino et. al (2003) use the 
UML SPT profile to model component-based 
systems including dependencies to the execution 
environment, but neglecting influences by the 
usage profile. Hamlet et al. (2003) investigate 
the influence of the usage profile on component 
performance. Wu et al. (2004) model components 
with an XML-based language and transform this 
notation into layered queueing networks. The AP-
PEAR method by Eskenazi et al. (2004) aims at 



��  

Palladio Component Model

predicting performance for changes on  already 
built systems, and thus does neglect the influence 
of the execution environment. Bondarev et al. 
(2005) target components in embedded systems 
with the ROBOCOP component model. Grassi 
et al. (2005) develop an intermediate modelling 
language for component-based systems called 
KLAPER, which shall bridge the gap between 
different design and analytical models.

The Palladio Component Model (Becker et al., 
(2007)) described in this chapter is in line with 
these research approaches and tries to reflect all 
influences on component performance. Unlike 
some of the above listed approaches, the PCM 
does not use annotated UML as design model, 
but defines its own metamodel. This reduces the 
model to concepts necessary for performance 
prediction and does not introduce the high com-
plexity of arbitrary UML models with a variety 
of concepts and views.

developer roleS and 
proceSS Model

The PCM metamodel is divided into several 
domain-specific modelling languages, which are 
aligned with developer roles in CBSE. This section 
introduces these roles and provides an overview 
of the process model for using the PCM.

An advantage of CBSE is the division of 
work between different developer roles, such as 
component developers and software architects. 
Component developers specify and implement 
components. They also have to provide a descrip-
tion of the component’s extra-functional proper-
ties to enable software architects to predict their 
performance without deploying and testing them. 
Software architects compose components from 
different component developers to application 
architectures. They are supported by tools to 
predict the architecture’s performance based on 
the performance specifications of the component 
developers. With the predicted performance met-

rics, they can support their design decisions for 
different architectural styles or components.

For performance predictions, the software 
architect needs additional information about the 
execution environment and the usage profile. The 
role of the system deployer provides performance-
related information about the hardware/software 
environment of the architecture (such as process-
ing rate of a CPU, throughput of a network link, 
scheduling policies of the operating system, 
configuration of the application server, etc.). Busi-
ness domain experts provide knowledge about 
the anticipated user behavior (in terms of input 
parameters and call frequencies), and must assist 
software architects in specifying a usage model 
of the architecture.

Figure 1 depicts the overall development 
process of a component-based system including 
performance prediction (Koziolek et al. (2006)): 
Boxes model workflows, thick and grey arrows 
indicate a change of activity, and thin and black ar-
rows illustrate the flow of artefacts. The workflows 
do not have to be traversed linearly; backward 
steps for revision are likely. After collecting and 
analysing requirements for the system to develop 
(Requirements), the software architect specifies 
components and the architecture based on input 
by component developers (Specification). With a 
fully specified architecture, performance predic-
tions can be carried out by tools (QoS-analysis). 
The software architect can use the results to 
alter the specification or decide to implement 
the architecture. This is done either by obtaining 
existing components from third-party vendors or 
by implementing them according to their specifi-
cation (Provisioning). Afterwards, the software 
architect can compose the component implemen-
tations (Assembly), test the full application in a 
restricted environment (Test), and then install and 
operate it in the customer’s actual environment 
(Deployment).

During “Specification”, the above introduced 
roles interact as follows (cf. Figure 2): The PCM 
provides a domain-specific modelling language 



  ��

Palladio Component Model

Figure	1.	Component-based	development	process	(©2007	Heiko	Koziolek.	Used	with	permission)

Requirem ents

Specification Q oS-Analysis Provisioning Assem bly

Test

Deploym ent

Business C oncept
M odel

U se C ase
M odels

QoS 
R esults C om ponent S pecs & 

Architecture

Business
R equirem ents

Existing A ssets
T echnica l C onstra ints C om ponents

U se C ase
M odels

Applications

T ested
Applications

Legend
W orkflow
C hange  o f A ctiv ity
F low  o f A rtifact

Figure	2.	Specification	and	QoS	analysis	with	the	PCM	(©2007	Heiko	Koziolek.	Used	with	permis-
sion)

U sage  M ode l

C om ponen t S pecifica tions

<<U ser>>

A ssem b ly M ode l

A lloca tion  M ode l

<< C om ponen t
D eve lope r>>

part  o f

p art of

par t o
f

pa
r t 

of

<< S ystem
A rch itect>>

<< S ystem
D ep loye r>>

<< D om a in  
E xpert>>

pcM
instance

M 2M
 

S tochastic  P rocess A lgeb ra

Queue ing N e tw ork M ode l

P erfo rm ance  P ro to type

Java  C ode  S ke le tons

M 2T 

M2T 

M 2T  

____
____
____

____
____
____

____
____
____

for each developer role, which is restricted to its 
known concepts. Component developers model 
performance-related component behaviour, soft-
ware architects add an assembly model. System 
deployers model hardware/software resources and 
the components’ allocation to these resources. 
Finally, domain experts provide a usage model. 
All specifications can be combined to derive a 

full PCM instance. Section 4 will elaborate on 
the PCM’s specification languages.

During “QoS-Analysis”, this model can be 
transformed into different analysis models, such 
as a stochastic process algebra or a queueing 
network. These models provide capabilities to 
derive performance metrics such as response 
times, throughputs, or resource utilisations for 



�00  

Palladio Component Model

specific usage scenarios. Additionally, the PCM 
can be transformed into a performance prototype, 
which simulates the specified resource demands. 
This prototype enables pre-implementation per-
formance measurements on the target platform. 
Finally, the PCM instance can be converted into 
Java code skeletons via model-2-text transfor-
mation, as a starting point for implementing the 
system’s business logic. Section 5 describes the 
analysis models and code transformations in 
more detail. 

overview palladio 
coMponent Model 

This section provides an overview of the model-
ing capabilities of the PCM to describe compo-
nent-based software architecture. The PCM is a 
metamodel specified in Ecore from the Eclipse 
Modelling Framework (EMF). The following 
section will mainly use examples to introduce the 
concepts, and does not go into technical details of 
the metamodel, which are elaborated in (Reussner 
et al., 2007). The description of the PCM in this 
section is structured along the developer roles 
and their domain-specific languages.

component developer

Component developers specify the functional and 
extra-functional properties of their components. 
They put the specification as well as the implemen-
tation in repositories, where software architects 
can retrieve them. This section will first introduce 
all entities, which can be stored in repositories and 
then focus on service effect specifications, which 
model the abstract behavior and performance 
properties of component services.

Component Repositories

Figure 3 shows an example PCM repository, 
which includes all types of entities that can be 

specified. First class entities in PCM reposito-
ries are interfaces, data types, and components. 
They may exist on their own and do not depend 
on other entities. 

The interface MyInterface is depicted 
on the upper left in Figure 3. It is not yet bound 
to a component, but can be associated as a pro-
vided or required interface to components. An 
example of interfaces existing without clients 
and an implementation in practice was the Java 
Security API, which had been specified by Sun 
before an implementation was available. Interfaces 
in the PCM contain a list of service signatures, 
whose syntax is based on CORBA IDL. Addi-
tionally, component developers may supplement 
an interface with protocols, which restrict the 
order of calling its services. For example, an I/O 
interface might force clients to first open a file 
(call service open()) before reading from it (call 
service read()). 

Components may provide or require interfaces. 
The binding between a component and an interface 
is called “provided role” or “required role” in the 
PCM. For example, component A in Figure 3 is 
bound to YourInterface in a provided role. 
This means that the component includes an imple-
mentation for each of the services declared in the 
interface. Other components, which are bound to 
a compliant interface in a required role can use 
component A to execute these services. 

Repositories need common data types, so that 
the service signatures refer to standardized types 
(e.g., INT, FLOAT, CHAR, BOOL, STRING, 
etc.). In the PCM, data types are either primi-
tive types, collection types, or composite types 
(composed out of inner types). Figure 3 contains 
a primitive data type INT and a collection data 
type INT-Array, which contains INTs as inner 
elements.

The PCM supports modeling different types 
of components to a) reflect different development 
stages, and b) to differentiate between basic (atom-
ic) components and composite components.



  �0�

Palladio Component Model

Different development stages are reflected 
by provided, complete, and implementation 
component type. Component developers can 
refine components during design from provided 
to implementation component types. 

Provided component types (component B in 
Figure 3) only provide one or more interfaces, but 
include no mandatory required interfaces. Compo-
nent developers can use these type of components 

early during the development, when they know 
that a certain functionality has to be provided, 
but do not know whether other components are 
needed to provide this functionality.

Complete component types (component C 
in Figure 3) are provided component types, but 
additionally may contain mandatory required 
interfaces. However, the inner dependencies be-
tween provided and required interfaces are not 

Figure	3.	Example	component	repository	(©2007	Heiko	Koziolek.	Used	with	permission)

<<repository >>

<<compositecomponent>>
e

<<basic
component>>

f

<<composite
component>>

g

<<Implementation
ComponentType>>

d

<<Provided
ComponentType>>

b

<<Complete
ComponentType>>

c

<<basic
component>>

h

<<delegation
connector>>

<<assembly
connector>>

<<providedrole>>

<<requiredrole>>

<<delegation
connector>>

<<interface>>
M yInter face

void m ethod1(Object par)
Object m ethod 2()

<<primitivedatatype>>
type =  „ IN T “

<<collectiondatatype>>
nam e =  „ IN T-AR R AY“
innerT ype = „ IN T “

<<provided
interface>>

<<required
interface>>

<<basic
component>>

a

<<interface>>
YourInter face

IN T m ethod3()
vo id m ethod4()

<<ServiceeffectSpecification>>

<<externalcallaction>>
m ethod1

<<internalaction>>
doSom ething

<<basiccomponent>>
i

<<providedrole >> <<requiredrole>>



�0�  

Palladio Component Model

fixed in complete component types, as different 
implementations can lead to different dependen-
cies. Within a component architecture, a software 
architect may easily replace one component with 
another component, which conforms (i.e., imple-
ments the same provided and required interfaces) 
to the same complete component type, without 
affecting the system’s functionality.

Implementation component types (component 
D in Figure 3) are complete component types, 
but additionally contain fixed inner dependen-
cies between provided and required interfaces. 
Replacing implementation component types in an 
architecture ensures not only signature but also 
protocol compatibility at the required interface. 

Implementation component types are either 
basic (i.e., implemented from scratch) or compos-
ite components (i.e., implemented by composing 
other components). Component E in Figure 3 is a 
composite component. It contains several inner 
components (F, G, H). Inner component may again 
be composite components (G) to build up arbitrary 
hierarchies. Assembly connectors bind the roles 
of inner components. Delegation connectors con-
nect provided roles of composite components with 
provided roles of inner components, or required 
roles of composite components with required roles 
of inner components. From the outside, composite 
components look like basic components, as they 
provide and require services. The inner structure 
of a composite component should only be known 
to the component developer, but not to the software 
architect, who shall use the component as a unit 
and treat it the same as other components.

Finally, basic components are atomic and 
therefore cannot be further decomposed. They 
may contain a mapping for each provided service 
to required services, which is called resource 
demanding service effect specification.

Service Effect Specification

Resource demanding service effect specifications 
(RDSEFF) provide means to describe resource 

demands and calls to required services by a pro-
vided component service. Component developers 
use RDSEFFs to specify the performance of their 
components.

RDSEFFs reflect the environmental factors on 
component performance introduced in Section 2. 
These are external services, execution environ-
ment, usage profile, and component implementa-
tion as described in the following subsection.

RDSEFFs abstractly model the externally ob-
servable behavior of a component service. They 
only refer to method signatures and parameters 
that are declared in the interfaces and not to 
local, private variables. They abstractly model 
control flow between calls to required services, 
parametric dependencies, and resource usage. 
These specifications do not reveal any additional 
knowledge about the algorithms used to imple-
ment the service’s functionality and thus retain 
the black-box principle.

Consider the artificial example in Figure 4 for 
a brief introduction into RDSEFFs. Component A 
invokes required functionality via its required X,Y, 
and Z. It provides a service called “do”, whose 
source code is sketched in Figure 4.  The service 
first calls a service from interface X, and then 
executes some internal code processing parameter 
“input1”. Afterwards, depending on “input2”, 
either services from interface Y or Z are called. 
“method2” from interface Y is located within 
a loop, whose number of iterations depends on 
the array length of “input3”. 

The corresponding RDSEFF for service “do” 
is located on the right hand side in Figure 4. As a 
graphical, concrete syntax, the illustration uses 
the UML activity diagram notation. However, in 
this case, the metamodel underlying the modeling 
constructs is not the UML metamodel, but the 
PCM, which is indicated by enclosing the PCM 
class names in brackets. In the following, the 
underlying concepts for control flow, resource 
demands, and parametric dependencies will be 
described.



  �0�

Palladio Component Model

Control Flow: Actions in RDSEFFs can either 
be internal actions (i.e., the component executes 
some internal code) or external call actions (i.e., 
the component calls a service declared in its re-
quired interface). RDSEFF offer as basic control 
flow constructs sequences, alternatives, loops, 
and parallel executions (forks). The order of these 
actions may influence performance properties of 
the service, because different services may con-
currently use the same resources or synchronize 
each other, which induces delays for waiting. 

Alternatives or branches split the control flow 
with an XOR semantic (with guards covering the 
whole input domain of parameters), while forks 
(not depicted in Figure 4) split the control flow 
with an AND semantic, i.e., all following actions 

are executed concurrently. Loops have to specify 
the number of iterations, so that the execution 
times for actions within the loop can be added 
up a limited number of times.

Notice that the control flow in RDSEFFs is 
an abstraction from the actual inner control flow 
of the service. Internal actions potentially sum-
marize a large number of inner computations and 
control flow constructs, which do not contain calls 
to required services.

Resource Demands: Besides external ser-
vices, a component service accesses the resources 
of the execution environment it is deployed in. 
Ideally, component developers would provide 
measured execution times for these resource ac-
cesses in the RDSEFF. However, these measured 

Figure	4.	Resource	demanding	service	effect	specification	(©2007	Heiko	Koziolek.	Used	with	permis-
sion)

void A.do(File input1, 
int input2, 
List input3){

X.method1();

// internal method
input4 = 
innerMethod(input1);

if (input2>=0)
for (item : input3) 
Y.method2();

else
Z.method3(input4);

}

A

X

Y

Z

<<externalcallaction >>
m ethod 1

<<externalcallaction >>
m ethod 2

<<externalcallaction >>
m ethod 3

<<internalaction>>
innerM ethod

<<resourcedemanding
ServiceeffectSpecification>>

<<guardedbranch>>
S p e cifica tio n = 
P (in p u t2 .V A L U E <0)

<<guardedbranch>>
S p e cifica tio n = 
P (in p u t2.V A L U E>=0 )

<<loopaction>>
Ite ra tio n s  = 
in p u t3.E L E M E N TS

<<variableusage>>
R e fe re n ce N a m e = zIn p u t
Typ e  =  B Y TE S IZE
S p e cifica tio n = 
in p u t1.B Y TE S IZE / 2

<<parametric
resourcedemand>>
S p e cifica tio n = 1 0 0 0   + 
in p u t1 .B Y TE S IZE * 2 5
U n it =  C P U  cyc le s



�0�  

Palladio Component Model

times would be useless for software architects, 
who want to use the component, because their 
hardware/software environment can be vastly 
different from the component developer ones. 
The execution times of the service could be 
much faster or slower in the software architect’s 
environment.

Therefore, component developers specify 
resource demands in RDSEFFs against abstract 
resource types such as a CPU or hard disk. For 
example they can provide the number of CPU 
cycles needed for execution or the number of bytes 
read from or written to a hard disk. The resource 
environment model supplied by the system de-
ployer (Section 4.3) then contains execution times 
for executing CPU cycles or reading a byte from 
hard disk. These values can be used to calculate 
the actual execution times of the resource demands 
supplied by the component developers. As an ex-
ample, the “ParametricResourceDemand” on the 
internal action “method1” in Figure 4 specifies 
that the service needs 1000 CPU cycles plus the 
amount of a parametric dependency (described 
in the next paragraph) to execute. 

In addition to active resources, such as pro-
cessors, storage devices, and network devices, 
component services may also acquire and release 
passive resources, such as threads, semaphores, 
database connections etc. Passive resources are 
not capable of processing requests and usually ex-
ist only a limited number of times. A service can 
only continue its execution, if the required amount 
of resources is available. Acquisition/Release of 
passive resources is not depicted in Figure 4.

Parametric Dependencies: To include the 
influence of the usage profile into the RDSEFF, 
component developers can specify parametric 
dependencies. When specifying an RDSEFF, 
component developers cannot know how the 
component will be used by third parties. Thus 
they cannot fix resource demands, branching 
probabilities or the number of loop iterations if 
those values depend on input parameters. Hence, 

RDSEFFs allow specifying dependencies to input 
parameters.

There are several forms of these dependencies. 
For example, in Figure 4, the resource demand 
of the internal action “innerMethod” depends 
on byte size of input parameter “input1” (e.g., 
because the method processes the file byte-wise). 
Once the domain expert characterizes the actual 
size of this parameter (cf. Section 4.4), this value 
can be used to calculate the internal action’s actual 
resource demand.

Furthermore, branching probabilities are 
needed for the alternative execution paths in this 
RDSEFF. These probabilities are however not 
fixed, but depend on the value of input parameter 
“input2”. Therefore, the RDSEFF includes no 
branching probabilities but guards (i.e., Boolean 
expressions) on the branches. Once the domain 
expert characterizes the possible values of “in-
put2” and provides probabilities for the input 
domains “input2>=0” and “input2<0”, 
these values can be mapped to the branching 
probabilities.

The RDSEFF in Figure 4 also contains a para-
metric dependency on the number of loop itera-
tions surrounding the external call to “method2” 
of component Y. Loop iterations can be fixed in 
the code, but sometimes they depend on input 
parameters. In this case the service iterates over 
the list “input3” and calls the external service 
for each of its elements. The RDSEFF specifies this 
dependency as the component developer cannot 
know in advance the lengths of the lists.

Finally, the service “do” executes the ex-
ternal call to “method3” in Figure 4 with an 
input parameter that in turn depends on an input 
parameter of the service itself. The service pro-
cesses “input1”, assigns it to a local variable 
“input4”, and then forwards it to interface Z 
via “method3”. While processing “input1”, 
the service “do” reduces its byte size by 50% 
(“input1.BYTESIZE / 2”). The RDSEFF 
includes the specification of this dependency. Once 
the domain expert specifies the actual byte size 



  �0�

Palladio Component Model

of “input1”, the byte size of the input parameter 
of “method3” can be calculated.

Software architect 

Software architects retrieve components (in-
cluding their RDSEFFs) from repositories and 
compose them to architectures. They can use 
several component instances of the same type in 
an architecture at different places. Hence, in the 
PCM, software architects put component instances 
in so called assembly contexts, which save the 
connections of a single component instance. 

Software architects bind the roles of compo-
nents in assembly contexts with system assembly 
connectors, as illustrated in the example in Figure 
5. Notice that the component type A is used in two 
assembly contexts in this example (once connected 
with component B and once with C and D). 

A set of connected assembly contexts is called 
assembly. An assembly is part of a system, which 
additionally exposes system provided roles and 
system required roles (cf. Figure 5). System del-
egation connectors bind these system roles with 
roles of the system’s inner components. Domain 
experts later use system provided roles to model 
the usage of the system (Section 4.4). System 

required roles model external services, which the 
software architect does not consider part of the 
architecture. For example, the software architect 
can decide to model a web service or a connected 
database as system external services.

There is a distinction between composite 
components and systems. For software architects 
and system deployers, composite components 
hide their inner structure and the fact that they 
are composed from other components. The inner 
structure is an implementation detail and its expo-
sure would violate the information hiding principle 
of components. Opposed to this, the structure of 
assemblies is visible to software architects and 
system deployers. Therefore, system deployers 
can allocate each component in a system to a 
different resource. However, they cannot allocate 
inner components of composite components to 
different resources, because these stay hidden 
from them at the architectural level.

System deployer 

System deployers first specify the system’s re-
source environment and then allocate assembly 
contexts (i.e., connected component instances) 
to resources. 

Figure	5.	System	example	(©2007	Heiko	Koziolek.	Used	with	permission)

 <<System>>

A

<<Systemprovidedrole>> <<Systemrequiredrole>>

B

C

<<assemblycontext>>

A
D

<<Systemdelegationconnector >>

<<Systemassemblyconnector >> <<Systemdelegationconnector >>

<<assemblycontext>>

<<assemblycontext>>
<<assemblycontext>>

<<assemblycontext>>



�0�  

Palladio Component Model

In resource environments, resource containers 
group resources. For example, in Figure 6, the 
resource container “Server1” contains a CPU, a 
hard disk, and a database connection pool. The 
PCM differentiates between processing resources, 
which can execute requests (e.g., CPU, hard disk, 
memory), and passive resources, which can-
not execute requests, but only be acquired and 
released (e.g., threads, semaphores, database 
connections). 

Processing resources specify a processing 
rate, which can be used to convert the resource 
demands in RDSEFFs into timing values. Pas-
sive resources specify a capacity. If a compo-
nent acquires a passive resource, its amount of 
available units (i.e., its capacity) decreases. Once 
the capacity reaches zero, further components 
requesting the passive resource must wait until 
other services release it again. Linking resources 
connect resource containers and are themselves 
special processing resources.

System deployers use allocation contexts to 
specify that a resource container executes an as-
sembly context. In Figure 6, the system deployer 
has allocated component A’s assembly context to 
“Sever1” and component B’s assembly context to 
“Server2”. 

System deployers can specify different re-
source environments and different allocation 
contexts to answer sizing questions. The PCM’s 
resource model is still limited to abstract hard-
ware resources. We will extend it in the future 
with middleware parameter, operating system 
settings, and scheduling policies.

domain expert 

Domain experts create a usage model that char-
acterizes user behavior and connects to system 
provided roles. In the example in Figure 7, users 
first log in to the system, then either browse or 
search, then buy an item, and finally log out. All 

Figure	6.	Resource	environment	and	allocation	(©2007	Heiko	Koziolek.	Used	with	permission)

<<System>>

A B

<<assemblycontext>><<assemblycontext>>

<<allocationcontext>>

<<linkingresource>>
processingR ate =  100 M bit/s

<<resourcecontainer >>
Server 1

<<resourcecontainer >>
Server 2

<<processing
resource

Specification>>
C PU

processingR ate =  
3* 10^9 cycles /s

<<processing
resource

Specification>>
H ard D isk

processingR ate =  
15.5 M B/s

<<passive
resource

Specification>>
D atabaseC onnect

capacity =  3 0

<<processing
resource

Specification>>
C PU

processingR ate =  
2.2*10^9 cycles /s

<<passive
resource

Specification>>
T hreadPool

capacity =  8



  �0�

Palladio Component Model

actions target system provided roles (i.e., services 
exposed by the system, cf. Section 4.2). 

Domain experts can specify user behavior 
with control flow constructs such as sequence, 
alternative, and loop. They must specify branch-
ing probabilities for alternatives and the number 
of iterations for loops. 

Additionally, domain experts specify the user 
workload. Workloads are either closed or open. 
Closed workloads specify a fixed number of users 
(population) circulating in the system. In Figure 
7, the domain expert has specified a closed work-
load with 15 users, which perform the specified 
actions and then re-enter the system after a think 
time of 1 second. Open workloads specify a user 
arrival rate (e.g., 5 users/second), and do not limit 
the number of users in the system.

The PCM usage model also enables domain 
experts to characterize the parameter values of 
users. In Figure 7, variable “category” of action 
browse has been characterized with a constant (5) 
meaning that users always browse in the category 
with id number 5. Besides constants, the usage 
model offers specifying probability distribution 
functions over the input domain of a parameter, 
so that domain experts can provide a fine-grained 

stochastic characterization of the user’s input pa-
rameters. The reader may find details in Reussner 
et al. (2007).

tool Support 

We have implemented an Eclipse-based open-
source tool called “PCM-Bench”, which enables 
software developers to create instances of the 
PCM metamodel and run performance analyses 
(cf. Figure 8). The tool offers a different view 
perspective for each of the four developer roles 
and provides graphical model editors. Models of 
the different developer roles reference each other 
in the editor, which enables the creation of a full 
PCM instance. The PCM-Bench is an Eclipse 
RCP application and its editors have been partially 
generated from the PCM Ecore metamodel with 
support of the Graphical Modelling Framework 
(GMF). 

The graphical editors provide an intuitive 
way of modeling component-based architectures 
analogous to UML modeling tools. They offer 
model validation by checking OCL-constraints 
(Object Constraint Language). The PCM-Bench 
visualizes violated constraints directly in the 

Figure	7.	Usage	model	example	(©2007	Heiko	Koziolek.	Used	with	permission)

<<Systemcallaction>>
Login

<<Systemcallaction>>
Search

<<Systemcallaction>>
Brow se

<<Systemcallaction>>
BuyItem

<<Systemcallaction>>
Logout

<<usageModel>>

<<branchtransition>>
Probability =0.6

<<branchtransition>>
Probability =0.4

<<closedworkload>>
Population= 15 u sers
T hink t im e = 1 second

<<loopaction>>
Iterations =  3

<<variablecharacterisation>>
R eferenceN am e = „category“
Specification =  5



�0�  

Palladio Component Model

model diagrams. The editors support entering 
performance annotations with special input 
masks that offer syntax highlighting and code 
completion. Model instances can be serialized 
to XMI-files.

Besides graphical editors, the PCM-Bench is a 
front-end for the performance analysis techniques 
described in Section 5. Software architects can 
configure and run simulations. They can retrieve 
different performance metrics such as response 
times for use cases, throughputs, and resource 
utilizations. The PCM-Bench visualizes prob-
ability distribution functions of response times 
as histograms and provides standard statistical 
values such as mean, median, standard devia-
tion etc. Furthermore, the PCM-Bench supports 
Model-to-Text transformations to generate Java 
code from PCM instances. 

Model tranSforMation and 
prediction MethodS 

The PCM offers different performance evaluation 
techniques, which are still subject to research. For 
analyzing use cases without concurrency, a PCM 
instance can be transformed into a stochastic 
process algebra (SPA), which offers a fast way of 
predicting response times (Section 5.1). A PCM 
instance can alternatively be transformed into a 
queuing network based simulation model (Section 
5.2). The simulation model is less restricted than 
the SPA, but its execution is usually more time 
consuming than solving the SPA. Finally, there 
are transformations to derive Java code skeletons 
from a PCM instance, to provide a starting point 
for implementing the modeled architecture (Sec-
tion 5.3).

Figure	8.	Screenshot	PCM-bench	(©2007	Heiko	Koziolek.	Used	with	permission)



  �0�

Palladio Component Model

Stochastic process algebra

The PCM-Bench supports a model-2-model 
transformation of a PCM instance into an SPA 
called Capra (Happe et. al (2007), Koziolek et. 
al (2007c)). Capra includes concurrent processes, 
resources with current operating systems schedul-
ing policies, and is able to efficiently incorporate 
timing values specified as arbitrary probability 
distributions into the analysis process. It employs 
a hybrid approach of analysis and simulation to 
conduct the performance prediction.

To transform a PCM instance into a Capra 
expression, a tool first solves the parametric 
dependencies within the RDSEFFs. They use 
the parameter characterizations provided by the 
domain expert in the usage model to transform 
parametric resource demands to resource de-
mands, guards on branches to probabilities, and 
parameter dependent loop iteration specifications 
into iteration numbers. Afterwards, the transfor-
mation into Capra is straightforward (Koziolek et. 
al (2007a)). The remainder of this section gives a 
brief overview on Capra’s syntax, semantics, and 
analytical capabilities.

The basic entities of a process are actions. 
In Capra, the set of actions Act is divided into 
a set of event actions EAct and demand actions 
DAct. Event actions represent atomic, indivisible 
behavior which is mainly used for process com-
munication. Demand actions on the other hand 
represent the usage of resources, like processors 
and hard disks, for a certain time span. During 
the execution of a demand action other activities 
might happen in the system. A random variable 
Da,r specifies the demand issued by a demand 
action a to a resource r. It is characterized by a 
probability density function (pdf) fa,r(t). To cre-
ate more complex behavioral structures, Capra 
offers a set of different operators for sequential 
and alternative composition as well as for the 
specification of recursive process behavior. The 
following describes the available operators.

Process QP ⋅  denotes the sequential composi-
tion of two processes P and Q. It first executes P 
and then, after the successful termination of P, 
it executes Q. 

The alternative composition models the ex-
ecution of only one of the two processes P and 
Q. Capra distinguishes two types of alternative 
composition, depending on where the decision 
for the next activity is made. If the process it-
self decides on the next activity, the internal or 
probabilistic choice is used. Process QP p⊕  
selects process P with probability p and process 
Q with probability 1 – p. On the other hand, 
the external or non-deterministic choice P	+	Q 
models different possible behaviors. Here, the 
selection is determined by event actions issued 
by the process’ environment, i.e. other processes 
running in parallel. 

A process variable X can be used to define 
recursive processes. For example, DoaDo ⋅=:  
specifies a process that executes an infinite num-
ber of a actions. In real systems, the number of 
recursive calls is usually bounded. Furthermore, 
the limit is usually not fixed to a single value, but 
depends on the system’s parameters. To approxi-
mate such behavior, Capra models the number 
of recursive calls as a discrete random variable 
specified by a probability mass function (pmf). 
Process P*(Iter) describes the bounded loop of a 
processes P. The random variable Iter  character-
ized by a pmf P(Iter	=	n) denotes the probability 
of executing the recursion n times (Koziolek et. 
al., 2007c).

Process QP A||  denotes the parallel compo-
sition of the processes P and Q. The processes 
communicate (and synchronize) over the event 
actions in the set A. Both processes compete for 
the available resources, which might delay their 
execution.

To reduce the complexity of the simulation, 
the total demand of some operations can be de-
termined in advance. If two processes issue only 
demands to a single resource, their total demand 



��0  

Palladio Component Model

can be computed for the operations sequential 
composition, probabilistic choice, and finite 
recursion. The following gives an impression on 
the possible analyses.

The total demand of a sequence of demand 
actions is the sum of the single demands. So, the 
random variable for the sequential demand is given 
by rQrPrQP DDD ,,, +=⋅ . The sum of two random 
variables is the convolution of its pdfs. Thus, the 
pdf of rQPD ,⋅  is  ))(()( ,,, tfftf rQrPrQP ⊗=⋅ , where 
⊗  denotes the convolution.

For the probabilistic choice QP p⊕ , the de-
mand is either rPD ,  with probability p or rQD ,  
with probability 1 – p. Thus, the pdf of  QPD

p⊕   
is the weighted sum of the probability density 
functions:

)()1()()( ,,, tftftf rQrPrQP −+⋅=⊕ .

Finite recursion can be considered as large 
probabilistic choices over the n-time sequential 
composition of processes P and Q. The pmf P(I 
=	n) defines the probabilities for the probabilistic 
choice. Thus, function:

∑ ⊗⊗= = )))(()(()( ,,1,][ tffiptf rQrP
i
jIrQIP  

computes the pdf for demand QIPD ][ .
With such combined resource demands, the 

number of required simulation steps is reduced 
significantly. The simulation itself is an event-dis-
crete simulation based on the Desmo-J framework 
and yields as result the response time of a usage 
scenario as a probability distribution. Details on 
Capra and the simulation can be found in Happe 
et al. (2007).

Queuing network Simulation 

Many performance analysis methods use queu-
ing networks as underlying prediction models 
because of their capability to analyze concurrent 
system interactions. Queuing models contain a 
network of service centers with waiting queues 

which process jobs moving through the network.  
When applying queuing networks in performance 
predictions with the PCM, some of the commonly 
used assumptions need to be dropped. As the 
PCM uses arbitrary distribution functions for the 
random variables, generalized distributed service 
center service times, arrival rates, etc. occur in 
the model. Additionally, the requests are routed 
through the queuing network according to the 
control flow specified in the RDSEFF. In contrast, 
common queuing networks assume probabilistic 
movement of the jobs in the network. As a result, 
only simulation approaches exist, which solve 
such models.

Hence, we use a model-to-text transformation 
to generate Java code realizing a custom queu-
ing network simulation based on the simulation 
framework Desmo-J. The simulation generates 
service centers and their queues for each active 
resource. Passive resources are mapped on sema-
phores initialized with the resource’s capacity. 
The transformation generates Java classes for the 
components and their assembly. Service imple-
mentations reflect their respective SEFF. 

For the usage model workload drivers for open 
or closed workloads simulating the behavior of 
users exist in the generated code. For any call 
issued to the simulated system, the simulation 
determines the parameter characterizations of 
the input parameters and passes them in a so 
called virtual stackframe to the called service. 
Originally, the concept of a stackframe comes 
from compiler construction where they are used 
to pass parameters to method calls. In the PCM 
simulation, stackframes pass the parameter char-
acterizations instead. 

Utilizing the information in the simulated 
stackframes, the simulated SEFF issues resource 
demands to the simulated resources. If the re-
source is contented, the waiting time increases 
the processing time of the demand.

The simulation runs until simulation time 
reaches a predefined upper limit or until the width 
of the estimation for the confidence interval of 



  ���

Palladio Component Model

the mean of any of the measured response times 
is smaller than a predefined width. After the end 
of a simulation run, the simulation result contains 
different performance indicators (response times, 
queue lengths, throughputs …) which the software 
architect can analyze to determine performance 
bottlenecks in the software architecture.

The computations described here reduce the 
complexity of Capra expressions allowing a more 
efficient and more accurate simulation. In the 
special case, that all demands are issued to the 
same resource and no concurrency is used, the 
whole expression can be solved analytically. 

java code & performance prototype 

The effort spent into creating a model of a software 
architecture should be preserved when implement-
ing the system. For this, a model-2-text transforma-
tion based on the openArchitectureWare (oAW) 
framework generates code skeletons from PCM 
model instances. The implementation uses either 
Plain Old Java Objects (POJOs) or Enterprise Java 
Beans (EJBs) ready for deployment on a J2EE 
application server.

The transformation uses as much model infor-
mation as possible for the generation of artifacts. 
Repository models result in components, assembly 
connectors in distributed method calls, the alloca-
tion is used to generate ant scripts to distribute the 
components to their host environment and finally, 
the usage model results in test drivers.

A particular challenge is the mapping of 
concepts available in the PCM to objects used in 
Java or EJB. Consider for example the mapping 
of composite components to Java. As there is no 
direct support of composed structures in Java, 
a common solution to encapsulate functionality 
is the application of the session façade design 
pattern. 

Another issue with classes as implementing 
entities for components is the missing capabili-
ties to explicitly specify required interfaces of 
classes in object oriented languages. A solution 

for this is the application of the component con-
text pattern by Völter et al. (2006). This pattern 
moves the references to required services into 
a context object. This object is injected into the 
component either by an explicit method call or 
by a dependency injection mechanism offered by 
the application server.

Finally, we can combine the EJB and the 
simulation transformation. This way, users can 
generate a prototype implementation which can be 
readily deployed and tested on the final execution 
environment. Internal actions of the prototype 
only simulate resource demands by executing 
dummy code which offers quality characteristics 
as specified in the model. By using the prototype, 
early simulation results can be validated on the 
real target environment to validate early perfor-
mance estimates.

exaMple 

To illustrate the performance prediction ap-
proach with the PCM, this section provides a 
case study, in which we predicted the response 
time of a usage scenario in a component-based 
software architecture and compared the results 
with measured response times from executing an 
implementation.

The system under analysis is the “MediaStore” 
architecture, a web-based store for purchasing 
audio and video files, whose functionality is 
modeled after Apple’s iTunes music store. It is a 
three-tier architecture assembled from a number 
of independently usable software components 
(Figure 9). Users interact with the store via web 
browsers, and may purchase and download dif-
ferent kinds of media files, which are stored in 
a database connected to the store’s application 
server via Gigabit Ethernet.

We analysed a scenario, in which users pur-
chase a music album (10-14 files, 2-12 MB per 
file) from the store. As a measure for copy protec-
tion, a component “DigitalWatermarking” shall 



���  

Palladio Component Model

be incorporated into the store. This component 
unrecognisable attaches the user’s ID to the audio 
files via digital watermarking. In case the audio 
files would appear illegally in public file sharing 
services, this enables tracking down the respon-
sible user. However, this copy protection measure 
has an influence on performance, as it decreases 
the response time of the store when downloading 
files. With the model-driven performance predic-
tion, we analysed whether the store is capable of 
answering 90% of all user download requests in 
less than 8 seconds.

Each component in the store provides RD-
SEFFs to enable performance analyses (three 
examples in Figure 10). The execution time in 
this use case mainly depends on the number 
and size of the files selected for download, 
which influences network traffic as well as CPU 
utilisation for the watermarking algorithm. The 
specifications of the the components’ RDSEFFs 
have been calibrated with measurements on the 
individual components. In this case, we carried 
out the predictions using Capra.

Besides modelling the store, we also 
implemented the architecture assisted by the 
introduced model-to-text transformations 

to Java code (EJB3). After generating code 
skeletons from the design, we manually added the 
implementation of the business logic of forwarding 
requests and watermarking audio files. The code 
generation also creates build scripts, test drivers, 
deployment descriptors, and configuration files. 
We weaved measurement probes into the code 
using AspectJ. 

The results of prediction and measurement 
are compared in Figure 11. The diagram on the 
left hand side visualises the histograms of the 
response times. The dark columns indicate the 
prediction, while the bright columns on top of 
the dark columns indicate the measurement. The 
highest probability of receiving a response from 
the store with the mentioned parameters is at 
around 6 second. In this case, the prediction and 
the measurement widely overlap. 

The diagram on the right hand side visualises 
the cumulative distribution functions of the 
response time prediction and measurements. This 
illustration allows to easily check our constraint of 
at least 90% of all responses in less than 8 seconds. 
It was predicted that 90% of all requests would be 
responded in 7.8 seconds even if watermarking 
was used in the architecture. The measurements 

Figure	9.	MediaStore	architecture	(©2007	Heiko	Koziolek.	Used	with	permission)

webbrowser MediaStorewebgui

user
ManagementSoundprocessing

billing

encoding

digital
watermarking

audiodb

community
Services

podcastinternetradio

equalizer

accounting userdb

dbadapter

<<resourcecontainer >>
C lien t

<<resourcecontainer>>
A pp lica tion S erve r

<<resourcecontainer >>
D B S erve r1

<<resourcecontainer >>
D B S erve r2



  ���

Palladio Component Model

confirmed the predictions, because in our tests 
90% of the request could be answered less than 
7.8 seconds. There is a difference of 0.1 seconds 
or 1.3 percent.

In this case, the predictions were useful to 
quantitatively support the software architect’s 
decision to introduce watermarking without vio-
lating a service level agreement. Note, that the 
predictions are not meant to be real-time predic-
tions for safety-critical systems. They are useful 
at early development stages on the architectural 
level to support design decisions and lower the 
risk of performance problems in implementations. 
Safety-critical systems (e.g., airbag controls) 
instead need formal verifications of predictions 
to prevent harming human lives. That requires 
more fine grain specifications at lower abstraction 
levels, which developers can only create if most 
details of the system are known.

  

Figure	10.	MediaStore	service	effect	specifications	(©2007	Heiko	Koziolek.	Used	with	permission)

<<externalcallaction>>
queryD B

<<collectioniteratoraction>>

<<external
callaction>>

w aterm ark

<<Setvariableaction>>

<<internalaction>>
search

<<Setvariableaction>>

<<parametricresourcedemand>>
specification = „1.49E-6 * 
StoredF iles.N U M BER_OF _ELEM EN T S 
+ 0.0096“
<<ProcessingR esourceT ype>>
nam e = „H D “

<<internalaction>>
addid

<<internalaction>>
addtext

<<Setvariableaction>>

probIncludeID

1-probIncludeID

probIncludeT ext

1-probIncludeT ext

<<variableusage>>
fileT oM ark.BYT ESIZ E

<<parameter>>
desiredF iles

<<rdSeff>>
M ed iaS to re .dow n load

<<rdSeff>>
A ud ioD B.ge tF iles

<<variableusage>>
filesID s .N U M BER_OF _ELEM EN T S

<<rdSeff>>
D ig ita lW ate rm ark ing.

w a te rm ark

<<variableusage>>
filesT oM ark.BYT ESIZ E

<<parametricresourcedemand>>
specification = „ fileT oM ark.BYT ESIZ E * 
5.11E-9
<<ProcessingR esourceT ype>>
nam e = „C PU “

<<variableusage>>
desiredF iles.N U M BER
_OF_ELEM EN T S

<<internalaction>>
getF iles

<<parametricresourcedemand>>
specification = „4.0E-8 * 
desiredF ile .BYT ESIZ E + 0.08“
<<ProcessingR esourceT ype>>
nam e = „H D “

future reSearch directionS 

Model-driven performance prediction and quality 
assurance of software architecture models is still 
in its infancy and provides lots of opportunities for 
future research. Woodside et al. (2007) recently 
commented on the future of software performance 
engineering. We provide a list of future research 
directions from our viewpoint complementing 
their ideas:

• Intermediate languages: To bridge the gap 
between designer-friendly model notations 
and analytically-oriented formalisms, many 
approaches have developed ad-hoc model 
transformations. Several approaches aim 
at providing a standard interface, i.e., an 
intermediate modelling language, to ease the 



���  

Palladio Component Model

Figure	11.	Case	study	results	(©2007	Heiko	Koziolek.	Used	with	permission)

implementation of model transformations 
(Grassi et al. (2005), Petriu et. al. (2005))

• Dynamic architectures: The PCM is only 
targeted at static architectures, and does 
not allow the creation/deletion of compo-
nents during runtime or changing links 
between components. With the advent of 
web services and systems with dynamic 
architectures changing during runtime, 
researchers pursuit methods to predict the 
dynamic performance properties of such 
systems (Caporuscio et al. (2007), Grassi 
et al. (2007)). 

• Layered resource models: With OMG’s 
MDA vision of platform independent mod-
els and platform specific models, it seems 
straight forward to follow this approach in 
performance modelling. For different system 
layers (e.g., component containers, middle-
ware, virtual machine, operating system, 
hardware resources), individual models 
capturing performance-relevant properties 
could be built. These models could be com-
posed with architectural models to predict 
the performance (Woodside et. al (2007)).



  ���

Palladio Component Model

• Combination of modeling and measure-
ment: Developers can only carry out per-
formance measurements if the system or 
at least parts of it have been implemented. 
Measurement results could be used to 
improve models. In component-based per-
formance modelling, measurements are 
useful to deduce the resource demands of 
components. A convergence of early-life 
cycle modelling and late-life cycle measure-
ment can potentially increase the value of 
performance evaluations (Woodside et. al 
(2007)).

• Performance engineering knowledge 
database: Information collected by using 
prediction models or measuring prototypes 
tends to get lost during system development. 
However, the information is useful for fu-
ture maintenance and evolution of systems. 
Systematic storage of performance-related 
information in a knowledge database could 
improve performance engineering (Wood-
side et. al (2007)).

• Improved automated feedback: While 
today’s model-transformations in software 
performance engineering bridge the seman-
tic gap from the developer-oriented models to 
the analytical models, the opposite direction 
of interpreting performance result back from 
the analytical models to the developer-ori-
ented models has received sparse attention. 
Analytical performance results tend to be 
hard to interpret by developers, who lack 
knowledge about the underlying formal-
isms. Thus, an intuitive feedback from the 
analytical models to the developer-oriented 
models would be appreciated (OMG (2005), 
Woodside et. al (2007)).

concluSion

This chapter provided an overview of the Palla-
dio Component Model, a modelling language to 

describe component-based software architectures 
aiming at early life cycle performance predic-
tions. The PCM is aligned with developer roles in 
CBSE, namely component developers, software 
architects, system deployers, and domain experts. 
Therefore, the PCM provides a domain specific 
modelling language for each of these developer 
roles. Combining the models from the roles leads 
to a full PCM instance specification, which can 
be transformed to different analysis models 
or Java code. An hybrid analysis model (SPA) 
provides a fast way to predict response times. 
Simulation of PCM instances is potentially more 
time-consuming, but offers more expressiveness 
than the hybrid approach. Finally, developers may 
use generated Java code skeletons from a PCM 
instance as a starting point for implementation. 
To illustrate the PCM’s capabilities the chapter 
included a case study predicting the performance 
for a small component-based architecture.

The PCM is useful both for component de-
velopers and software architects. Component 
developers can specify the performance of their 
components in a context-independent way, thereby 
enabling third party performance predictions and 
improving reusability. Software architects can re-
trieve component performance specification from 
repositories and assemble them to architectures. 
With the specifications they can quickly analyse 
the expected performance of their designs without 
writing code. This lowers the risk of performance 
problems in implemented architectures, which 
are a result of a poor architectural design. The 
approach potentially saves large amounts of 
money because of avoided re-designs and re-
implementations.

The chapter provided pointers for future direc-
tions of the discipline in Section 7. Future work 
for the PCM includes improving the resource 
model, supporting dynamic architectures and 
reverse engineering. The resource model needs 
to be improved to support different scheduling 
disciplines, concurrency patterns, middleware pa-
rameters, operating system features etc. Dynamic 



���  

Palladio Component Model

architectures complicate the model as they allow 
changing links between components and allow 
the creation and deletion of components during 
runtime. However, this is common in modern 
service-based systems, and thus should be in-
corporated into performance predictions. Finally, 
reverse engineering to semi-automatically deduce 
performance models from existing legacy code 
seems an interesting pointer for future research. 
Reducing the effort for modelling would convince 
more developers of applying performance predic-
tions. The inclusion of legacy systems enables 
predicting the impact on performance of planned 
system changes.

referenceS

Balsamo, S. , DiMarco, A., Inverardi, P. & Si-
meoni, M. (2004). Model-Based Performance 
Prediction in Software Development: A Survey. 
IEEE Transactions on Software Engineering, 
30(5), 295-310.

Becker, S.; Grunske, L.; Mirandola, R. & Over-
hage, S. (2005). Performance Prediction of Com-
ponent-Based Systems: A Survey from an Engi-
neering Perspective. In Springer Lecture Notes in 
Computer Science Vol.	3938 (pp. 169-192).

Becker, S., Koziolek, H. & Reussner, R. (2007). 
Model-based Performance Prediction with the 
Palladio Component Model. In Proceedings of 
the	6th	Workshop	on	Software	and	Performance	
WOSP’07	(pp. 56-67). ACM Press

Bertolino, A. & Mirandola, R. (2004). CB-SPE 
Tool: Putting Component-Based Performance 
Engineering into Practice. In Crnkovic, I., Staf-
ford, J. A., Schmidt, H. W. & Wallnau, K. C. (Ed.), 
Proceedings	of	the	7th International Symposium 
on Component-Based Software Engineering, 
CBSE2004 (pp. 233-248). Springer Lecture Notes 
in Computer Science, Vol. 3054

Bondarev, E., de With, P., Chaudron, M. & 
Musken, J. (2005). Modelling of Input-Param-
eter Dependency for Performance Predictions 
of Component-Based Embedded Systems. In  
Proceedings of the 31th EUROMICRO Confer-
ence	(EUROMICRO’05) 

Caporuscio, M., DiMarco, A. & Inverardi, P. 
(2007),  Model-based system reconfiguration 
for dynamic performance management. Journal 
of Systems and Software, 80(4), (pp. 455-473). 
Elsevier

Eskenazi, E., Fioukov, A. & Hammer, D. (2004). 
Performance Prediction for Component Composi-
tions. In Crnkovic, I., Stafford, J. A., Schmidt, H. 
W. & Wallnau, K. C. (Ed.), Proceedings	of	the	7th 
International Symposium on Component-Based 
Software Engineering, CBSE2004. Springer 
Lecture Notes in Computer Science, Vol. 3054 
Grassi, V., Mirandola, R. & Sabetta, A. (2005). 
From design to analysis models: a kernel language 
for performance and reliability analysis of com-
ponent-based systems. In Proceedings	of	the	5th	
international workshop on Software and perfor-
mance,	WOSP	‘05	(pp. 25-36). ACM Press 

Grassi, V., Mirandola, R. & Sabetta, A. (2007). 
A Model-Driven Approach to Performability 
Analysis of Dynamically Reconfigurable Com-
ponent-Based Systems. In Proceedings	of	the	6th	
international workshop on Software and perfor-
mance,	WOSP	‘07	(pp. 142-153). ACM Press 

Happe, J., Koziolek, H., & Reussner, R. H. (2007). 
Parametric Performance Contracts for Software 
Components with Concurrent Behaviour. In Elec-
tronical Notes of Theoretical Computer Science, 
Vol. 182 (pp. 91-106 ), Elsevier.

Hamlet, D., Mason, D. & Woit, D. (2004). Prop-
erties of Software Systems Synthesized from 
Components. In Lau, K. (Ed.), Component-Based 
Software Development: Case Studies (pp. 129-
159). World Scientific Publishing Company 



  ���

Palladio Component Model

Hissam, S. A., Moreno, G. A., Stafford, J. A. & 
Wallnau, K. C. (2002). Packaging Predictable As-
sembly. In CD’02: Proceedings of the IFIP/ACM 
Working Conference on Component Deployment 
(pp. 108-124). Springer-Verlag 

Koziolek, H., Happe, J. & Becker, S. (2006). 
Parameter Dependent Performance Specifica-
tions of Software Components. In Hofmeister, 
C., Crnkovic, I., Reussner, R. & Becker, S. (Ed.) 
Proceedings of the 2nd International Confer-
ence on the Quality of Software Architecture, 
QoSA2006	(pp. 163-179). Springer Lecture Notes 
in Computer Science, Vol. 4214

Koziolek, H., Happe, J. & Becker, S. (2007). 
Predicting the Performance of Component-based 
Software Architectures with different Usage 
Profiles. In Szyperski, C. & Overhage, S. (Ed.) 
Proceedings of the 3rd International Confer-
ence on the Quality of Software Architecture, 
QoSA2007. Springer Lecture Notes in Computer 
Science, To Appear

Koziolek, H. & Firus, V. (2007). Parametric 
Performance Contracts: Non-Markovian Loop 
Modelling and an Experimental Evaluation.  In 
Electronical Notes of Theoretical Computer Sci-
ence, Vol. 176 (pp.  69-87), Elsevier

OMG: Object Management Group (2005). UML 
Profile for Schedulability, Performance and Time. 
http://www.omg.org/cgi-bin/doc?formal/2005-
01-02

Petriu, D. B. & Woodside, M. (2005). An inter-
mediate metamodel with scenarios and resources 
for generating performance models from UML 
designs. Springer Journal on Software and Sys-
tems Modeling

Reussner. R. H., Becker, S., Happe, J., Koziolek, 
H., Krogmann, K. & Kuperberg. M. (2007). The 
Palladio Component Model. Internal Report 
Universität Karlsruhe (TH)

Sitaraman, M., Kuczycki, G., Krone, J., Ogden, 
W.F. & Reddy, A. (2001). Performance Specifica-
tions of Software Components. In Proceedings 
of the Symposium on Software Reusability 2001 
(pp. 3-10).

Szyperski, C., Gruntz, D. & Murer, S. (2002). 
Component Software: Beyond Object-Oriented 
Programming. Addison-Wesley 

Wu, X. & Woodside, M. (2004). Performance 
modeling from software components. In Proceed-
ings of the 4th International Workshop on Software 
Performance, WOSP2004 (pp. 290-301). ACM 
SIGSOFT Software Engineering Notes 

Völter, M. & Stahl, M. (2006). Model-driven 
Software Development. Wiley & Sons

Woodside, M., Franks, G. & Petriu D. C. (2007). 
The Future of Software Performance Engineering. 
In Proceedings	of	29th	International.	Conference	
on	Software	Engineering,	ICSE’07.	Track: Future 
of Software Engineering.

additional reading

Bolch, G., Greiner, S., de Meer, H. & Trivedi, 
K. S. (2006). Queueing Networks and Markov 
Chains: Modeling and Performance Evaluation 
with Computer Science Applications. Wiley-In-
terscience, 2nd Edition

Cecchet, E., Marguerite, J. & Zwaenepoel, 
W.(2002) Performance and scalability of EJB 
applications. ACM SIGPLAN Notes, 37(11), 246-
261 

Chen, S., Liu, Y., Gorton, I. & Liu, A. (2005). 
Performance prediction of component-based 
applications. Journal of Systems and Software, 
74(1), 35-43.

DiMarco, A. & Mirandola, R. (2006). Model 
transformations in Software Performance En-
gineering. Springer Lecture Notes in Computer 
Science, Vol. 4214, 95-110



���  

Palladio Component Model

Dumke, R., Rautenstrauch, C., Schmietendorf, A. 
& Scholz, A. (2001). Performance Engineering: 
State of the Art and Current Trends. Springer 
Lecture Notes in Computer Science, Vol. 2047

Grassi, V., Mirandola, R. & Sabetta, A. (2006). 
Filling the gap between design and performance/
reliability models of component-based systems: A 
model-driven approach. Journal of Systems and 
Software, 80(4), 528-558.

Hermanns, H., Herzog, U. & Katoen, J. (2002) 
Process algebra for performance evaluation. 
Theorectical	Computer	Science,	274(1-2), Elsevier 
Science Publishers Ltd., 43-87 

Jain, R. K. (1991). The Art of Computer Systems 
Performance Analysis: Techniques for Experi-
mental Design, Measurement, Simulation, and 
Modeling. Wiley

Kounev, S. (2006). Performance Modeling and 
Evaluation of Distributed Component-Based Sys-
tems Using Queueing Petri Nets. IEEE Transac-
tions on Software Engineering, 32(7), 486-502.

Lazowska, E.; Zahorjan, J.; Graham, G. & Sevcik, 
K. (1984). Quantitative System Performance, 
Prentice Hall

Liu, Y., Fekete, A. & Gorton, I. (2005). Design-
Level Performance Prediction of Component-
Based Applications. IEEE Transactions on 
Software Engineering, 31(11), 928-941.

Menasce, D. A. & Gomaa, H. (2000). A Method 
for Design and Performance Modeling of Client/
Server Systems. IEEE Transactions on Software 
Engineering,	26(11), 1066-1085 

Menasce, D. A. & Almeida, V. A.(2000) Scaling 
for E-Business: Technologies, Models, Perfor-
mance, and Capacity Planning, Prentice Hall

Menasce, D. A. & Almeida, V. A.(2002) Capacity 
Planning for Web Services, Prentice Hall 

Menasce, D. A., Dowdy, L. W. & Almeida, A.F. 
(2004). Performance by Design: Computer 
Capacity Planning By Example, Prentice Hall 
PTR

Reussner, R. H., Schmidt, H. W. & Poernomo, I. 
H. (2003). Reliability prediction for component-
based software architectures. Journal of Systems 
and	Software,	66(3), 241-252.

Rolia, J. A. & Sevcik, K. C. (1995). The Method 
of Layers. IEEE Transactions on Software Engi-
neering, 21(8), 689-700

Smith, C. U. & Williams, L. G. (2001). Perfor-
mance Solutions: A Practical Guide to Creating 
Responsive, Scalable Software. Addison-Wesley 
Professional

Verdickt, T., Dhoedt, B., Gielen, F. & Demeester, 
P (2005). Automatic Inclusion of Middleware 
Performance Attributes into Architectural UML 
Software Models. IEEE Transactions on Software 
Engineering, 31(8), 695-771.

Woodside, C. M., Neilson, J. E., Petriu, D. C. & 
Majumdar, S. (1995) The Stochastic Rendezvous 
Network Model for Performance of Synchronous 
Client-Server-like Distributed Software. IEEE 
Transactions on Computers, 44(1), 20-34.



  ���

Chapter VI
Integrating Measures and 

Redesigns in the Definition 
of Domain Specific Visual 

Languages
Esther Guerra

Universidad Carlos III de Madrid, Spain

Juan de Lara
Universidad Autónoma de Madrid, Spain

Paloma Díaz
Universidad Carlos III de Madrid, Spain

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

abStract

The goal of this work is to facilitate the task of integrating measurement and redesign tools in modelling 
environments for Domain	Specific	Visual	Languages	(DSVLs),	reducing	or	eliminating	the	necessity	of	
coding. With this purpose, we have created a DSVL called SLAMMER that includes generalizations of 
some of the more used types of product metrics and frequent model manipulations, which can be easily 
customised for any other DSVL in a graphical way. The metric customisation process relies on visual 
patterns	for	the	specification	of	the	elements	that	should	be	measured	in	each	metric	type,	while	redesigns	
(as	well	as	other	actions)	can	be	specified	either	personalizing	generic	templates	or	by	means	of	graph	
transformation systems. The provided DSVL also allows creating new metrics, composing metrics, and 
executing actions guided by measurement values. The approach has been empirically validated by its 
implementation in a meta-modelling tool, which has been used for several DSVLs. In this way, together 
with	the	DSVL	specification,	a	SLAMMER	model	can	be	provided	containing	a	suite	of	metrics	and	
actions	that	will	become	available	in	the	final	modelling	environment.	In	this	chapter	we	show	a	case	
study for a notation in the web engineering domain. As ensuring model quality is a key success factor 



��0  

Integrating Measures and Redesigns in the Definition of Domain Specific Visual Languages

introduction

Diagrammatic notations are pervasive in software 
development, e.g. to specify, understand and rea-
son about the system to be built. When the nota-
tions are constrained to a particular application 
domain, they are called Domain Specific Visual 
Languages (DSVLs) (Gray et al., 2004). These 
provide high-level, domain-specific, graphical 
primitives, having the potential to increase the 
user productivity for the specific modelling task. 
Being so restrictive they are less error-prone than 
general-purpose languages, and easier to learn.

DSVLs are frequently used in Model-Driven 
Software Development (MDSD) (Kent, 2002) as 
a means to capitalize the knowledge in a certain 
application domain. MDSD seeks increasing 
quality and productivity in software development 
by considering models as the primary asset, from 
which the application code is generated. Although 
its steep learning curve has been pointed out as 
one of its main disadvantages, its benefits outweigh 
the drawbacks, and the use of appropriate model-
ling tools can help developers to overcome this 
and other problems. Thus, many efforts are being 
currently spent in order to provide adequate tool 
support for the specification and generation of rich 
modelling environments for DSVLs (DSLTools, 
2007; GMF, 2007; Lédczi et al., 2001; Pohjonen 
& Tolvanen, 2002) encompassing aspects of the 
MDSD process, such as facilities for code gen-
eration, reporting, formal verification, or quality 
assessment (Guerra et al., 2006), which is the topic 
of the present chapter.

Software quality is defined as “the totality of 
features and characteristics of a software prod-
uct that bear on its ability to satisfy stated or 

implied needs” (ISO/IEC 9126, 1991). By stated 
needs we refer to explicit system requirements, 
mostly functional. Quality features of this type 
are product correctness, completeness and reli-
ability, and the use of formal methods can help to 
achieve them. Implied needs are those ones that, 
although may be incomplete or not specified, if 
they are not present in the final product then this is 
considered to have less quality. Some features of 
this type are efficiency, usability, maintainability, 
extensibility or cohesion. Product metrics (Fenton, 
1996) measure such features in order to control 
and improve the quality of software products. 
In this chapter, we are interested in generating 
tools to measure the quality of software system 
designs specified using any arbitrary (domain 
specific) visual notation. We will use the term 
“model quality” to refer to the quality properties 
of the software system that a model represents. 
Note that, as in MDSD code is generated from 
models, it is natural to lift up the mechanisms to 
check the quality and correctness of applications 
from code to models. 

However, even if measurement is a key qual-
ity control activity in most engineering domains 
(Basili et al., 1994; Whitmire, 1997), this is 
sometimes neglected in Software Engineering. 
A factor that may attract a more widespread use 
is its support by tools, which is even more critical 
for automation-based processes such as MDSD. 
Its use helps detecting defects prior to imple-
mentation, saving time and budget. The problem 
is that adapting, implementing and integrating 
measurement mechanisms for the plethora of 
DSVLs and tools is costly and time-consuming, 
and usually does not take advantage of previous 
developments. Our goal is to reduce such cost, 

in many computer science areas, even crucial in model-driven development, we believe that the results 
of	this	work	benefit	all	of	them	by	providing	automatic	support	for	the	specification,	generation	and	
integration of measurement and redesign tools with modelling environments.



  ���

Integrating Measures and Redesigns in the Definition of Domain Specific Visual Languages

by making the customisation of measures for any 
kind of DSVL easy. 

Additional techniques to enhance system qual-
ity from its very design are redesigns and design 
patterns. Redesigns are design modifications that 
do not change the functionality but improve model 
quality. This concept is similar to the concept of 
refactoring for code (Fowler, 1999). Design pat-
terns (Gamma et al., 1995) are a catalog of best 
practices that can be applied in order to solve 
specific problems in software design. Again, the 
proliferation of notations and tools can hamper 
the automated application of redesigns and the 
use of patterns. 

In this chapter we propose a novel DSVL called 
SLAMMER (Specification LAnguage for Mod-
elling MEasures and Redesigns). The language 
allows the customisation of general predefined 
measures and actions to be applied to a specific 
DSVL. Measurement and redesign tools are auto-
matically generated from SLAMMER models and 
integrated in the DSVL modelling environment. 
SLAMMER contains the main types of product 
metrics we have identified. The user can custom-
ise these metrics with visual patterns or create 
new ones. In addition, it is possible to specify 
threshold values for the metrics. Thresholds may 
have an associated action described either using 
a programming language, a graph transforma-
tion system (Ehrig et al., 2006) or customising a 
generic predefined template. This is useful if the 
action executes known redesigns that improve 
the model quality.

These ideas have been implemented in the 
AToM3 tool (de Lara & Vangheluwe, 2002), which 
allows the description of DSVLs by means of 
meta-modelling. We illustrate its use by defining 
a set of metrics and redesigns for Labyrinth (Díaz 
et al., 2001), a DSVL in the web domain.

Chapter organization. The chapter starts 
by studying related work. Then, it gives an in-
troduction on meta-modelling for the generation 
of environments for DSVLs, and presents an ex-

ample of environment generation for Labyrinth. 
Next section introduces the main concepts of 
measurement and redesign. Then, SLAMMER is 
presented using examples with Labyrinth. After 
that, we show how SLAMMER was integrated 
in AToM3 and used to improve the environment 
for Labyrinth. Then, some methodological issues 
are discussed, regarding the use of these concepts 
in MDSD. Finally, the chapter ends with future 
trends and the conclusions.

State of the art

As stated in the introduction, the purpose of the 
work presented in this chapter is to facilitate the 
generation of visual environments integrating 
mechanisms to quantify and improve model qual-
ity, regardless of the DSVL in which these models 
are specified. Therefore, the required mechanisms 
must be general enough to be reused or adapted to 
any notation. In this respect, some proposals for 
generic measurement and redesign are found in the 
literature, although they are usually oriented to a 
specific domain and focused on the implementa-
tion phase. For example (Mens & Lanza, 2002; 
Misic & Moser, 1997) present meta-model based 
approaches in order to specify generic metrics for 
object-oriented systems. They define meta-models 
that include domain abstract concepts, such as 
class or attribute. A generic metric is defined by 
using the meta-model concepts, and customised 
for a specific language by mapping the language 
concepts and the meta-model ones. However, 
these approaches are domain dependent as the 
calculation of the metrics depends on the concepts 
defined on the “generic” meta-model. They don’t 
exploit metrics as software remodelling tools that 
allow guiding redesign execution either. The ap-
proach followed in SPQR/20 (SPQR/20, 1995) 
also provides an implementation of the measure-
ment function (an extended version of function 
points) applicable to different languages. Finally, 
it is also worth mentioning the attempts to define 



���  

Integrating Measures and Redesigns in the Definition of Domain Specific Visual Languages

ontologies for software measurement (García et 
al., 2006; Martín & Olsina, 2003). 

With respect to the notion of generic refac-
toring, this is presented in (Lämmel, 2002). The 
framework consists of meta-programs written 
in Haskell that can be instantiated for different 
programming languages by means of parameters. 
However, the parameterisation is complex and 
implies knowing Haskell and the abstract syntax 
of the specific language. Search of candidate code 
to refactoring is exhaustive (consuming-time) and 
not guided by mechanisms that help to guide its 
application by detecting bad smells.

Recently, the necessity of new tools for mod-
ernization and evolution of software has been 
recognised by the OMG with its Architecture-
Driven Modernization (ADM) Task Force. It has 
published a Request for Proposal (RFP) for Metrics 
and Refactoring Packages with the purpose of 
defining a meta-model that enables the inter-
change of metrics and refactorings, respectively, 
being flexible enough to adopt any new kind of 
metric. Its main goal is to facilitate the analysis, 
visualization, refactoring and transformation of 
existing software systems. 

There are a variety of modelling tools that 
incorporate functionalities for obtaining mea-
surements. Nonetheless, the provided metrics are 
usually hard-coded, oriented to a specific domain, 
and the extension possibilities are very limited. 
One exception is the SDMetric tool (SDMetric), 
which allows the definition of metrics for UML 
models using a relational-like language based on 
XML. In ATHENA (Tsalidis et al., 1992) the set 
of predefined metrics can be extended by using 
a textual language. The Moose Reengineering 
Environment (Lanza & Ducasse, 2002) imple-
ments an engine for language-independent object-
oriented software metrics. It provides more than 
30 predefined software object-oriented metrics 
with no possibility of extension, but that can be 
customised for any object-oriented language by its 
mapping to a language independent representation 
called FAMIX. As it can be seen, there is a need 

of more general approaches neither restricted to 
UML nor object orientation, being more easily 
adaptable and intuitive.

Regarding redesign capabilities, the ones 
provided by modelling tools are usually oriented 
to a specific language, with no possibility of ex-
tension, and the parts that need to be redesigned 
have to be detected by hand (e.g. the Refactoring 
Browser (Roberts et al., 1997) for Smalltalk code 
or Together Technologies for Java and UML mod-
els). There are only a few that allow an automatic 
detection of model refactoring opportunities, 
such as SOUL (Tourwé & Mens, 2003). This is 
a language built on the VisualWorks Smalltalk 
environment that detects existing bad smells by 
using logic meta-programming, and then proposes 
a set of appropriate refactorings that can solve 
them. Again, this tool is domain specific and 
the set of bad smells and refactorings cannot be 
enhanced.

In the area of meta-CASE tools, although there 
is a plethora of them (e.g. GME (Lédczi et al., 2001), 
MetaEdit+ (Pohjonen & Tolvanen, 2002) or the 
Eclipse Generic Modelling Framework (GMF)), 
to our knowledge none of them support the defini-
tion and customisation of metrics. Even though 
GMF provides a “metrics” package, it only allows 
defining metrics from scratch by coding them in 
OCL, making the process tedious, hard and time 
consuming. In order to define redesigns, some of 
them provide some transformation language, but 
in any case they do not provide support for the 
detection of the parts that should be reworked.

Meta-Modelling for doMain 
Specific viSual languageS

A meta-model is a model of a modelling lan-
guage (Favre, 2004). That is, in order to describe 
a modelling language, one can make a model 
(e.g. using class or entity relationship diagrams) 
to describe the language abstract syntax. This 
contains the main concepts of the language and 



  ���

Integrating Measures and Redesigns in the Definition of Domain Specific Visual Languages

their relations. In addition, in order to restrict the 
number of valid models defined by meta-models, 
they may contain additional constraints expressed 
in textual languages such as OCL (Warmer & 
Kleppe, 2003).

As an example, Figure 1 shows an excerpt of 
the meta-model for Labyrinth, a DSVL oriented to 
the design of web applications (Díaz et al., 2001). 
In Labyrinth, a web application is modelled as a 
set of nodes where contents are located. Nodes 
and contents can be composed in order to create 
complex information structures. Navigation is 
expressed through anchors and links: a link de-
fines a possible navigation path between nodes 
or contents, and the source and target of a link 
is defined through anchors. Besides, users can 
assume roles and belong to different teams from 
which they receive a set of permissions concerning 
the nodes and contents they are allowed to visit. 
These roles and teams can be nested in hierarchical 

structures where permissions assigned to more 
general roles are inherited by more specific roles, 
and permissions assigned to teams are propagated 
to their members.

The meta-model of a DSVL has to be provided 
with information about the visualization of each 
one of its elements, which is known as its concrete 
syntax (de Lara & Vangheluwe, 2002). The sim-
plest way is to assign an icon-like visualization 
to classes and arrow-like to associations. 

Meta-modelling tools allow specifying the 
concrete and abstract syntax of a certain DSVL, 
and they automatically generate a modelling tool 
where end-users are allowed to edit models written 
in such notation. In this chapter, our purpose is 
to provide a mechanism to enrich such generated 
environment with capabilities for model quality 
measurement and improvement.

Figure	1.	An	excerpt	of	the	labyrinth	meta-model	(©2007	Esther	Guerra.	Used	with	permission)

S emanticObjec t

+ identi�er : S tring

DynamicObject S ubjec t

NodeComponent

+ isHome :Boolean

C ontentC omponent

HMObjec t

Team

R ole

*

*

*

PA

**

generalization

<< E num >>
R elationType

+ aggregation :0
+ generalization :1

C ompos iteNode Node C ontent C ompos iteC ontent

Anchor

+ position : int

*

*

refersT oN

*

*

refersT oC

L ink

+ direction :Boolean * *target
* *source

abstraction

+ type :R elationT ype

*

_ _ _abstraction

+ type :R elationT ype

*

_ _ _

** location



���  

Integrating Measures and Redesigns in the Definition of Domain Specific Visual Languages

Multi-View Domain Specific Visual 
languages

As systems become more complex, there is a trend 
to split their specification in smaller models, each 
one of them built by using the most appropriate 
notation. The family of notations that are used in 
combination for the description of the aspects of a 
system is called Multi-View DSVL (MV-DSVL). 
UML (UML, 2006) is one of its most prominent 
examples, although for a broader domain. It pro-
vides different diagram types for the specification 
of the static (e.g. class and object diagrams) and 
dynamics (e.g. statecharts and sequence diagrams) 
of a system. Similarly, the Ariadne Development 
Method (Díaz et al., 2005) defines a set of diagram 
types based on the Labyrinth meta-model to deal 
with various concerns of a web design, such as the 
information structure, navigation paths, presenta-
tion features and access control policies.

Modelling environments for MV-DSVLs must 
ensure not only intra-diagram consistency (i.e. 
conformance of a model to its meta-model), but 
also inter-diagram consistency for those cases 
when the same element belongs to different dia-
grams, therefore changes in one of them should 

be propagated to the others. Our approach (imple-
mented in AToM3) for the specification of such en-
vironments is to first define the meta-model of the 
complete language, and then define each diagram 
type as a subset of it (Guerra & de Lara, 2007). 
From this specification, a multi-view environment 
is generated where the end-user builds models 
conforming to some diagram type. Inter-diagram 
consistency is achieved by building a repository 
made of the gluing of the system models, from 
where changes are propagated to the rest of the 
views, as done in the Model-View-Controller pat-
tern. This behaviour is performed by triple graph 
transformation (TGT) rules (Schürr, 1994) derived 
from the meta-model information (Guerra & de 
Lara, 2006). The generated multi-view environ-
ment can also check the inter-diagram semantic 
consistency by translating the repository into a 
semantic domain, executing an analysis method, 
and back-annotating the results into the original 
notation (Guerra et al., 2007). 

For example, Figure 2 shows the generated 
multi-view modelling environment for Labyrinth 
by using AToM3. The background window allows 
defining system diagrams of different types. One 
diagram called Role Hierarchy of type Us-

Figure	2.	Generated	multi-view	modelling	environment	for	labyrinth	(©2007	Esther	Guerra.	Used	with	
permission)



  ���

Integrating Measures and Redesigns in the Definition of Domain Specific Visual Languages

ers Diagram is being edited. The control dialog 
(named “Edit value”) allows setting the property 
values for this “view” of the system, including 
the corresponding model (i.e. a role hierarchy), 
which is shown in the right-most window.

In multi-view environments, measurement 
becomes more complex because the information 
needed for its calculation is scattered in several 
models (of the same or different type). Similarly, 
certain redesigns or model refactorings may 
imply parallel modifications to several of the 
system models. Finally, after a redesign, changes 
should be appropriately propagated to the rest 
of the models so as to recover the inter-diagram 
consistency.

In following sections we present our proposal 
for the definition of measures and redesigns for 
single and multi-view DSVLs, and show how 
using it for enriching the previously presented 
environment for Labyrinth. Before, we give an 
introduction to measurement and redesign.

MeaSureMent and redeSign

Measurement is a basic tool for quality control 
in many engineering disciplines (Basili et al., 
1994; Whitmire, 1997). Engineers make use of 
measures in order to provide feedback and assist 
in evaluation, creating a corporate memory and 
helping answering questions about the object being 
measured. In software engineering, the measur-
able objects are usually processes, resources, 
products (Fenton, 1996) and projects (Whitmire, 
1997). Our work is focussed to measuring prod-
ucts, and in particular models, as they are the key 
concept in MDSD.

Products (and in general any measurable ob-
ject) contain internal and external attributes. The 
former can be measured in terms of the product 
itself (e.g. its size). External attributes can only be 
measured with respect to how the product relates 
to its environment (e.g. its cognitive complexity, 
usability or maintainability), and are obtained by 

testing, operating and observing the executable 
software. Our work is directed to measuring 
internal attributes, as they apply on the system 
models instead on the system itself.

Measurement can be direct or indirect. In the 
first case, the value is derived from an attribute 
that does not depend upon any other measure. 
Sometimes they are also called base measures. 
Indirect (or derived) measures are obtained by 
combining several direct or indirect measures. 
The term indicator is sometimes used to refer to 
indirect measures that have an associated analy-
sis model made of a calculation procedure with 
decision criteria. The criteria can be a threshold, 
a target or a pattern used to determine the need 
for action or further investigation (García et al., 
2006). As we will see in next section, SLAMMER 
supports direct and indirect measures, as well as 
indicators with thresholds. Thresholds indicate 
anomalies in the metric values (e.g. extreme 
values) and may trigger redesigns for improving 
the quality of the model.

Further classification of measures includes the 
objectivity, that is, whether they involve human 
(subjective) judgement, or they are quantifications 
based on numerical rules (i.e. objective methods). 
Finally, regarding the automatization degree, 
measurement methods can be automatic, semi-
automatic or manual. Our approach is aimed at the 
automatization of the measurement in tools, thus 
we only consider objective metrics (as subjective 
measures cannot be made fully automatic).

Redesigns are changes in a design model for 
improving some quality attribute, such as under-
standability, performance, cohesion or coupling. 
When the redesign preserves the intended mean-
ing (or behaviour) of the model, it is called model 
refactoring (Mens, 2006). Refactorings (Fowler, 
1999) were originally defined as changes to soft-
ware code in order to make it easier to understand 
and modify, without changing its observable 
behaviour. Model refactoring shifts code refac-
toring techniques to the model level. In MDSD, 
this is the right abstraction level, as the applica-



���  

Integrating Measures and Redesigns in the Definition of Domain Specific Visual Languages

tion code is generated from the models, which is 
then frequently treated as a “black box” (i.e. the 
generated code is not manually adapted).

The need for performing refactorings and re-
designs is commonly detected through so-called 
“bad smells” (Fowler, 1999). They informally 
describe some design or code problem, and have a 
number of associated actions (one or more refactor-
ings) to help in its solution. Some efforts have been 
recently placed in formally defining such smells 
through the use of metrics (Munro, 2005). In our 
proposal, we follow this trend by using thresholds 
associated to metrics in order to detect product 
anomalies, and possibly correct them through 
redesigns. Although automated, these redesigns 
usually require human supervision, either for ad-
ditional input or simply for confirming that they 
are adequate in the given situation.

SlaMMer: Specification 
language for Modelling 
MeaSureS and redeSignS

SLAMMER is a novel DSVL that tries to facili-
tate the definition of measures and redesigns for 
a given DSVL, as well as to provide a framework 
for the automatic (model-driven) generation of 
measurement and redesign tools that can be 
integrated in the final modelling environment 
for the DSVL. SLAMMER can be used for any 
kind of DSVL (which may be used for describing 

structure, behaviour, or any other system perspec-
tive). SLAMMER has been defined by means of a 
meta-model that takes into account related works 
on ontologies for software measurement (García 
et al., 2006), as well as on the international stan-
dard for software quality ISO 15939 (ISO/IEC 
15939, 2002). In addition, it is based on the use of 
visual techniques (e.g. graphical patterns, graph 
transformation) to achieve its purposes. 

In this section, we start by introducing the 
concept of graphical pattern and its instantiation 
in the context of SLAMMER, as patterns will be 
used to configure measures and redesigns. Then, 
we present the part of the SLAMMER meta-model 
for the definition of measures and actions. We il-
lustrate the SLAMMER concepts with examples 
for Labyrinth.

graphical patterns in SlaMMer

In SLAMMER, the simplest form of pattern is 
a single positive graph. The application of a pat-
tern to a model gives as result all occurrences of 
the positive graph in the model. The pattern can 
be initialised with a partial match, given as an 
argument of the pattern, and the output can be 
filtered in order to return a subgraph of the positive 
graph occurrences. Figure 3 shows to the left an 
example pattern. The positive graph is made of 
objects Role and Node related through a permis-
sion assignment (relationship PA). To the right, 
the pattern is instantiated in graph G. In step (i) 

 pattern instantiationpattern
r:Role

n:Node

:PA

argum e nts : [r ]
outp ut : [n]

(i) initial match r1

:generalization

r2:Role

r1:R ole n2:Node

:PA

:PA

n1:Node

r3:Role

:generalization

:PA

G m1

m2
n1:Node

m1

n2:Node

m2

(ii) match extension

:generalization

r2:Role

r1:R ole n2:Node

:PA

:PA

n1:Node

r3:Role

:generalization

:PA

G
pattern instantiationpattern

r:Role

n:Node

:PA

argum e nts : [r ]
outp ut : [n]

pattern
r:Role

n:Node

:PA

argum e nts : [r ]
outp ut : [n]

(i) initial match r1

:generalization

r2:Role

r1:R ole n2:Node

:PA

:PA

n1:Node

r3:Role

:generalization

:PA

G m1

m2
n1:Node

m1

n2:Node

m2

(ii) match extension

:generalization

r2:Role

r1:R ole n2:Node

:PA

:PA

n1:Node

r3:Role

:generalization

:PA

G

Figure	3.	Example	of	graph	pattern	and	instantiation	(©2007	Esther	Guerra.	Used	with	permission)



  ���

Integrating Measures and Redesigns in the Definition of Domain Specific Visual Languages

the match is initialised with the role r1, which 
is received as argument. In step (ii) the match is 
extended to the complete positive graph of the 
pattern. Two occurrences of the positive graph 
are found in G: one relating role r1 to node n1, 
and another one relating it with node n2. In step 
(iii) the matchings are filtered so that only the 
elements specified as output in the pattern are 
obtained as result. Thus, as the pattern specified 
node n as the output, only nodes n1 and n2 in 
the matchings are given as result.

The number of instantiations of a pattern can 
be restricted by means of one or more application 
conditions (Ehrig et al., 2006). These are made of 
a premise graph and a set of consequence graphs. 
If a pattern specifies some application condition, 
the pattern instantiation process is as follows. First, 
all occurrences of the positive graph are found in 
the model. Then, for each application condition, if 
an occurrence of the premise graph is found then 
some of the consequence graphs have also to be 
found for the occurrence of the positive graph to 
be considered valid. There are two special cases 
of application conditions. If only a premise is 
specified and no consequence, then it is called a 
negative application condition (NAC), and find-
ing the premise in the model makes invalid the 
positive graph occurrence. On the other hand, if 
the premise is isomorphic to the positive graph 
and some consequence is specified, it is called 
a positive application condition (PAC). In this 

case, some of the consequences have to be found 
on the model for the positive graph occurrence 
to be valid. 

Figure 4 shows to the left an example of pat-
tern with two application conditions. Its positive 
graph is made of an object Node, the PAC speci-
fies that an object Team must have permission to 
access the node, and the NAC forbids an object 
Role to have access to the node. To the right, the 
pattern is instantiated in graph G. In step (i) all 
the matches of the positive graph are found. As 
the pattern has no arguments, there is no starting 
initial match, and thus all nodes in G are valid 
instantiations of the positive graph. In step (ii) 
the application conditions are evaluated for each 
match. An occurrence of the PAC and no occur-
rence of the NAC are found for match m1, therefore 
the match is valid. For match m2 no occurrence 
of the PAC is found, thus the match is discarded. 
Finally, for match m3 the PAC is satisfied, but an 
occurrence of the NAC is found, thus the match 
is also discarded. This is why in step (iii) only 
match m1 is obtained as result. 

Figure 5 shows the package of the SLAMMER 
meta-model dealing with pattern definition. In 
SLAMMER we use patterns in order to customise 
generic measures and task templates for concrete 
DSVLs. Patterns allow visually specifying how 
model attributes (i.e. features that are going to be 
measured or modified) are expressed in a DSVL, 
as next subsection explains.

Figure 4. Example of graph pattern with positive and negative application conditions and instantiation 
(©2007	Esther	Guerra.	Used	with	permission)

pattern instantiation

(i) initial match + match extension (iii

n1:Node

m1

pattern

argum ents : [ ]
output: [n]

n:Node
n:Node

:Team

:PA

P AC
n:Node

:Role

:PA

NA C t1:Team

n2:Node

:PA

n1:Node

G

m1 m2
(ii) condition evaluation

t1:Team

n2:Node

:PA

n1:Node

G

m1 m2

m3

r1:Role

:PA

:PA

m3

r1:Role

:PA

:PA n3:Noden3:Node

and

pattern instantiation

(i) initial match + match extension (iii

n1:Node

m1
n1:Node

m1

pattern

argum ents : [ ]
output: [n]

n:Node
n:Node

:Team

:PA

P AC
n:Node

:Role

:PA

NA C t1:Team

n2:Node

:PA

n1:Node

G

m1 m2
(ii) condition evaluation

t1:Team

n2:Node

:PA

n1:Node

G

m1 m2

m3

r1:Role

:PA

:PA

m3

r1:Role

:PA

:PA n3:Noden3:Node

and



���  

Integrating Measures and Redesigns in the Definition of Domain Specific Visual Languages

Specification of Measures in 
SlaMMer

A measure can be specified by providing the 
set of entities that are going to be characterized 
by the measurement (the domain), the relevant 
attributes for the measurement method, the 
measurement method itself (a function in the 
case of indirect metrics), the scale (the range of 
values it can take) and, in case of scales of type 
interval or ratio, a measurement unit (e.g. number 
of classes, lines of code). In addition, measures 
may include information about normal or unusual 
value ranges, pointing to threshold values in the 
measurement scale. It must be noted that the 
measurement method is domain independent and 
remains always the same. On the contrary, the 
domain, the properties to be measured and the 
threshold values are domain dependent, and have 
to be specified for each DSVL where we want to 
perform the measurement. SLAMMER uses this 
idea in order to specify a set of predefined generic 
metric templates that hide the measurement func-
tion and can be customised by providing only the 
domain-specific information in each case. The 
metric domain is specified as the list of types that 

conform the domain space, the attributes to be 
measured are given as a set of patterns, the units 
are given as text, and the thresholds are boolean 
conditions evaluated on the metric value.

The package of the SLAMMER meta-model 
concerning the definition of measures is shown 
in Figure 6. Concrete classes inheriting from 
class Measure define metric templates that can 
be customised by giving the domain and proper-
ties for a specific DSVL. All measures contain 
a unique identifier name and a goal. Attribute 
domain is used to specify the metric domain as a 
list of types. Attribute subtypeMatching specifies 
if objects in the domain must have exactly the type 
specified in attribute domain, or also any of its 
subtypes is allowed. This makes measures more 
reusable, being defined once for a type, and used 
for all its subtypes. Attributes scale and unit are 
used to specify the range of values the measure 
can take and its magnitude, respectively. In addi-
tion, relation dependency allows a measure to use 
results calculated by other ones and thus metrics 
composition. In this way, measures can be reused 
and composed in order to build more complex 
composite ones. A meta-model constraint forbids 
cycles of recursive dependencies. A measure may 
have any number of threshold values, which are 

Figure	5.	Domain	specific	visual	 language	SLAMMER.	Package	“Pattern”	(©2007	Esther	Guerra.	
Used	with	permission)

Pattern

ApplicationC ondition

Pattern

+ arguments : identi�er[]
+ output : identi�er[]

*applicationC onditions

PatternG raph

+ name :S tring {keyword}
+ graph :Model
+ attr ibuteC ondition :S tring

0..1

*

consequences

0..1

0..1

premise

0..1 pos itiveG raph



  ���

Integrating Measures and Redesigns in the Definition of Domain Specific Visual Languages

extreme values for it. A threshold has a name, a 
description and a condition. The latter is a logical 
expression over values of the measure.

Concrete measures in the SLAMMER meta-
model are organized depending on its domain 
dimension and on the measurement function 
used to calculate the metric value. From the 
domain dimension point of view, they can be 
model-oriented if they take measures of global 
model properties (such as number of cycles and 
size); element-oriented if they refer to element 
features (e.g. permissions assigned to a role); 
and group-oriented if they measure features of 
groups of elements (e.g. their similarity or cou-
pling). From the measurement function point of 
view, we sort out them either as path-oriented if 
they use a measurement function that traverses 
paths between elements of the same type (e.g. a 
navigation path joins nodes by means of anchors 
and links, and an inheritance path joins subjects 
or classes by means of inheritance relations) or 

any of their subtypes, which is specified by at-
tribute type; or as user-defined if the measurement 
function is provided by the user (and is different 
from the ones already provided by the SLAM-
MER meta-model). 

SLAMMER contains generalizations or 
abstractions of some of the more used types of 
metrics in software engineering, together with 
mechanisms for their combination. That is, we 
are not inventing new metrics, but reusing metrics 
that have been validated by other researchers and 
shown to work for specific purposes. In SLAM-
MER metrics are visually customised for a given 
DSVL by means of graphical patterns (class Pat-
tern in the meta-model) that identify how domain 
specific features are expressed in such language. 
The arguments of the pattern correspond to a 
value in the metric domain, and the output is 
the set of model attributes we want to obtain. In 
the remaining of this subsection, we explain the 
generic metrics included in SLAMMER.

Figure	6.	Domain	specific	visual	language	SLAMMER.	Package	“Measures”	(©2007	Esther	Guerra.	
Used	with	permission)

Measures

NumberOfElements

+ scale : S tring = "[0,N]"

ModelO riented

+ domain : NULL

E lementO riented

+ domain : S tring

PathOriented

+ type :S tring

GroupOriented

R elatedE lements

+ scale : S tring = "[0,N]"

C yc lomaticNumber

+ scale : S tring = "[0,N]"

InheritedE lements

+ scale : S tring = "[0,N]"

DepthOfPath

+ scale : S tring = "[0,N]"

Dis tanceB asedS imilarity

+ scale : S tring = "[0,1]"

Dis tance

+ scale : S tring = "[0,N]"

Pattern

*

cycle relatedE lementelement

step

element

Direc tC onnec tions

+ scale : S tring = "[0,N]"

<< E num >>
Comparis onType

+ reference :0
+ value :1

S tartPo ints

+ scale : S tring = "bool"

Meas ure

+ name :S tring {keyword}
+ goal : S tring
+ domain : S tring[]
+ subtypeMatching :Boolean
+ scale : S tring
+ unit : S tring

UserDe�ned

+ calculation :S tring

measurementF unction

T hres hold

+ name :S tring
+ description : S tring
+ condition :S tring

1..* *
*

*
dependency

property

+ order_type : int
+ comparison :C omparisonT ype

domain

_ _



��0  

Integrating Measures and Redesigns in the Definition of Domain Specific Visual Languages

NumberOfElements allows counting the 
number of elements of certain type in a model. 
This is a model-oriented measure because it cal-
culates a property of the model itself, and thus it 
is not necessary to specify the domain (i.e. it is 
the complete model). The type of the element to 
be counted is given as a pattern. As patterns are 
indeed models plus application conditions, we 
can count not only elements of a certain type, but 
also complex structures made of sets of different 
related elements. 

As an example, the Number of Navigational 
Contexts (NNC) (Abrahao et al., 2003) is used in 
the web domain as indicator of the navigational 
model size. In Labyrinth, a navigational context 
is a node component that participates in a naviga-
tional link through the corresponding anchor. We 
can use SLAMMER in order to adapt the NNC to 
Labyrinth by customising a measure of type Num-
berOfElements with the pattern shown in Figure 
7. This pattern has an application condition which 
allows counting the number of node components 
(simple and composite, see Labyrinth meta-model 
in Figure 1) that are source (consequence graph 
1) or target (consequence graph 2) of a naviga-
tional link. Thus, one of the consequence graphs 
of the application condition has to be found, and 
we indicate it with an “OR”. The output of the 

pattern is the element to be counted, that is, the 
node component.

CyclomaticNumber counts the number of 
cycles in a model, thus being model-oriented. In 
this case a pattern showing the structure of a cycle 
in the given DSVL must be provided.

RelatedElements counts how many elements 
are related to a given element type, which is 
specified by attribute domain. This measure is 
element-oriented, and thus, it is calculated for each 
element of the specified type in a given model. 
The relation between the elements is given as a 
pattern, which allows expressing complex rela-
tions made of several elements as well. 

For example, we can instantiate a measure of 
this type for Labyrinth, and customise it so as 
to count the number of nodes each role has per-
mission to access. In this case attribute domain 
should contain type “Role”, and the related ele-
ment should be specified by the pattern shown in 
Figure 3. The metric is calculated for each role 
in the model and, in each case, the metric value 
is calculated as the number of times the pattern 
gets instantiated (two for role r1).

DistanceBasedSimilarity compares how 
similar a set of entities is by studying the set of 
attributes they share (Simon et al., 1999). It can 
take values in the interval [0, 1]: the higher the 
value, the bigger the distance between the enti-
ties, and the less similar they are. The types of the 
entities to compare are given as a list in attribute 
domain. For each one of the types, it must also 
be specified which are the properties used for 
the comparison. This is done with a pattern for 
each property (qualified relation property in the 
meta-model). The properties define an attribute 
order_type that relates them with the correspond-
ing type in the list given by attribute domain. The 
comparison can be made either by reference (i.e. 
two objects are considered equal if they are the 
same) or by value (i.e. two objects are equal if all 
their fields have the same value).

This measure can be applied to Labyrinth in 
order to analyse how similar are each two roles 

Figure	7.	Customisation	pattern	for	metric	“Num-
ber	 of	 Navigational	 Contexts”	 (©2007	 Esther	
Guerra.	Used	with	permission)

 

n:Node Component
<ANY>

argum e nts : [  ]
outp ut : [n]

c o ns eq ue nc e1

n:Node Component
<ANY>

<ANY>

c o ns eq ue nc e2

n:Node Component
<ANY>

<ANY>

A pp lic atio n Co nd itio n:

or
n:Node Component
<ANY>

argum e nts : [  ]
outp ut : [n]

c o ns eq ue nc e1

n:Node Component
<ANY>

<ANY>

c o ns eq ue nc e2

n:Node Component
<ANY>

<ANY>

A pp lic atio n Co nd itio n:

or



  ���

Integrating Measures and Redesigns in the Definition of Domain Specific Visual Languages

in the system, and thus detect redundancies in 
the defined security policy (Guerra et al., 2006). 
In this case, the domain contains type Role twice 
and the properties that make similar two roles 
are the permissions they define (expressed with 
a pattern).

Distance, as well as the following measures, 
allows measuring different properties of path-
like structures where the nodes in the path have 
the same type and are connected through some 
specific relation. For example, the structure of a 
web navigation map is path-like, since we have 
information nodes that are connected through 
anchors and links. Another example is the users’ 
hierarchy provided by Labyrinth, which contains 
subjects (i.e. roles and teams) connected by means 
of inheritance relations. In this measure, as well as 
in the remaining ones, it must be specified the ele-
ment type to which the measure applies (attribute 
domain), as well as the fundamental step (e.g. the 
inheritance relationship in the users’ hierarchy), 
which is specified as a pattern. Thus, the measure 
calculates the minimum number of necessary steps 
to reach each element from the other ones. From 
the point of view of the domain dimension, it is a 
group-oriented metric as it measures a property 
of a group of two model elements.

For example, Figure 8 shows a pattern specify-
ing what a step is in the Labyrinth navigation map 
(i.e. two nodes related through a link and two an-
chors). The target node of a navigation step (output) 
is the source of the following step (argument). We 
may use such pattern to customise Distance so as 

to define the Minimum Path Between Navigational 
Contexts (MPBNC) (Abrahao et al., 2003) for 
Labyrinth. This gives a measure of the usability 
of a navigational map by counting the number 
of links that must be traversed to reach certain 
information node from another one, and can be 
used to detect unreachable nodes. In the present 
example, assigning type “Node Component” as 
metric domain and selecting subtype matching 
would complete the customisation process.

StartPoints identifies all elements where a path 
begins, but to which no path arrives. These are the 
base classes in object-oriented notations. 

DepthOfPath counts the minimum number 
of steps that are necessary in order to reach an 
element from a starting point. For example, it can 
be used to calculate the depth of the inheritance 
tree in object-oriented notations, or the Depth of 
a Node (D) (Botafogo et al., 1992) in web nota-
tions, which is the distance from the root node to 
a particular node in a navigation map. The bigger 
the distance, the harder becomes to reach the 
node. In order to adapt metric D for Labyrinth, it 
should be specified what a step is in the Labyrinth 
navigation map, which can be done with the same 
pattern that was shown in Figure 8.

InheritedElements applies to notations hav-
ing some concept of inheritance. It calculates 
how many elements of certain type are inherited 
through the inheritance hierarchy. In this case, 
together with the type and the fundamental step, 
a pattern must be specified with the element to 
be inherited.

Figure	8.	Customisation	pattern	for	metric	“Minimum	Path	Between	Navigational	Contexts”	(©2007	
Esther	Guerra.	Used	with	permission)

 

argum e nts : [ n1 ]
outp ut : [n2 ]

n1:Node Component
<ANY>

<ANY> n2:Node Component
<ANY>

argum e nts : [ n1 ]
outp ut : [n2 ]

n1:Node Component
<ANY>

<ANY> n2:Node Component
<ANY>



���  

Integrating Measures and Redesigns in the Definition of Domain Specific Visual Languages

For example, Figure 9 shows the two necessary 
patterns for the definition of the metric Subject 
Inherited Permissions, which counts the number 
of inherited permissions through the hierarchy of 
roles and teams defined in Labyrinth. The pattern 
to the left specifies what a step in such hierarchy 
is, that is, two subjects joined by either a general-
ization (consequence graph 1) or an aggregation 
(consequence graph 2). The pattern to the right 
indicates which is the inherited element, that is, 
the permission to access a hypermedia object (i.e. 
a node or a content).

Finally, DirectConnections calculates the 
number of elements than can be directly reached 
in one step in a path-like structure. As before, 
only the type to which the measure applies as well 
as the fundamental step must be specified. This 
measure can be used by Labyrinth, for example, 
to calculate how many members belong to a team. 
Note that this information can be scattered in 
different user diagrams. 

Specification of Actions in 
SlaMMer

Figure 10 shows the portion of SLAMMER deal-
ing with actions. These are usually redesigns, 
although other tasks (e.g. generating a report or 
printing a model) can be specified. Actions are 

made of reusable tasks expressed either proce-
durally, by means of a graph grammar (Ehrig 
et al., 2006), or by customising task templates. 
They can be applied either when some measure 
reaches certain threshold value (relation fires) or 
directly by the end-user independently from metric 
values. In the first case, the action is executed for 
each value in the domain for which the measure 
makes the threshold condition true. Attribute 
execution in class Action selects whether this ac-
tion is automatically executed, or it needs human 
supervision to confirm it.

SLAMMER defines four customisable tasks: 
merge, split, move and pull. Merge collapses two 
elements into a single one that brings together all 
the relationships of the formers. If the original 
entities defined the same relation, the merged 
entity contains it twice. Attribute rel_duplica-
tion allows selecting whether this is allowed or 
if duplicated relationships are deleted after the 
merging. Attribute att_merging specifies the at-
tribute merging mechanism as the concatenation 
of the original values or taking one of them. For 
example, this task can be used to compact two 
consecutive Labyrinth nodes with little informa-
tion, so as to make the navigation lighter.

Split divides in two an entity of the specified 
type. Relations of the original element are redis-
tributed between the new ones either randomly 

Figure	9.	Customisation	patterns	for	metric	“Subject	Inherited	Permissions”	(©2007	Esther	Guerra.	
Used	with	permission)

argum e nts : [ s1 ]
outp ut : [o ]

s1:Subject
<ANY>

o:HMObject

argum e nts : [ s1 ]
outp ut : [s2 ]

s1:Subject
<ANY>

s2:Subject
<ANY>

s2:Role
<ANY>

s2:Subject
<ANY>

c o ns eq ue nc e1 c o ns eq ue nc e2
A pp lic atio n Co nd itio n:

or

s1:Role
<ANY>

s1:Team
<ANY>

argum e nts : [ s1 ]
outp ut : [o ]

s1:Subject
<ANY>

o:HMObject

argum e nts : [ s1 ]
outp ut : [s2 ]

s1:Subject
<ANY>

s2:Subject
<ANY>

s2:Role
<ANY>

s2:Subject
<ANY>

c o ns eq ue nc e1 c o ns eq ue nc e2
A pp lic atio n Co nd itio n:

or

s1:Role
<ANY>

s1:Team
<ANY>



  ���

Integrating Measures and Redesigns in the Definition of Domain Specific Visual Languages

in equal parts or guided by the user (controlled 
by attribute rel_distribution). The task could be 
used, for example, in order to divide nodes with 
a large amount of information, so as to avoid a 
cognitive overload to the user.

Move moves relationships between entities 
of the same type. In addition to the entity type, 
it is necessary to specify the relation type to be 
moved (attribute relation), and the overwriting 
policy in case the relation already exists in the 
target entity (attribute rel_overwriting). Possible 
values for the overwriting policy are duplicate 
if we want to move the relation maintaining the 
existing one in the target; overwrite if the rela-
tionship is moved and overwrites the one in the 
target; and none if the relation is not moved. It 
is possible to restrict the number of relations to 
be moved by means of a pattern that receives as 
arguments the elements that take part in the ac-
tion (i.e. the relation to move and the source and 
target elements). In this case the action is applied 
only if the pattern is satisfied.

Finally, Pull specializes task Move to those 
cases where the involved entities must be related. 
The relation is specified as a pattern with the 
entities as arguments and no output.

As an example, we can customise a task Pull 
for Labyrinth so as to pull up permissions to a 
parent role if all its direct children already define 
them. This is a model refactoring with the aim 
of promoting reuse of permissions by taking 
advantage of the inheritance concept. The task 
should be defined for type “Role” and relation 
“PA” (the one used for permission assignment in 
the Labyrinth meta-model). In order to pull up 
a permission, an inheritance relation must exist 
between the source and target roles, which is 
specified by the pattern to the left in Figure 11. 
This pattern corresponds to relation pull_relation 
in the SLAMMER meta-model. In addition, as we 
only want to pull up those permissions defined by 
all children roles, we constrain the applicability 
of the task by means of the pattern to the right in 
the same figure, which corresponds to relation 

Figure	10.	Domain	specific	visual	language	SLAMMER.	Package	“Actions”	(©2007	Esther	Guerra.	
Used	with	permission)

Actions

Merge

+ rel_duplication :Boolean
+ att_merging : Boolean

<< E num >>
E xecutionT ype

+ automatic : 0
+ guided :1

<< E num >>
OverwritingPolic y

+ duplicate : 0
+ overwrite : 1
+ none : 2

<< E num >>
Distr ibutionType

+ duplicate : 2

S pli t

+ rel_distribution :DistributionType

Move

+ relation : S tring
+ rel_overwriting :OverwritingP olicy

Pull

Tas kT emplate

+ action : Template
+ type :S tring
+ subtypeMatching :Boolean

T as kGG

+ action : GraphG rammar

T as kText

+ action : Text

Tas k

+ name :S tring {keyword}

Ac tion

+ name :S tring {keyword}
+ execution : E xecutionType

1..*

{ ordered }

1.. *
T hres hold

(from Measures )

0..1

constraint

Pattern
(from Pattern )

1..* 0..1�res

pull_relation



���  

Integrating Measures and Redesigns in the Definition of Domain Specific Visual Languages

constraint in the SLAMMER meta-model. The 
pattern receives the permission to move and the 
source and target roles as input. The application 
condition checks the existence of such permission 
in each target role’s child. Note that the model 
refactoring should be completed with an additional 
task that removes permissions in children roles if 
defined by their parents. The second task could 
be defined by means of a graph grammar, and 
be combined with the previous task to conform 
a single action.

In order to specify tasks by means of graph 
transformation we can use TaskGG objects. For 
example, Figure 12 shows a graph grammar task 
made of a rule that creates a navigational path 
from the root node of a web design (with attribute 
isHome to true) to a given node which is not root. 
The elements to be added by the rule application 
are shown in a coloured polygon and labelled as 

“new”. These elements form also a NAC, and thus 
the rule is not applied if such path already exists. 
We can use this task to create direct links from 
the home page of a web application to those nodes 
that are not reachable or where a high number of 
navigational steps are required to access them. In 
addition, it is possible to use a metric to detect to 
which nodes apply this redesign. For example, a 
customisation of DepthOfPath can be defined so 
as to count the number of steps to reach any node 
starting from the home page. Then, if we associate 
an appropriate threshold value to the metric (e.g. 
0, which means that it is not possible to reach the 
node), we can detect the candidate nodes, and thus 
automatically fire the action on them.

Figure	11.	Specification	of	pull	task	(©2007	Esther	Guerra.	Used	with	permission)

argum e nts : [ r1 ,r2 ]
outp ut : [ ]

r1:Role
<ANY>

r2:Role
<ANY>

argum e nts : [ r1 , r2 , o ]
outp ut : [ ]

r1:Role
<ANY>

r2:Role
<ANY>

o:HMObject

p rem ise

Role
<ANY>

c o ns eq ue nc e

o:HMObject

A pp lic atio n Co nd itio n:

⇒

r1:Role
<ANY>

r1:Role
<ANY>

Role
<ANY>

argum e nts : [ r1 ,r2 ]
outp ut : [ ]

r1:Role
<ANY>

r2:Role
<ANY>

argum e nts : [ r1 , r2 , o ]
outp ut : [ ]

r1:Role
<ANY>

r2:Role
<ANY>

o:HMObject

p rem ise

Role
<ANY>

c o ns eq ue nc e

o:HMObject

A pp lic atio n Co nd itio n:

⇒

r1:Role
<ANY>

r1:Role
<ANY>

Role
<ANY>

Figure	12.	Specification	of	graph	grammar	task	(©2007	Esther	Guerra.	Used	with	permission)

 

Node Component
isHome = true

{new , nac}

Rule: Create Path

taskgg: create path from root

Node Component
isHome = false

Node Component
isHome = true

{new , nac}

Rule: Create Path

taskgg: create path from root

Node Component
isHome = false



  ���

Integrating Measures and Redesigns in the Definition of Domain Specific Visual Languages

iMpleMentation in atoM3

Starting from the meta-models shown in previous 
sections, we have built a tool for SLAMMER that 
allows complementing a DSVL meta-model with 
a SLAMMER model, and generating a measure-
ment and redesign tool for the given DSVL. For this 
purpose we took advantage of the code generation 
capabilities provided by AToM3. Thus, we defined 
the SLAMMER meta-model in AToM3, and auto-
matically obtained a tool for building SLAMMER 
models. A code generator that synthesizes tools 
from the SLAMMER models was added to this 
tool. The synthesized tools generated this way 
make accessible the defined metrics and actions 
to the modelling environment generated for the 
DSVL.  Finally, the new tool was integrated into 
AToM3 itself.

In order to be able to configure (to a certain 
degree) the features of the tools generated from 
the SLAMMER models, we have slightly modified 
the SLAMMER meta-model previously shown. 

In particular, we have added an abstract class 
UIButton as the parent of classes Measure, Ac-
tion and Task. This class has a single boolean 
attribute button that controls whether a button 
should be generated in the tool user interface in 
order to execute the corresponding measurement 
process, action or task. This is useful, for example, 
in case we want to prevent the direct calculation 
of a metric that is only used as auxiliary metric 
by others. In addition, class Measure has been 
provided with additional attributes to allow ob-
taining PDF reports with all the measurement 
results, or only the ones making some threshold 
condition true.

In addition, we have provided SLAMMER 
with the concrete syntax shown in Figure 13, 
where five metrics and two actions are being 
defined by using the generated tool for SLAM-
MER. In particular, measures are represented as 
rectangles with the measure type and name inside. 
Dependencies between measures are represented 
as arrows, where the arrowhead indicates the data 

Figure	13.	Generated	tool	for	SLAMMER	(©2007	Esther	Guerra.	Used	with	permission)



���  

Integrating Measures and Redesigns in the Definition of Domain Specific Visual Languages

flow direction. For example, in the model of the 
figure, the result obtained by metric NNC is used 
to calculate metrics Compactness, Stratum 
and DeNM. Thresholds are shown as triangles 
with an exclamation mark inside, and related to 
the measures for which they are defined. Actions 
are depicted as circles with an arrow inside and 
the action name below. If their execution mode 
is automatic, they are shown as a double circle, 
as in the case of action Create path from 
root. Finally, tasks are visualized as ellipses 
with the task type and name inside. The tasks that 
are executed for a given action are related to it by 
means of lines, with the execution order above.

Figure 14 summarizes the process of defin-
ing, generating and using a modelling tool for 
a DSVL with AToM3. The left part of the figure 
shows the specification of the DSVL by the DSVL 
designer. In step 1 (of the left part), the DSVL 
definition is given by a meta-model. In the case 
of a MV-DSVL, the different diagram types (or 
viewpoints) have also to be specified.  In addition, 
a quality expert can design a SLAMMER model 

with the metrics and actions for the particular 
DSVL. The metrics are usually customisations 
of the suite offered by SLAMMER, thus only the 
domain (elements of the DSVL) and the specific 
attributes to measure (specified as patterns) have 
to be given. Actions are made of tasks that can be 
specified either procedurally (by using Python), 
by means of graph grammars, or by customis-
ing task templates with patterns. Although we 
have separated the roles of defining the DSVL 
meta-model and the specification of metrics and 
redesigns, in many occasions it is the same person 
who performs both activities.

Starting from this definition, AToM3 is able 
to automatically generate a modelling tool for 
the (MV-)DSVL. The use of such environment is 
schematised to the right of Figure 14. The end-user 
interacts with the generated tool user interface in 
order to build his models (step 1 of the right part). 
The tool automatically builds a repository with the 
gluing of the different models (or system views) 
and provides intra- and inter-diagram consistency. 
The repository properties can be evaluated (step 

Figure	 14.	 Integrating	measurement	 and	 redesign	 tools	 in	 modelling	 environments	 (©2007	 Esther	
Guerra.	Used	with	permission)

 

D S V L 
m eta-m odel

D S V L 
viewpo in ts

…

S LA M M E R  
m odel

at
tri

bu
te

s
(p

at
te

rn
s)

T em pla tes
R ules
C ode

DSVL Environment Definition

m
ap

pin
g mapping

Repository
:A :B

View1

:C

:A :B

Viewn

:A :C… …
Viewj

:B :B

:B

m
appin

g

Generated DSVL Environment Use

A
u

to
m

at
ic

G
en

er
at

io
n g
u

i:
M

ea
su

re
m

en
ts

 &
 r

ed
es

ig
nsG raph 

T ransform ation
E ngine

2

Take measurements,
perform redesigns

Reports

Viewupdate

dSvl Modelling environment gui

3

4

end - user

end - user

dSvl designer

1

Design DSVL
meta-model
and viewpoints

do
m

ai
n

2a

Design 
measurements

Design actions

2b
Quality
expert

5

1
Build model

D S V L 
m eta-m odel

D S V L 
viewpo in ts

…

S LA M M E R  
m odel

at
tri

bu
te

s
(p

at
te

rn
s)

T em pla tes
R ules
C ode

DSVL Environment Definition

m
ap

pin
g

m
ap

pin
g mapping

mapping

Repository
:A :B

View1

:C

:A :B

Viewn

:A :C… …
Viewj

:B :B

:B

m
appin

g

Generated DSVL Environment Use

A
u

to
m

at
ic

G
en

er
at

io
n g
u

i:
M

ea
su

re
m

en
ts

 &
 r

ed
es

ig
nsG raph 

T ransform ation
E ngine

2

Take measurements,
perform redesigns

Reports

Viewupdate

dSvl Modelling environment gui

3

4

end - userend - user

end - userend - user

dSvl designer

1

Design DSVL
meta-model
and viewpoints

do
m

ai
n

2a

Design 
measurements

Design actions

2b
Quality
expert

5

1
Build model



  ���

Integrating Measures and Redesigns in the Definition of Domain Specific Visual Languages

2) by using the metric specifications provided 
by the quality expert during the definition of 
the modelling environment, and the results are 
shown to the user as PDF reports (step 5). Note 
that measurement is performed in the reposi-
tory, as it is the only model that contains all the 
system information. In addition, extreme values 
of metrics can trigger actions that modify the 
repository model with the purpose of improving 
the value of the metrics (step 3). Transforming 
the repository can leave the system design in an 
inconsistent state, as some elements can be added, 
edited or even deleted by the redesign. For this 
reason, once the redesign has been performed, the 
changes are propagated by the same consistency 
TGT rules that provide inter-diagram consistency 
in multi-view environments (step 4).

enriching the labyrinth 
environMent with MetricS 
and redeSignS

Figure 15 shows a screenshot of the definition 
process of metrics and actions for Labyrinth. Win-
dow 1 in the background is the tool generated for 
SLAMMER and contains the metrics and actions 
defined for Labyrinth. In particular, the figure 
shows the customisation of the metric named 
Depth _ Of _ Node of type DepthOfPath, 
which is the upper one to the left in window 1. 
The metric counts the number of necessary steps 
to reach a node starting from the root node. The 
editing of its attributes is shown in dialog box 2. 
By clicking on button “step” a new window is 
opened where the user customises the basic step 
for the metric with a pattern. Window 3 contains 
the definition of the positive graph of such pattern, 
a navigation step in Labyrinth made of two nodes 
joined by a link and two anchors.

Figure	15.	Customisation	of	“Measurement	&	Action”	tool	for	the	labyrinth	environment	(©2007	Esther	
Guerra.	Used	with	permission)



���  

Integrating Measures and Redesigns in the Definition of Domain Specific Visual Languages

Note that metric Depth _ of _ Node de-
fines a threshold value 0 for those nodes that are 
not root (yellow triangle). Action Create path 
from root (green circle) is executed for those 
nodes that make the threshold condition true. 
The action is made of the task shown in Figure 
12, which creates a link from the web root node 
to a given node. In this way, if some node is not 
reachable from the root (i.e. it has a depth equal 
to 0), a link is created from the root to the node.

Figure 16 shows the environment automati-
cally generated from the previous definition. In 
the repository interface (window to the right), a 
button is generated for each metric and action 
(if they had checked its attribute button, as done 
for metric Depth _ of _ Node, see Figure 15). 
Calculating a metric or performing an action just 
implies clicking on the corresponding button.

Figure 17 shows to the left the generated report 
as result of the execution of metric Depth _
of _ Node in the (navigation) model shown in 
Figure 16. In the report we can see, for example, 
that node Information is not reachable from 
the root node Home, as it has a depth of 0, and 
that nodes Travel Fundings and Forms 
have a depth equal to 1, as a step is necessary 
to reach them from the root node. This metric 
has an associated action that is fired when the 

metric reaches a value of 0. Thus, it is executed 
for node Information. The resulting model 
is shown in the same figure to the right, where a 
link has been created from the root node Home 
to node Information. Note that the action is 
not executed for node Home because, although 
it has also depth 0, the threshold is fulfilled only 
for nodes that are not root.

uSing SlaMMer in a MdSd 
proceSS

In MDSD processes, models no longer passive 
entities used for documentation, but they play an 
active role, typically being used for analysis and 
code generation (in addition to documentation 
itself). Thus, models have to be formally defined, 
and a common trend in software engineering is 
the use of meta-models to check the conformity of 
models. The modelling languages used in MDSD 
can be either general purpose, such as UML, or 
domain-specific (Pohjonen & Tolvanen, 2002), 
such as Labyrinth. In the case of general purpose 
modelling languages, customisations and profiles 
are a common practice. In MDSD processes, and 
more in particular in product family engineering 
(Stahl & Völter, 2006), DSVLs are frequently used 

Figure	16.	Generated	environment,	enriched	with	measurements	and	actions	(©2007	Esther	Guerra.	
Used	with	permission)



  ���

Integrating Measures and Redesigns in the Definition of Domain Specific Visual Languages

for the customisation of the variability of system 
families. In this case, developers are faced with 
the problem of generating modelling environ-
ments for the DSVLs. It is towards this scenario 
where a high automation is needed, together with 
customised tools, where our approach for the 
easy integration of measurement and redesign 
tools is directed.

One of the most successful scenarios for 
MDSD is product line engineering. Two processes 
are present in product line engineering (Greenfield 
et al., 2004): the product line development and the 
specific product development. The first process 
aims at analysing, designing and implementing 
reusable assets than can be used in the latter 
process so as to obtain the final product. In the 
specific product development, an application is 
generated by using a product configurator that 
is responsible of generating code and assembling 
the existing reusable components. In the most 
general case, the configurator is a DSVL plus a 
code generator. Note that this process is not very 
different from other MDSD processes (Stahl & 
Völter, 2006) in which a reference architecture has 

to be defined (i.e. a fixed part of the applications 
to be generated), together with a code generator, 
and a DSVL or some other means to express the 
characteristics of the application to be generated 
(Czarnecki & Eisenecker, 2000).

Figure 18 shows a simplified scheme (e.g. we 
have not represented iterations) of a product line 
engineering process, showing how our approach 
can be integrated. This can be considered as an 
additional twist (with the addition of the generative 
techniques) of the classical process of developing 
for reuse/with reuse (Karlsson, 1995). To the right, 
the figure shows the product line development 
process where the framework and predefined 
components (i.e. the common part of the prod-
uct family), the DSVL for configuration and the 
code generator are built. For simplicity, we don’t 
explicitly show the usual process of first building 
one or more applications of the family, and then 
generalizing and exploiting that knowledge in the 
framework, components and generator. In addi-
tion, we propose building a SLAMMER model 
capturing additional domain knowledge. This 
includes known good modelling practices with the 

Figure	17.	Generated	report	and	model	resulting	from	action	execution	(©2007	Esther	Guerra.	Used	
with	permission)



��0  

Integrating Measures and Redesigns in the Definition of Domain Specific Visual Languages

DSVL, which can be expressed as measures (with 
associated thresholds) and common redesigns and 
model refactorings. We have separated two roles 
in this process: one to design the DSVL and the 
other one as quality expert to design measures 
and redesigns. Note that the same person or group 
of people can assume both roles.

The left of the figure shows the process of 
using the artefacts generated by the development 
process to the right for developing specific prod-
ucts. In this way, the product developer can use 
the DSVL in order to obtain the final application. 
Note that sometimes, the generated code should 
be completed by manually written code, but we do 
not show this activity in the process for simplicity. 
Thus, our approach introduces quality assess-
ment at the level of product configuration, as the 
product developer can use the measurement tool 
provided by the measurement expert in order to 

check whether the model conforms to the quality 
standards or know good practices. In addition, 
he may have available redesigns implementing 
common or known structural changes to be ap-
plied on the models.

In summary, SLAMMER helps in quality as-
sessment in two ways. First, SLAMMER models 
capture additional domain specific knowledge in 
terms of measures and redesigns. This knowledge 
is not only used for documentation, but in order 
to produce a real tool. Second, the generated tool 
allows developers to take advantage of the knowl-
edge provided by experts in order to assess the 
quality of their models. The proposed framework 
is also model-driven, so code is automatically 
generated for the final user (vertically in the 
left-part of the figure) as well as for the develop-
ers working in the product development process 
(horizontally in the figure). That is, the DSVL 

Figure	18.	Integrating	quality	assessment	in	a	MDSD	process	(©2007	Esther	Guerra.	Used	with	per-
mission)

 

Framework

predefined
components

product
developer

Build/
modify
models

Product Development
4

Product Line Development

component/
framework
developer

DSVL
designer

quality
expert

Automatic 
generation

DSVL
meta-model

generator
developerCode generation

+ assembly

Analyse,
Design,

Implement

Code 
generator

SLAMMER
modelTake measurements,

perform redesigns

Analyse,
Design,

Implement

1

SLAMMER
Enginereports

2
assess
quality

Automatic 
generation

3

Framework

predefined
components

product
developer

Build/
modify
models

Product Development
4

Product Line Development

component/
framework
developer

DSVL
designer

quality
expert

Automatic 
generation

DSVL
meta-model

generator
developerCode generation

+ assembly

Analyse,
Design,

Implement

Code 
generator

SLAMMER
modelTake measurements,

perform redesigns

Analyse,
Design,

Implement

1

SLAMMER
Enginereports

2
assess
quality

Automatic 
generation

3



  ���

Integrating Measures and Redesigns in the Definition of Domain Specific Visual Languages

and the measurement tools are generated from a 
meta-model and from a SLAMMER model. We 
believe this is the right approach, as one needs 
high levels of automation in order to be able to 
support short iterations, so common in this kind 
of developments.

future trendS  

The presented framework can be extended by 
including additional metrics and action tem-
plates. It can also be interesting to study how 
to support other kinds of metrics, for example 
subjective and dynamic ones. The latter can be 
suitable in case of having executable models, 
with a precise operational semantics, for example 
defined through graph transformation rules. In 
addition, we are starting the study of mechanisms 
to support richer customisable template tasks. 
Providing further analysis tools (e.g. statistical) 
for studying the results, as well as more powerful 
visualization facilities for the results is also up 
to future work.

As stated in the introduction, the evolution of 
this field is moving towards an easy specification 
and generation of richer modelling tools for DS-
VLs. There are many approaches for the generation 
of tools, which are merely visual editors. However, 
MDSD needs more functional tools, integrating 
for example quality control aspects. Some tools 
(e.g. OpenArchitectureWare, which however 
does not provide support for DSVLs) are moving 
towards this direction by integrating a number of 
additional tools helping in common MDSD tasks, 
such as code generation, model transformation and 
reporting. The fact that some of these tools are 
integrated in the Eclipse framework may make 
easier the interoperability with further tools. 
However, it is our view that all these related tools 
have to be customised (probably using the DSVL 
meta-model as the core of the customisation) and 
tightly integrated for the given domain.

concluSion

In this chapter we have presented SLAMMER, 
a DSVL for the specification of measures and 
redesigns for other DSVLs, and its integration 
in a MDSD process. The work improves related 
approaches by decoupling the metrics meta-model 
and the language concepts, making the predefined 
metrics totally independent of the domain, and 
facilitating their integration with any DSVL. Our 
use of patterns allows a high level of abstraction 
and reusability, and makes easier the customi-
sation of metrics in a graphical and declarative 
way. In addition, the SLAMMER meta-model 
includes entities modelling actions and its relation 
to metrics, making it more complete for software 
remodelling.

The framework has been implemented in the 
AToM3 meta-modelling tool. In this way, when a 
modelling environment is generated for a DSVL, 
AToM3 makes available the defined measures 
and redesigns to the final user. To the best of 
our knowledge, this feature is not available in 
any other meta-CASE tool. We have shown the 
usefulness of this approach by defining a set of 
metrics and redesigns for Labyrinth, a DSVL 
in the web domain. However, the approach is 
general enough to be used with other DSVLs or 
even general-purpose languages such as UML, by 
capturing in a SLAMMER model the appropriate 
measures and redesigns for the notation.

We believe this is a valuable approach espe-
cially in MDSD processes, as it simplifies the 
customisation of metrics and definition of rede-
signs for DSVLs. Moreover, the implementation 
supports a model-driven approach for the genera-
tion of measurement and redesign tools from the 
SLAMMER models, allowing fast iterations and 
easy changes in the SLAMMER models.



���  

Integrating Measures and Redesigns in the Definition of Domain Specific Visual Languages

referenceS

Abrahao, S., Condori-Fernández, N., Olsina, 
L., & Pastor, O. (2003). Defining	and	validating	
metrics for navigational models. In Proceedings 
of 9th International Software Metrics Symposium, 
pp.: 200-210.

ADM: Architecture-Driven Modernization home 
page: http://adm.omg.org 

Basili, V. R., Caldiera, G., & Rombach, H. D. 
(1994). Goal Question Metric Paradigm. Ency-
clopaedia of Software Engineering, pp.: 528-532. 
John Wiley&Sons.

Botafogo, R. A., Rivlin, E., & Shneiderman, B. 
(1992). Structural analysis of hypertexts: iden-
tifying hierarchies and useful metrics. ACM 
Transactions on Information Systems, Vol. 10(2). 
pp.: 142-180.

Czarnecki, K., & Eisenecker, E. (2000). Generative 
programming. Addison-Wesley Professional.

Díaz, P., Aedo, I., & Panetsos, F. (2001). Modeling 
the dynamic behavior of hypermedia applications. 
IEEE Transactions on Software Engineering, 27 
(6), pp.: 550-572.

Díaz, P., Montero, S., & Aedo, I. (2005). Modeling 
hypermedia and web applications: the Ariadne 
Development Method. Information Systems, Vol. 
30(8), pp.: 649-673.

DSLTools from Microsoft, 2007: http://msdn.
microsoft.com/vstudio/DSLTools/ 

Ehrig, H., Ehrig, K., Prange, U., & Taentzer, G. 
(2006). Fundamentals of algebraic graph trans-
formation. Monographs in Theoretical Computer 
Science. Springer.

Favre, J.-M. (2004). Towards a basic theory to 
model driven engineering. Workshop on Software 
Model Engineering, WISME 2004, joint event 
with UML’2004, Lisbon.

Fenton, N. E. (1996). Software metrics: A rigorous 
and	practical	approach	(2nd	edition). International 
Thomson Computer Press.

Fowler, M. (1999). Refactoring: Improving the 
design of existing code”. Addison Wesley. 

Gamma, E., Helm, R., Johnson, R., & Vlissides, 
J. (1995). Design patterns, elements of reusable 
object-oriented software. Professional Computing 
Series. Addison-Wesley.

García, F., Bertoa, M. F., Calero, C., Vallecillo, 
A., Ruiz, F., Piattini, M., & Genero, M. (2006). 
Towards a consistent terminology for software 
measurement. Information and Software Tech-
nology 48, pp.: 631-644. Elsevier.

GMF, 2007: The Eclipse Graphical Modeling 
Framework home page: http://www.eclipse.
org/gmf

Gray, J., Rossi, M., & Tolvanen, J.-P. (2004). 
Special issue on Domain-Specific Modeling with 
Visual Languages of the Journal of Visual Lan-
guages & Computing, Vol. 15 (3-4). Elsevier.

Greenfield, J., Short, K., Cook, S., Kent, S., & 
Crupi, J. (2004). Software factories: assembling 
applications with patterns, models, frameworks, 
and tools. Wiley.

Guerra, E., Díaz, P., & de Lara, J. (2006). Visual 
specification	of	metrics	for	domain	specific	visual	
languages. In Proceedings of Graph-Transforma-
tion Visual Modelling Techniques. 

Guerra, E., & de Lara, J. (2006). Model View 
Management with Triple Graph Transforma-
tion Systems. Proc. ICGT’2006. Lecture Notes 
in Computer Science, Vol. 4178, pp.: 351-366. 
Springer.

Guerra, E., & de Lara, J. (2007). Meta-model-
ling	and	graph	transformation	for	the	definition	
of multi-view visual languages. Chapter of the 
book “Visual Languages for Interactive Comput-



  ���

Integrating Measures and Redesigns in the Definition of Domain Specific Visual Languages

ing: Definitions and Formalization”, Idea Group 
Publishers, edited by Fernando Ferri. 

Guerra, E., Sanz, D., Díaz, P., & Aedo, I. (2007). 
A	transformation-driven	approach	to	the	verifica-
tion of security policies web designs. In Proced-
ings of the 7th International Conference on Web 
Engineering. L. Baresi, P. Fraternali, and G. J. 
Houben, Eds. Lecture Notes in Computer Science, 
Vol. 4607. Springer. pp.: 269-284.

ISO/IEC 9126 (1991). Software Engineering  
– Product Quality. 

ISO/IEC 15939 (2002). Software Engineering  
– Software Measurement Process. 

Karlsson, E-A. (1995). Software Reuse: A Holistic 
Approach. Wiley.

Kent, S. (2002). Model Driven Engineering. In 
Proceedings of the 3rd International Conference 
on Integrated Formal Methods. M. J. Butler, L. 
Petre, and K. Sere, Eds. Lecture Notes in Com-
puter Science, Vol. 2335. Springer-Verlag. pp.: 
286-298.

Lämmel, R. (2002). Towards generic refactor-
ing. In Proceedings of the 2002 ACM SIGPLAN 
Workshop on Rule-Based Programming. ACM 
Press. pp.: 15-28.

Lanza, M., & Ducasse, S. (2002). Beyond lan-
guage independent object-oriented metrics: 
Model independent metrics. In Proceedings of 
QAOOSE’02, pp.: 77-84.

de Lara, J., & Vangheluwe, H. (2002). AToM3: A 
tool for multi-formalism modelling and meta-mod-
elling. In Proceedings of  ETAPS/FASE’02. Lec-
ture Notes in Computer Science, Vol. 2306, pp.: 174 
- 188. Springer-Verlag. See the AToM3 home page: 
http://atom3.cs.mcgill.ca, and http://astreo.ii.uam.
es/~jlara/doctorado.2006/ ATOM3_deploy.zip for 
the version described in this chapter.

Lédczi, A., Bakay, A., Marói, M., Vögyesi, P., 
Nordstrom, G., Sprinkle, J., & Karsai, G. (2001). 

Composing	domain-specific	design	environments. 
IEEE Computer, pp.: 44-51.

Martín, M. A. & Olsina, L. (2003). Towards an 
ontology for software metrics and indicators 
as the foundation for a cataloging Web system. 
In Proceedings of LA-WEB. IEEE Computer 
Society.

Mens, T. & Lanza, M. (2002). A Graph-Based 
Metamodel for Object-Oriented Software Met-
rics. Electronic Notes in Theoretical Computer 
Science, Vol. 72(2)

Mens, T. (2006). On the use of graph transfor-
mations for model refactoring. In Proceedings of 
Generative and Transformational Techniques in 
Software Engineering, pp.: 219-257

Misic, V. B. & Moser, S. (1997). From Formal 
Metamodels to Metrics: An Object-Oriented 
Approach. In Proceedings of 24th International 
Conference on Technology of Object-Oriented 
Languages and Systems, pp.: 330-339.

Munro, M., J. (2005). Product metrics for au-
tomatic	 identification	 of	 “bad	 smell”	 design	
problems in Java source-code. In Proceedings of 
11th  International Software Metrics Symposium, 
IEEE Computer Society.

Pohjonen, R., & Tolvanen, J-P. (2002). Automated 
production of family members: Lessons learned. In 
Proceedings of International Workshop on Prod-
uct Line Engineering The Early Steps: Planning, 
Modeling, and Managing, pp.: 49-57.

Roberts, D., Brant, J., & Johnson, R. (1997). A 
refactoring tool for Smalltalk. Theory and Practice 
of Object Systems, Vol. 3, pp.: 253-263.

Schürr, A. (1994). Specification	of	graph	trans-
lators with Triple Graph Grammars. In Lecture 
Notes in Computer Science, Vol. 903, pp.: 151-
163. Springer.

SDMetric home page: http://www.sdmetrics.
com



���  

Integrating Measures and Redesigns in the Definition of Domain Specific Visual Languages

Stahl, T., & Völter, M. (2006). Model-driven 
software development. Wiley.

Simon, F., Löffler, S., & Lewerentz, C. (1999). 
Distance based cohesion measuring. In Proceed-
ings of 2nd European Software Measurement 
Conference, pp.: 69-83.

SPQR/20. (1995). User Manual. Software Pro-
ductivity Research Inc.

Together Technologies home page: http://www.
borland.com/us/products/together

Tourwé, T., & Mens, T. (2003). Identifying refac-
toring opportunities using logic meta program-
ming. In Proceedings of 7th European Conference 
on Software Maintenance and Reengineering, 
pp.: 91-100.

Tsalidis, C., Christodoulakis, D., & Maritsas, 
D. (1992). ATHENA: a software measurement 
and metrics environment. Journal of Software 
Maintenance 4, 2. pp.: 61-81.

UML 2.0 specification at the OMG home page 
(2006). http://www.omg.org/UML

Warmer, J., & Kleppe, A. (2003). The object 
constraint language: Getting your models ready 
for MDA, 2nd Edition. Pearson Education. Boston, 
MA.

Whitmire, S. A. (1997). Object oriented design 
measurement. John Wiley & Sons, Inc.

additional reading

Graph Transformation, applications to Refactor-
ing

Rozenberg, G. (ed). (1997). Handbook of Graph 
Grammars and Computing by Graph Transforma-
tions. Volume 1: Foundations. World Scientific.

This book presents the foundations of all the basic 
approaches to graph transformation.
 
Ehrig, H., Engels, G., Kreowski, H.-J., U., & 
Rozenberg, G. (ed). (1999). Handbook of Graph 
Grammars and Computing by Graph Transfor-
mations. Volume 2: Applications, Languages and 
Tools. World Scientific.

It includes applications of graph transformation to 
different domains, such as functional languages, 
visual and object-oriented languages, software 
engineering or mechanical engineering.

Ehrig, H., Kreowski, H.-J., Montanari, U., & 
Rozenberg, G. (ed). (1999). Handbook of Graph 
Grammars and Computing by Graph Transforma-
tions. Volume 3: Concurrency, Parallelism and 
Distribution. World Scientific.

 

The third book of the series presents the main 
results on concurrency, parallelism and distribu-
tion	of	graph	grammars.	An	interesting	field	of	
application is the coordination of concurrent of 
systems.

Mens, T., Demeyer, S., & Janssens, D. (2002). 
Formalizing behaviour preserving program 
transformations, In Proceedings of International 
Conference on Graph Transformation, Lecture 
Notes in Computer Science, Vol. 2505, pp.: 286-
301, Springer.

 

This paper introduces a graph representation of 
those aspects preserved by a code refactoring, and 
uses graph rewriting rules in order to formalize 
the refactoring transformations.

Mens, T., Taentzer, G., & Runge, O. (2007). 
Analysing refactoring dependencies using graph 



  ���

Integrating Measures and Redesigns in the Definition of Domain Specific Visual Languages

transformation. Software and Systems Modeling 
Journal, Springer.

 

In this paper, refactorings are formalized by means 
of graph transformation rules, so that implicit 
dependencies between refactorings can be studied 
by using critical pair analysis. The obtained results 
can help developers to choose which refactoring 
is more appropriate in a given context.

Additional Meta-Modelling and MDSD Tools

AndroMDA web page at: http://www.andromda.
org/ 

GEMS (Generic Eclipse Modeling System) web 
page at: http://sourceforge.net/projects/gems 

GME web page at: http://www.isis.vanderbilt.
edu/projects/gme/ 

GMT web page at: http://www.eclipse.org/gmt/ 

MetaEdit+ web page at: http://www.metacase.
com/ 

OpenArchitectureWare web page at: http://www.
openarchitectureware.org/ 

OpenMDX web page at: http://www.openmdx.
org/index.html 

OptimalJ web page at: http://www.compuware.
com/products/optimalj/default.htm 

TIGER Project web page: http://tfs.cs.tu-berlin.
de/~tigerprj/ 

UMT web page at: http://umt-qvt.sourceforge.
net/   

Model-Driven Software Development

Frankel, D. (2003). Model driven architecture –  
Applying MDA to enterprise computing. Wiley.

The	 Model	 Driven	 Architecture	 (MDA)	 is	 the	
OMG’s proposal for Model Driven Develop-
ment. This book explains this methodology and 
demonstrates how it can work with different 
technologies.

Kleppe, A., Warmer, J., & Bast, W. (2003). MDA 
explained. The model driven architecture: Prac-
tice and promise. Addison Wesley.

 

This is a useful second reference for researchers 
interested in MDA.

Proceedings of the Model Driven Engineering 
Languages and Systems (MoDELS) series of 
conferences: http://www.umlconference.org/, 
edited by Springer Lecture Notes.

Software Measurement and Refactoring

ISO/IEC 25000:2005 Software Engineering 
– Software product Quality Requirements and 
Evaluation (SQuaRE) – Guide to SQuaRE. Avail-
able at the web page of ISO: http://www.iso.org 

 

Set of standards, including those for software 
measurement.

Kerievsky, J. (2004). Refactoring to patterns. 
Addison-Wesley.

 

The book is about improving system designs 
through the execution of sequences of low-level 
design	 transformations	 (refactorings)	 towards	
well-known design patterns. It provides useful 
examples.

Lindvall, M., Donzelli, P., Asgari, S. & Basili 
V. (2005). Towards Reusable Measurement Pat-



���  

Integrating Measures and Redesigns in the Definition of Domain Specific Visual Languages

terns. Proceedings of the 11th IEEE International 
Software Metrics Symposium, pp.: 21-28.

 

The	paper	identifies	a	catalogue	of	measurement	
patterns that can be reused in different software 
measurement programs. The objective is to reduce 
the time and cost to develop new measurement 
tools, without starting their implementation from 
scratch.

Mens, T., & Tourwé, T. (2004). A survey of 
software refactoring. IEEE Transactions on 
Software Engineering, Volume 30, Number 2, 
pp.: 126-139.

 

This paper provides an overview of existing 
research	in	the	field	of	software	refactoring:	sup-
ported activities and techniques, target artefacts, 
tool support, and integration on the software 
development process.

Pretschner, A., & Prenninger, W. (2007). Comput-
ing refactorings of state machines. Software and 
Systems Modeling Journal, Springer.

 

In this paper, refactorings are formalized as logi-
cal predicates and applied to the computation of 
semantically equivalent models.

Visual Languages

Luoma, J., Kelly, S., & Tolvanen, J.-P. (2004). De-
fining	domain-specific	modeling	languages:	Col-
lected experience. Object-Oriented Programming 
Systems, Languages and Applications (OOPSLA) 
Workshop on Domain Specific Languages. 

 

This paper explores several approaches to the 
identification	and	creation	of	modelling	constructs	
when	defining	domain	specific	languages.	

Marriot, K., & Meyer, B. (1998). Visual language 
theory. Springer-Verlag.

 

This book provides a broad survey concerning 
the	definition,	 specification,	 structural	analysis	
and theoretical foundations of visual languages. 
It is oriented to researchers interested in formal 
language	theory,	HCI,	artificial	intelligence	and	
computational linguistics.



  ���

Chapter VII
Measuring Models

Martin Monperrus 
ENSIETA & University of Rennes 1, France

Jean-Marc Jézéquel 
University of Rennes 1 & INRIA, France

Joël Champeau  
ENSIETA, France

Brigitte Hoeltzener  
ENSIETA, France

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

abStract

Model-Driven	Engineering	(MDE)	is	an	approach	to	software	development	that	uses	models	as	primary	
artifacts, from which code, documentation and tests are derived. One way of assessing quality assurance 
in	a	given	domain	is	to	define	domain	metrics.	We	show	that	some	of	these	metrics	are	supported	by	
models. As text documents, models can be considered from a syntactic point of view i.e., thought of as 
graphs. We can readily apply graph-based metrics to them, such as the number of nodes, the number of 
edges or the fan-in/fan-out distributions. However, these metrics cannot leverage the semantic structur-
ing	enforced	by	each	specific	metamodel	to	give	domain	specific	information.	Contrary	to	graph-based	
metrics,	more	specific	metrics	do	exist	for	given	domains	(such	as	LOC	for	programs),	but	they	lack	
genericity.	Our	contribution	is	to	propose	one	metric,	called	σ,	that	is	generic	over	metamodels	and	
allows	the	easy	specification	of	an	open-ended	wide	range	of	model	metrics.

introduction

Model-Driven Engineering (MDE) is an approach 
to software development that uses models as pri-
mary artifacts, from which code, documentation 
and tests are derived. In this context, a model can 
be seen as the abstraction of an aspect of reality 
for handling a given concern in a specific domain. 

In MDE, the meaning of a model is itself defined 
with another model, called a metamodel. Complex 
systems typically give rise to more than one model 
because many aspects are to be handled.

One way of assessing quality assurance in a 
given domain is to define domain metrics from 
expert know-how, best practices or statistical 
analysis. As text documents, models can be 



���  

Measuring Models

considered from a syntactic point of view i.e., 
thought of as graphs. We can readily apply graph-
based metrics to them, such as the number of 
nodes, the number of edges or the fan-in/fan-out 
distributions (see for example [Edmonds, 1999, 
Van Belle, 2002]). However, these metrics cannot 
leverage the semantic structuring enforced by 
each specific metamodel to give domain specific 
information.

Contrary to graph-based metrics, more specific 
metrics do exist for given domains (such as LOC 
for programs), but they lack genericity. The lines 
of codes per method/function has been proven 
to be a software quality attribute [Kitchenham 
et al., 1990]. As LOC or other code-centric soft-
ware metrics, each domain has its own quality 
metrics.

An applied research program named Measure-
ment of Complexity [Chretienne et al., 2004] lists 
more than one hundred metrics of complexity of 
importance in engineering. As an application of 
this program, a human review of textual docu-
ments has been done on four real world systems 
to compute the metrics of complexity. Complex-
ity is not an issue of our investigation. However 
this program concludes on the need to facilitate 
the definition and computation of metrics and 
motivates this work. 

The scope of our research is the definition of 
metrics at a higher level of abstraction than code, 
independently of the domain, while remaining rich 
enough for the domain expert. Our contribution 
is to propose one metric, called σ, that is generic 
over metamodels and allows the easy specification 
of an open-ended wide range of model metrics

The remainder of this chapter is organized as 
follows. We first give an introduction on model 
measurement in section 2. In section 3, we then 
introduce a generic metric, grounded in set theory 
and first-order logic. This metric is questionned 
with established metric property frameworks. 
We then discuss implementation issues. To show 
the genericity of our approach, we present in sec-
tion 4 three case studies from various domains, 

and we show in section 5 that this also applies 
to the metamodel measurement. We finally dis-
cuss future research directions (section 6) and 
conclude.

State of the art

dedicated Model Measurement

Metamodel Measurement

Ma et al. [Ma et al., 2004] compare different 
versions of the UML metamodel using OO met-
rics defined in [Bansiya and Davis, 2002]. Ma 
et al. [Ma et al., 2005] define patterns linked to 
the lifecycle of metaclasses, and study them on 
different versions of the UML metamodel. This 
work is similar in spirit to those made at the OO 
level [Mattsson and Bosch, 1999, Bansiya, 2000, 
Gî rba et al., 2005].

MDE Processes Measurement

Berenbach et al. [Berenbach and Borotto, 2006] 
list a number of metrics for model driven require-
ments development and enounce some good 
practices. The Modelware project delivered three 
documents [Modelware Project, 2006a, Model-
ware Project, 2006b, Modelware Project, 2006c] 
in which several metrics about MDE processes 
are defined.

UML Models Measurement

Previous works about the measurement of UML 
models follows the same decomposition as the 
UML artifacts themselves. Some authors address 
the measurement of class diagrams (see [Genero 
et al., 2005] for a survey), others the measurement 
of dynamic models [Genero et al., 2002, Baroni, 
2005], component models (e.g., [Mahmood and 
Lai, 2005]), and OCL expressions [Cabot and 
Teniente, 2006, Reynoso et al., 2003].



  ���

Measuring Models

Synthesis
 

These works are dedicated to particular MDE ar-
tifacts, i.e., metamodels, processes, UML models. 
They do not note that all this artifacts are models 
too, w.r.t. a metametamodel, a process metamodel 
or the UML metamodel. These contributions do 
not leverage this idea for defining a generic metric 
usable at any moment of product life-cycle, from 
requirements to implementation.

Metamodel based Measurement of 
oo programs

Misic et al. [Misic and Moser, 1997] express a 
generic object-oriented metamodel using Z. With 
this metamodel, they express a function point 
metric using the number of instances of a given 
type. They also express a previously introduced 
metric called the system meter. Reissing et al. 
[Reissing, 2001] extends the UML metamodel to 
provide a basis for metrics expression and then 
use this model to specify known metric suites 
with set theory and first order logic.

Harmer et al. [Harmer and Wilkie, 2002] 
expose a concrete design to compute metrics on 
source code. The authors create a relational data-
base for storing source code. This database is fed 
using a modified compiler. Metrics are expressed 
in SQL for simple ones, and with a mix of Java and 
SQL for the others. El Wakil et al [El Wakil et al., 
2005] use XQuery to express metrics. Metrics are 
then computed on XMI files. Baroni et al. propose 
in [Baroni et al., 2002] to use OCL to specify 
metrics. They use their own metamodel exposed 
in a previous paper. Likewise, in [McQuillan and 
Power, 2006], the authors use Java bytecode to 
instantiate the Dagstuhl metamodel and specify 
known cohesion metrics in OCL. 

These works are centered around the issue of 
OO metrics and are not metamodel independent. 
They show that it is useful to ground metrics into 
the semantic of source code, i.e., its metamodel. It 
seems possible to generalize the idea and define 

precisely generic metrics on top of metamodels, 
set theory and logic. It is also to be noted that 
these approaches do not explore the modularity 
of metrics.

generic Metrics for oo 
Measurement

Mens et al. [Mens and Lanza, 2002] define a 
generic object-oriented metamodel and generic 
metrics. They then show that known software 
metrics are an application of these generic met-
rics. Alikacem et al. [Alikacem and Sahraoui, 
2006] propose a generic metamodel for object 
oriented code representation and a metric decrip-
tion language.

These two contributions emphasize on a ge-
neric way to define metrics. However, they do not 
provide applications of the genericity outside the 
scope of OO metrics.

generic Model Measurement

Saeki et al. [Saeki and Kaiya, 2006] specify 
the definition of metrics in OCL as part of the 
metamodel. Saeki et al. do not attach the definition 
of metrics to any particular domain and underlines 
in a future research agenda the need for defining 
various domain metamodels, domain metrics and 
supporting tools.

Guerra et al. [Guerra et al., 2006] propose to 
visually specify metrics for any Domain Specific 
Language and introduce a taxonomy of metrics. 
Tool support is provided in the Python and Atom3 
environment. We share the motivation of this paper 
and provide further facts on the problem of model 
measurement and on the solution. Our case studies 
give a different perspective on the issue.

The geneRIc σ MeTRIc

In this section, we present a model metric, called 
σ. The σ metric is a generic metric. It means that 



��0  

Measuring Models

an executable metric is a specialization of σ. The 
genericity allows high level specification of met-
rics and a simplified implementation. Considering 
the Goal Question Metrics approach [Basili et al., 
1994], the σ metric is a generic answer to a set of 
questions related to model quality: 

• Goal Improve the model quality from the 
modeler point of view. 

•  Question #1 What model metrics can be 
related to functionality?  

•  Question #2 What model metrics can be 
related to reliability ?  

•  Question #3 What model metrics can be 
related to maintainability?  

•  Metrics The family of σ metrics. 

In this section, we first define a model in the 
model-driven engineering (MDE) sense in order 
to clearly ground the generic metric. Then, we 
introduce the notion of filtering function which is 
the kernel of the proposed generic model metric. 
We close the presentation with theoretical argu-
ments and implementation issues.

Definition of a MDe Model in 
Set theory

A model, in the Model Driven Engineering (MDE) 
terminology, is at first glance a directed graph. A 
MDE model also contains information on nodes, 
sometimes refered as slots, which contain primary 
information. A model also embeds its structure 
i.e., the types of nodes, the types of edges, and 
the types of slots. The figure 1, inspired from 
[Kuehne, 2006], shows the different viewpoints 
on a model: a graph in the upper left part, a graph 
containing data in the upper right part, or a graph 
containing structured data in the lower left part 
where the structure is defined with a metamodel 
represented in the lower right part. 

We define a model as: 

Definition 1. A	model	M	is	M=((V;E;S);(C;R
;A);T2v;Te;Ts where: V is the set of nodes, E a 
set of directed edges between nodes, which 
are	elements	of	(V×V),	S	is	the	set	of	slots,	C	is	
the set of classes, R is the set of relationships 
between	classes	i.e.,	elements	of	(C×C),	A	is	
the set of attributes of classes i.e., elements 

Figure 1. Models from different points of view



  ���

Measuring Models

of	 (C×{boolean,numeric,etc.}),	 Tv contains 
bindings between nodes and classes i.e., a 
set	of	elements	of	 (V×C),	Te contains bind-
ings between edges and relationships i.e., a 
set	of	elements	of	(E×R),	Ts contains bindings 
between slots and attributes i.e., a set of ele-
ments	of	(S×A).	

Note that this definition includes support for 
languages such as Java or MOF, where one has 
classes and primitive types.

For convenience, we later use three func-
tions: 

• source which maps each edge to the source 
node of the edge; 

• target which maps each edge to the target 
node of the edge; 

• type which maps each node to a class 
c∈C. 

the filtering functions

A filtering function is a function that tests a 
boolean condition on a given node. Applied to a 
set of nodes, it can be used as a filter. 

Definition 2. A	filtering	function	φ	is	a	morphism	
from the set of nodes to the truth values. 

φ:V®{true;false}
x φ(x)

φ is a boolean function, it thus can be 
a boolean formula of sub-filtering boolean 
functions. This function can be composed of 
an arbitrary unlimited number of conditions 
e.g., φ=φ1Ùφ2ÚØφ3. In figure 1, the filtering 
function φ(x)=(type(x)=City) is true for two 
out of three model elements: the Frankfurt 
node and the Darmstadt node.

We define the core filtering functions as: a 
test on the type, a test on a slot, a size test and a 
λ-test on a collection: 

• Test on the type This tests the type of an 
object of the model with respect to the name 
of a class. It is equivalent to the isInstance 
method of the Java class Class. 

• Test on a slot value This evaluates the 
value of a slot (a primitive type in Java, an 
EDataType in Eclipse Modeling Framework) 
with respect to a constant. 

• λ-Test on a collection This evaluates a 
sub-filtering functions on each member of 
the multiplicity element. This test is either 
a test at least one or for all and introduces 
a λ parameter. 

• Test on the size of a collection This 
evaluates the number of elements of a col-
lection. 

We chose these core filtering functions because 
they are sufficient for our case studies. Note that 
filtering functions are not closed in their definition 
and can include refinements so as to express more 
powerful statements. For example, it is conceiv-
able to add regular expressions in slot tests on 
string values. 

For instance, here are some examples of filter-
ing functions refering to Figure 1: 

• φ(x)=(type(x)=City) 
• φ(x)=(x.name=”A5”) 
• φ(x)=(size(x.roads)>3) 
• φ ( x ) = ( ∃ λ ∈ x . d e s t i n a t i o n | λ .

name=”Darmstadt”) 
• φ(x)= (∀λ∈x .dest ina t ion |λ . inhabi t -

ants>100000) 

Filtering functions involve information 
from the metamodel e.g., City or inhabitants. 
They involve elements of C,R and A. Hence, 
they are at the same level as metamodels and 
are grounded into the structure of the models. 
The evaluation of a filtering function relies on 
the binding between a model and its structure 
i.e., Tv, Te, Ts. 



���  

Measuring Models

Set of Nodes
 

As defined above, one of the components of a 
model is a set of nodes. It is possible to specify a 
subset of nodes X satisfying a filtering function. 
This is noted SoN(φ)(V) (SoN is the acronym for 
set of nodes). 

Definition 3. SoN(φ)(V)={n∈V|φ(n)}.	

Definition of the σ Metric

The generic σ metric is derived from SoN and is 
the cardinality of a set of nodes given a filtering 
function. σ refers to the classical Σ mathematical 
symbol which denotes an iteration over a set of 
elements. 

Definition 4. σφVÎN=|SoN(φ)(V)|.	

The σ metric characterizes an open-ended wide 
range of model metrics that are illustrated in 
sections below. 

theoretical validation

In this section, we confront the σ metric with 
theoretical matters: the type, the scale, the dimen-
sion and the reliability of the σ metric. 

Type
 

Several frameworks exists for validating software 
metrics e.g., [Briand et al., 1996, Melton et al., 
1990, Schneidewind, 1992]. We chose [Briand 
et al., 1996] to validate the metrics proposed in 
this paper because it is a formalized, yet conve-
nient synthesis of previous works. Briand et al. 
enounced [Briand et al., 1996] formal properties 
for five types of software metrics: size, length, 
complexity, cohesion and coupling metrics. The 
σ metric satisfies the formal properties of size 
metrics Size.1, Size.2 and Size.3: 

Size.1 : Nonnegativity σ(SoN(V))≥0 by defi-
nition of a set; 

Size.2 : Null value if SoN(V)=∅⇒σ(SoN(V))=0 
by definition of a set; 

Size.3 : Module Additivity V=V1ÈV2 and 
V1ÇV2=Æ⇒σ(SoN(V))=σSoNV1+σSoNV2 (idem 
for E1,E2,E) 

The σ metric can then be considered as a ge-
neric size metric applicable to any domain.

Scale

The σ metric is a kind of count, hence is on an 
absolute scale. According to [Fenton, 1991], 
all arithmetic analysis of the resulting count 
is meaningful, and according to [Henderson-
Sellers, 1996], this scale permits a full range of 
descriptive statistics to be applied. This is true 
for a given filtering function, as discussed in the 
next paragraph.

Dimensional Analysis

Dimensional analysis aims to determine a con-
sistent assignment of units. A dimension is a 
generalization of a unit of measure [Henderson-
Sellers, 1996]. Since the σ metric is generic, it 
has no dimension associated with. It’s a number 
of objects according to a filtering function. To 
this extent, a filtering function defines a dimen-
sion per se. Hence, one cannot directly perform 
arithmetics on different σ i.e., σφ1V and σφ2V. 
For instance, summing σφ1V and σφ2V raises 
the same issue as summing a time and a length 
in physics. Derived measurement from σ metrics 
should be made carefully.

Measurement Errors

The σ metric does not have any measurement 
errors. It is theoretically reliable. Note that imple-



  ���

Measuring Models

mentations still need to be tested or statically 
verified with the adequate methods to ensure its 
practical reliability.

Conclusion

 With respect to theoretical facts, the σ metric is a 
generic, reliable size metric on which descriptive 
statistics can be applied.

implementation

We discuss below the reasons making the imple-
mentation of model metrics a difficult issue.

Non-Programmer Use

The most appropriate person for defining domain 
metrics is a domain expert. He rarely has skills in 
programming. Hence, he needs to specify what he 
wants and to delegate the implementation to others 
. This dramatically increases the cost of definition 
and collection of model metrics. This observa-
tion is a strong motivation to define a simple and 
intuitive DSL, a coherent interface to be used by 
the domain expert for defining metrics.

Libraries / Framework
 

Always for cost and productivity reasons, a 
good language for implementing metrics has the 
libraries to access models and their metamodels. 
It is very costly to develop an ad hoc and reliable 
parser, database connector, or binding to an exist-
ing modeling framework. 

Ability to Access to the Metamodel

The language or library for implementing metrics 
should include an easy way to navigate through 
the model and to access to the metamodel. For in-
stance, considering a model element, there should 
be a way to access to the referenced elements as 
well as the metaclass and its attributes.

Non-Intrusivity
 

We have experienced that it is often tempting 
to pollute models with metrics concerns. For 
example, to add an attribute marked : boolean 
to the root class of the domain model, to mark 
visited objects. However, this practice violates 
the separation of concerns principle. A good 
metrics design practice is totally non-intrusive 
with respect to the semantic of the model. In the 
previous example, the need to mark visited objects 
implies the use of Map:Object®Boolean.

Our Implementation

One can find in the literature several proposals for 
the implementation of model metrics (see section 
2) e.g., Java, SQL, Python, Xquery, XML-based 
DSL, OCL, and a graphical language. Proposals 
mix some of these languages. These proposals do 
not adress all the issues cited above. We based 
our approach on the model-oriented programming 
language Kermeta [Muller et al., 2005].

Kermeta is a language based upon the EMF 
API. This facilitates the accesses to models and 
the navigation through models and metamodels. 
Furthermore, our industrial partners generally 
use Eclipse Modeling Framework (EMF) models. 
Kermeta features closures, which are of great help 
for the filtering functions. Indeed, a filtering func-
tion written in Kermeta is syntactically close to 
the underlying semantic hence very concise.

Polymorphism is useful to express modular-
ized metrics. An example of code is shown on 
figure 2. An abstract class SigmaMetric encap-
sulates the generic code of the generic σ metric. 
A class NumberOfCityMetric is defined as a 
subclass of the SigmaMetric class. NumberOfCi-
tyMetric implements the filtering function φ and 
potentially delegates the definition of a subfilter-
ing function φ1 to subclasses by polymorphism. 
NumberOfCityConnectedToA5Metric overrides 
φ1 to compute the number of cities connected to 
the road named A5.



���  

Measuring Models

Kermeta satisfies all the issues cited above, 
except the first one. Even if a filtering function 
written in Kermeta is syntactically close to its 
semantic, a domain expert can not feel comfortable 
with writing pieces of Kermeta code. It is outside 
of the scope of this contribution to specify visual 
or textual syntax usable by the domain expert.

The prototype1  involves two main abstract 
classes ReflectiveWalk and SigmaMetric. To define 
a σ model metric, the user just need to create a 
new class inheriting from SigmaMetric and to 
write the associated filtering function. 

ApplIcATIOnS Of The σ MeTRIc

In this section, we present three case studies so 
as to illustrate the genericity and the feasibility 
of the σ metric. We first show that the σ metric 
allows the computation of logical lines of code 
in usual languages such as Java, the value-added 
of this approach is the ease of use compared to 
equivalent existing approaches. Then, we go 
beyond software metrics and consider non code 
centric artifacts such as requirements and system 
engineering metrics. The application of the σ met-
ric in these various domains shows the genericity 
of the σ metric. Finally, since metamodels can be 
considered as models too, we present results of 
the σ metric at computing metamodel metrics in 
a full section.

abstract class SigmaMetric {

  // generic implementation part of the sigma metric

  // specific part: an abstract method to be implemented

  operation phi(o : Object) : Boolean is abstract

} // end class

class NumberOfCityMetric inherits SigmaMetric {

  operation phi(o : Object) : Boolean is do

    result := (o.getMetaClass == City) and self.phi1(o)

  end

  operation phi1(o : Object) : Boolean is do

    return true

  end

} // end class

Class NumberOfCityConnectedToA5Metric inherits NumberOfCityMetric {

  operation phi1(o : Object) : Boolean is do

    return (o.asType(City).roads.exists{ x | x.name == “A5”})

  end

} // end class

Figure 2. Implementation: Excerpt of Kermeta code



  ���

Measuring Models

case Study: lines of code (loc)

Kan states that “the lines of code (LOC) metric is 
anything but simple” [Kan, 1995] (p.88). Indeed, 
there are numerous definitions of LOC, depending 
on authors and language (see [Kan, 1995]). Early 
LOC definitions follow a physical i.e., a represen-
tational point of view. An example is the count of 
the non-blank lines in source files. More sophisti-
cated LOC definitions focus on logical statements 
(see [Kan, 1995, Henderson-Sellers, 1996]). This 
raises the technical issue of parsing the source 
files to access the semantics. In this section, we 
do not propose yet another LOC definition. We 
demonstrate that considering traditional programs 
as model, one gets essential LOC building blocks 
by applying the generic σ metric.

LOC semantic building-blocks are an ap-
plication of the σ metric. They are numerous, 
among them are the number of methods, number 
of conditionals, number of blocks. For sake of 
readability, we do not list all of them. A repre-
sentative part of them is shown in the results of 
our case study.

In this case study, we consider the Java 
programming language because of its wide 
diffusion. Furthermore, numerous open-source 
Java software packages are available. Since our 
implementation is based on the Eclipse Modeling 
Framework (EMF), we needed a way to transform 
Java source code into EMF models (as XMI files). 

We have used the SpoonEMF tool2. SpoonEMF 
is a binding between Spoon and EMF. Spoon 
[Pawlak et al., 2006] provides a complete and 
fine-grained Java metamodel where any program 
element (classes, methods, fields, statements, ex-
pressions, etc.) is accessible. This process finally 
transforms a whole Java software into a single 
XMI model file that can be natively processed 
with Kermeta.

The whole process is sketched on figure 3.
From this model, our prototype is able to com-

pute the specific σ metrics values. For example, 
it produces the number of statements; number of 
assignments; number of conditionals; number 
of blocks.

To demonstrate the feasibility and the scal-
ability of our approach, we have chosen five open-
source Java software packages to be represented 
as models: 

• UmlGraph UmlGraph allows the declarative 
specification and drawing of UML class and 
sequence diagrams. 

•  log4j log4j is a logging library. It provides 
an advanced service of logging, with em-
phasis on the performance of determining 
if a logging statement should be logged or 
not. 

•  org.eclipse.osgi org.eclipse.osgi is the heart 
of the Eclipse IDE. It’s the Eclipse imple-
mentation of the Open Services Gateway 
Initiative (OSGI) standards. 

Figure 3. The Java to EMF process



���  

Measuring Models

•  regexp regexp provides a regular expression 
Java library. 

BCEL BCEL is a Byte Code Engineering Li-
brary (BCEL) intended to give users a convenient 
possibility to analyze, create, and manipulate 
(binary) Java class files. 

For the sake of replication, the models used in 
this case study are available on the web3.

In Table 1, we show our results on the Java 
software packages listed above. Table 4.1 shows 
us that the σ metric is applicable to computer 
languages. Furthermore, it shows us that our ap-
proach scales with the model size (the org.eclipse.
osgi model has 507798 model elements and 703360 
references between them). Each line of the table 
compares the software packages under study with 
repect to a rigorously defined point of view. For 
instance, for a similar number of class, the BCEL 
software uses much less try/catch constructs than 
org.eclipse.osgi. Each column of the table is a 
vector that characterizes the software packages 
in a multi-dimensional space.

Measuring LOC with models as an applica-
tion of the generic σ metric is easy. Spoon and 
SpoonEMF are components of our approach, yet 
have not been developed on purpose. One does 
not need to go inside a compiler or an interpreter, 
neither write a parser, which are both complex 
tasks.

One can object that much of the work has 
been moved on transformation from source 
code to models. But this task can be shared with 
other discplines such as aspect weaving or test-
ing. Indeed, Spoon and SpoonEMF are not at all 
dedicated to metrics. Note that this burden does 
not exist for new languages when the designers 
make them directly available as models.

In this section, we showed that LOC building 
blocks are σ metrics. We presented our approach 
and our prototype to prove the feasibility of col-
lecting LOC σ metrics on large-scale open-source 
software projects. Unlike traditional approaches, 

measuring LOC with models is easy. Collecting 
semantic metrics on source code could be done 
before. The added value of our approach is the 
simplicity. Firstly, it is easier to define and com-
pute metrics on code represented as a model than 
on raw source files. Secondly, the application of 
a generic metric inside a framework to compute 
logical LOC is no more than a few lines of code 
i.e., the filtering functions.

case Study: requirements Metrics

Since measurement is a tool to know if one is reach-
ing the goal of building high quality requirements, 
several works have been done on defining require-
ments metrics (a survey can be found in [Medina 
Mora and Denger, 2003, Kandula and Sathrasala, 
2005]). The need for requirements metrics is also 
illustrated by the metric features of commercial 
tools e.g., Telelogic Doors. In this section, we 
aim to show that some requirements metrics are 
a special case of the generic σ metric.

Our methodology consists of taking a previous 
contribution on requirements metrics, extracting 
a metamodel, and identifying σ metrics.

Davis et al. define [Davis et al., 1993] a set of 
attributes that contributes to evaluate the qual-
ity of a requirements specification. 18 of the 24 
quality attributes presented in this article have a 
mathematical metric formulation. These formulae 
are derived from the following metrics building 
blocks: the total number of requirements; the 
number of correct requirements; the number of 
stimulus input; the number of state input; the 
number of functions currently specified; the num-
ber of unique functions specified; the number of 
pages; the number of requirements that describe 
external behavior; the number of requirements 
that directly address architecture or algorithms 
of the solution.

All but the number of pages are concepts which 
are easily captured in a metamodel. In figure 4, 
we derive a metamodel which permits to compute 



  ���

Measuring Models

NumberOf log�j-�.�.�� umlgraph-�.� eclipse.osgi-
�.� regexp-�.� bcel-�.�

TypeParameterReference ��� 0 �0� � ��

Method ���� �� ���� ��� ����

FieldReference ���� ��� ��0�� ���� ����

Catch ��� � ��� �� ���

TypeReference ����� ���� ������ ���0 �����

For �0� � ��� �� ���

LocalVariableReference ���� ��� ���0� ��� ��0�

Field ��� �� ���� ��� ���

Assignment ��� ��� ���� ��� ����

VariableAccess ���� ��� ����� ���� �����

Case ��� � ��� ��� ���

If ��� �0� ���� ��� ��0�

Parameter ���0 �� ���� ��� ����

Constructor ��� �� ��� �� ���

ExecutableReference ���� ��� ����� ���� ���0�

Class ��� �� ��� �� ���

ParameterReference �0�� ��0 ���� ��� ����

BinaryOperator ���� ��� ���� �0� ����

ArrayAccess ��� �� ���0 ��� �0�

Return ��� �0 ���� ��� ����

Literal ���� ��� ����� �0�� ����

Invocation ���� ��� ����� ��� ����

Block ���� ��� ���� ��� ����

LocalVariable ���� ��� ���� ��� ����

ArrayTypeReference ��0� ��� ����� ��� ��0�

FieldAccess ���� ��� ��0�� ���� ����

NewClass ��� �� ���0 ��� ��0�

PackageReference ����� ���� ����0� �0�� �����

UnaryOperator ��� �� ���0 ��� ���

Try ��� � ��0 �� ���

Table	1.	Results	of	the	σ	LOC	metrics	on	large-scale	Java	software	packages



���  

Measuring Models

the metrics above. This is a backbone for a bigger 
requirements metamodel. Except for the number 
of unique functions specified, all these metrics 
are σ metrics.

Note that Davis et al. also use the following 
parameters: CRi is the cost necessary to verify 
presence of requirement Ri; TRi is the time nec-
essary to verify presence of requirement Ri. The 
notations C and R (resp. cost and requirement) are 
from [Davis et al., 1993] and are totally different 
of the notations of section 3. The integration of this 
information in the metamodel is straightforward 
and represented in the figure 4.

It is possible, yet outside the scope of this 
chapter to apply this methodology to other re-
quirements metrics contributions e.g., [Costello 
and Liu, 1995], so as to create a comprehensive 
requirements metamodel. We mainly aim to show 
the genericity of our contribution in the field of 
requirements engineering. A threat to our reason-
ing remains. One misses requirements models and 
case studies. Contrary to the previous section, 
where we have manipulated large scale models 
of source code , we are not able to produce metric 
values for this requirement metamodel due to the 
absence of models. However, the integration of 
model-driven requirements engineering in in-

dustrial processes shall solve this issue in a near 
future. Another solution to requirements metrics 
is to analyze natural language e.g., [Wilson et al., 
1996, Fantechi et al., 2002]. It is to be noted that 
these methods are primarily at a syntactic level 
i.e., deals with natural language. Our approach 
is totally at the model level and deals with the 
concepts, not the syntax.

case Study: System engineering 
Metrics

As said in the introduction, an applied research 
program named Measurement of Complexity 
[Chretienne et al., 2004] driven by the DGA 
concludes on the need to automate the computa-
tion of system engineering metrics in a semantic 
manner for better reliability and affordable costs. 
This report grounds this case study.

This report lists 122 indicators that might 
measure a kind of complexity of the system. 
These indicators address a wide range of domains: 
requirements engineering; environment specifica-
tion; software engineering; logical architecture; 
project management; mechanical and chemical 
architecture. This is a good artifact to illustrate 
the genericity of our contribution, genericity over 
the domain and over the product lifecycle.

Figure	4.	The	requirements	metamodel	extracted	from	[Davis	et	al.,	1993]



  ���

Measuring Models

For instance, from the metrics related to infor-
mation systems, we have derived a metamodel i.e., 
we have listed the domain concepts of an informa-
tion system e.g., Server, Protocol, Service, etc. The 
implementation in Kermeta is outlined in figure 5. 
This implementation of the metamodel associated 
with the σ metric enables the computation of most 
of the information system metrics identified in the 
report e.g., the number of protocols; the number 
of parallel databases; the number of file formats; 
the number of servers.

 Exploring the whole list of indicators, it turns 
out than 45 out of 122 (37%) are metrics of the 
form number of i.e., an application of the σ metric. 
The table 2 shows that depending on the domain, 
the σ metric is more or less useful. The domain of 
software architecture is the best target, with 19 σ 
metrics out of 21 metrics. Thus, our approach really 
facilitates the definition and collection of metrics 
for model-based software architectures. The do-
main of mechanical and chemical architecture is 
the worst target of the σ metric. To our knowledge, 
the reason is that these engineering fields are bet-
ter described with mathematical models. Hence, 
the associated interesting metrics also are at a 
mathematical level. The domain of requirements 
engineering seems to be partly covered by the σ 
metric. However, most of the sixteen non-sigma 

metrics are totally subjective e.g., the distance of 
the required product from technological limits. In 
other words, computable requirements engineer-
ing metrics are well covered by the σ metric as 
discussed in the previous section.

This case study showed that a significant 
number of metrics identified outside the scope of 
model-driven engineering are applications of the σ 
metrics. Our contribution adresses totally 37% of 
metrics listed in the report. The other 63% metrics 
are mostly pure mathematical or physical ones, 
hence outside the scope of model-driven metric 
development. Our approach is promising since it 
solves the majority of logical metrics. 

genericity applied to 
MetaModel MetricS

The generic metric addresses the issue of defin-
ing and collecting metrics for a given domain. 
If the considered domain is metamodeling, the 
generic metric gives information on metamodels 
themselves. Our last case study is the metamodel 
measurement. Indeed, metamodels are important 
artifacts in Model Driven Engineering and we 
believe that it is essential to know their size, qual-
ity and complexity. For these purposes, metrics 

class InformationSystem inherits System

{ reference servers : Server

 reference subSystems : InformationSystem[0..*] }

class Interface inherits Aspect::NamedElement,

        Aspect::VersionnedElement, Aspect::DescriptedElement {}

class NetworkService

{ reference protocols : Protocol[0..*] }

class PersistenceService inherits Service { }

class DataBase inherits PersistenceService

{ attribute replicated : DataType::boolean }

Figure	5.	Excerpt	of	the	metamodel	implemented	in	Kermeta



��0  

Measuring Models

Requirements engineering ��/��

Ex: Number of requirements without an associated specified test

Environment specification �/�

Ex: Number of variables

Software architecture ��/��

Ex: Number of external protocols for interoperability

Logical architecture �/��

Ex: Number of configurations

Mechanical and chemical architecture �/��

Ex: Number of materials

Project management �/��

Ex: Number of stakeholders

Table	2.	Complexity	indicators	which	are	an	application	of	σ

are to be defined, validated and implemented. 
This permits to give a numerical and objective 
vision of metamodels. Considering metamodels 
as models, we show that some of these metrics are 
an application of the σ metric presented above.

Metamodels: Definition and 
implementation

There is no clear consensus on the definition of a 
metamodel. In [Kuehne, 2006], Kühne makes a 
contribution to the clarification of the definition, 
that “may drastically simplify disputes about 
fundamental	issues,	such	as	the	metamodel	defi-
nition”. We refer to this paper for the essence of 
a metamodel and follow a practical approach to 
define a metamodel: based on the EMOF speci-
fication [OMG, 2004a], we outline the pratical 
differences between an EMOF metamodel and a 
class model, from typed object-oriented program-
ming languages.

An EMOF model is composed of instances 
of classes from the EMOF package. The EMOF 
package is the result of the merge of five packages 
UML::Basic (from the UML infrastructure [OMG, 
2004b]), MOF::Common, MOF::Identifiers, MOF::
Reflection and MOF::Extension. The main differ-
ences with object-oriented models are: 

1. collections are explicitly typed; 
2. collections have explicit lower and upper 

bounds; 
3. collections are explicitly unique and/or 

ordered; 
4. associations are defined as the binding be-

tween two references; 
5. references can have containment role. 

Note also that: EMOF differentiates refer-
ences to primitive types (integer, boolean, etc.) 
and references to classes; EMOF allows multiple 
inheritance.



  ���

Measuring Models

Ecore is part of the Eclipse Modeling Frame-
work [Budinsky et al., 2004] (EMF) developped 
by IBM. It is an implementation of EMOF. The 
core EMF framework includes Ecore for describ-
ing models and runtime support for the models 
including change notification, persistence support 
with default XMI serialization, and a very efficient 
reflective API for manipulating EMF objects ge-
nerically. The EMF framework includes generic 
reusable classes for building editors for EMF 
models and code generation facility capable of 
generating everything needed to build a complete 
editor for an EMF model.

Since Ecore is reflective and bootstrapped, 
Ecore metamodels can be considered as models. 
In this section, we leverage this facility to apply 
the generic model metric proposed above to the 
measurement of Ecore metamodels.

Direct Application of the σ Metric for 
Metamodel Measurement

Genero notes in [Genero et al., 2005] that unlike 
class measurement, the object-oriented system 
metrics, also called package-scope metrics [Gen-
ero et al., 2000, Xenos et al., 2000] have been 
little investigated. Since the notion of metamodel 
seems to be much more central in MDE than the 
notion of package in object-oriented programming 
languages, we aim to define metamodel metrics, 
not restricted to a given class i.e., metrics con-
sidering the metamodel as a whole. Thus, in this 
section, we define 6 global and simple metamodel 
metrics, taken or inspired from object-oriented 
system metrics. In the remainder of this section, 
we study the direct application of the σ metric 
for metamodel measurement i.e., metrics at the 
metamodel level so as to give a numerical and 
objective vision of metamodels. We consider:

• NoC the number of classes. 
• NoD the number of primitive datatypes. A 

datatype is a primary information type e.g., 
byte, short, int, etc. 

• TNoR the total number of references. It is 
the sum of the number of references of each 
class. In the EMOF terminology, a reference 
points to another class i.e., its type is a class 
and not a primitive type. The T (like the first 
letter of total) denotes that one considers the 
metamodel level (without the T, one consid-
ers the number of references per class), thus 
TNoR=ΣiÎCNoRi. 

• TNoA the total number of attributes. It is 
the sum of the number of attributes of each 
classes. Note that we use the EMOF terminol-
ogy: an attribute is a relationship between 
a class and a dataype, it defines a slot for 
primary information. The T denotes that one 
considers the metamodel level (without the 
T, one considers the number of attributes 
per class), thus TNoA=ΣiÎCNoAi. 

• NoAC the number of abstract classes; 
• NoE the number of enumerations. An 

enumeration is a kind of datatype, hence 
NoE≤NoD. 

Since metamodels can be considered as models 
w.r.t. the metametamodel, let us consider Ecore 
metamodels as models in the Eclipse Modeling 
Framework (EMF). In this implementation, the 
metamodel metrics above are σ metrics. Here are 
the corresponding filtering functions (names refer 
to the ecore metamodel implemented in EMF): 

• NoC φ(x)=(type(x)=ecore::EClass); 
• NoD φ(x)=(type(x)=ecore::EDataType); 
• TNoR φ(x)=(type(x)=ecore::EReference); 
• TNoA φ(x)=(type(x)=ecore::EAttribute); 
• NoAC φ(x)=(type(x)=ecore::EClass and 

x.abstract=true); 
• NoE φ(x)=(type(x)=ecore::EEnumeration). 

In the next section, we show that the generic σ 
metric can be a building block for metrics which 
take into account the specificities of metamodels 
w.r.t. object-oriented models.



���  

Measuring Models

The σ Metric as a Building Block so 
as to take into account Metamodel 
Specificities

Existing object-oriented metrics do no take into 
account some modeling facilities available in 
EMOF metamodels. In this section, we use the 
Goal Question Metric approach [Basili et al., 
1994] to define three new metrics that leverage 
these facilities so as to prove the ability of the σ 
metric to ground other metrics.

Goal

Improve the knowledge about EMOF metamod-
els to identify bad and good practices, patterns 
and templates. This identification will finally 
improve the quality of produced or refactored 
metamodels.

Questions

• How to characterize the use of associations 
in EMOF metamodels from the metamodel 
designer and user point of view ?  

• How to numerically characterize the use of 
containment in EMOF metamodels from 
the metamodel designer and user point of 
view?  

• How to numerically characterize whether the 
EMOF metamodel is primitive data oriented 
or relationship oriented ?  

The answers of these question can be the 
independent variables of an experiment where 
the dependent variable is a quality attribute (e.g., 
from [ISO/IEC, 2001]) of a MDE process. To this 
extent, our approach grounds the characterization 
of metamodel quality. 

Metrics

The Navigability Metric

 The navigability metric involves the number of 
associations of the metamodel and TNoR described 
above. The number of associations TNoAss of the 
metamodel is a σ metric. The navigability metric 
is further named Nav.

D ef i n i t i on  5 .  TNoAs s=σφ/2 	 whe re	
φ(x)=(t ype(x)=ecore::EReference 	 and	
x.opposite≠null);	

Definition 6. Nav=(2*TNoAss)/TNoR	

Properties

0≤Nav≤1 since an association is made from two 
references i.e., 2*TNoAss≤TNoR.

Interpretation

If Nav = 0 the metamodel designer does not at 
all use EMOF associations and only uses simple 
references, if Nav = 1 the metamodel designer 
only uses EMOF associations i.e., all references 
are bound to the opposite one. 

The Containment Metric

The containment metric evaluates the use of 
containments in the metamodel. It is further 
named Cont. The containment metric involves 
four quantities A,B,C and D. A is the number of 
associations with the containment role. B is the 
number of associations TNoAss. C is the number 
of references with the containment role not part 
of an association. D is the number of references 
non part of an association.
 
• φAx=typex=ecore::EReference
 a n d  x . o p p o s i t e ≠ n u l l  a n d 

x.containment=true); 
• φo5Bx=typex=ecore::EReference and 

x.opposite≠null); 
• φCx=t ypex=ecore::EReference and 

x.opposite=null and x.containment=true); 



  ���

Measuring Models

• φDx=t ypex=ecore::EReference and 
x.opposite=null); 

Definition 7. Cont=(A/B+C/D)/2	

Properties

0≤Cont≤1. Proof: 0≤A,B,C,D since it is a σ metric. 
A<B and C<D since φA (resp. φC) is stronger 
than φB (resp. φD). Then A/B,C/D≤1. Finally, 
the division by 2 normalizes the metric to 1. If 
B=0 (resp. D=0), then A=0 (resp. C=0). Hence, if 
B=0 (resp. D=0), the whole term A/B (resp. C/D) 
is discarded.

Interpretation

If Cont = 0 the metamodel designer does not 
use at all EMOF containment, if Cont = 1 the 
metamodel designer always uses containment i.e., 
all relationships have a container role.

Data Quantity Metric
 
Metric. The data quantity metric is the ratio 

between the number of EMOF attributes (EAttrib-
ute) and the number of EMOF structural features 
(EStructuralFeature). It is further named Dat. It 
is based on global metamodel metrics defined 
above in section 5.2. 

Definition 8. Dat=TNoA/(TNoA+TNoR)	

Properties

0<Dat<1 by definition.

Interpretation

The data quantity metric is a kind of signature of 
the modeled domain and/or the modeling style.

Note that there is no a priori good or bad val-
ues for these 3 metrics. Future use and validation 
can clarify their meanings. In the next section, 

we present empirical results of the nine metrics 
presented. 

empirical results on real 
Metamodels

Presentation of the Metamodels

We aim to demonstrate the applicability of the 
generic metric for metamodel measurement i.e., 
how the generic metric fits to metamodel metrics. 
More and more metamodels are publicly available, 
as part of open source projects or standardization 
effort e.g., [OMG, 2004b]. We have configured 
our generic prototype for the nine metamodel 
metrics previously exposed and computed them 
on the following metamodels: 

• AADL Architecture Analysis & Design 
Language metamodel, AADL is a standard 
for real-time embedded systems driven by 
the Society of Automotive Engineers - the 
corresponding Ecore implementation is part 
of the standard; 

• UML2 the Unified Modeling Language 
metamodel - the corresponding Ecore imple-
mentation comes from the UML2 project of 
Eclipse. 

• Ecore the EMF implementation of the EMOF 
metamodel; 

• XML Schema Definition XML Schema 
Definition metamodel - the Ecore imple-
mentation comes from the EMF tool which 
provides support for converting between 
Ecore and XML Schema models; 

• KDM Knowledge Discovery Metamodel of 
the OMG - the Ecore implementation comes 
from the Atlantic zoo4; 

• Java the Java 5 metamodel - the Ecore 
implementation has been extracted from 
the Spoon tool [Pawlak et al., 2006] in our 
team. 



���  

Measuring Models

For the sake of replication, the Ecore imple-
mentation of these metamodels used in this case 
study is available on the web5.

Results

In Table 3, we present the results obtained with 
our prototype. 

It shows that the σ metric is adapted to the 
metamodel measurement; it also roots new metrics 
that leverage metamodel specificities; and it is 
implementable and scalable enough to be applied 
to real world metamodels.

The basic interpretation of this table is that 
NoC, TNoR, TNoA, NoDT enable an objective 
and numeric description of metamodels in a con-
cise manner. That is to say, we can see without 
previous knowledge that all these metamodels are 
relatively different in their structure. NoAC and 
NoE are refinements of these metrics.

It also shows that the ratio between references 
and classes is discriminant: from more than two 
for XMLSchema to approximately one for KDM. 
We tend to think that there are two types of 
metamodels. The first type is element-dominant 
such as KDM, where the main goal is to explicit 
the concepts of a domain. The second type is 
reference dominant, such as XMLSchema, where 
the main goal is to describe relationships. 

The metrics Nav, Cont and Dat are discrimi-
nant. We believe that these metrics give informa-
tion on the modeled domain and the modeling 
styles and practices. However, the balance between 
the domain and the style cannot be determined. 
For instance, considering Cont, UML2 has a value 
of 0.50 while Java5 has a value of 0.01. To our 
opinion, this can be due to the fact that the Java5 
modeler did not master the containment feature of 
Ecore, or to the fact that the Java5 programming 
language is not adapted to this modeling feature. 
The same reasoning concerns Nav and Dat. We 
showed in section 3.4 that, from a theoretical point 
of view, the σ metric is closely related to size. This 
is confirmed in this domain of application, where 
intuitive metamodel size metrics e.g., number of 
classes, are σ metrics. Note that metrics where σ 
is used as a building block, such as Cont are not 
size metrics.

To conclude, we showed that the generic 
metric application on metamodel measurement 
is possible i.e., permits to define existing metrics 
and new metrics which leverage the metamodel 
specificities.

future reSearch directionS

Our contribution enables the easy definition of 
metrics and collection of metrics values. Thus, 

Name NoC NoAC TNoR TNoA NoDT NoE Nav Cont Dat

KDM ��� �� ��� �� � � 0.�� 0.�� 0.�0

UML� ��� �� ��� �� �� �� 0.�� 0.�0 0.��

AADL ��� �� ��� �� �� � 0.�� 0.�� 0.0�

Java� �� � �� �� �� 0 0.�� 0.0� 0.�0

XMLSchema �� �� ��� �� �� �0 0 0.�� 0.��

Ecore �� � �� � �� 0 0.�0 0.�� 0.��

Table 3. Results on EMOF metamodels



  ���

Measuring Models

the main research direction is to leverage the ge-
neric σ metric to identify and empirically validate 
quality attributes in a given domain.

The study of metamodel metrics through 
the generic σ metric led to the definition of the 
metrics Nav, Cont and Dat. While our goal was 
to demonstrate the applicability of the generic 
metric, we also aimed at defining new and valuable 
metrics. This would be a better point in favor of 
generic metrics. However, we did not empirically 
validate the relationships between these metrics 
and software quality attributes. Future research 
is needed for the validation.

Finally, an issue is that the application of 
the generic σ metric is unaccessible to a non-
programmer. This practice excludes the domain 
expert from defining and testing metrics in an 
autonomous manner. To this extent, a metric 
specific language is needed. As a perspective, a 
metric specific language will be studied so as to 
provide an intuitive notation and a user-friendly 
interface accessible to non-programmers. De-
fining and computing metrics should be totally 
transparent so as to unleash the domain analysis 
and creativity.

concluSion and perSpectiveS

In this chapter, we defined a generic metric that 
support the measurement of domain-specific at-
tributes. The generic metric σ is defined using set 
theory and first order logic. It is the cardinality of 
a subset of model elements satisfying a filtering 
function. The theoretical validity of the generic 
σ metric is questionned in regard to type, scale, 
dimensional analysis and measurement errors. 
This shows that it is closely related to size.

To illustrate the genericity of the σ metric, we 
presented four case studies. We showed that the 
σ metric is able to precise the concept of source 
lines of code. By rising up Java source code at 
the model level, we were able to produce σ metric 

values on open-source projects including Eclipse-
OSGI and Apache-Log4j. Two others applications 
encompass a wider scope than code-centric 
metrics. System engineering is engineering in 
the large. Numerous relevant metrics identified 
by system engineering experts are applications 
of the generic σ metric. This is an argument to 
go from non-semantic document centric system 
engineering to model driven engineering. In a 
similar manner, the generic σ metric permits to 
express metrics on requirements. The σ metric 
can also ground metamodel metrics, which are a 
solution to have a concise and objective summary 
of their internal complexity, size and quality.

referenceS

[Alikacem and Sahraoui, 2006] Alikacem, E. 
and Sahraoui, H. (2006). Generic metric extraction 
framework. In Proceedings of IWSM/MetriKon 
2006.

[Bansiya, 2000] Bansiya, J. (2000). Evaluating 
framework architecture structural stability. ACM 
Comput. Surv., 32(1es):18.

[Bansiya and Davis, 2002] Bansiya, J. and Davis, 
C. (2002). A hierarchical model for object-oriented 
design quality assessment. IEEE Transactions on 
Software Engineering, 28(1):4–17.

[Baroni et al., 2002] Baroni, A., Braz, S., and 
Abreu, F. (2002). Using OCL to formalize object-
oriented design metrics definitions. In ECOOP’02 
Workshop on Quantitative Approaches in OO 
Software Engineering.

[Baroni, 2005] Baroni, A. L. (2005). Quanti-
tative assessment of uml dynamic models. In 
ESEC/FSE-13: Proceedings of the 10th European 
software engineering conference held jointly with 
13th ACM SIGSOFT international symposium 
on Foundations of software engineering, pages 
366–369. ACM Press.



���  

Measuring Models

[Basili et al., 1994] Basili, V. R., Caldiera, G., 
and Rombach, H. D. (1994). The goal question 
metric approach. In Encyclopedia of Software 
Engineering. Wiley.

[Berenbach and Borotto, 2006] B e r e n b a c h , 
B. and Borotto, G. (2006). Metrics for model 
driven requirements development. In ICSE	’06:	
Proceeding of the 28th international conference 
on Software engineering, pages 445–451, New 
York, NY, USA. ACM Press.

[Briand et al., 1996] Briand, L. C., Morasca, S., 
and Basili, V. R. (1996). Property-based software 
engineering measurement. Software Engineering, 
22(1):68–86.

[Budinsky et al., 2004] Budinsky, F., Steinberg, 
D., Merks, E., Ellersick, R., and Grose, T. J. 
(2004). Eclipse Modeling Framework. Addison-
Wesley.

[Cabot and Teniente, 2006] Cabot, J. and Teniente, 
E. (2006). A metric for measuring the complexity 
of ocl expressions. In Model Size Metrics Work-
shop	co-located	with	MODELS’06.

[Chretienne et al., 2004] Chretienne, P., Jean-Ma-
rie, A., Le Lann, G., Stefani, J., Atos Origin, and 
Dassault Aviation (2004). Programme d’Étude 
Amont Mesure de la compléxité (marché n°00-
34-007). Technical report, DGA.

[Costello and Liu, 1995] Costello, R. J. and Liu, 
D.-B. (1995). Metrics for requirements engineer-
ing. J. Syst. Softw., 29(1):39–63.

[Davis et al., 1993] Davis, A., Overmyer, S., 
Jordan, K., Caruso, J., Dandashi, F., Dinh, A., 
Kincaid, G., Ledeboer, G., Reynolds, P., Sitaram, 
P., Ta, A., and Theofanos, M. (1993). Identifying 
and measuring quality in a software requirements 
specification. In Proceedings of the First Inter-
national Software Metrics Symposium.

[Edmonds, 1999] Edmonds, B. (1999). Syntactic 
Measures of Complexity. PhD thesis, University 
of Manchester.

[El Wakil et al., 2005] El Wakil, M., El Bastawissi, 
A., Boshra, M., and Fahmy, A. (2005). A novel 
approach to formalize and collect object-oriented 
design-metrics. In Proceedings	of	the	9th	Inter-
national Conference on Empirical Assessment in 
Software Engineering.

[Fantechi et al., 2002] Fantechi, A., Gnesi, S., 
Lami, G., and Maccari, A. (2002). Application of 
linguistic techniques for use case analysis. In RE 
’02: Proceedings of the 10th Anniversary IEEE 
Joint International Conference on Requirements 
Engineering, pages 157–164, Washington, DC, 
USA. IEEE Computer Society.

[Fenton, 1991] Fenton, N. E. (1991). Software 
Metrics: A Rigorous Approach. Chapman & 
Hall.

[Genero et al., 2002] Genero, M., Miranda, D., 
and Piattini, M. (2002). Defining and validating 
metrics for uml statechart diagrams. In Proceed-
ings of QAOOSE’2002.

[Genero et al., 2000] Genero, M., Piattini, M., and 
Calero, C. (2000). Early measures for UML class 
diagrams. L’Objet, 6(4):489–505.

[Genero et al., 2005] Genero, M., Piattini, M., 
and Caleron, C. (2005). A survey of metrics for 
UML class diagrams. Journal of Object Technol-
ogy, 4:59–92.

[Guerra et al., 2006] Guerra, E., Diaz, P., and de 
Lara, J. (2006). Visual specification of metrics 
for domain specific visual languages. In Graph 
Transformation and Visual Modeling Techniques 
(GT-VMT	2006).

[Gî rba et al., 2005] Gîrba, T., Lanza, M., and 
Ducasse, S. (2005). Characterizing the evolu-
tion of class hierarchies. In Proceedings	of	9th	
European Conference on Software Maintenance 
and	Reengineering	(CSMR’05), pages 2–11. IEEE 
Computer Society.

[Harmer and Wilkie, 2002] Harmer, T. J. and 
Wilkie, F. G. (2002). An extensible metrics extrac-



  ���

Measuring Models

tion environment for object-oriented program-
ming languages. In Proceedings of the Interna-
tional Conference on Software Maintenance.

[Henderson-Sellers, 1996] Henderson-Sellers, 
B. (1996). Object-Oriented Metrics, measures 
of complexity. Prentice Hall.

[ISO/IEC, 2001] ISO/IEC (2001). ISO/IEC	9126.	
Software engineering – Product quality. ISO/
IEC.

[Kan, 1995] Kan, S. H. (1995). Metrics and Models 
in Software Quality Engineering. Addison Wesley, 
Reading, MA.

[Kandula and Sathrasala, 2005] Kandula, G. and 
Sathrasala, V. K. (2005). Product and Manage-
ment Metrics for Requirements. Master thesis. 
Umea University.

[Kitchenham et al., 1990] Kitchenham, B. A., 
Pickard, L. M., and Linkman, S. J. (1990). An 
evaluation of some design metrics. Softw. Eng. 
J., 5(1):50–58.

[Kuehne, 2006] Kuehne, T. (2006). Matters of 
(meta-) modeling. Software and System Modeling, 
5(4):369–385.

[Ma et al., 2005] Ma, H., Ji, Z., Shao, W., and 
Zhang, L. (2005). Towards the uml evaluation 
using taxonomic patterns on meta-classes. In 
Proceedings of the Fifth International Confer-
ence	on	Quality	Software	(QSIC’05), volume 0, 
pages 37–44.

[Ma et al., 2004] Ma, H., Shao, W., L.Zhang, 
Z.Ma, and Y.Jiang (2004). Applying OO metrics 
to assess UML meta-models. In Proceedings of 
MODELS/UML’2004. UML 2004.

[Mahmood and Lai, 2005] Mahmood, S. and Lai, 
R. (2005). Measuring the complexity of a uml 
component specification. In QSIC	’05:	Proceed-
ings of the Fifth International Conference on 
Quality Software, pages 150–160, Washington, 
DC, USA. IEEE Computer Society.

[Mattsson and Bosch, 1999] Mattsson, M. and 
Bosch, J. (1999). Characterizing stability in evolv-
ing frameworks. In TOOLS	’99:	Proceedings	of	
the Technology of Object-Oriented Languages 
and Systems, page 118, Washington, DC, USA. 
IEEE Computer Society.

[McQuillan and Power, 2006] McQuillan, J. A. 
and Power, J. F. (2006). Experiences of using the 
dagstuhl middle metamodel for defining software 
metrics. In Proceedings of the 4th International 
Conference on Principles and Practices of Pro-
gramming in Java.

[Medina Mora and Denger, 2003] Medina Mora, 
M. and Denger, C. (2003). Requirements metrics. 
an initial literature survey on measurement ap-
proaches for requirements specifications. Techni-
cal report, Fraunhofer IESE.

[Melton et al., 1990] Melton, A. C., Baker, A. L., 
Bieman, J. M., and Gustafson, D. M. (1990). 
A mathematical perspective for software mea-
sures research. Software Engineering Journal, 
5:246–254.

[Mens and Lanza, 2002] Mens, T. and Lanza, 
M. (2002). A graph-based metamodel for object-
oriented software metrics. Electronic Notes in 
Theoretical Computer Science, 72:57–68.

[Misic and Moser, 1997] Misic, V. B. and Moser, 
S. (1997). From formal metamodels to metrics: 
An object-oriented approach. In TOOLS	 ’97:	
Proceedings of the Technology of Object-Ori-
ented Languages and Systems-Tools - 24, page 
330, Washington, DC, USA. IEEE Computer 
Society.

[Modelware Project, 2006a] Modelware Project 
(2006a). D2.2 MDD Engineering Metrics Defini-
tion. Technical report, Framework Programme 
Information Society Technologies.

[Modelware Project, 2006b] Modelware Project 
(2006b). D2.5 MDD Engineering Metrics Base-
line. Technical report, Framework Programme 
Information Society Technologies.



[Modelware Project, 2006c] Modelware Project 
(2006c). D2.7 MDD Business Metrics. Techni-
cal report, Framework Programme Information 
Society Technologies.

[Muller et al., 2005] Muller, P. A., Fleurey, F., and 
Jézéquel, J. M. (2005). Weaving executability into 
object-oriented meta-languages. In Proceedings 
of	MODELS/UML	2005.

[OMG, 2004a] OMG (2004a). MOF 2.0 speci-
fication. Technical report, Object Management 
Group.

[OMG, 2004b] OMG (2004b). UML 2.0 super-
structure. Technical report, Object Management 
Group.

[Pawlak et al., 2006] Pawlak, R., Noguera, C., 
and Petitprez, N. (2006). Spoon: Program analy-
sis and transformation in java. Technical Report 
5901, INRIA.

[Reissing, 2001] Reissing, R. (2001). Towards a 
model for object-oriented design measurement. 
In ECOOP’01 Workshop QAOOSE.

[Reynoso et al., 2003] Reynoso, L., Genero, M., 
and Piattini, M. (2003). Measuring ocl expressions: 

a “tracing”-based approach. In Proceedings of 
QAOOSE’2003.

[Saeki and Kaiya, 2006] Saeki, M. and Kaiya, 
H. (2006). Model metrics and metrics of model 
transformation. In Proc. of 1st Workshop on 
Quality in Modeling, pages 31–45.

[Schneidewind, 1992] Schneidewind, N. F. (1992). 
Methodology for validating software metrics. 
IEEE Trans. Software Eng., 18(5):410–422.

[Van Belle, 2002] Van Belle, J. (2002). Towards a 
syntactic signature for domain models: Proposed 
descriptive metrics for visualizing the entity 
fan-out frequency distribution. In Proceedings 
of SAICSIT 2002.

[Wilson et al., 1996] Wilson, W. M., Rosenberg, 
L. H., and Hyatt, L. E. (1996). Automated qual-
ity analysis of natural language requirement 
specifications. In Proceeding of the PNSQC 
Conference.

[Xenos et al., 2000] Xenos, M., Stavrinoudis, 
D., Zikouli, K., and Christodoulakis, D. (2000). 
Object-oriented metrics - a survey. In Proceedings 
of	the	FESMA	Conference	(FESMA’2000).



Section III
Improving the
Model Quality

This section presents several chapters on techniques and methods that help to improve the quality of 
models. The papers address approaches such as refactoring or model transformations from the viewpoint 
of quality criteria and describe how model-driven development might be-come quality-driven model-
based development.



��0  

Chapter VIII
Model-Driven Software

Refactoring
Tom Mens

University of Mons-Hainaut, Belgium

Gabriele Taentzer
Philipps-Universität Marburg, Germany

Dirk Müller
Chemnitz University of Technology, Germany

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

abStract

In this chapter, we explore the emerging research domain of model-driven software refactoring. Program 
refactoring is a proven technique that aims at improving the quality of source code. Applying refactor-
ing	in	a	model-driven	software	engineering	context	raises	many	new	challenges	such	as	how	to	define,	
detect and improve model quality, how to preserve model behavior, and so on. Based on a concrete case 
study with a state-of-the-art model-driven software development tool, AndroMDA, we explore some of 
these challenges in more detail. We propose to resolve some of the encountered problems by relying on 
well-understood techniques of meta-modeling, model transformation and graph transformation.

introduction

In the current research and practice on software 
engineering, there are two very important lines of 
research for which tool support is becoming widely 
available. The first line of research is program 
refactoring, the second one is model-driven 
software engineering. To this date, however, 
the links and potential synergies between these 
two lines of research have not been sufficiently 

explored. This will be the main contribution of 
this chapter.

Model-driven Software engineering

In the realm of software engineering, we are 
witnessing an increasing momentum towards the 
use of models for developing software systems. 
This trend commonly referred to as model-driven 
software engineering, emphasizes on models as 
the primary artifacts in all phases of software 



  ���

Model-Driven Software Refactoring

development, from requirements analysis over 
system design to implementation, deployment, 
verification and validation. This uniform use 
of models promises to cope with the intrinsic 
complexity of software-intensive systems by 
raising the level of abstraction, and by hiding 
the accidental complexity of the underlying 
technology as much as possible (Brooks, 1995). 
The use of models thus opens up new possibilities 
for creating, analyzing, manipulating and 
formally reasoning about systems at a high level 
of abstraction.

To reap all the benefits of model-driven 
engineering, it is essential to install a sophisticated 
mechanism of model transformation, that enables 
a wide range of different automated activities such 
as translation of models (expressed in different 
modeling languages), generating code from 
models, model refinement, model synthesis or 
model extraction, model restructuring etc. To 
achieve this, languages, formalisms, techniques 
and tools that support model transformation are 
needed. More importantly, their impact on the 
quality and semantics of models needs to be 
better understood.

program refactoring 

Refactoring is a well-known technique to improve 
the quality of software. Martin Fowler (1999) de-
fines it as “A change made to the internal structure 
of software to make it easier to understand and 
cheaper to modify without changing its observ-
able behavior”.

The research topic of refactoring has been 
studied extensively at the level of programs (i.e., 
source code). As a result, all major integrated 
software development environments provide 
some kind of automated support for program 
refactoring.

As a simple example of a program refactoring, 
consider the refactoring Extract Method, one of 
the more than 60 refactorings proposed by Fowler. 
Essentially, it is applied to a method in which part 

of the method body needs to be extracted into a 
new method that will be called by the original one. 
The situation before this program refactoring on 
a piece of Java source code is shown in Figure 
1, the situation after is shown in Figure 2. The 
code lines that differ between both versions are 
marked with an asterisk.

For program refactoring, a wide variety of 
formalisms has been proposed to gain a deeper 
understanding, and to allow formal analysis. 
One of these formalisms is graph transformation 
theory (Mens et al., 2005). We mention it here 
explicitly, as we will show later in this chapter how 
this formalism can be applied to support model 
refactoring as well. It is, however, not our goal 
to provide a detailed overview of existing work 
on program refactoring here. For the interested 
reader, we refer to a detailed survey of the state-of-
the-art in this domain (Mens & Tourwé, 2004).

Model-driven Software refactoring

A natural next step seems to explore how the idea 
of refactoring may be applied in a model-driven 
software development context. We will refer to this 
combination as model-driven software refactor-
ing and we will explore the ramifications of this 
synergy in the current chapter.

One of the straightforward ways to address 
refactoring in a model-driven context is by 
raising refactorings to the level of models, thereby 
introducing the notion of model refactoring, which 
is a specific kind of model transformation that 
allows us to improve the structure of the model 
while preserving its quality characteristics. To 
the best of our knowledge, Sunyé et al. (2001) 
were the first to apply the idea of refactoring 
to models expressed in the Unified Modeling 
Language (UML).

A simple yet illustrative example of a UML 
model refactoring is shown in Figure 3. It depicts a 
class model in which two classes having attributes 
of the same type have been identified. The model 
refactoring consists of removing the redundancy 



���  

Model-Driven Software Refactoring

  protected LectureVO[] handleFindLecture
     (java.lang.String title, domain.Weekday day, domain.Time time)
     throws java.lang.Exception
*  { SearchCriteria c = new SearchCriteria();
*    c.setDay(day);
*    c.setTitle(title);
*    c.setTime(time);
     Collection coll =
      getLectureDao().findLecture(LectureDao.TRANSFORM _ LECTUREVO,c);
     LectureVO[] lectures = new LectureVO[coll.size()];
     return (LectureVO[])coll.toArray(lectures); }

Figure	1.	Java	source	code	example	before	applying	the	Extract	Method	program	refactoring	(©2007	
Tom	Mens,	UMH.	Used	with	permission)

 protected LectureVO[] handleFindLecture
     (java.lang.String title, domain.Weekday day, domain.Time time)
     throws java.lang.Exception
*  { SearchCriteria c = this.initialise(title,day,time);
     Collection coll =
      getLectureDao().findLecture(LectureDao.TRANSFORM _ LECTUREVO,c);
     LectureVO[] lectures = new LectureVO[coll.size()];
     return (LectureVO[])coll.toArray(lectures); }
* protected SearchCriteria initialise
*    (java.lang.String title, domain.Weekday day, domain.Time time)
*    throws java.lang.Exception
* { SearchCriteria c = new SearchCriteria();
*    c.setDay(day);
*    c.setTitle(title);
*    c.setTime(time);
*    return c; }

Figure	2.	Java	example	after	applying	the	Extract	Method	refactoring	(©2007	Tom	Mens,	UMH.	Used	
with	permission)

by introducing an abstract super class of both 
classes, and moving up the attribute to this new 
super class.

The above example may look simple, but 
it should be seen in a more general context, 
which makes dealing with model refactorings 
considerable less trivial. Consider the scenario 
depicted in Figure 4. It clearly illustrates the 
potentially high impact a simple refactoring may 
have on the software system. We assume that a 
model is built up from many different views, 
typically using a variety of different diagrammatic 

notations (e.g., class diagrams, state diagrams, 
use case diagrams, interaction diagrams, activity 
diagrams, and many more). We also assume that 
the model is used to generate code, while certain 
fragments of the code still need to be implemented 
manually. Whenever we make a change (in this 
case, a refactoring) to a single view or diagram 
in the model (step 1 in Figure 4), it is likely that 
we need to synchronize all related views, in order 
to avoid them becoming inconsistent (step 2 in 
Figure 4) (Grundy et al., 1998). Next, since the 
model has been changed, part of the code will 



  ���

Model-Driven Software Refactoring

Figure	3.	Example	of	a	model	refactoring	on	UML	class	diagrams	(©2007	Tom	Mens,	UMH.	Used	with	
permission)

Figure	 4.	 A	 scenario	 for	 model-driven	 software	 refactoring	 (©2007	 Tom	Mens,	 UMH.	 Used	 with	
permission)

need to be regenerated (step 3 in Figure 4). Finally, 
the manually written code that depends on this 
generated code will need to be adapted as well 
(step 4 in Figure 4).

State-of-the-art in Model 
refactoring

At the level of models, research on refactoring 
is still in its infancy. Little research has been 
performed on model refactoring, and many open 
questions remain that are worthy of further in-



���  

Model-Driven Software Refactoring

vestigation. For example, the relation between 
model refactoring and its effect on the model 
quality remains a largely unanswered question. 
From a practical point of view, only very few tools 
provide integrated support for model refactoring. 
Also, the types of models for which refactoring 
is supported is very limited.

In research literature, mainly UML models 
are considered as suitable candidates for model 
refactoring (Sunyé et al., 2001; Astels, 2002; 
Boger et al., 2002). In particular, refactoring 
of class models (e.g., UML class diagrams) has 
been investigated by various researchers. The 
advantage of such models is that they provide 
a representation that is relatively close to the 
way object-oriented programs are structured. 
As such, many of the refactorings known from 
object-oriented programming (Fowler, 1999) can 
be ported to UML class diagrams as well. For 
example, the refactoring shown in Figure 1 can 
also be considered as a class diagram refactoring, 
since a new method is created that will be visible in 
a class diagram. Of course, additional techniques 
are needed in order to ensure traceability and 
consistency between class diagrams and their 
corresponding source code when applying class 
diagram refactorings (Bouden, 2006).

When it comes to reasoning about the 
behavior preservation properties of class 
diagram refactorings, however, things become 
more difficult for various reasons. The main 
problem is that class diagrams provide an 
essentially structural description of the software 
architecture. Hence, behavioral information has 
to be expressed in a different way, either by 
resorting to OCL constraints, behavioral models 
(e.g., state diagrams or interaction diagrams), or 
by program code. 

With respect to refactoring of behavioral 
models, not much work is available. We are 
only aware of a few approaches that address the 
problem of refactoring state diagrams, and try 
to prove their behavior preservation properties 
in a formal way. Van Kempen et al. (2005) use a 

formalism based on CSP to describe statechart 
refactorings, and show how this formalism can 
be used to verify that a refactoring effectively 
preserves behavior. Pretschner and Prenninger 
(2006) provide a formal approach for refactoring 
state machines based on logical predicates and 
tables. Integrating these ideas into tool support is 
left for future work. Apart from some limitations 
imposed by the formalisms used, a more general 
problem is that there is still no generally accepted 
formal semantics for (UML) state diagrams. Many 
different interpretations exist and, obviously, this 
has an important effect on how the behavior is 
formally defined.

Though research on model refactoring is still in 
its infancy, a number of formalisms have already 
been proposed to understand and explore model 
refactoring. Most of these approaches suggest 
expressing model refactoring in a declarative 
way. Van Der Straeten et al. (2004) propose 
to use description logics; Van Der Straeten & 
D’Hondt (2006) suggest the use of a forward-
chaining logic reasoning engine to support 
composite model refactorings. Gheyi et al. (2005) 
specify model refactorings using Alloy, a formal 
object-oriented modeling language. They use its 
formal verification system to specify and prove 
the soundness of the transformations. Biermann 
et al. (2006) and Mens et al. (2007) use graph 
transformation theory as an underlying foundation 
for specifying model refactoring, and rely on the 
formal properties to reason about and analyze 
these refactorings.

An important aspect of refactoring in a 
model-driven software development context 
that is typically neglected in research literature 
is how it interferes with code generation. Most 
contemporary tools for model-driven software 
development allow generating a substantial 
part of the source code automatically from the 
model, while other parts still need to be specified 
manually (see Figure 4). This introduces the need 
to synchronize between models and source code 
when either one of them changes. How such 



  ���

Model-Driven Software Refactoring

synchronization can be achieved in presence 
of automated refactoring support is a question 
that has not been addressed in detail in research 
literature. If a model is being refactored, how 
should the corresponding source code be modified 
accordingly? Vice versa, if source code is being 
refactored, how will the models be affected? These 
are the kind of questions that will be addressed 
in this chapter. To this extent, we will report on 
our experience with AndroMDA, a state-of-the-
art tool for model-driven software development 
based on UML.

Motivating exaMple: 
Model-driven developMent 
with androMda

This section presents the model-driven devel-
opment of a small web application for a simple 
university calendar. We will develop this calendar 
in two iteration steps using AndroMDA1. First the 
underlying data model is designed and a web ap-
plication with a default web presentation is gener-
ated. Second, application-specific services and the 
web presentation are developed with AndroMDA. 
This means that use cases are defined and refined 
by activity diagrams that can use controllers and 
services. The development is not hundred percent 
model-driven, since service and controller bodies 
have to be coded by hand.

For both iteration steps, we first present the 
UML model using the AndroMDA profile and then 
discuss a refactoring step useful in that context.

getting Started with developing a 
university calendar using 
androMda

One of the main tools for model-driven software 
development is AndroMDA. Its transformation 
engine is structured by cartridges. A number of 
pre-defined cartridges is already available real-
izing the generation of web applications from 

UML models. We illustrate model-driven software 
development based on AndroMDA by the example 
of a very simple university calendar.

In principle, the model-driven development 
process of AndroMDA is based on use cases. But in 
this initial example, we start with an even simpler 
way of using AndroMDA. We just design the 
underlying data model and AndroMDA generates 
a complete web application with a default web 
presentation from that.

A web application generated by AndroMDA 
has a three-tier architecture consisting of a service 
layer building up on a data base, controllers using 
the services defined, and a web presentation. The 
underlying data model, services and controllers are 
defined by an UML class diagram. Additionally, 
visual object classes are modeled, which are used 
for presenting data to the user, decoupled from 
the internal data model.

An example of an AndroMDA class diagram is 
shown in Figure 5. It depicts a simple data model 
for a university calendar. We can observe that the 
basic entities are Rooms  that can be occupied 
for giving a Lecture  or a Seminar . Based 
on this class diagram, AndroMDA can generate 
a default web interface for managing lectures, 
seminars and rooms. Users can add and delete 
instances, change attribute values and perform 
searches. The webpage for managing lectures is 
shown in Figure 6.

The UML profiles used in connection with 
AndroMDA can be considered as a domain-
specific language, dedicated to the generation 
of web applications. This is achieved by giving 
a specific semantics to UML models by relying 
on that dedicated UML profiles. They extend the 
semantics of the UML by introducing specific 
stereotypes, to which additional constraints 
and tagged values are attached. For example, 
the stereotype « E n t i t y »  attached to 
a class is used to represent a data entity to 
be stored in a database. If, additionally, the 
« M a n a g e a b l e »  stereotype is used, it 
causes AndroMDA to generate a default web 



���  

Model-Driven Software Refactoring

Figure	 5.	 Data	 model	 for	 a	 simple	 university	 calendar	 (©2007	 Tom	 Mens,	 UMH.	 Used	 with	
permission)

Figure	6.	Webpage	for	managing	lectures	(©2007	Tom	Mens,	UMH.	Used	with	permission)



  ���

Model-Driven Software Refactoring

presentation for managing the corresponding 
entities. The use of such manageable entities has 
been illustrated in Figure 5.

first refactoring of the university 
calendar

Due to their compactness, large parts of An-
droMDA UML models are used for generating 
user interfaces. Thus, model refactorings in this 
context are likely to cause changes in user inter-
faces as well. Following Fowler (1999) in a strict 
sense, refactorings should not change the user 
interface of software, since they are supposed to 
“preserve the observable behavior”. This strict 

interpretation of refactoring, however, makes 
little sense if applied in a model-driven software 
development context, due to the side-effects that 
model refactorings may cause on the generated 
code, especially user interfaces. Thus, Fowler’s 
definition of refactoring should be interpreted 
in a more liberal way, in the sense that it should 
not change the functionality offered by software. 
Modifications to the usability of the software 
or to other non-functional properties (such as 
interoperability, portability, reusability, adapt-
ability and the like) should be allowed, if the goal 
of these modifications is to improve the software 
quality. 

Figure	 7.	Data	model	 for	 a	 simple	 university	 calendar	 after	 having	 applied	 the	 Pull	Up	Attribute	
refactoring	(©2007	Tom	Mens,	UMH.	Used	with	permission)



���  

Model-Driven Software Refactoring

In the remainder of this section we will show 
a concrete refactoring on our university calendar 
case study to clarify what refactoring can mean in 
the context of model-driven development. 

Since « E n t i t y »  classes L e c t u r e  and 
S e m i n a r  contain several attributes in common 
(see Figure 5), it would make sense to refactor this 
data model by adding a new abstract superclass, 
called Course, and pulling up all common attributes 
to this new class. The result of this refactoring is 
shown in Figure 7.

Note that tagged value @ a n d r o m d a .
h i b e r n a t e . i n h e r i t a n c e  has to 
be set to i n t e r f a c e  for restricting the 
management facilities for courses to searching 
functionalities only.

When regenerating a web application from 
the refactored data model in Figure 7, most of 
the user interface remains unaltered. But a new 
webpage will appear for managing courses, as 

shown in Figure 8. Because of the tagged value 
attached to Course, this webpage only offers search 
functionality, but does not allow the addition or 
deletion of course instances.

In the example explained in section 3.1, all 
application code is generated from the model. 
Thus, refactoring the model alone appears to 
be sufficient to refactor the whole software 
application. However, it should be noted that, due 
to the refactoring applied to the model, the behavior 
has been changed slightly, since AndroMDA has 
generated a new kind of webpage.

Developing Application-Specific Use 
cases with androMda

In this section, we will consider additional ste-
reotypes and tagged values in the AndroMDA 
UML profile, but only as far as we need them to 
develop our example. For a complete overview 

Figure	8.	Webpage	for	managing	courses	(©2007	Tom	Mens,	UMH.	Used	with	permission)



  ���

Model-Driven Software Refactoring

of all available stereotypes and how to use them 
we refer to the AndroMDA website. 

«Service»  is a class stereotype used 
to specify application-specific services. These 
services typically use one or more entities that 
store the data used by the services. For the model-
driven development of a web presentation, we 
extend the model by use cases that are refined 
by activity diagrams. This model part describes 
the web presentation and its usage of controllers 
based on services. The development is not hundred 
percent model-driven, since service and controller 
bodies have to be coded by hand.

To illustrate the development of specific web 
applications we reconsider the university calendar 
and develop a specific use case diagram for lectures 
(see Figure 9). Use case Search lectures has two 
stereotypes being « F r o n t E n d U s e C a s e » , 
which determines the use case to be visible 
to the user in form of a webpage, and 
« F r o n t E n d A p p l i c a t i o n » , which 
defines this use case to be the starting one.

Use case Search lectures is refined 
by an activity diagram that supports a search 
activity and the presentation of f iltered 
lectures (see Figure 10). Activity Search 
lectures is an internal activity that calls the 
controller method s h o w L e c t u r e s ( ) . 
Activity P r e s e n t  l e c t u r e s  has 
stereotype « F r o n t E n d V i e w »  implying 
that this activity models a webpage. Both 

activities are connected by two transitions 
arranged in a cyclic way. After calling method 
s h o w L e c t u r e s ( )  the result is transferred 
to the webpage by signal show , which has the 
resulting value object array as parameter. Signal 
search  and its parameters are used to model 
the web form for filtering the lectures. 

The class model in Figure 5 is again used as 
data model. To show lectures, a special value object 
class for lectures is used, which is specified by 
stereotype « V a l u e O b j e c t »  (see Figure 11). 
This makes sense in terms of encapsulation (think 
of security, extensibility, etc.) and corresponds 
to the layered model-view-controller approach. 
Necessary information of the business layer is 
packaged into so-called “value objects”, which 
are used for the transfer to the presentation layer. 
Passing real entity objects to the client may pose 
a security risk. Do you want the client application 
to have access to the salary information inside 
the Lecturer entity?

An attribute r o o m  of type S t r i n g  
was added to LectureVO in order to allow 
a connection to the unique number  of the 
Room class. Since value objects are used at the 
presentation layer, the types used are primitive 
ones; entity types are not used in that layer. A 
dependency relation between an entity and a value 
object is used to generate translation methods 
from the entity to its corresponding value object. 
Moreover, search criteria can be defined by a class 
of stereotype «Criteria» .

Figure	 9.	 Example	 of	 a	 use	 case	 model	 in	 AndroMDA	 (©2007	 Tom	 Mens,	 UMH.	 Used	 with	
permission)



��0  

Model-Driven Software Refactoring

Figure	10.	Example	of	an	activity	diagram	specifying	the	Search	lectures	use	case	(©2007	Tom	Mens,	
UMH.	Used	with	permission)

Figure	11.		Value	Object	and	Criteria	classes	(©2007	Tom	Mens,	UMH.	Used	with	permission)



  ���

Model-Driven Software Refactoring

Method s h o w L e c t u r e s ( )  that is called 
from activity S e a r c h  l e c t u r e s  in Figure 
10, is defined in L e c t u r e C o n t r o l l e r , a 
class that relies on class L e c t u r e S e r v i c e . 
This class is stereotyped as « S e r v i c e »  
and relies on entities Lecture  and Room  
(see Figure 12). However, the bodies of service 
and controller methods cannot be modeled, 
but have to be coded directly by hand. For 
example, the implementation of service method 
findLecture()is shown in Figure 1. Because of 
special naming conventions of AndroMDA it has 
to be named handleFindLecture().

The web application generated by AndroMDA 
from the complete model given in the previous 
figures (together with manually written code 
parts) produces the webpage shown in Figure 13. 
Please note that the names used as page title, in 
the search form and for the buttons are generated 
from the model.

further refactoring of the university 
calendar

As a second model refactoring2, we will discuss 
the renaming of attribute t i m e  to s t a r t i m e 
based on the model given in Section 3.3. We will 
argue that this refactoring affects the usability of 
the generated software. The refactoring is primar-
ily performed on entity class Lecture , but 
since there is a value object class LectureVO  
for that entity, the corresponding value class at-
tribute time  has to be renamed into start -
time , too (see Figure 14). The same is true in 
S e a r c h C r i t e r i a . Thus, the standard 
refactoring method Rename Attribute becomes 
domain-specific and affects several classes in 
this domain-specific context.

Since the value object attribute is not used 
directly in other parts of the model, the model 
does not have to be updated any further. But the 

Figure	12.	Service	and	controller	classes	(©2007	Tom	Mens,	UMH.	Used	with	permission)



���  

Model-Driven Software Refactoring

hand-written code (given in Figure 1) is affected, 
since accessor method s e t T i m e ( )  is no 
longer available after regenerating the code. 
Thus, it has to be renamed as well, by calling 
method setStarttime()  instead. After 
having performed this refactoring, the webpage 
for searching lectures has been changed slightly. 
As a result, the usability is affected, though not 
dramatically, since the column named “Time” of 
the presented table presented has changed into 
“Starttime” (see Figure 15).

Based on the analysis of both model 
refactorings carried out in this section, we can 
derive the following important preliminary 
conclusions:

•	 Generic model refactorings need to be 
adapted and refined in order to work properly 
in a domain-specific modeling language.

•	 Model refactorings may also affect, and 
require changes to the hand-written source 
code.

•	 Model refactorings may change external 
qualities as perceived by the user, such as 
usability aspects.

challengeS in Model-driven 
Software refactoring

In this section, we will discuss some important 
challenges in model refactoring that have to do 
with the relation between model refactoring and 
model quality. It is not our ambition to solve all 
these challenges in the current chapter. In Sec-
tions 5 and 6 we will therefore only focus on those 
challenges that we consider being most urgent 
and most important and we will exemplify our 

Figure	13.	Webpage	for	searching	lectures	(©2007	Tom	Mens,	UMH.	Used	with	permission)



  ���

Model-Driven Software Refactoring

Figure	 14.	 Value	 Object	 and	 Entity	 classes	 after	 renaming	 (©2007	 Tom	 Mens,	 UMH.	 Used	 with	
permission)

Figure	 15.	 Webpage	 for	 searching	 lectures	 after	 renaming	 (©2007	 Tom	 Mens,	 UMH.	 Used	 with	
permission)



���  

Model-Driven Software Refactoring

proposed solution using the case study introduced 
in the previous section.

Model Quality

A first challenge is to provide a precise defini-
tion of model quality. A model can have many 
different non-functional properties or quality 
characteristics that may be desirable (some ex-
amples are: usability, readability, performance 
and adaptability). It remains an open challenge 
to identify which qualities are necessary and suf-
ficient for which type of stakeholder, as well as 
how to specify these qualities formally, and how 
to relate them to one another.

Since the main goal of refactoring is to improve 
certain aspects of the software quality, we need 
means to assess this quality at the model level 
in an objective way. On the one hand, this will 
allow software modelers to identify which parts 
of the model contain symptoms of poor quality, 
and are hence potential candidates for model 
refactoring. On the other hand, quality assessment 
techniques can be used to verify to which extent 
model refactorings actually improve the model 
quality.

One of the ways to assess model quality is by 
resorting to what we will call model smells. These 
are the model-level equivalent of bad smells, a 
term originally coined by Kent Beck in (Fowler, 
1999) to refer to structures in the code that suggest 
opportunities for refactoring. Typical model 
smells have to do with redundancies, ambiguities, 
inconsistencies, incompleteness, non-adherence 
to design conventions or standards, abuse of the 
modeling notation, and so on. A challenge here is 
to come up with a comprehensive and commonly 
accepted list of model smells, as well as tool 
support to detect such smells in an automated 
way. What is also needed is a good understanding 
of the relation between model smells and model 
refactoring, in order to be able to suggest, for any 
given model smell, appropriate model refactorings 
that can remove this smell.

A second way to assess and control model 
quality is by resorting to model metrics. In analogy 
with software metrics (Fenton & Pfleeger, 1997) 
they are used to measure and quantify desirable 
aspects of models. It remains an open question, 
however, how to define model metrics in such a 
way that they correlate well with external model 
quality characteristics. Another important issue 
is to explore the relation between model metrics 
and model refactoring, and in particular to assess 
to which extent model refactorings affect metric 
values. These issues have been addressed by 
(Demeyer et al., 2000; Du Bois, 2006; Tahvildari 
& Kontogiannis, 2004) though mainly at code 
level.

A final way to improve model quality is by 
introducing design patterns, which are proven 
solutions to recurring problems (Gamma et al., 
1994). At code level, Kerievsky (2004) explored 
the relation between refactorings and design 
patterns. It remains to be seen how similar results 
may be achieved at the level of models.

Kamthan (2004) provided a quality framework 
for UML models. It systematically studies the 
quality goals, how to assess them, as well as 
techniques for improving the quality, similar to 
the ones discussed above.

Model Synchronization

With respect to model refactoring, one of the key 
questions is how it actually differs from program 
refactoring. Can the same ideas, techniques and 
even tools used for program refactoring be ported 
to the level of models? If not, what is it precisely 
that makes them different?

One answer to this question is that models 
are typically built up from different views, using 
different types of diagrams, that all need to be 
kept consistent. This in contrast to programs, that 
are often (though not always) expressed within a 
single programming language.3

Perhaps a more important difference is 
that models are abstract artifacts whose main 



  ���

Model-Driven Software Refactoring

purpose is to facilitate software development by 
generating a large portion of the source code that 
would otherwise need to be written manually. 
However, full code generation is unfeasible 
in practice for most application domains. The 
additional challenge therefore consists in the need 
to synchronize and maintain consistency between 
models and their corresponding program code, 
especially when part of this program code has been 
specified or modified manually. In the context of 
model transformation, this implies that automated 
model refactorings (or other transformations) 
may need to be supplemented with code-level 
transformations in order to ensure overall 
consistency. Vice versa, program refactorings 
may need to be supplemented with model-level 
transformations to ensure their consistency.

Though no general solutions exist yet, the 
problem of model synchronization and model 
consistency maintenance is well known in 
literature. For example, (Van Gorp et al., 2003) 
discuss the problem of keeping the UML models 
consistent with their corresponding program 
code. (Correa & Werner, 2004) explain how 
OCL constraints need to be kept in sync when 
the class diagrams are refactored and vice versa. 
Egyed (2006) proposes an incremental approach to 
model consistency checking that scales up to large 
industrial models. Liu et al. (2002) and Van Der 
Straeten & D’Hondt (2006) rely on a rule-based 
approach for detecting and resolving UML model 
inconsistencies, respectively. Van Der Straeten et 
al. (2003) bear on the formalism of description 
logics to achieve the same goal. Mens et al. 
(2006) propose to resolve inconsistencies in an 
incremental fashion by relying on the formalism of 
graph transformation. Grundy et al. (1998) report 
on how tool support can be provided for managing 
inconsistencies in a software system composed 
of multiple views. Goedicke et al. (1999) address 
the same problem by relying on the formalism of 
distributed graph transformation.

behavior preservation

Another important challenge of model refactor-
ing has to do with behavior preservation. By 
definition, a model refactoring is supposed to 
preserve the observable behavior of the model it 
is transforming. In order to achieve this, we need 
a precise definition of “behavior” in general, and 
for models in particular. In addition, we need 
formalisms that allow us to specify behavioral 
invariants, i.e., properties that need to be preserved 
by the refactoring. The formalism should then 
verify which of these invariants are preserved by 
the model refactoring. Although formal research 
on behavior preservation is still in its infancy, in 
Section 2 we already pointed to a few approaches 
that carried out initial research in this direction. 
Another approach that is worthwhile mentioning 
is the work by Gheyi et al. (2005). They suggest 
specifying model refactorings in Alloy, an ob-
ject-oriented modeling language used for formal 
specification. It can be used to prove semantics-
preserving properties of model refactorings.

A more pragmatic way to ensure that the 
behavior remains preserved by a refactoring is by 
resorting to testing techniques. Many researchers 
have looked at how to combine the ideas of testing 
with model-driven engineering (Brottier et al., 
2006; Mottu et al., 2006). Test-driven development 
is suggested by the agile methods community as 
good practice for writing high-quality software. 
In combination with refactoring, it implies that 
before and after each refactoring step, tests are 
executed to ensure that the behavior remains 
unaltered.

Domain-Specific Modeling

A final challenge is the need to define model 
refactorings in domain-specific extensions of 
the UML (such as AndroMDA), or even in dedi-
cated domain-specific modeling languages. These 
refactorings should be expressible in a generic yet 
customizable way. Indeed, given the large number 



���  

Model-Driven Software Refactoring

of very diverse domain-specific languages, it is 
not feasible, nor desirable, to develop dedicated 
tools for all of them from scratch.

Zhang et al. (2004) therefore proposed a 
generic model transformation engine and used 
it to specify refactorings for domain-specific 
models. Their tool is implemented in the Generic 
Modeling Environment (GME), a UML-based 
meta-modeling environment. A model refactoring 
browser has been implemented as a GME plug-in. 
Their tool enables the automation and user-defined 
customization of model refactorings using ECL 
(Embedded Constraint Language), an extension 
of the declarative OCL language with imperative 
constructs to support model transformation. As an 
example of the expressiveness of their approach, 
they illustrated how it can be applied to class 
diagrams, state diagrams and Petri nets. The 
solution that we will explore later in this chapter is 
related, in the sense that we will propose a generic 
approach for UML-based model refactoring based 
on graph transformation concepts.

In general, the main challenge remains 
to determine, for a given domain-specific 
modeling language, which transformations can 
be considered as meaningful refactorings. On the 
one hand, they will need to preserve some notion 
of “behavior” and, on the other hand, they need 
to improve some quality aspect. These notions of 
behavior and quality can differ widely depending 
on the domain under study. For domains that do 
not refer to software (e.g., business domains, 
technical domains, etc.) it is much harder to come 
to a meaningful definition of behavior, implying 
that the notion of refactoring would become much 
harder to define in that context.

analyzing Model refactorings

Even more advanced support for model refactor-
ings can be envisaged if we have a precise means 
to analyze and understand the relationships be-
tween refactorings. This will enable us to build up 
complex refactorings from simpler ones; to detect 

whether refactorings are mutually exclusive, in 
the sense that they are not jointly applicable and 
to analyze causal dependencies between refac-
torings. These techniques have been explored 
in detail by Mens et al. (2007), and promise to 
offer more guidance to the developer on what 
is the most appropriate refactoring to apply in 
which context. A short introduction to this line 
of research will be given in Section 6.

Motivating exaMple reviSited

In Section 3 two concrete model refactorings have 
been applied to AndroMDA models: pulling up 
an attribute into a new superclass and renaming 
an entity. In this section, we explore some more 
refactorings for AndroMDA models.4 We start by 
considering a set of “standard” model refactor-
ings widely used to restructure class diagrams. 
As it will turn out, most of these refactorings 
have side-effects due to constraints imposed by 
AndroMDA’s code generator. Therefore, these 
model refactorings need to be customized to take 
into account more domain-specific information. 
Next to these “standard” refactorings, we will also 
discuss entirely new “domain-specific” refactor-
ings for AndroMDA models.

In the following, we will take a slightly broader 
view, and we discuss three categories of model 
transformations as follows:

(1)  model refactorings that do not affect the 
user interface at all;

(2)  model refactorings that do affect the user 
interface with respect to the usability, but 
that do not affect what the user can do with 
the application;

(3)  model transformations that also affect the 
actual behavior/functionality of the applica-
tion.

The latter category does not contain 
refactorings in the strict sense of the word, but it 



  ���

Model-Driven Software Refactoring

is nevertheless useful and necessary to deal with 
them. For example, it could be the case that what 
is perceived as a normal refactoring will actually 
extend the behavior as a side effect of the code 
generation process. 

pull up attribute

When pulling up an attribute to a super class, as 
explained in Section 3.2, the code generator will 
generate a new webpage corresponding to this 
super class, with search functionality for each 
manageable entity. Thus, this model transforma-
tion belongs to category (3). 

rename

The refactoring example in Section 3.4 is con-
cerned with renaming an attribute of an entity 
class. This refactoring affects the user interface, 
if the entity is manageable. In this case, one of 
the columns in the table of the webpage has been 
renamed. Furthermore, in case that the entity class 
comes along with a value object class that is de-
rived from the entity class, a renaming of an entity 
attribute has to be accompanied by a renaming 
of the corresponding attribute in its value object 
class. If, in addition, this value object attribute is 
used in some activity diagram, the name has to 
be adapted there as well. Furthermore, this value 
object attribute can occur in hand-written code, 
which implies that renaming has to be performed 
also in that part of the code.

A similar situation would arise if we renamed 
the entity class itself, as it would be reflected by a 
change in the title of the corresponding webpage 
for manageable entities. In case that the renamed 
entity class comes along with a value object class 
whose name is derived from the entity class name 
(e.g., in Figure 14, “LectureVO”  is derived 
from “ L e c t u r e ”  by suffixing “ V O ” ), 
renaming has to be accompanied by a renaming of 
its corresponding value object class. Furthermore, 
the renaming has to be propagated as discussed 

for attributes. In all cases presented, although the 
user interface changes slightly, the functionality 
of the application is not affected. Hence, these 
refactorings belong to category (2).

Similar to entities, use cases can be renamed 
as well. This might have an effect on activity 
diagrams, since AndroMDA supports the 
connection of several activity diagrams via use 
case names. For example, an end activity of one 
activity diagram may be named as a use case, 
which means that the control flow would continue 
at the start activity of the corresponding activity 
diagram. In the generated web applications, use 
cases are listed on the right-hand side of each 
webpage. Again, a renamed use case would 
change the usability of the web application, but 
not its functionality, so the refactoring belongs 
to category (2).

In summary, we see that renaming in 
AndroMDA may have a high impact. Due to 
the fact that the code generator automatically 
produces new types of elements based on the 
names of existing elements, a seemingly simple 
change (in casu renaming) will propagate to many 
different places. A tool that would implement 
this model refactoring would therefore need to 
take these issues into account to ensure that the 
renaming does not lead to an inconsistent model 
or code. Furthermore, because the changes affect 
hand-written code, the refactoring may require a 
certain amount of user interaction.

create value object

A domain-specific refactoring for AndroMDA 
models is the creation of value objects for entities. 
An example is visually represented in Figure 16. 
Given a class with stereotype «Entity»  (for 
example, class Lecture ), a new class with 
stereotype «Value Object»  is created 
and the entity class becomes dependent on this 
new class. The value object class is named after 
its entity class followed by suffix “VO”  (for 
example, value object class LectureVO ). 



���  

Model-Driven Software Refactoring

The entity attributes are copied to the value object 
class, keeping names and types, by default. If 
internal information should be hidden from the 
client, the corresponding attribute would not be 
copied. This refactoring belongs to category (1) 
and does not affect any other part of the model, 
since the value object class is only created without 
being used yet.

Merge Services

Another domain-specific model refactoring is 
Merge Services. It takes two «Service» 
classes and merges them as well as all their in-
coming and outgoing dependencies. Consider the 
following example where both a L e c t u r S e r -
vice  and RoomService  exist (see Figure 
17). If we do not consider remote services and have 
only one controller class, it does not make sense to 
have two service classes. Therefore, both should 

be merged into LectureService . After 
refactoring, the controller class will have only one 
outgoing dependency. As a result, the hand-written 
code for the controller method will be affected. 
Nevertheless, this restructuring will not modify 
the external behavior, so users of the generated 
web application will not notice any change. Hence, 
this refactoring falls into category (1).

Split activity

The front-end of a web application is modeled by 
use cases and activity diagrams. A refactoring 
like the splitting of activities into two consecutive 
ones, linked by a transition, can directly affect 
the web presentation. If the original activity was 
a «FrontEndView» , the corresponding 
webpage is split into two pages. If an internal 
activity was split, this refactoring has to be ac-
companied by a splitting of the corresponding 

Figure	16.	Example	of	the	domain-specific	model	refactoring	CreateValueObject	(©2007	Tom	Mens,	
UMH.	Used	with	permission)



  ���

Model-Driven Software Refactoring

controller method called. In the first case, the 
refactoring belongs to category (2), in the second 
case it belongs to category (1).

extract Method

Extract Method is a refactoring from the standard 
catalogue established by Fowler. In the context of 
model-driven development, and AndroMDA in 
particular, it can have new effects. Consider the 
scenario in Figure 19. First, we perform the extract 
method refactoring to the hand-written code, as 
illustrated in Figure 2 where a method, called 
initialise() , is extracted from a given 
service method handleFindLecture . 
To reflect this change at model level, we modify 
the class diagram by adding the extracted method 
to the class LectureService  as well (see 
Figure 18). Consequently, the code generator 
will generate extra code for this method, which 

requires the manually written code to be adapted 
to make it consistent again. In particular, method 
initialise() needs to be renamed into 
h a n d l e I n i t i a l i s e ( ) , because this 
is the convention used by the code generator: 
all service methods need to be prefixed with 
“handle”  at source code level. We can use 
this knowledge to constrain the Extract Method 
refactoring to make it domain-specific: When 
extracting a method, the name that the user needs 
to provide for the extracted method needs to fol-
low the naming conventions imposed by the code 
generator. Not doing so will cause the precondition 
of the refactoring to fail.

The above scenario is generalized and 
visualized in Figure 19. It shows how a refactoring 
at source code level (step 1) may require 
synchronization of the corresponding model (step 
2) which, after regenerating the code (step 3) 
involves another modification to the hand-written 

Figure	17.	Service	classes	LectureService  and RoomService 	with	dependencies	(©2007	
Tom	Mens,	UMH.	Used	with	permission)



��0  

Model-Driven Software Refactoring

Figure 18. Changes to the class diagram as a result of applying the Extract Method program refactoring 
(see	Figure	2)	(©2007	Tom	Mens,	UMH.	Used	with	permission)

Figure	19.	Another	scenario	of	model-driven	software	refactoring,	initiated	by	a	refactoring	of	the	hand-
written	source	code	(©2007	Tom	Mens,	UMH.	Used	with	permission)



  ���

Model-Driven Software Refactoring

part of the code (step 4). The last step is not needed, 
if the user obeys the naming convention for the 
new method as discussed above.

Specifying and analyzing 
Model refactoringS

In Section 5, the important challenge of domain-
independent support for model refactoring was 
discussed. A possible formalism that can be 
used to specify and also analyze refactorings 
is the theory of graph transformation (Ehrig et 
al. 2006). Compared to other approaches it has 
a number of advantages: it allows one to specify 
program refactorings and model refactorings 
for various languages in a uniform and generic 
way, by representing the software artifact under 
consideration as a graph, and by specifying the 
refactorings as graph transformation rules. In ad-
dition, one can benefit from the formal properties 
of graph transformation theory to reason about 
refactoring in a formal way. For example, prop-

erties such as termination, composition, parallel 
dependencies, and sequential dependencies can 
be analyzed.

Since the Eclipse Modeling Framework (EMF) 
has become a key reference for model specification 
in the world of model-driven development, we 
rely our approach to model refactoring on EMF 
model transformation. This approach is presented 
in Section 6.1. To perform a formal analysis of 
EMF transformations we translate them to graph 
transformations, which is possible under certain 
circumstances. In Section 6.2, a conflict and 
dependency analysis of model refactorings is 
presented, assuming that the model refactorings 
are defined by graph transformation rules.

technical Solution

From a technical point of view, we will discuss 
how to implement and execute model refactorings. 
In particular, we will consider how to realize 
model refactoring within the Eclipse Modeling 
Framework (EMF). As a prerequisite, a specifi-

Figure	20.	Extract	of	AndroMDA	meta-model	as	EMF	model	 (©2007	Tom	Mens,	UMH.	Used	with	
permission)



���  

Model-Driven Software Refactoring

cation of the underlying modeling language is 
needed, which will be given by a meta-model. 
Figure 20 shows an EMF model that represents a 
simplified extract of the AndroMDA meta-model. 
Figure 21 shows an instance of this EMF model 
for the entity class Lecture  of the simple 
university calendar.

 Biermann et al. (2006) explain in detail 
how EMF model refactoring can be expressed 
by EMF model transformation. This kind of 
model transformation is specified by rules and is 
performed in-place, i.e., the current model is directly 
changed and not copied. Each transformation rule 
consists of a left-hand side (LHS), indicating the 
preconditions of the transformation, a right-hand 
side (RHS), formulating the post conditions of the 
transformations, and optional negative application 
conditions (NAC), defining forbidden structures 
that prevent application of the transformation 
rule. Objects that are checked as precondition 
preserved during a transformation are indicated 
by colors. Object nodes of the same color present 

one and the same object in different parts of a rule. 
While attributes in the LHS may have constant 
values or rule variables only, they are allowed to 
carry Java expressions in the RHS, too. The same 
variable at different places in the rules means the 
same value at all places. In the following, we use 
this approach to EMF model transformation for 
specifying UML model refactorings.

In Figure 22 and Figure 23, two model 
transformation rules are shown, which both are 
needed to perform refactoring Create Value 
Object explained in Figure 16 of Section 5. Rule 
CreateValueObjectClass is applied once, creating 
a new value object class and a dependency of the 
entity class on this new class. A class model with 
an entity class is needed to create a value object 
class and a dependency in between. The name of 
this new value object class is constructed by taking 
the entity class name e  and adding suffix “VO” . 
This rule is applied only if a value object class of 
this name has not already been created. 

Figure 21. Entity class Lecture 	with	attributes	in	abstract	syntax	as	EMF	model	instance	(©2007	
Tom	Mens,	UMH.	Used	with	permission)



  ���

Model-Driven Software Refactoring

Figure 22. EMF model transformation rule CreateValueObjectClass for refactoring method Create Value 
Object	(©2007	Tom	Mens,	UMH.	Used	with	permission)

Figure 23. EMF model transformation rule CreateValueObjectAttribute for refactoring method Create 
Value	Object	(©2007	Tom	Mens,	UMH.	Used	with	permission)



���  

Model-Driven Software Refactoring

Thereafter, rule CreateValueObjectAttribute is 
applied for each of the attributes of the entity class 
that should occur also in the value object class. 
Each time it is applied, it copies an attribute that 
has not yet been copied into the value object.

Applying rule CreateValueObjectClass once 
and rule CreateValueObjectAttribute as often as 
entity class Lecture  has attributes (i.e., four 
times in this case) to the EMF model instance in 
Figure 21, we obtain the EMF model instance in 
Figure 24. 

To open up the possibility for analyzing EMF 
model refactorings, we translate them to graph 
transformations. In this way, the formal analysis 
for graph transformation becomes available 
for EMF model refactoring. Although EMF 
models show a graph-like structure and can 
be transformed similarly to graphs, there is an 
important difference between both. In contrast 
to graphs, EMF models have a distinguished 
tree structure that is defined by the containment 
relation between their classes. Each class can be 

contained in at most one other class. Since an EMF 
model may have non-containment references in 
addition, the following question arises: What if 
a class, which is transitively contained in a root 
class, has non-containment references to other 
classes not transitively contained in some root 
class? In this case we consider the EMF model 
to be inconsistent. 

A transformation can invalidate an EMF model, 
if its rule deletes one or more objects. To ensure 
consistent transformations only, rules that delete 
objects or containment links or redirect them, have 
to be equipped with additional NACs.

formal Solution

As an illustration of how refactoring dependency 
analysis may increase the understanding of refac-
toring, consider the following scenario. Assume 
that a software developer wants to know which 
refactoring rules need to be applied in order to 
restructure a software system. Typically, many 

Figure 24. Entity class Lecture with value object class LectureVO in abstract syntax as EMF 
model	instance	(©2007	Tom	Mens,	UMH.	Used	with	permission)



  ���

Model-Driven Software Refactoring

different refactoring rules may be applicable, and 
it is not easy to find out what would be the most 
optimal way to apply these rules. Joint application 
of some refactoring rules may not be possible due 
to parallel dependencies between them, and some 
refactoring rules may sequentially depend on 
other ones. Graph transformation theory allows 
us to compute such dependencies by relying on 
the idea of critical pair analysis. The general-
purpose graph transformation tool AGG5 provides 
an algorithm implementing this analysis.

Figure 25 gives an example of all sequential 
dependencies that have been computed between 
a representative, yet simplified, subset of 
refactorings expressed as graph transformation 
rules. For example, we see that there is a sequential 
dependency between the CreateSuperclass 
refactoring and the PullUpVariable refactoring. 
CreateSuperclass inserts a new intermediate 
superclass (identified by node number 2) in 
between a class (node 1) and its old superclass 
(node 3). PullUpVariable moves a variable 
contained in a class up to its superclass. The 
dependency between both transformation rules, 
as computed by AGG, is visualized in Figure 26. 
The effect of applying CreateSuperclass before 

PullUpVariable will be that the variable will be 
pulled up to the newly introduced intermediate 
superclass instead of the old one. As such, there is 
a sequential dependency between both refactoring 
rules. It is even the case, in this example, that the 
application of both refactorings in a different order 
will produce a different result.

For a more detailed discussion of how 
critical pair analysis can be used to reason about 
refactoring dependencies, we refer to (Mens et 
al., 2007) that provides a detailed account on 
these issues.

related work

Various authors have proposed to use some kind 
of rule-based approach to specify model refactor-
ings, so it appears to be a natural choice:

Grunske et al. (2005) show an example 
in Fujaba6 of how model refactoring may be 
achieved using graph transformation based on 
story-driven modeling. Bottoni et al. (2005) use 
distributed graph transformation concepts to 
specify coherent refactorings of several software 
artifacts, especially UML models and Java 

Figure	25.	Sequential	dependencies	computed	by	AGG	for	a	representative	set	of	refactorings	implemented	
as	graph	transformations	(©2007	Tom	Mens,	UMH.	Used	with	permission)



���  

Model-Driven Software Refactoring

programs. Both kinds of artifacts are represented 
by their abstract syntax structures. Synchronized 
rules are defined to specify not only refactoring 
on models and programs separately, but to update 
also the correlation between different model parts 
and program. Synchronized rules are applied in 
parallel to keep coherence between model and 
program. Considering the special case where 
exactly two parts (one model diagram and the 
program or two model diagrams) are related, the 
triple graph grammar (TGG) approach could also 
be used (Schürr 1994; Königs & Schürr 2006). 
Originally formulated for graphs, TGGs are also 
defined and performed on the basis of MOF models 
by the modeling environment MOFLON7.

(Porres, 2003) uses the transformation 
language SMW to specify model refactorings. 
This script language is also rule-based and 
resembles the Object Constraint Language (OCL). 
SMW is oriented at OCL for querying patterns, 
but also provides basic operations to realize 
transformations. A prototypical refactoring tool 
for UML models has been implemented based 
on SMW.

Van Der Straeten & D’Hondt (2006) suggest 
using a rule-based approach to apply model 

refactorings, based on an underlying inconsistency 
detection and resolution mechanism implemented 
in the description logics engine RACER8.

We decided to specify model refactorings 
based on EMF model transformation, since EMF 
is developing to a standard format for models and 
to be compatible with upcoming UML CASE tools 
based on EMF. Moreover, our approach opens up 
the possibility for analyzing model refactorings, 
since EMF model transformations can be 
translated to algebraic graph transformations.

SuMMary

Software complexity is constantly increasing, and 
can only be tamed by raising the level of abstrac-
tion from code to models. With the model-driven 
software engineering paradigm, automated code 
generation techniques can be used to hide the ac-
cidental complexity of the underlying technology 
(Brooks, 1995). This enables one to deal with 
complex software in a systematic way.

To guarantee high-quality software, it is also 
important to address concerns such as readability, 
extensibility, reusability and usability of software. 

Figure	26.	Example	of	a	sequential	dependency	between	the	CreateSuperclass	and	the	PullUpVariable	
refactoring	(©2007	Tom	Mens,	UMH.	Used	with	permission)



  ���

Model-Driven Software Refactoring

Software refactoring is a proven technique to 
reach these goals in a structured, semi-automated 
manner. 

By integrating the process of refactoring into 
model-driven software development, we arrive at 
what we call model-driven software refactoring. 
Analogously to program refactoring, the first phase 
is to determine potential candidates for model 
refactorings, which can be obtained using “model 
smells” and “model metrics”. The second phase 
consists of applying the selected refactorings. 
This would be a relatively straightforward issue, if 
hundred-percent code generation were achievable. 
In practice, for large and complex software 
systems, this is not the case. Full code generation 
is not even desirable in many situations since – at 
least for describing algorithms or data conversions 
– source code seems to be more adequate than 
behavioral models. An additional difficulty 
is the lack of a general accepted semantics of 
UML. This makes it very difficult to determine 
whether a given model transformation is behavior 
preserving, which is the main criterion to decide 
whether something can be called refactoring or 
not, according to Fowler (1999). 

As a feasibility study, we have chosen 
AndroMDA to illustrate the model-driven 
development of web applications. We illustrated 
and discussed a number of standard and domain-
specific restructurings. Since they often change 
the observable behavior of the software in some 
sense, we explored to what extent they can be 
considered as refactorings. All restructurings 
were categorized into three groups, ordered by 
the fulfillment degree of Fowler’s criterion. The 
obtained results show that we should address the 
notion of model refactoring with care, and may 
serve as suggestions for better tool support:

•	 We may want to support refactorings that 
do not fully preserve behavior, as long as 
they improve other important software qual-
ity aspects. This also implies that we need 

techniques to assess the effect of a model 
transformation on the software quality.

•	 We need to find a balance between, and 
provide user support for the ability to specify 
generic model refactorings, and the ability to 
adapt and refine these refactorings to work 
properly in a domain-specific modeling 
language;

•	 We need to provide an interactive round-trip 
engineering approach to refactoring. When 
performing model refactorings, it turns out 
that manual intervention is frequently re-
quired in order to keep the abstraction levels 
of source code and model consistent. Model 
refactorings may also affect and require 
changes to the hand-written source code.

From a theoretical point of view, we have 
suggested to use graph transformation to provide 
a formal specification of model refactorings. It has 
the advantage of defining refactorings in a generic 
way, while still being able to provide tool support 
in commonly accepted modeling environments 
such as EMF. In addition, the theory of graph 
transformation allows us to formally reason 
about dependencies between different types of 
refactorings. Such a static analysis of potential 
conflicts and dependencies between refactorings 
can be helpful for the user during the interactive 
process of trying to improve the software quality 
by means of disciplined model transformations.

future reSearch directionS

In Section 4, we identified many important chal-
lenges in model-driven software refactoring. 
We only worked out some of these challenges in 
more detail: the need for a formal specification 
of model refactorings, the need to reason about 
behavior preservation, the need to synchronize 
models and source code whilst applying refactor-
ings, the need to relate and integrate the aspects 
of model refactoring and model quality. There are 



���  

Model-Driven Software Refactoring

still many other challenges that remain largely 
unaddressed:

When developing large software systems in 
a model-driven manner, several development 
teams might be involved. In this case, it would be 
advantageous if the model could be subdivided 
into several parts that could be developed in a 
distributed way. Considering refactoring in this 
setting, model elements from different submodels 
might be involved. Thus, several distributed 
refactoring steps have to be performed and 
potentially synchronized if they involve common 
model parts. Distributed refactoring steps could be 
considered as distributed model transformations 
(Goedicke et al., 1999; Bottoni et al., 2005).

The usual way to test refactorings is by testing 
the code before and after refactoring steps. Clearly, 
the code has to satisfy the same test cases before 
and after refactoring it. Considering refactoring 
within model-driven development, the same 
testing procedure should be possible, i.e., test cases 
for the generated code before and after refactoring 
should produce the same results. As we discussed 
within this chapter, model-driven software 
refactoring often does not fulfill Fowler’s criterion 
in a stringent way. Future investigations should 
clarify the impact of this kind of restructuring on 
test suites (Van Deursen et al., 2002).

An important pragmatic challenge that has 
not been addressed in this chapter has to do with 
performance and scalability. Is it possible to 
come up with solutions that scale up to industrial 
software? Egyed (2006) provided initial evidence 
that this is actually the case, by providing an instant 
model synchronization approach that scales up to 
large industrial software models.

Another interesting research direction is to 
apply refactorings at the meta-model level. This 
raises the additional difficulty of needing to 
convert all models that conform to this meta-model 
accordingly, preferably in an automated way.

referenceS

Astels, D. (2002). Refactoring with UML. In M. 
Marchesi, G. Succi (Eds.), Proceedings of 3rd 
International Conference eXtreme Programming 
and Flexible Processes in Software Engineering 
(pp. 67-70), Alghero, Italy.

Biermann, E., Ehrig, K., Köhler, C., Taentzer, 
G., & Weiss, E. (2006). Graphical Definition of 
In-Place Transformations in the Eclipse Modeling 
Framework. In O. Nierstrasz (Ed.), Proceedings 
of International Conference on Model Driven 
Engineering Languages and Systems (pp. 425-
439), Lecture Notes in Computer Science 4199, 
Heidelberg: Springer.

Boger, M., Sturm, T., & Fragemann, P. (2002). 
Refactoring Browser for UML. In M. Marchesi, 
G. Succi (Eds.), Proceedings 3rd International 
Conference on eXtreme Programming and Flex-
ible Processes in Software Engineering (pp. 77-
81), Alghero, Italy.

Bottoni, P., Parisi-Presicce, F., Mason, G., & 
Taentzer, G. (2005). Specifying Coherent Refac-
toring of Software Artefacts with Distributed 
Graph Transformations. In P. van Bommel (Ed.), 
Handbook on Transformation of Knowledge, 
Information, and Data: Theory and Applications 
(pp. 95-125). Hershey, PA: Information Science 
Publishing.

Bouden, S. (2006). Étude de la traçabilité entre 
refactorisations du modèle de classes et refactori-
sations du code. Unpublished masters dissertation, 
Université de Montréal, Canada.

Brooks, F. P. (1995). No Silver Bullet: Essence 
and accidents of software engineering. In The 
Mythical Man-Month: Essays on Software En-
gineering, 20th Anniversary Edition. Reading, 
MA: Addison-Wesley.

Brottier, E., Fleurey, F., & Le Traon, Y. (2006). 
Metamodel-based Test Generation for Model 
Transformations: an Algorithm and a Tool. In 



  ���

Model-Driven Software Refactoring

Proceedings	 17th International Symposium on 
Reliability Engineering (pp. 85-94), IEEE Com-
puter Society.

Correa, A., & Werner, C. (2004). Applying 
Refactoring Techniques to UML/OCL Models. 
In Proceedings International Conference UML 
2004 (pp. 173-187), Lecture Notes in Computer 
Science 3273, Heidelberg: Springer.

Demeyer, S., Ducasse, S., & Nierstrasz, O. (2000). 
Finding Refactorings Via Change Metrics. In 
Proceedings International Conference OOPSLA 
2000 (pp. 166-177). ACM SIGPLAN Notices 
35(10), ACM Press.

Du Bois, B. (2006). Quality-Oriented Refactoring. 
Unpublished doctoral dissertation, Universiteit 
Antwepen, Belgium.

Egyed, A. (2006). Instant consistency checking 
for the UML. In Proc. International Conference 
on Software Engineering (pp. 31-390), ACM.

Ehrig, H, Ehrig, K. Prange, U. & Taentzer, G. 
(2006). Fundamental Approach to Graph Trans-
formation. EATCS Monographs, Heidelberg: 
Springer.

Ehrig, H., Tsioalikis, A. (2000). Consistency 
analysis of UML class and sequence diagrams 
using attributed graph grammars. In ETAPS 2000 
workshop on graph transformation systems (pp. 
77-86).

Fenton, N., & Pfleeger, S. L. (1997). Software 
Metrics: A Rigorous and Practical Approach (2nd 
edition). London, UK: International Thomson 
Computer Press.

Fowler, M. (1999) Refactoring: Improving the 
Design of Existing Code. Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., & Vlissides, 
J. (1994). Design Patterns: Elements of Reus-
able Object-Oriented Languages and Systems. 
Addison-Wesley.

Gheyi, R., Massoni, T., & Borba, P. (2005). A Rig-
orous Approach for Proving Model Refactorings. 
In Proceedings 20th IEEE/ACM International 
Conference Automated Software Engineering 
(pp. 372-375). IEEE Computer Society.

Gheyi, R., Massoni, T., & Borba, P. (2005). Type-
safe Refactorings for Alloy. In Proceedings 8th 
Brazilian	Symposium	on	Formal	Methods	 (pp. 
174-190). Porto Alegre, Brazil.

Goedicke, M., Meyer, T., & Taentzer, G. (1999). 
Viewpoint-oriented software development by 
distributed graph transformation: Towards a basis 
for living with inconsistencies. In Proceedings 
International Conference Requirements Engi-
neering (pp. 92-99). IEEE Computer Society.

Grundy, J. C., Hosking, J.G., & Mugridge W. B. 
(1998). Inconsistency Management for Multiple-
View Software Development Environments, 
IEEE Transactions on Software Engineering, 
24(11), 960-981.

Grunske, L., Geiger, L., Zündorf, A., Van Eetvelde, 
N., Van Gorp, P., & Varro, D. (2005). Using Graph 
Transformation for Practical Model Driven Soft-
ware Engineering. In S. Beydeda, M. Book, & V. 
Gruhn (Eds.), Model-driven Software Develop-
ment (pp. 91-118). Heidelberg: Springer.

Kamthan, P. (2004). A Framework for Addressing 
the Quality of UML Artifacts. Studies in Com-
munication Sciences, 4(2), 85-114.

Kerievsky, J. (2004). Refactoring to Patterns. 
Addison-Wesley.

Königs, A. & Schürr, A. (2006). Tool Integration 
with Triple Graph Grammars - A Survey . In R. 
Heckel (Ed.), Proceedings of the SegraVis School 
on Foundations of Visual Modelling Techniques 
(pp. 113-150). Electronic Notes in Theoretical 
Computer Science 148, Amsterdam: Elsevier.

Lehman, M. M., Ramil, J. F., Wernick, P. D., 
Perry D. E., & Turski, W. M. (1997). Metrics and 
laws of software evolution: The nineties view. 



�00  

Model-Driven Software Refactoring

In Proceedings of International Symposium on 
Software Metrics (pp. 20-32). IEEE Computer 
Society Press.

Liu, W., Easterbrook, S., & Mylopoulos, J. (2002). 
Rule-based detection of inconsistency in UML 
models. In Proceedings UML Workshop on 
Consistency Problems in UML-based Software 
Development (pp. 106-123). Blekinge Insitute of 
Technology.

Markovic, S., & Baar, T. (2005). Refactoring OCL 
Annotated UML Class Diagrams. In L. Briand, C. 
Williams (Eds.), Proceedings International Con-
ference Model Driven Engineering Languages 
and Systems (pp. 280-294). Lecture Notes in 
Computer Science 3713, Heidelberg: Springer

Mens, T. (2006). On the use of graph transforma-
tions for model refactoring. In Generative and 
Transformational Techniques in Software Engi-
neering (pp. 219-257). Lecture Notes in Computer 
Science 4143, Heidelberg: Springer.

Mens, T., & Tourwé, T. (2004). A Survey of Soft-
ware Refactoring. IEEE Transactions on Software 
Engineering, 30(2), 126-162.

Mens, T., Van Eetvelde, N., Demeyer, S., & 
Janssens, D. (2005). Formalizing refactorings 
with graph transformations. Journal on Software 
Maintenance and Evolution, 17(4), 247-276.

Mens, T., Van Der Straeten, R., & D’Hondt, 
M. (2006). Detecting and resolving model in-
consistencies using transformation dependency 
analysis, In O. Nierstrasz (Ed.), Proceedings 
International Conference on Model-Driven 
Engineering Languages and Systems (pp. 200-
214). Lecture Notes in Computer Science 4199, 
Heidelberg: Springer.

Mens, T., Taentzer, G., & Runge, O. (2007). Ana-
lyzing Refactoring Dependencies Using Graph 
Transformation. Journal on Software and Systems 
Modeling, 6(3), 269-285.

Mottu, J.-M., Baudry, B., & Le Traon, Y. (2006). 
Mutation Analysis Testing for Model Transforma-
tions. In Proceedings 2nd European Conference 
on Model Driven Architecture – Foundations 
and Applications (pp. 376-390). Lecture Notes in 
Computer Science 4066, Heidelberg: Springer.

Parnas, D.L. (1994). Software Aging. In Proceed-
ings of International Conference on Software 
Engineering (pp. 279-287). IEEE Computer 
Society Press.

Porres, I. (2003). Model refactorings as rule-
based update transformations. In: P. Stevens, 
J. Whittle, G. Booch (Eds.), In Proceedings of 
6th International Conference UML 2003 - The 
Unified	Modeling	Language.	Model	Languages	
and Applications (pp. 159-174). Lecture Notes in 
Computer Science 2863, Heidelberg: Springer.

Pretschner, A., & Prenninger, A. (2007). Comput-
ing Refactorings of State Machines, Journal on 
Software and Systems Modeling. To appear.

Schürr, A. (1994). Specification of Graph Transla-
tors with Triple Graph Grammars. In: G. Tinhofer 
(Ed.), WG94	 20th	 International	 Workshop	 on	
Graph-Theoretic Concepts in Computer Science 
(pp. 151-163). Lecture Notes in Computer Science 
903, Heidelberg: Springer.

Spanoudakis, G., & Zisman, A. (2001). Incon-
sistency management in software engineering: 
Survey and open research issues. In Handbook of 
Software Engineering and Knowledge Engineer-
ing (pp. 329-80). World Scientific

Sunyé, G., Pollet, D., Le Traon, Y., & Jézéquel, 
J.-M. (2001). Refactoring UML models, In Pro-
ceedings	International	Conference	Unified	Mod-
eling Language (pp. 134-138). Lecture Notes in 
Computer Science 2185, Heidelberg: Springer.

Tahvildari, L., & Kontogiannis, K. (2004). 
Improving Design Quality Using Meta-Pattern 
Transformations: A Metric-Based Approach, 
Journal of Software Maintenance and Evolution, 
16(4-5), 331-361.



  �0�

Model-Driven Software Refactoring

van Deursen, A., & Moonen, L. (2002). The Video 
Store Revisited: Thoughts on Refactoring and 
Testing, In M. Marchesi, G. Succi (Eds.), Proceed-
ings 3rd International Conference on Extreme 
Programming and Flexible Processes in Software 
Engineering (pp. 71-76). Alghero, Italy.

van Deursen, A., Moonen, L., van den Bergh, 
A., & Kok, G. (2002). Refactoring Test Code, In 
G. Succi, M. Marchesi, D. Wells, & L. Williams 
(Eds.), Extreme Programming Perspectives (pp. 
141-152). Addison-Wesley.

Van Der Straeten, R. (2005). Inconsistency 
Management in Model-driven Engineering: An 
Approach using Description Logics. Unpublished 
doctoral dissertation, Vrije Universiteit Brussel, 
Belgium.

Van Der Straeten, R., & D’Hondt, M. (2006). 
Model refactorings through rule-based inconsis-
tency resolution. In Proceedings Symposium on 
Applied computing (pp. 1210-1217). New York: 
ACM Press

Van Der Straeten, R., Mens, T., Simmonds, J., 
& Jonckers, V. (2003). Using description logics 
to maintain consistency between UML models. 
In Proceedings International Conference on 
The	Unified	Modeling	Language (pp. 326-340). 
Lecture Notes in Computer Science 2863, Hei-
delberg: Springer.

Van Der Straeten, R., Jonckers, V., & Mens, T. 
(2004). Supporting Model Refactorings through 
Behaviour Inheritance Consistencies. In T. Baar, 
A. Strohmeier, & A. Moreira (Eds.), Proceedings 
of	International	Conference	on	The	Unified	Mod-
eling Language (pp. 305-319). Lecture Notes in 
Computer Science 3273, Heidelberg: Springer.

Van Gorp, P., Stenten, H., Mens, T., & Demeyer, 
S. (2003). Towards automating source-consistent 
UML refactorings. In P. Stevens & J. Whittle 
& G. Booch (Eds.), Proceedings International 
Conference	on	The	Unified	Modeling	Language 

(pp. 144-158). Lecture Notes in Computer Science 
2863, Heidelberg: Springer.

Van Kempen, M., Chaudron, M., Koudrie, D., & 
Boake, A. (2005). Towards Proving Preservation 
of Behaviour of Refactoring of UML Models. In 
Proceedings	SAICSIT	2005 (pp. 111-118).

Zhang, J., Lin, Y., & Gray, J. (2005). Generic 
and Domain-Specific Model Refactoring using a 
Model Transformation Engine. In Model-driven 
Software Development - Research and Practice 
in Software Engineering. Springer.

additional reading

General and up-to-date information about graph 
transformation can be obtained via the website 
http://www.gratra.org/. For those readers wish-
ing to get more in-depth information about what 
graph transformation is all about, we refer to 
the 3-volume “bible” of graph transformation 
research. Volume 1 focuses on its theoretical 
foundations; Volume 2 addresses applications, 
languages and tools; and Volume 3 deals with 
concurrency, parallelism and distribution. 

Rozenberg, G. (1997). Handbook of Graph Gram-
mars and Computing by Graph Transformation, 
Volume 1. World Scientific.

Ehrig, H., Engels, G., Kreowski, H.-J., & Rozen-
berg G. (1999). Handbook of Graph Grammars 
and Computing by Graph Transformation, Volume 
2. World Scientific.

Ehrig, H., Kreowski, H.-J., Montanari, U., & 
Rozenberg, G. (1999). Handbook of Graph Gram-
mars and Computing by Graph Transformation, 
Volume 3, World Scientific.

Background information about model-driven 
software engineering can be obtained via the 
website http://www.planetmde.org/. This includes 



�0�  

Model-Driven Software Refactoring

tool support and events devoted to this very active 
research domain. Many books on this topic have 
been published. In particular, we found the fol-
lowing ones to be very useful and relevant:

Beydeda, S., Book, M., & Gruhn, V. (2005). Mod-
el-Driven Software Development, Springer.

Stahl, T., & Völter, M. (2006). Model-Driven 
Software Development, Wiley.

With respect to software evolution research, we 
suggest to consult the website http://www.planet-
evolution.org/. Many books on this topic have been 
published. In particular, we found the following 
ones to be very useful and relevant:

Grubb, P., & Takang, A.A. (2003). Software 
Maintenance: Concepts and Practice (Second 
Edition). World Scientific.

Madhavji, N. H., Fernandez-Ramil, J., & Perry, 
D. (2006). Software Evolution and Feedback: 
Theory and Practice. Wiley.

Mens, T., & Demeyer, S. (2008). Software Evolu-
tion. Springer.

Seacord, R., Plakosh, D. & Lewis, G. (2003). 
Modernizing Legacy Systems: Software Tech-
nologies, Engineering Processes, and Business 
Practices (SEI Series in Software Engineering). 
Addison-Wesley.

Regarding software refactoring in particular, 
we would like to point to some of the early work 
on refactoring, which has been published in the 
following PhD dissertations:

Griswold, W.G. (1991). Program Restructuring 
as an Aid to Software Maintenance. Unpublished 
doctoral dissertation, University of Washing-
ton.

Opdyke, W.F. (1992). Refactoring: A Program 
Restructuring Aid in Designing Object-Oriented 
Application Frameworks. Unpublished doctoral 
dissertation, University of Illinois at Urbana-
Champaign.

Roberts, D. (1999). Practical Analysis for Refac-
toring. Unpublished doctoral dissertation, Univer-
sity of Illinois at Urbana-Champaign.

O Cinnéide, M. (2000). Automated Application 
of Design Patterns: A Refactoring Approach. 
Unpublished doctoral dissertation, Trinity Col-
lege, University of Dublin.

Tichelaar, S. (2001). Modeling Object-Oriented 
Software for Reverse Engineering and Refactor-
ing. Unpublished doctoral dissertation, University 
of Bern.

There are many useful standards that have been 
published for software maintenance and software 
evolution. As is frequently the case, some of these 
standards may be somewhat outdated compared 
to the current state-of-the-art in research:

The ISO/IEC 14764 standard on ̀ `Software Main-
tenance'' (1999)

The IEEE 1219 standard on `̀ Software Mainte-
nance'' (1999)

The ISO/IEC 12207 standard (and its amend-
ments) on `̀ Information Technology - Software 
Life Cycle Processes'' (1995)

The ANSI/IEEE 1042 standard on `̀ Software 
Configuration Management'' (1987)

endnoteS

1 http://galaxy.andromda.org
2 This model refactoring is actually domain-



  �0�

Model-Driven Software Refactoring

specific, as will be discussed later in this 
chapter.

3 Of course, programs also need to be syn-
chronized with related software artefacts 
such as databases, user interfaces, test suites 
and so on. Each of these kinds of artefacts 
may have been expressed using a different 
language.

4 It is not our goal to be complete here.
5 http://tfs.cs.tu-berlin.de/agg
6 http://www.fujaba.de
7  http://www.moflon.org
8 http://www.racer-systems.com



�0�  

Chapter IX
A Pattern Approach to 

Increasing the Maturity Level
of Class Models

Michael Wahler
IBM Zurich Research Laboratory, Switzerland

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

abStract

Class	models	are	typically	specified	at	a	high	level	of	abstraction	and	subsequently	refined	with	textual	
constraints	to	obtain	higher	maturity	levels.	This	task	requires	significant	expertise	and	effort	because	
constraints	must	be	elicited	and	formalized.	In	this	chapter,	we	identify	typical	refinement	problems	for	
class	models	that	threaten	model	quality	and	show	how	a	list	of	refinement	tasks	can	be	automatically	
compiled from a given model. We present constraint patterns that help to carry out these tasks semi-
automatically and introduce a tool prototype for our approach.

introduction

Models have been used in software engineering 
for illustration and documentation purposes for 
a long time. In the past few years, model-driven 
development approaches such as Model-Driven 
Engineering (MDE) have become popular, and 
with these approaches, models have enormously 
gained importance. Still used for illustration, 
models now also serve as semantic foundation 
for the development of whole systems in certain 
domains: they are abstract representations of vari-

ous aspects of a system and drive the development 
process. This new role requires a certain degree 
of formality for the syntax and the semantics of 
models: Whereas it was sufficient for the syntax 
and the semantics to be intuitively understandable 
in the age of “models-as-illustrations”, they need 
to be formally specified in the MDE age because 
they are the basis of the generated code. 

In MDE, the abstract syntax of a modeling 
language is defined by a meta-model, which is 
usually a class model that graphically specifies 
the elements of a modeling language, such as 



  �0�

Increasing the Maturity Level of Class Models

classes and their properties, and the dependen-
cies between these elements. The dependencies 
between classes are especially important in this 
refinement: Since each model that complies with 
its meta-model must be a valid abstraction of 
the system, the dependencies between elements 
in the model must be precisely captured in the 
meta-model. Whereas these dependencies can 
only be coarsely constrained within the graphical 
model itself, textual constraint languages such as 
the Object Constraint Language (OCL) (Object 
Management Group (OMG), 2003) are used to 
express details about the dependencies.

Adding textual constraints to a class model 
rules out invalid instances, which increases the 
maturity level of the class model (Kleppe and 
Warmer, 2003). For visualizing this idea, we 
use a function I that maps a set of concepts to 
the set of all possible objects for these concepts. 
In particular, I(M) denotes the set of all objects 
in all possible instances of a model M and I(R) 
denotes the set of all possible objects in a real 
system. Figure 1 a) visualizes a model M with 
a low maturity level: A large part of I(M) is not 
inside I(R), i.e., I(M) contains many elements 
that are not representations of the real system. 
By adding constraints to M, a model M’ can be 
developed with a higher maturity level. Figure 1 b) 
shows that there are less elements in the set I(M’) 
− I(R), which means that significantly less invalid 

instances can be derived from M’ than from M. 
Thus, M’ has a higher maturity level than M.

In this chapter, we focus on increasing the 
maturity level of models as one important quality 
aspect. Thus, the aim of this chapter is to identify 
a number of causes for low maturity levels of 
models in early stages of development, show how 
these causes can be found in a given model, and 
offer solutions to refine the model and increase 
its maturity level. We focus on reducing the size 
of I(M)−I(R) and provide general guidelines for 
creating class models of a high maturity level and 
thus, a high quality.

In order to refine a given class model, it must 
be thoroughly analyzed by the model developer. 
However, not all causes for low maturity may be 
detected manually, which can cause serious prob-
lems in the MDE process because the generated 
code may cause runtime exceptions. To simplify 
and partly automate model analysis, we have 
identified recurring problems in class models that 
require refinement by textual constraints. The 
first objective of this chapter is to present these 
problems, show examples of how they threaten 
the maturity of class models, and introduce tool 
support for their automatic detection.

Having identified these problems, constraints 
can be formulated that restrict the expressiveness 
and increase the maturity of the model. However, 
this is not an easy task: Besides theoretical and 

Figure 1. Visualization of model maturity levels

 

I(R ) I(M’) I(R ) I(M) 

(a) Model M: Low maturity level. (b) Model M’: High maturity level. 



�0�  

Increasing the Maturity Level of Class Models

practical arguments that point out various defi-
ciencies of OCL (Chiorean et al., 2005, Süß, 2006, 
Cabot, 2006, Brucker et al., 2006), one important 
aspect needs to be taken into account: Class 
models can express complicated facts, including 
subtyping, reflexive relations, or potentially infi-
nitely large instances, and constraining such facts 
requires addressing this complexity. To simplify 
the creation of constraints, the second objective 
of this chapter is using constraint patterns, which 
are predefined constraint expressions that can 
be parameterized. In particular, we present con-
straint patterns that can be instantiated to remedy 
the recurring problems that we have identified. 
Furthermore, we present how constraint patterns 
can be coupled with the analysis results to enable 
instant refinement.

This chapter is structured as follows. In Sec-
tion 2, we provide background information on 
the Meta Object Facility (MOF), OCL, constraint 
patterns, and give an overview of related work. 
By analyzing MOF, we identify typical problems 
that require refinement in Section 3 and present 
examples to illustrate the potential dangers of 
low model maturity. In Section 4, we show how 
constraint patterns can be used to increase ma-
turity and present tool support for our approach 
in Section 5. In Section 6, we draw conclusions, 
and we give an outlook on future research direc-
tions in Section 7.

background

In this section, we provide background informa-
tion for the remainder of this chapter and give an 
overview of related work.

Meta object facility (Mof)

The MOF (OMG, 2006a) is a standard that defines 
the building blocks of modeling. Its core, the Es-
sential MOF (EMOF), defines the facilities that are 
commonly found in object-oriented approaches 
such as types, classes, properties, and operations. 
Thus, it can be considered as the core of Unified 
Modeling Language (UML) class models, and 
the results of this chapter on MOF apply to UML 
class models as well.

MOF defines a hierarchy of model abstractions, 
which can comprise up to four layers (Atkinson 
and Kühne, 2003). In general, a model in layer n 
is called an instance of the model in layer n+1, 
which in turn is called its meta-model. In Figure 
2, we illustrate these four modeling layers.

The most abstract layer, commonly perceived 
as M3, is the MOF meta-model, as shown in 
Figure 3. It defines the core modeling concepts 
and is defined recursively, i.e., a model on this 
layer is an instance of itself (Seidewitz, 2003). In 
contrast, the most concrete layer M0 represents 
the elements of the concrete system. For instance, 

Figure 2. The four modeling layers of MOF

 
M0 

(s ys tem) 

M1 
(concepts ) 

M2 
(UML) 

M3 
(MOF ) 

employees B oris and P aul 
45.1, D42 

 

class , as s ociation,  
s tereotype, … 

package, type, clas s ,  
property, operation 



  �0�

Increasing the Maturity Level of Class Models

the model of a company could comprise elements 
such as an employee called “Boris” and an office 
labeled “C45.1”. The models in layer M0 are in-
stances of the models in layer M1, in which the 
concepts of a system are defined. In a company, 
examples of such concepts are classes such as 
Employee or Office. These concepts are defined using 
the MOF layer M3 as meta-model. Alternatively, 
another meta-modeling layer M2 can be used. A 
prominent example of an M2-layer model is the 
UML meta-model for class models, which defines 
modeling elements such as n-ary associations or 
stereotypes (OMG, 2006b).

In Figure 4, we illustrate an example M1-model 
company that is an instance of MOF. The elements 
in this model are instances of MOF elements, 
i.e., we use the MOF meta-model for both layers 
M2 and M3. In detail, the elements are defined 
as follows. Employee, Manager, Office, Single and Cubicle 
are instances of the MOF concept Class; name, salary, 
budget, headCount, isCEO, desks, employs, worksFor, inhabitant 
and worksIn are MOF Propertys, and they are used 
for defining associations between classes, which 
reflect relations between objects; String, Integer and 
Boolean are MOF types; hire is a MOF Operation of 
type Boolean; e is a MOF Parameter; 1..*, 0..1 and 

* are MOF MultiplicityElements; and the generaliza-
tion relations between Manager and Employee and 
Single/Cubicle and Office are instances of the MOF 
superClass relation.

In general, an instance of a model is defined by 
a set OID of object identifiers and a partial function 
A: OID×P9VAL that maps an object identifier o 2 
OID and a property p 2 P of the object’s class to a 
set of values. A binary relation R between objects 
o1 and o2 is represented by two properties p1, p2 
with A(o1, p2) = o2 and A(o2, p1) = o1. A model 
instance can be considered as an object graph in 
which the nodes are the object identifiers and the 
edges are the relations between them.

object constraint language (ocl)

MOF offers only limited support for defining the 
concepts of a model or a system. Whereas enti-
ties and basic relations can be described in terms 
of types, classes and their properties, relations 
and dependencies can be further specified by 
basic multiplicity (i.e., cardinality) constraints 
only. In order to express complex relations and 
restrictions in a model, OCL has been introduced 
(OMG, 2003), a textual constraint language for 

Figure 3. Extract of the EMOF meta-model



�0�  

Increasing the Maturity Level of Class Models

object-oriented modeling languages such as MOF 
or UML.

OCL is a first-order logic (FOL) with object-
oriented extensions (Beckert et al., 2002). It serves 
two purposes: First, invariants can be specified 
for classes. An invariant is a predicate that holds 
for all instances of the constrained class. Second, 
contracts can be specified for operations, which 
consist of a precondition that restricts the ap-
plicability and a postcondition that describes the 
result of the operation. A detailed introduction 
to OCL and a reference manual can be found in 
(Kleppe and Warmer, 2003).

In the following, we illustrate some examples of 
invariants and operation contracts for the company 
model. The invariant for single offices restricts 
the inhabitants of these offices to objects of class 
Manager. The invariant for Manager states that the 
budget must not be negative. The precondition of 
hire requires that the employee who is supposed 
to be hired is not already employed, while the 
postcondition requires that after the operation 
has executed, the set of employees is the same as 
before the execution, except for the new employee 
who has joined this set. See Exhibit 1.

There are different ways of providing support 
for constraint checking in the generated code. 
This is not subject of this chapter and we therefore 
refer the reader to (Kleppe and Warmer, 2003) 

in which a transformation from OCL to Java is 
discussed.

constraint patterns

In general, patterns describe generic solutions to 
recurring problems in a certain domain that can 
be reapplied to instances of the same problem. 
With the success of the object-oriented develop-
ment paradigm, patterns have gained increasing 
momentum in software engineering. The most 
prominent publication, the “gang-of-four” (GOF) 
book on design patterns (Gamma et al., 1995), 
introduces a taxonomy of patterns for the construc-
tion of object-oriented software. Each pattern is 
presented with a name, classification, intent, struc-
ture, example, and other properties that describe 
its syntax, semantics, and pragmatics.

Patterns have also become popular in other 
areas of software engineering, such as software 
architecture (Buschmann et al., 1996), formal 
specification (Dwyer et al., 1998), or workflow 
design (van der Aalst et al., 2003). Recent publica-
tions have introduced constraint patterns that can 
be instantiated to constrain models (Ackermann 
and Turowski, 2006, Ahrendt et al., 2005, Costal 
et al., 2006, Miliauskaitė and Nemuraitė, 2005, 
Wah-ler et al., 2007).

Constraint patterns are parameterizable ex-
pressions in a logic such as OCL. An illustrative 

Figure 4. Model “company”: example instance of MOF

 



  �0�

Increasing the Maturity Level of Class Models

example is the MultiplicityRestriction pattern 
from (Wahler et al., 2007), which can be instan-
tiated to constrain the number of elements in a 
relation. It is defined as shown in Exhibit 2.

Upon instantiation, the parameters of a pattern, 
which are printed in italics above, are replaced 
with actual values. An example constraint that can 
be expressed using this pattern is the following 
invariant for the company model: “An office must 
not be inhabited by more employees than there 
are desks in the office,” which can be expressed 
in OCL as shown in Exhibit 3.

Instead of specifying the invariant in OCL, 
which is time-consuming and error-prone, we 
use the MultiplicityRestriction pattern. The 
following constraint expression replaces the 
parameter navigation with the property inhabitant 
and the parameter value with the property desks. 
See Exhibit 4.

In the literature, numerous constraint patterns 
have been defined. A comprehensive collection of 
patterns can be found in (Wahler et al., 2007) in 
which a taxonomy of constraint patterns is pre-
sented. The taxonomy comprises a set of atomic 
or elementary patterns as shown in Figure 5, to 
which we added the patterns that we introduce 
in this chapter. To simplify model refinement, 
users can choose and instantiate appropriate 
patterns from such taxonomies and use them in 
their constraint specifications. In the same paper, 
composite constraint patterns are introduced, i.e., 
higher-order patterns to logically combine pattern 
instances. Using composite patterns, complex 
constraints can be developed by composing el-
ementary constraints. Elementary constraints are 
either instances of constraint patterns or literal 
OCL expressions. Thus, composite constraint pat-
terns increase the expressiveness of the constraint 

context Single
inv onlyManagers: self.inhabitant−>forAll(x | x.oclIsTypeOf(Manager))
 
context Manager
inv budgetGreaterZero: self.budget >= 0
 
 
context Manager::hire(e: Employee): Boolean
pre: not self.employs−>includes(e)
post: self.employs = self.employs@pre−>including(e)

Exhibit 1.

pattern MultiplicityRestriction(navigation: Sequence(Property), operator: OclExpression,
                 value:OclExpression) =
   self.navigation−>size() operator value

Exhibit 2.

context Office

inv sufficientDesks: self.inhabitant−>size() <= self.desks

Exhibit 3.



��0  

Increasing the Maturity Level of Class Models

language. For example, the IfThenElse pattern 
allows one to model implication by selecting a 
set of elementary constraints as assumption (if) 
and one constraint each as conclusion (then) and 
alternative (else). See Exhibit 5.

We have prototypically implemented con-
straint patterns using the patterns framework of 
IBM Rational Software Architect (RSA) (IBM, 
2007). Figure 6 shows a screenshot of how the 
constraint sufficientDesks is implemented in our 

framework. Here, the pattern instance is represent-
ed by a rectangular box surrounded by a dashed 
line. The parameters and their actual values are 
listed in a table inside the pattern instance.

related work

In (Crosby, 1979), quality is defined as “confor-
mance to requirements”. We apply this definition 

context Office

inv sufficientDesks: MultiplicityRestriction(inhabitant, ’<=’, ’desks’)

Exhibit 4.

Figure	5.	An	example	taxonomy	of	constraint	patterns

E lementary
P attern

Attribute
C onstraint

Association
C onstraint

Attribute
S um

R estriction

Attribute
V alue

R estriction

Unique

Attribute
R elation

Object In
C ollection

T ype
R estriction

T ype
R elation

Injective
Association

S urjective
Association

Association
C onstraint

Multiplicity
R estriction

No C yclic
Depen-
dency

P ath
Depth

R estriction

Unique P ath



  ���

Increasing the Maturity Level of Class Models

to class modeling by first defining the requirements 
for class models. On the one hand, class models 
must contain appropriate elements to express 
facts of the system modeled, i.e., coverage, and 
on the other hand, they must be specific enough 
such that models that represent valid facts of the 
system only can be modeled. Different kinds of 
models require different degrees of abstraction, 
e.g., analysis models are usually less detailed than 
design models. In general, models can have a high 
degree of abstraction and thus, a low maturity 
level at the beginning of an MDE process, but in 
the course of the process, they must be refined 
to achieve a higher level of maturity, and thus, 
quality.

Whereas quality assessment is well-estab-
lished in software development (Chrissis et al., 
2003, Schulmeyer and Mcmanus, 1999, Kan, 
2002), it is a fairly new aspect in MDE, but has 
become an important topic, as addressed by the 
workshop “Quality in Modeling” (Kuzniarz et 
al., 2006). One of the papers presented in this 
workshop experimentally investigates the effect 

of using modeling conventions on the quality of 
a model (Bois et al., 2006) by evaluating a test 
group’s perception of syntactic, semantic, and 
pragmatic aspects of test models. In (Lange and 
Chaudron, 2006), several threats to the quality of 
a model are identified and a survey is conducted 
on how easily such defects can be identified. In 
(Gamma et al., 1995), model quality is addressed 
indirectly by providing design patterns for class 
models in general. Patterns reflect best practices, 
and employing patterns in a model thus increases 
the overall quality of the model.

The quality of meta-models, which are typical-
ly specified in terms of class models, is discussed 
in (www.metamodel.com, 2007). The aspects 
scope, technical quality, extensibility, and quality 
of definitions of the documentation are defined 
and guidelines are given how class models can 
be created that are good in the respective aspect. 
In (Gitzel and Hildenbrand, 2005), different hi-
erarchies of meta-modeling are illustrated. The 
quality of the hierarchies is evaluated according 
to their complexity, consistency, expressional 

pattern IfThenElse(assumption:Set(Constraint), conclusion:Constraint,
                             alternative:Constraint) =
 
 if assumption
 then conclusion
 else alternative
 endif

Exhibit	5.

Figure	6.	Constraint	sufficientDesks	as	represented	in	RSA



���  

Increasing the Maturity Level of Class Models

strength, extensibility, and robustness to change. 
In (Davis and Bigelow, 2002), the quality criteria 
are goodness of fit, parsimony, identification of 
critical components, relative importance of model 
elements, and a good storyline. In this approach, 
a meta-model is derived from large models us-
ing statistical methods. An orthogonal aspect 
of meta-model quality is addressed in (Atkin-
son and Kühne, 2001) in which the problem of 
multi-level meta-model hierarchies are discussed 
and problems of frameworks such as MOF are 
pointed out.

Whereas the previous references give an over-
view of various quality aspects of a meta-model, 
they merely touch the problem of maturity levels 
of class models. In this chapter, we focus on 
identifying low maturity caused by the limited 
expressiveness of the MOF meta-model and show 
how models can be semi-automatically refined 
by using an automatic analysis and constraint 
patterns.

increaSing claSS-Model 
Maturity levelS

As shown, only few restrictions on model in-
stances can be applied by means of the graphical 
elements of a class model. In this section, we 
present limitations of the expressiveness of the 
MOF meta-model that typically require MOF-
based class models to be refined with textual 
constraints. In the following, we present a list of 
the limitations we have identified, in which the 
term context denotes the objects and the values 
of their properties in a model instance:

1. The lower and upper multiplicity bounds 
of a MultiplicityElement cannot be related to its 
context,

2. the type of a TypedElement cannot be related 
to its context,

3. properties can cause reflexive relations, 
which can have side-effects that cannot be 
restricted,

4. the unique identifier for a class can only 
consist of a single Property, and

5. the value of a Property cannot be related to its 
context.

For each of these limitations, we show ex-
ample object diagrams demonstrating that the 
expressiveness of the respective MOF elements 
is not sufficient for precise modeling and present 
OCL constraints necessary for restricting these 
examples. We focus on invariants, but our find-
ings for the MOF class Property can also be applied 
to the class Parameter and hence be used in the 
specification of operation contracts.

Multiplicities of properties

In MOF, relations between objects of two classes 
C1 and C2 are modeled using a property that is 
owned by C1 and is of type C2. Since Property is a 
MultiplicityElement (Figure 3), properties have a lower 
and an upper bound for the multiplicity, i.e., the 
cardinality of the domain of the relation. The lower 
bound reflects the minimum number and the upper 
bound reflects the maximum number of objects 
that need to be in the domain of the relation. As 
shown in Figure 3, the lower and upper boundary 
can be either a natural number or arbitrarily large, 
represented by the symbol *.

The upper multiplicity of an association is often 
unbound (*) because in most systems, the number 
of elements in a relation is not restricted to a fixed 
literal value. For instance, we used an unbound 
multiplicity for all associations in the company 
model (Figure 4), except for the property worksIn 
of Employee, because an employee can be related 
to at most one office in our system.

However, an unspecified number of elements 
in a relation can potentially cause a low maturity 
level of the model. In the company model, the 
employment relation is an example of low ma-
turity: It allows managers to employ any natural 
number of employees and every employee may 
work for arbitrarily many managers (but at least 



  ���

Increasing the Maturity Level of Class Models

one). In the following, we present two cases in 
which this limited way of defining multiplicities 
in MOF causes low model maturity.

Multiplicities depending on an attribute 
value. In class Manager, we modeled an attribute 
headCount, which denotes the maximum number 
of employees that a manager can employ. MOF 
does not provide means to specify that the num-
ber of employees in the employment relation 
depends on the value of headCount. Therefore, the 
instance in Figure 7 is valid: Although anna has 
a maximum head count of one, she can employ 
two employees.

Since the instance shown in Figure 7 cannot be 
excluded in terms of the MOF meta-model, an OCL 
constraint is required that restricts the employment 
relation depending on the value of the headCount 
attribute. If the company model is annotated with 
the following invariant headCountRestriction, the 
instance shown above is invalid.

Context-unaware association seman-
tics. Associations represent relations between 
classes. Often, associations are created with a 
certain semantics in mind, but the semantics is 
not specified. The relation between Employee and 
Manager in Figure 8 shows variables as lower and 

upper multiplicity bounds. The values for these 
variables determine the semantics of the relation. 
The relation can be a function (x1=0, y1=*, x2=0, 
y2=1), a total function (0..* / 1..1), an injective 
partial function (0..1 / 0..1), an injective total 
function (0..1 / 1..1), a surjective partial function 
(1..* / 0..1), a surjective total function (1..* / 1..1), 
or a bijective function (1..1 / 1..1).

The semantics of associations can be specified 
by assigning values for the multiplicities of each 
property involved in the association. However, if 
the semantics of an association depends on other 
elements in the model instance, e.g., the value of 
an attribute, this cannot be expressed in terms 
of MOF. The following example illustrates this 
problem: In the model in Figure 4, the associa-
tion employs from Manager to Employee is surjective, 
i.e., every employee needs to work for at least 
one manager. This is a problem, since the CEO 
of the company should have no manager. Thus, 
surjectivity for the employment relation is only 
required for employees who are not the CEO. How-
ever, this cannot be expressed in MOF and thus 
requires a textual constraint, which we formalize 
in constraint hasManager as follows.

Note that the multiplicity of worksFor in the 
company model should be relaxed from 1..* to * 
to avoid contradictions with hasManager.

Figure	7.	Two	employees	despite	a	maximum	head	count	of	1

context Manager
inv headCountRestriction: self.employs−>size() <= self.headCount

Exhibit	6.



���  

Increasing the Maturity Level of Class Models

property types

According to the MOF meta-model in Figure 3, 
the type of a property can be a class. This allows 
one to create associations from one class to any 
other class, even to a class that has specialized 
subclasses. Thus, any subclass of the superclass 
can take the role of the superclass in the as-
sociation. However, in some scenarios, this is 
unwanted but cannot be prevented by means of 
the MOF syntax.

Figure 9 shows an instance of our example 
model where anna, a Manager, works in a cubicle, 
while charles, an Employee, works in a single office. 
This instance is valid because it conforms to the 
meta-model.

However, a company policy may have the 
requirement that only managers may work in 
single offices. This constraint is violated by the 
instance in Figure 9. Therefore, a textual OCL 
constraint is necessary that restricts the usage of 
subclasses, which we specify as follows.

Reflexive Associations

Reflexive associations are an important means for 
modeling systems, since the concept of reflexivity 
is ubiquitous in many systems: The mother of a 
human being is a human being, the inverse of a 
color is a color, and the superior of a manager is 
a manager.

In general, reflexive associations need to be 
treated with care because they correspond to re-
cursive definitions and allow objects to be related 
to themselves. In formal proof environments such 
as Isabelle/HOL (Nipkow et al., 2002), it must be 
explicitly proven that recursive definitions termi-
nate. Often, additional constraints are necessary 
to rule out invalid relations, as in the following 
example. Although the successor of a natural 
number is a natural number, the Peano axioms, 
which can be considered a meta-model for natural 
numbers, ensure that the set of natural numbers is 
infinite and the successor relation is acyclic.

In class models, reflexive associations can 
cause a low maturity level for three reasons. First, 
they enable cycles in the object graph, second, 

Figure 8. A generic binary association between Employee and Manager

 

context Manager inv hasManager:
if not self.isCEO
then self.employs.allInstances()−>forAll ( y |
    self.allInstances()−>exists( x | x.employs−>includes(y)))
else true
endif

Exhibit	7.



  ���

Increasing the Maturity Level of Class Models

Figure	9.	Manager	and	employee	inhabiting	“inappropriate”	offices

context Single

inv onlyManagers: self.inhabitant−>forAll(x | x.oclIsTypeOf(Manager))

Exhibit 8.

Figure 10. A cyclic management relation

context Manager
 
def: closureWorksFor(S:Set(Manager)) : Set(Manager) =
 worksFor−>union((worksFor − S)−>
 collect(m : Manager | m.closureWorksFor(S−>including(self)))−>asSet())
 
inv noCycles: self.closureWorksFor(Set{})−>excludes(self)

Exhibit	9.

they allow an arbitrary number of objects to be 
related in a chain, and third, they allow for so-
called diamond configurations. In the following, 
we point out these problems in detail and show 
that textual constraints are needed to remedy the 
expressive deficiencies of graphical modeling 
languages such as MOF or UML.

Cycles. Reflexive associations can cause 
cycles in the object graph. Cycles may be desired 
in certain systems: For instance, in usual color 
spaces, the inverse of the inverse of a color is the 
color itself. However, cyclic relations are invalid 
abstractions for most systems: a person cannot be 
the mother of her mother, and a natural number 



���  

Increasing the Maturity Level of Class Models

is not the successor of itself. The reflexive asso-
ciation worksFor can cause cycles in instances of 
the company model. We illustrate such a cycle 
in Figure 10.

The model developer needs to be aware that 
reflexive associations can cause cycles in object 
graphs and it needs to be carefully assessed 
whether cycles are valid structures in the system 
that is modeled. If not, cycles can be excluded 
using OCL constraints.

For the definition of such constraints, an opera-
tion to compute the transitive closure of an opera-
tion is required. Since there is no such operation 
in OCL (Baar, 2003, OMG, 2003), the transitive 
closure of each association needs to be manually 
defined. In the following, we define a transitive 
closure operation for the worksFor association and 
state an invariant that the context object may not 
be a member of the transitive closure of its works-
For association. We use a parameter S to ensure 
termination of the operation. See Exhibit 9.

Arbitrary path lengths. Another problem 
with reflexive associations is that navigation paths 
in the model instance can be arbitrarily long. 
For certain application domains, the maximum 
path length needs to be restricted. For instance, 
Figure 11 shows an instance of the company 
model with eight hierarchy layers, which could 
be restricted to 5 in order to keep the hierarchy 
in a company flat.

Reflexive associations also allow for infinitely 
long paths, involving infinitely many objects. Such 
configurations are not valid for most systems 
modeled and should not be allowed. However, the 
length of such paths cannot be restricted in terms 
of MOF and thus needs textual constraints that 
require recursive queries. The following constraint 
restricts the path length of the worksFor association 
to 5. It consists of two parts: a definition for the 
recursive query and the actual invariant, which 
uses the previously defined query. See Exhibit 
10.

Diamond configurations. Reflexive as-
sociations can cause a third kind of undesired 
configuration, namely diamonds. Diamond 
configurations have been known for a long time 
(Newman, 1942) and have become known as 
“Nixon diamonds” in nonmonotonic reasoning 
(Reiter and Criscuolo, 1981) or “deadly diamonds 
of death” in object-oriented programming lan-
guages with multiple inheritance such as C++ 
(Martin, 1998).

In our company model, the reflexive associa-
tion worksFor can cause diamond configurations 
between managers as shown in Figure 12: daniela 
has two managers berta and cindy, who work for the 
same manager anna. Such a configuration can cause 
the following problem: If anna tells berta to fire all 
employees and tells cindy to keep all employees, it 
is not specified what happens to daniela, who works 

Figure 11. A company with eight management levels



  ���

Increasing the Maturity Level of Class Models

for both berta and cindy. Therefore, diamond con-
figurations must be treated with special care and 
even may have to be excluded in many cases.

Such a configuration can be excluded with 
the following constraint noDiamond in which 
we re-use the previously defined operation clo-
sureWorksFor(). See Exhibit 11.

unique Object Identifiers

Our example model of a company in Figure 4 is a 
data model. It is usually required for data models 
that objects can be uniquely identified, i.e., they 
must have a primary key. In MOF, a property of 

a class can be made a unique identifier by set-
ting its isID attribute to true. However, only one 
property of a class may be a unique ID (OMG, 
2006a), which excludes primary keys that are 
composed of several properties. In our example, 
the name of an Employee can be made a primary 
key in the company model in terms of MOF. 
However, if we want to compose the primary 
key from the properties name and worksIn, we need 
to add a textual constraint to the model because 
composed keys cannot be modeled in terms of 
MOF. Thus, Figure 13 shows a valid instance of 
the company model.

context Manager
 
def: pathDepthWorksFor(max: Integer, counter: Integer): Boolean =
if (counter > max or counter < 0 or max < 0) then false
else if (self.worksFor−>isEmpty()) then true
  else self.worksFor−>forAll(m:Manager|m.pathDepthWorksFor(max, counter+1))
  endif
endif
 
inv smallHierarchy: self.pathDepthWorksFor(4,0)

Exhibit 10.

Figure	12.	Diamond	configuration	of	managers

 

context Manager inv noDiamond:
  self.worksFor−>exists(m1,m2 |  m1−>closureWorksFor(Set{})−>intersect(
                                m2−>closureWorksFor(Set{}))−>notEmpty()
                       implies m1=m2)

Exhibit 11.



���  

Increasing the Maturity Level of Class Models

Using the OCL operation isUnique(), we can 
textually specify the tuple (name,worksIn) to be the 
primary key for class Employee. The constraint 
reads as in Exhibit 12.

relations between properties

Often, properties of the same class or of differ-
ent classes are related because the value of one 
property depends on the value of other proper-
ties. The MOF meta-model does not provide any 
means to express such relations. In this subsection, 
we illustrate two examples for why this lack of 
expressiveness causes low maturity. We distin-
guish between simple and complex relations of 
properties.

Simple relations of attribute values. Two 
properties can be related by a binary operator such 
as less-than (<). However, such relations cannot 
be modeled in terms of the MOF meta-model. 
Figure 14 shows an instance of the company 
model that conforms to the meta-model although 
the employee charles has a higher salary than his 
manager anna, which may not conform to their 
company’s policy.

To exclude such instances, the following OCL 
constraint highestSalary needs to be added to the 
company model. The constraint requires that the 
salary of a manager is higher than the salary of 
each employee. See Exhibit 13.

Complex relations of attribute values. 
In our example world, the budget of a manager 
is used to pay the salary of the manager’s em-
ployees. Therefore, the budget must be at least 
the sum of the salaries of all employees whom a 
manager employs. However, this fact cannot be 
expressed in terms of MOF, and therefore, the 
instance in Figure 15 is a valid instance of the 
company model, although anna cannot pay the 
full salaries for bob and charles.

In order to exclude the instance from Figure 15, 
we annotate the company model with the following 
invariant, budgetRestriction. See Exhibit 14.

We have presented several cases in which the 
limited expressiveness of the MOF meta-model 
requires refinement of class models defined in 
terms of MOF, and we have shown how OCL 
constraints can be used to increase the maturity 
level of class models. However, writing a cor-
rect constraint specification for a class model is 

Figure	13.	Two	employees	with	the	same	name	sharing	an	office

 

context Employee
inv uniqueness: self.allInstances()−>isUnique(e|Tuple(x=e.name,y=e.worksIn))

Exhibit 12.



  ���

Increasing the Maturity Level of Class Models

Figure 14. An employee has a higher salary than his manager

 

context Manager
inv highestSalary: self.employs−>forAll( e | e.salary < self.salary )

Exhibit 13.

Figure	15.	Sum	of	employees’	salaries	is	higher	than	the	budget

 

context Manager
inv budgetRestriction: self.employs.salary−>sum() <= self.budget

Exhibit 14.

a time-consuming task that requires significant 
amount of expertise (Wahler et al., 2007). In the 
following section, we present how constraint 
patterns can be used to increase maturity levels 
with lower effort.

uSing patternS to increaSe 
Maturity

In this section, we show how constraint patterns 
can be used to easily eliminate the sources of low 
maturity presented in the previous section. We 

represent each pattern as a function that maps 
parameters to an OCL expression. For each prob-
lem, we choose a constraint pattern and show how 
it can be parameterized to prevent the example 
instances shown in the previous section. This 
coupling of problem and solution paves the way 
for a semi-automatic refinement process.

Multiplicities of properties

In Section 3.1, we showed that unbound multi-
plicities (*) for associations are on the one hand 
unavoidable in class models, and on the other 
hand, they are often a source of low maturity. In 



��0  

Increasing the Maturity Level of Class Models

this subsection, we present patterns that allow one 
to restrict the cardinality of unbound associations 
depending on the context, i.e., attribute values of 
objects in the instance.

MultiplicityRestriction. In our company 
model from Figure 4, we modeled that managers 
can employ an arbitrary number of employees. In 
Figure 7, we showed that the number of employees 
of a manager m should depend on the value of the 
attribute headCount of m. Therefore, we defined the 
following OCL constraint (see Exhibit 15).

This constraint can be represented as an 
instance of the MultiplicityRestriction pattern, 
which is defined as in Exhibit 16.

This pattern has three parameters: navigation, 
which is a sequence of properties, thus allowing 
for the use of OCL navigation expressions such 
as self.employs.office, operator, and value, which can 

be arbitrary OCL expressions. Typically, value is 
the name of an attribute. Using this pattern, the 
constraint headCountRestriction can be defined 
as shown in Figure 16 using our prototype for 
IBM Rational Software Architect (RSA).

InjectiveAssociation, SurjectiveAsso-
ciation, BijectiveAssociation. In Section 3.1, 
we showed that it is generally possible to define 
associations in MOF as injective, surjective, or 
bijective functions. However, if the semantics of 
an association depends on the context of the model 
instance, e.g., on attribute values, the semantics 
must be specified with an OCL constraint. The 
following constraint patterns can be instantiated 
to specify injectivity, surjectivity, and bijectivity. 
See Exhibit 17.

Using these patterns, we can express constraint 
hasManager from Section 3.1 in combination with 

context Manager
inv headCountRestriction: self.employs−>size() <= self.headCount

Exhibit	15.

pattern MultiplicityRestriction(navigation: Sequence(Property), operator: OclExpression,
                                value:OclExpression) =
 self.navigation−>size() operator value

Exhibit	16.

Figure	16.	Constraint	headCountRestriction	as	represented	in	RSA



  ���

Increasing the Maturity Level of Class Models

the IfThenElse pattern from Section 2.3 as follows. 
If a manager is not the CEO, the employs associa-
tion must be surjective, i.e., the manager needs to 
work for another manager. See Exhibit 18.

Alternatively, the MultiplicityRestriction pat-
tern can be used to express above constraint. In 
our tool, we represent hasManager as shown in 
Figure 17.

property types

In Section 3.2, we showed that properties that have 
a general type, e.g., the property worksIn of type 
Office, often require further specification, which 
is not possible in terms of MOF. Therefore, an 

OCL constraint needs to be defined that restricts 
the type of a property to a subset of the possible 
subtypes.

In our example, we want to constrain that 
employees may not work in single offices and 
thus defined the following OCL constraint. See 
Exhibit 19.

The constraint pattern TypeRestriction can 
be used to define this constraint in a simple and 
concise way. Using the parameter allowedClasses, 
a set of classes can be specified as allowed types 
for a navigation. This requires an additional 
existential quantifier, in contrast to the original 
constraint onlyManagers. See Exhibit 20.

pattern InjectiveAssociation(property:Sequence(Property)) =
   self.property−>size() = 1 and
   self.allInstances()−>forAll (x,y | x.property = y.property implies x=y)
 
pattern SurjectiveAssociation(property:Sequence(Property)) =
   self.property.allInstances()−>forAll ( y |
      self.allInstances()−>exists( x | x.property−>includes(y)))
 
pattern BijectiveAssociation(property:Sequence(Property)) =
   InjectiveAssociation(property) and
   SurjectiveAssociation(property)

Exhibit	17.

context Manager inv hasManager:
   IfThenElse(Set{not self.isCEO}, SurjectiveAssociation(Sequence{employs}), true)

Exhibit 18.

Figure	17.	Constraint	hasManager	as	represented	in	RSA



���  

Increasing the Maturity Level of Class Models

Figure 18 shows an example pattern instance 
of TypeRestriction that represents the onlyMan-
agers constraint.
 
Reflexive Associations

In Section 3.3, we showed that unconstrained 
reflexive associations allow for instantiations 
that may be undesired. In particular, instances 
of reflexive associations can be cyclic, arbitrarily 
long, or multiple paths between two objects (i.e., 
diamonds) can exist. In this section, we present 
three patterns that can be instantiated to avoid 
such undesired instances.

NoCyclicDependency. Figure 10 shows a 
model instance with a cyclic path: anna works 
for berta, who herself works for cindy, who herself 
works for anna. In order to exclude such cycles, we 
defined the following constraint that ensures that a 
manager does not appear in the transitive closure 
of the worksFor association. See Exhibit 21.

To avoid writing such a verbose constraint, 
we use the pattern NoCyclicDependency, which 
is the inverse of the CyclicDependency pattern in 
(Wahler et al., 2007). This pattern instantiates the 
auxiliary pattern closure, which contains a defini-
tion for the transitive closure. See Exhibit 22.

In Figure 19, we illustrate the constraint no-
Cycles as realized using the NoCyclicDependency 
pattern in RSA.

PathDepthRestriction. Unconstrained 
reflexive associations make it possible to create 
instances with arbitrarily long paths. Figure 11 
shows a path of length seven between the manag-
ers anna and helen. We added the following OCL 
constraint to the model to exclude such instances. 
See Exhibit 23.

This constraint can be stated using the Path-
DepthRestriction pattern, which uses an auxiliary 
pattern satisfiesPathDepth. To instantiate the 
pattern, a parameter property specifying the as-

context Single
inv onlyManagers: self.inhabitant−>forAll(x | x.oclIsTypeOf(Manager))

Exhibit	19.

pattern TypeRestriction(property:Property, allowedClasses:Set(Class)) =
   self.property−>forAll(x | allowedClasses−>exists(t | x.oclIsTypeOf(t)))

Exhibit 20.

Figure 18. Instance of type restriction pattern

 



  ���

Increasing the Maturity Level of Class Models

context Manager
 
def: closureWorksFor(S:Set(Manager)) : Set(Manager) =
   worksFor−>union((worksFor − S)−>
   collect(m : Manager | m.closureWorksFor(S−>including(self)))−>asSet())
 
inv noCycles: self.closureWorksFor(Set{})−>excludes(self)

Exhibit 21.

pattern NoCyclicDependency(property: Sequence(Property)) =
   self.closure(property)−>excludes(self)
 
pattern closure(property: Sequence(Property)) =
   self.property−>union(self.property.closure(property))

Exhibit 22.

Figure	19.	Constraint	noCycles	as	represented	in	RSA

context Manager
 
def: pathDepthWorksFor(max: Integer, counter: Integer): Boolean =
   if (counter > max or counter < 0 or max < 0) then false
   else if (self.worksFor−>isEmpty()) then true
           else self.worksFor−>forAll(m:Manager|m.pathDepthWorksFor(max, counter+1))
           endif
   endif
 
inv smallHierarchy: self.pathDepthWorksFor(4,0)

Exhibit 23.



���  

Increasing the Maturity Level of Class Models

 

sociation and a parameter maxDepth specifying 
the maximum path depth need to be specified. 
See Exhibit 24.

In Figure 20, we show an example of how the 
depth of the worksFor association can be restricted 
to five using this pattern. To this end, we choose 
worksFor as parameter value for property and 5 as 
value for maxDepth.

UniquePath. The third problem of recursive 
associations that we have identified is that they 
make it possible to create diamond configurations 
in the object graph. For instance, in Figure 12, 
anna has two employees berta and cindy, who are 
managers themselves. Both berta and cindy share 
one employee, daniela. We excluded such instances 

with the constraint noDiamond. See Exhibit 25.
In (Wahler et al., 2007), the pattern UniquePath 

is defined. This pattern allows one to easily exclude 
diamond-shaped instances by parameterizing it 
with one parameter, property. The definition of 
the pattern reads as in Exhibit 26.

In Figure 21, we illustrate how constraint no-
Diamond can be specified using the UniquePath 
constraint pattern.

Unique Object Identifiers

We showed in Section 3.4 that objects should be 
uniquely identifiable and that this can be easily 
accomplished if a single property of the object’s 
class is the unique identifier. However, if the 

pattern PathDepthRestriction(property: Sequence(Property), maxDepth:Integer) =
   self.satisfiesPathDepth(property,maxDepth−1,0)
 
pattern satisfiesPathDepth(property: Sequence(Property), max:Integer,
                                            counter:Integer) =
   if (counter > max or counter < 0 or max < 0) then false
   else if (self.property−>isEmpty()) then true
           else self.property−>forAll(m|m.satisfiesPathDepth(property, max, counter+1))
           endif
   endif

Exhibit 24.

Figure 20. Instance of pattern PathDepthRestriction

context Manager inv noDiamond:
   self.worksFor−>exists(m1,m2 | m1−>closure(worksFor)−>intersect(
                                                      m2−>closure(worksFor))−>notEmpty()
                                                      implies m1=m2)

Exhibit	25.



  ���

Increasing the Maturity Level of Class Models

pattern UniquePath(property: Sequence(Property)) =
   self.property−>exists(m1,m2 | m1−>closure(property)−>intersect(
                                                    m2−>closure(property))−>notEmpty()
                                                    implies m1=m2)

Exhibit	26.

Figure 21. Constraint noDiamond as represented in RSA

unique key of an object is composed of several 
properties, we need to use an OCL constraint to 
express this fact. We used the following constraint 
to express that each employee can be uniquely 
identified by the name and by the office that the 
employee inhabits (see Exhibit 27 and 28).

Pattern UniqueIdentifier, which is a more 
general version of the UniqueAttributeValue pat-
tern in (Wahler et al., 2007), can be used to easily 
express above uniqueness constraint.

Figure 22 shows an example instance of pat-
tern UniqueIdentifier.

context Employee
   inv uniqueness: self.allInstances()−>isUnique(e|Tuple(x=e.name,y=e.worksIn))

pattern UniqueIdentifier(property:Tuple(Property)) =
   self.allInstances()−>isUnique(property)

Exhibit	27.

Exhibit 28.

relations between properties

In Section 3.5, we showed that textual constraints 
are necessary to express relations between prop-
erties. In the following, we use two constraint 
patterns to express the previously introduced 
constraints.

AttributeRelation. Figure 14 showed an 
instance in which an employee has a higher sal-
ary than his manager. We added the constraint 
highestSalary to exclude such instances from the 
set of valid instances. See Exhibit 29.

This constraint can be expressed using the 
AttributeRelation pattern. Using this pattern, 



���  

Increasing the Maturity Level of Class Models

an attribute contextAttribute can be related to a 
remoteAttribute by an operator. The class contain-
ing the contextAttribute and the class containing 
the remoteAttribute are related by a navigation. 
See Exhibit 30.

Figure 23 shows a pattern representation of 
constraint highestSalary.

AttributeSumRestriction. In Figure 15, 
we showed a different source of

low maturity in which the cardinality of the 
association depends on the relation of several at-
tributes. In this example, the number of employees 
a manager can employ depends on the budget of 
the manager and the salaries of the employees. The 
OCL constraint that expresses this dependency 
reads as in Exhibit 31.

To capture this constraint, we introduce a 
new pattern, AttributeSumRestriction. Besides 
the parameter navigation, which is analog to the 
MultiplicityRestriction pattern, this pattern has 
two parameters. Parameter summation refers to 

the property in the context class that denotes the 
value that must not be exceeded, and summand 
refers to the property in the related class that is 
accumulated. See Exhibit 32.

In Figure 24, we show an example of how the 
constraint budgetRestriction is defined using the 
pattern AttributeSumRestriction.

With these patterns, we have introduced 
an easy-to-use remedy for each source of low 
maturity presented in Section 3. Furthermore, 
coupling specific constraint patterns with one of 
the expressive limitations of graphical modeling 
languages allows for pointing users to possible, 
predefined solutions to recurring specification 
problems. In the next section, we show how such 
coupling can be used to simplify model refine-
ment in a Computer Aided Software Engineering 
(CASE) tool.

Figure 22. Constraint uniqueness as represented in RSA

context Manager
   inv highestSalary: self.employs−>forAll( e | e.salary < self.salary )

Exhibit	29.

pattern AttributeRelation(navigation:Sequence(Property), remoteAttribute:Property,
                                         operator: OclExpression, contextAttribute:Property)=
   self.navigation−>forAll( x | x.remoteAttribute operator contextAttribute)

Exhibit 30.



  ���

Increasing the Maturity Level of Class Models

 

 

Figure 23. Constraint highestSalary as represented in RSA

context Manager
   inv budgetRestriction: self.employs.salary−>sum() <= self.budget

Exhibit 31.

pattern AttributeSumRestriction(navigation: Sequence(Property),
                                                    summand: Property, summation: Property) =
   self.navigation.summand−>sum() <= summation

Exhibit 32.

Figure 24. Constraint budgetRestriction as represented in RSA

tool Support and firSt 
experienceS

In this section, we present prototypical tool sup-
port that analyzes a model for sources of low 
maturity and offers constraint patterns that can be 
instantiated to increase the model’s maturity level. 
We also show how the tool helps to improve the 

MDE process and provide an experience report of 
applying the tools to a real-world case study.

tool Support

Figure 25 illustrates a simplified traditional de-
velopment process for MDE: After the model has 
been defined and a (potentially empty) constraint 
specification has been added, code is generated 



���  

Increasing the Maturity Level of Class Models

that is evaluated against test cases that corre-
spond to the system requirements. If the code 
does not pass the tests, the model may need to be 
changed and/or constraints may need to be added 
to, removed from, or changed in the constraint 
specification. If the generated code passes the 
tests, it can be deployed. Such a process can be 
time-consuming because specifying constraints 
comprises identifying sources of low maturity 
and writing potentially complex OCL expressions. 
Often, problems are detected in the test phase 

only, which results in numerous iterations of the 
constraint specification task.

Tool support for our approach simplifies 
this traditional workflow by adding two new 
components, model analysis to automatically 
detect potential sources of low maturity and an 
implementation of constraint patterns. In the 
new workflow as depicted in Figure 26, the time-
consuming iteration caused by such an “trial-
and-error” approach is replaced by a structured 
approach comprising two new tasks, analyze 
model and instantiate constraint patterns. In 

Figure	25.	Traditional	workflow	for	constraint	specification

 
D efine
m ode l

S pec ify
constra in ts

G enera te
code

Test
code

D ep loy
code

Tests
successfu l?

no

yes

Figure	26.	Workflow	for	constraint	specification	using	patterns

D efine
m ode l

Instantia te
constra in t
patte rns

A na lyze
m ode l

G enera te
code

D ep loy
code

Tests
successfu l?

yes

no

Figure	27.	Invoking	class	model	analysis



  ���

Increasing the Maturity Level of Class Models

the following, we highlight the features of our 
implementation.

The first new task, analyze model, can be 
invoked from the context menu of a model as 
shown in Figure 27. It analyzes the model for 
occurrences of insufficiently specified model 
elements as introduced in Section 3. As a result, 
the tool presents a class model analysis view 
as depicted in Figure 28, which contains a list 
of potential problems regarding low maturity. 
Each item in the list contains a description of the 
problem and the context element for which the 
problem occurs. For each item, the user has two 
choices: the problem can either be ignored by the 
user because model analysis searches for potential 
problems or the user can take counter-measures 
against the displayed problem.

In the second case when the user wants to 
increase the maturity level, the analysis view 
recommends constraint patterns for each item in 
the list. This is possible because of the coupling 
between problem and solution, as explained in 
Section 4. From the context menu of each item, 
an appropriate constraint pattern can be selected 
as instant fix and automatically be instantiated, as 
shown in Figure 28. The pattern instance is shown 
in the class diagram and certain parameters are 
automatically filled in, e.g., the name of properties 
that represent reflexive associations, while the 
remaining parameters are specified by the user. 

After a pattern instance is fully parameterized, 
it can be automatically transformed into a textual 
constraint, e.g., in OCL.

Our prototype is a plug-in extension to the 
CASE tool IBM Rational Software Architect 
(RSA) and adds the following features to the 
functionality of RSA:

•	 A class model analysis that investigates a 
given model for occurrences of the limita-
tions introduced in Section 3,

•	 An analysis view as shown in Figure 28, 
which presents the analysis results in a user-
friendly way and allows users to instantiate 
appropriate constraint patterns with a single 
action;

• A transformation that transforms the in-
stances of each constraint pattern into an 
OCL constraint.

Such tool support has the following advan-
tages. First, the user is supported in detecting 
potential sources of low maturity. This task is 
usually time-consuming, requires a high level 
of expertise from the model developer, and some 
problems may be not identified, which may 
cause problems in the remainder of the develop-
ment process. Second, the model developer can 
specify most constraints by simply instantiating 
and parameterizing constraint patterns instead 

Figure 28. Results of class model analysis



��0  

Increasing the Maturity Level of Class Models

of manually writing OCL expressions, which is 
time-consuming and error-prone because some 
constraints are fairly complicated, e.g., constraints 
for reflexive associations (cf. Section 3.3). Third, 
our approach is independent of the constraint 
language, i.e., several transformations can be 
defined that transform pattern instances into dif-
ferent target languages, e.g., OCL, Java, or Alloy 
(Jackson, 2002).

experience report

In a larger case study (Chen et al., 2006), we refined 
a monitor model by formalizing 71 constraints 
that were provided in its specification in natural 
language. These constraints motivate our choice 
of the five limitations we introduced in Section 
3, because the set of constraint patterns we used 
for formalizing the specification comprises

•	 multiplicity restrictions (around 25% of all 
constraints),

•	 type restrictions (around 15% of all con-
straints),

•	 no cyclic dependencies (4),
•	 unique identifiers (for around 15% of all 

classes), and
•	 attribute relations (around 20% of all con-

straints).

For the initial unconstrained model, our analy-
sis provided 272 suggestions for refinement. After 
refining the model with the constraints from the 
specification, the analysis reported 203 remain-
ing suggestions, which provides two interesting 
insights. Firstly, the constraint specification 
covers only around 25% of the possible prob-
lems that our analysis finds. Since our analysis 
provides an over-approximation, i.e., it searches 
for potential problems, it seems natural that only 
a fraction of these suggestions is actually carried 
out. However, the remaining 203 suggestions 
not handled by the specification contain a large 
number of reflexive relations, which we consider 

one of the most important modeling concept that 
requires refinement, because reflexive relations 
can cause cycles in the object graph, which in 
turn can result in nonterminating computations. 
Thus, we suggest to extend the specification by 
some of the problems identified by our analysis. 
Secondly, the specification contains constraints 
not suggested by the analysis. This is caused by 
the fact that our analysis searches for problems 
that are independent of the application domain of 
the model, whereas the constraint specification 
for the monitor model contains domain-specific 
constraints.

concluSion

In this chapter, we have identified several short-
comings in the expressiveness of modeling lan-
guages such as MOF. We have shown how these 
shortcomings can cause low maturity, which is a 
threat to the quality of models because it allows 
invalid model instances to be created. We have 
presented how constraint patterns can be used as 
an easy and precise means to increase maturity 
levels, and we have presented an extension to 
the CASE tool IBM Rational Software Architect 
(RSA) that supports users in identifying and in-
creasing maturity in class models by coupling the 
results of an automatic analysis with predefined 
constraint patterns.

Diagrammatic languages such as defined by 
MOF or UML have been successfully used in 
various development projects. However, model 
developers must be aware that diagrammatic 
languages alone are not sufficient for developing 
class models with high maturity, but they require 
textual constraints to avoid low maturity levels. 
Overall, we believe that a tool-supported approach 
as presented in this chapter enables users to create 
precise models with reasonable effort. After all, 
systems with a low maturity level can be developed 
with any programming language, and it may be 



  ���

Increasing the Maturity Level of Class Models

harder to systematically analyze programs and 
detect low maturity than to analyze models.

future reSearch directionS

From our experience, we have identified the five 
problems discussed in Section 3 as the most impor-
tant ones for increasing the maturity level of class 
models. Future work can build on these problems 
and investigate further specification problems that 
frequently occur in the MDE process, both inde-
pendent of the application domain and specific to 
certain domains. Future work can also comprise 
enhancing the tool support. In particular, we envi-
sion an improved view of the analysis results in 
which results are ordered or grouped according 
to certain priorities. Furthermore, pattern-mining 
techniques could be used to map existing OCL 
constraints to our patterns and thus incorporate 
existing constraints in the analysis.

Although increasing the maturity of models 
is a current problem, the inverse problem, over-
specification, is another threat to the quality of a 
class model. In a nutshell, an overspecified model 
contains constraints that contradict each other, and 
as a consequence, no valid instance of the model 
can be created. Constraint specifications with con-
tradictory constraints are inconsistent, and we are 
currently investigating the problem of consistent 
model refinement. We envision several directions 
for future research in this area. Since OCL is an 
undecidable logic (Cengarle and Knapp, 2004), 
consistency analysis is a challenge for tools and 
users. Whereas an interactive analysis approach 
that involves interactive theorem proving can be 
performed with approaches such as HOL-OCL 
(Brucker and Wolff, 2006), future research may 
focus on automatic, but necessarily incomplete, 
consistency analysis methods. Constraint patterns 
can play an important role in such automatic ap-
proaches, since their fixed structure can simplify 
consistency proofs.

Little work exists on the quality of class mod-
els, despite the fact that various quality aspects 
have been identified (www.metamodel.com, 2007, 
Gitzel and Hildenbrand, 2005, Davis and Bigelow, 
2002, Gamma et al., 1995). These aspects need to 
be highlighted in more detail and from different 
perspectives in order to identify practices that are 
recommended and those that are discouraged, 
which will motivate further design patterns and 
anti-patterns. In particular, we consider the fol-
lowing quality aspects interesting: First, what are 
“correct” levels of abstraction for different kinds 
of class models, i.e., at what point of time in the 
MDE process is what maturity level desired? 
Second, what are the implications on the quality 
of a class model that is composed using different 
means of meta-model extension, e.g., profiles vs. 
extensions (Cook, 2000).

acknowledgMent

I thank Jana Koehler and Ksenia Ryndina for the 
constructive discussions on the subject of this 
chapter. Furthermore, I thank the anonymous 
reviewers for their helpful comments.

referenceS

Ackermann, J. and Turowski, K. (2006). A Library 
of OCL Specification Patterns to Simplify Be-
havioral Specification of Software Components. 
In Proceedings of Conference on Advanced 
Information Systems Engineering, volume 4001 
of LNCS (Lecture Notes in Computer Science), 
pages 255–269.

Ahrendt, W., Baar, T., Beckert, B., Bubel, R., 
Giese, M., Hähnle, R., Menzel, W., Mostowski, W., 
Roth, A., Schlager, S., and Schmitt, P. H. (2005). 
The KeY Tool. Software and System Modeling, 
4(1):32–54.



���  

Increasing the Maturity Level of Class Models

Atkinson, C. and Kühne, T. (2001). The Essence 
of Multilevel Metamodeling. In Gogolla and Ko-
bryn, editors, UML	2001	–	The	Unified	Modeling	
Language. Modeling Languages, Concepts, and 
Tools: 4th International Conference, Toronto, 
Canada, October 1-5, 2001, Proceedings, volume 
2185 of LNCS. Springer, pages 19-33.

Atkinson, C. and Kühne, T. (2003). Model-driven 
Development: A Metamodeling Foundation. IEEE 
Software, 20(5):36–41.

Baar, T. (2003). The Definition of Transitive Clo-
sure with OCL – Limitations and Applications. In 
Proceedings, Fifth Andrei Ershov International 
Conference, Perspectives of System Informat-
ics, Novosibirsk, Russia, volume 2890 of LNCS, 
Springer, pages 358–365.

Beckert, B., Keller, U., and Schmitt, P. H. (2002). 
Translating the Object Constraint Language into 
First-order Predicate Logic. In Proceedings of 
VERIFY, Workshop at Federated Logic Confer-
ences	(FLoC).

Bois, B. D., Lange, C. F., Demeyer, S., and Chau-
dron, M. R. (2006). A Qualitative Investigation 
of UML Modeling Conventions. In (Kuzniarz et 
al., 2006), pages 79–94.

Brucker, A. D., Doser, J., and Wolff, B. (2006). 
Semantic Issues of OCL: Past, Present, and Fu-
ture. In Proceedings	of	the	6th	OCL	Workshop	
at	 the	UML/MoDELS	Conference	 2006, pages 
213-228.

Brucker, A. D. and Wolff, B. (2006). The HOL-
OCL Book. Technical Report 525, ETH Zurich, 
Switzerland.

Buschmann, F., Meunier, R., Rohnert, H., Som-
merlad, P., and Stal, M. (1996). Pattern-oriented 
Software Architecture: a System of Patterns. John 
Wiley & Sons, Inc. New York, NY, USA.

Cabot, J. (2006). Ambiguity Issues in OCL 
Postconditions. In Proceedings	of	the	6th	OCL	

Workshop	at	the	UML/MoDELS	Conference	2006, 
pages 194–204.

Cengarle, M. V. and Knapp, A. (2004). OCL 
1.4/5 vs. 2.0 Expressions Formal Semantics and 
Expressiveness. Software and Systems Modeling, 
3(1):9–30.

Chen, S.-K., Lei, H., Wahler, M., Chang, H., Bhas-
karan, K., and Frank, J. (2006). A Model Driven 
XML Transformation Framework for Business 
Performance Management Model Creation. In 
International Journal of Electronic Business, 
volume 4, pages 281–301. Inderscience.

Chiorean, D., Bortes, M., and Corutiu, D. (2005). 
Proposals for a Widespread Use of OCL. In Baar, 
T., editor, Proceedings	of	the	MoDELS’05	Con-
ference Workshop on Tool Support for OCL and 
Related Formalisms - Needs and Trends, Montego 
Bay, Jamaica, October 4, 2005, Technical Report 
LGL-REPORT-2005-001, pages 68–82. EPFL, 
Lausanne, Switzerland.

Chrissis, M., Konrad, M., and Shrum, S. (2003). 
CMMI: Guidelines for Process Integration and 
Product Improvement. Addison-Wesley Profes-
sional.

Cook, S. (2000). The UML Family: Profiles, 
Prefaces and Packages. In Evans, A., Kent, S., 
and Selic, B., editors, UML	2000	-	The	Unified	
Modeling Language, Advancing the Standard, 
Third International Conference, York, UK, Oc-
tober 2-6, 2000, Proceedings, volume 1939 of 
LNCS, pages 255–264. Springer.

Costal, D., Gómez, C., Queralt, A., Raventós, R., 
and Teniente, E. (2006). Facilitating the Definition 
of General Constraints in UML. In Nierstrasz, 
O., Whittle, J., Harel, D., and Reggio, G., editors, 
MoDELS	 2006, volume 4199 in LNCS, pages 
260–274. Springer-Verlag.

Crosby, P. B. (1979). Quality is Free. The Art of 
Making Quality Certain. McGraw-Hill Book 
Company.



  ���

Increasing the Maturity Level of Class Models

Davis, P. K. and Bigelow, J. H. (2002). Motivated 
Metamodels. In Proceedings of the 2002 PerMIS 
Workshop. 

Dwyer, M. B., Avrunin, G. S., and Corbett, J. C. 
(1998). Property Specification Patterns for Finite-
state Verification. In FMSP	 ’98:	 Proceedings	
of the second workshop on Formal methods in 
software practice, pages 7–15, New York, NY, 
USA. ACM Press.

Gamma, E., Helm, R., Johnson, R., and Vlis-
sides, J. (1995). Design Patterns: Elements of 
Reusable Object-Oriented Software. Addison-
Wesley Longman Publishing Co., Inc., Boston, 
MA, USA.

Gitzel, R. and Hildenbrand, T. (2005). A Tax-
onomy of Metamodel Hierarchies. Working 
Paper 2/2005. 

IBM (2007). Rational Software Architect. http://
www-306.ibm.com/software/awdtools/architect/
swarchitect/index.html.

Jackson, D. (2002). Alloy: A Lightweight Ob-
ject Modelling Notation. ACM Transactions 
on Software Engineering and Methodology, 
11(2):256–290.

Kan, S. H. (2002). Metrics and Models in Software 
Quality Engineering. Addison-Wesley.

Kleppe, A. and Warmer, J. (2003). The Object 
Constraint Language. Second Edition. Addison-
Wesley.

Kuzniarz, L., Sourrouille, J. L., Straeten, R. V. 
D., Staron, M., Chaudron, M., Förster, A., and 
Reggio, G., editors (2006). Proceedings of the 1st 
Workshop on Quality in Modeling. Co-located 
with	the	ACM/IEEE	9th	International	Conference	
on Model Driven Engineering Languages and 
Systems	(MoDELS	2006), Genova, Italy.

Lange, C. F. J. and Chaudron, M. R. V. (2006). 
Effects of Defects in UML Models: an Experi-
mental Investigation. In ICSE	’06:	Proceeding	

of the 28th international conference on Software 
engineering, pages 401–411, New York, NY, USA. 
ACM Press.

Martin, R. C. (1998). Java and C++: A Critical 
Comparison. In Java Gems: Jewels from Java 
Report, pages 51–68.

Miliauskaitė, E. and Nemuraitė, L. (2005). Repre-
sentation of Integrity Constraints in Conceptual 
Models. Information Technology and Control, 
34(4):355–365.

Newman, M. H. A. (1942). On Theories with a 
Combinatorial Definition of “Equivalence”. The 
Annals of Mathematics, 43(2):223–243.

Nipkow, T., Paulson, L. C., and Wenzel, M. (2002). 
Isabelle/HOL - A Proof Assistant for Higher-Or-
der Logic. Number 2283 in LNCS. Springer-Verlag 
Berlin Heidelberg New York.

Object Management Group (OMG) (2003). UML 
2.0	OCL	Final	Adopted	Specification. http://www.
omg.org/cgi-bin/apps/doc?ptc/03-10-14.pdf.

OMG (2006a). Meta	Object	Facility	(MOF)	Core	
Specification. Version 2.0. http://www.omg.org/
cgi-bin/doc?formal/2006-01-01.

OMG (2006b). Unified	 Modeling	 Language:	
Superstructure. Version 2.1. OMG document 
ptc/06-04-02. http://www.omg.org/cgibin/
doc?ptc/2006-04-02.

Reiter, R. and Criscuolo, G. (1981). On Interacting 
Defaults. Proceedings of the Seventh Interna-
tional	Joint	Conference	on	Artificial	Intelligence	
(IJCAI’81), pages 94–100.

Schulmeyer, G. and Mcmanus, J. (1999). The 
Handbook of Software Quality Assurance. Pren-
tice Hall.

Seidewitz, E. (2003). What Models Mean. IEEE 
Software, 20(5):26–32.

Süß, J. G. (2006). Sugar for OCL. In Proceedings 
of	the	6th	OCL	Workshop	at	the	UML/MoDELS	
Conference	2006, pages 240–251.



���  

Increasing the Maturity Level of Class Models

van der Aalst, W., ter Hofstede, A., Kiepuszewski, 
B., and Barros, A. (2003). Workflow patterns. In 
Distributed and Parallel Databases, Springer, 
2003, 14, 5-51

Wahler, M., Koehler, J., and Brucker, A. D. (2007). 
Model-Driven Constraint Engineering. Electronic 
Communications of the EASST, 5.

www.metamodel.com (2007). How do I tell a 
good metamodel from a bad one? Online article.  
http://www.metamodel.com/staticpages/index. 
php?page=20021010225607569. Visited April 
2007.

additional reading

Ackermann, J. (2005). Formal Description of OCL 
Specification Patterns for Behavioral Specifica-
tion of Software Components. In Baar, T., edi-
tor, Proceedings	of	the	MoDELS’05	Conference	
Workshop on Tool Support for OCL and Related 
Formalisms - Needs and Trends, Montego Bay, 
Jamaica, October 4, 2005, Technical Report 
LGL-REPORT-2005-001, EPFL, Switzerland, 
pages 15–29.

The author presents a few simple constraint pat-
terns	and	shows	how	they	simplify	the	specifica-
tion process. Interesting reading for motivation 
on using constraint patterns.

Botiza, C., Carcu, A., Chioreau, D., Moldovan, 
S., and Pasca, M. (2003). Ensuring UML Models 
Consistency Using the OCL Environment. In UML 
2003 - Workshop: OCL 2.0 - Industry standard 
or	scientific	playground?

The	OCL	Environment	(OCLE)	is	a	tool	that	sup-
ports	users	in	the	precise	specification	of	class	
models with OCL. This is a valuable reference for 
readers who want to experiment with OCL.

Calì, A., Calvanese, D., De Giacomo, G., and 
Lenzerini, M. (2001). Reasoning on UML Class 
Diagrams in Description Logics. In Proc. of IJCAR 
Workshop on Precise Modelling and Deduction 
for Object-oriented Software Development.

The authors discuss consistency of class models. 
This paper is for readers who are interested in the 
semantic foundations of class models.

Ehrig, K., Küster, J. M., Taentzer, G., and Win-
kelmann, J. (2006). Generating instance models 
from meta models. In Proceedings of the 8th IFIP 
International Conference on Formal Methods 
for Open Object-Based Distributed Systems, 
Bologna, Italy, volume 4037 of LNCS, pages 
156–170. Springer.

In this paper, an approach is introduced to auto-
matically generate instances from class models. 
This approach may be interesting for readers who 
want to know whether constrained class models 
can be instantiated.

Foerster, A., Engels, G., and Schattkowsky, T. 
(2005). Activity Diagram Patterns for Modeling 
Quality Constraints in Business Processes. In 
Proceedings of the MoDELS Conference, volume 
3713 of LNCS, pages 2–16. Springer.

The authors present a language for representing 
patterns for activity diagrams. This paper may be 
interesting for anybody who wants to learn more 
about using patterns in model-driven software 
development.

Gogolla, M. and Richters, M. (2002). Expressing 
UML Class Diagrams Properties with OCL. In 
Object Modeling with the OCL, The Rationale 



  ���

Increasing the Maturity Level of Class Models

behind the Object Constraint Language, pages 
85–114, London, UK. Springer-Verlag.

In this paper, it is investigated how the constraints 
that can be expressed in terms of class models, 
e.g., multiplicity constraints, can be represented 
OCL. Interesting reading as background on con-
straints and patterns.

Jackson, D., Schechter, I., and Shlyakhter, I. 
(2000). Alcoa: The Alloy Constraint Analyzer. 
Proceedings of the International Conference on 
Software Engineering, pages 730–733.

Alloy	is	an	object-oriented	specification	language	
comparable to UML/OCL. This paper discusses 
the	consistency	analysis	of	Alloy	 specifications	
and may thus be interesting as background in 
constraint languages.

Koehler, J. and Vanhatalo, J. (2007). Process 
Anti-Patterns: How to Avoid the Common Traps 
of Business Process Modeling. IBM WebSphere 
Developer Technical Journal, 10.2/10.3.

The authors discuss anti-patterns for business 
process models and how to remedy them. An in-
teresting witness for the importance of patterns 
in software engineering.



���  

Chapter X
Transitioning from 

Code-Centric to Model-Driven 
Industrial Projects: 

Empirical Studies in Industry 
and Academia

Miroslaw Staron
IT University of Göteborg, Sweden

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

abStract

Introducing Model	Driven	Software	Development	(MDSD)	into	industrial	projects	is	rarely	done	as	a	
“green	field”	development.	The	usual	path	is	to	make	a	transition	from	code-centric	(CC)	development	in	
existing projects into MDSD in a step-wise manner. Similarly to all other software development activities, 
software quality assurance needs to be adjusted to meet the new challenges arising when using models 
instead of the code for the mainstream development. In this chapter we present a set of empirical data on 
the issues related to transitioning from CC to MDSD projects in industry. First, we present results from 
a	set	of	experiments	evaluating	how	a	domain	specific	notation	affects	the	effectiveness	and	efficiency	of	
reading techniques used for inspecting models. Second, we present a comparison of productivity increase 
when changing to MDSD projects from one of the large Swedish companies. Finally we present a short 
survey on the prioritization of products, projects, and resource metrics in MDSD projects. 

introduction

Introduction of new development paradigms and 
technologies is never a simple task. It is even 
harder when we consider large software develop-
ment organizations with a long history of using 
other methods and with a portfolio of long-lasting 

software products. The long-term nature of these 
projects coupled with their continual development 
requires stable and reliable development methods. 
In contrast, the global economy with its competi-
tion drive companies to seek out and adopt new 
methods and tools to improve productivity and 
enhance their competitive position with innovative 



  ���

Transitioning from Code-Centric to Model-Driven Industrial Projects

products of higher quality and rapid development 
cycles. Using modeling in software development 
promises improved quality and productivity 
through increased automation of the software 
development process.  

Model Driven Software Development (MDSD) 
comes in many flavors – starting from using gen-
eral-purpose modeling languages such as UML 
(Unified Modeling Language, (Object Manage-
ment Group, 2004)), and ending with a set of 
integrated Domain Specific Modeling Languages 
(DSLs). The main characteristic of MDSD proj-
ects, regardless of the modeling notation used is 
that models play the central role in the process. 
Models are used for code generation, but also for 
early quality assessment activities (e.g. software 
inspections, testing executable models), or for 
estimations. 

This chapter addresses the problem of provid-
ing empirical evidence on how much improve-
ments could be expected in the first projects 
conducted according to the principles of MDSD. 
It also addresses the issue of which aspects should 
a project manager consider when undertaking 
the first projects in MDSD, and which metrics 
should be customized for MDSD already for the 
first project. 

In order to address the problem we analyze 
a set of empirical studies performed both in in-
dustry (case studies at Ericsson) and in academia 
(experiment with software inspections). By pro-
viding empirical evidences and experiences from 
industry we support managers of future software 
projects in making informed decisions concerning 
adoption of MDSD. 

The chapter presents experiences of improve-
ments brought by model-driven development in 
industrial projects and the expected increase of 
effectiveness of software inspection of models 
elicited through experiments. 

The chapter is structured as follows. Section 2 
presents the background for the claims presented in 
the chapter, outlines the existing problems in detail 
and overviews the existing literature in the area. 

Section 3 is the core of the chapter and presents 
the empirical studies, in the end discussing their 
validity. Section 4 presents a short meta-analysis 
of the series of studies presented in Section 3. 
Section 5 contains conclusions. The chapter con-
cludes with a section on future research directions 
related to using reading techniques as a quality 
assurance technique for models, and research in 
productivity assessment in MDSD projects. 

background

Based on the roadmap for research on MDSD 
(France & Rumpe, 2007) it shows that MDSD is 
not yet a fully established technology and it will 
still evolve. Therefore, an issue could be raised 
whether it is mature enough to be adopted or 
whether it delivers on its promises. The main 
challenge in the industrial adoption of MDSD is 
that MDSD needs investments to be effective: the 
larger the investments, the larger the benefits. In 
large software projects and in large companies the 
adoption of MDSD is burdened with all the prob-
lems of immature technology (how to justify real 
expenses based on promises?) and organizational 
resistance (how do we know that the technology 
actually improves our way of working?). Herein 
lies a challenge – how to gradually build up the 
confidence that using models in a project can 
help to increase productivity (or quality, or ide-
ally – both). As we are able to show in the case 
study at Ericsson in Section 3.3, in addition to 
investing in technology, the investments should 
also contain costs of coaching (making sure that 
modeling knowledge is in place), model migra-
tion, or gradual migration process.

Transitioning of software practices from 
document and code centric into model driven 
can take several years, which is shown in a re-
cent study from Motorola (Baker, Loh, & Well, 
2005). The length of time depends on the size of 
the organization and the range of the products of 
the company. The long time span of the adoption 



���  

Transitioning from Code-Centric to Model-Driven Industrial Projects

activity needs to take into account the fact that 
technology changes during that time. This fact 
also means that the criteria for deciding whether 
to early adopt MDSD in industry are not the same 
as the decision criteria for the projects adopting 
MDSD a while later. The interpretation of the 
results from this study could indicate that there are 
several flavors of MDSD at large companies: 

•	 using UML as the core modeling language 
of MDSD, and

•	 using Domain Specific Modeling Languages 
(DSLs) as the core languages of MDSD. 

As it is currently observed, the first flavor is 
more popular. Therefore the “UML flavor” of 
MDSD forms the context of this chapter. 

In this chapter we consider UML as the core 
modeling language in MDSD as all the presented 
studies use UML (both in the experiment and in 
industry). The studies presented here are based 
on the view of MDSD as a process of creating 
a sequence of models in a semi-automated way. 
The automation is achieved through the use of 
model transformations, which can be programs 
that transform one model into another or make 
updates to the same model. The process is semi-

automated since not all model transformations 
can be automated at the current state of technol-
ogy. Such a view of MDSD can be presented in 
Figure 1 and it is adopted from one of the pioneer 
companies introducing MDSD into their processes 
(Staron, Kuzniarz, & Wallin, 2004a). 

The process of using models (which should be 
inherent in the product development process) is 
realized by Model Driven Architecture (Mellor, 
Kendall, Uhl, & Weise, 2002; Miller & Mukerji, 
2003). MDA realization of MDSD recognizes 
four kinds of models: Computation Independent 
Models (CIM), Platform Independent Models 
(PIM), Platform Specific Models (PSM), and 
Platform Models (PM). The models, expressed in 
UML, are used sequentially, as shown in Figure 
1. The models differ in the abstraction levels and 
purposes. The horizontal and diagonal lines rep-
resent transformations; the transformations can 
be manual and automated1. The vertical lines in 
the right-hand side of the figure represent depen-
dencies between code modules. This approach to 
MDSD can be referred to as the generative ap-
proach since new models are created from other, 
more abstract models, the models are used to 
generate the code and the code is then compiled. 
An alternative approach is the executable approach 

Figure	1.	Models	in	MDSD	in	the	studied	organizations	(©2007	Miroslaw	Staron.	Used	with	permis-
sion)

 

C ode

A bstract 
m ode l – 
e .g . C IM

C ode

C ode

M odera te ly  
de ta iled  –  
e .g . P IM

M odera te ly  
de ta iled  –  
e .g . P IM

V ery d eta iled 
– e .g . P S M

V ery d eta iled 
– e .g . P S M

V ery d eta iled 
– e .g . P S M

P M

P M

P M



  ���

Transitioning from Code-Centric to Model-Driven Industrial Projects

where the models are executed and verified – the 
code is embedded in the models (Mellor & Bal-
cer, 2002; Starr, 2002). The transformations can 
themselves be expressed as models thus creating 
a set of interrelated models – called mega-models 
(Bézivin, 2005; Bézivin, Jouault, Rosenthal, & 
Valduriez, 2005).

Another flavor of MDSD can be seen as us-
ing DSLs as the core modeling notation. In the 
telecom domain, Jouault et al. (2006) show that 
this approach needs extra effort for integration of 
DSLs, which is required as the final product, is 
usually an embedded application. One of the major 
differences between DSLs and general-purpose 
languages (like UML) is the way of integrating 
models. In the UML case, the integration is easier, 
as the complete system can be expressed in one 
model, while in the previous case it is a set of 
models expressed in different DSLs. The practical 
problems with integrations of DSLs are that the 
extra effort is needed to create mechanisms for 
integration and the semantics of the integrations. 
Furthermore, Evans et al. (2003) show that creation 
of MDSD environments is usually a creation of 
a multitude of languages specific for dedicated 
purposes. Making these languages subsets of a 
single language like UML eases the integration 
and allows early verification and validation of the 
system (or its model). 

The creation of modeling languages requires 
deep knowledge in the mechanism and tech-
niques used for that purpose – the main one being 
metamodeling. As Atkinson and Kühne (2002) 
point out, metamodel creation is an essential 
part of MDSD and requires the competence of 
a language engineer. A way of simulating the 
creation of a brand-new modeling language is 
customization of an existing one. In the case of 
UML, stereotypes can be used for that purpose. 
The use of stereotypes has limitations, but it has 
also advantages – e.g. less strict requirements for 
knowledge from the creators of the customization 
(Staron & Wohlin, 2006). 

France and Rumpe (2007) in their roadmap 
outline research needs in the area of MDSD and 
thus provide insight into the current challenges 
of MDSD. They identify 3 categories of chal-
lenges: 

•	 Manipulating models – defining the chal-
lenges with automation of model transfor-
mations, e.g. the need for effective integra-
tion of models and increased research into 
mega-models (i.e. models of models and 
transformations between them).

•	 Supporting separation of design concerns 
– defining the challenges with creating 
separate views on the same phenomenon 
and integration of these views, e.g. Aspect 
Oriented Modeling. 

•	 Modeling language – defining the challenges 
related to the use of high level modeling lan-
guages, e.g. managing language complexity 
and extensibility, domain specific modeling 
environments. 

France and Rumpe also point out the need for 
executable models that can help to shrink the gap 
between problem domain and the solution space. 
They conclude that at the current stage, MDSD 
only contributes to the complexity of software and 
that the technologies of MDSD need more research 
into being effectively usable in industry. 

A study at two Swedish companies willing to 
adopt MDSD (Staron, 2006) identifies additional 
challenges with large scale industrialization of 
model driven development. The outcome of that 
study indicated that the main challenges are:

•	 Maturity of modeling technology – indicat-
ing that the modeling environments are either 
restrictive (and simple, not well-suited for 
the problem at hand), or vast (and difficult, 
demanding large expertise in defining mod-
eling languages and tool building).

•	 Maturity of modeling related methods 
– indicating that project need support in 



��0  

Transitioning from Code-Centric to Model-Driven Industrial Projects

quality management based on models and 
improving the ways the models are used in 
the process. 

•	 Process compatibility – indicating that the 
processes cannot be “revolutionized” by the 
introduction of models, but rather gradually 
improve efficiency. 

•	 Core language engineering expertise – in-
dicating that at the current state of the tech-
nology the project team needs to understand 
details behind the construction of a modeling 
language – e.g., to understand the constraints 
of the modeling technology.

•	 Goal-driven adoption process – indicating 
that MDSD should be adopted gradually 
aligned with elevating the competence of 
the team. 

In this chapter we focus on providing empirical 
evidences on how much improvements one could 
expect from effective and efficient use of models. 
First we present a survey of a focus group, which 
results in identifying that process automation, 
modeling knowledge, and model based quality 
assurance are the most important elements which 
the group would see solved. 

iSSueS and SolutionS in 
adopting MdSd in the initial 
projectS 

In this section we present a set of issues and 
controversies to address while transitioning to 
MDSD in large software organizations/projects. 
These issues are:

•	 How much can quality assurance benefit 
if domain-specific modeling notations are 
used?

•	 How much productivity improvement can 
we expect from the first project?

•	 Which are the most important investments 
in the first projects in MDSD?

These issues are addressed by proposing 
solutions which are in the form of results from 
several case studies and experiments both in aca-
demia and industry. Each study has a described 
background, motivation, outline of the design, 
and the results. 

how Much can QA Benefit if 
Domain-Specific Modeling 
notations are used?

From the perspective of quality assurance, MDSD 
promises increased quality of products, at the 
same time promising increased productivity. In 
order to verify these promises, we performed 
a series of experiments with domain specific 
notations and reading techniques. In the initial 
experiments we evaluated whether a domain 
specific notation, simulated by UML stereotypes, 
increases the level of understanding of models 
in comparison with the standard UML models 
(L. Kuzniarz, Staron, & Wohlin, 2004; Staron, 
Kuzniarz, & Wohlin, 2004, 2006). The outcome 
of the previous experiments was that the domain 
specific notation increased the understanding by 
up to 131% (the correctness of designs evaluated 
at Volvo IT). In the next experiment we evalu-
ated whether a similar domain specific notation 
increased the effectiveness and/or efficiency of 
reading techniques, which are presented in this 
section. The experiment presented here is an 
extension of the experiment presented in (Staron, 
Kuzniarz, & Thurn, 2005). 

The motivation behind this experiment was to 
evaluate whether a domain specific notation helps 
in increasing quality of models when structured 
reading techniques are used. We intended to check 
how much improvement in quality (correctness) 
one can expect when migrating from standard 
UML to domain specific notations. The charac-
teristics of the study are as follows:

•	 Type: controlled experiment
•	 Treatments: 



  ���

Transitioning from Code-Centric to Model-Driven Industrial Projects

 domain specific notation (simulated 
with UML stereotypes) and general 
purpose notation (UML) 

•	 Sampling: Randomized Control Trial using 
blocking

•	 Analysis: Statistics: Shapiro-Wilk test for 
normality, paired t-test (or Wilcoxon depend-
ing on the results of Shapiro-Wilk)

•	 Results: Effectiveness is higher for a domain-
specific notation than the general purpose 
notation; efficiency is the same

UML Stereotypes and Reading 
Techniques

As defined in the UML specification documents 
(Object Management Group, 2003), the main 
idea behind using stereotypes is to introduce 
new semantics to the existing model elements. 
The UML definition of stereotypes involves 
the definitions of other extension mechanisms 
– tagged values and constraints (c.f. (Gogolla & 
Henderson-Sellers, 2002; Ludwik Kuzniarz & 
Staron, 2002)). Stereotypes allow extending the 
language in a way, which is consistent with the 
definition of the language and they are useful in 
automatic model transformations, like for example 
code generation for a specific purpose (e.g. (Uhl 
& Lichter, 2002)).

In addition to the above, there is also another 
way of perceiving stereotypes – the original inten-
tion of introducing the notion of stereotypes. The 
stereotypes can provide a secondary classification 
of model elements. This concept was initially 
introduced in (Rebecca Wirfs-Brock, Wilkerson, 
& Wiener, 1994). Such stereotypes provide a 
means of expressing some classification of the 
stereotyped model elements, adding properties, 
which cannot be defined for all model elements of 
the same kind, but only for some. These stereo-
types can be classified as transitive stereotypes 
(according to the classification presented in (C. 
Atkinson, Kühne, & Henderson-Sellers, 2002)), 

because they are added to classifiers on the model 
level, but should also be recognized on the instance 
level. They are useful as a secondary classification 
mechanism (R. Wirfs-Brock, 1993) since they 
both brand the classifier and its instances with 
additional meaning. An example of a transitive 
stereotype is presented in Figure 2. 

The figure presents two stereotyped elements 
– a class which is also a sender station and its in-
stance – a particular sender in a city in Sweden. 

Other important elements in the experiment 
design are the reading techniques. Different read-
ing techniques are used to examine the artifacts 
during software inspections and to find errors. In 
the investigation presented in this paper, we use 
two specific reading techniques – checklist-based 
reading (CBR, (Fagan, 1976)) and perspective-
based reading (PBR, (Basili et al., 1996)) and an 
unstructured reading (further referred to as the 
ad-hoc technique).

In the context of software inspections, the 
reading techniques are only a part of the whole 
process. Usually, the complete process consists 
of planning, overview, preparation, meeting, re-
work and follow-up. The details of all steps in the 
inspection process can be found in (Fagan). 

Checklist based reading (CBR) is a reading 
technique in which the reader is given a checklist 

Figure 2. Example of a UML stereotype presented 
using	 a	 graphical	 notation	 (©2007	 Miroslaw	
Staron.	Used	with	permission)

HIT-FM Vaxjo-HIT-FM



���  

Transitioning from Code-Centric to Model-Driven Industrial Projects

with specific kind of faults to look for. The items 
in the checklist can be expressed as questions or 
as statements. In particular, the checklist con-
tains items that help in finding logical errors in 
the inspected documents – errors that cannot be 
verified in an automatic way by a modeling tool 
(in the case of UML models). 

Perspective based reading (PBR) is a read-
ing technique in which artifacts are examined 
from certain perspectives. Each perspective is 
intended to provide a different way of examining 
the document. Using different perspectives allow 
focusing on various aspects of the document (for 
example user’s or designer’s perspective). One 
of the assumptions of PBR is that the reader 
can better identify faults if he/she works in a 
structured manner. The PBR is a special kind of 
scenario-based reading techniques (Porter, Votta, 
& Basili, 1995).  

The third kind of reading can be characterized 
as ad hoc reading. It denotes a technique which 
provides no guidelines and implies that the readers 
use their personal experience to find faults. Only a 
general description of the task is provided as part 
of the instructions for this reading technique. 

Outline of Experiment Design

The goal of the experiment was to evaluate the 
effect of domain specific notation on the effec-
tiveness and efficiency of reading techniques in 
software inspections. The reading techniques 
used in the experiment were the most widely 
adopted techniques – checklist-based reading 
(CBR), perspective-based reading (PBR), and 
unstructured reading. 

The hypotheses in the experiment were:

H0-effectiveness: Introducing stereotypes does not 
influence	 the	 effectiveness	 of	 finding	 faults	 by	
subjects

H1-effectiveness:	Introducing	stereotypes	influences	the	
effectiveness	of	finding	faults	by	subjects

H0-efficiency:	Introducing	stereotypes	does	not	influ-
ence	the	efficiency	of	finding	faults	by	subjects

H1-efficiency:	Introducing	stereotypes	influences	the	
efficiency	of	finding	faults	by	subjects

The derived variables, effectiveness and ef-
ficiency, are calculated from the direct variables 
– time (T), number of faults found (FF), and 
total number of faults in the design (TF), in the 
following way:

TF
FFesseffectiven =  and 

T
FFefficiency =

The hypotheses are tested using the paired 
t-test and Wilcoxon (as efficiency was found non-
normally distributed).

The experiment was done as a paired compari-
son design. The participants were divided into two 
groups (A and B). After the analysis between these 
two groups we observe the mean values for each 
reading technique, which are compared between 
the groups. However, due to the number of sub-
jects (35) we did not use reading techniques as a 
factor level which would result in non-significant 
results caused not by the lack of effect, but by the 
insufficient number of subjects/data points.   

Results 

The basic descriptive statistics for the efficiency 
are presented in Table 1. 

The descriptive statistics indicate that there 
is a small difference between the mean values 
of notations. The Shapiro-Wilk test for normality 
does not allow rejecting the assumption of the data 
being normally distributed with significance level 
of 0.322. Therefore the parametric paired t-test is 
used for testing of hypothesis H0-efficiency. The paired 
t-test does not allow rejecting the null hypothesis 
as the significance level was 0.202. Thus the ob-
served difference in efficiency is not statistically 



  ���

Transitioning from Code-Centric to Model-Driven Industrial Projects

significant. This in consequence means that the 
introduction of stereotypes does not influence the 
efficiency of the reading techniques.

The basic descriptive statistics for the effec-
tiveness are presented in Table 2. 

The descriptive statistics shows that using 
stereotypes in models resulted in an increase of 
effectiveness by 0.14 (relatively by 29%). The 
Shapiro-Wilk test for normality does not allow re-
jecting the assumption of the data being normally 
distributed with the significance level of 0.020; 
Wilcoxon is used for testing of H0-effectiveness. After 
running this test the null hypothesis can be rejected 
with the significance level of 0.0003. This means 
that the use of domain specific notation improves 
the effectiveness of reading techniques. 

In order to investigate which of the studied 
reading techniques was affected most by intro-
ducing stereotypes, we perform an analysis of the 
effect of introducing stereotypes for each method. 
The analysis is done only with descriptive statis-
tics due to the small number of data points for 

each reading technique. The mean values for the 
effectiveness by reading technique are presented 
in Figure 3. 

The descriptive statistics indicate that the 
outcome of all reading techniques has been posi-
tively influenced, in terms of effectiveness, by 
the introduction of stereotypes. It seems that the 
most effective technique for using stereotypes is 
CBR which resulted in finding 79% of faults in 
design documents. 

Since the checklists used in the experiment 
were general purpose checklists, we expect that 
using dedicated checklists would further improve 
these results – c.f. (Laitenberger, Atkinson, 
Schlich, & Emam, 2000). The fact that CBR was 
the most effective technique indicates that the 
checklists are a very useful help in the review 
process and provide the most structured reading 
when examining the documents. 

The fact that the unstructured reading was 
better than PBR seems to be counter-intuitive. It 
could be caused by the fact that the perspectives 

Factor level Mean Std. Deviation Percentage

Domain specific (DS) 0.44 0.33 98%

General (G) 0.45 0.39 100%

Difference: DS-G -0.01 0.45 2% = 0.01/0.45

Table	1.	Descriptive	statistics	for	efficiency

Table 2. Descriptive statistics for effectiveness

Factor level Mean Std. Deviation Percentage

Domain specific (DS) 0.63 0.20 129%

General (G) 0.49 0.20 100%

Difference: DS-G 0.14 0.20 29% = 0.14/0.49



���  

Transitioning from Code-Centric to Model-Driven Industrial Projects

0 .5 4 0 .6 6 0 .6 2

0 .7 9

0 .6 1
0 .6 8

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

P B R C B R U n s tr.

Ge n e ra l n o ta tio n
D o m a in  s p e cific  n o ta tio n

might have actually mislead the subjects and let 
them focus on aspects which were not important 
in the experiment, while the unstructured reading 
stimulated the respondents to more active think-
ing and more thorough examining. 

The observed improvements in the effective-
ness of reading techniques show results from an 
academic experiment. Although the experiment 
was not replicated in industry, we still believe the 
results in industry would be stronger. This belief 
is based on our previous experiments where the 
use of a domain specific notation caused much 
stronger effect in industry than in academia 
(c.f. Figure 4) when it comes to correctness of 
understanding the design as presented by Staron 
et al. (2006). 

These results show that the transitioning from 
standard modeling notations to more advanced 
notations, which are closer to the problem domain 
than the solution space leads to increased effec-
tiveness of fault finding techniques. This in turn 
leads to increased quality of the products, as faults 

are found earlier in the development process. Al-
though this is not an exhaustive study on quality, it 
shows what kind of improvements can be expected 
in an initial project adopting MDSD in terms of 
quality increase. The limitation of this study is 
its academic context, which was dictated by the 
need to obtain statistical power when it comes to 
results. The materials in the study were based on 
the materials from our industrial partners to ensure 
that the context of the experiments were as close 
to reality as possible, at the same time retaining 
controllability over factors. The complementary 
aspect to quality – productivity – would have a 
limited use if studied in the same manner. There-
fore, we studied an industrial project at another 
industrial partner – Ericsson – in order to address 
the issue of expected productivity increase from 
the first project.  

Figure	3.		Summary	of	differences	in	effectiveness	by	reading	techniques	(©2007	Miroslaw	Staron.	Used	
with	permission)



  ���

Transitioning from Code-Centric to Model-Driven Industrial Projects

0 .5 4 0 .6 6 0 .6 2

0 .7 9

0 .6 1
0 .6 8

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

P B R C B R U n s tr.

Ge n e ra l n o ta tio n
D o m a in  s p e cific  n o ta tio n

how Much productivity improvement 
can we expect from the first 
project?

One of the crucial aspects in adopting a new 
technology is the issue of productivity and qual-
ity improvement after adoption. The project 
and product managers are eager to observe the 
improvement already in the first project. The 
increase, however, comes with a price. The first 
project needs to be given a high degree of freedom 
in adjusting the company processes to achieve 
measurable improvement in productivity and qual-
ity. The project described in this section is not a 
special case, but rather a representative situation 
with respect to controllability and conformance to 
standard company process description. This was 
our assumption which we checked in the study 
presented in Section 3.3. The same situation was 
observed in the first advanced MDSD project at 
Volvo IT (Staron, Kuzniarz, & Wallin, 2004b).  

This study can be characterized as follows:

•	 Type: case study 
•	 Sampling: convenience sampling (we used 

the most suitable project at the studied or-
ganization)

•	 Data collection: artifacts analysis, inter-
views

•	 Analysis: descriptive statistics
•	 Results: show that the MDSD project was 

39.5% more efficient than a sister CC proj-
ect

Outline of the Case Study Design

In order to assess the degree of initial productivity 
increase in the first MDSD project, we compared 
two similar projects run at Ericsson: the MDSD 
project and a sister code-centric (CC) project. The 
sister project used in the comparison was an old 
version of a similar technology2. The same plat-
form was used, although a different approach was 
used to deploy the software in this platform. The 
positioning of the projects is shown in Figure 5.

Figure 4. Differences between the improvements of industry professionals and university students in a se-
ries	of	experiments	with	a	domain	specific	notation	(©2007	Miroslaw	Staron.	Used	with	permission)



���  

Transitioning from Code-Centric to Model-Driven Industrial Projects

131%

52%

24% 25%

75%

52%

0%

20%

40%

60%

80%

100%

120%

140%

C orrec tnes s T im e Tim e for a c orrec t
ans w er

Indus try Ac adem ia

Both products operate above middleware that 
mediate communication with network nodes. Both 
products are providing a way of configuring the 
nodes according to the specifications of provider 
services. The CC project requires more configu-
ration and development of custom components 
which mediate between the CC product-specific 
messaging and the provider-specific messaging. 
The MDSD product is intended to improve that 
and provide more flexible and adaptable environ-
ment where the creation and deployment of new 
services for providers is more efficient, faster, and 
by that much cheaper. Both projects were done in 
an iterative way and in the comparison we used 
the data for the completed projects. However, since 
the MDSD project was in progress (it was just 
after the 1st iteration) for that project we used the 
actual data from the 1st iteration and the updated 
estimations for the coming iterations.

Results

The effort distribution per phase (the sum for all 
iterations) is presented in Figure 6. It should be 

noted that the effort for analysis and design could 
not be distinguished in the model-driven project. 
The term analysis did not mean the same thing 
in the CC and MDSD projects, what was called 
analysis in the CC project was included in the 
design part of it. This could have been caused by 
the fact that MDSD was adopted in this project.  

The figure shows that there is a difference 
between the effort distribution between the 
MDSD and CC projects. The MDSD project 
spends almost twice as much effort for design-
ing as the CC project. It should be noted that in 
the case of the CC project the design was done 
using textual specifications and code fragments 
illustrating important design decisions. It should 
also be noted that the implementation effort in the 
MDSD project was much smaller than for the CC 
project. In the MDSD project the implementation 
was intended to fill in the code which cannot 
be generated automatically from models. This 
is due to the fact that the standard UML with 
some basic profile support is used in the project. 
Nevertheless, the long-term goal for subsequent 

Figure	5.	MDSD	project	and	the	sister	project	–	position	 in	 the	architecture	of	 the	 telecom	systems	
(©2007	Miroslaw	Staron.	Used	with	permission)

 

M iddlew are

N e tw ork 
node

N etw ork 
node...

M D D p roduct
C C  p roduct

P rov ide r 
se rv ices

P rovide r 
se rv ices

C ustom  C C 
com ponen ts



  ���

Transitioning from Code-Centric to Model-Driven Industrial Projects

131%

52%

24% 25%

75%

52%

0%

20%

40%

60%

80%

100%

120%

140%

C orrec tnes s T im e Tim e for a c orrec t
ans w er

Indus try Ac adem ia

MDSD projects is to replace repetitive manual 
coding tasks by automated transformations. The 
resources released in this way could be used to 
develop new transformations and to focus on 
modeling of the core business functionality in 
the project. 

Another important aspect was the effort per 
unit of size for both projects. For these two proj-
ects we chose the functionality of the product 
to be the determinant of size as the size cannot 
be measured uniformly in both projects (size of 
models vs. size of source code). We used an in-
ternal metric for the functionality (which cannot 
be given together with the data on productivity 
due to the confidentiality agreement with the 
industrial partner). The results for both projects 
are presented in Figure 7. The data has been 
transformed as the real data is sensitive to the 

company, although after the transformation the 
proportions are still the same. 

The value of the total effort per unit of size 
shows that using models provides the means 
of decreasing the effort by 39.5%, which is a 
considerable value. Not surprisingly the most 
significant gains in efficiency are achieved in the 
implementation phase – 66.7% decrease in effort. 
Another interesting aspect is the reduction of ef-
fort for system testing and concurrent increase in 
the effort for function testing. This is caused by 
the fact that this first MDSD project expects to 
have problems with the software caused by the 
introduction of new paradigm and thus there is a 
need for compensating for that by increasing the 
effort for function testing (which is included in the 
planning). The initial productivity improvement 
seems promising and it does not require advanced 

Figure	6.	Effort	distribution	for	code-centric	and	model-driven	projects	(©2007	Miroslaw	Staron.	Used	
with	permission)



���  

Transitioning from Code-Centric to Model-Driven Industrial Projects

93.0

20.2

43.1

46.1

18.4

65.3

0.1

143.3

34.6

236.9

41.8

0 .0 50 .0 100 .0 150 .0 200 .0 250 .0

Im p lem enta tion 

A na lys is

F unction test

D esign& arch

S ystem  test

To ta l

person-hours per unit of size

M ode l-d riven
C ode-centric

9%

39%

18%

34%

13%

46%

42%

0 % 1 0 % 2 0 % 3 0 % 4 0 % 5 0 %Analysis
/to

ta lIm
p lem enta tio

n /to
tal

Desig
n/to

tal

Testi
ng /to

ta l

percentage of effort

M ode l-d riven
C ode-centric

tool or language customizations, which require 
significant effort (Staron & Wohlin, 2006). Larger 
benefits, however, require significant additional 
effort in customization of the modeling environ-
ment, in particular to automate the process by the 
use of model transformations. The development 
of such model transformations needs to be care-
fully planned and introduced into the projects 
gradually. 

which are the Most important 
investments in the first projects in 
MdSd? 

One of the main issues in adopting MDSD is which 
elements of the project should be addressed in the 
first place when migrating to MDSD projects. In 
particular we were interested in the will to invest 

in developing (or customizing existing) metrics 
for MDSD projects and artifacts; ISO/IEC 9126 
(described in section 3.1.1) was used as the ref-
erence standard for this purpose. To obtain an 
empirical data on the investments, we provide 
data from a survey among 20 experts in the focus 
group of researchers (4) and practitioners (16) 
working with the adoption of MDSD (or with 
MDSD that is already adopted) at their companies: 
Ericsson, Motorola, and others. The prioritization 
technique ($100 technique) was used to prioritize 
particular issues. We asked the experts a series 
of questions about:

•	 prioritization of measurements defined in 
the ISO/IEC 9126 standards,

•	 prioritization of quality characteristics of 
the ISO/IEC 9126 standards,

Figure	7.	Effort	per	unit	of	size	for	code-centric	and	model-driven	projects	(©2007	Miroslaw	Staron.	
Used	with	permission)



  ���

Transitioning from Code-Centric to Model-Driven Industrial Projects

93.0

20.2

43.1

46.1

18.4

65.3

0.1

143.3

34.6

236.9

41.8

0 .0 50 .0 100 .0 150 .0 200 .0 250 .0

Im p lem enta tion 

A na lys is

F unction test

D esign& arch

S ystem  test

To ta l

person-hours per unit of size

M ode l-d riven
C ode-centric

9%

39%

18%

34%

13%

46%

42%

0 % 1 0 % 2 0 % 3 0 % 4 0 % 5 0 %Analysis
/to

ta lIm
p lem enta tio

n /to
tal

Desig
n/to

tal

Testi
ng /to

ta l

percentage of effort

M ode l-d riven
C ode-centric

•	 prioritization of potential improvements in 
the first MDSD projects, and

•	 the use of models in their work.

Finally we interviewed a project manager 
while he was deciding whether to adopt MDSD 
in his project. Our goal was to obtain qualitative 
data and his perception of the investments. The 
manager had several years of experience as the 
project manager and engineer, including model 
driven software development. 

The motivation behind this study was to inves-
tigate which measurements are most important for 
MDSD projects and to investigate the context of 
making the decision about migration to MDSD. 
The context consists of the decision criteria, as 
well as the required initial investments. 

This study can be briefly characterized as 
follows:

•	 Type: case study
•	 Sampling: 

 Survey: Randomized Control Trial; 
population: project managers, quality 
managers, design engineers, and archi-
tects working with MDSD projects

 Migration project: Convenience sam-
pling; population: project managers of 
mid-size sub-projects that are migrating 
from code-centric to MDSD

•	 Analysis: descriptive statistics
•	 Results: show that process and resource 

metrics are the most important metrics 
in MDSD projects; modeling knowledge 
and process automation are key aspects in 
MDSD projects; and the most important 
quality characteristics are functionality and 
maintainability

ISO/IEC ���� Standard 

One of the most widely adopted quality stan-
dards which includes the definition of software 
measurements meant to measure quality is the 
ISO/IEC 9126 standard (International Standard 
Organization & Commission, 2001). The standard 
defines the following quality perspectives (also 
called approaches to quality in the standard), with 
the associated types of metrics:

•	 Process quality: defines the quality of soft-
ware processes followed during software 
development

•	 Internal quality: defines the details of soft-
ware product quality that can be improved 
during code implementation, reviewing and 
testing,

•	 External quality: defines the quality when 
the software is executed, which is typically 
measured and evaluated while testing in a 
simulated environment,

•	 Quality in use: defines the quality of software 
product as perceived by the users

The perspectives are further divided into qual-
ity characteristics, which are further associated 
with specific metrics. Each quality characteristics 
has several metrics associated with it and the 
ISO/IEC 9126 has an example set of metrics. The 
metrics in the standard, however, are not dedicated 
for models, but for measuring code-based or docu-
ment-based artifacts. Therefore, there is a need 
to develop (or customize the existing) metrics to 
reflect model driven software development. 

The standard defines the following internal 
and external quality characteristics (the char-
acteristics are defined for internal and external 
quality together – definitions are quoted after 
the standard):

•	 Functionality: the capability of the software 
product to provide functions which meet 



��0  

Transitioning from Code-Centric to Model-Driven Industrial Projects

stated and implied needs when the software 
is used under specified conditions.

•	 Reliability: the capability of the software 
product to maintain a specified level of 
performance when used under specified 
conditions.

•	 Usability: the capability of the software 
product to be understood learned, used, 
and attractive to the used, when used under 
specified conditions.

•	 Efficiency: the capability of the software 
product to provide appropriate performance, 
relative to the amount of resources used, 
under stated conditions.

•	 Maintainability: the capability of the soft-
ware product to be modified.

•	 Portability: the capability of the software 
product to be transferred from one environ-
ment to another.

These characteristics were used during the 
study presented in this section. 

outline of the case Study design

The first part of the study (survey on measure-
ments) presented in this chapter was performed 
during a focus group meeting at the workshop on 
quality in modeling at the MODELS conference 
and at Ericsson in Sweden. The focus group con-
sisted of architects, researchers, managers, and 
design engineers, who have experience in the field. 
The sampling technique was Randomized Control 
Trial as we have randomly chosen participants 
and not the whole group of experts. 

The second part of the study (migration is-
sues) was performed at Ericsson, by interviewing 
a project manager who was involved in making 
the decision whether the project should adopt 
MDSD and how the adoption should be done. The 
sampling was a convenience sampling as we only 
looked for the appropriate managers at Ericsson, 
our industrial partner, and no other company in 
the region. 

Prioritization of Measurements in 
ISO/IEC ����

The first question asked to the respondents was 
which of the measurements defined in the ISO/
IEC 9126 they would see as most important – i.e. 
in which quality perspective (and the types of 
metrics associated with them) they were willing 
to invest and how much if they were to develop 
new measurements. Their rationale was that if the 
experts were to be part of the first MDSD project 
in their organization, which measurements they 
would need most to be able to ensure controlla-
bility of their work (which is different depending 
on the role – quality manager, project manager, 
architect, consultant, researcher, and designer).  
Figure 8 presents the average of the answers from 
the experts in the focus group.  

The focus group prioritized the process metrics 
as the most important type of metrics although the 
product and resource metrics were not much less 
important. This indicates that in the first MDSD 
project, a strong focus should be put into having 
precise tools for collecting process metrics – e.g. 
efficiency of specific phase or effectiveness of the 
process of finding defects in models. 

The resource metrics are prioritized quite high 
which shows that the results come from managers 
in a company who are very concerned by the costs 
of their project. This, in turn, is caused by the 
tight market in which the company has to operate, 
where the cost has a key role in success. 

The project metrics are not highly prioritized 
as the way of working is potentially not altered 
to a large extent in the first project (since it is a 
transitioning from standard code-centric projects). 
Since MDSD changes the process of developing 
software, there is no doubt that the associated 
metrics must be changed as well. Productivity 
cannot be measured as size of the code produced 
per time unit, but rather as the size of model per 
time unit. The size of the model, however, needs 
to be specific for the phase (e.g. number of classes 
in high-level design, while the number of states 



  ���

Transitioning from Code-Centric to Model-Driven Industrial Projects

in the detailed design phase). The size metrics, 
nevertheless, are specific for the modeling nota-
tion used and the process followed. 

The process metrics are important for ensuring 
that MDSD actually delivers in terms of produc-
tivity or increased efficiency and effectiveness of 
software processes. One should not, neverthe-
less, forget that the quality of the product that 
can be affected by adopting a new development 
technology. 

Prioritization of Quality Characteristics

The experts in the focus group prioritized the 
quality characteristics of good software from 
ISO/IEC 9126. They were asked how much 
they would be willing to invest to improve each 
characteristic of the software. The results are 
presented in Figure 9.

The results show that the experts were still 
willing to prioritize the functionality and the 

maintainability of the product as top quality 
characteristics. The least important characteristic 
was portability. This is rather surprising since 
MDSD promises increased portability through 
exchangeable code generators and pluggable 
platform models. 

Prioritization of Improvements in the 
First Project

The experts were also asked which improvements 
they expect to see in the first MDSD project, 
caused by introducing MDSD. The results are 
presented in Figure 10.

The results show that the top three expected 
improvements are:

•	 Process automation – which includes au-
tomating tedious tasks – e.g. writing very 
similar code several times in the same 
project.

Figure	8.	Prioritization	of	types	of	metrics	from	ISO/IEC	9126	(©2007	Miroslaw	Staron.	Used	with	
permission)

 

0

5

10

15

20

25

30

35

importance

P roduct P rocess R esource P ro ject

Type o f m etric



���  

Transitioning from Code-Centric to Model-Driven Industrial Projects

Figure	9.	Prioritization	of	ISO/IEC	9126	quality	characteristics	(©2007	Miroslaw	Staron.	Used	with	
permission)

 

0

5

10

15

20

25

importance

Functiona lity R e liab ility U sab ility E ffic iency M ain ta inab ility P ortab ility

Quality characteristics

Figure	10.	Prioritization	of	potential	improvements	in	projects	(©2007	Miroslaw	Staron.	Used	with	permission)

 

0

20

40

60

80

100

120

140

160

importance

Contro
lla

b ility

Perfo
rm

ance

Maturity

Functio
na lity

P rocess a
utom atio

n

Guidance a u tom atio
n

E ffic
ien t resource a llo

ca tio
n

Mode l in
tegra tio

n

Methods i
n tegra tio

n

Ab ility
 to

 p lug-in
 m

ethods

Mode l b
ased e

stim
atio

ns

Mode l b
ased Q

A

Productiv
ity

Cost-e
ffic

iency

Mode lin
g  k now ledge

Deployment e
ffo

rt

Im provem ents



  ���

Transitioning from Code-Centric to Model-Driven Industrial Projects

•	 Modeling knowledge – which includes the 
knowledge how to use abstractions effec-
tively in software projects.

•	 Model based quality assurance – which 
includes using inspections of models rather 
than text documents to increase the effec-
tiveness and efficiency of quality assurance 
of early stages of project artifacts. 

The process automation should be considered 
in the context of productivity, namely how much 
productivity improvement we can expect in the 
first project by using automated code generation 
from design artifacts (as an example of process 
automation). 

Presence of Models in Experts’ Work

The final question in the survey with the focus 
group was aimed to examine the presence of 
models in various phases of software develop-
ment. The experts were asked what percentage 
of artifacts in a particular phase are models. The 

usage of models in the work of experts varies, 
and it is shown in Figure 11. The highest use of 
models is for architectural design – on average 
42% of architectural design artifacts are models. 
The next highest usage is for detailed design with 
35% of design artifacts being models. 

The survey with the experts from the focus 
group provides an overview of the importance of 
metrics in the first projects. The survey, however, 
did not provide an insight on how the projects 
are chosen whether they can be migrated into 
MDSD projects. 

Decision Factors in Adoption of MDSD

In order to establish such a set of decision criteria, 
we examined one small project at Ericsson. The 
project involved the developing of an algorithm 
used in a component in a mobile network. The 
size of the project is a few person months3 and 
this project has been chosen to be the pilot project 
supporting the project management team in mak-
ing a decision on how to proceed with the large 

Figure	11.	Use	of	models	in	the	focus	group	work	(©2007	Miroslaw	Staron.	Used	with	permission)

 

-

5 .0

10 .0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

pe
rc

en
ta

ge
 o

f a
rt

ifa
ct

s 
th

at
 a

re
 m

od
el

s

Require
ments

System ana lys is

A rch ite
ctura l d

es ign

Deta ile
d d

esign

Im
plem enta tio

n

Un it t
estin

g

System /In
tegra tio

n  te
stin

g

Functio
na l te

stin
g



���  

Transitioning from Code-Centric to Model-Driven Industrial Projects

project. In our study we identified the following 
decision criteria:

• Structure migration: It is possible to mi-
grate the core model structure (e.g. class 
diagrams) to the new model in a very cost-
effective way (i.e. with rather low effort).

• Independent co-existence: It is possible to 
model the new part/model of the software 
independently from the legacy part/model 
(e.g. by developing new sequence diagrams 
in the new model).

• Migration effort: The effort for changing 
to the new model is low.

• Controlled legacy changes: It is possible to 
reference the legacy part, and there is no (or 
very limited/controlled) need for changing 
the legacy parts/models.

• Model longevity: The “new” model will 
be used for more than one project (e.g. to 
become product documentation).

• Controlled initial change: A limited group 
of people is going to be affected by the initial 
change.

• Knowledge in place: The modeling knowl-
edge (in the new tool) is in place in the 
project and is not in the hands of one/two 
individuals.

Using the $100 technique the project man-
ager prioritized these criteria, which resulted 
in identifying two levels of criteria as shown in 
Figure 12. 

The results show that there are two classes 
of criteria defined by their importance. The 
higher prioritized criteria are related to project 
management. They address the question of what 
the project manager needs to minimize the risk 
of failing the migration process already during 
the first project. The project manager identified 
also additional issues that are pre-requisites for 
adopting MDSD from his perspective: 

Figure	12.	Prioritized	criteria	for	migration	to	new	models	(©2007	Miroslaw	Staron.	Used	with	per-
mission)

 

0

2

4

6

8

10

12

14

16

18

20

S tru
cture 

m igra tio
n

Independent c
o-exis tence

M igra tio
n e

ffo
rt

Contro
lle

d  le
gacy c

hanges

Mode l lo
ngevity

Contro
lle

d i
n itia

l c
hange

Know ledge  in 
p lace

Investm ent ($ )



  ���

Transitioning from Code-Centric to Model-Driven Industrial Projects

(i) migration process should be longer than 
the span of a single project; in the studied 
organization, the migration process could 
not be automated due to the large legacy 
code base and the size of the products, 

(ii) the initial knowledge gap should be small 
(unless large investments were envisioned), 
and

(iii) the old and the new documentation styles 
(code-centric and model-driven) can co-exist 
for some time since a lot of knowledge and 
documentation in large projects needs to be 
maintained and used in new projects (and 
there is no possibility of re-doing all docu-
mentation during the migration process).  

Model migration was less important than 
model longevity, which could be seen as an unex-
pected situation. However, it is not the case in the 
studied organization. The effort of manual can be 
(and already) is spread over several projects and 
releases as no automated tools exist which would 
fulfil the migration purposes of the company. 

The views of the project manager bring us to 
another issue – how to effectively adopt MDSD 
in industrial context. However, before diving into 
this issue, let us address another important aspect, 
directly related to quality assurance. 

validity evaluation

This chapter presents a series of empirical stud-
ies performed both in academia (section 3.1) and 
in industry (section 3.2 and 3.3). There are some 
threats to the validity of the results from the stud-
ies. In this chapter we use the validity evaluation 
framework by Wohlin et al (2000).

The main external validity threats are related 
to the case studies. The choice of projects was 
dictated by their availability. Only the projects 
which were already using (or just before using) 
MDSD were chosen in the study (section 3.2 
and 3.3 respectively). As we only examined two 
projects, this poses the threat that the results are 

not representative. We believe, however, that 
the results are representative, as they are in line 
with our other studies, not related to the studies 
presented in this chapter (Staron, Kuzniarz et al., 
2004a; Staron & Wohlin, 2006). 

The main construct validity threat is related 
to meta-analysis. The studies presented in this 
chapter were performed separately, and combined 
afterwards. Although we designed and performed 
the studies in order of appearance and using the 
experiences from the previous studies when 
designing new ones, we did not initially mean 
to perform meta-analysis. Therefore, there is a 
threat that some aspects might have been missed 
when performing the separate studies. In order to 
validate this, we performed a workshop (during the 
presentation of results) at Ericsson during which 
we presented and discussed our results. We did 
not miss any points according to the company 
representatives present during the workshop. 

The main internal validity threats are different 
for each study in the chapter:

•	 Experiment (3.1): the order of presenting 
the treatments to the subjects could bias 
the results; to minimize this we performed 
repeated-measures experiment design with 
each group having ABBA and BAAB design 
(Wohlin et al., 2000). 

•	 Productivity case study (3.2): we measured 
the effort data using the measurements 
provided by the company; since there are 
no uniform size metrics for MDSD and 
CC projects, we had to resolve to high-level 
metrics in order to be able to compare the 
productivity. This threat, however, seems to 
be minimal for the company as the metrics 
we used are also used at the company to 
assess project progress and size. 

•	 Survey and migration case study (3.3): we 
presented the quality characteristics which 
are used at the company, whereas we could 
have performed a workshop beforehand and 
let the respondents decide which quality 



���  

Transitioning from Code-Centric to Model-Driven Industrial Projects

model is best; we chose that as the company 
must adhere to adopted standards, which 
would render our results useless for the 
company if we did not adopt the ISO/IEC 
9126 standard.

Finally, the main conclusion validity threat 
is related to the analysis of the results from case 
studies. Due to the small sample sizes, the results 
are very specific and might not reflect the trends 
in the general population. However, from the 
previously reported experiences, for example (De 
Miguel, Jourdan, & Salicki, 2002; Staron, 2006; 
Vokac & Glattetre, 2005), we find our results in 
line with the existing empirical evidence. 

Meta-analySiS

The studies presented in Section 3 show that in-
troducing MDSD into software projects provides 
such benefits as increased quality (correctness) of 
artifacts and increased productivity. The increase 
in correctness was shown in the experiment, as 
this was the most adequate empirical method to 
provide evidence for this claim (due to sample 
size and controlled environment). The increase 
in productivity, however, cannot be assessed 
through an experiment since the productivity is 
best measured in a case study. 

The above benefits can be considered in a 
context of costs of introducing MDSD in the 
first projects. Investments in adjusting methods, 
metrics, tools, and knowledge of engineers are 
unavoidable. The study presented in Section 3.3. 
shows that in the first projects, the most impor-
tant metrics are process metrics and the most 
important investments should be put in elevating 
the knowledge of engineers as well as ensuring 
longevity of models. 

The studies presented in this chapter provide 
evidence how much improvements MDSD can 
bring into an organization adopting it.    

concluSion

Transitioning from code-centric development into 
MDSD can be an effort and resource intensive 
process. In this chapter we outlined two main 
aspects that are important in the first projects 
that adopt MDSD in large organizations. The 
first was how much effectiveness and efficiency 
improvement we can expect when using a domain 
specific notation. The results showed that the 
effectiveness can be improved significantly with 
constant efficiency of the process. This leads to 
increased quality of the final product at a constant 
cost. The other main aspect is the productivity 
change in the first MDSD project. The industrial 
case presented in this chapter showed that the first 
project could improve the productivity by 39.5%. 
The other two supporting studies show that the 
group of experts prioritized quality assurance 
as one of the most important aspects in the first 
MDSD project. 

future research directions

The adoption of MDSD is moving from pilot proj-
ects and from small organizations into the phase 
where large organizations are adopting MDSD for 
their large, long-term projects. Aiming at the pro-
ductivity increase, the large companies are pulling 
the technology forward, demanding advanced 
methods for working with models. Examples 
of needs that pull the development of MDSD 
project practices are configuration management 
techniques that are suited for models, supporting 
graphical identification of model differences and 
supporting model merging similar to code merg-
ing. Configuration management practices are 
necessary if the models are to increase the quality 
of software products. Ineffective configuration 
management will surely lead to delays in projects 
and inefficient verification and validation. This, 
in turn might lead to lower quality in the final 
product. Therefore, model-based CM is one of 
the future research trends within MDSD. The 



  ���

Transitioning from Code-Centric to Model-Driven Industrial Projects

existing solutions, e.g. IBM/Rational Software 
Architect, support basic configuration manage-
ment tasks, but fail to help developers in such 
situations as merging from several branched in 
a configuration tree. Although this problem also 
exists in code-based CM, it is easier to predict a 
result of merging more than two branches than 
it is when models are concerned. 

Future trends in transitioning to MDSD lean 
towards adoption of DSLs as the core modeling 
languages. The use and integration of DSLs form 
the mainstream of the research in the field (France 
& Rumpe, 2007). Domain specific notations con-
stitute a significant volume of research and several 
industry-quality tools have been released that 
support graphical DSLs – examples of these tools 
include Microsoft DSL toolkit for Visual Studio 
2005, and MetaEdit. The interest of software de-
velopment companies has risen significantly since 
the release of these tools as the DSL technology is 
no longer a research playground, but an industrial 
application. Defining the quality characteristics 
of domain specific modeling languages is still 
an open issue. The standard quality character-
istics of the ISO and IEEE standards need to be 
adapted, as the definition of languages is done 
at the meta-level (compared to the definition of 
models of systems).  

Another strong trend in MDSD and especially 
in integration of quality assurance is the intro-
duction of executable models in large software 
projects. Runtime models (as they are sometimes 
called) facilitate early verification and validation 
techniques, but at the same time require skills 
that are not common at the current software 
engineering education – working with abstract 
models and very refined action code. This work-
ing at two levels seems to be the main challenge 
to address in order to increase the quality of 
executable models. 

One future research direction is the creation of 
methods for defining domain specific checklists 
when developing domain specific languages. The 
use of these checklists should further improve the 

effectiveness of reading techniques. The checklists 
used in our experiments were general checklist 
for designs. However, it could be expected that 
the domain specific checklist, which takes into 
account design guidelines of the organization, 
should increase the effectiveness and efficiency 
of the verification process considerably. 

The second research direction is creating 
model-based project management practices to 
facilitate making the most out of software projects 
done in the MDSD way. Together with the research 
on model-based project metrics (e.g. productiv-
ity measurements), the results of research in this 
direction would be of a great value for project 
managers. 

The third direction is research into effective 
introduction of MDSD into industrial projects. In-
dustrial adoption needs to progress gradually and 
companies need support in the process of adopting 
modeling notations. Some of the challenges that 
this research should address are: increasing the 
level of abstraction, ensuring stability of modeling 
techniques in the company, or continuous profes-
sional development of software engineers who 
finished their education before graphical modeling 
languages were taught at the universities.  

Finally, the most important aspect to address in 
the transitioning to MDSD is to create a roadmap 
how the transition should be done at a particular 
company. Based on the experiences from the 
current state-of-the-art in MDSD and the exist-
ing roadmaps for related areas, e.g. education in 
engineering roadmap (Shaw, 2000), this roadmap 
would be of a great value for industry. 

acknowledgMent

The author would like to thank the experts par-
ticipating in the studies described in this paper. 
I would also like to thank Ericsson Lindholmen, 
Ericsson Region South, Blekinge Engineering 
Software Qualities (BESQ) project, Software 



���  

Transitioning from Code-Centric to Model-Driven Industrial Projects

Architecture Quality Center (SAQC), and Erics-
son SW Research for support in this study.  

referenceS

Atkinson, C., & Kühne, T. (2002). The Role 
of Metamodeling in MDA. Paper presented at 
the Workshop in Software Model Engineering, 
Dresden, Germany.

Atkinson, C., Kühne, T., & Henderson-Sellers, 
B. (2002, 2002). Stereotypical encounters of the 
third kind. Paper presented at the 5th International 
Conference on the Unified Modeling Language 
«UML» 2002. Model Engineering, Concepts, and 
Tools., Dresden, Germany.

Baker, P., Loh, S., & Well, F. (2005). Model-Driven 
Engineering in a Large Industrial Context - Mo-
torola Case Study. Paper presented at the Model 
Driven Engineering Languages and Systems 
- MoDELS, Montego Bay, Jamaica.

Basili, V. R., Green, S., Laitenberger, O., Shull, 
F., Sorumgard, S., & Zelkowitz, M. V. (1996). 
The empirical investigation of perspective-based 
reading. Empirical Software Engineering, 1(2), 
133-164.

Bézivin, J. (2005). On the unification power of 
models. Software and Systems Modeling, 4(3), 
171-188.

Bézivin, J., Jouault, F., Rosenthal, P., & Valduriez, 
P. (2005). Modeling in the Large and Modeling 
in the Small. Paper presented at the European 
MDA Workshops: Foundations and Applications, 
MDAFA 2003 and MDAFA 2004.

De Miguel, M., Jourdan, J., & Salicki, S. (2002). 
Practical Experiences in the Application of MDA. 
Paper presented at the The 6th International 
Conference on The Unified Modeling Language 
- «UML» 2002.

Evans, A., Maskeri, G., Sammut, P., & Willians, 
J. S. (2003). Building Families of Languages 
for Model-Driven System Development. Paper 
presented at the Workshop in Software Model 
Engineering, San Francisco, CA.

Fagan, M. E. (1976). Design and code inspections 
to reduce errors in program development. IBM 
Systems	Journal,	15(3), 182-211.

France, R., & Rumpe, B. (2007). Model-Driven 
Development of Complex Software: A Research 
Roadmap. Paper presented at the 29th Interna-
tional Conference on Software Engineering, 
Minneapolis, MN, USA.

Gogolla, M., & Henderson-Sellers, B. (2002). 
Analysis of UML Stereotypes in the UML 
Metamodel. Paper presented at the UML 2002, 
Dresden.

International Standard Organization, & Commis-
sion, I. E. (2001). Software engineering – Product 
quality Part: 1 Quality model. Genevao. Docu-
ment Number)

Jouault, F., Bézivin, J., Consel, C., Kurtev, I., 
& Latry, F. (2006). Building DSLs with AMMA/
ATL, a Case Study on SPL and CPL Telephony 
Languages. Paper presented at the 1st ECOOP 
Workshop on Domain-Specific Program Devel-
opment (DSPD). 

Kuzniarz, L., & Staron, M. (2002). On Practical 
Usage of Stereotypes in UML-Based Software 
Development. Paper presented at the Forum on 
Design and Specification Languages, Marseille.

Kuzniarz, L., Staron, M., & Wohlin, C. (2004). 
An Empirical Study on Using Stereotypes to 
Improve Understanding of UML Models. Paper 
presented at the The 12th International Workshop 
on Program Comprehension, Bari, Italy.

Laitenberger, O., Atkinson, C., Schlich, M., & 
Emam, K. E. (2000). An experimental compari-
son of reading techniques for defect detection in 



  ���

Transitioning from Code-Centric to Model-Driven Industrial Projects

UML design documents. The Journal of Systems 
and	Software,	53(2), 183-204.

Mellor, S. J., & Balcer, M. J. (2002). Executable 
UML : a foundation for model-driven architec-
ture. Boston ; San Francisco ; New York: Ad-
dison-Wesley.

Mellor, S. J., Kendall, S., Uhl, A., & Weise, 
D. (2002). Model-Driven Architecture. Paper 
presented at the Object-Oriented Information 
Systems, Montpellier.

Miller, J., & Mukerji, J. (2003). MDA Guide.  1.0.1. 
Retrieved 2004-01-10, 2004, from http://www.
omg.org/mda/

Object Management Group. (2003). Unified Mod-
eling Language Specification v. 1.5.   Retrieved 
2003-10-01, 2003, from www.omg.org

Object Management Group. (2004, December 
2003). Unified Modeling Language Specification: 
Infrastructure version 2.0.   Retrieved 2004-02-20, 
2004, from www.omg.org

Porter, A. A., Votta, L. G., Jr., & Basili, V. R. 
(1995). Comparing detection methods for software 
requirements inspections: a replicated experiment. 
Software Engineering, IEEE Transactions on, 
21(6), 563-575.

Shaw, M. (2000). Software engineering education: 
a roadmap. Paper presented at the International 
Conference on Software Engineering, Limerick, 
Ireland.

Staron, M. (2006). Adopting MDD in Industry - A 
Case Study at Two Companies. Paper presented 
at the ACM/IEEE 9th International Conference 
on Model Driven Engineering Languages and 
Systems, Genova, Italy.

Staron, M., Kuzniarz, L., & Thurn, C. (2005). An 
Empirical Assessment of Using Stereotypes to 
Improve Reading Techniques in Software Inspec-
tions. Paper presented at the Third Workshop on 
Software Quality, St. Louis, MO.

Staron, M., Kuzniarz, L., & Wallin, L. (2004a). 
A Case Study on Industrial MDA Realization 
- Determinants of Effectiveness. Nordic Journal 
of Computing, 11(3), 254-278.

Staron, M., Kuzniarz, L., & Wallin, L. (2004b). 
Factors Determining Effective Realization of 
MDA in Industry. Paper presented at the 2nd 
Nordic Workshop on the Unified Modeling Lan-
guage, Turku, Finland.

Staron, M., Kuzniarz, L., & Wohlin, C. (2004). 
An Industrial Replication of an Empirical Study 
on Using Stereotypes To Improve Understanding 
of UML Models. Paper presented at the Software 
Engineering Research and Practice in Sweden, 
Linköping, Sweden.

Staron, M., Kuzniarz, L., & Wohlin, C. (2006). 
Empirical assessment of using stereotypes to 
improve comprehension of UML models: A set 
of experiments. Journal of Systems and Software, 
79(5), 727-742.

Staron, M., & Wohlin, C. (2006, June 12-14, 2006.). 
An Industrial Case Study on the Choice between 
Language Customization Mechanisms. Paper 
presented at the 7th International Conference, 
PROFES 2006, Amsterdam, The Netherlands.

Starr, L. (2002). Executable UML: how to build 
class models. Upper Saddle River, NJ: Prentice 
Hall.

Uhl, A., & Lichter, H. (2002). A UML Variant for 
Modeling System Searchability. Paper presented 
at the Object Oriented Information Systems, 
Monpellier.

Wirfs-Brock, R. (1993). Stereotyping: a technique 
for characterizing objects and their interactions. 
Object Magazine, 3(4), 50-53.

Wirfs-Brock, R., Wilkerson, B., & Wiener, L. 
(1994). Responsibility-driven design: Adding to 
your conceptual toolkit. ROAD, 2(1), 27-34.



��0  

Transitioning from Code-Centric to Model-Driven Industrial Projects

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., 
Regnell, B., & Wesslèn, A. (2000). Experimenta-
tion in Software Engineering: An Introduction. 
Boston MA: Kluwer Academic Publisher.

Vokac, M., & Glattetre, J. M. (2005). Using a 
Domain-Specific	Language	and	Custom	Tools	to	
Model a Multi-tier Service Oriented Application 
- Experiences and Challenges. Paper presented 
at the Model Driven Engineering Languages and 
Systems, Montego Bay, Jamaica.

additional reading

ATLAS research group website: http://www.sci-
ences.univ-nantes.fr/lina/atl/

The practitioners interested in the issues of auto-
mating the generation of model transformations 
should read the material on the ATLAS research 
group. The material describes how the notions of 
transformations	and	definitions	of	models	can	be	
unified.	The	materials	include	several	case	studies	
on industrial applications of these techniques. 

Atkinson, C., & Kühne, T. (2000). Strict Profiles: 
Why and How. Paper presented at the ACM/IEEE 
3rd International Conference on UML.

Deeper	understanding	on	the	issues	of	defining	
profiles	 for	 theoreticians	 can	 be	 obtained	 by	
reading the material in the paper above. The 
paper explains the notion of instantiation which 
is	 important	 when	 defining	model	 transforma-
tions. This material supports the reasoning in 
our experiment. 

Atkinson, C., & Kühne, T. (2005). Concepts for 
Comparing Modeling Tool Architectures. Paper 
presented at the ACM/IEEE 7th International 

Conference on Model Driven Engineering Lan-
guages and Systems.

A practitioner interested in details how UML 
model	 repositories	 are	 built	 should	 definitely	
read the above article. The article describes how 
meta-meta-models are related to models and 
meta-models in practice. It shows that modeling 
is usually done in multiple dimensions, which to 
a large extent can explain the limitations of the 
current UML tools.

Clark, T., Evans, A., Sammut, P., & Willans, 
J. (2004). Applied Metamodeling - A Founda-
tion for Language Driven Development (1st ed.): 
Xactium.

The above material is dedicated for practitioners 
interested in understanding the practical aspects 
of creating modeling languages. This book is an 
essential reading for language engineers who 
want to increase the productivity of modeling 
beyond the limitations of standard, UML-based 
modeling.

Bell, A. E. (2004, March 2004). Death by UML 
Fever. ACM Queue, 2, 72-80.

Skeptics	in	the	adoption	of	MDSD	should	definitely	
read this article and its references. The author ex-
plicitly names the most common types of adopters 
of MDSD and reveals wholes in their reasoning. 
The material is a very good counterpart and a set 
of	negative	(or	realistic	–	as	some	researchers	put	
it)	view	of	MDSD.	

Glass, R. L. (2004). On modeling and discomfort. 
Software, IEEE, 21(2), 104-103.



  ���

Transitioning from Code-Centric to Model-Driven Industrial Projects

In the same tone as the previous article, Robert 
Glass presents a good debate on the use of do-
main	 specific	 modeling	 in	 industrial	 projects.	
The outcome of the debate is that the modeling 
community lacks empirical evidence that model-
ing indeed increases performance of software 
development. 

Thomas, D. (2004). MDA: Revenge of the Mod-
elers or UML Utopia? IEEE Software, 21(3), 
15-18.

The article above contains a discussion and expla-
nation of how MDA is an evolution of the known 
UML-based software development. The authors 
explore the notions of model transformations and 
domain	specific	modeling	as	the	next	step	in	the	
evolution of UML. 

Uhl, A. (2003). Model Driven Architecture Is 
Ready for Prime Time. IEEE Software, 20(5), 
70-72.

Practitioners interested in the discussion on 
whether MDA is mature enough to be used in 
industry should read the above article. In the 
article, the author explores the arguments for 
and against MDA being a viable alternative for 
industry in the time of its writing. 

The readers interested in other industrial case 
studies can read:

Meservy, T. O., & Fenstermacher, K. D. (2005). 
Transforming software development: an MDA 
road map. Computer, 38(9), 52-58.

In	this	article,	the	practitioners	can	find	an	ex-
ample of appropriate use of MDA in the context 
of a web application. The authors discuss the 

levels of abstractions of CIM, PIM, and PSM and 
their relationships. They conclude that MDA stills 
needs to mature, even though it has been around 
for a while. 

ModelWare project, “MDD maturity levels”, 
www.modelware-ist.org 

When working with MDSD in practice the issue 
of maturity of the use of MDSD often arises. The 
ModelWare project developed an initial version 
of	MDSD	maturity	model.	The	model	contains	five	
stages	which	define	how	mature	a	use	of	MDSD	
is in an organization. 

Vokac, M., & Glattetre, J. M. (2005). Using a 
Domain-Specific Language and Custom Tools to 
Model a Multi-tier Service Oriented Application 
- Experiences and Challenges. Paper presented 
at the Model Driven Engineering Languages and 
Systems, Montego Bay, Jamaica.

In	 this	 article,	 the	 practitioners	 can	 find	more	
evidence on effort required to develop an industry 
quality	domain	specific	modeling	language.	The	
experiences of the authors show that the develop-
ment of a good DSL require more than a few weeks 
of extra effort. This reading is a complementary to 
the evidence of the productivity increase presented 
in this chapter. 

Knodel, J., Anastasopolous, M., Forster, T., & 
Muthig, D. (2005). An Efficient Migration to 
Model-driven Development (MDD). Electronic 
Notes in Theoretical Computer Science, 137(3), 
17-27.

In practice, migration from code-centric to 
model-driven software development is a multi-
stage process. The authors of this article show a 
simple process of migrating existing projects into 



���  

Transitioning from Code-Centric to Model-Driven Industrial Projects

MDSD. This reading complements the material 
in this chapter when discussing the prioritization 
issues. 

Zhang, Y. (2004). Test-driven modeling for 
model-driven development. Software, IEEE, 
21(5), 80-86.

In this case study, the author summarizes the 
process of modeling and executing test cases 
using TTCN-3 at Motorola. This material is an 
interesting reading for practitioners who want 
to have more than just code generated from their 
models. 

endnoteS

1 Although manual transformations should 
constitute the minority of all transforma-
tions. 

2 Naturally, due to the sensitivity of the data 
presented in this paper we cannot give details 
about the products.

3 Due to the confidentiality agreement we 
cannot provide the exact numbers.



  ���

Chapter XI
From Requirements to Java Code:
An Architecture-Centric Approach for 

Producing Quality Systems

Antonio Bucchiarone
IMT of Lucca, Italy

Davide Di Ruscio
University of L’Aquila, Italy

Henry Muccini
University of L’Aquila, Italy

Patrizio Pelliccione
University of L’Aquila, Italy

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

abStract

When	engineering	complex	and	distributed	software	and	hardware	systems	(increasingly	used	in	many	
sectors,	such	as	manufacturing,	aerospace,	transportation,	communication,	energy,	and	health-care),	
quality has become a big issue, since failures can have economic consequences and can also endanger 
human	life.	Model-based	specifications	of		component-based	systems	permit	to	explicitly	model	the	struc-
ture and behaviour of components and their integration. In particular Software	Architectures	(SA)	have	
been advocated as an effective means to produce quality systems. In this chapter by combining different 
technologies and tools for analysis and development, we propose an architecture-centric model-driven 
approach to validate required properties and to generate the system code. Functional requirements are 
elicited and used for identifying expected properties the architecture shall express. The architectural 
compliance to the properties is formally demonstrated, and the produced architectural model is used to 
automatically generate Java code. Suitable transformations assure that the code is conforming to both 
structural and behavioural SA constraints. This chapter describes the process and discusses how some 
existing tools and languages can be exploited to support the approach. 



���  

From Requirements to Java Code

1. introduction

Software Architectures (SAs) are typically used to 
specify high level design blueprints of the systems 
under development and later on for maintenance 
and reuse purposes (in order to capture and model 
architectural design alternatives). At the same 
time, SAs can be used in order to analyze and 
validate architectural choices, both behavioural 
and quantitative (by complementing traditional 
code-level analysis techniques). More recently, 
architectural artefacts have been used to implicitly 
or explicitly guide the design and coding process 
(ArchJAvA Project, 2005; Fujaba Project, 2006). 
In summary, SA specifications are nowadays 
used for many purposes (Mustapic, 2004; Bril, 
2005) like documenting, analysing, or guiding 
the design and coding process. 

Even though SA documentation, analysis, and 
code generation have been intensively analyzed 
in isolation (e.g., Bernardo, 2003; Muccini, 2006; 
Fujaba Project, 2006) (code generation only very 
recently and partially), a tool supported process for 
selecting and documenting the right architecture 
and for successively propagating architectural 
design to the final system implementation is still 
missing. Analysis techniques and tools have been 
introduced to understand if the SA satisfies certain 
expected properties. By using model checking, 
testing, performance analysis (and others) at the 
architectural level, a software architect can as-
sess the architectural quality and predict the final 
system characteristics. In the context of code 
generation, this verification phase assumes even 
a more central role, being the selected architec-
tural model used for (automatically) deriving the 
system implementation. However, most of the 
analysis techniques rely on formal architectural 
specifications (e.g., (Bernardo, 2003)) of difficult 
application in industrial projects and of difficult in-
tegration in the software development process.

In this chapter we propose an architecture-
centric development approach which enables the 
Java code generation of a software system from 

a high quality architectural model-based design. 
High quality architecture hereafter is referred 
to the SA ability to fulfil certain functional and 
temporal constraints as imposed by the require-
ments. Other qualities (i.e., performance, security, 
safety, reliability, etc..) are not explicitly taken into 
consideration. The formally verified SA is then 
the starting point of model transformations that 
produce a skeleton of the Java code implementing 
the specified system. The produced code reflects 
both structural and behavioural SA constraints 
and consequently assures the validity of defined, 
specified, and verified functional requirements. 

Thus the goals of this work are twofold: to 
validate the model-based architectural specifica-
tion with respect to defined requirements, and 
to use this validated model to guide the genera-
tion of a quality system implementation using 
model-driven techniques. Moreover, the approach 
promotes the following key benefits: (i) a model-
based specification of the SA is provided, (ii) the 
conformance relation between functional require-
ments and architecture is validated, and (iii)	Java 
code is automatically generated from architectural 
models. The generated code is obliged to respect 
both structural SA constraints (e.g., each compo-
nent can only communicate using connectors and 
ownership domains (Aldrich 04) that are explicitly 
declared in the SA) and behavioural constraints 
(i.e., methods provided by components have to 
be invoked consistently with respect to the archi-
tectural specification). The approach is supported 
by automated tools, which allow formal analysis 
and permit code generation from the validated 
architecture. Overall, the approach encourages 
developers to make a more extensive and practical 
usage of SA specifications. 

The remaining of the chapter is organized 
as follows: Section 2 outlines the state of the art 
on functional requirements specification, on SA 
modelling and analysis, and on code generation. 
Based on this background information, Section 3 
describes our proposal for an architecture-centric 
model-driven and quality oriented development 



  ���

From Requirements to Java Code

process from requirements to code. Section 4 
introduces an ATM system running case study 
that is used for detailing the approach. Section 5 
draws future research directions. Section 6 dis-
cusses related work, while Section 7 concludes 
the chapter.

2. background

This section provides background information 
on the state-of-the art on functional require-
ments specification (Section 2.1), on formal and 
model-based specification of SAs (Section 2.2), 
on architecture-level analysis (Section 2.3), and 
on existing code generation techniques from 
architectural specifications (Section 2.4). 

2.1 functional requirements 
Specification

Some work have been proposed in the last years 
attempting to bridge the gap between an informal 
functional requirements description to a formal 
one. Works in this area, related to our proposed 
research, can be organized into three groups: prop-
erties elicitation and formalization, approaches for 
bringing the gap between informal requirements’ 
descriptions and formal ones, and requirements 
to software architecture transition. 

Properties elicitation and formalization: In 
the literature little attention has been put in the 
properties to be proven. In general, these are as-
sumed to exist as part of the problem specification. 
Holzman in (Holzmann, 2002) states that one of 
the “most underestimated problem in applications 
of automated tools to software verification” is 
“the problem of accurately capturing the correct-
ness requirements” (properties) “that have to be 
verified” and continues identifying the difficulty 
of such task. When the verification technique is 
model checking (Clarke, 2000), temporal logic is 
the standard method to express the correctness 

requirements. In the same chapter, Holzman shows 
how Linear-time Temporal Logic (LTL) (Manna, 
1992) formulae may be used to describe proper-
ties and how the level of sophistication required 
by them may allow one to specify properties in a 
wrong way. However, in an industrial context it 
is unfeasible to write by hand complex LTL for-
mulae. To this extent, he proposes a tool to write 
temporal properties in a graphical notation.

In (Smith, 2002) the authors recognize the 
difficulty in writing properties correctly. They 
notice that this difficulty is not only related to 
the chosen notation: “no matter what notation is 
used, however, there are often subtle, but impor-
tant, details that need to be considered”. In order 
to mitigate this problem, they propose PROPEL 
introducing pattern templates previously identi-
fied, which are represented using both disciplined 
natural language and finite state automata. 

Bringing the gap between informal require-
ments’ descriptions and formal ones: Many 
languages and notations have been suggested 
and devised for use in requirements engineering. 
Less formal notations, such as scenarios and use 
cases, have proven to be more for elicitation and 
negotiation, while more formal notations have 
proven more effectiveness for requirements 
specification and analysis. Much work has been 
done over last years attempting to bridge the gap 
between informal requirement descriptions to 
formal ones. We here discuss only those works 
we believe closer to our approach.

Johannisson in his PhD thesis (Johannisson, 
2005) investigates how to bridge the gap between 
formal and informal software specifications. This 
work makes use of interactive syntax-directed 
editor, parsers and linearizers, based on a gram-
matical framework that combines linguistic and 
logical methods. The approach proposed in this 
chapter is related to a number of other approaches 
that have been considered by researchers.

In (Zhu, 2003) the authors exploit a software 
tool that allows system engineers to write detailed 



���  

From Requirements to Java Code

use case descriptions using structured templates. 
The specification is guided by use case style 
guidelines, temporal semantics and an extensive 
dictionary of naval domain nouns. Once the use 
case description phase has been accomplished, 
system engineers derive use case specifications 
and, after parameterization, corresponding sce-
narios are automatically generated.

In the Specification Pattern Instantiation and 
Derivation EnviRonment (SPIDER) framework 
(Cheng, 2006), developers can create natural 
language specifications of properties that are 
automatically and transparently mapped to the 
property specification language of the targeted 
analysis tools, e.g., LTL.

Requirements to software architecture 
transition: The problem of deciding how require-
ments, architectures and implementation have to 
be mutually related is still open as advocated and 
investigated by many researchers (STRAW 2003; 
Nuseibeh, 2001; Grünbacher, 2003). In (STRAW 
2003; Nuseibeh, 2001), ways to bridge the gap be-
tween requirements and SAs have been proposed. 
Grünbacher et al. propose ways to trace require-
ments to SA models (Grünbacher, 2003) and SA 
to the implementation (Medvidovic, 2003).

Considerations: One relevant problem that 
arises during the requirement engineering process 
is the result of failing to make a clear transition be-
tween different levels of requirements description. 
According to the terminology adopted in (Som-
merville, 2004), the term “user requirements” 
is used to mean high-level abstract requirement 
descriptions and the term “system requirements” 
is used to mean detailed and possibly formal 
descriptions. Often in practice, stake-holders are 
able to describe user requirements in an informal 
way without detailed technical knowledge. They 
are rarely willing to use structured notations or 
formal ones. Transiting from user requirements 
to system requirements is an expensive task. In 
fact, we are speaking about decisions made dur-

ing early phases of the software development 
process, when the system under development is 
vague also in the mind of the customer. A good 
answer to this need is W_PSC (Autili, 2006), a 
speculative tool that facilitates understanding 
and structuring requirements. By means of a set 
of sentences (based on expertise in requirements 
formalization and on a set of well-known patterns 
(Dwyer, 1999) for specifying temporal properties 
used in practice) and classified according to main 
keywords of temporal properties, W_PSC forces 
to make decisions that break the uncertainty and 
the ambiguity of user requirements. 

The output of W_PSC is a temporal property 
expressed in Property Sequence Chart (PSC) 
(Autili, 2007). PSC is a simple and (sufficiently) 
powerful formalism for specifying temporal 
properties in a user-friendly fashion. It is a sce-
nario-based visual language that is an extended 
graphical notation of a subset of UML2.0 Sequence 
Diagrams. PSC can graphically express a useful 
set of both liveness and safety properties in terms 
of messages exchanged among the components 
forming the system. W_PSC supports also the user 
on taking many required decisions transiting from 
requirements to architecture. Indeed, automati-
cally transforming informal requirements into 
formal temporal properties is not always possible 
(due to inconsistencies or under specifications) 
and may become time consuming. W_PSC, as all 
those related approaches previously summarized, 
makes an attempt to make the transition from 
informal requirements to formal properties easier 
and faster. Being W_PSC and PSC part of our 
proposal, further usage details will be provided 
in the following Section 3 and Section 4.

2.2 Software architecture  
Specification 

Two main classes of languages have been used 
so far to specify SAs: formal Architecture De-
scription Languages (ADLs) and model-based 
specifications. 



  ���

From Requirements to Java Code

ADL
Born 
Data Tools Still 

Supported Notes

Rapide 1990 Rapide NO ADL and simulation

Darwin 1991 LTSA + SAA YES Focus on dynamic SA

Weaves 1991 Weaves NO Data-flow-architectures
with high-volume of data

Adage 1992
— NO

Avionics navigation and 
guidance Architecture 

Description

LILEANNA 1993 LILEANNA NO Modules connection 
language

MetaH &
MetaS

1993
MetaH

YES
ADL for avionic domain

ArTek 1994 — NO Non conventional ADL

Resolve 1994 Resolve NO Focus on Component 
Specification

Wright 1994 Wright NO Focus on communications

Acme 1995 AcmeStudio
Armani

YES Interchange Language
between ADLs

SADL 1995 Sadl tool NO Focus on Refinement

UniCon 1995 UniCon NO Focus on connectors and 
Styles

C2 SADEL & C2 
AML 1996 Dradel, SAAGE 

ArchStudio NO ADL based on C2 style

GenVoca 1996 P3 NO Non conventional ADL

Fujaba 1997 Fujaba YES Non conventional ADL

Jacal 1997 Jacal 2 YES Focus on prototyping SA

Koala 1997 Koala tools YES ADL for product families

Little-JIL 1998 Little-JIL 1.0 NO Non conventional ADL

Maude 1998 Maude 2.0 YES Non conventional ADL

ADML 2000 ADML Enabled 
Tools YES XML-based ADL

xArch/xADL 2000 xADL 2.0 YES XML-based ADL

AADL 2001 Osate YES Embedded real-time systems 
/ Avionics systems

xArch/xAcme 2001 AcmeStudio YES Acme in XML

ABC/ADL 2002 ABC tool
(prototype)

YES ADL for
component composition

Prisma 2002 PrismaCase YES Component-based systems

DAOP-ADL 2003 DAOP-ADTools
YES Component and Aspect-

based ADL

Table 1. The most known ADLs



���  

From Requirements to Java Code

Many ADLs have been proposed in the last 
fifteen years, with different requirements and 
notations, and with the objective to support com-
ponents’ and connectors’ specification and their 
overall interconnection, composition, abstrac-
tion, reusability, configuration, heterogeneity, 
and analysis mechanisms (Medvidovic, 2000). 
Table 1 shows the most known ADLs evidencing 
the ones still supported. The table contains also 
approaches which are usually classified as non-
conventional ADLs since they possibly neglect 
fundamental aspects.

Even if much work has been done on this 
direction, the application of such techniques into 
industrial systems can still be very difficult due to 
some extra requirements and constraints imposed 
by realistic scenarios: the methodology must be 
tool supported, frequently based on semi-formal 
or informal notations, and typically based on 
partial models.

As a consequence, we cannot always assume 
that formal modelling of the software system 
exists. On the contrary, a semi-formal, easy to 
learn and possibly diagrammatic notation may 
reasonably offer enough pragmatic qualities. 

With the introduction of UML as the de-facto 
standard to model software systems and with its 
widespread adoption in industrial contexts, many 
extensions and profiles have been proposed to 
adapt UML to model architectures. Many propos-
als have been presented so far to adapt UML 1.x to 
model SAs (e.g., (Robbins, 1998; Kruchten, 1995; 
Gomaa, 2001; Kande’, 2002)). In such proposals, 
researchers have compared the architectural needs 
with UML concepts, extended or adapted UML, 
or created new profiles to specify architecture 
specific needs with UML. 

Recently, several works propose UML 2.0 
native specifications (i.e., without any profile or 
extension) for SA modelling. In (Eriksson, 2004) 
logical architectures, patterns and physical archi-
tectures are represented by using components, de-
pendencies, and collaborations. In (Pender, 2003) 
components within a component diagram are used 

to model the logical and physical architecture. In 
order to bridge the gap between UML 2.0 and 
ADLs, some aspects still require adjustments, 
thus much work is still ongoing (Goulo, 2003; Roh, 
2004; Ivers, 2004; Perez-Martinez, 2004). 

The success of model-based specifications of 
SAs is proven by many profiles defined so far for 
UML-modelling of SAs (e.g., (AADL; SysML)). 

2.3 Software architecture analysis
 
While how to model SAs has been for a long 
time the main issue in the SA community, how 
to select the right architecture has become one 
of the most relevant challenges in recent days. 
Model checking, deadlock detection, testing, 
performance analysis, and security are, among 
others, the most investigated analysis techniques 
at the architectural level. Among the techniques 
that allow designers to perform exhaustive veri-
fication of the systems (such as theorem provers, 
term rewriting systems and proof checkers), model 
checking (Clarke, 2000) has as main advantage 
that it is completely automatic. The user provides 
a model of the system and a specification of the 
property to be checked on the system and the 
model checker provides either true, if the prop-
erty is verified, or a counter example is always 
generated if the property is not valid. The counter 
example is particularly important since it shows 
a trace that leads the system to the error. 

While presenting a comprehensive analysis of 
the state of the art in architectural analysis is out 
of the scope of this chapter, this section will focus 
on architecture-level model checking techniques. 
For further reading on the topic, interested read-
ers may refer to e.g., (Bernardo, 2003; Muccini, 
2006; Dobrica, 2002).

Initial approaches for model checking at the 
architecture level have been provided by the 
Wright architectural language (Allen, 1997) and 
the Tracta approach (Magee, 1999). More recently, 
many other approaches have been proposed, as 
listed and classified in Figure 1. By focussing on 



  ���

From Requirements to Java Code

the model-based approaches, Bose (Bose, 1999) 
presents a method which automatically translates 
UML models of SA for verification and simulation 
using SPIN (Holzmann, 2003). A component is 
specified in terms of port behaviours and performs 
the computation or provides services. A mediator 
component is specified in terms of roles and co-
ordination policies, and safety properties are also 
checked. Lfp (Jerad, 2005) is a formal language 
dedicated to the description of distributed embed-
ded systems’ control structure. It has characteris-
tics of both ADL and coordination language. Its 
model checker engine is Maude based on rewriting 
logic semantics. Fujaba (Fujaba Project, 2006) is 
an approach tool supported for real-time model 
checking of component-based systems: the system 
structure is modelled through UML component 
diagrams, the real-time behaviour is modelled 
by means of real-time statecharts (an extension 
to UML state diagrams), properties are specified 
in TCTL (Timed Computation Tree Logic) (Alur, 
1990) and the UPPAAL (UPPsala and AALborg 
University) (Bengtsson, 1995) model checker 
is used as the real-time model checker engine. 
Arcade (Barber, 2001) (Architecture Analysis 
Dynamic Environment) applies model check-
ing to a DRA (Domain Reference Architecture) 
to provide analysts and developers with early 
feedback from safety and liveness evaluations 
during requirements management. The proper-
ties are represented as LTL formulae and the 
model checker engine is SPIN. AutoFOCUS 
(AutoFOCUS Project) is a model-based tool for 
the development of reliable embedded systems. 
In AutoFOCUS, static and dynamic aspects of 
the system are modelled in four different views: 
structural view, interaction view, behavioural 
view, and data view. AutoFOCUS provides an 
integrated tool for modelling, simulation, and 
validation. AutoFOCUS2 (AutoFOCUS2 Project) 
advances and improves previous work on Auto-
FOCUS by adding new modeling views. 

chArmy (Pelliccione, 2005; chArmy, 2004; 
Inverardi, 2005) is our proposal to model-check 

SA compliance to desired functional temporal 
properties. It intends to fill this gap by providing 
an automated, easy to use tool for the model-
based design and validation of SA. chArmy main 
strengths are as follow: 

1. Informal vs formal: Formal languages 
allows for automatic analysis, but they are 
generally time and cost consuming, while 
requiring certain specific skills. Informal 
languages, instead, are faster and easier 
to learn, by permitting lower automation. 
chArmy tries to incorporate both advan-
tages, and mitigate their respective weak-
nesses automatically completing informal 
and incomplete models: SA topology and 
behaviour are described via UML based 
specifications and automatically translated 
into a formal prototype. In particular, com-
ponents and state diagrams, used to specify 
the SA topology and behaviour, are auto-
matically interpreted to synthesize a formal 
Promela prototype, which is the SPIN model 
checker modelling language; 

2. SA simulation and checking: chArmy 
provides support for simulating the SA: it 
uses the SPIN simulation engine and offers 
simulation features which interpret SPIN 
results in terms of chArmy state machines. 
Moreover, properties whose validity needs 
to be checked on the architectural model are 
modelled through scenarios, by expressing 
desired and undesired behaviours. Such 
scenarios are automatically translated into 
Büchi automata (Büchi, 1960), an opera-
tional representation for LTL formulae. SPIN 
is then used to check the conformance of 
the Promela prototype with respect to such 
behavioural properties; 

3. Automatic tool support: The chArmy ap-
proach for specifying and analyzing SAs is 
tool supported, and it hides most of the com-
plexity of the modelling and analysis process. 
Model-based architectural specifications, 



��0  

From Requirements to Java Code

Figure	1.	Model	checking	techniques	based	on	formal	or	model-based	architectural	specifications	(©2007	
Computer	Science	Department	–	University	of	L’Aquila	(Italy).	Used	with	permission)

 

auto focus

fujaba

wright

archware

aemilia

Model-based 
Specification

tracta polis arcade

SaM method
bose

charmy

formal Sa 
Specification

cham

tsai

cbabel

lfp

drawn using the chArmy editors or standard 
UML tools, are automatically translated into 
a formal prototype. The prototype can then 
be automatically checked for correctness 
with respect to desired properties.

 
For further information on model-checking 
software architectures, a survey is available in 
(Zhang, 2007). 

2.4 code generation from Software 
Architecture Specification

In this section we present an overview on the 
various techniques used to generate code from a 
SA specification. We focus the attention on lan-
guages that can be used to generate code starting 
from an architectural model of the system. They 
can be distinguished in Architecture Descrip-
tion Languages (ADLs), such as languages for 
describing SAs, and Architectural Programming 
Language (APL), such as languages that integrate 
SA concepts into programming languages. We 
conclude this section with a comparison among 
APLs. It is important to note that code generated 
from ADLs not necessarily contain architecture 

concepts. This can have impact on the readabil-
ity of the code and can reduce its modifiability 
and maintainability. Furthermore, modifications 
on the generated code made by developers can 
invalidate architectural constraints. APLs have 
been introduced to solve this problem. All these 
aspects will be detailed in the following.

�.�.� ADLs and Code Generation

Some ADLs support code generation from an 
architectural description of the system. In Table 
2 we list some of them: it shows the ADL name, 
the tool support and the type of code that they 
produce as output. We have considered ADLs 
that are currently used in an industrial context 
and that are continuously updated showing the 
last release and the references.

While code generation is enabled starting from 
SA specifications, code generation approaches do 
no explicitly represent architectural notions at the 
code level. Thus, the notion of SA components, 
connectors and configurations is kept implicit and 
the implementation inevitably tends to loose its 
connection to the intended architectural struc-
ture during the maintenance steps. The result is 
“architectural erosion” (Perry, 1992). 



  ���

From Requirements to Java Code

�.�.� Architectural Programming 
Languages (APLs)

APLs overcome the problem of architectural 
erosion in implementations by integrating SA 
concepts into programming languages. 

By using APLs there is an inclusion of 
architectural notions, like components, ports 
with provided and required interfaces as well 
as protocols, connectors, and assemblies, into a 
programming language (typically Java). The basic 
idea of architectural programming is to preserve 
the SA structure and properties throughout the 
software development process so as to guarantee 
that each component in the implementation may 
only communicate directly with the components 
to which it is connected in the architecture. In fact 
our objective is to have a development process 
that guarantees the “Communication Integrity” 
between code and SA (xADL 2.0, 2005). 

In this section we present ArchJAvA and JAvA/A, 
which are the most famous and advanced APLs 
(Baumeister, 2006), in order to understand their 

main characteristics and to compare them with 
respect to aspects that we consider important for 
an APL. Then, based on the proposed comparison, 
we will choose one of the two technologies to be 
part of our SA-based quality process.

ArchJava 
ArchJAvA (ArchJAvA Project, 2005) is an APL 
which extends the Java language with component 
classes (which describe objects that are part of 
the architecture), connections (which enable 
components communication), and ports (which 
are the endpoints of connections). 

Components are hierarchically organized by 
using ownership domains (Aldrich, 2004), which 
can be shared along connections, permitting the 
connected components to communicate through 
shared data. Owernship domains are conceptual 
groups of objects with explicit domain names and 
explicit policies that govern references between 
them (Abi-Antoun, 2007). 

A component in ArchJAvA is a special kind 
of object whose communication patterns are 

ADL Born 
Data Tools Output Code Last Update Reference

Darwin 1991 LTSA-WS + 
SAA C++

March
2007

(Magee, 
1999)

Fujaba 1997 Fujaba Java
July
2007

(Fujaba 
Project,  
2006)

xArch/xADL 2000 ArchStudio + 
Apigen XML

January
2005

(xADL 2.0, 
2005)

AADL 2001 Osate Ada, C, Java
April 
2007

(AADL)

Prisma 2002 PrismaCase C# September 
2007 (PRISMA)

Table 2. Code generation from ADLs



���  

From Requirements to Java Code

explicitly declared using architectural declara-
tions. Component code is defined in ArchJAvA 
using component classes. Components com-
municate through explicitly declared ports. A 
port is a communication endpoint declared by a 
component. Each port declares a set of required 
and provided methods. A provided method is 
implemented by the component and is available 
to be called by other components connected to 
this port. Conversely, each required method is 
provided by some other component connected to 
this port. Each provided method must be imple-
mented inside the component.

ArchJAvA requires developers to declare the 
connection patterns that are permitted at run 
time. Once they have been declared, concrete 
connections can be made between components. 
All connected components must be part of an 
ownership domain declared by the component 
making the connection.

Communication integrity is the key property 
enforced by ArchJAvA, ensuring that components 
can only communicate using connections and 
ownership domains that are explicitly declared in 
the architecture. ArchJAvA guarantees communi-
cation integrity between an architecture and its 
implementation, even in the presence of advanced 
architectural features like run time component 
creation and connection. A prototype compiler 
for ArchJAvA is publicly available for download 
at the ArchJAvA web site (ArchJAvA Project, 2005). 
Figure 2 shows a sample ArchJAvA specification 
of the toy architecture1 depicted on the upper 
side of the Figure by means of a UML composite 
component diagram.

The OutService component is made up of two 
subcomponents: the AccidentAssistanceService 
(AAS) and the EmergencyService (ES). The 
former has one out port and the latter an in port 
through which the two components are connected. 
A port is a communication endpoint declared by 
a component. For each port the language offers 
constructs to define requires and provides meth-
ods. ArchJAvA requires developers to declare in 

the architecture the connection patterns that are 
permitted at run time. 

Taking a look to the code for the specifica-
tion in Figure 2 (top), the declaration “connect 
pattern” in our code permits the OutService 
component to make connections between the 
out port of its AAS subcomponents and the in 
port of its ES subcomponent. Once a connect 
pattern has been declared, concrete connections 
are admitted between components. For example 
the constructor for OutService connects the out 
port of the AAS component instance to the in 
port of the ES component instance. This connec-
tion binds the required methods (AlertAccepted, 
AlertEmergencyService, etc.) in the out port of 
AAS to a provided method with the same name 
and signature in the in port of ES component. 
Thus when AAS invokes AlertAccepted on its 
out port, the corresponding implementation in 
ES will be invoked.

Java/A
The basic idea of JAvA/A (Baumeister, 2006; Hack-
linger, 2004) is to integrate architectural concepts, 
such as components, ports and connectors, as fun-
damental parts into Java (similarly to ArchJAvA). 
The underlying component model is compatible 
with the UML component model (Hacklinger, 
2004; OMG). This compatibility and the one-to-
one mapping of these concepts allow software 
designers to easily implement UML2.0 component 
diagrams. They can express the notions present in 
these diagrams using built-in language concepts 
constructs of Java. Furthermore, the visibility of 
architectural elements in the JAvA/A source code 
prevents architectural erosion. 

The basic concepts of the JAvA/A component 
model are components, ports, connectors and con-
figurations. Any communication between JAvA/A 
components is performed by sending messages 
to ports. Each message must be an element of the 
required interface of the perspective port. The 
port will then forward the message to the attached 
connector, which itself will delegate the message 



  ���

From Requirements to Java Code

Figure 2. OutService composite component in ArchJAvA (©2007	Computer	Science	Department	–	Uni-
versity	of	L’Aquila	(Italy).	Used	with	permission)

A cciden t 
A ss is tance  

S erv ice

E m ergency 
S erv ice

outService

ou t in

 public component clas s outS ervice { 
 protected owned AccidentAs s istanceS ervice aas = …;  
 protected owned E mergencyS ervice es  = …;   
  
 connect pattern AccidentAss istanceS ervice.out,  

E mergencyS ervice.in; 
 
 public  outS ervice() { 
  connect (aas .out, es .in); 
 } 
}  
 
public  component clas s E mergencyS ervice{ 
 public  port in{ 
  provides  vo id AlertE mergencyS ervice(int loc); 
  provides  vo id E mergencyLevel(int level); 
  provides  vo id AlertAccepted(); 
 } 
 public  vo id AlertE mergencyS ervice(int loc){ 
  … 
 } 
 public  vo id E mergencyLevel(int level){ 
  … 
 } 
 public  vo id AlertAccepted(){  
  … 
 } 
 } 
 
public  component clas s AccidentAs sistanceS ervice{  
 public  port out{  
  requires  void AlertE mergencyS ervice(int loc); 
  requires  void E mergencyLevel(int level); 
  requires  void AlertAccepted(); 
   } 
} 

to the port at its other end. Each port may contain 
a protocol. These protocols describe the order of 
messages that are allowed to be sent from and to 
the respective port. Any incoming and outgoing 
communication must conform to the protocol. 
Protocols are specified by UML state machines 
and ensure the soundness of a configuration at 

compile-time. A Connector in JAvA/A links two 
components by connecting ports they own. 

The JAvA/A compiler is not yet complete and 
available but authors claim that it will transform 
JAvA/A components into pure Java code which 
can be compiled to byte code using the Java 
compiler. It will be possible to compile and 



���  

From Requirements to Java Code

deploy each component on its own, since the 
component’s dependencies on the environment 
are encapsulated in ports. The correctness of an 
assembly (i.e., deadlock-freedom) can be ensured 
using the UML state machine model checker 
HUGO (HUGO, 2005). Another important aspect 
that JAvA/A has is the dynamic	reconfiguration.	
It summarises changes to a component-based 
systems at runtime, concerning creation and 
destruction of components and building up and 
removing connections between ports. JAvA/A 
supports each of these reconfiguration variants. 
JAvA/A has a semantic model that uses states as 
algebras approach (Baumeister, 2006) for represent-
ing the internals of components and assemblies, 
and the I/O-transition systems for describing the 
observable behaviour. 

Figure 3 shows a composite component dia-
gram of the same system already introduced for 
ArchJAvA (in Figure 2).

The composite component contains an as-
sembly of two components Accident Assistance 
Service (AAS) and Emergency Service (ES) 
whose ports are wired by a connector. The AAE 
port of the AAS component is depicted as stacked 
boxes since it is a dynamic port which can have 
an arbitrary number of port instances. In contrast, 
the static port EAA must have a single instance at 
any time. Port protocols are specified with UML 
state machines. A protocol describes the order 
and dependencies of messages which are sent 
and received by a port. The code corresponding 

to this specification is described and illustrated 
in Appendix A. 

Comparing ArchJava and Java/A
ArchJAvA and JAvA/A employ similar approaches. 
Both augment Java with the concepts of component 
and connector. ArchJAvA components have ports 
with required and provided interfaces. However, 
ports in ArchJAvA do not have associated protocols. 
As a result the dynamic behaviour of ports is not 
captured in ArchJAvA. 

ArchJAvA, as well as JAvA/A, allows hierarchi-
cal component composition. In JAvA/A there is no 
possibility of communicating with components 
other than sending messages to their ports, 
whereas in ArchJAvA outer components can invoke 
methods of inner components directly, which 
breaks the encapsulation. While ArchJAvA lacks 
a semantic model, JAvA/A provides a complete one 
based on algebras and I/O- transitions systems. 
As far as concern tool support, in (Schmerl, 2004) 
the authors have developed additional Eclipse 
plug-ins that integrates AcmeStudio (Acme) and 
ArchJAvA. With this framework an architect can 
model an architecture using AcmeStudio, and 
have access to AcmeStudio’s verification engines 
to check desired architectural properties. The 
architect can then generate ArchJAvA code using 
the refinement plug-in. Once developers complete 
the implementation of the system, ArchJAvA’s 
checks help ensuring that the implementation 
conforms to the architect’s design. Unfortunately 

Figure 3. OutService composite component in JAvA/A (©2007	Computer	Science	Department	–	University	
of	L’Aquila	(Italy).	Used	with	permission)

 

A cciden t 
A ss is tance  

S erv ice A A E
E m ergency 

S erv iceE A A

outService



  ���

From Requirements to Java Code

the existing ArchJAvA environment supports only 
the verification of architectural properties and 
it does not force the developers to respect the 
component behaviour described into the SA. For 
JAvA/A the tool support is not yet complete and it 
is one of future works. So far, a JAvA/A compiler 
should transform JAvA/A components into pure 
Java code which can be compiled to byte code 
using the Java compiler. However, this compiler 
is not yet publicly available.

Table 3 synthesizes the above discussion while 
providing an explicit way of understanding the 
key features and differences of ArchJAvA and 
JAvA/A.

Our SA-based approach makes use of the 
ArchJAvA language since the availability of the 
corresponding compiler has allowed us to develop 
each phase of the approach described in the next 
section leading to a prototypical implementation 
available for download at (chArmy, 2004).

3. Main thruSt of the 
chapter: the propoSed 
approach

The model-based architecture-centric and auto-
mated analysis approach we are proposing aims at 
combining exhaustive analysis techniques (model 

checking) and SA-based code generation to pro-
duce highly-dependable systems in a model-based 
development process. Figure 4 shows the activities 
of the architecture-centric analysis and deploy-
ment approach. It is composed of four principal 
activities: (i)	specification of functional require-
ments, (ii) model-based specification of SAs, (iii)	
validation of the SA specification with respect to 
requirements through model checking, and finally 
(iv) architecture-based code generation. 

The architectural topology and behaviour is 
captured through a UML-based notation, part 
of the chArmy framework (Pelliccione, 2005; 
Inverardi, 2005). Properties are elicited from 
requirements by means of W_PSC (Autili, 2006) 
and modelled according to the Property Sequence 
Chart (PSC) language (Autili, 2007). chArmy is 
used to check the architectural model conformance 
with respect to identified functional properties. 
After this activity, the architecture is proven to 
be compliant with selected properties. In the SA-
based code generation activity chArmy models 
are translated into ArchJAvA code by means of 
a developed code generator based on the Eclipse 
Java Emitter Template (JET) framework (part 
of the Eclipse Modeling Framework (Budinsky, 
2003)). Finally, the ArchJAvA compiler is used 
to generate Java code and to ensure that the 
implementation conforms to the architectural 
specification. 

APL Components Ports Configurations Encapsulation

ArchJAvA Yes Yes Implicit Partial

JAvA/A Yes Yes Explicit Yes

APL Behavioural 
Modeling

Distributed 
Applications

Asynchronous 
Communication Tool Support

ArchJAvA No No No Total

JAvA/A Yes Yes Explicit Not yet

Table 3. APLs comparison



���  

From Requirements to Java Code

In the following, by referring to Figure 4, each 
activity of the proposed approach is individually 
described.

W_pSc Requirements Specification 
and formalization in the 
pSc language

Functional requirements are identified, modeled 
and analyzed. In order to automatically verify that 
the system SA satisfies the functional require-
ments, properties are elicited from requirements 
and expressed and formalized as formulae in 
temporal logics. Unfortunately, the level of inher-
ent sophistication required by these formalisms 
too often represents an impediment to move these 
techniques from “research theory” to “industry 
practice”. PSC facilitates the non trivial and error 

prone task of specifying, correctly and without 
expertise in temporal logic, temporal properties. 
PSc can graphically express a useful set of both 
liveness and safety properties in terms of mes-
sages exchanged among the components forming 
the system. Finally, an algorithm, called PSc2BA 
(Autili, 2007), translates PSc into a temporal 
property representation understandable by model 
checkers.

 Since the aim of this chapter is not to present 
PSC (presented elsewhere) we do not provide de-
tails about this language, but we refer to (Autili, 
2007) for a fully description of both the textual 
and graphical language and its declarative and 
operational semantics. Moreover, in Section 4 
we explain further aspects of the language as 
needed to fully understand the approach. While 
the translation process from PSC diagram to Büchi 

Figure	 4.	 The	 proposed	 approach	 (©2007	Computer	 Science	Department	 –	University	 of	 L’Aquila	
(Italy).	Used	with	permission)



  ���

From Requirements to Java Code

automata is fully automated, the selection of prop-
erties from requirements and their formalization in 
PSC is totally left to engineers’ experience. Both 
tasks may become expensive and error prone, 
when applied to real projects. W_PSC aims at 
alleviating the engineers work in eliciting and 
formalizing properties bridging the gap between 
possibly informal requirement specifications (as 
found in practice) and formal ones (as needed in 
formal methods). It is a conversational tool that, 
by means of well structured and deep sentences, 
helps the software engineers in identify and 
formalize properties. It has been built selecting 
and classifying the PSC statements, and allows 
engineers to incrementally build PSC diagrams, 
starting from user requirements. W_PSC offers 
a user-friendly wizard helpful while translating a 
user requirements description into PSC scenarios. 
It is composed of several windows that present 
sentences helpful for requirements understanding 
and selection. The sentences are grouped accord-
ing to a classification based on temporal proper-
ties keywords. Since PSC is built by taking into 
account the same keywords, W_PSC introduces 
an intuitive way to use all the subtle and precise 
instruments of PSC. In Section 4 we will provide 

further details of W_PSC as needed for under-
standing the case study, while we refer to (Autili, 
2006) for a complete description of it.

3.2 Software architecture Model-
Based Specification in Charmy 

The SA is designed in chArmy (chArmy, 2004; 
Inverardi, 2005) that allows software engineers 
to specify both the structure and the behaviour 
by using UML-based notations. We use chArmy 
to design the SA since it provides automatisms 
for verifying the SA by means of model check-
ing techniques. chArmy allows the specification 
of the SA topology in terms of components and 
relationships among them, where components 
represent abstract computational subsystems. 
As shown in Figure 5, the internal behaviour of 
each component is specified in terms of chArmy 
state diagrams. The chArmy notation for state 
machines allows engineers to specify the intra-
component and inter-component behaviours of 
architectural components and connectors (i.e., 
the internal behaviour of architectural elements 
and their integration, respectively). States of the 
state machines are connected by means of transi-

Figure	5.	Chunks	of	 the	chArmy	metamodel	 (©2007	Computer	Science	Department	–	University	of	
L’Aquila	(Italy).	Used	with	permission)



���  

From Requirements to Java Code

tions. Transitions are labelled with a name and 
could represent either a message sent or received, 
denoted by an exclamation mark “!” or a question 
mark “?”, respectively.

In Figure 7 a sample chArmy specification 
that will be considered throughout the section is 
depicted. In particular, it is a model that conforms 
to the metamodel in Figure 5 and it consists of 
the components C1 and C2 connected through 
the channels C1_TO_C2 and C2_TO_C1. For 
each component, a corresponding state machine 
is provided in order to describe the admitted 
component behaviours. 

3.3 Software architecture  
Verification 

chArmy uses model checking techniques to vali-
date the SA conformance to certain properties. 
Being the SA typically used as the driver for the 
entire development process, exhaustive analysis 
has been preferred instead of partial proofs or 
sampling. 

Starting from the SA description chArmy 
synthesizes, through a suitable translation into 
Promela (the specification language of the 
SPIN (Holzmann, 2003) model checker), a runnable 
SA prototype that can be executed and verified in 
SPIN. This model can be validated with respect to 
a set of properties expressed in the PSc language. 
By using chArmy, thanks to a UML like notation 
used for the system design and the properties 

specification, we have an easy to use, practical 
approach to model and check architectural speci-
fications, hiding the modelling complexity. 

Whenever the SA specification does not 
properly implement selected requirements (“Not 
valid” arrow in Figure 4), the SA itself needs to 
be revised. Thanks to the model-checker output in 
case of a not valid result (i.e., a counter example 
reproducing the error) we may either correct the 
SA specification (if we discover that there is an 
error in the SA specification) or correct the PSC 
property (if we discover that the property is not 
properly expressed). 

3.4 jet/arChJava code generation 

Whenever the SA is validated with respect to the 
desired requirements, Java code is automatically 
generated from the SA specification. According to 
Figure 6, this activity is performed through two 
main steps: starting from a validated chArmy 
Specification, ArchJAvA code is automatically ob-
tained by means of a JET-based Code Generator. 
Then, by exploiting the existing ArchJAvA Com-
piler, executable Java code is generated. Here we 
focus on the first step of the translation in Figure 
6 which is based on the following directives:

(i) Each chArmy component becomes an 
ArchJAvA component. For instance, the 
component C1 in Figure 7.a induces the 
following ArchJAvA specification:

Figure	 6.	 JET/	ArchJava	Code	Generation	 (©2007	Computer	 Science	Department	 –	University	 of	
L’Aquila	(Italy).	Used	with	permission)



  ���

From Requirements to Java Code

Figure	7.	Sample	Charmy	specification	(©2007	Computer	Science	Department	–	University	of	L’Aquila	
(Italy).	Used	with	permission)

(a)	Topology	specification

(b)	C1	behaviour	specification (c)	C2	behaviour	specification

  public component class C1 {

  ...

  }

(ii) Each chArmy component’s sent and received 
message is used to synthesize the compo-
nent ports. We recall that ArchJAvA has 
both provided ports for provided services 
and required ports for required services. 
An ArchJAvA port only connects a pair of 
components. This means that if a compo-
nent needs to communicate with more than 
one component, it needs additional ports. 
Thus, the provided component services are 
partitioned into sets of services provided to 
different components. The same is done for 
required services. Accordingly, the suitable 

number of required and provided ports is 
declared into the ArchJAvA specification 
of the component (containing the declara-
tion of required and provided services, 
respectively). For instance, the sample SA 
in Figure 7.a gives place to the following 
ArchJAvA code fragments concerning the 
C1 component implementation:

 public port C1_TO_C2 {

  requires void m1(); 

 }

 

 public port C2_TO_C1 {

  provides void m2(); 

 }



��0  

From Requirements to Java Code

(iii) For each chArmy component an ArchJAvA 
specification is generated to encode the as-
sociated state diagram. ArchJAvA does not 
offer a direct support for that and we propose 
guidelines to extend the ArchJAvA specifica-
tions so that a state diagram associated to a 
software component is implemented as an 
adjacency list. In particular:

• for each method invoked by a given com-
ponent the corresponding state machine 
changes state accordingly so having trace 
of what methods can be invoked or not. 
States and transitions of the considered state 
diagram are declared as Java constants and 
are used to univocally refer to these elements 
(see lines 3-9 in Figure 8). 

• each state machine contains a fixed definition 
of transitions as an internal Java class (see 
line 15-37 in Figure 8). The state diagram is 
defined as a LinkedList. The constructor of 
the state diagram class contains the definition 
of the state machine adding to the LinkedList 
of the state diagram an element for each 
state containing all existing transitions (for 
each existing transition a new object of the 
internal class transition is added) (see lines 
40-50). 

• each state machine class contains also a 
method that simulates the transition fire, 
i.e., this method gets as input the transition 
(according to the runtime behaviour of the 
system) and checks if it is possible, in the 
actual computation state, to perform the tran-
sition fire (see lines 52-63). If the behaviour 
is allowed then the actual state is updated 
to the transition target state, otherwise an 
exception is raised. In case a method cannot 
be invoked in a certain time, an exception 
is raised. The exception is defined as an ad-
ditional ArchJAvA specification, i.e., a java 
class extending the java.lang.Exception 
class. 

(iv) A main ArchJAvA specification is also 
generated to define the binding among 
component’s ports and the instantia-
tion of the involved state machines 

These directives ensure the communication 
integrity, i.e., components can only communi-
cate using connections and ownership domains 
that are explicitly declared in the SA. The rest of 
the section outlines the approach supporting the 
automatic generation of code that implements 
such directives. This automation is required since 
manual coding could diverge or not completely 
adhere to them. 

As previously said, the code generator im-
plementing the four directives above has been 
developed in JET (Budinsky, 2003). JSP-like 
templates define explicitly the target ArchJAvA 
code structure and get the data they need from the 
chArmy models. In particular, the code generator 
consists of four templates (see Figure 9): main.jet 
is a default template that gets data as input and 
applies the other templates. Being more precise, 
it applies the componentMain.jet template, which 
implements the directive (iv) previously described, 
producing the target MAIN.archj file (see line 2 
in Figure 10). Then, for each component in the 
source chArmy specification, the component.jet 
template is applied in order to generate the com-
ponent implementation according to points (i) and 
(ii) above (see line 4-6 in Figure 10). Finally, for 
each source component the corresponding state 
machine encoding is generated by applying the 
smComponent.jet template that implements point 
(iv)	(see line 8-10).

Due to space limitation, the templates are 
not reported here. However, interested readers 
can refer to (chArmy, 2004) for downloading the 
full implementation of the proposed JET-based 
code generator. 

In the next section we will apply the archi-
tecture-based approach we are proposing on a 
case study. We will focus principally on the code 



  ���

From Requirements to Java Code

Figure	8.	Sample	state	machine	encoding	(©2007	Computer	Science	Department	–	University	of	L’Aquila	
(Italy).	Used	with	permission)

1.  public  c las s  S M_C 1 { 
2.   
3.  /** S tate encoding*/ 
4.  public   int S _startC 1= 0; 
5.  public   int S _S 1= 1; 
6.   
7.  /** T rans ition encoding */ 
8.  public   int T _m1=0;   
9.  public   int T _m2=1;   
10.   
11.  private int currentS tate=S _s tartC 1; 
12.   
13.  private LinkedList s tates  = new LinkedList();  
14.   
15.  private c las s  trans ition{ 
16.  private int s tate; 
17.  private int trans ition; 
18.  private int s end_receive; 
19.   
20.  public  trans ition(int trans ition, int s tate, int s end_receive){ 
21.  this .trans ition=trans ition; 
22.  this .s tate=state; 
23.  this .s end_receive=s end_receive; 
24.  } 
25.   
26.  public  int getT rans ition(){ 
27.  return trans ition; 
28.  } 
29.   
30.  public  int getS tate(){ 
31.  return state; 
32.  } 
33.   
34.  public  int getS endR eceive(){ 
35.  return send_receive; 
36.  } 
37.  } 
38.   
39.  /** S tate Machine constructor*/ 
40.  public  S M_C 1(){ 
41.  S ystem.out.println("S M_C 1.constr"); 
42.   
43.  LinkedLis t s tartC 1 = new LinkedList();  
44.  startC 1.add(new trans ition(T _m1, S _S 1 ,1));  
45.  states .add(startC 1); 
46.   
47.  LinkedLis t S _S 1 = new LinkedList();  
48.  S _S 1.add(new trans ition(T _m2, S _startC 1,0));  
49.  states .add(S _S 1);  
50.  } 
51.   
52.  public  void transF ire(int trans) throws  S ME xception { 
53.  LinkedLis t trans itions  = (LinkedList) s tates .get(currentS tate);  
54.  for (int i = 0; i < trans itions .s ize(); i++) { 
55.  if (((trans ition) trans itions .get(i)).getT rans ition() == trans)  
56.  currentS tate = ((trans ition) trans itions .get(i)).getS tate();  
57.  S ystem.out.println("Us er.trans  allowed: "); 
58.  return; 
59.  } 
60.  } 
61.  S ystem.out.println("trans  not allowed: " + trans); 
62.  throw new S ME xception();  
63. }}



���  

From Requirements to Java Code

Figure	9.	JET-based	Code	Generator	templates	(©2007	Computer	Science	Department	–	University	of	
L’Aquila	(Italy).	Used	with	permission)

 
 
 
 

componentMain.jet component.jet 

main.jet 

smComponent.jet 

Figure	10.	Fragment	of	the	main.jet	template	(©2007	Computer	Science	Department	–	University	of	
L’Aquila	(Italy).	Used	with	permission)

 1.  . . . 
2.  "templates/componentMain.jet" path="{$org.eclipse.jet.res ource.project.name}/src-

generated/MAIN.archj"/> 
3.   
4.  <c:iterate select="$S Acomponent" var="component"> 
5.  "templates/component.jet" path="{$org.eclips e.jet.resource.project.name}/s rc-

generated/{$component/@ nome}.archj"/> 
6.  </c:iterate> 
7.   
8.  <c:iterate select="$S Acomponent" var="component"> 
9. "templates/smC omponent.jet" path="{$org.eclipse.jet.res ource.project.name}/src-

generated/S M _{$com ponent/@ nom e}.arch j" />  
10. < /c :ite ra te>  

generation activity, to be considered the main 
contribution of this chapter.

4. Main thruSt of the 
chapter: a SaMple atM 
SySteM

A bank has several automated teller machines 
(ATMs), which are geographically distributed and 
connected to a central server. Each ATM has a 
card reader, a cash dispenser, a keyboard/display, 
and a receipt printer. A user can withdraw cash or 
recharge a mobile phone credit. Assuming that the 
card is recognized, the system validates the ATM 
card to determine that the card has not expired and 
that the user-entered PIN (Personal Identification 

Number) is correct. If the user is authorized, it is 
prompted for withdraw or recharge transaction. 
Before these transactions can be approved, the 
bank determines that sufficient funds exist in the 
requested account. If the transaction is approved, 
the requested amount of cash is dispensed, the 
account is updated and the card is ejected. A 
user may cancel a transaction at any time with a 
logout operation. 

4.1 functional requirements 
Specification

In this section we report only a subset of the re-
quirements which are useful for explaining the 
approach. The requirements are presented in the 
following as use case tables. The first one, in Table 



  ���

From Requirements to Java Code

4, is the User login use case that describes the user 
interactions to get access to the ATM. 

The other use case, represented in Table 5, is 
the withdraw functionality of the ATM that al-
lows the user to withdraw money from the bank. 
This use case includes the User login use case as 
precondition.

4.2 Software architecture 
Specification in Charmy

The architecture of the ATM system that we con-
sider is composed of four components as shown 
in Figure 11: the user (USER component), the 
transaction manager (TM component), the bank 
account (BA component), and the authentication 
manager (AUTH component). The USER compo-
nent communicates only with the TM component 

that forwards the service requests to the BA or 
AUTH component.

Moreover the behaviour of each component 
is described with the state machines depicted in 
Figures 12-14. The USER component (see Figure 
12) handles three different requests, one for the 
authentication (!login) followed by two possible 
responses (?login_ok and ?login_ko), one for 
withdrawing money from its account (!withdraw), 
and one for recharging the mobile phone credit 
(!chargePhone). 

The TM component (refer to Figure 14) con-
tains the logic of the ATM system. This component 
receives the login request from the User (?login) 
and forwards it to the AUTH component (!login 
Auth). 

Use Case Name User login

Description The ATM System validates the USER PIN

Actors USER, TM, AUTH 

Pre-Conditions ATM is idle, displaying a Welcome message

Process Steps

1. USER enters the PIN (login).

2. TM forwards the request (login_auth) to 
AUTH that checks whether the USER-
entered PIN matches the card PIN 
maintained by the system.

3. If PIN numbers match, AUTH notifies it 
(login_auth_ok) to TM.

4. TM notifies to USER (login_ok) the 
login successful and prompts customer 
for transactions type (withdraw or 
chargePhone).

Post-Conditions USER has been validated

Alternative Paths

If the USER-entered PIN does not match the 
PIN number of the card, AUTH notifies to TM 
an error (login_auth_ ko) and TM asks USER 
to re-insert the PIN (login_ko).

Table 4. User login use case



���  

From Requirements to Java Code

Use Case Name Withdraw

Description USER withdraws a specific amount of money from a valid bank 
account

Dependency Include Validate PIN Use Case

Actors

USER, TM, AUTH, BAWhich actor from the actor model 
initiates this course of the use case? All the different user 
roles and/or other systems that initiate the use case. Actors are 
external to the system.

Pre-Conditions ATM is idle, displaying a Welcome message

Process Steps

1. Include User login use case.

2. USER selects withdraw and enters the amount of money to 
be withdrawn.

3. TM forwards the request to BA  (connect).

4. If the request is accepted BA notifies the connection to TM 
(connect_ok).

5. TM checks whether USER has enough money by BA 
(check_funding).

6. If USER has enough money BA notifies it to TM (funding_
ok).

7. TM dispenses the cash amount (withdraw_ok).

8. USER gets the amount of money and the card (logout).

Post-Conditions USER money have been withdrawn

Alternative Paths

•	 If TM experiences problems that can compromise the 
operation, it sends an error to BA (noconnection) and the 
TM ejects the card (logout).

•	 If BA determines that there are insufficient funds in the 
USER’s account, it notifies it to TM (funding_ko) and TM 
ejects the card (logout).

Table	5.	Withdraw	use	case

Two are the possible responses that TM can 
receive from AUTH: login success (?login_auth_
ok), and login failure (?login_auth_ko). The state 
diagram of the AUTH component is shown on 
the upper-hand side of Figure 13. In case of suc-
cess, the user is habilitated to available services 
(i.e., withdraw money or recharge mobile phone). 
TM receives the response for both services and 
forwards them to the User component. The other 
component, BA (right-hand side of Figure 13), 

manages the bank account services (i.e., with-
draw, charge).

4.3 w_pSc requirements 
Specification and formalization in 
the pSc language

Starting from the two use cases selected in 
the previous subsection, a set of properties to 
be checked on the system are extracted. In the 
following we will focus on two properties and 



  ���

From Requirements to Java Code

Figure	11.	Software	Architecture	of	the	ATM	System	(©2007	Computer	Science	Department	–	University	
of	L’Aquila	(Italy).	Used	with	permission)

Figure	12.	USER	state	diagram	(©2007	Computer	Science	Department	–	University	of	L’Aquila	(Italy).	
Used	with	permission)

we will provide their descriptions as PSC. The 
formalization of the properties as PSC is made 
by using W_PSC. 

Property 1: if the withdraw request has been 
performed (withdraw) and before no errors on 
the connection have been raised (noconnection 
is not sent), and the request of money is consis-

tent with the user funds ( funding_ok), then TM 
must dispense the cash amount (withdraw_ok); 
the withdraw request is allowed only after a suc-
cessful login request.

Having requirements well formulated as the 
ones considered in this chapter is an ideal situation 
not very common in real projects. W_PSC can 
be particularly useful in these situations since, 



���  

From Requirements to Java Code

Figure	13.	AUTH	and	BA	state	diagrams	(©2007	Computer	Science	Department	–	University	of	L’Aquila	
(Italy).	Used	with	permission)

as already explained, it is not an automatic tool 
but it is a wizard that helps the designer to make 
decisions in formalizing the requirements and in 
restructuring them with the required accuracy. 
In the following we provide enough information 
on W_PSC and PSC for understanding the case 
study and we refer to (Autili, 2006; Autili, 2007) for 
further details.

An important aspect to be considered when 
formalizing the requirements is the distinction 
among Mandatory, Forbidden, and Optional 
operations. They are organized into W_PSC as 
different sentences contained into 3 different 
panels. Thus, reading Property 1 the first action 
that can be found is login. It is easy for the soft-
ware engineer to understand if the considered 
part of the requirement is mandatory, forbidden, 
or optional. Making this decision the suitable tab 

panel containing the pre-formulated sentences is 
chosen. login is clearly an optional operation since 
the exchange of the message login represents the 
precondition for withdraw and for the following 
messages. In the optional panel among the pro-
posed sentences (and reported in the following), 
the software engineer selects the Sentence 1 
since no other constraints on the login message 
are required. 

Sentence 1 If the message < m > is exchanged 
then ...

Sentence 2 If the message < m > is exchanged 
and between this message and its predecessor 
(or the system startup) no other messages can be 
exchanged then ...



  ���

From Requirements to Java Code

Figure	14.	TM	state	diagram	(©2007	Computer	Science	Department	–	University	of	L’Aquila	(Italy).	
Used	with	permission)

Sentence 3 If the message < m > is exchanged 
and between this message and its predecessor (or 
the system startup) < … > then ...

Sentence 4 If the message < m > is exchanged 
and between this message and its successor (or 
after the last message) < … > then ...

Sentence 5 If the message < m > is exchanged 
and between this message and its predecessor (or 
the system startup) < … > and between this mes-
sage and its successor (or after the last message) 
< … > then ...

Following a similar reasoning, withdraw is 
identified as another optional message but in this 
case the selected sentence is Sentence 3 since 
withdraw is a valid precondition if and only if 
before this message no connection errors have 
been raised. Funding is another precondition, in 
this case without constraints, for the final message 
of the property that is withdraw_ok. withdraw_ok 
is a mandatory message (i.e., the correct sentence 
will be selected among the Mandatory sentences) 
since the system is in error if the this message is 
not exchanged. 



���  

From Requirements to Java Code

When the formalization is finished in W_PSC 
the corresponding PSC is automatically gener-
ated. 

The PSC corresponding to Property 1 is de-
picted in Figure 15. In PSC messages are typed 
and, in particular, messages prefixed by “e:” 
denote messages not mandatory for the system 
and are used for constructing the precondition 
for mandatory ones. Mandatory messages on the 
contrary are prefixed by “r:” and denote messages 
that must be exchanged by the system, i.e., if the 
messages are not exchanged then the system is in 
error. The circle labelled b identifies a constraint 
of the message. It means that the message with-
draw that has associated the constraint is a valid 
precondition iff before this message and after 
the previous one (i.e., login) TM does not send 
noconnection to BA. 

Thus, Property 1 expresses that if USER sends 
login to TM and after that it sends the withdraw 
request to TM, if in between of these two mes-
sages noconnection has not been sent by TM to 
BA, and if BA sends funding_ok to TM, then TM 
must send withdraw_ok to USER (i.e., the user 
receives the requested money).

Property 2: if the withdraw request has been 
performed (withdraw), there are no errors (nocon-
nection is not sent), and the request of money is 
not consistent with the user funds ( funding_ko), 
then there is an error if TM dispenses the cash 
amount (withdraw_ok); the withdraw request is 
allowed only after a successful login request.

The PSC generated by W_PSC for Property 
2 is the one in Figure 16. In PSC messages can 
be also typed as fail, i.e., prefixed by “f:”, i.e., 
messages used to model erroneous behaviours 
of the system. 

Thus, Property 2 expresses that if USER sends 
login to TM and after that it sends the withdraw 
request to TM, if in between of these two mes-
sages noconnection has been not sent by TM to 
BA, and if BA sends funding_ko to

TM, then if TM sends withdraw_ok to USER 
the system is in error (i.e., the user cannot receive 
the requested money).

Figure	15.	PSC	of	Property	1	(©2007	Computer	Science	Department	–	University	of	L’Aquila	(Italy).	
Used	with	permission)

e: l ogin

U S E R T M

e: w ithdraw

t0

t1

t2

t3

t4

b

r :  w ithdraw _ok

t5

B A

e: fund ing _ok

b = {T M .noconnection .B A}



  ���

From Requirements to Java Code

4.4 Software architecture  
Verification

The ATM software architecture presented in the 
previous section has been modelled in chArmy, 
and the verification has been performed.

The first verification concerns the deadlocks 
detection. The verification is performed on a 
Pentium 1.73Ghz with 1,50 GB of RAM and took 
less than 1 minute using 2,582 MB of memory. 
The system specification is deadlock free and has 
311 states and 663 transitions. Furthermore, there 
are no unreachable parts of the model.

The next step is the verification of the prop-
erties.

Property 1: this property is valid. The number 
of generated states is 1535, while the transitions 
are 33724. The memory used in this case is 2.622 
MB of RAM. 

Property 2: this property is also valid. The number 
of generated states is 951, with 2046 transitions. 
The memory used is 2.582 MB of RAM.

Now the software architecture is verified and 
then it can be used as the starting point for the 
implementation, as real blueprint for the develop-
ment. The next section shows the code genera-
tion phase and shows how software architecture 
choices force the implementation.

4.5 jet/archjava code generation

The application of the JET-based Code Generator 
(outlined in Section 3.2) on the chArmy specifica-
tion of the ATM case study produces a number 
of ArchJAvA files listed on the left-hand side of 
the screenshot in Figure 17. In particular, for 
each component (e.g., User), the corresponding 
encoding is generated (e.g., User.archj). The state 
machine specifications are also synthesized (e.g., 
SM_User.archj) together with a MAIN.archj file 
(listed on the right-hand side of Figure 17) that 

Figure	16.	PSC	of	Property	2	(©2007	Computer	Science	Department	–	University	of	L’Aquila	(Italy).	
Used	with	permission)

 

e: l ogin

U S E R T M

e: w ithdraw

t0

t1

t2

t3

t4

b

f:  w ithdraw _ ok

t5

B A

e: fund ing _k o

b = {T M .noconnection .B A}



��0  

From Requirements to Java Code

Figure	17.	Generated	code	overview	(©2007	Computer	Science	Department	–	University	of	L’Aquila	
(Italy).	Used	with	permission)

enables the execution of the obtained system with 
respect to the modelled software architecture. 
Being more precise, in that main file all the com-
ponents, the corresponding state machines and 
port connections are instantiated giving place to 
an encoding of the SA properties that constraint 
the execution of the hand-written code that will 
be filled in prearranged points (e.g., see the try 
statement in the code of Figure 17).

Focusing on the User component, a fragment 
of the corresponding generated code is listed in 
Figure 18. Essentially, it contains the declaration 
of the state machines that will be considered dur-
ing the User component execution (hence the state 
machine of the User, TM, BA and AUTH compo-
nents) (see lines 5-8 in Figure 18), the definition of 
the ports (TM_TO_User and User_TO_TM, lines 
12-29) and the implementation of the provided 

methods that have to be completed by the developer 
(lines 33-60). The generated method statements 
are devoted to fire the transitions of the involved 
state machines. For instance, the withdraw_ko()	
invoked by the TM component induces the state 
changes in the User and TM state machines. The 
former will reach the state S_withdraw from the 
logged_in one, whereas the latter change the state 
check_ko reaching the ready one, according to the 
state machines in Figure 12 and Figure 14.

In order to have a full application, the de-
veloper has to complete the generated code by 
implementing the logic of each provided method. 
The hand-written code can be filled in the pre-
defined user regions like the one in lines 44-45. 
The code that will be written in such blocks will 
never be updated by subsequent generations. This 
facility is provided by the JET framework and it 



  ���

From Requirements to Java Code

1.  public  component c las s  Us er { 
2.  /**Declaration of the state machine variables   
3.  *@ generated 
4.  */ 
5.  private S M_User behaviour_User;   
6.  private S M_T M behaviour_T M;  
7.  private S M_B A behaviour_B A;   
8.  private S M_AUT H behaviour_AUT H;   
9.  /**T M_T O_User P ort    
10.  *@ generated 
11.  */ 
12.  public  port T M_T O_Us er { 
13.  provides  void login_ko() throws  S ME xception;  
14.  provides  void login_ok() throws  S ME xception;  
15.  provides  void charge_ko() throws  S ME xception;  
16.  p rov ides void charge_ok () throws S M E xception;  
17.  p rov ides void w ithdraw _ko () throws S M E xception;  
18.  provides  void withdraw_ok() throws  S ME xception;  
19.  provides  void noconnectionUs er() throws  S ME xception;  
20.  } 
21.  /**User_T O_T M P ort    
22.  *@ generated 
23.  */ 
24.  public  port User_T O_T M { 
25.  requires  void withdraw() throws  S ME xception;  
26.  requires  void chargeP hone() throws  S ME xception;  
27.  requires  void login() throws  S ME xception;  
28.  requires  void logout() throws  S ME xception;  
29.  } 
30.  /**Implementation of the methods  provided by the port T M_T O_User 
31.  *@ generated 
32.  */ 
33.  public  void login_ok() throws  S ME xception { 
34.  S ystem.out.println("Us er.login_ok"); 
35.  behaviour_User.transF ire(behaviour_User.T _login_ok);  
36.  behaviour_T M.transF ire(behaviour_T M.T _login_ok);  
37.  //W R IT E  Y OUR  C ODE  HE R E  
38.  //E ND Y OUR  C ODE  HE R E  
39.  } 
40.  public  void withdraw_ko() throws  S ME xception { 
41.  S ystem.out.println("Us er.withdraw_ko"); 
42.  behaviour_User.transF ire(behaviour_User.T _withdraw_ko);  
43.  behaviour_T M.transF ire(behaviour_T M.T _withdraw_ko);  
44.  //W R IT E  Y OUR  C ODE  HE R E  
45.  //E ND Y OUR  C ODE  HE R E  
46.  } 
47.  public  void withdraw_ok() throws  S ME xception { 
48.  S ystem.out.println("Us er.withdraw_ok"); 
49.  behaviour_User.transF ire(behaviour_User.T _withdraw_ok);  
50.  behaviour_T M.transF ire(behaviour_T M.T _withdraw_ok);  
51.  //W R IT E  Y OUR  C ODE  HE R E  
52.  //E ND Y OUR  C ODE  HE R E  
53.  } 
54.  public  void login_ko() throws  S ME xception { 
55.  S ystem.out.println("Us er.login_ko");  
56.  behaviour_User.transF ire(behaviour_User.T _login_ko);  
57.  behaviour_T M.transF ire(behaviour_T M.T _login_ko);  
58.  //W R IT E  Y OUR  C ODE  HE R E  
59.  //E ND Y OUR  C ODE  HE R E  
60.  } 
61.  . . .  
62.  } 

Figure	18.	Fragment	of	the	generated	User.archj	(©2007	Computer	Science	Department	–	University	
of	L’Aquila	(Italy).	Used	with	permission)



���  

From Requirements to Java Code

Figure	19.		Fragment	of	the	generated	SM_User.archj	(©2007	Computer	Science	Department	–	Uni-
versity	of	L’Aquila	(Italy).	Used	with	permission)

 1.  ** User S tate Machine encoding 
2.  *@ generated 
3.  */ 
4.  public  c las s  S M_Us er { 
5.  /** S tate encoding 
6.  *@ generated 
7.  */ 
8.  public   int S _startUser= 0;  
9.  public   int S _S _login= 1;  
10.  public   int S _logged_in= 2;  
11.  public   int S _S _withdraw= 3;  
12.  public   int S _charge= 4;  
13.  /** T rans ition encoding 
14.  *@ generated 
15.  */ 
16.  public   int T _login_ok=0;   
17.  public   int T _withdraw=1;   
18.  public   int T _chargeP hone=2;   
19.  public   int T _charge_ko=3;   
20.  public   int T _withdraw_ko=4;   
21.  public   int T _withdraw_ok=5;   
22.  public   int T _login=6;  
23.  public   int T _login_ko=7;   
24.  public   int T _logout=8;   
25.  public   int T _charge_ok=9;   
26.  public   int T _noconnectionUser=10;    
27.  /** S tate Machine constructor 
28.  *@ generated 
29.  */ 
30.  public  S M_Us er(){ 
31.  S ystem.out.println("S M_Us er.constr");  
32.  LinkedLis t s tartUser = new LinkedList();  
33.  startUser.add(new trans ition(T _login, S _S _login ,0));  
34.  states .add(startUs er);  
35.   
36.  LinkedLis t S _login = new LinkedList();  
37.  S _login.add(new trans ition(T _login_ok, S _logged_in ,1));  
38.  S _login.add(new trans ition(T _login_ko,  S _startUs er ,1));  
39.  states .add(S _login);  
40.   
41.  LinkedLis t logged_in = new LinkedList();  
42.  logged_in.add(new trans ition(T _withdraw, S _S _withdraw ,0));  
43.  logged_in.add(new trans ition(T _chargeP hone, S _charge ,0));  
44.  logged_in.add(new trans ition(T _logout,  S _startUs er ,0));  
45.  states .add(logged_in);  
46.   
47.  LinkedLis t S _withdraw = new LinkedLis t();  
48.  S _withdraw.add(new trans ition(T _withdraw_ko, S _logged_in ,1));  
49.  S _withdraw.add(new trans ition(T _withdraw_ok, S _logged_in ,1));  
50.  S _withdraw.add(new trans ition(T _noconnectionUser, S _logged_in ,1));  
51.  states .add(S _withdraw);  
52.   
53.  LinkedLis t charge = new LinkedList();  
54.  charge.add(new trans ition(T _charge_ko, S _logged_in ,1));  
55.  charge.add(new trans ition(T _charge_ok, S _logged_in ,1));  
56.  charge.add(new trans ition(T _noconnectionUs er,  S _logged_in ,1));  
57.  states .add(charge);  
58.  } 



  ���

From Requirements to Java Code

is a first step towards round-trip engineering and 
refactoring support even though a more advanced 
support is required and it is an issue that has to 
be deeply investigated in the future. 

The generated specification of the User state 
machine that guarantees the code execution ac-
cording to the admitted User component behaviour 
is listed in Figure 19. The states and the transitions 
are encoded as a linked list initialized in the lines 
32-57 of the Figure. This specification forces the 
execution of the methods which are admitted in the 
current computation state with respect to both SA 
constraints and behavioural one: if a given User 
method can be invoked, then the current state is 
updated according to the information contained in 
the linked list. Otherwise an exception is raised. 
For instance, once the User component reach the 
logged_in state, only the withdraw, chargePhone, 
and logout transitions are admitted (see lines 41-
45 in Figure 19), consistently with the User state 
diagram (see Figure 12). If a different transition is 
asked, an exception is raised stopping the system 
execution. The exception could be also handled 
defining different reaction policies to maintain 
the system running in a consistent state.

5. future trendS

In this chapter we presented an approach to 
automatically generate Java code starting from 
verified software architecture descriptions. The 
best of the state of the art, as presented in Sec-
tion 2, is represented by ArchJAvA that ensures 
the communication integrity, and by JAvA/A that 
constraints also the code to behave as defined in 
the port’s protocols. These approaches (as they 
are today) can be used only in a context in which 
the system is completely implemented in-house, 
while neglecting the possibility of integrating 
external components. This because of acquired 
components which are not necessarily imple-
mented following one of these approaches and 
thus it is not possible at runtime to enable the 

only admitted operations. Thus, an interesting 
future research direction consists on the abil-
ity of integrating in-house components code 
with automatically generated assembly code 
for acquired components, forcing the composed 
system to exhibit the properties specified at the 
architectural level. This integration would open 
the possibility of managing dynamic systems 
(i.e., systems in which some components have to 
change at runtime) where a re-generated “correct” 
assembly code assures that the composed system 
is forced to exhibit only the properties specified 
at the architectural level.

In the domain of system run-time validation, 
feedback generated by the run-time analysis of the 
generated code (through monitoring and testing 
techniques) could be automatically tracked back to 
the architectural model, so that whenever a change 
applies over the code, it is automatically reflected 
on the architectural model and vice-versa. 

Another future research direction consists in 
investigating how to assure that the generated 
code respects non functional properties and qual-
ity aspects which have been proven to be valid at 
the architectural level.

6. related work

The principal aspect related to our work is the 
use of “Software Architecture” in a development 
process of complex and distributed systems. Al-
though the concept of “Software Architecture” 
was first described in the 60s, a significant interest 
among the research community is only 15 years 
old, and the industrial community’s interest is very 
recent. Software Architecture’s research results 
are widely ignored by the industrial community 
for which a good architect is mainly an experi-
enced person. Currently the most used technique 
for distributed systems engineering is based on 
“best practices” documents that do not necessarily 
include precise models and descriptions.



���  

From Requirements to Java Code

There are few development methodologies cov-
ering architecture engineering. Some interesting 
initiatives covering architecture engineering are 
RUP (RUP , 2000), MDA (OMG), HP (HP, 1998) 
recommendations initially started in the Fusion 
2.0 Project and the FIDJI project (FIDJI, 2001).

In RUP, UML models should be used to de-
scribe all the architecture artefacts. The famous 
“4+1” views (Kruchten, 1995) have been intro-
duced to capture heterogeneous architectural 
properties that has to be understood by many 
people who have various jobs and therefore vari-
ous background.

In the OMG Model Driven Architecture 
(MDA) the architecture is at the centre of soft-
ware development. The key concepts are those 
of Platform Independent and Platform Specific 
models, and model transformation. A Platform 
Independent Models (PIM) is an abstract descrip-
tion of the system being developed. It exhibits a 
specified degree of platform independence so as 
to be suitable for use with a number of different 
technologies. A Platform Specific Model (PSM) 
is a view of a system from the platform specific 
viewpoint. A PSM combines the specifications in 
the PIM with architectural details and specifies 
how that system uses a particular platform. A 
model transformation is defined as “the process 
of converting one model to another model of the 
same system”. The approach proposed in this 
chapter adheres to the MDA ideas through the 
realization of model transformations which take 
as input an architectural model and produces as 
output the source code skeleton.

Fusion 2.0 (HP, 1998) defines an architecture 
phase placed between analysis and design. It is 
split into “conceptual architecture” and “logi-
cal architecture”; the first one is more informal 
and abstract and the second one is very precise. 
This notion is very close to the PIM and PSM 
in MDA.

The intent of the FIDJI project is to define a 
methodology for distributed applications in Java. 
The approach is composed on four steps that are 

inspired from Fusion 2.0: Requirements, Domain 
analysis, Architectural and Design. 

In the requirements step it is possible to define 
a set of use-cases inter use-cases relationships and 
contracts. Contracts are statements that have to be 
satisfied by the final system. The domain analysis 
step provides criteria to choose API and compo-
nents that already exist. From domain analysis 
and requirements this approach is able to identify 
the architectural style that will act as guide for 
the remaining design. From the style and using 
a framework specialization tool (UML, ADL, 
etc…) the architecture is defined, developed and 
stabilized. The most difficult issue of this approach 
is to provide a concrete architecture that support 
the functional requirements and which validates 
its associated non-functional requirements.

Overall, the main distinction between our and 
existing approaches is that while they cover some 
of the steps in the software development process, 
we do cover the entire process from requirements 
to code. We specifically focus on the Software 
Architecture as the main artefact enabling the 
transition from requirements to code. Moreover, 
we especially focus on quality during the entire 
process.

7. concluSion

Model-driven development is based on the idea 
that code can be generated from a model of the 
system. This chapter has provided a contribution 
in this direction, by showing how an architectural 
model defined in a model-based fashion can be 
used for code generation. An important aspect 
during this process consists of ensuring that 
the selected architecture provides the required 
qualities. We have shown how this is feasible in a 
specific context, where coordination properties are 
elicited from requirements, modelled, and verified 
against the architectural model. As soon as the 
architectural model is proven to be good enough, 
we demonstrated that it can be used for generat-



  ���

From Requirements to Java Code

ing Java code, constraining the system execution 
according to the architectural decisions.

Indeed, this approach shall be considered as 
a mere feasibility study, which demonstrates one 
possible way of achieving the desired objectives, 
while motivating other researchers to pursue 
similar objectives.

acknowledgMent
 
The authors of this chapter wish to thank the 
anonymous reviewers for their careful and useful 
comments. This work has been partially sup-
ported by the Italian FIRB Project ART DECO 
(Adaptive InfRasTructures for DECentralized 
Organizations).

referenceS

(AADL) The SAE Architecture Analysis and De-
sign Language (AADL). http://www.aadl.info/

(Abi-Antoun, 2007) Abi-Antoun, M., & Aldrich, 
J. (2007). Owernship domains in the real world. 
In IWACO workshop at ECOOP.

(Acme) The Acme Studio Homepage. http://www.
cs.cmu.edu/~acme/ AcmeStudio/index.html. 

(Aldrich, 2004) Aldrich, J., & Chambers, C. 
(2004). Ownership Domains: Separating Aliasing 
Policy from Mechanism. In Proc. of ECOOP’04 
(pp. 1-25).

(Allen, 1997) Allen, R. , & Garlan, D. (1997). A 
Formal Basis for Architectural Connection. ACM 
Trans. on Software Engineering and Methodology, 
6(3), (pp. 213-249).

(Alur, 1990) Alur, R., Courcoubetis, C., & Dill, 
D. L.(1990). “Model Checking for Real-Time 
Systems”. In Proc. of IEEE Fifth Symp. Logic 
in Computer Science, (pp. 414-425).

(ArchJAvA Project, 2005) ArchJAvA Project. 
http://archjava.org/, 2005. 

(Autili, 2006) Autili, M., & Pelliccione, P. (2006). 
Towards a Graphical Tool for Refining User to 
System Requirements. In: 5th GT-VMT’06 - 
ETAPS’06, to appear in ENTCS. 

(Autili, 2007) Autili, M., Inverardi, P., & Pelliccio-
ne, P.(2007). Graphical Scenarios for Specifying 
Temporal Properties: an Automated Approach, 
published in the Automated Software Engineer-
ing (ASE) journal. DOI - 10.1007/s10515-007-
0012-6. 

(AutoFOCUS Project) AutoFOCUS Project. 
http://autofocus.in.tum.de/index-e.html.

(AutoFOCUS2 Project) AutoFOCUS2 Project. 
http://www4.in.tum.de/af2. 

(Barber, 2001) Barber, K. S., Graser, T. , & Holt, 
J. (2001). Providing early feedback in the devel-
opment cycle through automated application of 
model checking to software architectures. In Proc. 
of 16th IEEE International Conference on Auto-
mated Software Engineering, (pp. 341–345).

(Baumeister, 2006) Baumeister, H., Hacklinger, F., 
Hennicker, R., Knapp, A., & Wirsing, A. (2006). 
A Component Model for Architectural Program-
ming. Electronic Notes in Theoretical Computer 
Science (160), (pp. 75–96).

(Bengtsson, 1995) Bengtsson, J., Larsen, K. G., 
Larsson, F., Pettersson, P., & Yi, W.(1995). Up-
paal - a Tool Suite for Automatic Verification of 
Real-Time Systems. In Proceedings of the 4th 
DIMACS Workshop on Verification and Control 
of Hybrid Systems, New Brunswick, New Jersey, 
(pp. 22-24).

(Bernardo, 2003) Bernardo, M., & Inverardi, P. 
(2003). Formal Methods for Software Architec-
tures, Tutorial book on Software Architectures 
and Formal Methods. SFM-03:SA Lectures, 
LNCS 2804.



���  

From Requirements to Java Code

(Bertolino, 2004) Bertolino, A., Marchetti, E., 
& Muccini, H. (2004) Introducing a Reasonably 
Complete and Coherent Approach for Model-
based Testing. (In: Testing and Analysis of Com-
ponent-Based Systems Workshop, Tacos). 

(Bose, 1999) Bose, P.(1999). Automated transla-
tion of uml models of architectures for verification 
and simulation using spin. In Proc. of 14th IEEE 
International Conference on Automated Software 
Engineering, (pp. 102–109).

(Bril, 2005) Bril, R.J., Krikhaar, R.L., Postma, 
A. (2005). Architectural Support in Industry: a 
reflection using C-POSH. Journal of Software 
Maintenance and Evolution.

(Büchi, 1960) Büchi, J. (1960). On a decision 
method in restricted second order arithmetic. In: 
International Congress on Logic, Method and 
Philosophical Sciences.

(Budinsky, 2003) Budinsky, F. , Steinberg, D., 
Merks, E., Ellersick, R., & Grose, T.J. (2003). 
Eclipse Modeling Framework. Addison Wesley. 

(chArmy, 2004) chArmy Project: chArmy Web 
Site. http://www.di.univaq.it/charmy (2004). 

(Cheng, 2006). Cheng, Betty H.C, & Konrad, 
S.(2006). Automated Analysis of Natural Lan-
guage Properties for UML Models. Jean-Michel 
Bruel, editor, Satellite Events at the MoDELS 
2005, n. 3844 in LNCS, (pp. 48-57). Springer 
Verlag.

(Clarke, 2000) Clarke, E. M., Grumberg, O., & 
Peled, D. A. (2000). Model Checking. The MIT 
Press, Cambridge, second edition.

(Dashofy, 2002) Dashofy, E. M., van der Hoek, 
A., & Taylor, R. N. (2002). An infrastructure for 
the rapid development of xml-based architecture 
description languages. In ICSE ’02: Proceedings 
of the 24th Int. Conf. on Software Eng., (pp. 
266–276), New York, NY, USA, ACM Press.

(Dobrica, 2002) Dobrica, L., & Niemela, E. A 
Survey on Software Architecture Analysis Meth-
ods. IEEE Transactions on Software Engineering, 
VOL. 28, NO. 7.

(Dwyer, 1999) Dwyer, M. B., Avrunin, G. S., & 
Corbett, J. C. (1999). Patterns in property specifi-
cations for finite-state verification. In ICSE, (pp. 
411–420).

(Eriksson, 2004) Eriksson, H.-E. , Penker, M., 
Lyons, B., & Fado D. (2004). UML 2 Toolkit, 
chapter Ch. 7, Representing Architecture, (pp. 
251–279). John Wiley and Sons..

(FIDJI, 2001) Guelfi, N., Hammouche, D., Sterges, 
P., & Biberstein, O. (2001). FIDJI Project Annual 
Activities Report, Applied Computer Science 
Department technical report nº TR-DIA-02-01, 
Luxembourg University of Applied Sciences, 
Luxembourg-Kirchberg, Luxembourg.

(Fujaba Project, 2006) Fujaba Project. http://ww-
wcs.uni-paderborn.de/cs/fujaba/ publications/in-
dex.html. University of Paderborn. 

(Gomaa, 2001) Gomaa, H., & Wijesekera, D. 
(2001). The Role of UML, OCL and ADLs in 
Software Architecture. In Proc. of the Workshop 
on Describing Software Architecture with UML, 
in ICSE 2001, Toronto, Canada.

(Goulo, 2003) Goulo, M., & Abreu, F.(2003). 
Bridging the gap between Acme and UML for 
CBD. In Specification and Verification of Com-
ponent-Based Systems.

(Grünbacher, 2003) Grünbacher, P., Egyed, A., & 
Medvidovic, N. (2003). Reconciling Software Re-
quirements and Architectures with Intermediate 
Models. Springer Journal of Software and System 
Modeling. Accepted for publication. Published 
online on SpringerLink.

(Hacklinger, 2004) Hacklinger, F. (2004). Java/A 
– Taking Components into Java. IASSE 2004, 
(pp. 163-168).



  ���

From Requirements to Java Code

(Hofmeister, 2007) Hofmeister, C., Kruchten, P., 
Nord, R.L., Obbink, H.,Ran, A., & America, P. 
(2007). A general model of software architecture 
design derived from five industrial approaches. 
J. Syst. Softw., 80(1), (pp.106-126).

(Holzmann, 2002) Holzmann, G. J. (2002). The 
logic of bugs. In Proc. of Foundations of Software 
Engineering (SIGSOFT 2002/FSE-10).

(Holzmann, 2003) Holzmann, G.J. (2003).The 
SPIN Model Checker: Primer and Reference 
Manual. Addison-Wesley.

(HP, 1998) Hewlett-Packard, Engineering Process 
Summary (fusion 2.0), Draft version January 
1998.

(HUGO, 2005) HUGO. http://www.pst.ifi.lmu.
de/projekte/hugo. 2005.

(Inverardi, 2005) Inverardi, P., Muccini, H., 
Pelliccione, P. (2005). chArmy: an extensible 
tool for architectural analysis. In: ESEC/FSE-
13: Proceedings of the 10th European software 
engineering conference, New York, NY, USA, 
ACM Press (pp.111–114).

(Ivers, 2004) Ivers, J. , Clements, P., Garlan, D., 
Nord, R., Schmerl, D., & Silva, J. R. O. (2004). 
Documenting Component and Connector Views 
with UML 2.0. Technical Report CMU/SEI-2004-
TR-008, Carnegie Mellon University, Software 
Engineering Institute.

(Jerad, 2005) Jerad, C., & Barkaoui, K. (2005). 
On the use of rewriting logic for verification of 
distributed software architecture description 
based lfp. In Proc. Of 16th IEEE International 
Workshop on Rapid System Prototyping (pp. 
202-208).

(Johannisson, 2005) Johannisson, K. (2005). 
Formal and Informal Software Specifications. 
PhD thesis, C. Technology and Göteborg Univ., 
SE-412 96 Göteborg, Sweden. 

(Kande’, 2002) Kande’, M. M. , Crettaz, V. , 
Strohmeier, A. & Sendall, S. (2002). Bridging the 
gap between IEEE 1471, Architecture Descrip-
tion Languages and UML. Software and System 
Modeling, 2 (pp. 98–112) 

(Kruchten, 1995) Kruchten, P. (1995). Archi-
tectural Blueprints - The “4+1” View Model of 
Software Architecture. IEEE Software, 12(6) 
(pp. 42–50).

(Magee, 1999) Magee, J., Kramer, J., & Gianna-
kopoulou, D. (1999). Behaviour Analysis of Soft-
ware Architectures. In I Working IFIP Conf. Sw 
Architecture, WICSA.

(Manna, 1992) Manna, Z., & Pnueli, A. (1992). 
The temporal logic of reactive and concurrent 
systems. Springer-Verlag New York, Inc.

(Medvidovic, 2000) Medvidovic, N. & Taylor, 
R. N. (2000). A Classification and Comparison 
Framework for Software Architecture Descrip-
tion Languages. IEEE Transactions on Software 
Engineering, 26(1).

(Medvidovic, 2002) Medvidovic, N. , Rosenblum, 
D. S. , Redmiles, D. F., & Robbins, J. E. (2002). 
Modeling Software Architectures in the Unified 
Modeling Language. ACM Transactions on Soft-
ware	Engineering	and	Methodology	(TOSEM), 
11(1).

(Medvidovic, 2003) Medvidovic, N. , Grünbacher, 
P. , Egyed, A., & Boehm, B. (2003). Bridging 
Models across the Software Life-Cycle. Journal for 
Software Systems (JSS), 68(3) (pp. 199–215).

(Muccini, 2006) Muccini, H. & Hierons, R. 
Editors (2006). ROSATEA 2006: The Role Of 
Software Architecture in Testing and Analysis. 
ACM Digital Library. 

(Mustapic, 2004) Mustapic, G., Wall, A., 
Norstrom, C., Crnkovic, I., Sandstrom, K., & 
Andersson, J. (2004). Real world influences on 
software architecture - interviews with industrial 
system experts. In: Fourth Working IEEE/IFIP 



���  

From Requirements to Java Code

Conference on Software Architecture, WICSA 
(pp. 101–111).

(Nuseibeh, 2001) B. Nuseibeh. Weaving Together 
Requirements and Architectures. IEEE Computer, 
34(3):115–117, March 2001.

(OMG) The Object Management Group (OMG). 
http://www.omg.org.

(Pelliccione, 2005) Pelliccione, P. (2005). chArmy: 
A framework for Software Architecture Specifica-
tion and Analysis. PhD thesis, Computer Science 
Dept., U. L’Aquila. 

(Pender, 2003) Pender, T. (2003). UML Bible, 
chapter Part V: Modeling the Application Archi-
tecture, page 940. Wiley Pub.

(Perez-Martinez, 2004) Perez-Martinez, J. E., & 
Sierra-Alonso, A. (2004). UML 1.4 versus UML 
2.0 as languages to describe Software Architec-
tures. In Proc. EWSA 2004. LNCS n. 3047.

(Perry, 1992) Perry, D. E., & Wolf, A. L. (1992). 
Foundations for the Study of Software Architec-
ture. ACM SIGSOFT Softw. Eng. Notes, 17(4), 
(pp. 40–52).

(PRISMA) PRISMA: Official Web Site: http://
prisma.dsic.upv.es/.

(Robbins, 1998) Robbins, J. E. , Medvidovic, N. 
, Redmiles, D. F., & Rosenblum, D. (1998). Inte-
grating architecture description languages with a 
standard design method. In Proc. 20th Int. Conf. 
on Software Engineering.

(Roh, 2004) Roh, S., Kim, K., & Jeon, T. (2004).  
Architecture Modeling Language based on 
UML2.0. In Proocedings of the 11th Asia-Pacific 
Software Engineering Conference (APSEC).

(RUP, 2000) Kruchten, P. (2000). The rational 
Unified Process An Introduction, second edition, 
Addison-Wesley.

(Schmerl, 2004) B. Schmerl, D. Garlan. AcmeStu-
dio: Supporting Style-Centered Architecture 

Development. Proc. International Conference on 
Software Engineering, ICSE’04, pages 704-705, 
Edinburgh, Scotland, May 2004.

(SysML) The Systems Modeling Language 
(SysML) open source specification project. http://
www.sysml.org/

(Smith, 2002) Smith, R. L. , Avrunin, G. S., Clarke, 
L. A., & Osterweil, L. J. (2002). PROPEL: An Ap-
proach Supporting Property Elucidation. In Proc. 
of 24th International Conference on Software 
Engineering (ICSE), (pp 11–21).

(Sommerville, 2004) Sommerville, I.: Software 
engineering (7th ed.). Addison-Wesley Longman 
Publishing Co., Inc., Boston, MA, USA (2004).

(STRAW, 2003) STRAW ’03: Second Int. Work-
shop From Software Requirements to Architec-
tures, May 09, 2003, Portland, Oregon, USA.

(xADL 2.0, 2005) xADL 2.0 Architecture Descrip-
tion Language. http://www.isr.uci.edu/projects/
xarchuci/, 2005.

(Zhang, 2007) Zhang, P. C., Muccini, H. , & 
Li, B. X. (2007). A comparative study of model 
checking methods on software architecture. 
Technical Report, Chair of Software Testing and 
Verification, Southeast University. http://cse.seu.
edu.cn/people/bx.li/en/cstv.htm

(Zhu, 2003) Zhu, X., Maiden, N., & Pavan, P. 
(2003). Scenarios: Bringing requirements and 
architectures together. In 2nd International Work-
shop on Scenarios and State Machines: Models, 
Algorithms, and Tools.

endnote

1 Borrowed from Sensonia, Research sup-
ported by the EU within the FET-GC2 
IST-2005-16004 Integrated Project Sensoria 
(Software Engineering for Service-Oriented 
Overlay Computers)



  ���

From Requirements to Java Code

appendix a: Java/a code generation 

The following code shows parts of the Java/A declaration of the component OutService described 
in Figure 3:

1. simple component AccidentAssistanceService {

2. dynamic port AAE {

3. provided {

void AlertAccepted();

void AlertNotAccepted();

void EmergencyAccepted();

void EmergenctNotAccepted();

}

4. required {

signal AlertEmergencyService(Location Loc);

signal EmergencyLevel(int Level);

void AlertAccepted();

}

�. 

6. try{

7.  component aas = componentLookUp (this,     

   “AccidentAssistenceService”);

8.  port aae = aas.getPort (“AAE”);

�.  ConnectionRequest cr = (this, this, EAA, aas, aae, new    

   Connector());

   reconfigurationRequest(cr);

�0. }

11. catch (ReconfigurationException e) {…}

��. }

13. simple component EmergencyService{

14. port EAA {

15. provided{

signal AlertEmergencyService(Location Loc);

signal EmergencyLevel(int Level);

void AlertAccepted();

      }

16. required{

         void AlertAccepted();

void AlertNotAccepted();

void EmergencyAccepted();

void EmergenctNotAccepted();

��. }

��. <! // protocol of EAA



�00  

From Requirements to Java Code

   states {

initial Initial;

simple Q�,Q�,Q�,Q�;

   }

   transitions {

Initial -> Q�;

Q� -> Q� {trigger AlertEmergencyService();}

Q� -> Q� {effect AlertNotAccepted();}

Q� -> Q� {effect AlertAccepted();}

Q� -> Q� {trigger EmergencyLevel();}

Q� -> Q� {effect EmergencyNotAccepted();}

Q� -> Q� {effect EmergencyAccepted();}

}

!>

��. }

20. composite component OutService

��. {

22. assembly {

component types {AccidentAssistenceService,          

EmergencyService

     }

23. connector types {

AccidentAssistenceService.AAE;

EmergencyService.EAA;

}

24. initial configuration {

    AccidentAssistenceService AS = new AccidentAssistenceService();

    EmergencyService ambulance = new EmergencyService();

    EmergencyService police = new EmergencyService();

      Connector cn0 = new Connector();

       cn0.connect(ambulance.EAA, AS.AAE);

           connector cn� = new Connector();

            cn�.connect = (police.EAA, AS.AAE);

     }

        }

       }

��. }

In lines 1-12 and 13-19 the two simple components (Accident Assistence Service (AAS) and Emergency 
Service (ES)) are declared while in lines 20-25 a composite component “OutService” is declared as an 
assembly of the two previous ones. In lines 2 and 14, the ports AAE and EAA are defined. Each port 
declaration contains a set of provided operations (i.e., lines 3 and 15) and a set of required operations 



  �0�

From Requirements to Java Code

(i.e., lines 4 and 16). Port protocols are specified by UML state machines which are textually represented 
using the UTE notation (HUGO, 2005). For instance, lines 18-19 show the UTE representation of the 
UML state machine for the port EAA. In line 24 a possible configuration of the OutService composite 
component is declared. It presents two instances of the ES component (ambulance and police) that are 
attached at the AAS by the EAA and AAE ports. JAvA/A also allows to cope with “dynamic	reconfigura-
tion” in order to describe changes to a component-based system at run-time (e.g., creation and destruction 
of components, building up and removing of connections between ports). This is made with a code like 
the one in lines 6-11 where a possible reconfiguration in the OutService composite component (i.e., the 
connection and disconnection of ES) is presented. An idle ES disconnects from the AAS and reconnects 
whenever there is an accident and the AAS alerts the ES. When AAS alerts the ES executes the code 
in the 6-11 lines which realised the (re)connection of an ES to the AAS.



�0�  

Chapter XII
Quality-Driven Model 

Transformations:
From Requirements to 
UML Class Diagrams

Silvia Abrahão
Valencia University of Technology, Spain

Marcela Genero
University of Castilla – La Mancha, Spain

Emilio Insfran
Valencia University of Technology, Spain

José Ángel Carsí
Valencia University of Technology, Spain

Isidro Ramos
Valencia University of Technology, Spain

Mario Piattini
University of Castilla – La Mancha, Spain

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

abStract

Model-Driven	Architecture	(MDA)	is	a	software	engineering	approach	that	promotes	the	use	of	models	
and model transformations as primary development artifacts. Usually, there are several ways to trans-
form a source model into a target model. Alternative target models may have the same functionality but 
may	differ	in	their	quality	attributes	(e.g.,	understandability,	modifiability).	This	chapter	presents	an	
approach to deal with quality-driven	model	transformations.	Specifically,	it	focuses	on	a	specific	set	of	
transformations to obtain UML class diagrams from a Requirements Model. A set of alternative transfor-
mations	are	identified,	and	the	selection	of	the	best	alternative	is	done	through	a	controlled	experiment.	



  �0�

Quality-Driven Model Transformations

introduction

Nowadays, the software development community 
is moving towards model-driven development 
processes whose goal is the development of 
software at a higher level of abstraction based on 
models and model transformations. Within this 
context, the Model-Driven Architecture (MDA) 
initiative (OMG, 2003) has attracted interest 
from both the research community and software 
practitioners. This approach comprises the use 
of models in all the steps of a software develop-
ment project, until the delivery of the software 
on a given platform. 

A MDA development process basically trans-
forms a platform-independent model (PIM) into 
one or more platform-specific models (PSM), 
which are transformed into code (code model 
– CM). The CM is just the actual code generated 
from PSMs through transformation. Here, the goal 
is to decouple the way, in which software systems 
are currently defined, which is dependant on the 
technology they use (OMG, 2003). 

A model transformation is a process of convert-
ing one model to another model. A model may 
be transformed to several alternative models that 
may have the same functionality but different 
quality attributes. For example, one model may be 
more reusable while another model may be more 
comprehensive to its stakeholders. Therefore, it 
is necessary to identify those transformations 
that produce models with the desired quality 
attributes.

To cope with the problem of selecting alter-
native transformations, this chapter presents an 
approach for quality-driven model transforma-
tions. The mechanisms to choose the appropriate 

alternatives can greatly differ depending on the 
nature and the domain of the transformations as 
well as the quality perspective that is chosen. We 
focus on a set of transformations defined to obtain 
UML class diagrams from a Requirements Model 
(Insfran, 2003). Assuring quality in representing 
the system’s conceptual model from requirements 
is particularly important, as the traceability be-
tween these models is not properly dealt with. 
Moreover, a conceptual model of good quality 
can help to minimize communication problems 
and misunderstandings of requirements among 
the stakeholders.

The quality perspective that we are interested 
in is the pragmatic quality1 (Lindland, Sindre & 
Sølvberg, 1994). This quality category addresses 
the comprehension aspect of the model from the 
stakeholders’ perspective. Pragmatic quality cap-
tures how the model has selected an alternative 
“from among the many ways to express a single 
meaning”, and it essentially deals with making 
the model easy to understand.

The comprehension goal specifies that all 
audience members (or interpreters) completely 
understand the statements in the model that are 
relevant to them. This is an import quality at-
tribute since it is recognized as one of the main 
factors that influences maintainability (Selic, 
2003) (Otero & Dolado, 2004) (Reinhartz-Berger 
& Dori, 2005) (Genero et al., 2005; 2007). A UML 
class diagram must first be understood before any 
desired changes to it can be identified, designed, 
or implemented. In terms of the Lindland et al. 
framework, improving pragmatic quality means 
increasing the degree of correspondence between 
the set of statements in the model and the set of 
statements that the user thinks the model presents 
(i.e., their understanding of the model). 

The goal of the experiment is to empirically validate which alternative transformation produces the UML 
class	diagram	that	is	the	easiest	to	understand.	This	evidence	can	be	further	used	to	define	high-quality	
transformation processes, as it will be based on empirical knowledge rather than on common wisdom 
and the intuition of the researchers and developers.



�0�  

Quality-Driven Model Transformations

Therefore, our main goal is to empirically 
evaluate which of the alternative transformations 
produces the UML class diagram that is easiest 
to understand. This evidence can be further used 
to define high-quality transformation processes, 
as it will be based on empirical knowledge rather 
than on common wisdom and the intuition of the 
researchers and developers.

The structure of the chapter is as follows. Sec-
tion 2 presents the state-of-the-art for quality in 
model-driven development. Section 3 describes 
how UML class diagrams can be obtained from 

a Requirements Model using different transfor-
mation alternatives. This section also shows the 
definition of these transformations using QVT 
and their execution in a platform for model man-
agement called MOMENT. Section 4 describes 
the design and the results of the experiment car-
ried out to empirically validate the selection of 
the alternative transformations according to the 
‘understandability’ quality attribute. Section 5 de-
scribes our conclusions. Finally, section 6 presents 
a discussion on future research directions.

Proposal Purpose Type of Input 
Artifact

Quality 
attributes Automation

Zou and 
Kontogiannis, 

2003

Reverse 
engineering 
(migration)

Vertical
(CM-to-PIM)

Program code Coupling and 
cohesion No

Rottger and 
Zschaler, 2004 Refinement Horizontal Context 

Models
Response 

Time Partial

Merilinna, 
2005 Refactoring Horizontal 

(PIM-to-PIM)
Architectural 

models

Performance, 
availability, 
reliability, 

Yes

Kurtev, 2005 Synthesis
Vertical 

(PIM-to-PIM)
UML class 

models Adaptability Yes (Mistral)

Markovic and 
Baar, 2005 Refactoring Horizontal 

(PIM-to-PIM)
UML class 

models
Syntactical 
correctness No

Sottet et al., 
2006 – – Interface 

models

Compatibility, 
error 

protection, 
homogeneity-
consistency 

No

Ivkovic and  
Kontogiannis, 

2006
Refactoring Horizontal 

(PIM-to-PIM)

Architectural 
models 

expressed in 
UML

Maintenance, 
performance 
and security 

No

Kerhervé et 
al., 2006

Synthesis, 
refinement

Horizontal 
and Vertical

Information 
models

Response 
time, network 
delay, network 

bandwidth

No

( – ) means that the proposal does not provide this information

Table 1. Comparison of approaches for quality in model-driven development 



  �0�

Quality-Driven Model Transformations

State-of-the-art of Quality 
for Model-driven Software 
developMent

In the last few years, some proposals that deal 
with the quality of model transformations from 
the perspective of a quality attribute have been 
proposed. An organized chronological summary 
of these studies is presented in Table 1. 

Zou and Kontogiannis (2003) proposed a 
quality-driven reengineering framework for 
object-oriented migration. Analysis tools, trans-
formation rules, and non-functional requirements 
for the target migration systems characterize this 
framework. During the migration process, the 
source-code transformation rules are associated 
with quality features of the target system (i.e., 
coupling and cohesion). This approach was ap-
plied to transform a set of gnu AVL libraries into 
an UML class diagram. 

Röttger and Zschaler (2004) proposed an ap-
proach for refining non-functional requirements 
based on the definition of context models and 
their transformations. This approach has been 
defined in a software development process that 
separates the roles of the measurement designer 
and the application designer. It is the measurement 
designer’s responsibility to specify measurements, 
context models and transformations among these 
models. Then, the application designer can apply 
the transformations when developing a system. 
Röttger and Zschaler defined a XML-based lan-
guage for the specification of transformations 
between abstract and concrete context models. 
The transformations used the response time 
quality attribute. 

Merilinna (2005) proposed a tool for qual-
ity-driven model transformations for software 
architectures. Two types of quality attributes are 
considered: attributes related to software execu-
tion (e.g., performance, availability, reliability) 
and attributes related to software evolution (e.g., 
maintenance, modifiability, reusability). The 
transformations are described according to MDA 

and a proprietary transformation rule language. 
The approach only considers horizontal transfor-
mations (PIM-to-PIM transformations). 

Kurtev (2005) proposed a formal technique 
for the definition of transformation spaces that 
support the analysis of alternative transforma-
tions for a given source model. This technique 
provides operations for the selection and reduc-
tion of transformation spaces based on certain 
desirable quality properties of the resulting target 
model. Specifically, this approach deals with 
the adaptability of model transformations. To 
generate the transformation space, the process 
takes a source model and its metamodel, the 
target metamodel, and the quality properties as 
input. The proposal has been applied to a set of 
transformations to obtain XML schemas from 
UML class diagrams. 

Markovic and Baar (2005) defined a set of 
transformation rules for the refactoring of UML 
class diagrams. The rules have been defined using 
the Query/View/Transformation (QVT) standard 
of OMG (OMG, 2005). The refactoring is applied 
to UML class diagrams containing annotated OCL 
constraints that are preserved when the transfor-
mations are applied. Therefore, the syntactical 
correctness of the target model is preserved. 

Similar to this proposal, Ivkovic and Kon-
togiannis (2006) presented an approach for the 
refactoring of software architectures using model 
transformations and semantic annotations. In this 
approach, the architectural view of a software 
system is represented as a UML profile with its 
corresponding stereotypes. Then, the instantiated 
architectural models are annotated using elements 
of the refactoring context, including soft goals, 
metrics, and constraints. Finally, the actions that 
are most advisable for a refactoring context are 
applied after being selected from a set of possible 
refactorings. The proposal has been applied to a 
case study to demonstrate that the refactoring 
transformations improve the maintenance, perfor-
mance and the security of a software system.



�0�  

Quality-Driven Model Transformations

Sottet et al. (2006) proposed an approach 
for model-driven mappings for embedding the 
description and control of usability. A mapping 
describes a model transformation that preserves 
properties. The mapping properties provide the 
designer with a means for both selecting the most 
appropriate transformation and previewing the 
resulting design. A case study that illustrates an 
application of the mapping metamodel using us-
ability criteria (compatibility, error protection, and 
homogeneity-consistency) was presented.

Kerhervé et al. (2006) proposed a general 
framework for quality-driven delivery of distrib-
uted multimedia systems. The framework focuses 
on Quality of Services (QoS) information mod-
eling and transformations. The transformations 
between models express the relationships among 
the concepts of the different quality information 
models. These relationships are defined in quality 
dimensions and are used to transform instances 
of a source model to a target model. Different 
types of transformations are applied to different 
layers and services: vertical transformations are 
applied to transform information between the 
different layers (user, service, system, and re-
source), and horizontal transformation are applied 
to interchange information between services of 
the same layer. 

In summary, some proposals focus on defining 
horizontal transformations for model refactor-
ing (Merilinna 2005) (Markovic & Baar 2005) 
(Ivkovic & Kontogiannis 2006). Other proposals 
are aimed at providing vertical transformations 
for model refinement (Rottger & Zschaler, 2004), 
synthesis (Kerhervé et al., 2006) (Kurtev, 2005), 
or reverse engineering (Zou & Kontogiannis, 
2003). Of these studies, only the one by Kurtev 
(2005) presents a more systematic approach for 
selecting alternative transformations according 
to a given quality attribute. 

All these approaches propose quality criteria 
that can be used to drive the transformations, 
but very few of these approaches (Kurtev, 2005) 
(Markovic & Baar, 2005) illustrate them by 

means of practical examples. With the exception 
of Markovic and Baar (2005) and Kurtev (2005), 
the transformations are poorly defined. Therefore, 
more systematic approaches to ensure quality in 
MDA processes are needed. Another weakness 
of these proposals is that they are not empirically 
validated. The practical applicability of model 
transformations is reported based on the intuition 
of the researcher. As pointed out by Czarnecki 
and Helsen (2006), there is a lack of controlled 
experiments to fully validate the observations 
made by the researchers. 

a Quality-driven Model 
tranSforMation approach

This section presents a systematic approach to 
ensure quality in model-driven development 
processes. It takes a different approach to drive 
the selection of transformations, which is to 
empirically validate the selection of alternative 
transformations through controlled experiments. 
The rationale of this approach is to be able to au-
tomatically select the alternative transformation 
that an experienced software developer would 
select if the transformation process were manu-
ally applied. 

In order to operationalize this approach, we 
propose the use of quality attributes to drive the 
selection of the most appropriate alternative trans-
formation that contributes to the improvement 
of the target model according to a given quality 
attribute. A quality attribute is a measurable 
physical or abstract property of an entity (i.e., a 
conceptual model) (ISO, 2001).

Currently, our controlled experiments are 
oriented to empirically validating the selection 
of the alternative transformation that maximizes 
the ‘understandability’ quality attribute. Fig. 1 
presents an overview of our quality-driven model 
transformation approach. 

According to Fig. 1, a transformation is execut-
ed taking a transformation	definition as input. A 



  �0�

Quality-Driven Model Transformations

transformation definition contains transformation 
rules that relate constructs in the source model to 
constructs in the target model. These rules can 
be represented using the Query-View-Transfor-
mations (QVT) language proposed by the Object 
Management Group (OMG, 2005).

Another input for the transformation process is 
the definition of the quality attributes together with 
the corresponding empirical evidence gathered 
from the controlled experiments. This informa-
tion will feed the transformation process with the 
criteria to choose the alternative transformation 
that maximize the selected quality attribute. Our 
final objective is to execute these transformations 
in a platform for Model Management called MO-
MENT (Boronat, Carsí & Ramos, 2005; 2006).

The following sections show a specific domain 
for applying our quality-driven model transfor-
mation approach using a Requirements Model 
as source model, a UML class diagram as target 
model, and “understandability” as the quality 
attribute to drive the transformations.

tranSforMing reQuireMentS 
ModelS into uMl claSS 
diagraMS

The Requirements Model (Insfran, 2003) (Insfran, 
Pastor & Wieringa, 2002) defines the structures 
and the process followed to capture the software 
requirements. It is composed of a Functions Re-
finement	Tree	(FRT) to specify the hierarchical 
decomposition of the system, a Use Case Model 
to specify the system communication and func-
tionality, and Sequence Diagrams to specify the 
required object-interactions that are necessary 
to realize each Use Case. Consequently, as only 
functional software requirements are gathered 
(business requirements are excluded), the Require-
ments Model can be placed at the PIM level. The 
Requirements Model is supported by a Require-
ments Engineering Tool2 (RETO). 

Following a MDA strategy of model transfor-
mation, once the Requirements Model has been 
specified, a conceptual model including a UML 
class diagram can be obtained by applying a set 
of transformation rules from a Transformation 

Figure 1. Quality-driven model transformation approach



�0�  

Quality-Driven Model Transformations

Rules Catalog3 (Insfran, 2003). These trans-
formations establish traceability relationships 
between the Requirements Model and the UML 
class diagrams. 

According to the MOF terminology, the Re-
quirements Model and the UML class diagram 
are located in the M1 level and their metamodels 
are located in the M2 level. The definition of a 
transformation is performed at the M2 level and 
implies that “a certain structural pattern is identi-
fied	in	the	source	model	(Requirements	model),	
which corresponds to a valid structure in the 
target	model	(UML	class	diagram)”. 

Fig. 2 describes a simplified traceability 
relationship map to go from the set of specified 
requirements to specific elements in the con-
ceptual schema. These traceability relationships 
may be simple (one-to-one relationships). For 
example, the generation of classes for the UML 
class diagram is a process that is based on the 

analysis of participating actors and classes in all 
the Sequence Diagrams. It includes the applica-
tion of the following Transformation Rules (TR), 
stated here in natural language:

• TR 1. For every distinct actor class partici-
pating in any Sequence Diagram, a class will 
be generated in the UML class diagram.

• TR 2. For every distinct class participating 
in any Sequence Diagram, a class will be 
generated in the UML class diagram.

• TR 3. The boundary classes (usually called 
Interface or System) in Sequence Diagrams 
will not have an explicit representation in 
the UML class diagram.

However, the traceability relationships can also 
be many-to-many relationships. This is due to the 
variability of the transformations, which allows 
multiple possible representations in the UML 

Figure 2. Traceability from requirements to conceptual models



  �0�

Quality-Driven Model Transformations

class diagram that satisfy a given requirement 
pattern identified in the Requirements Model. If 
this occurs, a single alternative mapping must be 
properly selected according to some predefined 
quality attribute.

Subsection 4.1 and 4.2 briefly introduce 
the requirements and the UML class diagram 
metamodels. The remainder of the section focus 
on transformations that have multiple valid repre-
sentations in the UML class diagram that satisfy 
a given requirement pattern.

the requirements Metamodel

Metamodeling is a key concept of the MDA 
paradigm and is used in Software Engineering 
(SE) to describe the basic abstractions that define 
the models and their relationships. A metamodel 
can be viewed as a class model whose classes and 
associations encode the concepts of the model and 
the relationships among them. The Meta Object 
Facility (MOF) (OMG, 2004) provides a frame-
work for defining a metamodel and querying and 
manipulating the resulting models.

Fig. 3 shows an excerpt of the relevant parts of 
the Requirements Metamodel used as source in 
the transformation process. The Use Case class 
represents the functions of the system. Each Use 
Case is specified in detail by means of one or 
more Sequence Diagrams. Sequence Diagrams 
are composed mainly of Entities and Messages. 
We distinguish three types of Entities when de-
scribing a Sequence Diagram: Actor, Interface 
and Class. Actor represents the users of the Use 
Case (and may or may not be a class); Interface 
represents the boundary among the actors and the 
internal classes of the system; Class represents 
the different entity classes that participate in the 
realization of the Use Case. 

Finally, in order to characterize the different 
nature of interaction between objects, we identify 
four types of messages: Signal, Service, Query, 
and Connect. Signal messages represent the inter-
action between actors and the interface. Service 
messages represent object interactions with the 
purpose of modifying the system (creation, dele-
tion or update). Query messages represent object 
interactions to query the state of an object or a 

Figure 3. Requirements metamodel



��0  

Quality-Driven Model Transformations

set of objects. Connect messages represent object 
interactions to establish a relationship between 
them.

the uMl class diagram Metamodel

Once the source metamodel is defined, the UML 
target metamodel (OMG, 2006) must also be de-
fined. At least three alternatives are possible:

•	 To use the UML2 metamodel directly. This 
has the advantage that the result can be used 
by all the tools that use this metamodel. 
However, the problem is the size of the 
metamodel and its complexity. The use of 
the UML2 metamodel makes transformation 
rules difficult to specify and understand.

•	 To use the Ecore metamodel. This has the 
advantage that many tools directly use this 
metamodel, and it is also very well integrated 
in the Eclipse environment (www.eclipse.
org). However, we could not represent two 
of the three types of relationships (associa-
tion class and aggregation) that we needed 
to generate in this metamodel.

•	 To use the class diagram metamodel defined 
in the MOF QVT Final Adopted Specifica-
tion (OMG, 2005). This metamodel is well 
known, simple, and it has the advantage that 
it can specify almost all the characteristics 
that are needed.

Finally, we decided to use a modified version 
of the class diagram of the MOF QVT specifica-
tion, which we refer to as UMLite. 

Fig. 4 shows the modified UMLite metamodel. 
The main part of the metamodel is the same as 
the metamodel defined in the QVT specification 
(OMG, 2005). A Package is formed by a set of 
PackageElements. Usually, an information system 
is formed by a set of Packages. A PackageElement 
can be a Classifier or a Relationship. Classifier is 
the generic name given to everything that can have 
attributes and operations. PrimitiveDataTypes and 

Classes are both Classifiers. The class Primitive-
DataType defines the Abstract Data Types used 
in the definition of a system. Typical Primitive-
DataTypes are integers, doubles, strings, and so 
on. Instances of the Class class will belong to a 
specific Package. A Class is formed by a set of 
Attributes. Each one of the Attributes has a name 
inherited from UMLModelElement (in fact, every-
thing has a name because every class inherits from 
the UMLModelElement class) and its type must 
be a Classifier that was previously defined. The 
IS-A relationship between classes is maintained 
with the reflexive association relationship defined 
in the Class class.  The Relationship class defines 
the relationships that can exist between two classes 
(the source and the destination classes).

In order to be able to define the characteristics 
of relationships between classes, two modifica-
tions have been added to the metamodel: 

•	 An attribute named kind in the Relationship 
class to express the kind of relationship be-
tween two classes (association, aggregation, 
or composition).

•	 A new relationship between the Relationship 
and Class classes to express that a relation-
ship has an association class.

Even though there are no tools that use UMLite 
as their metamodel, it is still useful. Since the 
main concepts of UMLite are almost the same 
as the concepts in Ecore and UML2, they can be 
easily transformed to these metamodels.

Defining Alternative Transformations 
using Qvt

This subsection shows how some alternative 
transformations for a requirement specification 
generate different UML class diagrams. Although 
not all the possibilities are fully explained due to 
space limitations, it is possible to see that, given 
a requirement specification, a set of conceptual 
model solutions can be identified. The example 



  ���

Quality-Driven Model Transformations

used to illustrate these alternative transforma-
tions is taken from the specification of a Car 
Rental system.

A Sequence Diagram is used to specify the 
necessary object interactions to realize the Use 
Case Create Insurance that is initiated by the 
Administrator actor. This Use Case represents 
the creation of a car Insurance policy that must 
be bought from an Insurance Company and as-
signed to the Car before using the car for rentals. 
Fig. 5 shows the Sequence Diagram for the Use 
Case Create Insurance. After introducing the 
necessary data and checking the existence of 
the corresponding car, a new Insurance object is 
created (messages 1 to 5). In addition, an Insur-
ance Company object and a Car object must be 
connected to the new created Insurance policy 
(messages 6 and 7). 

In our approach, this information is used to 
transform the requirements specification into a 
UML class diagram4 following an MDA approach. 
It is important to remark that, for an automated 
transformation process to be considered useful, 
it must make decisions about which transforma-
tions are more suitable to produce the expected 
result by  the analyst or a result that maximizes 
a quality attribute (in our case the understand-
ability attribute).

The analysis of the requirement specified as 
object interactions shown in Fig. 5 indicates that 
the messages 6 and 7 satisfy the transformation 
rule TR 15: 

• TR15: For every message between two 
classes labeled with the stereotype «con-
nect», THEN an association relationship 
will be generated.

Figure 4. The UMLite metamodel



���  

Quality-Driven Model Transformations

Figure	5.	Sequence	Diagram	showing	the	required	interactions	for	the	Use	Case	Create	Insurance

As a result, this transformation rule is applied 
twice. This means that two association relation-
ships are established in the target model: one from 
Insurance to Car and another from Insurance to 
InsuranceCompany (Fig. 6a, association). An 
association relationship indicates a connection 
(link) between two classes. 

Alternatively, there are other interpretations 
to the object interactions shown in Fig. 5. As a 
second alternative, the new created object Insur-
ance can be represented as a component of both 
the Insurance Company compound class and the 
Car compound class (Fig. 6b, aggregation). This 
is because an aggregation is a special form of an 
association, specifying a whole-part relationship 
between two objects. This means that there is a 
connection between classes but also implies an 
additional semantics which indicates that an ob-
ject ‘is made up of other objects’. We are aware 

that not always an association relationship can 
be represented as an aggregation relationship, 
as this decision depends on the problem domain. 
However, in our example, both relationships can 
be applied as an Insurance “could be related to 
an insurance company and a car” or “be part of 
an insurance company and a car”.    

A third alternative is to consider the Insurance 
as an association class related to the association 
relationship between Insurance Company and 
Car (Fig. 6c, association class). This means that 
when an instance of an InsuranceCompany class 
is associated with an instance of a Car class, there 
will also be an instance of an Insurance class. 

These three types of relationships can be 
alternative representations for the object interac-
tions shown in Figure 5. In general, an association 
class can always be replaced by two association 
or aggregation relationships. Consequently, we 



  ���

Quality-Driven Model Transformations

Figure	6.	Partial	UML	class	diagram	for	the	analyzed	Sequence	Diagram

Table 2.  Three alternative structural relationships and their corresponding transformation rules 

Alternatives Transformation Rules

A1 (association)

TR 14. For every message between two classes labeled with the stereotype 
«service/new» where both classes are distinct from the “interface” class 
THEN an association relationship between these classes will be generated.
TR 15. For every message between two classes labeled with the stereotype 
«connect», THEN an association relationship between these classes will be 
generated.
TR 16. For every message with the stereotype «service/new» or «connect» 
where classes using role names appears THEN an association relationship 
between these classes will be generated using these role names on the ends 
of the relationship.

A2 (aggregation)
TR 28. For every message with the stereotype «service/new» between two 
classes A and B, which are distinct from the “interface” class, THEN an 
aggregation relationship between these classes will be generated.

A3 (association 
class)

TR 39. For every message with the stereotype «service/new» from the class 
A to the class B, if there exist two messages with the stereotype «connect» 
starting from the class B to the classes C and D respectively, THEN a new 
association class will be generated (called B) AND also an association 
relationship between C and D related to the new association class B will be 
generated.
TR 40. For every message with the stereotype «connect» from the class A 
to the class B, if there exist a message with the stereotype «service/new» 
starting from the class A or B to the class C THEN a new association class 
will be generated (called C) AND also, an association relationship between A 
and B related to the new association class C will be generated..



���  

Quality-Driven Model Transformations

have identified three types of structural relation-
ships to represent object interactions (there may 
also be other representations). This implies the 
application of different transformation rules from 
the Transformation Rules Catalog (Insfran, 2003) 
to produce these relationships. Table 2 summa-
rizes the alternative structural relationships and 
the transformation rules that can be applied to 
produce them. 

All the transformation rules in the catalog 
are being specified using the declarative QVT 
relations language (OMG, 2005). Fig. 7 shows 
the specification of the transformation rule TR15 
in QVT.

executing the alternative 
transformations in MoMent

MOMENT (Boronat, Carsí & Ramos, 2005) 
is a framework for model management that is 
fully integrated in the Eclipse environment. MO-
MENT combines the best features of Maude and 
Eclipse. First, it uses Maude (Clavel et al., 2005) 
as a backend. Maude is a reflective language and 
system supporting equational and rewriting logic 

specification. Maude has been used as a rapid 
prototyping environment to develop MOMENT 
using some of its properties: pattern matching, 
parameterization, and reflection. Second, Eclipse 
Modeling Language (EMF) is an industrial stan-
dard that includes a metamodel (Ecore) to define, 
modify, and serialize models with a very efficient 
reflexive API. 

To use MOMENT to apply transformations 
(Boronat, Carsí & Ramos, 2006), the source 
metamodel (the Requirements Metamodel) and 
the target metamodel (the UMLite class diagram 
Metamodel) must be defined and registered as 
Ecore models. MOMENT is used to define the 
QVT-Relations transformation ReqModelToUM-
Lite. This transformation is composed of a set of 
rules that defines how to transform information 
belonging to a model that conforms to the Require-
ments Metamodel into a model that conforms to 
the UMLite class diagram Metamodel.

Finally, a configuration for the MODELGEN 
operator is defined. This configuration is com-
posed of the ReqModelToUMLite transformation, 
a source model that is defined with the RETO 
tool, and the name of the target UML model. 

Figure	7.	TR15	specified	using	QVT-Relations



  ���

Quality-Driven Model Transformations

Additionally, a traceability model is generated 
to relate the elements of the source model with 
the elements of the target model.

Fig. 8 shows MOMENT integrated in the 
Eclipse environment. On the left side, the Package 
Explorer shows all the files related to the transfor-
mation: ModelGen.mop is the model that defines 
the generic operator MODELGEN; reqModel.
ecore is the model that defines the Requirements 
Metamodel used as the source in the transforma-
tion; UMLite.ecore is the metamodel used as the 
target in the transformation; rentacar.reqmodel is 
a model that defines the rentacar system (instance 
of the metamodel reqModel); rentacar.umlite is 
the model (instance of UMLite metamodel) result-
ing from the application of the transformation to 
rentacar.reqmodel; rentacar.traceabilitymodel is 
the traceability model that maps elements of the 
source and target models; ReqModelToUMLite.
qvtext is the transformation expressed in QVT-
Relations. The top of the figure shows part of the 

UMLite metamodel. The bottom of the figure 
shows a part of the ReqModelToUMLite trans-
formation inside the QVT text editor. 

An additional transformation called UMLit-
e2UML2 was defined to transform UMLite class 
diagram models into UML2 class diagram models 
(see section 3.2).

Once a transformation has been executed, a 
traceability model is generated. The traceability 
model relates the elements of both models. There 
is a special view designed for this information. 
This view allows the analyst to see the transfor-
mation rules that have been executed and what 
the results are.

Fig. 9 shows the traceability model generated 
after executing the reqModel2UMLite transforma-
tion. The first column shows the domain model, 
which is the rentacar requirements model. The 
third column shows the range model, which is 
the generated rentacar UMLite model. Finally, 
the second column shows the traceability links 

Figure 8. MOMENT environment 



���  

Quality-Driven Model Transformations

(mappings) that relates the elements of the domain 
and range models. A traceability link, which is 
the result of applying the transformation rule 
EntityToClass is highlighted. This traceability 
link relates the Insurance entity with the Insur-
ance class.

experiMent deScription

This section presents a description of the experi-
mental process that was followed to select the best 
alternative transformation. The process is based 
on the experimental frameworks proposed by 
(Wohlin et al., 2000; Juristo & Moreno, 2001). 
This process is composed of the following activi-
ties: definition, planning, operation, and analysis 
and interpretation. 

Definition

The main goal of this experiment is to determine 
which of the transformation rules for structural 
relationships between classes introduced in sec-

tion 4.3 (A1, A2, A3, and A4) obtained the easiest 
to understand UML class diagram. Therefore, us-
ing the GQM (Basili & Rombach, 1988) template 
for goal definition, the goal of our experiment is 
defined as follows:

Analyze: Alternative transformation rules for 
structural	 relationships	 between	 classes	 (A1,	
A2,	and	A3)

For the purpose of: Evaluating

With respect to: the Understandability of the 
obtained UML class diagrams

From the point of view of: the researchers

In the context of: Undergraduate students at the 
Department of Information Systems and Compu-
tation at the Valencia University of Technology

planning

The next step is planning. The definition deter-
mines why the experiment is conducted, while 

Figure	9.	Traceability	model	generated	by	applying	the	ReqModelToUMLite	transformation.



  ���

Quality-Driven Model Transformations

the planning prepares how the experiment is to 
be conducted. The main characteristics of the 
planning phase are the following:

Subjects. The participants were 39 fourth-year 
students in Computer Science at the Valencia 
University of Technology, who were taking part 
in the second Software Engineering course. We 
took a “convenience sample” (i.e. all the students 
in the class). The subjects had six months of ex-
perience in modeling with UML and three years 
of experience in the OO paradigm. The subjects 
were encouraged to participate by offering them 
an extra point in the final grade for performing 
the required tasks correctly.

Variable selection. The independent variables 
were the transformation rules for structural rela-
tionships between classes (i.e., A1, A2, and A3). 
The dependent variable was understandability.

Experimental material and tasks. The ex-
perimental material and tasks consisted of:

•	 9 Sequence Diagrams from three different 
case studies, with 3 UML class diagrams 
each. These were obtained by applying 
the alternative transformation rules. An 
example of the experimental material is 
shown in Appendix A. The rest of experi-
mental material is available at: www.dsic.
upv.es/~einsfran/experiment.

•	 Each Sequence Diagram has a questionnaire 
attached consisting of 6 Yes/No questions 
to test the subjects’ understanding of the 
Sequence Diagrams. The effectiveness of 
the subjects in answering the question-
naires (number of correct answers/number 
answers) was used as a criterion to exclude 
those observations that did not fulfill a 
minimum level of quality. Observations 
with a value less than or equal to 0.5 were 
excluded. If the subjects did not understand 

the Sequence Diagrams, their questionnaires 
were excluded.

•	 Each of the three UML class diagrams had 
a questionnaire attached (with 6 questions) 
for assessing which alternative UML class 
diagram was better understood by the sub-
jects. In addition, the subjects had to write 
down the starting and ending times for 
completing the questionnaires. We obtained 
three measures for understandability from 
this understanding task:

Understandability Time, which reflects the 
time, in seconds, that the subjects spent answering 
each questionnaire (calculated by the difference 
between the ending time and the starting time). 
Each subject completed 3 questionnaires detailing 
3 alternatives (A1, A2, and A3). Three under-
standability time measures (A1Time, A2Time, 
and A3Time) were obtained.

Effectiveness, which reflects the correctness of 
the answers (calculated by dividing the number of 
correct answers by the number of answers). Three 
understandability effectiveness measures (A2Ef-
fec, A2Effec, and A3Effec) were obtained.

Efficiency,	which reflects the correctness of 
the answers by time (calculated by dividing the 
number of correct answers by the understandabil-
ity time). Three measures for understandability 
efficiency (A2Effic, A2Effic, and A3Effic) were 
obtained.

•	 The final task of each test consisted of asking 
the subjects which of the three alternative 
UML class diagrams best reflected the prob-
lem modeled in the Sequence Diagram. In 
this way, we obtained a subjective measure 
(Alternative Selected) based on the subjects’ 
perception.



���  

Quality-Driven Model Transformations

Hypothesis formulation. The following hy-
potheses were formulated:

• H10: The use of different alternative transfor-
mations (A1, A2, and A3) does not affect the 
Understandability Time (A1Time, A2Time, 
and A3Time). H11=¬H10

• H20: The use of different alternative transfor-
mations (A1, A2, and A3) does not affect the 
Understandability Effectiveness (A1Effec, 
A2Effec, and A3Effec). H21=¬H20

• H30: The use of different alternative trans-
formations (A1, A2, and A3) does not affect 
the Understandability Efficiency (A1Effic, 
A2Effic, and A3Effic). H31=¬H30

• 	H40: There is no correlation between the Al-
ternative Selected and the means of objective 
Understandability variables (Understand-
ability Time Effectiveness, and Efficiency). 
H41=  ¬H40

operation

The experiment started with an introductory 
session in which the main concepts of the Re-
quirements Model (e.g., the notation of Sequence 
Diagrams) were reviewed. The goal of the 
experiment was not disclosed to the subjects. 
Then, the subjects were shown an example of 
the experimental material, which was similar to 
what they would be using during the execution 
of the experiment. 

Each subject was given all the experimental 
material, including nine tests (balanced within-
subject design). The diagrams were assigned 
in different order to limit learning effects. The 
alternatives were also organized in a different 
order across subjects in order not to favor one 
alternative over another. In total, eighteen types of 
tests were prepared. The subjects were instructed 
how to develop the experimental tasks and they 
had a maximum of two hours to complete all 
the tasks.

data analysis and interpretation

After the experiment took place, we collected the 
experiment data. It consisted of a table of 351 rows 
(9 diagrams x 39 subjects) and 9 columns (A1Time, 
A2Time, A3Time, A1Effec, A2Effec, A3Effec, 
A1Effic, A2Effec, A3Effec). We then performed 
a “data cleaning”, excluding the observations that 
were not complete because the subjects had not 
written down the time or because the subjects 
did not selected the best alternative. Since all the 
questions in each questionnaire were complete, 
the completeness of the performed tasks was 
guaranteed. We also excluded the observations 
that had a value of effectiveness of 50% or less for 
each Sequence Diagram. The final data for testing 
the hypotheses were 325 observations.

The following statistical analyses were per-
formed to analyze the data:

• 	A descriptive study was done to characterize 
the dependent variables.

• 	Hypotheses H1, H2, and H3 were tested using 
an ANOVA test with repeated measures.

• 	Hypothesis H4 was tested using the Spear-
man correlation coefficient.

 
We used SPSS (SPSS, 2002) to carry out the 

data analyses presented in this study.

Descriptive Statistics

The descriptive study was performed by first 
analyzing the variable Alternative Selected and 
then analyzing the measures of Understandability 
Time, Effectiveness, and Efficiency. 

From Table 3 (which shows the frequency of 
each type of alternative (A1, A2, and A3) for each 
diagram) and Fig. 10 (which shows the percent-
ages of selection for each type of alternative) we 
can infer the following:

• 	A1 is the alternative transformation that was 
most selected by the subjects, i.e., the subjects 



  ���

Quality-Driven Model Transformations

believed that the use of associations allowed 
to obtain the best UML class diagram (the 
easiest to understand). 

• 	A3 is the alternative transformation that 
was least selected by the subjects, i.e., the 
subjects believed that it was the least ap-
propriate alternative transformation. 

The descriptive statistics for the Understand-
ability Time, Effectiveness, and Efficiency are 
shown in Table 4. They are ranked in ascendant 
order by the value of the mean.

Table 4 reveals that, on average, the subjects 
spent less time performing the tasks related to 
alternative A2. However, the difference with the 
other tasks was not very significant (approxi-
mately 8 seconds for A1 and A3). The subjects 
were more effective and efficient performing the 

tasks related to alternative A1; but the difference 
in effectiveness with the other alternatives was 
not very significant.

In summary, the descriptive statistics show 
a slight tendency in favor of A1, which is the 
transformation based on associations. 

Testing Hypotheses 

To test the hypotheses H1, H2, and H3, we car-
ried out an ANOVA for repeated measures. The 
results show hypotheses H10, H20, and H30 can 
be rejected (with a significance level = 0.05). 
This means that each alternative transformation 
really does affect the Understandability Time, 
Effectiveness, and Efficiency.

Moreover, we compared the means for each 
measure by pairs of alternatives. There was a sig-
nificant difference between the following pairs:

 

Table 3.  Frequency of transformation alternatives per diagram

Diagrams/ 
Alternatives D1 D2 D3 D4 D5 D6 D7 D8 D9 Total

A1 6 12 13 25 18 14 16 18 7 129

A2 8 4 7 8 9 12 6 5 13 72

A3 19 20 10 5 11 12 15 14 18 124     

Total 33 36 30 38 38 38 37 37 38  325

Figure 10. Percentages for alternative selected

40%

36%

24%
A 1
A 2
A 3



��0  

Quality-Driven Model Transformations

•	 The pairs A1-A2, A1-A3 in the values of 
the Understandability Time.

•	 The pairs A1-A2, A1-A3 and A2-A3, in the 
Understandability Effectiveness.

•	 The pairs A1-A3, A1-A3 and A2-A3, in 
terms of the Understandability	Efficiency.

This comparison shows that there is a signifi-
cant difference between A1 (related to associa-
tions) and the other alternatives (A2 and A3).

To test hypothesis H4, we carried out a cor-
relation analysis using the Spearman Correlation, 
separately per each diagram. We did not find any 
correlation between the subjective measure (Al-
ternative Selected) and the mean of the objective 
measures (Understandability Time, Effectiveness, 
and	Efficiency). This reveals that the use of an 
alternative transformation is not dependent on 
how effective or efficient the subjects are (i.e., 
the performance of the subjects did not affect 
their perception).

In summary, the main findings of the experi-
mentation show that there exists a slight tendency 

in favor of using associations. In other words, the 
subjects are a slightly more effective and efficient 
when performing tasks related to association rela-
tionships (instead of aggregations or association 
classes). Assuming that the three alternatives are 
alternatives, this indicates that transformations 
related to association relationships are the most 
appropriate when the understandability quality 
attribute is selected.

threats to validity

This section discusses several issues that can af-
fect the validity of the empirical study and how 
we attempted to alleviate them. 

In order to control the risk that the variation 
due to individual differences is larger than due to 
the treatment, we selected a homogeneous group 
of subjects. In addition, to attempt to control the 
internal validity of the study, the following issues 
were considered:

Table	4.		Descriptive	statistics	for	understandability	time,	effectiveness	and	efficiency

Min. Max. Mean St. Dev.

A2TIME 23 449 93.4338 57.9701

A1TIME 12 611 101.9046 79.1776

A3TIME 15 734 106.5077 72.2032

A2EFFEC 0.167 1 0.8701 0.1528

A3EFFEC 0.167 1 0.8844 0.1821

A1EFFEC 0.167 1 0.9111 0.1548

A3EFFIC 0.006 0.4 0.0677 0.0419

A2EFFIC 0.011 0.24 0.0757 0.0436

A1EFFIC 0.005 0.5 0.0803 0.0531



  ���

Quality-Driven Model Transformations

• Differences among subjects. Using a within-
subjects design, error variance due to dif-
ferences among subjects was reduced. In 
addition, we randomly assigned the tests to 
the subjects in different order. This proce-
dure cancels out a possible learning effect 
(due to similarities in the treatments) and 
a confounding effect (due to the order in 
which the alternatives were presented).

•  Knowledge of the universe of discourse. We 
used the same requirement specification 
document for all subjects. It specifies the 
requirements of a Car Rental System for a 
company. This is a well-known universe of 
discourse. 

• Fatigue effects. On average, each subject 
took two hours to solve the experimental 
tests, so fatigue was not very relevant.

• Persistence effects. In order to avoid persis-
tence effects, the experiment was carried out 
by subjects who had never done a similar 
experiment.

• Subject motivation. We motivated students 
to participate in the experiment by offering 
them an extra point in the final grade of the 
course.

One limitation to the external validity of 
this study is the fact that the three alternative 
transformation rules cannot be applied simultane-
ously to all modeling situations. For instance, to 
establish an association class relationship (A4), at 
least one «service/new» message and two «con-
nect» messages are needed in the source model. 
The goal of this experimentation was to gather 
empirical evidence for the specific case when the 
three alternative transformations can be applied 
to obtain a relationship between classes. We are 
aware that, more alternatives may be possible to 
represent structural relationships between classes. 
More experimentation is needed to validate these 
other combinations. 

Another limitation is the use of only students 
as participants. In general, our students have no 

working experience in conceptual modeling. The 
use of student participants may present a threat to 
the study’s external validity. However, the students 
who participated in the experiment were fourth-
year students in Computer Science. Therefore, 
they can be considered as representative of novice 
users of conceptual modeling approaches. To in-
crease external validity, the current study needs 
to be replicated using experienced practitioners 
from the industrial sector who are experienced 
in UML and/or students with higher levels of 
training in order to confirm our results.

concluSion

This chapter has presented an approach for qual-
ity-driven model transformations. Specifically, it 
described a controlled experiment to investigate 
the selection of alternative QVT transformations 
to obtain UML class diagrams from a Require-
ments Model. The goal of the experiment was to 
gather empirical evidence about which alternative 
transformation produces the UML class diagram 
that is easiest to understand. 

The results show that there is a slight tendency 
to favor the use of association relationships when 
the three alternatives can be applied. This indi-
cates that transformations related to association 
relationships are the most appropriate when the 
understandability quality attribute is selected. 
A possible reason for this could be that this 
relationship has less semantic strength than the 
other kinds of relationships. When an aggregation 
relationship is chosen instead of an association 
relationship, analysts know that they are defining 
a part-of relationship. However, when an associa-
tion class is chosen, the same relationship can be 
represented using two association or aggregation 
relationships.

These results provided first evidence about the 
understandability of a model obtained through 
a model transformation process. The study 
was conducted in the context of the UML class 



���  

Quality-Driven Model Transformations

diagram that is the most-used specification for 
model-driven software development in indus-
try. Although this evidence is specific to this 
domain, and in particular, to the relationships 
among classes, it should be generalized to other 
elements in a UML class diagram, other UML 
diagrams, and also to other domains. Therefore, 
more experimentation is needed to verify the 
generalizability of our approach.

The results that we have obtained through ex-
perimentation are promising. However, they must 
be considered as preliminary results. We plan to 
replicate this experiment with students from the 
University of Castilla-La Mancha in Spain and 
also with more experienced practitioners from 
the industrial sector in order to confirm these 
results. We believe that the level of experience 
in UML modeling can considerably influence the 
performance of the subjects.

future reSearch directionS

Our literature review has shown that there are 
very few studies that deal with quality in model-
driven development. As far as we know, there is 
no study encompassing the empirical validation 
of model transformations. The study of quality for 
model-driven development is of great relevance to 
software development organizations faced to the 
adoption of this technology in industry.

The empirical study presented in this chap-
ter shows how model transformations can be 
empirically validated with regard to a given 
quality attribute. This work is part of a project 
on quality-driven model transformations whose 
goal is the definition of a quality metamodel to 
drive the selection of model transformations ac-
cording to multiple quality attributes. Therefore, 
our current research efforts are focused on the 
validation of the remaining transformations of 
the Transformation Rules Catalog (Insfran 2003). 
We also plan to study other quality attributes (i.e., 
efficiency, understandability, usability, modifi-

ability) and possible conflicts that could arise 
when more than one quality attribute is chosen. 
Our ultimate goal is to build an empirically vali-
dated quality metamodel to drive the selection 
of model transformations in different domains 
(e.g., Bioinformatics and Data Warehouse). This 
quality metamodel will be fully integrated in the 
MOMENT environment.

There is an urgent need for more research 
studies of this type to complement and extend 
the current empirical study. Empirical evalua-
tion of model transformations will help software 
developers assess the usefulness of different sets 
of transformations according to the quality of 
the resulting target model and/or transformation 
needs.

While several studies (including this one) have 
studied model transformations and its properties, 
it would be interesting to survey or interview 
domain-specific engineers and ascertain the 
importance of certain model transformations to 
define heuristics to drive the transformations. In 
our study, a heuristic could be the type of trace-
ability (i.e., strong and weak) assigned to each 
transformation rule. This could be an additional 
criterion to be used during the transformation 
process.

Another area of future research needs to ex-
amine other quality perspectives (i.e., syntactic 
quality, semantic quality). Syntactic quality in the 
context of model-driven development is trivial due 
to all the models are compliant to their respective 
metamodel. However, assessing semantic quality 
will allow to verify which alternative transfor-
mation will produce a target model that is more 
correct and relevant to the problem domain. 

Finally, the applicability or dependence of 
model transformations to the type of domain 
of the application being developed would be an 
interesting study. 



  ���

Quality-Driven Model Transformations

referenceS

Basili, V. & Rombach, H. (1988). The TAME 
project: towards improvement-oriented software 
environments. IEEE Transactions on Software 
Engineering, 14(6), 728-738.

Boronat, A., Carsí J.A., & Ramos I. (2006). 
Algebraic	Specification	of	a	Model	Transforma-
tion Engine. Proceedings of the Fundamental 
Approaches to Software Engineering (FASE’06). 
ETAPS’06. Vienna, Austria, 262–277.

Boronat, A., Carsí, J.Á., Ramos, I. (2005). MO-
MENT: a formal MOdel manageMENT tool. 
School on Generative and Transformational 
Techniques in SE. Braga, Portugal. 

Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-
Oliet, N., Meseguer, J., & Talcott, C. (2005). Maude 
2.2 manual and examples, from http://maude.
cs.uiuc.edu/maude2-manual

Czarnecki, K., & Helsen, S. (2006). Feature-based 
survey of model transformation approaches. IBM 
Systems Journal, 45(3), 621–645.

Genero, M., Manso, M., Visaggio, A., Canfora, 
G. & Piattini, M. (2007) Building measure-based 
prediction models for UML class diagram main-
tainability. Empirical Software Engineering (to 
appear).

Genero, M., Moody, D., & Piattini, M. (2005). 
Assessing the capability of internal metrics as 
early indicators of maintenance effort through 
experimentation. Journal of Software Mainte-
nance and Evolution: Research and Practice, 
17, 225-246.

Insfran, E. (2003). A Requirements Engineering 
Approach for Object-Oriented Conceptual Mod-
eling, PhD Thesis, DSIC, Valencia University of 
Technology, Spain. 

Insfran, E., Pastor, O. & Wieringa, R. (2002). 
Requirements Engineering-Based Conceptual 

Modelling. Journal of Requirements Engineering, 
7 (2), 61–72, Springer-Verlag. 

ISO, ISO/IEC 9126-1, (2001). Software Engineer-
ing – Product quality – Part 1: Quality model.

Ivkovic, I., & Kontogiannis, K. A. (2006). 
Framework for Software Architecture Refactor-
ing using Model Transformations and Semantic 
Annotations, Proc. of the Conference on Software 
Maintenance and Reengineering (CSMR’06), 
135–144.

Jurista, N. & Moreno, A. M. (2001). Basics of 
Software Engineering Experimentation. Kluwer 
Academic Publishers.

Kerhervé, B., Nguyen, K. K., Gerbé, O., & Jau-
mard, B. A. (2006). Framework for Quality-Driven 
Delivery in Distributed Multimedia Systems, 
Proc. of the Advanced International Conference 
on Telecommunications and International Con-
ference on Internet and Web Applications and 
Services (AICT/ICIW 2006), 195–205.

Kurtev, I. (2005). Adaptability of Model Trans-
formations. PhD Thesis, University of Twente, 
The Nederlands.

Lindland, O. I., Sindre G., & Sølvberg A. (1994). 
Understanding quality in conceptual modeling. 
IEEE Software, 11(2), 42–49.

Markovic, S., & Baar, T. (2005). Refactoring OCL 
annotated UML class diagrams. In Proc. of the 
8th Int. Conference on Model Driven Engineering 
Languages and Systems, 280–294.

Merilinna, J. (2005). A Tool for Quality-Driven 
Architecture Model Transformation. Espoo, VTT 
Electronics, VTT Publications.

OMG, (2006). OMG, UML 2.1 Unified Modeling 
Language™ 

OMG, (2005). OMG, MOF 2.0 Query/Views/
Transformations Final Adopted Specification, 
Object Management Group, from  http://www.
omg.org/cgibin/apps/doc?ad/05-11-01.pdf



���  

Quality-Driven Model Transformations

OMG, (2004). Meta Object Facility (MOF) 2.0 
Core Specification, ptc/04-10-15. 

OMG, (2003). MDA Guide, from http://www.omg.
org/docs/omg/03-06-01.pdf. Version 1.0.1.

Otero, M. C., & Dolado, J. J. (2004). Evaluation 
of the Comprehension of the Dynamic Modeling 
in UML. Information and Software Technology, 
46(1), 35-53.

Reinhartz-Berger, H. & Dori, D. (2005). OPM vs. 
UML—Experimenting with Comprehension and 
Construction of Web Application Models. Empiri-
cal Software Engineering, 10, 57–79.

Rottger S., & Zschaler, S. (2004). Model-Driven 
Development for Non-functional Properties: Re-
finement through Model Transformation, In LNCS 
Volume 3273, The Unified Modelling Language 
(UML) Conference, pp. 275–289.

Selic, B. (2003). The Pragmatics of Model-Driven 
Development. IEEE Software, 20 (5), 19-25.

SPSS, SPSS 11.5, Syntax Reference Guide. 2002, 
SPSS Inc.: Chicago, USA.

Sottet, J. S., Calvary, G., & Favre, J. M. (2006). 
Mapping Model: A First Step to Ensure Usability 
for sustaining User Interface Plasticity, In: Proc. 
of the MODELS 2006 Workshop on Model Driven 
Development of Advanced User Interfaces.

Wohlin C., Runeson P., Höst M., Ohlson M., 
Regnell B. and Wesslén A.  (2000). Experimenta-
tion in Software Engineering: An Introduction. 
Kluwer Academic Publishers.

Zou, Y., Kontogiannis, K. (2003). Quality Driven 
Transformation Framework for OO Migration. 
In. Proc. 2nd ASERC Workshop on Software 
Architecture, Banff, Canada, pp. 18–24.

additional reading

Endres, A. & Rombach, D. (2003). A Handbook 
of Software and Systems Engineering: Empiri-
cal Observations, Laws and Theories. Addison 
Wesley.

Frankel, D. S. (2003) Model driven Architec-
ture: Applying MDA to Enterprise Computing, 
Wiley.

Juristo, N. & Moreno, A. M. (2001). Basics of 
Software Engineering Experimentation. Kluwer 
Academic Publishers.

Maxwell, K. (2002). Applied Statistics for Soft-
ware Managers. Software Quality Institute Series. 
Prentice Hall.

Stahl, T., Voelter, M., & Czarnecki, K. (2006) 
Model-Driven Software Development: Technol-
ogy, Engineering, Management, Wiley.

Unhelkar, B. (2005) Verification	and	Validation	
for Quality of UML 2.0 Models, Wiley-Inter-
science.

Wohlin C., Runeson P., Höst M., Ohlson M., 
Regnell B. and Wesslén A.  (2000). Experimenta-
tion in Software Engineering: An Introduction. 
Kluwer Academic Publishers.



  ���

Quality-Driven Model Transformations

appendix a. an exaMple of the experiMental Material

TEST R1
The following Sequence Diagram represents the creation of a Car for a car rental company. All the 
cars of the company have an assigned Rate. In addition, they must have an Insurance policy from an 
Insurance Company.

Figure 11. Sequence diagram “creation of a car”

SECTION A: Understandability

WRITE DOWN THE CURRENT TIME (HH: MM: SS) ____________
Answer the following Yes/No questions:
1. Is it possible in this scenario to create several Cars? ________ 
2. Can a Car have several Insurance policies in addition to the obligatory one for accidents?; for 

example, a policy for theft ________ 
3. Are there four classes in this Sequence Diagram? ________ 
4. If an appropriate Rate for a Car does not exist, can a new type of Rate be created and then assigned 

to the Car? ________ 
5. Can a Car be created without an obligatory Insurance policy? ________ 
6. Is it possible to associate an Insurance policy of another Car to the Car being created? ______



���  

Quality-Driven Model Transformations

WRITE DOWN THE CURRENT TIME (HH: MM: SS) ____________
Section B: Alternatives of Representation 
Note: As an example of the three alternatives obtained from the Sequence Diagram shown in Fig. 11, 
we include the one based on the association class relationship. 

Alternative 1: 

WRITE DOWN THE CURRENT TIME (HH: MM: SS) ____________
Answer the following Yes/No questions:

1. Does the Insurance policy exist because there is a relationship between the Car and Insurance 
Company classes? ________ 

2. Can an Insurance policy be related to an Insurance Company without being related to the Car? 
________ 

3. If the relationship between the Car and the Insurance Company is destroyed, can the Insurance 
policy continue to exist? ________ 

4. If the Insurance policy is destroyed, must the relationship between the Car and the Insurance 
Company also be destroyed? ________ 

5. If the Insurance policy is destroyed, must the Rate be destroyed too? ________ 
6. Can a Car have several Insurance policies? ________ 

WRITE DOWN THE CURRENT TIME (HH: MM: SS) ____________
… 

Note: For reasons of brevity, only Alternative 1 is shown. See www.dsic.upv.es/~einsfran/experiment 
for the alternatives 2-3 (in Spanish).

SECTION C: Rating tasks
In your opinion, which one of the UML class diagrams presented in Section B best represents the sce-
nario illustrated in the Sequence Diagram of Fig. 11? (Mark your choice with an “X”)

Alternative 1 (   )       Alternative 2 (   )       Alternative 3 (   )      



  ���

Chapter XIII
A Framework for Understanding

and Addressing the Semiotic
Quality of Use Case Models

Pankaj Kamthan
Concordia University, Canada

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

abStract

As software systems become ever more interactive, there is a need to model the services they provide to 
users, and use cases are one abstract way of doing that. As use cases models become pervasive, the ques-
tion of their communicability to stakeholders arises. In this chapter, we propose a semiotic framework 
for understanding and systematically addressing the quality of use case models. The quality concerns at 
each semiotic level are discussed and process- and product-oriented means to address them in a feasible 
manner are presented. The scope and limitations of the framework, including that of the means, are 
given. The need for more emphasis on prevention over cure in improving the quality of use case models 
is emphasized. The ideas explored are illustrated by examples.

introduction

A characteristic common to the majority of pres-
ent software systems is interaction. There is a 
broad variety of interactive software systems in 
use today, including those that run on automatic 
banking machines (ABMs), on mobile devices, 
and on the Web, to name a few. 

The users can play a central role in the engi-
neering of an interactive software system. There-
fore, it is critical to precisely understand, identify, 
and document the services that an interactive 

software system will provide from the viewpoint 
of its potential users. A large and important class 
of models that these services encapsulate is use 
cases (Jacobson et al., 1992). 

Indeed, in the last few years, the use case 
approach (Jacobson & Ng, 2005) has become 
indispensable as means for behavioral modeling of 
interactive software systems. They play a crucial 
role in various activities, including estimating 
software development cost (Anda, 2003), elicit-
ing software (external) behavioral requirements 
(Bittner & Spence, 2003; Leffingwell & Widrig, 



���  

A Framework for Understanding and Addressing the Semiotic Quality of Use Case Models

2003), contributing to software architecture views 
(Kruchten, 1995), defining test cases (Alexander 
& Maiden, 2004), and authoring a user manual.

As the integration and deployment of use 
cases in software process environments becomes 
pervasive, the question of their quality arises. 
If left unaddressed, these models, for example, 
may become incommunicable or unmanageable 
to their stakeholders. This could seriously com-
promise the utility of use cases as early artifacts 
and potentially threaten their broad acceptance. 
At the same time, an approach to the improvement 
of the quality of use case models may not be ef-
fective if it is ad hoc and infeasible. A systematic 
quality-centered approach for use case model 
engineering is necessary.

The rest of the chapter is organized as follows. 
We first outline the background and related work 
necessary for the discussion that follows and state 
our position. This is followed by the presentation 
of a framework for understanding and systemati-
cally addressing the semiotic quality of use case 
models by process- and product-oriented means 
in a feasible manner. To place the discussion 
into perspective, the scope and limitations of the 
framework, including that of the means, are given. 
Next, a detailed example is presented, and then 
concluding remarks are given. Finally, challenges 
and directions for future research are outlined.

background

In this section, we present the terminology nec-
essary for the discussion that follows and briefly 
review the significance of quality in use case 
models. 

There are several interpretations (Seidewitz, 
2003) of the term model. For the sake of this 
chapter, we define a model as a simplified descrip-
tion of some entity from a particular viewpoint 
of interest. 

As indicated by the model-driven approach 
to software development (Beydeda, Book, & 

Gruhn, 2005; Völter et al., 2006), models are 
becoming first-class members of organizations 
and software process environments that embrace 
them. The need to model software can arise due 
to various reasons. These include assessing the 
viability of or planning software systems to be 
built, optimizing use of resources in response to 
inevitable changes in business, social, or techno-
logical environments, or simply understanding 
existing software systems. Modeling, particularly 
during early phases of software development, is 
playing an increasingly important role in software 
engineering profession and education (Cowling, 
2005). The use case models are one important 
class of models, which we discuss next.

an overview of use case Models

Since there are variations in the literature, we 
will closely follow one set of terminology of the 
use case domain in the following that provides a 
basis for further discussion.

A use case models the behavior of a software 
system, which yields an observable result of value 
to an actor of the system (Jacobson et al., 1992). 
In doing so, a use case intends to capture typical 
interactions between the actors and the software 
system being built. The use cases can be classi-
fied into problem use cases (those addressing the 
problem domain during analysis and sometimes 
labeled as business use cases or essential use 
cases) and solution use cases (those addressing 
the solution domain during synthesis and some-
times labeled as system use cases). The system 
boundary is a means to illustrate the separation 
of actors and use cases.

A use case has a unique goal. A use case is 
successfully executed if its goal is satisfied. There 
can be multiple use cases of a system, each with 
a different goal.

An actor is an external entity that interacts 
with each instance of a use case. An actor could 
be a (human) user or another program. Each actor 
plays a unique role with respect to a use case from 



  ���

A Framework for Understanding and Addressing the Semiotic Quality of Use Case Models

the viewpoint of the system. There can be multiple 
actors of a system each with a different role. The 
actors can be classified into primary actors (those 
initiating a use case) and secondary actors (those 
supporting the goal of a primary actor). 

Both the start and the end of a use case have 
conditions associated with them. There are 
certain necessary conditions that must be true 
at the start of a use case, and these are known 
as pre-conditions. There are certain guarantees 
that must be given at the end of a use case, and 
these are known as post-conditions: irrespective 
of whether the use case goal is achieved, there 
are certain guarantees and these are known as 
minimal post-conditions; if the use case goal is 
achieved, there are certain guarantees and these 
are known as maximal post-conditions. 

A flow	is a course through a use case. There 
can be single or sometimes multiple flows in a 
use case. A flow can be classified as being either 
normal (also known as basic or main) or non-
normal. A normal flow will be carried out if 
everything goes according to the plan in the use 
case; otherwise a non-normal flow will be carried 
out. There can be different types of non-normal 
flows such as an alternate (also known as vari-
ant) flow or an exceptional flow. A flow follows 
a path. There can be one or more paths in a flow 
of a use case. Thus, in general, there are multiple 
paths through a use case. 

A use case is an abstraction of the real-world 
use of a system. A scenario is a concrete realiza-
tion or an instance of a use case: it takes actual 
values as input from a specific primary actor, it 
performs actions that cause changes to the system’s 
internal state, and it makes actual decisions dur-
ing the execution of the actions. For example, a 
scenario for a Withdraw Money use case for 
an ABM is the actual description of what occurs 
when John attempts to withdraw $100 from his 
savings account at a specific ABM on a certain 
day/time. This obviously leads to the classification 
of scenarios as normal or non-normal. A scenario 
will carry out one of the paths through a use case 

in a concrete manner. An abstract use case does 
not have any instances. 

In a use case model, multiple use cases can be 
related. There are three possible types of (binary 
and non-reflexive) relationships among use cases: 
“include,” “extend,” and “generalization.” In a use 
case model, multiple actors of a system can also 
be related. There is one possible type of (binary 
and non-reflexive) relationship among actors: 
“generalization.” For example, let UC1 and UC2 
be two use cases and A1 and A2 are two actors for 
UC1. Then, there is an include relationship from 
UC1 to UC2 if an instance of UC1 includes the 
behavior of UC2. There is an extend relationship 
from UC1 to UC2 if an instance of UC2 is extended 
by the behavior of UC1. The extend relationship 
is optional. There is a generalization relationship 
from UC1 to UC2 if an instance of UC1 inherits the 
behavior of UC2 where the inherited behavior is 
perhaps refined. In the object-oriented sense, UC2 
is a parent and UC1 is a child. A generalization 
relationship from A1 to A2 can be understood in 
a similar manner.

The set of all actors and all use cases describ-
ing the complete usage of a software system is 
known as the system’s use case model. 

Representation of Use Case Models

A use case model needs to be represented in some 
form for the purpose of communication to both 
humans and to machines. In terms of formality, 
a use case model can be represented on the fol-
lowing discrete spectrum: informal (natural lan-
guage), semi-formal, and formal (mathematical). 
In general, the formalization of use case models 
has been discouraged (Jacobson, 2003). In terms 
of modality, there are currently two common (and 
complementary) means of representing a use case 
model: as structured text and as a graphic. 

Each means of representation has its own ad-
vantages and limitations, and a detailed discussion 
of this issue is beyond the scope of this chapter. 
While a representation in a natural language can 



��0  

A Framework for Understanding and Addressing the Semiotic Quality of Use Case Models

include more details and preferred by technical 
stakeholders, a graphic tends to be more compact 
and preferred by novice or non-technical stake-
holders. A combination of textual and graphical 
representation is recommended (Cockburn, 2001; 
Fowler, 2003) when the use of only one is deemed 
insufficient. 

A UML View of Use Case Models

The Unified Modeling Language (UML) (Booch, 
Jacobson, & Rumbaugh, 2005) is a standard 
language for visually modeling the structure and 
behavior of object-oriented software systems. 

The diagram types in UML can be used to 
provide different views of the use case domain 
knowledge: the Use Case Diagram to represent 
use case models, the Activity Diagram to repre-
sent the sequential order in which a use case is 
executed, and the Sequence Diagram to represent 
scenarios. These UML diagram types could be 
associated with a UML Note construct to provide 
annotations informally in natural language text 
or formally in a script in the Object Constraint 
Language (OCL) (Warmer & Kleppe, 2003). For 
example, the pre- and post-conditions in a use case 
model may be formally expressed in OCL.

The aforementioned relationships among 
actors or among use cases are represented in 
a Use Case Diagram using special arrows and 
arrowheads. Furthermore, the “include” and 
“extend” relationships are labeled using stereo-
types in UML where their names are delimited 
using guillemets («»), resulting in «include» and 
«extend», respectively. 

There is much support in the literature for 
expressing use case models in UML (Bittner 
& Spence, 2003). In this chapter, we will limit 
ourselves to use case models in UML unless 
specified otherwise. At the same time, we also 
acknowledge that even though UML has evolved 
over the years, the graphical notation alone is not 
sufficiently expressive in representing certain 
complex cases (Glinz, 2000).

Use Case Modeling and Software 
Process

The modeling of use cases needs to take place 
within the context of a software process. Indeed, 
the use case technique has been adopted by some 
recent software process environments. 

Extreme Programming (XP) (Beck & Andres, 
2005) is a broadly-used and well-tested agile 
methodology (Highsmith, 2002) aimed towards 
small-to-medium size software projects. XP does 
not have explicit support for use case modeling. 
However, it deploys user stories as means to 
elicit requirements, which could be viewed as an 
informal text-based representation of use cases 
for non-technical stakeholders. 

Crystal Clear (Cockburn, 2005) is an agile 
methodology that aims to be human- and com-
munication-centric. It consists of a framework of 
related methods, each addressing characteristics 
specific to a software project, and has explicit 
support for use case modeling.

The Unified Process (UP) (Jacobson, Booch, 
& Rumbaugh, 1999) is an archetype of a use case-
driven process framework aimed towards large-
scale software projects. An customization of UP 
for software systems in an enterprise setting is the 
Rational Unified Process (RUP) (Kruchten, 2004) 
and its customization in an educational setting 
is the Unified Process for EDUcation (UPEDU) 
(Robillard, D’Astous, & Kruchten, 2003).

The ICONIX Process is a use case-driven 
software development methodology (Rosenberg 
& Scott, 1999; Rosenburg, Stephens, & Collins-
Cope, 2005). It is less agile than XP and lighter 
than UP.

Finally, we note that like other software ar-
tifacts, the use case approach to modeling has 
its own scope of applicability, advantages, and 
limitations (Jacobson, 2003), and a discussion of 
these is beyond the scope of this chapter.



  ���

A Framework for Understanding and Addressing the Semiotic Quality of Use Case Models

related work on the Quality of use 
case Models

There are different views of quality (Wong, 2006). 
We need to understand and address the quality of 
software models for a variety of reasons. These 
include software development becoming increas-
ingly (implicitly and/or explicitly) dependent on 
models, problems in early models may lead to their 
propagation in later artifacts (Moody, 2005), and 
difficulties in communicating the models can lead 
to more time being spent by others in understand-
ing them correctly or managing their number as 
it grows across different collections.

There are various reasons (Rosenberg & Scott, 
1999; El-Attar & Miller, 2006) due to which the 
quality of a use case model can be compromised, 
including lack of understanding of the underly-
ing domain, lack of knowledge or skills in the 
modeling language, or limitations imposed by 
modeling tools.

There are currently limited efforts towards 
addressing the quality of use case models com-
prehensively, which we now consider chronologi-
cally. 

The Cognitive Dimensions of Notations (CDs) 
(Green, 1989) is a generic framework for describ-
ing the utility of information artifacts by taking 
the system environment and the user character-
istics into consideration. A questionnaire-based 
analysis of the CDs of the UML Use Case Dia-
gram in an academic setting has been carried out 
(Cox, 2000). It is shown that the students find use 
case relationships in a Use Case Diagram hard 
to understand, although in general the graphical 
notation scores well.

An empirical experiment for detecting dif-
ferences in understanding of a use case model 
and possible reasons for the differences has been 
carried out (Anda, Sjøberg, & Jørgensen, 2001). 
However, the attributes that impact understand-
ability of a use case model are not adequately 
treated, and means for improving the understand-
ing are minimal (namely, only guidelines). 

The question of the quality of use case models 
has been asked (Adolph et al., 2003), but is nei-
ther systematically approached, nor adequately 
answered. 

The expressiveness, consistency, and com-
pleteness of textual use case models has been 
analyzed using linguistic techniques (Fantechi et 
al., 2003), and as part of this initiative, a quality 
model and metrics are presented. However, the 
results do not exclusively carry over to graphical 
use case models.

Semiotics (Nöth, 1990) involves the study of 
communicative properties of signs and their rep-
resentations. The question of the semiotic quality 
of UML models in general has been addressed 
(Kamthan, 2004; Kamthan, 2005; Genova, 
Valiente, & Nubiola, 2005; Bolloju & Leung, 
2006) but use case model-related specifics are 
not discussed.

There have been initiatives to understand the 
notion of quality of use case models by decompos-
ing it into attributes. A set of quality attributes, 
namely ambiguity, completeness, volatility, and 
traceability, for graphical use case models have 
been given (McCoy, 2003). However, the list is 
not systematically derived, is strongly related 
to software requirements, and the means for 
improvement are not discussed. Inspired by the 
IEEE Standard 830-1998, the quality attributes 
of correctness, consistency, unambiguousness, 
completeness, readability, and level of detail have 
been proposed and, by means of guidelines, used 
to evaluate the textual use case models at the Volvo 
Car Corporation (Törner et al., 2006). However, 
the list of attributes is neither systematic, nor 
complete, and the approach suffers from limita-
tions inherent to the use of guidelines. A defect 
classification for UML models in general and 
UML Use Case Diagram in particular has been 
given (Lange & Chaudron, 2006). However, the 
classification does not appear to be exhaustive. A 
model-driven requirements process that integrates 
certain metrics for the improvement of quality of 
use case models has been proposed (Berenbach 



���  

A Framework for Understanding and Addressing the Semiotic Quality of Use Case Models

& Borotto, 2006). However, the rationale for 
the selection of quality attributes is unclear. A 
discussion on the attributes for quality, namely 
correctness, consistency, and understandability 
of graphical use case models have been reported 
(El-Attar & Miller, 2006). However, these attri-
butes represent only a partial list and have been 
intrinsically associated with software require-
ments. Furthermore, it has been simplistically 
concluded that an improvement in correctness 
and consistency will lead to an improvement in 
understandability. 

Using theories of text comprehension, a collec-
tion of attributes for communicability of textual 
use case models and guidelines (heuristics) for 
realizing these attributes have been introduced 
(Phalp, Vincent, & Cox, 2007). These guidelines 
are then used to inspect use case models. The 
work provides some credence to the previous 
effort on use case guidelines (Cockburn, 2001). 
However, terms like “abstraction,” “coherent,” 
and “consistent,” that tend to have multiple in-
terpretations, are used in the guidelines but are 
not defined; the trade-offs among the attributes 
or the trade-offs among the guidelines are not 
considered; and (apart from the annotations) the 
results do not entirely carry over to graphical use 
case models.

a SySteMatic approach for 
underStanding and 
addreSSing the SeMiotic 
Quality of uSe caSe ModelS

Using ISO/IEC 9126-1:2001 Standard, we could 
formally but broadly define the quality of a use 
case model as the totality of characteristics of a 
use case model that bear on its ability to satisfy 
stated and implied needs.

In this section, we propose a framework for 
understanding and systematically addressing the 
semiotic quality of use case models. Our approach 
rests on the following hypothesis:

Hypothesis 1. Modeling of software in general 
and that of use cases in particular has a significant 
place in the software development process adopted 
and followed by the organization.

Hypothesis 2. The quality of use cases is given a 
first-class consideration in the use case develop-
ment process. The organization has for example 
shown that explicitly by dedicating resources for a 
quality-centered use case development process.

A use case model development process would 
usually be a sub-process of the overall software 
development process such as Crystal Methods or 
the RUP. Since non-trivial use case models are 
likely to evolve, this sub-process is also likely to 
be both iterative and incremental. 

Among several proposed approaches for qual-
ity of conceptual models in general (Eppler, 2001; 
Moody, 2005), we adopt and extend the treatment 
in one case (Lindland, Sindre, & Sølvberg, 1994). 
The steps of the construction are as follows:

1. Identification and Decomposition of Rel-
evant Quality Concerns. From a semiotics 
viewpoint, we view a use case on three 
interrelated levels: syntactic, semantic, and 
pragmatic. The pragmatic level depends on 
the semantic level, which in turn depends 
on the syntactic level. These levels can be 
further decomposed if necessary.

2. Identification and Assignment of Relevant 
Means for Addressing the Quality Con-
cerns. We consider means for improving the 
quality concerns at each level. These means 
can be placed in process-oriented and prod-
uct-oriented “tiers” where the former can 
make use of the latter. These means could 
also be broadly classified into those that are 
preventative (provide assurance) and those 
that are curative (focus on evaluation). The 
mapping between a semiotic level and the 
means is many-to-many.



  ���

A Framework for Understanding and Addressing the Semiotic Quality of Use Case Models

3. Practical Consideration for Realization. 
Any quality expectations and considerations 
must be realistic. We therefore consider the 
feasibility of the previous two steps.

Table 1 summarizes this construction.
We now describe each of the components of 

the proposed framework in detail.

feasibility

Our approach for addressing the semiotic qual-
ity of use case models is realistic, not perfective. 
This echoes the notion of agile modeling (Ambler, 
2002). The identification of relevant quality at-
tributes and the selection of appropriate means 
to address them does not have to be a matter of 
“all-or-nothing.” 

There are inevitable constraints associated 
with respect to allocation of resources (say, time, 
effort, budget, or personnel) in any initiative to-
wards quality improvement, and the same applies 
to use case models. For example, hiring software 
engineers with the “best” knowledge of the use 
case domain or acquiring the “best” use case 
modeling tool may not be feasible, not to mention 
it may be economically challenging. Also, the use 
of any means of quality improvement mentioned 
above could require personnel training, which may 

not be free-of-cost. The expectations of improving 
the quality of a use case model must therefore be 
feasible in order to be practical. 

The quality concerns at a semiotic level could 
be viewed as hard or soft goals to be achieved. A 
hard goal is either satisfied or not	satisfied. A soft 
goal cannot be completely satisfied; it can only 
be satisfied to a certain degree, that is, satisficed 
(Simon, 1996). If a soft goal is not satisficed, then 
it is denied.

The quality concern at the syntactical level is 
a hard goal, while those at the semantic and prag-
matic levels are in general soft goals. Therefore, 
as compared to the syntactical level, the quality 
concerns at the semantic and pragmatic levels of 
a use case model are more susceptible to the need 
for feasibility analysis. For example, assuming 
that the project team has complete understand-
ing of a new application domain or attempting to 
construct a use case model that will be acceptable 
in every aspect to all stakeholders at all times are 
not realistic.

The issue of feasibility analysis is evidently 
related to decision making (Clemen, 1996) and 
should be a consideration within the overall 
project management in general and use case 
model development process in particular. Further 
discussion of this aspect is beyond the scope of 
this chapter.

Semiotic level Means for Quality assurance and evaluation decision 
Support

• Pragmatic 

• Semantic 

• Syntactic

• Process-Oriented: Pair Modeling, Inspections, Refactoring

• Product-Oriented: “Expert” Body of Knowledge (Principles, 
Guidelines, Patterns and Anti-Patterns), Metrics

Tools Feasibility

Table 1. A framework for the semiotic quality of use case models



���  

A Framework for Understanding and Addressing the Semiotic Quality of Use Case Models

Semiotic Quality concerns

In this section, we discuss the details of the use 
case quality concerns at each semiotic level.

Syntactic Quality

For the sake of this chapter, we view syntactic 
quality as a contract between a use case model 
and the (use case) modeling language. 

There is only one concern at the syntactic 
level, namely that of correctness. This is a hard 
goal. A use case model in UML is syntactically 
correct if and only if every construct in it con-
forms to UML. 

For example, consider a use case model M 
represented in UML version n. Then, the presence 
of any non-UML construct in M or the presence of 
a construct from UML version m ≠ n in M would 
make the model syntactically incorrect.

Semantic Quality

For the sake of this chapter, we view semantic 
quality as a contract between a use case model 
and the knowledge of the domains, namely of the 
use case domain and of the application domain, 
under study. 

The two complementary concerns at the 
semantic level are completeness (relevant behav-
ioral knowledge of the use case domain and the 
application domain is captured in the use case 
model) and validity (all constructs in the use case 
model conform to the use case domain and/or the 
application domain). For non-trivial cases, both 
of these are soft goals. The weaknesses in the 
behavioral semantics of UML meta-model have 
been reported to be the source of defects related 
to completeness (Lange, 2006). The attributes 
such as incorrectness, inconsistency, or redun-
dancy suggested in previous work are subsumed 
by semantic validity.

For example, if a Withdraw Money use case 
for an ABM does not consider the possibility of re-

turning the user’s bank card, then it is semantically 
not complete. A use case model for  the problem 
that, for example, contains user interface-specific 
information, refers to internal design details, has 
the presence of a relationship between two use 
cases (such as the UML association relationship) 
that shows that they “communicate” with each 
other, or has a use case with include relationship 
to an alternate use case is semantically not valid. 
We also note that it is straightforward to construct 
a use case model, say in UML, which is syntacti-
cally correct but neither semantically valid, nor 
semantically complete.

In general, non-trivial violations related to 
semantic quality can be the hardest to detect, 
irrespective of any modeling language or tools 
used. It is also the author’s contention that attain-
ing “absolute” semantic quality, particularly via 
automation, for an arbitrary application domain 
is infeasible as that would require “perfect” 
knowledge and formal representation of the 
knowledge of the domains involved. This leads 
to two issues. First, although there are partial 
efforts, a formalization of the use case domain 
that is complete and is broadly acceptable in the 
software engineering community is yet to be 
seen. Second, not all application domains and not 
all information in a given application domain is 
amenable to formalization. 

A partial solution to the aforementioned issue 
is to represent the declarative knowledge of the 
use case domain and for the application domain as 
formal ontologies (Gruber, 1993). Such knowledge 
artifacts can not only support use case modeling, 
but can have the added benefit of being useful 
throughout the software project. Since one may 
not have a complete knowledge of the use case 
domain or the application domain at the time of 
construction, these ontologies should be allowed 
to evolve. In other words, for the purpose of ex-
tension, these ontologies need to be based upon 
an “Open World Assumption.” We can then limit 
the checking of semantic quality of the use case 



  ���

A Framework for Understanding and Addressing the Semiotic Quality of Use Case Models

model with respect to the union of these domain 
models (ontologies).

Pragmatic Quality

For the sake of this chapter, we view pragmatic 
quality as a contract between a use case model 
and a stakeholder. 

We can identify two broad classes of stakehold-
ers with respect to a use case model: a producer 
is the one who develops or maintains the use case 
model, and a consumer is the one who uses the use 
case model for some purpose. Modeling special-
ists and even requirement engineers are examples 
of producers while business analysts, testers, 
and user manual writers, are some examples of 
consumers of a use case model.

It is the author’s contention that pragmatic qual-
ity is a multi-dimensional concept, and therefore 
we decompose it broadly into maintainability (of 
which modifiability, portability, and reusability 
are special cases) and usability (of which com-
prehensibility and readability are special cases). 
The significance of these attributes is shown in a 
later example. We note that while maintainability 
is a producer’s concern, usability is exclusively a 
consumer’s concern. For non-trivial cases, these 
are soft goals. 

For the definitions of these quality attributes, 
we resort to the IEEE Standard 1061-1998, the ISO 
Standard 9241-11:1998, and the ISO/IEC Standard 
9126-1: 2001. It is also the author’s contention that 
these quality attributes are necessary but make 
no claim of their sufficiency. 

Relationships among Semiotic 
Levels

The conformance of a use case model to one quality 
attribute or semiotic level does not automatically 
mean conformance to another. 

For instance, consider a use case UC that is 
represented in UML and is syntactically correct 
with respect to UML. Let the entire functionality 

of UC be essentially distributed in other included 
use cases UC1, UC2,…, UCn. That is,

n

i
i = 1

UC = UC


. 

Then this construction encourages readability 
and perhaps even comprehensibility as each UCi, 
for some i, is small and cohesive. However, if UC is 
not doing anything on its own (and therefore is not 
of any value to an actor), then it violates semantic 
validity. The construction is also unfavorable to 
reusability if none of the UCi’s are being used in 
any other use case. 

Means for addressing Semiotic 
Quality concerns

In this section, we discuss the process- and prod-
uct-oriented means that are outlined in Table 1 
for addressing the semiotic quality of use case 
models. To keep the argument in perspective, we 
point out both the benefits and the limitations of 
each of these means.

Process-Oriented Means

We begin with the discussion of the process-ori-
ented means, namely Pair Modeling, inspections, 
and refactoring.

Pair Modeling
Pair Modeling (Kamthan, 2005) is a practice 
that involves two people such that one person 
(the primary person or the pilot) works on the 
model using some input device, while the other 
(the secondary person or the co-pilot) provides 
support in decision making and provides input 
and critical feedback on all aspects of the model 
as it evolves. Thus, Pair Modeling falls on the 
“boundary” of assurance and evaluation. 

We note that the focus in Pair Modeling is 
more on the process of creating the use case 
model rather than on the outcome of the process 
(the model itself). The underlying assumption 



���  

A Framework for Understanding and Addressing the Semiotic Quality of Use Case Models

here is that the improvements in the former will 
bring about improvements in the latter (Nelson 
& Monarchi, 2007). To that regard, we note that 
Pair Modeling is one way to help steer the use 
case development process.

Pair Modeling could be deployed to improve 
the semiotic quality of use case models in a few 
ways. For example, the partners can share the 
responsibility in playing the role of actors and of 
the use cases in formulating candidate choices, 
the partners can debate the appropriateness of 
guidelines, patterns or anti-patterns, the co-pilot 
can provide feedback to the pilot during the con-
struction of the use case model, and so on. 

There are a few shortcomings of Pair Modeling. 
First, the project team must be able to dedicate 
two people for the task of use case modeling, 
which may be a constraint on very small teams. 
Second, there are inevitable issues of differen-
tials in domain knowledge and modeling skills, 
compatibility in personalities, and mutually 
agreeable schedules between the partners. Finally, 
the commitment of double the number of people 
for the same activity can imply double the sal-
ary but does not automatically imply double the 
productivity.

Inspections
Inspections (Wiegers, 2002) are a rigorous form 
of auditing based upon peer review that, when 
practiced well, can help in prevention of semiotic 
quality-related issues in use case models. Since 
there are differences between how people read 
text narratives and graphical constructs, special-
purpose reading techniques for UML models in 
general have been suggested (Conradi et al., 2003) 
and could be used with graphical use case models 
as well. The use of checklists (that are usually 
inspired by guidelines) has been made to identify 
defects in use case models (Anda, 2003).

However, the effectiveness of inspections lies 
strongly on the reading technique deployed. The 
efficacy of traditional checklist-based reading 
techniques that focus on the quantity (number) 

rather than quality (significance) of defects has 
been brought into question (Thelin, Runeson, & 
Wohlin, 2003). Furthermore, inspections entail 
an initial cost overhead of training each partici-
pant in the structured review process followed 
by the logistics of checklists, forms, and reports 
involved.

Refactoring
In this chapter, we view use case modeling as an 
iterative process. Indeed, once developed, use case 
models may need to evolve for reasons such as 
discovery of “impurities” or “smells” (Kerievsky, 
2005), or obsolescence. These could manifest 
themselves as worsening or the absence of one 
or more semiotic quality attributes.

The idea of refactoring suggests a revisita-
tion of an artifact for the purpose of eliminating 
undesirable properties. Refactoring methods are 
structural transformations that provide a system-
atic way of eradicating the undesirables from a 
software artifact while preserving its behavioral 
semantics. The notion of refactoring originated in 
micro-architecture design and source code context 
(Fowler et al., 1999) and can be broadened to ap-
ply to models in general and to use case models 
(Rui & Butler, 2003) in particular.

There is parity between refactoring and pat-
terns and anti-patterns. Indeed, we can interpret 
the presence of “impurities” as anti-patterns and 
therefore the rationale for refactoring. We can use 
patterns as “targets” of refactoring (Kerievsky, 
2005). For example, during refinement, we may 
need to RedistributeTheWealth if a use case is 
getting too large or may have to MergeDroplets 
if there are use cases that are too small to exist 
on their own, or simply CleanHouse if there are 
use cases that do not add value to any actor any 
more.

There are a few limitations in current use 
case model refactoring efforts. The refactoring 
methods specific to use case models are in their 
infancy. The identification of “impurities” and a 
precise mapping between “impurities” and the 



  ���

A Framework for Understanding and Addressing the Semiotic Quality of Use Case Models

refactoring methods is missing. There also seems 
to be a lack in software community of a common 
ground on what constitutes behavioral semantics 
of use case models, and therefore its preservation 
during refactoring. This raises the potential of 
refactoring methods becoming non-transferable 
across problem domains. Finally, a large-scale 
refactoring will inevitably require automated tool 
support in order to be practical. 

Product-Oriented Means

We now move on to the discussion of product-ori-
ented means, namely “expert” body of knowledge 
and metrics. For “expert” body of knowledge, we 
restrict ourselves to principles, guidelines, pat-
terns and anti-patterns, but also note that there 
are other such, albeit less-known, entities (Garzas 
& Piattini, 2005).

Principles
The presence of time-invariant principles is a 
hallmark of maturity of a discipline, and software 
engineering is no different. In this chapter, we will 
focus on the principles that specifically address 
product quality (Ghezzi, Jazayeri, & Mandrioli, 
2003). In general, the mapping between principles 
and semiotic levels (or quality attributes) is many-
to-many. The principle of Rigor and Formality 
enables one to address syntactic quality of a 
use case model. The principles of Separation 
of Concerns and Abstraction enable one to ad-
dress semantic quality of a use case model. For 
example, the names of actors in a use case model 
could be abstracted to reflect the roles they play 
(as opposed to their human names or titles they 
hold). The principles of Abstraction, Anticipation 
of Change, Incrementality, Generality, and Modu-
larity enable one to address pragmatic quality 
(specifically, maintainability) of a use case model. 
For example, Withdraw Money use case and 
Deposit Money use case in a use case model 
for an ABM could be generalized to a new (and 
abstract) Perform Transaction use case in 

anticipation that other forms of transactions could 
be added to the model in future.

In spite of their usefulness, in general, the 
descriptions of principles do not include direc-
tions of how to apply them successfully. Also, 
principles are stated at such a high-level that 
they tend to be more useful for an expert rather 
than a novice. 

Guidelines
There are style guidelines for documenting use 
case models textually and graphically. The textual 
guidelines (Cox & Phalp, 2000; Cockburn, 2001; 
Leffingwell & Widrig, 2003) could be used for 
improvement of the semantic and to a certain 
extent the pragmatic quality of use case models. 
For example, there are guidelines that suggest 
that actor names should be singular nouns and 
use case names should be strong verbs, that user 
interface details should not be a part of use case 
description, and so on. 

The graphical guidelines (Ambler, 2003) 
could be used for improvement of the syntactic, 
pragmatic, and to a limited extent semantic qual-
ity of use case models. For example, there are 
guidelines that suggest that the use case model 
should drawn on a “grid architecture,” the actor-
to-use case relationships should not be depicted by 
arrowheads, the lines depicting the relationships 
among use cases should not cross, and so on. The 
usefulness of guidelines for documenting use 
cases has been shown by some empirical studies 
(Anda, 2003).

In lieu of supporting pragmatic quality of 
use case models, the theoretical foundation of 
some of the graphical guidelines (Ambler, 2003) 
could be strengthened via notions from cognitive 
psychology. The secondary notation (Petre, 1995) 
is one of the CDs and is defined as the use of 
layout and perceptual cues to clarify information 
or to give hints to the stakeholder. The second-
ary elements of UML that affect the readability 
and comprehensibility of a use case model in 
UML are (Kamthan, 2006): color, directional-



���  

A Framework for Understanding and Addressing the Semiotic Quality of Use Case Models

ity, labeling, level of abstraction and refinement, 
morphology, positioning, typography, and white 
space. As an example, the level of abstraction of 
a UML Sequence Diagram should be oriented to 
the stakeholder: it, for instance, need not show 
the operations (such as private methods) for actor 
stimuli and system response to a non-technical 
stakeholder (and thereby improve the likelihood 
that the model is understood). As another example, 
the presence of crooked nodes and zigzag verti-
ces are cognitively ineffective (Di Battista et al., 
1999), while the introduction of white space at 
appropriate places can improve readability. The 
labels in use case models could be based on natural 
naming (Keller, 1990), a technique initially used 
in source code contexts, that encourages the use 
of names that consist of one or more full words 
of the natural language in preference to acronyms 
or abbreviations. For example, actor names such 
as ABM are easier to be misinterpreted to have a 
variety of different meanings compared to their 
natural name counterpart such as Automatic 
Banking Machine.

In spite of their usefulness, guidelines as-
sume a certain level of knowledge and therefore 
are more suitable for an expert than for a novice. 
The comparisons of guidelines for documenting 
use case models (Cox, Phalp, & Shepperd, 2001) 
suggest that some guidelines are rather complex 
to apply. The guidelines for use case modeling 
rarely discuss the trade-offs of their use or the 
relationships among them. As an example, a 
guideline like “inclusion of alternative paths in 
the main flow reduces readability” (Phalp, Vin-
cent, & Cox, 2007) is not absolute. Furthermore, 
a guideline such as “make the use case easy to 
read” (Cockburn, 2001) can seem rather general 
and a guideline like “apply «extend» associations 
sparingly” (Ambler, 2003) can seem vague to a 
user particularly when there is widespread use 
of «extend» available in the literature and it is 
hard to quantify the term “sparingly.” Finally, a 
guideline that is metaphorically-inclined such as 

“who has the ball?” (Cockburn, 2001) may not be 
transferable across cultures.

Patterns and Anti-Patterns
The reliance on past experience and expertise 
is critical to any development, and patterns and 
anti-patterns are exemplars of that. A pattern is a 
proven solution to a recurring problem in a given 
context (Appleton, 1997). A unique aspect of a 
pattern (as opposed to other entities of knowledge 
such as a guideline) is that it not just describes 
how but why a certain solution works, the scope 
within which it works, and is preventative rather 
than curative (Dromey, 2003) in its approach 
towards quality improvement. There are patterns 
available for both developing and documenting 
use case models (Biddle, Noble, & Tempero, 2001; 
Angay, 2002; Adolph et al., 2003; Björnvig, 2003; 
Övergaard & Palmkvist, 2005). 

In general, the mapping between patterns and 
semiotic levels (or quality attributes) is many-to-
many. For example, let us consider patterns from 
one such collection (Adolph et al., 2003), names of 
which for the rest of the chapter are highlighted in 
italics and presented in camel case for the sake of 
identification. The ExhaustiveAlternatives pattern 
suggests the inclusion of all non-normal flows 
in a use case model, and thereby contributes to 
semantic completeness. The TechnologyNeutral 
pattern suggests not including non-application 
domain specifics (such as implementation details), 
and thus contributes to semantic validity. The 
Adornments pattern allows inclusion of metadata 
information in a use case model and thereby aims 
to improve the readability of the use case. The 
PreciseAndReadable pattern aims to improve 
the comprehensibility and readability of a use 
case, and in doing so targets both the user and the 
engineer. The RedistributeTheWealth, MergeDro-
plets, and CleanHouse patterns aim to improve 
the maintainability of a use case. 

The benefits of “non-examples” in use case 
modeling education have been emphasized (Beus-
Dukic & Myers, 2005). An anti-pattern is a fre-



  ���

A Framework for Understanding and Addressing the Semiotic Quality of Use Case Models

quently faced “negative” solution to a recurring 
problem (Appleton, 1997). If a pattern reflects 
a “best practice,” then an anti-pattern reflects a 
“lesson learned.” There are some anti-patterns 
available for use cases (El-Attar & Miller, 2006). 
An anti-pattern will not explicitly improve any 
quality attribute of a use case model; instead 
avoiding the anti-pattern will simply allow some 
quality attribute not to get worse. For example, the 
anti-pattern of having a single use case that does 
everything for a software system is an impediment 
to comprehensibility. To ameliorate this, one can 
for example use the LargeUseCase:MultiplePaths 
pattern (Övergaard & Palmkvist, 2005) where 
each of the longer flows can be modeled as a 
separate use case. 

In spite of their usefulness, there are certain 
caveats in the adoption of patterns or anti-patterns 
towards quality improvement. A pattern may not 
have gone through adequate review or broad use 
by the community and therefore may not be ma-
ture enough for use. The reuse of any knowledge, 
including the use of patterns or anti-patterns in 
the development of use case models, is neither 
automatic, nor free; there is a cost of learning 
and adaptation involved in any reuse (Boehm et 
al., 2001). It is also possible that patterns are not 
adequately described such as when each pattern 
is presented as an isolated entity (independent of 
other patterns) or when the consequence(s) of ap-
plying a pattern are not always given (Övergaard 
& Palmkvist, 2005). Finally, for a given problem 
there simply may not be any suitable pattern or 
anti-pattern available. For example, interview-
ing the client is part of the use case elicitation 
process. However, none of the aforementioned 
collections provide any patterns for conducting 
such interviews. 

Metrics
The significance of measurement in conceptual 
models has been emphasized recently (Moody, 
2005). Metrics can provide a quantitative mea-

sure for semiotic quality improvement of use 
case models. 

There are elementary metrics available for use 
case models that are expressed in UML (Kim & 
Boldyreff, 2002). They aim to measure the “size” 
and “structural complexity” (both of which can 
impact the comprehensibility and the modifi-
ability) of a use case model in different ways, 
including counting the number of actors, the 
number of use cases, the number of relationships 
among use cases, and the number of associations 
between actors and use cases in it. There is also a 
rudimentary provision to associate “weights” with 
each of these to denote relative importance.

For example, a large number of include re-
lationships from a use case would imply heavy 
reuse, which may reduce work (favorable to main-
tainability) but at the price of cognitive overload 
as to understand one use case would require an 
understanding of several others (which is unfavor-
able to comprehensibility). Similarly, the absence 
of extend relationships from the use case model 
for a system with diverse set of users could be an 
indication of semantic non-completeness.

There are currently certain obstacles in the use 
of metrics. Most of the metrics are introduced and 
used on empirical grounds, and are not formally 
validated against the representational theory of 
measurement (Fenton & Pfleeger, 1997). Also, 
since use cases model usage of a software sys-
tem, metrics oriented towards absolute or rela-
tive counting are limited in scope (McQuillan 
& Power, 2006). Calculations using metrics and 
subsequent data analysis can become tedious 
and error prone if carried out manually, however, 
support for metrics in modeling tools is at present 
sketchy. Also, it seems that there are currently no 
metrics available for textual use case models.

Tools
The tools sensitive to the use case domain can 
aid towards automated development of use case 
models. They can indeed assist semiotic quality 
improvement by directly or indirectly supporting 



��0  

A Framework for Understanding and Addressing the Semiotic Quality of Use Case Models

other means. For example, some modeling tools 
such as the IBM Rational Rose XDE, place restric-
tions on the use of UML syntactical constructs and 
provide some support for software design patterns, 
while others such as Borland Together provide 
some support for software design metrics.

However, both commercial and non-commer-
cial use case modeling tools vary broadly with 
respect to their adoption (Davies et al., 2006); 
features; learning curve; ergonomics (Unhelkar, 
2005); conformance to the official definition of 
UML and its different versions; implementa-
tion of layout algorithms; degree of support for 
refactoring, guidelines, patterns/anti-patterns, 
and metrics; and available import/export formats. 
Indeed, some UML modeling tools are known 
(El-Attar & Miller, 2006) to create use case 
models that violate one or more aforementioned 
quality attributes.

Relationships among Means
The aforementioned means are not mutually ex-
clusive and can implicitly or explicitly aid each 
other. Indeed, the process-oriented means can 
utilize the product-oriented means towards their 
goal of quality improvement. 

It is known that patterns often rely on principles 
to suggest solutions: the solutions suggested by 
patterns aim for the principle of Abstraction so 
as to be as general as possible in their applica-
bility in different situations. Also, any patterns 
that target maintainability are, implicitly or ex-
plicitly, following the principle of Anticipation 
of Change. We have already seen the use of pat-
terns in refactoring use case models. There are 
other possible relationships among means. For 
example, consider the use case (process) pattern 
SmallWritingTeam, which suggests restricting the 
number of people refining a use case model. This 
pattern, when restricted to two people, could be 
realized in practice during Pair Modeling. Fur-
thermore, an inspections’ session could follow 
the use case TwoTierReview (process) pattern to 
have two sets of inspections, one carried out by 

inspectors internal to the team and the other by 
inspectors external to the team; use checklists 
derived from guidelines as means against with 
which to inspect the use case models; make use 
of metrics to compare two use case models; or 
look for the presence of certain patterns or anti-
patterns in a use case model.

the framework for Semiotic Quality 
of use case Models in perspective

In this section, we briefly discuss the scope and 
limitations of the framework for semiotic quality 
of use case models presented above. 

First, it appears that a complete formalization of 
the framework particularly that of certain quality 
attributes may not even be possible. Although the 
framework is rigorous, it does not provide formal 
definitions of syntax, semantics, or pragmatics, or 
of the quality attributes therein. On one hand, this 
makes the discussion accessible to non-technical 
stakeholders. On the other hand, it can make the 
application of certain means, and quantification 
and automatic verification of quality improve-
ment, difficult. 

Second, the framework does not discuss the 
quality of annotations associated with a use case 
model such as any text or OCL script within a 
UML Note construct.

Third, the resources pertaining to any software 
projects are limited: there is no a priori guaran-
tee that an organization may be able to allocate 
resources (such as the time or budget for training 
personnel) to any of the means of use case model 
quality improvement that have been discussed. In 
general, the level of organizational process ma-
turity (Paulk et al., 1995) may inhibit the extent 
(if at all) of such an adoption. This may become 
all the more challenging if it is anticipated that 
more than one means is necessary. 

Fourth, there is no discussion in the framework 
on how the resource allocation for addressing the 
quality of use case models should be balanced 
with respect to other modeling activities.



  ���

A Framework for Understanding and Addressing the Semiotic Quality of Use Case Models

Finally, the framework is based on established 
work, and represents a first step towards system-
atically understanding and addressing the quality 
of use case models. However, like the use case 
domain itself, it is not a “standard.”

Example

In this section, we present a simple example that 
exemplifies the use case model quality frame-
work. 

Figures 1 and 2 illustrate iterative and incre-
mental development of use case models M1 and 
M2 for a Flight Reservation System, respectively. 
Figure 1 shows two actors named John and 
Jane and three use cases named Reserve a 
Flight, Login, and Reserve a Flight 
for Disabled. After M1 was developed, the 
issue of quality arose and further information 
became available. M2 is an iteration and an incre-

ment of M1 for the purpose of semiotic quality 
improvement. 

Figure 2 shows two actors named Customer 
and Airline System and four use cases named 
Get Authentication, Reserve a Flight, 
and Reserve a Flight for Disabled, 
and Reserve a Flight for VIP. 

We now briefly explain the evolution from M1 
to M2 from a semiotic quality perspective. By 
splitting the system functionality into different 
use cases, M1 supports maintainability. M1 follows 
some of the guidelines for labeling, typography, 
and white space to improve readability. However, 
M1 as compared to M2 will take longer to develop, 
and has multiple syntactic, semantic, and prag-
matic quality-related violations. Specifically, M1 
issues include the following: 

1. Syntactic: the actor-to-use case and use 
case-to-use case relationships and direc-
tionality are represented incorrectly; 

Figure 1. The UML Use Case Diagram for the use case model M1 with various semiotic quality is-
sues.



���  

A Framework for Understanding and Addressing the Semiotic Quality of Use Case Models

2. Semantic; actor names are not abstract; 
3. Pragmatic: use case dependencies are not 

obvious; and it is hard to comprehend due 
to crossing relationships and non-readily-
intuitive vertical placement of use cases.

The evolution from M1 to M2 takes place using 
multiple means available. M2 deploys patterns 
such as VisibleBoundary pattern (Adolph et al., 
2003) to set the system boundary, and Multiple 
Actors: Common Roles (Övergaard & Palmkvist, 
2005) and ClearCastOfCharacters (Adolph et al., 
2003) to reduce the number of actors to a minimal. 
Furthermore, it makes use of the guidelines for 
directionality and positioning to alleviate some 
of the aforementioned issues.

Finally, we note that M2 is the second iteration 
of the model and do not claim that it is complete. 

Further iterations are not discussed due to con-
siderations of space. If necessary, a UML Note 
construct could be attached to constructs in M2 
to associate any metadata information (like the 
project title, author name, or date/time) or to, say, 
associate constraints on the number of flights 
available for each category of users. Also, there 
could be a consideration for reserving a flight 
for a VIP who is disabled. Furthermore, a Flight 
Reservation System may have other functionalities 
besides those shown in Figure 2, and likely needs 
to be administered and maintained. Therefore, M2 
should also evolve to include other actors such as 
an administrator and a maintainer, and other use 
cases such as those for presenting flight schedules, 
for access rights (authentication), and for payment. 
For example, a Get Authentication use case 
(that subsumes the Login use case of M1) could 

Figure 2. The UML Use Case Diagram for the use case model M2 that is a result of inspecting, iterating 
(refactoring),	and	incrementing	M1 to improve its semiotic quality.



  ���

A Framework for Understanding and Addressing the Semiotic Quality of Use Case Models

be added to M2 with an «include» relationship 
directed from the Reserve a Flight use case 
to the Get Authentication use case. 

concluSion

If there is any constant in the evolution of today’s 
information-based software systems, it is the 
movement towards interaction. Use cases are 
abstractions that provide a service-oriented view 
of an interactive software system. The conceptual 
models of these services must strive for high-qual-
ity throughout the software development process 
(Bourque et al., 2002) and beyond so as to be 
amenable to their stakeholders. It is our hope that 
the work presented in this chapter provides one 
step towards making quality a first-class concern 
in use case modeling. 

For a true realization of “exorcism” in software 
(Blunden, 2003), we must address the quality 
concerns as early as possible. One way to do 
that is to start with the quality of early models. 
Indeed, any initiative of an organization towards 
improving the quality of artifacts such as use 
case models begins with the acknowledgment 
of current process maturity and the emphasis in 
the process on addressing quality early. This is 
followed by an in-depth feasibility analysis of 
relevant quality attributes and the selection of 
one or more means to address them. 

An investment in a quality-centric approach to 
use case modeling is neither automatic, nor free, 
but can benefit both the engineers and the users 
and, in the long-term, can outweigh the costs. It 
is important that the software engineers of the 
future must not only be trained in the syntax 
and semantics (namely, the primary notation) 
of a modeling language for use case models but 
cotemporally also in the pragmatics or style of its 
use (namely, the secondary notation). The focus on 
preventative means (provide assurance) should be 
at least as much as those that are curative (provide 

evaluation). We hope that this chapter motivates 
the need for doing so.

In conclusion, like documents were two 
decades ago (Weinberg, 1998), it is the author’s 
contention that models are the “castor oil” of the 
future software engineering. If that turns out to be 
the case, then like documentation (Kaner, 1995), 
striving for quality in software models may not 
only become an ethical and moral obligation but 
also a legal imperative. 

future reSearch directionS

The work presented in this chapter can be ex-
tended in a few different directions, which we 
now briefly discuss.

formalization of use case domain 
terminology

The use case technique, and therefore the termi-
nology (Winters, 2005) that ensues from adopt-
ing it, is not a “standard” per se. This has led 
to an apparent “terminological explosion” and 
proliferation of synonyms and homonyms in the 
literature. There is an urgent need for some form 
of consensus on what precisely constitutes the 
use case domain, namely a standard metamodel. 
This metamodel for the use case domain also 
needs to be adequately represented. As mentioned 
previously, the establishment of a publicly open 
formal ontology for the use case domain could be 
helpful in that regard. Among the given possibili-
ties, the OWL Web Ontology Language (Dean 
& Schreiber, 2004), appears to be a promising 
candidate for such an ontology as it provides a 
balance between expressivity, decidability (of 
reasoning), and support of tools for authoring, 
processing, and reasoning.

 Table 1 provides a structured but informal 
way of expressing the relationships among qual-
ity attributes, and between quality attributes and 
means for addressing them. We hope that further 



���  

A Framework for Understanding and Addressing the Semiotic Quality of Use Case Models

investigations into formalization of the concept 
of quality would lead to an upper-level ontology 
that will allow precise definition and organization 
of such relationships, and enable reasoning with 
them. The initial work on the ontology for software 
quality as defined in the Guide to the Software 
Engineering Body of Knowledge (SWEBOK) 
(Mendes & Abran, 2004) could provide input in 
this direction. 

Some potential extensions of the 
framework

A natural evolution of the aforementioned 
framework would be to increase the number of 
semiotic levels and to increase the granularity 
of the quality attributes at each semiotic level. 
For example, a social level (Shanks, 1999) could 
be introduced on the top of the other three. The 
social level could be defined as contract (or a social 
agreement) among the stakeholders with respect 
to the use case model. For example, social quality 
concerns would include credibility (Fogg & Tseng, 
1999) and legality of the model. To address these 
concerns would also require an extension of the 
currently available means and is likely to involve 
associating appropriate metadata information with 
the model. However, we also note that as we move 
from technical to social levels, addressing the 
quality concerns (and their soft goals) becomes 
increasingly challenging. 

The details of the aforementioned framework 
have largely been limited to the problem domain 
rather than for the solution domain. The previous 
discussion could be extended from problem use 
cases to solution use cases, and in that case an 
investigation into the quality of use case scenarios 
would be of interest.

While use cases provide abstractions of 
services that a system should perform, misuse 
cases (Alexander & Maiden, 2004) describe ac-
tions (such as security breaches) that should not 
be possible in a system. The UML notation of 
misuse cases is similar with the exception that 

the colors of both the actors and use cases are 
reversed from transparent (or white) to black. 
With minimal effort at syntactic and semantic 
quality levels, our quality framework could be 
extended and applied to use case models that 
include misuse cases.

An investigation towards resolving the issues 
pointed out in the selection, adoption, and appli-
cation of the means for improving the semiotic 
quality of use case models could be yet another 
extension of the work presented here. Specifically, 
the need for stable and robust tool support for 
guidelines, patterns, and metrics for textual use 
case models is particularly critical.

There are certain properties of a software 
system, labeled as “crosscutting concerns,” that 
can not be (readily) separated from each other, and 
therefore can not be isolated and modularized. The 
crosscutting concerns are encapsulated in sepa-
rate modules known as aspects. In recent years, 
aspect-oriented software development (Filman et 
al., 2005) has been put forward as an approach 
that aims at addressing crosscutting concerns by 
providing means for their systematic identifica-
tion, separation, specification, representation, and 
composition. The term “early aspects” (Brito, 
2004) refers to dealing with crosscutting concerns 
at the early stages of requirements engineering, 
specifically during the development of use cases 
(Jacobson & Ng, 2005). It will remain crucial that 
these extensions of the use case models preserve 
and adhere to quality, and if necessary, the pro-
posed framework could be extended to provide 
an avenue to support that. 

Quality in use case education

Use case models have been given a place in ef-
forts for “streamlining” undergraduate software 
engineering education (IEEE-CS/ACM, 2004). 
However, there have been very few efforts in 
introducing the significance of quality in use case 
modeling in education (Cox, 2000; Beus-Dukic 
& Myers, 2005). Therefore, the educational im-



  ���

A Framework for Understanding and Addressing the Semiotic Quality of Use Case Models

plications of quality in use case modeling (within 
say the UPEDU) would be worth examining. In 
particular, incorporating pedagogical patterns 
(currently available within the auspices of the 
Pedagogical Patterns Project or otherwise) into 
teaching, both inside and outside the classroom, 
would be of special interest. For example, the 
FixerUpper pattern (Bergin, 2000) suggests that it 
is useful to introduce artifacts that have errors in 
them that the students are asked to correct. This 
could help students “discover” the significance 
of quality attributes at different semiotic levels 
on their own and help appreciate the means to 
address them when introduced on a “need to 
know” basis.

Quality in other Software Modeling 
artifacts

Often, different application domains can lead to 
the choice of different modeling abstractions us-
ing special means. To that regard, addressing the 
quality of artifacts in other special-purpose visual 
languages such as Feature Modeling (Czarnecki 
& Eisenecker, 2000) for domain analysis, Object 
Role Modeling (ORM) (Halpin & Bloesch, 1998) 
for conceptual data modeling, and Use Case Maps 
(UCM) (Buhr, 1998) for reactive systems would 
also be of interest.

acknowledgMent

The author would like to thank Hsueh-Ieng Pai, 
Mitra Nami, and Maryam Shiri (Concordia Uni-
versity, Montreal, Canada) for early comments, 
and the reviewers for feedback and suggestions 
for improvement.

referenceS

Adolph, S., Bramble, P., Cockburn, A., & Pols, 
A. (2003). Patterns for Effective Use Cases. Ad-
dison-Wesley.

Alexander, I., & Maiden, N. (2004). Scenarios, 
Stories, Use Cases through the Systems Develop-
ment Life-Cycle. John Wiley and Sons. 

Ambler, S. W. (2002). Agile Modeling: Effective 
Practices for Extreme Programming and the Uni-
fied Process. John Wiley and Sons. 2002.

Ambler, S. W. (2003). The Elements of UML 
Style. Cambridge University Press.

Anda, B. C. D. (2003). Empirical Studies of Con-
struction and Application of Use Case Models. 
Ph.D. Thesis, University of Oslo, Oslo, Norway.

Anda, B. C. D., Sjøberg, D. I. K., & Jørgensen, 
M. (2001). Quality and Understandability in Use 
Case Models. The Fifteenth European Conference 
on Object-Oriented Programming (ECOOP 2001), 
Budapest, Hungary, June 18-22, 2001. 

Angay, H. (2002). Template Use Case Pattern. 
Appropriate Process Group White Paper. 2002.

Appleton, B. A. (1997). Patterns and Software: 
Essential Concepts and Terminology. Object 
Magazine Online, 3(5), 20-25.

Beck, K., & Andres, C. (2005). Extreme Pro-
gramming Explained: Embrace Change (Second 
Edition). Addison-Wesley.

Berenbach, B., & Borotto, G. (2006). Metrics 
for Model Driven Requirements Development. 
The Twenty Eighth International Conference on 
Software Engineering (ICSE 2006), Shanghai, 
China, May 20-28, 2006. 

Bergin, J. (2000). Fourteen Pedagogical Pat-
terns. The Fifth European Conference on Pattern 
Languages of Programs (EuroPLoP 2000), Irsee, 
Germany, July 5-9, 2000.

Beus-Dukic, L., & Myers, C. (2005). Use and 
Abuse Cases. The First International Workshop 
on Requirements Engineering Education and 
Training (REET 2005), Paris, France, August 
29-September 2, 2005. 



���  

A Framework for Understanding and Addressing the Semiotic Quality of Use Case Models

Beydeda, S., Book, M., & Gruhn, V. (2005). Mod-
el-Driven Software Development. Springer.

Biddle, R., Noble, J., & Tempero, E. (2001). Pat-
terns for Essential Use Cases. Technical Report 
CS-TR-01/02. School of Mathematics, Statistics 
and Computer Science, Victoria University of 
Wellington, Wellington, New Zealand. May 20, 
2001. 

Bittner, K., & Spence, I. (2003). Use Case Model-
ing. Addison-Wesley.

Björnvig, G. (2003). Patterns for the Role of Use 
Cases. The Eighth European Conference on Pat-
tern Languages of Programs (EuroPLoP 2003), 
Irsee, Germany, June 25-29, 2003.

Blunden, B. (2003). Software Exorcism: A Hand-
book for Debugging and Optimizing Legacy 
Code. Apress.

Boehm, B. W., Abts, C., Brown, A. W., Chulani, 
S., Clark, B. K., Horowitz, E., Madachy, R., Reifer, 
D., & Steece, B. (2001). Software Cost Estimation 
with COCOMO II. Prentice Hall.

Bolloju, N., & Leung, F. S. K. (2006). Assisting 
Novice Analysts in Developing Quality Concep-
tual Models with UML. Communications of the 
ACM, 49(7), 108-112. 

Booch, G., Jacobson, I., & Rumbaugh, J. (2005). 
The Unified Modeling Language Reference 
Manual (Second Edition). Addison-Wesley.

Bourque, P., Dupuis, R., Abran, A., Moore, J. 
W., Tripp, L., & Wolff, S. (2002). Fundamental 
Principles of Software Engineering - A Journey. 
Journal of Systems and Software, 62(1), 59-70. 

Brito, I. (2004). Aspect-Oriented Require-
ments Engineering. The Seventh International 
Conference on the Unified Modeling Language 
(<<UML 2004>>), Lisbon, Portugal, October 
11-15, 2004. 

Buhr, R. J. A. (1998). Use Case Maps as Archi-
tectural Entities for Complex Systems. IEEE 

Transactions on Software Engineering, 24(12), 
1131-1155. 

Clemen, R. T. (1996). Making Hard Decisions: 
An Introduction to Decision Analysis (Second 
Edition). Duxbury Press.

Cockburn, A. (2001). Writing Effective Use Cases. 
Addison-Wesley.

Cockburn, A. (2005). Crystal Clear: A Human-
Powered Methodology for Small Teams. Ad-
dison-Wesley.

Conradi, R., Mohagheghi, P., Arif, T., Hegde, 
L. C., Bunde, G. A., & Pedersen, A. (2003). In-
spection of UML Diagrams using OORT - An 
Industrial Experiment. European Conference for 
Object-Oriented Programming (ECOOP 2003), 
Darmstadt, Germany, July 21-25, 2003.

Cowling, A. J. (2005). The Role of Modelling in 
the Software Engineering Curriculum. Journal 
of Systems and Software, 75(1-2), 41-53. 

Cox, K. (2000). Cognitive Dimensions of Use 
Cases: Feedback from a Student Questionnaire. 
The Twelfth Annual Meeting of the Psychology of 
Programming Interest Group, Corigliano Calabro, 
Italy, April 10-13, 2000. 

Cox, K., & Phalp, K. (2000). Replicating the 
CREWS Use Case Authoring Guidelines Experi-
ment. Empirical Software Engineering Journal, 
5(3), 245-267.

Cox, K., Phalp, K., & Shepperd, M. (2001). 
Comparing Use Case Writing Guidelines. The 
Seventh International Workshop on Requirements 
Engineering: Foundation for Software Quality, 
Interlaken, Switzerland, June 4-5, 2001.

Czarnecki, K., & Eisenecker, U. W. (2000). 
Generative Programming: Methods, Tools, and 
Applications. Addison-Wesley. 

Davies, I., Green, P., Rosemann, M., Indulska, 
M., & Gallo, S. (2006). How do Practitioners 



  ���

A Framework for Understanding and Addressing the Semiotic Quality of Use Case Models

Use Conceptual Modeling in Practice? Data and 
Knowledge Engineering, 58(3), 358-380.

Dean, M., & Schreiber, G. (2004). OWL Web 
Ontology Language Reference. W3C Recom-
mendation. World Wide Web Consortium (W3C). 
February 10, 2004.

Di Battista, G., Eades, P., Tamassia, R., & Tollis, 
I. G. (1999). Graph Drawing: Algorithms for the 
Visualization of Graphs. Prentice-Hall. 

Dromey, R. G. (2003). Software Quality - Pre-
vention Versus Cure? Software Quality Journal, 
11(3), 197-210. 

El-Attar, M., & Miller, J. (2006). Matching An-
tipatterns to Improve the Quality of Use Case 
Models. The Fourteenth International Require-
ments Engineering Conference (RE 2006), Min-
neapolis-St. Paul, USA. September 11-15, 2006. 

Eppler, M. J. (2001). The Concept of Informa-
tion Quality: An Interdisciplinary Evaluation of 
Recent Information Quality Frameworks. Studies 
in Communication Sciences, 1(2), 167-182.

Fantechi, A., Gnesi, S., Lami, G., & Maccari, A. 
(2003). Applications of Linguistic Techniques for 
Use Case Analysis. Requirements Engineering, 
8(3), 161-170. 

Fenton, N. E., & Pfleeger, S. L. (1997). Software 
Metrics: A Rigorous & Practical Approach. In-
ternational Thomson Computer Press.

Filman, R, Elrad, T., Clarke, S., & Mehmet, A. 
(2005). Aspect-Oriented Software Development. 
Addison-Wesley.

Fogg, B. J., & Tseng, S. (1999). The Elements of 
Computer Credibility. The ACM CHI 99 Confer-
ence on Human Factors in Computing Systems, 
Pittsburgh, USA, May 15-20, 1999. 

Fowler, M. (2003). UML Distilled: A Brief Guide 
to the Standard Object Modeling Language (Third 
Edition). Addison-Wesley.

Fowler, M., Beck, K., Brant, J., Opdyke, W., & 
Roberts, D. (1999). Refactoring: Improving the 
Design of Existing Code. Addison-Wesley.

Genova, G., Valiente, M. C., & Nubiola, J. (2005). 
A Semiotic Approach to UML Models. The First 
Workshop on Philosophical Foundations of In-
formation Systems Engineering (PHISE 2005), 
Porto, Portugal, June 13, 2005. 

Ghezzi, C., Jazayeri, M., & Mandrioli, D. (2003). 
Fundamentals of Software Engineering (Second 
Edition). Prentice-Hall.

Glinz, M. (2000). Problems and Deficiencies of 
UML as a Requirements Specification Language. 
The Tenth International Workshop on Software 
Specification and Design (IWSSD-10), San Diego, 
USA, November 5-7, 2000.

Green, T. R. G. (1989). Cognitive Dimensions 
of Notations. In: Sutcliffe, V. A., & Macaulay, 
L. (Eds.). People and Computers. Cambridge 
University Press, 443-460.

Gruber, T. R. (1993). Toward Principles for the De-
sign of Ontologies Used for Knowledge Sharing. 
In: Formal Ontology in Conceptual Analysis and 
Knowledge Representation. Kluwer Academic 
Publishers.

Halpin, T. A., & Bloesch, A. (1998). A Compari-
son of UML and ORM for Data Modeling. Third 
International Workshop on Evaluation of Mod-
eling Methods in Systems Analysis and Design 
(EMMSAD 1998), Pisa, Italy, June 8-9, 1998.

Highsmith, J. (2002). Agile Software Development 
Ecosystems. Addison-Wesley.

IEEE-CS/ACM. (2004). Software Engineering 
2004: Curriculum Guidelines for Undergradu-
ate Degree Programs in Software Engineering 
(SE 2004). Institute of Electrical and Electronics 
Engineers Computer Society (IEEE-CS)/Associa-
tion for Computing Machinery (ACM) Steering 
Committee. August 23, 2004.



���  

A Framework for Understanding and Addressing the Semiotic Quality of Use Case Models

Jacobson, I. (2003). Use Cases: Yesterday, Today, 
and Tomorrow. IBM developerWorks, November 
20, 2003.

Jacobson, I., Booch, G., & Rumbaugh, J. (1999). 
The Unified Software Development Process. 
Addison-Wesley.

Jacobson, I., Christerson, M., Jonsson, P., & 
Övergaard, G. (1992). Object-Oriented Software 
Engineering: A Use Case Driven Approach. Ad-
dison-Wesley.

Jacobson, I., & Ng, P.-W. (2005). Aspect-Ori-
ented Software Development with Use Cases. 
Addison-Wesley.

Kamthan, P. (2004). A Framework for Addressing 
the Quality of UML Artifacts. Studies in Com-
munication Sciences, 4(2), 85-114. 

Kamthan, P. (2005). Pair Modeling. The 2005 
Canadian University Software Engineering 
Conference (CUSEC 2005), Ottawa, Canada, 
January 14-16, 2005.

Kamthan, P. (2006). How Useful are Your UML 
Models? The 2006 Canadian University Software 
Engineering Conference (CUSEC 2006), Mon-
treal, Canada, January 19-21, 2006.

Kaner, C. (1995). Liability for Defective Docu-
mentation. Software QA Quarterly, 2(3). 

Keller, D. (1990). A Guide to Natural Naming. 
ACM SIGPLAN Notices, 25(5), 95-102.

Kerievsky, J. (2005) Refactoring to Patterns. 
Addison-Wesley.  

Kim, H., & Boldyreff, C. (2002). Developing Soft-
ware Metrics Applicable to UML Models. Sixth 
ECOOP Workshop on Quantitative Approaches in 
Object-Oriented Software Engineering (QAOOSE 
2002), Malaga, Spain, June 11, 2002. 

Kruchten, P. B. (1995). The 4+1 View Model of 
Architecture. IEEE Software, 12(6), 42-50. 

Kruchten, P. (2004). The Rational Unified Pro-
cess: An Introduction (Third Edition). Addison-
Wesley. 

Lange, C. F. J. (2006). Improving the Quality of 
UML Models in Practice. The Twenty Eighth 
International Conference on Software Engineer-
ing (ICSE 2006), Shanghai, China, May 20-28, 
2006. 

Lange, C. F. J., & Chaudron, M. R. V. (2006). 
Effects of Defects in UML Models: An Experi-
mental Investigation. The Twenty Eighth Interna-
tional Conference on Software Engineering (ICSE 
2006), Shanghai, China, May 20-28, 2006. 

Leffingwell, D., & Widrig, D. (2003). Managing 
Software Requirements: A Use Case Approach 
(Second Edition). Addison-Wesley.

Lindland, O. I., Sindre, G., & Sølvberg, A. (1994). 
Understanding Quality in Conceptual Modeling. 
IEEE Software, 11(2), 42-49.

McCoy, J. (2003). Use Case Quality Attributes. 
The Third Annual NASA Office of Safety and 
Mission Assurance Software Assurance Sym-
posium (OSMA SAS 2003), Morgantown, USA, 
July 30-August 1, 2003.

McQuillan, J. A., & Power, J. F. (2006). Some Ob-
servations on the Application of Software Metrics 
to UML Models. The First Workshop on Model 
Size Metrics, Genoa, Italy, October 3, 2006. 

Mendes, O., & Abran, A. (2004). Software Engi-
neering Ontology: A Development Methodology. 
Metrics News, 9(1), 64-71.

Moody, D. L. (2005). Theoretical and Practical 
Issues in Evaluating the Quality of Conceptual 
Models: Current State and Future Directions. Data 
and Knowledge Engineering, 55(3), 243-276. 

Nelson, H. J., & Monarchi, D. E. (2007). Ensur-
ing the Quality of Conceptual Representations. 
Software Quality Journal, 15(2), 213-233.

Nöth, W. (1990). Handbook of Semiotics. Indiana 
University Press.



  ���

A Framework for Understanding and Addressing the Semiotic Quality of Use Case Models

Övergaard, G., & Palmkvist, K. (2005). Use Cases: 
Patterns and Blueprints. Addison-Wesley.

Paulk, M. C., Weber, C. V., Curtis, B., & Chrissis, 
M. B. (1995). The Capability Maturity Model: 
Guidelines for Improving the Software Process. 
Addison-Wesley.

Petre, M. (1995). Why Looking Isn’t Always 
Seeing: Readership Skills and Graphical Pro-
gramming. Communications of the ACM, 38(6), 
33-44.

Phalp, K. T., Vincent, J., & Cox, K. (2007). As-
sessing the Quality in Use Case Descriptions. 
Software Quality Journal, 15(1), 69-97. 

Robillard, P. N., D’Astous, P., & Kruchten, P. 
(2003). Software Engineering Process with the 
UPEDU. Addison-Wesley. 

Rosenberg, D., & Scott, K. (1999). Use Case 
Driven Object Modeling with UML: A Practical 
Approach. Addison-Wesley.

Rosenberg, D., Stephens, M. & Collins-Cope, 
M. (2005). Agile Development with ICONIX 
Process. Apress.

Rui, K., & Butler, G. (2003). Refactoring Use Case 
Models: A Metamodel. The Twenty Sixth Aus-
tralasian Computer Science Conference (ACSC 
2003), February 4-7, 2003, Adelaide, Australia. 

Saeki, M. (1999). Reusing Use Case Descriptions 
for Requirements Specification: Towards Use Case 
Patterns. Sixth Asia-Pacific Software Engineering 
Conference (APSEC 1999), Takamatsu, Japan, 
December 7-10, 1999. 

Seidewitz, E. (2003). What Models Mean. IEEE 
Software, 20(5), 26-32. 

Shanks, G. (1999). Semiotic Approach to Under-
standing Representation in Information Systems. 
Information Systems Foundations Workshop, 
Sydney, Australia, September 29, 1999.

Simon, H. (1996). The Sciences of the Artificial 
(Third Edition). The MIT Press. 

Thelin, T., Runeson, P., & Wohlin, C. (2003). An 
Experimental Comparison of Usage-Based and 
Checklist-Based Reading. IEEE Transactions on 
Software Engineering, 29(8), 687-704.

Törner, F., Ivarsson, M, Pettersson, F., & Öhman. 
P. (2006). An Empirical Quality Assessment of 
Automotive Use Cases. The Fourteenth Interna-
tional Requirements Engineering Conference (RE 
2006), Minneapolis-St. Paul, USA. September 
11-15, 2006. 

Unhelkar, B. (2005). Verification and Validation 
for Quality of UML 2.0 Models. John Wiley and 
Sons.

Völter, M., Stahl, T., Bettin, J., Haase, A., & 
Helsen, S. (2006). Model-Driven Software Devel-
opment: Technology, Engineering, Management. 
John Wiley and Sons.  

Warmer, J., & Kleppe, A. (2003). The Object 
Constraint Language: Precise Modeling with 
UML (Second Edition). Addison-Wesley.

Weinberg, G. M. (1998). The Psychology of Com-
puter Programming (Silver Anniversary Edition). 
Dorset House.

Wiegers, K. (2002). Peer Reviews in Software: 
A Practical Guide. Addison-Wesley.

Winters, G. (2005). Use Case Terminology. IEEE 
Software, 22(2), 67. 

Wong, B. (2006). Different Views of Software 
Quality. In: Measuring Information Systems De-
livery Quality. E. Duggan & J. Reichgelt (Eds.). 
Idea Group, 55-88.

additional reading

The following publications introduce the notion of 
a pattern in the domain of urban architecture and 



��0  

A Framework for Understanding and Addressing the Semiotic Quality of Use Case Models

planning, and paved the way to the introduction 
of patterns in software engineering in general and 
use cases in particular:

Alexander, C. (1979). The Timeless Way of Build-
ing. Oxford University Press.

Alexander, C., Ishikawa, S., & Silverstein, M. 
(1977). A Pattern Language: Towns, Buildings, 
Construction. Oxford University Press.

The following publications motivate the need 
for formality in use case models using different 
formalisms	and	specification	languages:

Anderson, B. (2005). Formalism, Technique and 
Rigour in Use Case Modelling. Journal of Object 
Technology, 4(6), 15-28. 

Butler, G., Grogono, P., & Khendek, F. (1997). A Z 
Specification of Use Cases: A Preliminary Report. 
The Fourth Asia-Pacific Software Engineering 
and International Computer Science Conference 
(APSEC 1997/ICSC 1997), Clear Water Bay, Hong 
Kong, December 2-5, 1997. 

Riebisch, M., & Hübner, M. (2004). Refinement 
and Formalization of Semi-Formal Use Case 
Descriptions. The Second Workshop and Ses-
sion on Model-Based Development of Computer 
Based Systems: Appropriateness, Consistency 
and Integration of Models, Brno, Czech Republic, 
May 27, 2004. 

The following publication presents an empirical 
study of the effectiveness of use case guidelines 
aggregated from different sources:

Cox, K., Aurum, A., & Jeffery, R. (2004). An 
Experiment in Inspecting the Quality of Use Case 
Descriptions. Journal of Research and Practice in 
Information Technology, 36(4), 211-229.

The following publications motivate a systematic, 
“engineering-like” approach towards modeling, 
of which quality management is a part:

France, R., & Rumpe, B. (2003). Model Engineer-
ing. Journal on Software and System Modeling, 
2(2), 73-75.

Williams, C., Kaplan, M., Klinger, T., & Paradkar, 
A. (2005). Toward Engineered, Useful Use Cases. 
Journal of Object Technology, 4(6), 45-57.

The following publications are standards for qual-
ity in general and software in particular:

IEEE. (1998). IEEE Standard 1061-1998. IEEE 
Standard for a Software Quality Metrics Meth-
odology, IEEE Computer Society.

ISO. (1998). ISO 9241-11:1998. Ergonomic Re-
quirements for Office Work with Visual Display 
Terminals Part 11: Guidance on Usability. Interna-
tional Organization for Standardization (ISO).

ISO. (2001). ISO/IEC 9126-1:2001. Software 
Engineering -- Product Quality -- Part 1: Quality 
Model. International Organization for Standard-
ization (ISO). 

The following publication presents the genesis of 
the concept of a use case in both a rigorous and 
a practical setting:

Jacobson, I. (1985). Concepts for Modeling Large 
Real Time Systems. Ph.D. Thesis, The Royal 
Institute of Technology, Stockholm, Sweden. 

The following publications take a UML-based 
use case driven approach towards modeling a 
software system and carrying it throughout the 
development process:



Section IV
QA for MDSD 

in Specific Domains

This	final	section	presents	several	chapters	on	using	quality	assurance	 techniques	 for	model-driven	
development	in	specific	domains.	Most	pa-pers	are	devoted	to	the	domain	of	embedded	systems	(i.e.,	
systems	that	are	composed	of	hardware	and	software)	and	report	about	experience	collected	in	specific	
industrial environments. 



���  

Chapter XIV
Assuring Maintainability in
Model-Driven Development

of Embedded Systems
Stefan Wagner

Technische Universität München, Germany

Florian Deissenboeck
Technische Universität München, Germany

Stefan Teuchert
Durchstreichen, MAN Nutzfahrzeuge AG, Germany

Jean-François Girard
Durchstreichen, MAN Nutzfahrzeuge AG, Germany

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

abStract

In model-driven software development as much as in classical code-driven development maintenance 
costs make up the bulk of the total life cycle costs of a software system. However, as development meth-
ods in MDSD differ from classical methods, assuring the maintainability of systems built with MDSD 
requires companies to adjust their quality assurance to work with the new paradigm and the novel type 
of development artefacts. As the automotive industry has already applied model-driven approaches for 
some	time	(usually	in	the	form	of	Matlab/Simulink)	it	proves	to	be	a	fertile	ground	to	advance	assurance	
methods for the maintainability of model-based systems. In this chapter we describe a two-dimensional 
quality	metamodel	and	present	an	instance	that	defines	maintainability	for	MDSD	with	Matlab/Simulink 
and TargetLink. We exemplify how such a model serves as the basis of all quality assurance activities and 
report on experiences made in an industrial case study with one of the leading international providers 
of commercial vehicles and transport solutions.



  ���

Assuring Maintainability in Model-Driven Development of Embedded Systems

introduction

Maintenance costs constitute the major part of the 
total life cycle costs of a software system (Lientz, 
Bennet, Swanson, & Burton, 1980; Boehm, 1981; 
Erlikh, 2000). Besides organisational issues such 
as knowledge management and labour turnover, 
the long-term maintenance costs are largely pre-
determined by various quality attributes of the 
software system itself, such as its comprehensi-
bility and modifiability.

In model-driven software development 
(MDSD) as much as in classical code-driven 
development organisations need methods and 
processes to continuously monitor these quality 
attributes to ensure the maintainability of software 
systems. However, as development methods in 
MDSD differ from classical methods, assuring 
the maintainability of systems built with MDSD 
requires companies to adjust their quality assur-
ance to work with the new paradigm and the novel 
type of development artefacts.

In the development of embedded systems in 
general and automotive systems in particular, 
model-driven approaches become more and more 
common. Up to 80% of the production code de-
ployed on embedded control units today is gener-
ated from models specified using domain-specific 
formalisms (Beine, Otterbach, & Jungmann, 
2004). Several major companies develop software 
with model-based tools like Matlab/Simulink and 
TargetLink. As these technologies enabled compa-
nies to apply model-based software development 
already some time ago, this field proves to be a 
fertile ground to advance assurance methods for 
the maintainability of model-based systems.

Although model-driven architecture (MDA) is 
often proposed to ease the maintenance of systems, 
maintainability is also an issue in MDSD (Seifert, 
Beneken, & Baehr, 2004). The MDA approach is 
mainly concerned with technology - especially 
platform – change. The problems connected with 
changing the underlying technologies are simpli-
fied by layering models that abstract from such 

technological details. However, as also stated in 
(Seifert et al., 2004) portability and hence chang-
ing the technology is only one of many challenges 
in maintenance. Therefore, the other issues need 
also to be dealt with in MDSD.

In this chapter we give a short introduction 
on model-based approaches, especially in the 
field of embedded systems development, and 
describe how the maintainability of such models 
can be assured. We introduce a unique quality 
metamodel that enables us to rigorously define 
maintainability and present a model instance 
that has been developed in an industrial case 
study with MAN Nutzfahrzeuge, a supplier of 
commercial vehicles and transport systems. 
We illustrate how such a model can be used as 
versatile basis for maintainability-related quality 
assurance techniques. These techniques include 
manual activities like model reviews as well as 
automated quality assessments like static model 
analyses. We conclude by highlighting the dif-
ferences between quality assurance for MDSD 
and classical development.

eMbedded SySteMS 
developMent with Matlab/
SiMulink/targetlink

We investigate a slightly different flavour of 
MDSD than the MDA approach proposed by 
the OMG. In embedded systems development 
model-based tools such as Rhapsody, ASCET or 
Matlab/Simulink are commonly used. However, 
there is no explicit need to have different types 
of models on different levels and the modelling 
language is often not UML. Nevertheless, many 
characteristics are similar and quality-related 
results can easily be transferred to an MDA 
setting.

Matlab/Simulink is a tool commonly used in 
the automotive industry. It constitutes a repre-
sentative example for a model-based tool-chain 
in embedded systems development. The original 



���  

Assuring Maintainability in Model-Driven Development of Embedded Systems

Simulink has its focus on continuous control en-
gineering. Its counterpart Stateflow is a dialect of 
statecharts that is used to model the event-driven 
parts of a system. Fig. 1 shows example screen-
shots of the Simulink and Stateflow modelling 
environment.

The Simulink environment already allows 
simulating the model in order to validate it. In 
conjunction with a code generator such as the 
Embedded Coder from MathWorks, it enables the 
complete and automatic transformation of models 
to runnable code. TargetLink from dSpace offers 
a similar environment to Simulink, but addition-
ally provides different attributes to better control 
its code generator. Both of these environments 
are commonly used in the embedded systems 
domain to transform models into runnable code. 
In our case study, we present an example using 
TargetLink.

Maintenance and 
Maintainability

Maintenance
        

Since the early 1980ies it has been known that 
the bulk of the life cycle costs (50%-90%) for 
software systems is not consumed by the devel-
opment of new software but by the maintenance 

of existing software (Lientz et al., 1980; Boehm, 
1981; Erlikh, 2000). However, it is important to 
note that less than 20% of the efforts are devoted 
to fixing bugs. 18% are used for adapting systems 
to new operating environments and about 65% for 
the implementation of new requirements (Lientz 
et al., 1980; Nosek & Palvia, 1990). These figures 
show that software maintenance is not mainly 
concerned with maintaining the status quo of a 
software system but creates new business value by 
adding new functionality. Consequently, software 
maintenance should be rather seen as a chance 
and not as a problem (Glass, 1989).

Due to the economical importance of software 
maintenance, virtually any software dependent 
organisation has a vital interest in optimising its 
software maintenance productivity. In addition 
to financial savings, for many organisations, the 
time needed to complete a software maintenance 
task largely determines their ability to adapt their 
business processes to changing market situa-
tions or to implement innovative products and 
services. There is some hope that model-driven 
software development approaches may help to 
improve maintenance productivity. However, 
studies of the factors that influence maintenance 
productivity show that the technical issues (e. g. 
the applied development paradigm) have a limited 
impact on the overall productivity in comparison 
to organisational issues like personnel turnover 

Figure	1.	Simulink	and	Stateflow	examples



  ���

Assuring Maintainability in Model-Driven Development of Embedded Systems

(Lientz et al., 1980). Therefore, we do not regard 
model-driven software development itself as a 
key to high maintenance productivity. We rather 
assume that the key factors for maintenance pro-
ductivity for classical code-driven development 
apply for model-driven development in the same 
or a similar form. Likewise, we assume that prob-
lems like code decay (Parnas, 1994; Eick, Graves, 
Karr, Marron, & Mockus, 2001; Gurp & Bosch, 
2002) or cloning (Lague, Proulx, Mayrand, Merlo, 
& Hudepohl, 1997), that are known to hamper 
maintenance productivity, do affect the model-
based development approach, too. In fact, due to 
the lack of advanced tools for reengineering ac-
tivities like refactoring (Dobrzanski & Kuzniarz, 
2006), maintenance of software models may, at 
the moment, prove to be more demanding than 
the maintenance of classic code.

Maintainability

Next to non-technical issues like personnel turn-
over or the quality of maintenance processes, 
properties of software product itself are known 
to influence the maintenance productivity. These 
properties are usually subsumed as quality or, 
more specifically, maintainability. Researchers 
and practitioners alike have spent tremendous 
efforts to define, improve and assess the main-
tainability of software systems.

However, these efforts have not led to a com-
prehensive and commonly accepted definition 
of maintainability yet (Deissenboeck, Wagner, 
Pizka, Teuchert, & Girard, 2007). In fact, every 
software organisation of significant size seems 
to have its own definition of maintainability. For 
model-based development the situation appears 
to be even worse as many approaches to assess 
and improve maintainability were designed with 
a strong focus on code-based development. Al-
though their core ideas are applicable for models, 
too, their concrete instances need to be adapted 
accordingly. Moreover, different organisations 
use different approaches for the definition and 

evaluation of maintainability. Typical candidates 
are guidelines-based approaches, metrics-based 
approaches and quality models.

guidelineS

A commonly applied practice are guidelines that 
state what developers should do and what they 
should avoid in order to improve the quality of soft-
ware artefacts. The MAAB guideline (MAAB, 
2001) is an example of a quality guideline for 
model-based development with Matlab/Simulink. 
MISRA1 and dSpace (dSpace, 2006) provide 
additional examples of guidelines for Simulink, 
Stateflow and TargetLink.

Unfortunately, such guidelines typically do 
not achieve the desired effect as developers often 
read them once, tuck them away at the bottom of 
a drawer and follow them in a sporadic manner 
only. According to our experience (Broy et al., 
2006), this is often due to the fact that guidelines 
fail to motivate the required practices or provide 
very generic explanations, e. g. “Respecting the 
guideline ensures readable models” in (MAAB, 
2001). In addition to this, guidelines are often not 
followed simply because it is not checked if they 
are followed or not. This is all the more unfor-
tunate as for some guidelines rules compliance 
could be assessed automatically.

MetricS-baSed approacheS 

Several groups proposed metrics-based methods 
to measure attributes of software systems which 
are believed to affect maintenance, e. g. (Berns, 
1984; Coleman, Ash, Lowther, & Oman, 1994). 
Typically, these methods use a set of well-known 
metrics like lines of code, Halstead volume (Hal-
stead, 1977), or McCabe’s Cyclomatic Complexity 
(McCabe, 1976) and combine them into a single 
value, called maintainability index by means of 
statistically determined weights. With the excep-



���  

Assuring Maintainability in Model-Driven Development of Embedded Systems

tion of (Genero, Piattini, Manso, & Cantone, 2003) 
and (Kiewkanya, Jindasawat, & Muenchaisri, 
2004) there is currently little work on maintain-
ability metrics for models.

Although such indices may indeed often ex-
pose a correlation with subjective impressions 
and economic facts of a software system, they 
still suffer from serious shortcomings. First, 
they do not explain how the measured system 
properties influence the system’s maintainability. 
This makes it hard to convey their findings to 
the developers. Second, they focus on properties 
which can be measured automatically by analys-
ing source code and thereby limit themselves to 
syntactic aspects. Unfortunately, many essential 
quality issues, such as the usage of appropriate 
data structures and meaningful documentation, 
are semantic in nature and can inherently not be 
analysed automatically.

Quality Modelling

A promising approach developed for software 
quality in general are quality models which aim 
at describing complex quality criteria by breaking 
them down into more manageable sub-criteria. 
Such models are designed in a tree-like fashion 
with abstract quality attributes like maintain-
ability or reliability at the top and more concrete 
ones like analysability or changeability on lower 
levels. The leaf factors are ideally detailed enough 
to be assessed with software metrics. This method 
is frequently called the decompositional or Fac-
tor-Criteria-Metric (FCM) approach and was 
first used by McCall (McCall & Walters, 1977) 
and Boehm (Boehm et al., 1978). More recent 
approaches for code-driven development are 
(P. Oman & Hagemeister, 1992; Dromey, 1995; 
Marinescu & Ratiu, 2004; ISO, 2003). A quality 
model for UML-based software development 
was presented in (Lange & Chaudron, 2005). A 
model for the assessment of the maintainabil-
ity of communication protocols based on their 

formal specifications is discussed in (Huang & 
Lai, 2003).

Unfortunately, these approaches have failed to 
establish a broadly acceptable basis for quality 
assessments so far. We believe this is due to the 
lack of a clearly defined decomposition criterion 
that leads to a “somewhat arbitrary selection of 
characteristics and sub-characteristics” (Kitchen-
ham, Linkman, Pasquini, & Nanni, 1997; Kitch-
enham & Pfleeger, 1996). Moreover, we see their 
fixed number of model levels as a problem. For 
example, FCM’s 3 level structure is inadequate. 
High level goals like maintainability cannot be 
broken down into assessable properties in only 
two steps.

diScuSSion

There is an abundance of further highly valuable 
work on software quality in general and main-
tainability in particular that we do not explicitly 
mention here, as it is either out-of-scope or does 
not fundamentally differ from the work already 
mentioned. Overall, this is and has been a very 
active field of research. However, as we show in 
(Deissenboeck, Wagner, Pizka, Teuchert, & Gi-
rard, 2007), most existing approaches to assess 
and improve software maintainability suffer from 
a number of shortcomings. Most importantly, none 
of the previous approaches explicitly explains the 
influence of system properties (e. g. modularity) 
on maintenance activities (e. g. impact analysis). 
As the maintenance activities are one of the main 
cost factors in software maintenance, previous 
approaches are not directly capable of explaining 
how system properties influence the maintenance 
effort.

Besides this, most quality models contain a 
number of criteria that are too coarse-grained 
to be assessed directly and fail to give a detailed 
account of the impact that specific criteria (or 
metrics) have on software maintenance. Moreover, 
existing models often lack a consistent criterion 



  ���

Assuring Maintainability in Model-Driven Development of Embedded Systems

of decomposition and thereby exhibit inhomoge-
neous sets of quality criteria. Most times, quality 
models are expressed in prose and graphics only. 
They accompany the development process in the 
form of documents but are not operationalised as 
an integral artefact that is tightly coupled with the 
quality assurance activities.

To address these shortcomings we developed 
the two-dimensional quality metamodel Qmm 
that explicitly models maintenance activities. In 
this chapter the quality model is used as a frame-
work for structuring the diverse quality criteria 
presented in the next section.

Quality criteria

As we discussed above, managing the maintain-
ability of a software system is a difficult task. 
Although model-driven software development 
eases the problem because the used models are 
typically more abstract - and hence easier to com-
prehend - than current source code, the general 
issue is just lifted on a higher level. The models 
still need to be understood and changed independ-
ently of the level of abstraction used. Hence, it 
is necessary to have a set of quality criteria for 
the maintainability of models. This set needs to 
be used to assure the quality of the models. Un-
fortunately, this has not been investigated in the 
detail it deserves. Mainly guideline documents for 
various modelling languages have been created. 
We developed a comprehensive set of quality 
criteria for the maintainability of Stateflow and 
Simulink/TargetLink models based on various 
sources. These criteria are encoded in detail in 
a quality model but we give an overview of our 
quality criteria first. We categorise the criteria 
in three parts:

• Refinement of general criteria, e. g. pro-
gram redundancy (Baxter, Yahin, Moura, 
Sant’Anna, & Bier, 1998), to match the 
MDSD approach.

• Criteria that deal with MDSD-only topics 
like presentational issues, e. g. model layout 
and model colouring.

• Criteria that define the legal subsets of Simu-
link/TargetLink/Stateflow that are reliably 
supported by C-code generators.

general criteria

There is a plethora of maintainability criteria 
for code that is directly applicable to model-
driven development. For example, dead code is 
considered a problem for maintaining a system. 
It extends the time needed to read the code and 
hampers the understanding of the system. This 
can obviously be directly transferred to models. It 
is possible in Simulink/TargetLink and Stateflow 
to create blocks, states or variables that are never 
executed or used. These dead model elements 
result in similar problems as dead code.

Another example is the classical observation: 
“Goto statement considered harmful” (Dijkstra, 
1968). It is also valid in the case of Simulink/
TargetLink where From and Goto blocks allow 
to change the control flow. Similarly, when using 
these blocks, the control flow is more complex and 
hence the model is more difficult to understand.

Moreover, in code-driven development, there 
usually are constraints on the size and scope of 
procedures, classes or methods. For example, it is 
often required that a class should not have more 
than a certain amount of methods in order to be 
comprehensible. Although we believe too rigid 
constraints to this end are critical, a guideline 
for the developers is still useful. This is also the 
case for model-driven development. Despite the 
fact that models are more abstract than code - and 
hence are easier to comprehend - their size and 
scope needs to be limited. It has often been expe-
rienced in practice that models grow to a size that 
is not manageable any more. UML class diagrams 
with hundreds of classes or state machines with 
dozens of control states are not comprehensible. 
Hence, we have quality criteria w.r.t. various size 



���  

Assuring Maintainability in Model-Driven Development of Embedded Systems

aspects of the Simulink/TargetLink and Stateflow 
models. For example, the maximum number of 
states in a Stateflow model or the maximum num-
ber of blocks in a Simulink/TargetLink model are 
defined. This should be based on the experiences 
of the developers.

Another general criterion is the complete 
and consistent documentation of the design and 
implementation. This equally holds for models as 
well. Therefore, it is desired that for Simulink/
TargetLink and Stateflow models, the interfaces 
are well documented. Especially the parameters 
need to be explained in detail. This allows a quick 
understanding of the model and the interplay of 
different models.

MdSd

One aspect that is special for model-driven de-
velopment are consistent display settings. Also in 
code-driven development the correct displaying 
of the code is important. However, in model-
driven development, this is much more complex, 
especially when graphical models are used. Then 
the zoom factor makes a large difference w.r.t. 
the readability of the model. Also other settings 
are important such as whether specific tool bars 
or status bars are activated. They can hide parts 
of the model that are overlooked when making 
changes.

In graphical models, the colouring is a further 
very important issue. Having colours can improve 
the comprehension of models by “typing” different 
blocks with different colours. However, this needs 
to be done consistently. Otherwise, the colours 
will confuse more than they help. Similarly, the 
alignment and arrangement of the elements on 
the screen has huge effects. We know from (tex-
tual) code that indentation is very important for 
a quick comprehension (P. W. Oman & Cook, 
1990). Graphical models increase the complexity 
by introducing a second dimension that the model 
elements can be arranged in. Moreover, there is a 
third dimension because often elements can be in 
front of other elements and hence hide them. This 

way, important annotations can be overlooked. 
Also the crossing of lines - no matter whether 
they are Simulink/TargetLink signals, Stateflow 
transitions or associations in UML class diagrams 
- hampers the readability of the models.

The close relationship between Stateflow and 
the UML statecharts allows reusing empirical 
results. A study on hierarchical states in UML stat-
echarts (Cruz-Lemus, Genero, Manso, & Piattini, 
2005), for example, showed that the use of hierar-
chies improves the efficiency of understanding the 
model in case the reader has a certain amount of 
experience. Hence, it is desired to structure states 
in Stateflow models with appropriate substates. 
Such a simple state-space decomposition is not 
possible in code-driven development.

code generation

Finally, conformity to certain standards can be an 
issue. This is especially the case when the models 
will be used for code generation. For Simulink 
and Stateflow models, there are several tools 
available that generate production-ready C code 
for embedded systems. Hence, it is also a quality 
criterion to adhere to the standards given by the 
code generator. Under the hood of Simulink and 
Stateflow, there is the huge functionality provided 
by Matlab which is a general mathematical tool. It 
is possible to use this functionality inside Simulink 
in various ways. For example, one can use Mat-
lab functions inside blocks or complex algebraic 
expressions in state transitions of Stateflow. It is 
obvious that this introduces a large complexity for 
the code generators. Hence, this is usually forbid-
den. Other issues are specific blocks in Simulink 
that are not supported or that specific reserved 
names, e. g. exp, are not allowed to be used.

the Quality MetaModel

These quality criteria are too large and complex 
to simply document them in prose. Hence they 
demand a systematic framework that does not 



  ���

Assuring Maintainability in Model-Driven Development of Embedded Systems

only allow describing the single criteria in detail 
but also enables one to reason about their inter-
dependencies. For this purpose we use our own 
activity-based quality metamodel that addresses 
the problems encountered with existing models.

The initial version of the model was developed 
in the context of a commercial project in the field 
of telecommunication (Broy et al., 2006). The 
extended version of the model discussed here was 
presented in (Deissenboeck et al., 2007) where 
more details about the metamodel can be found. 
The following sections explain the basic concepts 
of our model and discuss the differences to clas-
sical hierarchical models.

hierarchical Models

The idea of explicitly modelling maintenance 
activities was based on our experiences with 
building large hierarchical quality models. With 
growing model size it became harder and harder 
to maintain a consistent model that adequately 
describes the interdependencies between the 
various quality criteria. A thorough analysis of 
this phenomenon revealed that our model and 
indeed most previous models mixed up nodes of 
two very different kinds: maintenance activities 
and characteristics of the system to maintain. An 
example for this problem is given in Fig. 2 which 
shows the maintainability branch of Boehm’s 

Software Quality Characteristics Tree (Boehm 
et al., 1978).

Though (substantiated) adjectives are used as 
descriptions, the nodes in the gray boxes refer to 
activities whereas the uncoloured nodes describe 
system characteristics (albeit very general ones). 
So the model should rather read as: When we 
maintain a system we need to modify it and this 
activity of modification is (in some way) influenced 
by the structuredness of the system. While this 
difference may not look important at first sight, 
we claim that this mixture of activities and char-
acteristics is at the root of most problems encoun-
tered with classical models. The semantics of the 
edges of the tree is unclear or at least ambiguous 
because of this mixture. And since the edges do 
not have a clear meaning they neither indicate a 
sound explanation for the relation of two nodes 
nor can they be used to aggregate values!

As the actual maintenance efforts strongly 
depend on both, the type of system and the kind 
of maintenance activity, it should be obvious that 
the need to distinguish between activities and 
characteristics becomes not only clear but impera-
tive. This can be illustrated by the example of two 
development organisations where company A is 
responsible for adding functionality to a system 
while company B’s task is merely fixing bugs of 
the same system just before its phase-out. One can 
imagine that the success of company A depends 

Figure 2. Software quality tree



��0  

Assuring Maintainability in Model-Driven Development of Embedded Systems

on different quality criteria (e. g. architectural 
characteristics) than company B’s (e. g. a well-kept 
bug-tracking system). While both organisations 
will pay attention to some common attributes such 
as documentation, A and B would and should rate 
the maintainability of S in quite different ways 
because they are involved in fundamentally dif-
ferent activities.

an activity-based Model for 
Maintainability

The consequent separation of activities and facts 
leads to a new 2-dimensional quality model that 
regards activities and facts as first-class citizens 
for modelling maintainability. The set of relevant 
activities depends on the particular development 
and maintenance process of the organisation that 
uses the quality model, e. g. the IEEE 1219 standard 
maintenance process (IEEE, 1998).

The 2nd dimension of the model, the facts about 
the product under maintenance, are modelled 
similar to an FCM model but without activity-
based nodes like augmentability. We follow the 
FCM approach in the product tree by breaking 
down high level facts into detailed, tangible ones 
which we call atomic facts. An atomic fact is a 

fact that can or must be assessed without further 
decomposition either because its assessment is 
obvious or there is no known decomposition.

To achieve or measure maintainability in a 
given project setting we now need to establish the 
interrelation between facts and activities. Because 
of the tree-like structures of activities and facts 
it is sufficient to link atomic facts with atomic 
activities. This relationship is best expressed by 
a matrix as depicted in the simplified Fig. 3.

The matrix points out what activities are af-
fected by which facts and allows to aggregate 
results from the atomic level onto higher levels in 
both trees because of the unambiguous semantics 
of the edges. So, one can determine that History 
Junctions in Stateflow diagrams have an impact on 
Debugging and the Impact Analysis as they make 
statecharts harder to comprehend. Please note that 
this also applies for UML state machines. The 
names chosen for Simulink/TargetLink blocks 
(or UML model elements) have an impact on the 
modelling activity as they make the model more 
or less readable. But they also influence the code 
generation in case reserved names where chosen 
that make the generated code non-compilable.

To comprehensively describe the maintenance 
efforts of a system, one needs to evaluate not only 

Figure 3. Example maintainability matrix



  ���

Assuring Maintainability in Model-Driven Development of Embedded Systems

the system itself. It is well known, that factors like 
the capability of the team, established software 
processes or the existence of tools have a major 
impact on maintenance costs. Our model is de-
signed to include such factors by extending the 
scope of the product tree by making it describe not 
only the system itself but the whole development 
situation (Broy et al., 2006; Deissenboeck et al., 
2007). For brevity’s sake, however, in the following 
we focus on the system’s characteristics.

The example depicted here uses a simple 
Boolean relation between facts and activities and 
therefore merely expresses that there is a relation 
between a fact and an activity. To express differ-
ent directions and strengths of the relations, more 
elaborate scales can be used here.

attributes and impacts

To be able to express more elaborate impact 
relations, one needs to create a more fine-granu-
lar decomposition of the product tree. It is, for 
example, not enough to express that the model 
documentation influences the impact analysis. 
We rather want to be able to pinpoint the proper-
ties of the documentation, e. g. its completeness, 
conciseness or redundancy, that do have a positive 
or negative influence on the activity.

We found that this decomposition inevitably 
leads to a high number of repetitions as the same 
properties apply to different kind of artefacts. For 
example, consistency is obviously required for the 
names used in models as well as for the layout of 
the models themselves.

Therefore, our model further decomposes 
facts into entities and attributes where entities 
“are the objects we observe in the real world” and 
attributes are “the properties that an entity pos-
sesses” (Kitchenham, Pfleeger, & Fenton, 1995). 
Hence, entities describe a plain decomposition of 
the product. Examples are documentation, models, 
variables or states. Entities are associated with one 
or more attributes like consistency, redundancy, 
completeness or superfluousness.

So, the facts defined in the product tree are 
actually tuples of entities and attributes: [Entity 
e | ATTRIBUTE A]. They describe properties of the 
product that are desired or undesired in the context 
of maintainability. Examples are [Identifiers | 
CONSISTENCY], [Documentation | COMPLETE-
NESS] or [Unsupported Blocks | EXISTENCE] 
that simply describes the presence or absence of 
Simulink blocks that are not supported by the 
code generator.

Note that the separation of entities and attri-
butes does not only reduce redundancy but allows 
for a clean decomposition of the product. This 
can be illustrated by an example of the quality 
taxonomy defined in (P. Oman & Hagemeister, 
1992): System Complexity. As System Complexity 
appears too coarse-grained to be assessed directly, 
it is desirable to further decompose this element. 
However, the decomposition is difficult as the 
decomposition criterion is not clearly defined, 
i. e. it is not clear what a subelement of System 
Complexity is. A separation of the entity and the 
attribute as in [System | COMPLEXITY] allows for 
a cleaner decomposition as entities themselves are 
not valued and can be broken up in a straightfor-
ward manner, e. g. in [Subsystem | COMPLEXITY] 
or [Class | COMPLEXITY].

iMpactS

Using the notation introduced for facts we can 
elegantly express the impact a fact has on an 
activity with a three-valued scale where “+” ex-
presses a positive and “-” a negative impact (the 
non-impact is usually not made explicit):

[Entity e | ATTRIBUTE A] → −+ /  [Activity a]

Examples are [Unsupported Blocks | EXIS-
TENCE] →−  [Code Generation], that describes 
that the existence of an unsupported Simulink 
block has a negative influence on the activity 
code generation. [Model Layout | CONSISTENCY] 



���  

Assuring Maintainability in Model-Driven Development of Embedded Systems

→+  [Impact Analysis] describes that a consis-
tent model layout has a positive impact on the 
impact analysis activity. [State | SUPERFLUOUS-
NESS] →−  [Model Reading] describes that an 
unreachable state in a Stateflow chart hampers the 
reading of the model. Like most of the impacts 
discussed here, this can easily be transferred to 
the MDA-world where we would expect a state 
machine to have no unnecessary states, too. To 
provide justifications that explain the rationale 
behind these guidelines, in our model each 
impact is additionally equipped with a detailed 
description.

aSSeSSMent

Obviously, the facts are the elements of the model 
that need to be assessed in order to determine 
the maintainability (or maintenance effort) of a 
product. Since many important facts are seman-
tic in nature and inherently not assessable in an 
automatic manner, we carefully distinguish three 
fact categories:

1. Facts that can be assessed or measured with 
a tool. An example is an automated check 
for unused output ports of a Simulink block 
([Simulink | COMPLETENESS]). A typical 
example in the MDA-context is the check 
for multiple inheritance in UML class dia-
grams if the implementation language does 
not support multiple inheritance.

2. Facts that require manual activities; e. g. 
reviews. An example is a review activity 
that checks if Stateflow is actually used for 
state oriented parts of the system and not 
as a workaround ([Stateflow Chart | AP-
PROPRIATENESS]). An example for MDA is 
the check for conformance to well-known 
object-oriented design patterns (Gamma, 
Helm, Johnson, & Vlissides, 1995) in UML 
class diagrams.

3. Facts that can be manually assessed from 
automated proposition. An example is the 
layout of Simulink/TargetLink models that 
should follow some basic rules, e. g. data 
flow is from left to right. Here a tool can help 
to find suspicious parts of the model but the 
final decision is left to the user ([Layout | 
CONSISTENCY]). Similar properties can be 
analysed for UML class diagrams.

the MetaModel

Fig. 4 shows a UML class diagram representing 
a simplified form of the quality metamodel with 
the elements discussed above: entities, attributes, 
facts, activities and impacts. Please note, that the 
figure shows only the core elements and omits 
details like the explanation texts that are associ-
ated with each element. Moreover, it does not 
show that the model features a generalisation 
mechanism that allows attribute inheritance. It 
is, for example, possible to specify an attribute 
SUPERFLUOUSNESS for the entity Component 
and inherit it to the entity Class.

tool Support

Comprehensive maintainability models typi-
cally contain several hundred model elements. 
For example, the model that was developed for a 
commercial project in field of telecommunication 
(Broy et al., 2006) has a total of 413 model ele-
ments consisting of 160 facts (142 entities and 16 
attributes), 27 activities and 226 impacts. Hence, 
quality models demand a rich tool set for their ef-
ficient creation, management and application just 
like other large models, e. g. UML class diagrams. 
Due to the fact that our quality models are based 
on an explicit metamodel we are able to provide 
a model editor that does not only allow the initial 
development of quality models but also supports 
other common tasks like browsing, persistence, 
versioning and refactoring2.



  ���

Assuring Maintainability in Model-Driven Development of Embedded Systems

One of the most powerful features of the model 
editor is the automatic generation of guideline 
documents from the quality model. This enables 
us to transfer the abstract definition of quality 
stored in the model to a format developers are 
familiar with. However, unlike classic, hand-
written guidelines the automatically generated 
ones are guaranteed to be synchronised with 
the quality model that explicitly captures the 
understanding of quality within a project or a 
company. Guideline documents can be tailored 
to specific needs by defining selected views on 
the model. For example, a guideline document 
could be specifically generated to be used during 
documentation review sessions.

Quality aSSurance baSed on 
a Quality Model

In contrast to other quality models that are 
expressed in terms of prose and graphics only, 
our maintainability model is truly integrated in 
the software development as basis of all quality 
assurance activities. As Fig. 5 shows, the model 
can be seen as project- or company-wide quality 
knowledge base that centrally stores the defini-
tion of quality in a given context. Of course, an 
experienced quality engineer is still needed for 

designing the quality models and enforcing them 
with manual review activities. However, he can 
rely on a single definition of quality and is sup-
ported by the automatic generation of guidelines. 
Moreover, quality assessment tools like static 
analysers that automatically assess artefacts can 
be directly linked to the quality model and do 
not operate isolated from the centrally stored 
definition of quality. Consequently, the quality 
profiles generated by them are tailored to match 
the quality requirements defined in the model. 
We refer to this approach as model-based quality 
controlling.

The quality model acts as a central knowledge 
base of the quality-related relationships in the 
product and process. We document in a struc-
tured way how properties of the system, team, 
and organisation influence different activities. 
Therefore, it is the perfect basis for quality as-
surance (QA). It can be used in several ways for 
constructive as well as analytical QA.

constructive Qa 

The knowledge documented in the quality model 
helps all developers to get a common understand-
ing of the domain, techniques, and tools and 
thereby avoids misunderstandings. Improvements 
of the quality model are part of a continuous learn-

Figure 4. The quality metamodel QMM



���  

Assuring Maintainability in Model-Driven Development of Embedded Systems

ing process for all developers. For example, by 
describing the properties of the system artefacts, 
a glossary or terminology is built and can be eas-
ily generated into a document. This glossary is a 
living artefact of the development process because 
it is not only paperwork but inside and part of a 
structured model. Hence, learning and improving 
the way developers work helps to avoid defects 
being introduced.

analytical Qa

The identified relationships in the quality model 
can also be used for analytical quality assurance. 
Because we aim with our quality model to break 
down the properties and attributes to a level 
where we can measure them, we are easily able 
to give concrete instructions in analytical QA. 
In particular, we are able to generate guidelines 
and checklists for reviews from the model. The 
properties and attributes are there and subsets can 
easily be selected and exported in different formats 
so that the developers and reviewers always have 
the appropriate guidelines at hand.

Moreover, we annotate the attributed proper-
ties in the model whether they are automatically, 
semi-automatically or only manually assessable. 

Hence, we can identify straight-forwardly qual-
ity aspects that can be analysed automatically. 
Thus, we are able to use all potential benefits 
from automation. Finally, more general analyses 
and predictions are possible based on the quality 
model. One reason to organise the properties and 
activities in a tree structure is to be able to aggre-
gate analyses to higher levels. This is important 
to get concise information about the quality of 
the system. However, we do not aggregate these 
measures into a single “maintainability metric” 
but analyse various aspects that reflect the multiple 
facets of maintainability.

caSe Study

environment

The MAN Nutzfahrzeuge Group is a German-
based international supplier of commercial ve-
hicles and transport systems, mainly trucks and 
busses. It has over 34,000 employees world-wide 
of which 150 work on electronics and software 
development. Hence, the focus is on embedded 
systems in the automotive domain. The organisa-
tion brought its development process to a high level 

Figure	5.	Model-based	quality	controlling



  ���

Assuring Maintainability in Model-Driven Development of Embedded Systems

of maturity by investing enough effort to redesign 
it according to best practices and safety critical 
system standards. The driving force behind this 
redesign was constantly focusing on how each 
activity contributes to the global reliability and 
effectivity. Most parts of the process are supported 
by an integrated data backbone developed on top 
of the eASEE framework from Vector Consult-
ing GmbH.

This backbone provides version control and 
configuration management support. With it, MAN 
follows a single source strategy: the development 
team enters information only once and refers to it 
in all the appropriate entities. To better assist the 
developer in their work, the backbone employs 
a metaphor close to the application domain. It 
represents the main domain entities (e. g., ECU, 
software, function, parameter, port, bus) as atomic 
elements explicitly. Their relations and descrip-
tions are captured in configurations that the user 
can build by drag and drop during the develop-
ment. A user requirement, for example, is first put 
under the ECU, it is then refined into one or more 
technical requirements that are first put under the 
software and later under the functions that will 
implement it. From this point on, the backbone 
offers full traceability: when modifying one of 
these requirements, the backbone can report where 
each requirement has been implemented and its 
complete context. This feature can be used for 
impact analysis: a project manager, for example, 
can analyse the impact of different changes in 
requirements and take the appropriate actions.

The backbone systematically exploits the 
single source strategy to generate consistent 
documents. Each domain entity like buses, ports 
and even signals are described only once and the 
more complex entities (functions, software or 
hardware) simply refer to them. When a function 
specification is generated, for example, the gen-
erator fetches the relevant information from the 
signals and ports to which it refers. Thus saving 
effort and reducing the error potential.

On top of this backbone, a complete model-
based development approach has been established 
using the tool chain of Matlab/Simulink and State-
flow as modelling and simulation environment 
and TargetLink of dSpace as C-code generator. 
The tool integration does not stop there: report 
generators, a hazard assessment tool, as well as 
different test tools are also seamlessly integrated 
in the environment.

We describe the application and adoption of 
our model to this concrete situation and the gen-
erated benefits. The study led to the adoption of 
the model and the generated guidelines into the 
MAN standard development process

experiences

In the case study, we adapted the maintainability 
model for the situation at MAN with a focus on 
the TargetLink and Stateflow parts. The model 
contains all the quality criteria relevant for that 
kind of MDSD described above. They are based 
on three types of sources: (1) existing guidelines 
for Simulink/TargetLink/Stateflow, (2) scientific 
studies about model-based development and (3) 
expert know-how of MAN’s engineers.

Specifically, our main source was a consoli-
dation of the four guidelines available for using 
TargetLink and Stateflow in the development of 
embedded systems: the MathWorks documen-
tation (MathWorks, 2006), the MAN-internal 
guideline, the guideline provided by dSpace 
(dSpace, 2006) and the guidelines published by 
the MathWorks Automotive Advisory Board 
(MAAB) (MAAB, 2001).

Because of space and confidentiality reasons, 
we are not able to fully describe the MAN-specific 
model here. However, we present examples that 
demonstrate how our approach works in the con-
text of MDSD. We start with a simple translation of 
the existing MAN guidelines for Stateflow models 
into the maintainability model. For example, the 
MAN guideline requires the current state of a 
Stateflow chart to be available as a measurable 



���  

Assuring Maintainability in Model-Driven Development of Embedded Systems

output. This simplifies testing of the model and 
improves the debugging process. In terms of the 
model this is expressed as [Stateflow Chart | AC-
CESSIBILITY] →+  [Debugging] and [Stateflow 
Chart | ACCESSIBILITY] →+  [Test].

We describe the ability to determine the current 
state with the attribute ACCESSIBILITY of the entity 
Stateflow Chart. The Stateflow chart contains all 
information about the actual statechart model. 
Note that we carefully distinguish between the 
chart and the diagram that describes the graphical 
representation. In the model the facts and impacts 
have additional fields that describe the relationship 
in more detail. These descriptions are included 
in generated guideline documents.

conSolidation of the 
terMinology

In the case study we found that building a com-
prehensive quality model has the beneficial side-
effect of creating a consistent terminology. By 
consolidating the various sources of guidelines, 
we discovered a very inconsistent terminology 
that hampers a quick understanding of the guide-
lines. Moreover, we found that even at MAN the 
terminology has not been completely fixed (e. 
g., synonyms were used). Fortunately, building a 
quality model automatically forces the modeller 
to give all entities explicit and consistent names. 
The entities of the facts tree of our maintainability 
model automatically define a consistent terminol-
ogy and thereby provide a glossary.

One of many examples is the term subsystem 
that is used in the Simulink documentation to 
describe Simulink’s central means of decompo-
sition. The dSpace guideline, however, uses the 
same term to refer to a TargetLink subsystem 
that is similar to a Simulink sub-system but has 
a number of additional constraints and properties 
defined by the C-code generator. MAN engineers 
on the other hand, usually refer to a TargetLink 
subsystem as TargetLink function or simply func-

tion. While building the maintainability model, 
this discrepancy was made explicit and could be 
resolved.

reSolution of
inconSiStencieS 

Furthermore, we are not only able to identify 
inconsistencies in the terminology but also in con-
tents. For the entity Implicit Event we found com-
pletely contradictory statements in the MathWorks 
documentation and the dSpace guidelines.

• MathWorks (MathWorks, 2006) “Implicit 
event broadcasts [...] and implicit conditions 
[...] make the diagram easy to read and the 
generated code more efficient.”

• dSpace (dSpace, 2006) “The usage of implicit 
events is therefore intransparent concerning 
potential side effects of variable assignments 
or the entering/exiting of states.”

Hence, MathWorks sees implicit events as 
improving the readability while dSpace calls them 
intransparent. This is a clear inconsistency. After 
discussing with the MAN engineers, we adopted 
the dSpace view.

revelation of oMiSSionS 

An important feature of the quality metamodel is 
that it supports inheritance. Its importance became 
obvious in the case study after modelling the MAN 
guidelines for TargetLink variables and Stateflow 
variables. We model them with the common parent 
entity Variable that has the attribute LOCALITY 
that expresses that variables must have the small-
est possible scope. As this attribute is inherited 
by both types of variables, we found that this 
important property is not expressed in the original 
guideline. Moreover, we see by modelling that 
there was an imbalance between the TargetLink 



  ���

Assuring Maintainability in Model-Driven Development of Embedded Systems

and Stateflow variables. Most of the guidelines 
related only to TargetLink variables. Hence, we 
transferred them to Stateflow as well.

usage of the Model

The quality modelling process resulted in a qual-
ity model with 87 new facts specific for Simu-
link and Stateflow. In the further case study, we 
concentrated on checklist generation and some 
preliminary automatic analyses. Those were 
chosen because they promised the highest im-
mediate pay-off.

checkliSt generation 

We see quality models as central knowledge 
bases w.r.t. quality issues in a project, company, 
or domain. This knowledge can and must be 
used to guide development activities as well as 
reviews. However, the model in its totality is too 
complex to be comprehended entirely. Hence, it 
cannot be used as a quick reference. Therefore, 
we use the tool support for the quality model to 
select subsets of the model and generate concise 
guidelines and checklists for specific purposes. 
These generated guidelines are able to completely 
replace the existing hand-written ones.

Automatic generation of guideline documents 
was perceived to be highly valuable as the docu-
ments could be structured to be read conveniently 
by novices as well as experts. Therefore, the 
documents feature a very compact checklist-style 
section with essential information only. This 
representation is favoured by experts who want 
to ensure that they comply with the guideline but 
do not need any further explanation. For novices 
the remainder of the document contains a hyper 
linked section providing additional detail. Au-
tomatic generation enables us to conveniently 
change the structure of all generated documents. 
More importantly, it ensures consistency within 

the document which would be error-prone in 
hand-written documents.

autoMatic analySeS 

As the model is aimed at breaking down facts to 
a level where they can be assessed and they are 
annotated with the degree of possible automation, 
it is straight-forward to implement automatic 
analyses. So far, we have not fully exploited the 
possibilities but we are able to show that several 
facts can be checked in Simulink/TargetLink and 
Stateflow models. For this, we wrote a parser for 
the proprietary text format used by Matlab to store 
the models. Using this parser we are able to deter-
mine basic size and complexity metrics of model 
elements like states, blocks, and so on. Moreover, 
we can use the parser to automatically identify 
model elements that are not supported by the C-
code generator. By integrating these analyses in 
our quality controlling toolkit conQAT3 (Deis-
senboeck, Pizka, & Seifert, 2005) we are able to 
create aggregated quality profiles and powerful 
visualisations of quality data. Alternatively, those 
checks could have been implemented directly in 
the Simulink Model Advisor. However, this would 
have prevented the easy integration into a toolkit 
like conQAT.

discussion

Our metamodel and the corresponding method 
for modelling maintainability proved to be ap-
plicable to model-driven software development in 
an industrial environment. Especially the model’s 
explicit illustration of impacts on activities was 
seen as beneficial as it provides a sound justifica-
tion for the quality rules expressed by the model. 
Moreover, the general method of modelling - that 
inherently includes structuring - improved the 
guidelines: although the initial MAN guideline 
included many important aspects, we still were 
able to reveal several omissions and inconsis-



���  

Assuring Maintainability in Model-Driven Development of Embedded Systems

tencies. Building the model, similar to other 
model building activities in software engineering 
(Pretschner et al., 2005), revealed these problems 
and allowed to solve them.

Another important result is that the maintain-
ability model contains a consolidated terminol-
ogy. By combining several available guidelines, 
we could incorporate the quality knowledge 
contained in them and form a single terminol-
ogy. We found terms used consistently as well as 
inconsistent terminology. This terminology and 
combined knowledge base was conceived useful 
by the MAN engineers.

Although the theoretical idea of using an 
explicit quality metamodel for centrally defining 
quality requirements is interesting for MAN, the 
main interest is in the practical use of the model. 
For this, the generation of purpose-specific guide-
lines was convincing. We not only build a model 
to structure the quality knowledge but we are 
able to communicate that knowledge in a concise 
way to developers, reviewers and testers. Finally, 
the improved efficiency gained by automating 
specific assessments was seen as important. The 
basis and justification for these checks is given 
by the model.

future trendS

automatic Quality controlling

An obvious direction for future work is the 
improvement of automatic quality analysis and 
assessment tools for the artefacts of the model-
based development approach. Using a relatively 
simple parser and our quality controlling toolkit 
conQAT we were able to quickly develop auto-
matic checks for the most simple quality rules. 
However, we see major benefits in the extensions 
of this approach to more complex automatic or 
semi-automatic assessments. One interesting 
candidate is the detection of clones (redundancy) 
in Simulink/TargetLink/Stateflow models that 

completely lacks tool support at the moment. 
Including this and similar analyses in a continu-
ous quality controlling process would not only 
help to ensure maintainability but is expected to 
significantly reduce the efforts for manual quality 
assurance activities.

integrated Quality Modelling

This chapter provides an in-depth discussion of 
the maintainability of software models. However, 
quality is known as “[...] a complex and multifac-
eted concept.” (Garvin, 1984) that includes aspects 
as different as maintainability, safety, reliability, 
performance or even usability. Currently all these 
different aspects are dealt with by a plethora of 
different models and techniques. Examples are 
quality models for maintainability, failure mode 
and effects analysis (FMEA) for safety (Leveson, 
1986), reliability growth models for reliability 
(Tian, 2004), execution environment measure-
ments for performance (Yilmaz et al., 2005) and 
specialised models for usability (Seffah, Donyaee, 
Kline, & Padda, 2006).

All these techniques haven been proven to be 
highly valuable. But unfortunately, today these 
techniques are not integrated and usually applied 
in isolation. As we showed in (Wagner & Deis-
senboeck, 2007) the lack of a systematic concept to 
integrate the existing quality approaches renders 
a comprehensive analysis of software difficult 
and causes overlaps as well as inconsistencies in 
definitions of quality. Moreover, the current situa-
tion hampers the systematic discussion of quality 
trade-offs as they can be sometimes observed for 
maintainability and performance.

We are convinced that ultimately our goal must 
be a truly economically justified practice of quality 
engineering that enables us to reason about the 
different quality aspects and their interdependen-
cies in a quantitative manner. Hence, we believe 
that an integrated discussion of different quality 
attributes will be a topic of major interest.



  ���

Assuring Maintainability in Model-Driven Development of Embedded Systems

reuse

In the context of classical software development 
reuse has often been called the “the holy grail of 
software engineering” as it promises tremendous 
productivity gains (Jacobson, Griss, & Jonsson, 
1997). Of course, this is every bit as true for 
model-driven development. Unfortunately, in 
MDSD efficient reuse is even less common than 
in classical development. This is mainly due the 
week reuse mechanisms provided by currently 
used tools. Simulink, for example, has a library 
mechanism that proves to be too inflexible for 
the purpose of code generation in a real-world 
environment.

We claim, that the solutions found for reuse 
challenges in code driven development need to be 
transferred to MDSD, too. Furthermore, future 
work on unsolved reuse problems, e. g. efficient 
product line engineering, should be discussed in 
the context of MDSD from the beginning on.

diScuSSion and concluSion

comparison with classical Qa

In general, the quality assurance for maintain-
ability in MDSD is not completely different from 
code-driven development. The main issues such as 
readability and changeability of the artefacts are 
still there but on a higher level of abstraction. To 
ensure that the models are easy to comprehend, 
we have to develop an understandable control and 
data flow similar to those used for source code. 
Simulink even has a Goto block and implicit 
events that can cause jumps in the control flow. 
Hence, we face the same challenges here. Also a 
clear modularisation and size constraints apply 
to models as well as to code. Obviously, other 
issues related to modularisation such as clear and 
simple interfaces and typing are very important 
in both cases. 

On the other hand, there are clear differences. 
Quality assurance in MDSD needs far more em-
phasis on the two-dimensional arrangement of the 
elements. Even the third dimension plays a role 
because different model elements can hide each 
other. Also colouring and typing by graphical 
icons are unique issues. Finally, conformance to 
other tools - mainly code generators – introduce 
further constraints that need specific consideration 
in a quality model and in modelling guidelines for 
MDSD. However, as models typically are more 
abstract than code, they hide some of the platform 
details. Hence, in MDA as well as Simulink, 
changes in the underlying technology are easier 
to deal with.

Benefits and Drawbacks

We propose to use an explicit quality model to 
manage the maintainability of models in MDSD. 
This quality model acts (1) as a general knowl-
edge base of the maintainability-related issues 
and (2) as basis for quality assurance. Obviously, 
the development and maintenance of the quality 
model itself constitutes a significant effort. In 
our experience, those models tend to become 
large and detailed. However, this is necessary 
for a structured management of maintainability. 
Moreover, there are several benefits that outweigh 
the costs: Firstly, the explicit modelling of the 
quality-related relationships enhances the com-
pleteness and consistency of the rules used in the 
company. This way, possibilities for process im-
provements become visible. Secondly, the quality 
model is a well-suited basis for quality assurance. 
We showed in the case study with MAN that 
specific guideline documents can be generated 
automatically from the model. This ensures that 
maintainability-related issues are not neglected, 
for example in reviews. Moreover, we were able 
to automate the checking of a variety of rules for 
Simulink/TargetLink and Stateflow models based 
on the quality model. Hence, we save review costs 
and give the developers a quick feedback on the 



��0  

Assuring Maintainability in Model-Driven Development of Embedded Systems

quality of their models. In summary, we found 
that maintainability is as equally important in 
MDSD as in code-driven development and that 
an explicit quality model can serve as a structured 
basis for the quality assurance in MDSD.

referenceS

Baxter, I. D., Yahin, A., Moura, L., Sant‘Anna, 
M., & Bier, L. (1998). Clone detection using 
abstract syntax trees. In Proc. international 
conference	on	software	maintenance	(ICSM	‘98) 
(p. 368). Washington, DC: IEEE Computer So-
ciety.

Beine, M., Otterbach, R., & Jungmann, M. (2004). 
Development of safety-critical software using 
automatic code generation. In Proc. SAE world 
congress. Society of Automotive Engineers.

Berns, G. M. (1984). Assessing software main-
tainability. Communications of the ACM, 27 (1),      
14-23.

Boehm, B. W. (1981). Software engineering eco-
nomics. Englewood Cliffs, NJ: Prentice-Hall.

Boehm, B. W., Brown, J. R., Kaspar, H., Lipow, 
M., Macleod, G. J., & Merrit, M. J. (1978). Char-
acteristics of software quality. New York, NY: 
North-Holland.

Broy, M., Deissenboeck, F., & Pizka, M. (2006). 
Demystifying maintainability. In Proc. the 4th 
workshop on software quality. New York, NY: 
ACM Press.

Coleman, D., Ash, D., Lowther, B., & Oman, P. W. 
(1994). Using metrics to evaluate software system 
maintainability. Computer, 27 (8), 44-49.

Cruz-Lemus, J. A., Genero, M., Manso, M. E., 
& Piattini, M. (2005). Evaluating the effect of 
composite states on the understandability of UML 
statechart diagrams. In Proc. 8th int. conf. on 
model driven engineering languages and systems. 
Berlin, Heidelberg: Springer-Verlag.

Deissenboeck, F., Pizka, M., & Seifert, T. (2005). 
Tool support for continuous quality assessment. 
In Proc. 13th IEEE international workshop on 
software technology and engineering practice 
(STEP	‘05) (p. 127-136). Los Alamitos, CA: IEEE 
Computer Society.

Deissenboeck, F., Wagner, S., Pizka, M., Teuchert, 
S., & Girard, J.-F. (2007). An activity-based quality 
model for maintainability. In Proc. 23rd interna-
tional	conference	on	software	maintenance	(ICSM	
‘07). Washington, DC: IEEE Computer Society.

Dijkstra, E. W. (1968). Goto statement considered 
harmful. Communications of the ACM, 11 (3), 
147-148.

Dobrzanski, L., & Kuzniarz, L. (2006). An ap-
proach to refactoring of executable UML mod-
els. In Proc. 2006	ACM	symposium	on	applied	
computing	(SAC	‘06) (pp. 1273-1279). New York, 
NY: ACM Press.

Dromey, R. G. (1995). A model for software 
product quality. IEEE Transactions on Software 
Engineering, 21 (2), 146-162.

dSpace. (2006). Modeling guidelines for MAT-
LAB/	Simulink/	Stateflow	and	TargetLink.

Eick, S. G., Graves, T. L., Karr, A. F., Marron, J. 
S., & Mockus, A. (2001). Does code decay? as-
sessing the evidence from change management 
data. IEEE Transactions on Software Engineer-
ing, 27 (1), 1-12.

ISO 9126-1 Software engineering - Product quality 
- Part 1: Quality model (International Standard). 
(2003). ISO.

Erlikh, L. (2000). Leveraging legacy system dol-
lars for e-business. IT Professional, 2 (3), 17-23.

Gamma, E., Helm, R., Johnson, R., & Vlissides, 
J. (1995). Design patterns, elements of reusable 
object-oriented software. Reading, MA: Ad-
dison-Wesley.



  ���

Assuring Maintainability in Model-Driven Development of Embedded Systems

Garvin, D. A. (1984). What does product quality 
really mean? MIT Sloan Management Review, 
 26 (1), 25-43.

Genero, M., Piattini, M., Manso, E., & Cantone, 
G. (2003). Building UML class diagram maintain-
ability prediction models based on early metrics. 
In Proc.	9th	international	symposium	on	software	
metrics	(Metrics	‘03) (pp. 263-275). Washington, 
DC, USA: IEEE Computer Society.

Glass, R. L. (1989). Software maintenance is a 
solution, not a problem. System Development, 
9 (1), 8-9.

Gurp, J. van, & Bosch, J. (2002). Design erosion: 
problems and causes. The Journal of Systems and 
Software, 61 (2), 105-119.

Halstead, M. (1977). Elements of software science. 
New York, NY: Elsevier Science Inc.

Huang, S.-J., & Lai, R. (2003). Measuring the 
maintainability of a communication protocol 
based on its formal specification. IEEE Transac-
tions on Software Engineering, 29 (4), 327-344.

IEEE. (1998). 1219 Software maintenance (Stand-
ard).

Jacobson, I., Griss, M., & Jonsson, P. (1997). 
Software reuse: architecture, process and or-
ganization for business success. New York, NY: 
ACM Press and Addison-Wesley.

Kiewkanya, M., Jindasawat, N., & Muenchaisri, 
P. (2004). A methodology for constructing main-
tainability model of object-oriented design. In 
Proc. fourth international conference on quality 
software	(QSIC	‘04) (pp. 206-213). Washington, 
DC, USA: IEEE Computer Society Press.

Kitchenham, B., Linkman, S., Pasquini, A., & 
Nanni, V. (1997, September). The SQUID ap-
proach to defining a quality model. Software 
Quality Journal, 6 (3), 211-233.

Kitchenham, B., & Pfleeger, S. L. (1996). Soft-
ware quality: The elusive target. IEEE Software, 
13 (1), 12-21.

Kitchenham, B., Pfleeger, S. L., & Fenton, 
N. (1995). Towards a framework for software 
measurement validation. IEEE Transactions on 
Software Engineering, 21 (12), 929-944.

Lague, B., Proulx, D., Mayrand, J., Merlo, E. M., 
& Hudepohl, J. (1997). Assessing the benefits 
of incorporating function clone detection in a 
development process. In Proc. International 
conference	on	software	maintenance	(ICSM	‘97). 
Washington, DC: IEEE Computer Society.

Lange, C. F. J., & Chaudron, R. V., Michel. (2005). 
Managing model quality in UML-based software 
development. In Proc. 13th IEEE international 
workshop on software technology and engineer-
ing practice (pp. 7-16). Washington, DC: IEEE 
Computer Society.

Leveson, N. G. (1986). Software safety: why, 
what, and how. ACM Computing Surveys, 18 (2), 
125-163.

Lientz, B. P., Bennet, P., Swanson, E. B., & Burton, 
E. (1980). Software maintenance management: A 
study of the maintenance of computer application 
software	in	487	data	processing	organizations. 
Reading: Addison Wesley.

MAAB. (2001). Controller style guidelines for 
production intent using Matlab, Simulink and 
Stateflow.

Marinescu, R., & Ratiu, D. (2004). Quantifying 
the quality of object-oriented design: The factor-
strategy model. In Proc. 11th working conference 
on	reverse	engineering	(WCRE	‘04). Washington, 
DC: IEEE Computer Society.

MathWorks. (2006). Simulink reference.

McCabe, T. (1976). A complexity measure. IEEE 
Transactions on Software Engineering, SE-2 (4), 
308-320.

McCall, J., & Walters, G. (1977). Factors in 
software quality. Springfield, VA: The National 
Technical Information Service (NTIS).



���  

Assuring Maintainability in Model-Driven Development of Embedded Systems

Nosek, J. T., & Palvia, P. (1990). Software 
maintenance management: changes in the last 
decade. Journal of Software Maintenance, 2 (3), 
157-174.

Oman, P., & Hagemeister, J. (1992). Metrics for 
assessing a software system’s maintainability. 
In Proc. international conference on software 
maintenance	(ICSM	‘92). Washington, DC: IEEE 
Computer Society.

Oman, P. W., & Cook, C. R. (1990). Typographic 
style is more than cosmetic. ACM Communica-
tions, 33 (5), 506-520.

Parnas, D. L. (1994). Software aging. In Proc.	16th	
international conference on software engineering 
(ICSE	‘94) (pp. 279-287). Washington, DC: IEEE 
Computer Society.

Pretschner, A., Prenninger, W., Wagner, S., 
Kühnel, C., Baumgartner, M., Sostawa, B., et al. 
(2005). One evaluation of model-based testing 
and its automation. In Proc.	27th	international	
conference	on	software	engineering	(ICSE	‘05). 
New York, NY: ACM Press.

Seffah, A., Donyaee, M., Kline, R. B., & Padda, 
H. K. (2006). Usability measurement and metrics: 
A consolidated model. Software Quality Control, 
14 (2), 159-178.

Seifert, T., Beneken, G., & Baehr, N. (2004). 
Engineering long-lived applications using 
MDA. In Proc. IASTED international confer-
ence on software engineering and applications  
(pp. 241-246). Calgary: IASTED/ACTA Press.

Tian, J. (2004). Quality-evaluation models and 
measurements. IEEE Software, 21 (3), 84-91.

Wagner, S., & Deissenboeck, F. (2007). An in-
tegrated approach to quality modelling. In Proc. 
5th	 workshop	 on	 software	 quality	 (5-WoSQ). 
Washington, DC: IEEE Computer Society.

Yilmaz, C., Krishna, A. S., Memon, A., Porter, A., 
Schmidt, D. C., Gokhale, A., et al. (2005).  Main 

effects screening: a distributed continuous quality 
assurance process for monitoring performance 
degradation in evolving software systems. In 
Proc.	27th	international	conference	on	software	
engineering	(ICSE	‘05) (pp. 293-302). New York, 
NY: ACM Press.

additional reading

Colgren, R. (2006). Basic Matlab, Simulink and 
Stateflow. AIAA (American Institute of Aero-
nautics & Ast). 

Introductory book on Matlab, Simulink and 
Stateflow that is also recommended by The 
MathWorks, Inc.

Deissenboeck, F., & Pizka, M. (2006). Concise 
and consistent naming. Software Quality Journal, 
14 (3), 261-282.

This paper describes the impact of program (or 
model) identifiers on program comprehension 
and introduces rules for good naming. Due to 
the paramount importance of naming this is 
worth reading for developers as wells as quality 
managers.

Fenton, N. (1994). Software measurement: A 
necessary scientific basis. IEEE Transactions 
on Software Engineering, 20 (3), 199-206. 
This is the fundamental basis for measuring 
software. It introduces a measurement theory and 
shows what analyses are possible.

Glass, R. L. (1998). Maintenance: Less is 
not more. IEEE Software, 15 (4), 67-68.  
Glass convincingly describes the true relevance 
of software maintenance and argues against the 
common prejudices about maintenance work.

Kaner, C., & Bond, W. P. (2004). Software 
engineering metrics: What do they meas-
ure and how do we know? In Proc. 10th 
international software metrics symposium. 
Washington, DC: IEEE Computer Society. 



  ���

Assuring Maintainability in Model-Driven Development of Embedded Systems

This paper discusses the sense and senselessness of 
software metrics and explains common problems 
with the interpretation of metric values. Worth 
reading for quality managers to improve metric 
programs and developers to argue against sense-
less metric thresholds imposed on them.

Krueger, C. W. (1992). Software reuse. ACM 
Computing Surveys: A seminal paper on software 
reuse, 24 (2), 131-183. 

Lindvall, M., Komi-Sirvi, S., Costa, P., & Sea-
man, C. (2003). Embedded software maintenance 
(A DACS State-of-the-Art Report). Fraunhofer 
Center for Experimental Software Engineering. 
This report discusses the peculiarities of software 
maintenance for embedded systems. Worth read-
ing for anyone who maintains embedded software 
systems.

Parnas, D. L. (1994). Software aging. In 
Proc.	 16th	 international	 conference	 on	 soft-
ware	 engineering	 (ICSE	 ‘94) (pp. 279-287). 
Washington, DC: IEEE Computer Society. 
This paper explains the inevitable aging of soft-
ware through a comparison with the ageing of the 
human body. This is a seminal paper on software 
aging, evolution and maintenance and should be 
read by every software engineer.

Schach, S. R. (1994). The economic impact of soft-
ware reuse on maintenance. Journal of Software 
Maintenance: Research and Practice, 6 (4), 185-196. 
This paper illustrates that economic impact of 
software reuse on maintenance is even more 
pronounced than the impact on the initial devel-

opment. Worth reading for team managers and 
engineers responsible for reuse strategies.

Weinberg, G. M. (1971). The psychology of com-
puter programming. Van Nostrand Reinhold Co. 
This book discusses the influence on human 
psychology on the productivity of software devel-
opment. In particular, in introduces the concept 
of egoless programming. This worth reading 
especially for development team leaders

Wilson, J. Q., & Kelling, G. L. (1982). Broken 
windows. The Atlantic Monthly, 249 (3), 29-38. 
This paper describes Zimbardo’s experiments 
about the Broken Window Effect. Today, this ef-
fect is known to be one of the main reasons for 
rapid quality decay in software systems. This is 
worth reading for quality managers as well as 
software developers.

tradeMarkS

MATLAB, Simulink, Stateflow are registered 
trademarks of The MathWorks, Inc. TargetLink 
is a registered trademark of dSPACE GmbH.

endnoteS

1 The Motor Industry Software Reliability 
Association, http://www.misra.org.uk/

2 A beta version of the editor can be download-
ed from http://www4.cs.tum.edu/~ccsm/
qmm/

3 conQAT can be downloaded from http://
conqat.cs.tum.edu



���  

Chapter XV
Quality Improvement in

Automotive Software Engineering
Using a Model-Based Approach

Tibor Farkas
Fraunhofer Institute FOKUS, Germany

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

abStract

Premium quality and innovation are the cornerstones of the leading positions of car manufacturers 
and suppliers in the world market. The permanently increasing complexity of in-car electronics and the 
rapidly growing amount of automotive software running on embedded electronic control units, places 
higher demands on quality assurance for the future. Quality cannot be implemented into software on 
embedded control units after their development. Methods for defects detection have to be constituted 
to	automatically	stop	development	to	fix	a	problem	before	the	defect	continues	downstream.	In	addition	
preventive actions have to be taken in respect of front-loading quality and reliability. An automatic and 
tool independent check of custom development rules, quality standards and enterprise wide guidelines 
can support the quality assurance process in the development of automotive control software. In the 
domain of automotive software engineering there is a lack of automated checking for standard confor-
mance. Especially, a formal and tool independent notation of rules to follow is missing. In this chapter, 
the model-based design of automotive vehicle functions is taken as an example to show how textual rules 
describing development standards to be met can be transformed into a formal notation using the open 
standards Meta Object Facility and Object Constraint Language. Thereafter these rules can be checked 
automatically. The feasibility of this approach is shown by a software demonstrator.



  ���

Quality Improvement in Automotive Software Engineering

1. introduction

Premium quality and innovation are the corner-
stones of the leading positions of car manufac-
turers and suppliers in the world market. Quality 
assurance starts in early development phases and 
is a joint responsibility of both, the car manufac-
turers and their suppliers. The use of electronic 
control units (ECU) has grown rapidly in modern 
vehicles. This has gone along with an increase in 
variety and complexity of these electronic systems 
and their networking over different busses. New 
functions are preferably implemented in embed-
ded software that is distributed on a rising number 
of networked control devices (VDI, 2005). Having 
nowadays approximately 10 to 20 different ECUs 
on a single vehicle network, the integration of 
software from many different suppliers is a dif-
ficult task (Mercer, 2001). 

X-by-wire systems are an upcoming technol-
ogy in the automotive industry that replaces the 
traditional mechanical and hydraulic control 
systems with electronic control systems using 
electromechanical actuators and human-machine 
interfaces. They constitute the basis for vehicle 
control systems and assistance systems that 
support and relieve the driver during his driv-

ing assignment. Purely mechanical or hydraulic 
systems will be replaced by mechatronic systems. 
They are integrated into the vehicle environment 
intelligently. As a result, software will become a 
technology that is critical for the business competi-
tion especially in the automotive manufacturing 
domain (Jackman, 2005). High demands for qual-
ity of these systems and the great complexity as 
well as the rapidly growing interaction between 
single subsystems lead to strong requirements 
on development methods and development tools. 
As an example, Figure 1 shows the increasing 
number of software inside telephone-hands-free 
equipment (an automotive telematics application) 
over a period of 10 years (Form, 2006).

While simple functions like displaying the dig-
its were realized on an embedded display device, 
nowadays rich functions such as voice dialing 
and phone book synchronization are controlled 
by embedded software. 

Coping with future system complexity under 
stringent quality requirements on the one hand 
and the expected lead in innovation on the other 
hand are important factors of business success 
for automotive manufacturers and their suppliers 
(Liggesmeyer, 2005). Nevertheless, the quality 
losses of the electronic devices in the vehicle 
are still engraving. According to the current 

Figure 1. Amount of embedded software in an automotive telephone hands-free equipment over a period 
of	ten	years	(Form,	2006)



���  

Quality Improvement in Automotive Software Engineering

breakdown statistic (ADAC, 2007) of the year 
2006 published by the ADAC (General German 
Automobile Association) up to 70% of breakdowns 
have been caused by failures occurred in the area of 
the electrical units, connections and software (see 
Figure 2). Also the other portions are influenced 
by electrical units (e.g. Injection System).

Quality cannot be implemented or tested 
into embedded control software after their de-
velopment. Therefore it is essential to support 
aspects of quality and reliability by constructive 
measures in the early phases of the V-Model. 
The V-Model is a general process model (also 
further staged versions like V-Model XT) mostly 
used for embedded software development in 
the German automotive industry (VModel, 
1997). Unfortunately the specification of the  
V-Model does not offer a good mechanism for 
quality assurance. Because it is too generally 
defined, there is no support for the special needs 
and the context of the target automotive domain. 
Therefore car manufacturers and suppliers use 
other process models and standards for quality 
assurance, which are presented in the following 
section.

2. background, State of the 
art, challengeS

In the system development the use of common 
standards are a prerequisite for each type of a qual-
ity assurance. However, most quality standards 
and other approaches for quality assurance focus 
on one specific quality aspect. With the develop-
ment of embedded systems mainly two different 
aspects on the quality are to be differentiated, 
namely product quality and process quality. In 
this section common standards for product quality 
and process quality are introduced briefly, because 
the presented approach in section 3 targets on the 
support of both quality aspects. We make an as-
sertion, that process quality is a strong perquisite 
for product quality, so that without having an 
assurance of process quality product quality is 
not possible. Furthermore, we understand the 
definition for quality as the degree to which a 
set of inherent characteristics fulfils product or 
process requirements. Many different techniques 
and concepts have evolved to improve product or 
process quality. Some of the relevant and important 
standards are introduced in brief. 

Figure 2. Largest proportion of the failures is situated in the area of electrical units, connections and software 
(ADAC,	2007)



  ���

Quality Improvement in Automotive Software Engineering

The international quality standard ISO/IEC 
9126 defines the product quality of software in 
a quality model for external and internal quality 
(ISO9126, 2001). External quality is the totality 
of characteristics of the software product from an 
external view. It is the quality when the software 
is executed, which is typically measured and 
evaluated while testing in a simulated environ-
ment with simulated data using external metrics. 
Internal quality is the totality of characteristics 
of the software product from an internal view. 
Internal quality is measured and evaluated against 
the internal quality requirements. Details of 
software product quality can be improved during 
code implementation, reviewing and testing, but 
the fundamental nature of the software product 
quality represented by internal quality remains 
unchanged unless redesigned. The ISO/IEC 9126 
quality standard categorizes software quality at-
tributes into six characteristics: 

(a)  reliability, 
(b)  functionality, 
(c)  usability, 

(d)  maintainability, 
(e)  efficiency and
(f) portability. 

The characteristics are further subdivided into 
sub characteristics (Figure 3, ISO9126, 2001). 
The sub characteristics can then be measured by 
internal or external metrics.

In such a quality model guidelines for software 
development exist, like the software development 
standard MISRA (MISRA, 1998). MISRA-C 
defines a set of rules for a common and fault-
clearing use of the C language in manual coding 
of embedded software. Its aims are to facilitate 
code portability and reliability in the context of 
automotive engineering. While not all rules are 
applicable to deterministic automatic code genera-
tion, an auto-code generation nonetheless should 
comply with most of the MISRA-C rules.

For the quality assurance on the process level, 
there are a lot of different kinds of standards for 
process improvement like the ISO 9001:2004 
(ISO9001, 2004) family or derived standards for 
the automotive domain like the ISO/TS 15504 

Figure	3.	Quality	model	for	external	and	internal	quality	(ISO9126,	2001)



���  

Quality Improvement in Automotive Software Engineering

(ISO15504, 1998) also known as SPICE ─ Soft-
ware Process Improvement and Capability De-
termination (Hörmann, 2006), or target specific 
standards like the IEC 61508 for functional safety 
of electrical, electronic, programmable, electronic 
safety-related systems (ISO61508, 1998). The aim 
of these standards is the development of a quality 
management system, providing a continual qual-
ity improvement, emphasizing defect prevention 
and having the reduction of variation and waste 
in the supply chain. ISO/IEC 15504 is based on 
CMMI and applies to the design, development, 
production and installation and servicing of au-
tomotive-related products (CMMI, 2006). 

Whereas ISO 9001 standards concentrate on 
processes within a whole enterprise the Capa-
bility Maturity Model Integration (CMMI) is 
a process improvement approach that provides 
organizations with the essential elements of ef-
fective processes (Kneuper, 2006). It consists 
of best practices that address development and 
maintenance activities that cover the product 
lifecycle from conception through delivery and 
maintenance. The CMMI defines two different 

representations: staged and continuous. The staged 
model, which groups process areas into five matu-
rity levels, was also used in the ancestor software 
development of CMM, and is the representation 
used to achieve a ‘CMMI Level Rating’ from a 
SCAMPI appraisal (SCAMPI: Standard CMMI 
Appraisal Method for Process Improvement). The 
continuous representation, which was used in the 
ancestor systems engineering CMM, defines ca-
pability levels within each profile. The differences 
in the representations are solely organizational, 
the content is equivalent. 

All CMMI models reflect capability levels in 
their design and content. A capability level consists 
of a generic goal and is related to generic practices 
as they relate to a process area, which can improve 
the organization’s processes associated with that 
process area. The capability levels in a staged 
representation are shown in Figure 4 (Kneuper, 
2006). The six capability levels, designated by 
the numbers 1 through 5, are as follows: 

(1)  Initial ─ sometimes divided into two levels 
Incomplete and Performed, 

Figure	4.	CMMI	capability	levels	in	staged	representation	(Kneuper,	2006)



  ���

Quality Improvement in Automotive Software Engineering

(2)  Managed, 
(3)  Defined, 
(4)  Quantitatively Managed and 
(5)  Optimizing. 

CMMI is a widely used approach especially in 
the area of systems engineering and development 
of embedded software for ECUs – not only in the 
automotive domain.

Quality systems like the ISO 9001:2004 family, 
derived standards like ISO/TS 16949 (ISO16949, 
2002) for the automotive industry or process 
improvement approaches like the Capability Ma-
turity Model Integrated (CMMI) describe criteria 
to reach goals and to achieve good processes, but 
they do not describe a particular instantiation 
for such a process. This instantiation is up to the 
organization implementing the quality model to 
a quality assurance system. Quality standards 
describe generically ‘what’ has to be done, but 

not ‘how’ the quality requirements have to be 
realized. It is a general perception that such an 
instantiation should be supported by a concrete 
methodology and by software tools. Moreover the 
mentioned quality systems were developed for 
large organizations, therefore an optimal method-
ology and useful tooling should be customizable 
and scalable even for small organizations and 
medium enterprises as well. These are require-
ments on our approach for quality assurance that 
is presented in the third section. 

Certification to an above mentioned standard 
does not guarantee compliance and therefore 
does not guarantee good quality of end products 
and services. However, it certifies that consistent 
business processes are being applied.

The use of different kind of complex artifacts 
in the development of automotive embedded con-
trol systems gains in importance, although new 
methods of resolution for the challenges for quality 

Figure	5.	Observance	of	consistency	and	standard	conformance	is	difficult	to	enforce	because	of	differ-
ent	artifacts,	file	formats	and	notations



��0  

Quality Improvement in Automotive Software Engineering

assurance have to be found. Carefully selected 
methods and tools for the development are of 
largest importance, since only efficient methods, 
tools and error preventing processes could master 
this competition (Farkas+03, 2007).

Different kind of tools for the requirements 
engineering, the model based design of vehicle 
functions, development environments for embed-
ded C code, target compiler and finally tool suites 
for testing are used in one (or even more) specific 
phase. However, the tools are not specially custom-
ized for the special needs of embedded software 
development for the automotive-domain. Hence 
they do not cover the overall quality assurance 
of a given textual standard, like development 
guidelines.

To evaluate a very simple quality constraint for 
instance, like the examination of a general name 
convention, the consistency is not automatically 
provable. Even if only one artifact is considered, 
like the model based design of vehicle functions, 
the developer has to observe thousands more 
model elements to check compliance with the 
naming convention. This is of course very time 
consuming and inefficient. Problematic con-
cerning the consistency of different artifacts it 
proves that the used tool chains cannot guarantee 
spreading consistency of the artifacts produced 
in the respective tools (Figure 5). Due to these 
circumstances, frequent problems, like interface 
inconsistency, or incorrect or comprehensibly not 
transferred requests, are observed in practice.

In the next section an integrated, scalable and 
model-based method is presented, that is related 
to (Farkas+06, 2006). The goal of this method-
ology is to enhance the development of vehicle 
functions with an automated quality assurance 
through an early automated check of the result-
ing embedded software against quality standards 
and development guidelines. The feasibility of 
this method has been demonstrated for the re-
quirements management phase, the model-based 
design and the test case specification in a research 
project (Farkas+10, 2006). For lack of space, we 

focus only on the phase of model-based design 
of vehicle functions. 

In the beginning of the next section the often 
used tools MATLAB, Simulink and Stateflow 
(MLSLSF, 2007) for the model-based develop-
ment of automotive functions as well as a sample 
model are introduced briefly. Then a guideline 
catalogue “Control Algorithm Modeling Guide-
lines	Using	MATLAB,	Simulink,	and	Stateflow” 
(CAMG, 2007) developed by The MathWorks 
Automotive Advisory Board (MAAB, 2007) for 
Simulink and Stateflow is referred to. Automotive 
manufacturers use enterprise specific guidelines 
as referenced in (Farkas+03, 2007) that are similar 
to the MAAB guidelines. Each guideline may 
consist of several textual rules. Some aspects of 
model checking are shown on the basis of example 
rules from this catalogue. A short outline of the 
chosen technology Meta Object Facility (MOF) 
for meta-modeling (MOF, 2003) follows. Build-
ing upon the MOF the OCL-Object Constraint 
Language (OCL, 2003) is used to formally de-
scribe rules and to show how textual guidelines 
like (CAMG, 2007) can be transformed into a 
formal specification. The section finishes with the 
presentation of a software prototype as a solution 
to automatic standard conformance checking 
in model-based development. It is based upon 
former work as described in (Farkas+01, 2007; 
Farkas+03, 2007).

3. Main thruSt of the 
chapter

In the automotive industry the development of 
embedded system software needs modeling, 
simulation and analysis of dynamic system be-
havior in early design phases of the V-Model by 
the OEM (Original Equipment Manufacturer). 
The modeling of a function‘s algorithm in soft-
ware development environments goes hand in 
hand with a simulation of its behavior on the PC 
(virtual prototyping). Rapid prototyping tools and 



  ���

Quality Improvement in Automotive Software Engineering

technologies are used to develop and optimize 
new control concepts. The use of a model as an 
executable specification, the primary means for 
knowledge capture and transfer, represents the 
key benefit of model based software develop-
ment. Software development tools provide a 
basis for the continuous, automated and efficient 
application of a model-driven development pro-
cess for electronic control units. The automatic 
generation of target code from the implemen-
tation model is used to create the production  
C code of new functions for the ECU based on 
the results obtained in the preceding steps. To this 
end, the maximum benefit of model based software 
development is attained in terms of efficiency 
and reusability. Models have to be accepted in 
all phases of development by system engineers 
and they have to be integrated seamlessly into 
existing processes of the enterprise. 

The next tool supported development phase 
after the requirement analysis is the development 
of automotive functions (functional specification). 
In this phase the concept from earlier development 
phases and the specifications from the recorded 
requirements are substantiated by a model-based 
design. The resulting control and feedback control 
systems allow the development of real, physical 
models that cannot only be modeled but that can 
also be simulated in a development environment. 
The tools for functional design have to realistically 
replicate simulation models of vehicle functions, 
e.g. models describing the driving dynamics or 
the power train. So called system behavior models 
that describe the general input and output behavior 
as well as the different states of the system and 
their interactions are created. 

However, behavior models do not yet com-
pletely realize the concrete functions. Ideally, 
transformation engines are built into the tools 
that would provide the automated generation of 
platform specific code from parts of the simula-
tion model for the ECU. This would allow early 
examination of the software functionality of 
a control feedback system. System behavior 

models complement textual requirements in 
the tools for functional design under different 
aspects. The tools Simulink and Stateflow form 
an integrated software suite based upon MAT-
LAB with a graphical user interface to model, 
simulate and analyze dynamic and state based 
systems (MLSLSF, 2007). They support editing 
and simulating linear and non-linear systems 
whether the systems use discrete or continuous 
time. This software suite is widely used in the 
automotive industry for the development of ve-
hicle functions and should serve as an example 
to prove our methodology. Alternative tools with 
similar functionality are SCADE or ASCET that 
are not discussed within this chapter (SCADE, 
2007; ASCET, 2007). 

Especially within the development of embed-
ded software systems Simulink and Stateflow are 
used in early development to model functional and 
behavioral models. A behavioral model acting as 
specification needs to be of much higher quality 
than one produced only for rapid prototyping. 

The “engine timing model” from the examples 
provided by Simulink (MLSL, 2007) is shown in 
Figure 6. We use this model to demonstrate rule 
checking in this section. The simple model is based 
on (Crossley, 1991) and acts as a comprehensible 
sample for readers that are not familiar with 
Simulink. It describes the functional behavior of 
a four cylinder spark ignition internal combustion 
engine. Different subsystems model the throttle 
and manifold compression, combustion, the 
vehicle dynamics and the valve timing. A signal 
is generated by the valve timing subsystem. It 
triggers the compression subsystem twice per 
revolution of the crank. 

After a simulation the engine speed and the 
throttle angle compared to the load torque can 
be shown graphically. Skipping the details of 
the subsystem components and their mode of 
operation the model shows the possible degrees 
of freedom in system modeling with Simulink. 
The freedom in modeling is provided by different 
graphic representations, semantics and structure 



���  

Quality Improvement in Automotive Software Engineering

as well as different parameter settings. However, 
the tools Simulink and Stateflow are not special-
ized on the development of automotive embedded 
systems. Therefore the modeled systems are very 
sensitive to problems during further processing,  
e.g. the creation of control software in embedded 
devices – may it be code automatically generated 
from the model or may the model be the specifica-
tion for manually created code. So, the question 
arises, how such models and the resulting soft-
ware intensive vehicle functions can be validated 
against safety and reliability concerns expressed 
via existing standards and guidelines.

While modeling reliable applications a num-
ber of different guidelines, standards and norms 
regarding quality, introduced before, as well as 
legal regulations are employed in the automotive 
industry. These are not discussed here in detail, 
but it is obviously desirable to check a model for 
compliance against these rules already in the 
modeling phase of the development. Ideally, the 
check is automated to safeguard the development 
process and the resulting artifacts in a sustain-
able way.

A practical example of a modeling catalogue 
for Simulink models in the context of automotive 
systems is “Control Algorithm Modeling Guide-
lines	Using	MATLAB,	Simulink,	and	Stateflow” 
(CAMG, 2007). The initial MAAB is an associa-
tion of leading automotive manufacturers such 
as Ford, Daimler or Toyota and their suppliers in 
order to harmonize models. The published cata-
logue contains more than one hundred guidelines: 
different modeling rules for Simulink and for 
Stateflow categorized by context, importance and 
automatic verifiability. Figure 7 shows an excerpt 
of such a guideline on the usage of specific model 
elements. Divided into lemma, priority, scope, 
preconditions, description and a reasoning this 
guideline describes special functional units that 
could be used in Simulink models in general, but 
should not be used in automotive vehicle func-
tion models.

The guideline schematically and simpli-
fied represents the topical existing and current 
guidelines for behavior and implementation 
models in the industry. They are partly vendor 
independent. Only the enforcement of guidelines 
can assure that certain standards, like mentioned 

Figure	6.	A	sample	artifact	–	a	simple	engine	timing	model	(MLSL,	2007)



  ���

Quality Improvement in Automotive Software Engineering

standards in the second section, are met and suf-
ficient consistency between a manufacturer and 
its suppliers is reached. This is very relevant for 
models of safety critical systems. Safety must be 
considered from the beginning as required by a 
safety standard like IEC 61508. Standards such 
as IEC 61508 define basic safety regulations for 
safety related systems used in vehicles (ISO61508, 
1998). A prerequisite for road certification is that 
operational safety of the systems can be attested. 
In the area of software development, this can 
either be achieved by manual code reviews or 
greatly supported by the use of certified tools for 
code generation. To meet this requirement, a code 
generator has to be certified by organizations like 
the TÜV (Technical Control Board) for Safety 
Integrity Level (SIL). 

Guidelines for quality regulations are written 
mostly in a textual representation with different 

kind of graphical illustrations included. Paper 
documented guidelines on model checking and 
standard conformance have considerable disad-
vantages. First, there is insufficient automatic 
verifiability during the use of such guidelines in 
a model-based development. Complex functional 
models with more than thousands of model ele-
ments, a model size that is easily reached today, 
cannot be feasibly checked by human visual 
examination. 

Additionally, quality assurance is lacking 
an adequate means for analysis and protocol in 
order to monitor reoccurring guideline violations 
for further projects and process improvement. 
Further, the selection of a subset of the existing 
guidelines for a project, a business division or an 
enterprise is difficult and time consuming in a 
paper based guideline set. Not all guidelines are 
applicable for all models everywhere and every 

Figure	7.	Prohibited	Simulink	standard	blocks	inside	controllers.	Excerpt	from	the	Control	Algorithm	
Modeling	Guidelines	Using	MATLAB,	Simulink,	and	Stateflow.	(CAMG,	2007)



���  

Quality Improvement in Automotive Software Engineering

time. We will illustrate automation in the next 
section at several examples. 

A first approach to automate rule checking 
would be an in-tool programming of check code 
(here the time-consuming M-file programming 
with the MATLAB environment) like The Math-
Works Model Advisor (MLSLSF, 2007) or MINT 
(Ricardo, 2007). This seems feasible, but it is not 
sustainable. The tool independent definition of 
rules on a higher abstraction level formalized in a 
meta-model should be the goal. Another approach 
of conformance checking with Simulink is MATE 
(MATE, 2007). This approach focuses on the 
application of a high-level analysis specification 
language, but it is also tool depended (integrated in 
Simulink Model Advisor) and limited to Simulink 
and Stateflow only. Moreover, in our approach, 
the independence of a vendor specific software 
implementation or tool environment is supported 
with an overall meta-model. The expressive 
strength of the formalized rules, based on the 
meta-model, should not be limited by a specific 
software application. 

Instead of a proprietary solution an open and 
scalable approach also suited for requirements 
engineering (done with Telelogic DOORS (Telel-
ogic, 2007) in our case study) or test specification 
design (done with the Classification-tree Editor 
for Embedded Systems (CTE/ES, 2007) and the 
Classification-tree Editor with Extended Logics 
(CTE/XL, 2000) in our case study) is presented 
here. This approach has a standardized structure 
and a formal specification for the development 
tools mentioned above (shown in Figure 8).

In our approach a meta-model for each tool 
is developed first to describe the structure of an 
artifact on an abstract level. It contains some 
tool and domain specific adoptions and is based 
upon the MOF specification (MOF, 2003) that is 
standardized by the Object Management Group 
(OMG). The specification of the MOF proposes 
an abstract language and a framework to create 
and manage platform independent meta-models. 
MOF is designed as a layered architecture with 
four different abstraction layers. The architec-

Figure 8. First meta-models were built for different artifacts



  ���

Quality Improvement in Automotive Software Engineering

ture of MOF is based on a four-layer approach 
to meta-modeling:

 
• Layer L3—The meta-meta-model: 

The def inition of the elements and  
the structure for the description of a meta-
model.

• Layer L2—The meta-model: The definition 
of the elements and the structure of a con-
cept space (i.e. the modeling language). An  
L2-layer model consists of instances of the 
L3-layer.

• Layer L1—The model: Definition of the 
structure and behavior of a system using 
a well defined set of general concepts. An 
L1-model consists of L2-layer instances. A 
Simulink model would be at this layer. 

• Layer L0—The instances: Information or 
data that describe a concrete system at a fixed 
point in time. This layer consists of instances  
of elements of the L1-layer.

The MOF specification defines these concepts 
as well as supporting concepts in detail. Because 
there is no explicit notation for MOF, the UML 
notation has been deliberately used to visualize 
selected concepts.

In a standard modeling process the designer 
of a model has to consider implicit and explicit 
development guidelines. Such an explicit guideline 
could indicate naming conventions like all class 
names have to start with a capital letter. An implicit 
rule could be that the designer designates names 
meaningfully. With a set of such development 
guidelines it is possible to make the model more 
readable and clear. Design guidelines influence 
the system in an indirect way. The developed 
system has no preference whether a class name 
starts with a capital letter or not. Therefore design 
guidelines must not be strict. Hence if a model 
breaks a guideline this must not result in an error, 
in fact it could result in a kind of a warning.

Before we can bring our textual guidelines to 
a formalized representation and evaluate them, 

we have to build a meta-model for the specific 
artifact. Figure 9 shows an excerpt of a MOF 
meta-model for Simulink and Stateflow that is 
used for the OCL examples below.

In this meta-model a generic, abstract element 
ASDElement is modeled to provide common at-
tributes of all system elements. It is used by the 
Simulink specific block element SLBlock to de-
rive basic attributes. Further down the hierarchy 
there are specific blocks like in and out ports 
(SLInportBlock and SLOutportBlock) for signal 
inputs and signal outputs, sinus generators for 
signal generation (SLSineBlock), signal termina-
tors (SLTerminatorBlock) consuming signals or 
signal amplifiers (SLGainBlock) that transform 
signals. As the MOF defines only primitive data 
types, but Simulink allows using many complex 
data types, the modeling of these complex types 
becomes very important. An example is given 
by the type ASDCoordinate that contains tool 
dependent position coordinates. The developer 
gains not only a formal and structured represen-
tation by the developed meta-model, but also the 
possibility to define constraints via the OCL.

The OCL is a declarative constraint language 
that provides concepts of functional languages 
to evaluate expressions on a finite set of objects. 
It is predestinated to describe invariants in class 
diagrams as well as to state conditions in state or 
sequence diagrams. To take advantage of it textual 
guideline descriptions (as shown in Figure 7) have 
to be transferred into the formal OCL notation. 

The usage of OCL constraints in MOF can be 
defined through OCL’s specification as well as 
MOF’s specification of constraints. OCL allows 
stating pre- and post-conditions of operations and, 
more importantly here, invariants. In combination 
with the evaluation policies as defined in MOF the 
following constraint categories are found:

• Immediate invariants: Constraints on 
instance objects which must hold all the 
time.



���  

Quality Improvement in Automotive Software Engineering

• Deferred invariants:  Const raints 
on instance objects which must hold  
at a user specified point in time.

• Pre - and post- condit ions:  Con-
st raints on operations which must  
hold before respectively after operation 
execution. Differentiation between im-
mediate and deferred verification does not 
apply here.

OCL lists also several other places where 
formal expressions might be useful, for example, 
to define the value of derived attributes or the 
semantics of an operation, but such usage speci-
fies an implementation and not a constraint and, 
therefore, doesn’t need any monitoring inside 
a repository. Thus, it is out of the scope of this 
work, although some of the results found here 
might prove useful when implementing support 
for OCL in other MOF contexts.

For a better understanding of how OCL con-
straints can be used within a MOF model, an 
example is depicted in Figure 10. The example 
OCL constraint is taken from the MOF specifi-
cation itself. It formally states that all members 
of a namespace must have different names. It is 
not well specified in any of OMG’s documents 
how to manage the constraint definitions. One 
possibility is to store those in a separate text 
file (e.g. in XML format) where the context of 
each constraint is specified through the keyword 
“context” followed by the name of the classifier. 
It is proposed to keep the constraint definitions 
together with the meta-model, as it makes it easier 
for meta-modelers to define constraints while 
designing the meta-model; it also emphasizes the 
constraints because they are visible along with 
the meta-model. To allow use of existing UML 
modeling tools which do not have a special visu-
alization for constraints, the following notation 

Figure	9.	Simulink	meta-model	excerpt



  ���

Quality Improvement in Automotive Software Engineering

Figure 10. Example OCL constraint

is suggested: OCL constraints are written inside 
“Notes” which are attached to the Classifier which 
defines their Context. To distinguish between 
normal notes and OCL constraint definitions, 
each OCL constraint definition could start with 
a keyword OCL followed by the constraint’s 
evaluation policy. Adding OCL constraints to 
a MOF meta-model is a semantic enrichment 
of the meta-model. Constraints can serve as a 
source of documentation of the meta-models 
among software designers and programmers. But 
it is also desirable to enforce these constraints 
inside the modeling infrastructure (inside the 
repositories), and to react reasonably on constraint 
violation. Thus, whenever a client tries to store a 
meta-object in the repository, the meta-model’s 
constraints are evaluated and, if any constraint is 
violated, the client is informed, and the violation 
can be resolved via a rollback. Please note that 
the behavior of MOF repositories for constraints 
is currently not specified in any standard.

To enable constraint monitoring and evaluation 
inside MOF repositories, the OCL constraints have 
to be transferred from the meta-model definition 
into the generated repositories. Computer code has 
to be generated to evaluate the constraints and to 
monitor the elements which are constrained. To 
enforce consistency of a repository, it is also neces-
sary to decide what action should be undertaken 
upon violation of immediate constraints, whether 

ModelElement
n a m e  : S tr in g

Namespace
<<re fe re n ce > > co n te n ts  : M o d e lE le m e n t

0 ..n

0 ..1

+co n ta in e d E le m e n t0 ..n

+co n ta in e r0 ..1
Contains

OC L im m e d ia te :
-- C o n te n tN a m e s Mu s tN o tC o ll id e  - [C -5 ]
-- Th e  n a m e s  o f th e co n te n ts  o f a N a m e s p a ce m u s t n o t co ll id e .
in v C o n te n tN a m e s Mu s tN o tC o ll id e : 
s e lf.co n te n ts -> fo rAll(e 1 , e 2  | e 1 .n a m e  =  e 2 .n a m e  im p lie s  e 1 = e 2 )

the client is responsible to put the repository back 
into a consistent state, or if the repository itself 
performs a rollback.

Monitoring and evaluating the constraints 
inside the repository can be computationally 
expensive. Therefore, it is necessary to develop 
a monitoring mechanism which calculates the 
minimum set of constraints to be checked on each 
change of the repository’s state, and to generate 
efficient evaluation code. Also, the costs for evalu-
ation can be reduced by following some rules for 
the definition of OCL constraints; semantically 
equivalent OCL expressions can have differ-
ent evaluation costs. Besides the monitoring of 
constraints to assure structural consistency and 
validity in source and target models, OCL can fur-
ther be used to query and transform models. The 
following subsection will explain how OCL can 
be used as core of a quality validation language. 
As mentioned before, an optimal methodology and 
useful tooling should be customizable and scal-
able. The scalability of this approach is ensured. 
An OCL constraint cannot change the model. 
Therefore multiple constraints can be checked 
in parallel on a single model. Additionally, the 
finite set of objects that an OCL constraint is 
checked on can be divided into several subsets. 
They can be checked independently from each 
other in parallel.



���  

Quality Improvement in Automotive Software Engineering

Subsequently, some modeling guidelines are 
taken from (CAMG, 2007). We transfer them into 
the notation of the OCL according to the devel-
oped meta-model. For this example a model is 
considered to be standard compliant if it conforms 
to these rules. OCL rules can be formulated as 
an invariant that returns a Boolean indicating if 
a certain guideline is met. In this example we 
formalize the guidelines as OCL queries (Ocl-
Void). Each rule returns a collection of all model 
elements that violate a certain guideline, i.e. a 
model is standard conform if all rules return an 
empty collection. A non-empty collection can 
then be used to highlight the problematic blocks 
in the modeling tool (Simulink or Stateflow in 
our example). Complex guidelines consisting of 
several aspects connected by a logical ‘and’ are 
formalized as multiple OCL constraints. In this 
way it is easier to identify the cause if a block 
is considered to be problematic (see also Figure 
11).

(1)  Quality Characteristic: Guideline for 
common appearance 

The arbitrary use of color can be mis-
leading. Therefore, the background color  
of all model elements of the type block has to be 
set to white. See Exhibit A.

(2)  Quality Characteristic: Guideline for 
misalignment of ports

Information has to flow from the left to the 
right side of the model to increase readability. 
Hence, Inport blocks must be on the left side 
and Outport blocks must be on the right side of 
a model. See Exhibit B.

The OCL expression to check that Outport 
blocks are located on the right is similarly for-
mulated. 

(3)  Quality Characteristic: Guideline for block 
layout

The common reading direction in English 
is from top to bottom. Thus, trigger blocks that 
determine whether other model elements are 
considered at all must be located above all other 
blocks. See Exhibit C.

(4)  Quality Characteristic: Guideline for text 
layout

Formatting model elements arbitrarily en-
cumbers the readability. Thus, the font size of all 
block captions must be set to the value 10. Text 
weight and text alignment can be checked alike. 
See Exhibit D.

context OclVoid inv: SLStructure ::
SLBlock.allInstances() -> reject
( x | x.BackgroundColor = ‘white’)

Exhibit A.

Exhibit B.

context SLStructure::SLSystem inv: let center _ x =
(self.LeftTop.X - self.RightBottom.X) / 2 in 
self.theContainedSLBlock -> select
( x | x.oclIsTypeOf (SLPorts :: SLInportBlock )) ->
reject ( x | x.LeftTop.X < center _ x)
 



  ���

Quality Improvement in Automotive Software Engineering

context SLStructure :: SLSystem inv:
let limit _ y = self.theContainedSLBlock -> select ( x | 
x.oclIsTypeOf ( SLBlockTypes :: SLTriggerBlock ) ) ->
 iterate ( x : SLStructure :: SLBlock;
acc : Integer = SLStructure :: SLRootSystem. 
allInstances().asSequence().at(1).RightBottom.Y |
acc.min( x.RightBottom.Y ) in let other _ blocks = 
self.theContainedSLBLock -> select ( x | not ( 
x.oclIsTypeOf ( SLBlockTypes :: SLTriggerBlock ) ) )
in other _ blocks -> reject ( x | x.LeftTop.Y > y _ limit)

Exhibit C.

Exhibit D.

context OclVoid inv: SLStructure :: SLBlock.allInstances() 
-> reject( x | x.FontSize = 10 )

Exhibit E.

context OclVoid inv: Kernel :: ASDElement.allInstances()
-> reject( x | x.Identifier.size() <= 31)

Exhibit F.

context Kernel :: ASDElement inv: let valid _ characters = 
Set{‘a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’,’i’,’j’,’k’,’l’,’m’,’n’,’
o’,’p’,’q’,’r’,’s’,’t’,’u’,’v’,’w’,’x’,’y’,’z’} in 
allInstances() -> reject ( x | valid _ characters -> 
includesAll ( Set { 1 .. x.Identifier.size () } -> iterate 
( i: Integer; sum: Sequence ( String )
= Sequence {} | sum ->
append (x.Identifier.substring(i, i)))))

context SLStructure :: SLSystem inv: 
self.theContainedSLBlock -> exists ( x | x.oclIsTypeOf
( SLStructure :: SLSubSystemBlock )) implies 
self.theContainedSLBlock -> forAll ( x | x.oclIsTypeOf
( SLStructure :: SLSubSystemBlock ) or x.oclIsTypeOf
( SLPorts :: SLInportBlock ) or x.OclIsTypeOf
( SLBlockTypes :: SLMuxBlock ))

Exhibit G.



��0  

Quality Improvement in Automotive Software Engineering

(5)  Quality Characteristic: Guideline for name 
convention 

Some tools used for further processing of a 
model, like a target C code compiler and linker, can-
not deal with very long names (e.g. function names).  
To demonstrate the check of the name length, in 
this scenario the identifier of all model elements 
must not exceed 31 characters. See Exhibit E.

(6)  Quality Characteristic: Guideline for 
syntax

Similar to the constraint shown in rule five, 
certain characters cannot be processed by compil-
ers. Therefore we have to ensure just a specific 
allowed character set. In this example only lower 
case letters can be used to name model elements. 
See Exhibit F.

(7)  Quality Characteristic: Guideline for 
separation of concerns 

The reuse of model elements can be simplified 
by constructing orthogonal subsystems. Then 
the quality of the orthogonal subsystems can 
be assured independently from each other as a 
preparation for the quality assurance of a collec-
tion of subsystems. In this example a subsystem 
is considered to be orthogonal if it is either a 
basic block that cannot contain other blocks or it 
is a SLSubSystemBlock that contains only certain 
other blocks. See Exhibit G.

(8)  Quality Characteristic: Guideline for 
semantics 

Some concepts like an analog sine wave genera-
tor can be simulated on a computer easily, but might 
be hard to implement on real embedded hardware.  
A part of MAAB guideline 6.3.3 from Figure 7 
is realized by the following expression: 

The usage of the block element SLSineBlock 
(Sine Wave) in all systems is forbidden. (analog 
for Block Scpo) See Exhibit H.

For other block types this expression can be 
applied, if only the type is changed.

(9)  Quality Characteristic: Guideline for 
amount of state control logic 

If discrete state control logic modeled with 
Stateflow is spread too widely in a model, it is 
difficult to capture the actual state of a system if 
it is executed for simulation. Consequently, only 
one state chart from Stateflow is allowed within 
each model level. See Exhibit I.

Similar transformations have been applied for 
the state machines modeled with the tool Stateflow. 
Guidelines and conventions that have to be met 
can be identified in this context, too.

Whereas the concise rules of presentation and 
formatting options improve the readability and 
understandability of models, the quality rules for 
semantics and syntax address special concerns 
in safety critical standards. The use of invalid 
or untested system components that might have 
been bought from an external supplier, the use of 
not grounded busses or signal pathways (signal 
not terminated, signal not connected etc.), non-
conformance to a special name syntax or a certain 
allowed set of characters for the automatic code 
generation (how should a space character or a car-
riage return be interpreted) emphasize that early 
avoidance of known deficiencies improves the 
reliability and safety of information technological 
systems in a sustainable way. The effort necessary 
to test such systems (Zander-Nowicka, 2006) is 
reduced as a benefit of this approach.

case Study: automated evaluation 
of Quality Standards

Our sample model (see Figure 11) in a slightly 
modified form (coloring) serves as an example 
for the automatic check of guidelines. The fol-



  ���

Quality Improvement in Automotive Software Engineering

context SLStructure :: SLSystem inv:
theContainedSLBlock -> select
( b | b.BlockType = ‘SineWave’ or b.BlockType = ‘Signal 
Generator’)

Exhibit H.

context SLStructure :: SLSystem inv:

let control _ structures = self.theContainedSLBlock -> select
( x | x.oclIsTypeOf ( SLBlockTypes :: SLStateflowBlock )) 
in
  
 if control _ structures.size() > 1 then
   control _ structures
  else {}
 endif

Exhibit I.

Figure 11. Vehicle model with different guideline violations

lowing modeling errors are found in the modified 
model:

a. Violation of rule 1: The background color 
of a block element is topical blue and differs 
from the required value white.

b. Violation of rule 4: The font size of a block 
element does not fulfil the demanded value 
10.

c. Violation of rule 8: The model element 
of the type Scope occurs multiple times, 
although it is forbidden completely.

d. Violation of rules 5 and 6: An illegal car-
riage return character is used. The name 
length exceeds the maximum of 31 charac-
ters.



���  

Quality Improvement in Automotive Software Engineering

As a result, this sample model (Figure 11) does 
not conform to the before introduced modeling 
guidelines (1)-(9) that must be met in accordance 
to our quality standard. A wrong specification 
like this implemented in an early phase of the 
V-Model would affect ongoing development 
phases. So, code generation or the implementation 
by suppliers can be erroneous. Summarized the 
quality of the system would not to be guaranteed 
any more.

The violation of guidelines is clearly identifi-
able by the developer within this simple model. 
In complex models this would be impossible or 
at least very time consuming. For the automated 
check of our sample model we have to introduce 
a software prototype that automated these guide-
lines. This software integrates in Simulink and 
is presented now.

Modeling rules and design guidelines as OCL 
constraints could be evaluated with a correspond-
ing OCL tool automatically. During a research 
project (Farkas+01, 2007) a functional software 

prototype for guideline examination in MATLAB, 
Simulink and Stateflow has been developed by 
the Fraunhofer Institute for Open Communica-
tion Systems (FOKUS). It is based upon a MOF 
compliant Simulink and Stateflow meta-model 
(see Figure 9) and supports the evaluation of OCL 
constraints on a MOF-compliant repository. The 
engine for the evaluation of OCL expressions 
bases on (OSLO, 2007). OSLO is an acronym 
and stands for Open Source Library for OCL. It 
is based on the Kent OCL library. Likewise the 
Kent OCL library, OSLO supports the evaluation 
of OCL constraints against meta-models. This 
feature is essential for verification of modeling 
rules and design guidelines. In Figure 12 the 
basic graphical user interface of this checking 
tool is shown. 

The developer finds the so-called ‘Model Ex-
plorer’ on the left side, a hierarchical tree structure 
of all Simulink and Stateflow model elements. On 
the right side, the register tabs provide additional 
functionality:

Figure 12. Guideline checker for the quality assurance



  ���

Quality Improvement in Automotive Software Engineering

a. A customized selection of guidelines or char-
acteristic guideline sets can be preconfigured 
and easily applied for the whole model by 
selecting specific rules from a list, before 
an evaluation is executed.

b. The quality standard in textual representation 
or a guideline catalog that can be displayed 
in an HTML representation (website). This is 
because an updated version is loaded every 
time from a web server; it could be possible 
that the catalog was recently updated by a 
quality manager.

c. For the quality assurance process further 
information has to be specified before an 
evaluation is started. This meta-information 
about the observation is defined here. This 
could be additional model information such 
as author or versioning information.

d. For the development of OCL constraints, 
an integrated rule editor is included to cre-
ate new or edit existing rules. The OCL 
expressions could then be saved as XML 
files and loaded by the checker-tool before 
the evaluation.

e. A screenshot feature to archive the Simulink 
model together with its visual representa-
tion is implemented. This simplifies the 
navigation in a huge set of models without 
opening them in Simulink or Stateflow. The 
screenshot could be saved for later analysis 
by the responsible department.

If the developer likes to check his artifact, 
the complete Simulink/Stateflow model is read 
directly from the internal MATLAB memory into 
an integrated repository for the model evaluation. 
Thereafter the repository contains the model as 
an instance model of the meta-model. The OCL 
constraints are evaluated directly on the instance 
model in the repository and the results are shown 
in the analysis tool, the analysis feature of the 
software prototype, shown in Figure 13.

A detailed analysis is performed after checking 
each OCL constraint. It allows the developer to 
identify which guidelines are violated by which 
model element. A textual description can be 
shown which is taken directly from the textual 
quality standard catalogue. Different severity 

Figure 13. Generated report for analysis of a guideline examination



���  

Quality Improvement in Automotive Software Engineering

levels identify the magnitude of the violation. If 
a warning or an error occurs, the developer can 
jump directly onto the specific artifact (here a 
model element) in the development tool to correct 
the problem. The feature of an automated correc-
tion of an implementation error is not included 
in the software prototype yet; however, it was 
conceptually worked out already.

4. SuMMary, future reSearch 
directionS

Mastering challenges like the high system com-
plexity and the still increasing diversity of the 
ECUs going along with a high demand for safety 
and reliability are the future challenges for the 
efficient quality assurance in the context of au-
tomotive engineering. This is important for all 
involved parties, the car manufacturers and their 
suppliers. As a result, a good quality assurance and 
quality management system includes the scenario 
of a world-wide distributed development. 

Concerning the development of ECUs in the 
automotive context there are several boundary 
conditions one has to take into consideration. In 
comparison to other industrial domains, automo-
tive electronic systems have very high production 
volumes. An additional aspect is the demand for 
integrity of the electronic system which will pay an 
ever increasing role especially in the collaboration 
between manufacturer and several component or 
system suppliers. Summarizing this, in this sec-
tion we have to discuss the question, what are the 
cornerstones of the quality assurance, especially 
for the model-driven development, in the context 
of automotive engineering?

Quality Managements System and Process 
Assessment ─ are the pillars for ensuring high 
quality. The effort to bring embedded automotive 
electronics quicker and more efficiently to market 
not only sets by strict requirements for product 
development but also for the quality management 

system (QMS) and the process assessment. In case 
of model-driven development the integration of 
methods and concepts from (MDA, 2003) the 
Model-Driven Architecture into a QMS is just 
at the beginning. At this time the applicability 
and support for the model-driven development is 
not adequate considered by international quality 
standards, which were introduced in the second 
part of this chapter. Standards (e.g. like ISO/IEC 
9126) define the product quality of software in a 
quality model without having a relation to mod-
eling languages like MOF and UML. Standards 
for programming compliance (like MISRA-C) 
do not include the fact that thousands of lines 
of code could be generated automatically from 
implementation models. Such standards should 
be updated to cope with model-based techniques. 
New or updated quality models will be necessary 
for model-driven development processes backing 
up on MDA-concepts. In the future, this will have 
especially an impact on the quality management 
systems and the way people do assessments.

Prospective Development ─ represents the 
basis of quality assurance. Quality assurance – in 
the model based development – is unfortunately 
often reduced to only one aspect of quality assur-
ance: testing. Testing, of course, is a very important 
and absolutely necessary for the validation and 
verification of vehicle functions. More difficult is 
to ensure the quality of the test cases. However, 
test cases are derived from the functional and 
non-functional requirements. So the quality of 
the requirements has to be assured as well. 

Problems for bad quality output are to be 
found primarily in the requirements engineering. 
Consider the different types of possible causation: 
Requirements could be ambiguous, incomplete, 
incorrect, over-specified or outdated. Incomplete-
ness is one of the most common problems in the 
system specifications. Often just the functionality 
is described like:”The system should do function 
F if the event E occurs on the bus”. In this little 
example requirement, it is not defined, what hap-



  ���

Quality Improvement in Automotive Software Engineering

pens if E does not occur or E is received too late. 
Then it’s up to the way of implementation, how 
this issue is solved. However, at the implemen-
tation phase the component developer does not 
know much about the surrounding system. So 
it is difficult to implement robust functionality 
without knowing the periphery or other sur-
rounding aspects.

Conciseness and Clarity ─ most specifica-
tion is written in narrative text. Unfortunately, 
mostly narrative textual documents often leave 
readers in disagreement on the meaning of the 
specifications.

Requirements must be unambiguous. This is 
a strong requirement for the model-based design 
too. Also models can be interpreted differently. 
For this purpose, every stakeholder of the system 
development, like requirement engineers, sys-
tem engineers, software developers, testers and 
other domain experts should all be capable of a 
common reading of specifications and models 
to derive the same understanding of the systems 
functionality.

Correctness ─ Informal, textual descriptions 
of development guidelines mostly cannot be ex-
ecuted or automatically analyzed. 

Ensuring the correctness of a requirement is 
a difficult task. Moving more and more towards 
a model-based development ─ beginning at re-
quirements specification, over functional design 
and simulation down to the code development ─ 
the quality assurance especially for the model-
based development has to be further worked 
out. Integrated automatisms for ensuring the 
correctness of a model by guideline checking and 
especially formal and tool independent notations 
of the rules for quality assurance currently are 
not implemented satisfactorily for the use in a 
model-driven way of development. 

Consistency ─ is a prerequisite for a quality 
management system. The trace of artifacts (e.g. 

model-elements) could be a recorded link between 
source and target elements. Primary use of traces 
is for analysis purpose and to make transforma-
tion processes more comprehensible (e.g. for 
debugging). A quality management system must 
have the ability to mark artifacts for which traces 
are recorded. Further, the storage of traces and 
management of stored traces for un-do facilities 
is another aspect that should be addressed by a 
transformation engine. Traceability could not be 
fully directed to a transformation meta-model 
but always implies more technical aspects for a 
concrete implementation. Therefore, management 
of traces targets rather at the tool that implements 
transformations than the transformation language 
itself which must only provide a kind of “an-
notation” concept for traces. Beside traceability, 
consistency management and synchronization 
of models within the source and target reposito-
ries are further requirements for transformation 
executions. 

Typically, a transformation does not operate 
on an empty target repository and must therefore 
be able to weave-in changes into existing models. 
These models may exist as result of former trans-
formation processes or created by a user.

Completeness ─ is a main driver to reach total 
quality. As introduced before, quality consists of 
more than one characteristic, like functionality, re-
liability, usability, efficiency, maintainability and 
portability. If system designers just concentrate 
on only one aspect, e.g. the assurance of system 
functionality, and miss criteria for maintainability, 
then an uncertain system is received as a result. 
In addition, the high-class quality management 
systems must also be feasible. Just producing tons 
of paper with metrics and measurements does not 
support the quality of the end-product.

Predictions ─ an intelligent way of quality 
engineering. To front-load quality in the develop-
ment process, predictions of quality statements 
have to be made. Whenever a change request is 



���  

Quality Improvement in Automotive Software Engineering

intended, it should be possible to do a quality 
analysis before the implementation of the request 
has begun. This is possible if actual measures 
are collected for estimation in the development 
process. Also associated information is needed to 
construct the estimates. This could be project plan-
ning parameters that constitute typical indicators 
of project progress and performance and include 
different attributes of work products like tasks, 
cost, effort or schedule. Metrics could be defined 
then on attributes of the artifacts that include such 
items as complexity, code size, form, depth or 
function. In case of model-driven development 
these attributes are also to be defined in the MOF 
meta-model of an artifact and can then be mea-
sured (evaluated) by query languages, like OCL 
evaluation in our approach. Then a tool supported 
monitoring is possible (like our rule-checker) that 
typically involves measuring of the actual values 
of project parameters, comparing actual values to 
the estimates in the plan and identifying significant 
deviations. A persistent recording is necessary to 
gather actual values of the development project 
and included recordings of associated contextual 
information to help understand the measures. This 
could be stored inside a repository according to 
the meta-model. An analysis of the impact that 
significant deviations have on determining what 
corrective actions to take is then initiated by 
the OCL expression evaluation engine upon the 
instance models inside the repository.

The mentioned characteristics like the Quality 
Managements System and Process Assessment, 
Prospective Development, Conciseness and Clar-
ity, Correctness, Consistency, Completeness and 
Predictions are just the basics of an overall qual-
ity management system. The range of assessed 
processes and products covers more than we have 
space here to discuss. Within a model-driven 
quality framework further aspects are relevant, 
like the capability of problem resolution, the right 
project management, lifecycle and configuration 
management of models or supplier monitoring 

if models implemented by third parties, just to 
name a few. As the development of automotive 
electronics move toward a model-based develop-
ment, a lot of challenges in the quality assurance 
are to master. Concepts and techniques from MDA 
could help the current established processes in the 
systems engineering. Nevertheless, the quality 
engineering in the model-driven development has 
to be improved much more in the future.

5. concluSion

This chapter presented a model-based method 
using the open standards Meta-Object Facility 
(MOF) and the Object Constraint Language (OCL) 
from concepts of the Model-Driven Architecture 
(MDA) to support quality assurance by enriching 
the embedded systems engineering in the context 
of the automotive domain. The model-based 
development of vehicle functions was equipped 
with an automated evaluation of development 
guidelines for the quality assurance of different 
artifacts. A selected tool suite for model-based 
design (Simulink and Stateflow) with a graphical 
user interface for functional modeling, simulation 
and analysis of dynamic and state based systems, 
which are increasingly used in the automotive 
industry, was used to demonstrate this concept. 
It was shown how the approach could be con-
stituted on other artifacts, like requirements or 
test cases; if an artifact specific meta-model is 
developed. For the vehicle function modeling 
and reliable applications a multitude of different 
development guidelines, international standards 
and norms concerning quality, safety and reli-
ability assurances as well as legal regulations 
were introduced that are used within areas of the 
automotive industry. Textual documented guide-
lines have obvious disadvantages and especially 
a missing formal notation that could be used for 
automatic checking. To avoid this lack an ap-
proach of formalizing narrative rule descriptions 
to computable expressions was introduced. For 



  ���

Quality Improvement in Automotive Software Engineering

this purpose a tool dependent artifact was mod-
eled to a MOF-conform meta-model. It was shown 
how textual guidelines can be transferred into a 
formal notation by means of OCL. The practical 
use of automatic guideline checking and guide-
line violation analysis was demonstrated on the 
basis of a software prototype. With the presented 
approach modeling errors and defects during the 
development process can be avoided in the future. 
Further it is possible to formalize even rules that 
concern more than one tool and check them au-
tomatically. Additionally it was stated, that OCL 
could also be used for the evaluation of quality 
metrics and measurements to achieve estimations. 
In the end comparisons were carried out between 
quality standards and the model-driven develop-
ment of software intensive systems on relevant 
characteristics like quality management system, 
process assessment, prospective development, 
Conciseness, Clarity, Correctness, Consistency, 
Completeness and Predictions.

 
referenceS

(ADAC, 2007) General German Automobile As-
sociation (ADAC) (2007): The ADAC-Breakdown 
statistic	2006. ADAC Paper Manual Nr. 5, May 
2007. Retrieved from URL: http://www.adac.de

(ASCET, 2007) ETAS GmbH (2007): ASCET 
Product Family, ASCET-MD (Modeling & 
Design). URL: http://en.etasgroup.com /prod-
ucts/ascet

(CAMG, 2007) MAAB The MathWorks Automo-
tive Advisory Board (2007): Control Algorithm 
Modeling Guidelines Using MATLAB, Simulink, 
and	Stateflow,	Version	2.0.	Retrieved from http://
www.mathworks.com/industries/ auto/maab.html 
(MAAB_Style_Guide_pdf_v2_00.zip)

(CMMI ,2006) SEI Software Engineering Insti-
tute (2006): CMMI - Capability Maturity Model 
Integration. CMMI for Development. Standard 

Version 1.2, August 2006. URL: http://www.sei.
cmu.edu/cmmi

(Crossley, 1991) P. R. Crossley & J. A. Cook 
(1991): Control	91. Conference Publication 332, 
IEEE International Conference, March 1991, 
Edinburgh, U.K.

(CTE/ES, 2007) Razorcat Development GmbH: 
CTE for Embedded Systems, URL: http://www.
razorcat.com

(CTE/XL, 2000) Lehmann, E. & Wegener, J. 
(2000): Test Case Design by Means of the CTE 
XL. Proc. 8. Europ. Int. Conf. on Software Testing, 
Analysis & Review (EuroSTAR 2000), Copen-
hagen, Denmark.

(Farkas+01, 2007) Farkas, T. & Röbig H. (2007): 
Automatisierte, werkzeugübergreifende Richtli-
nienprüfung zur Unterstützung des Automotive-
Entwicklungsprozesses. M. Conrad, H. Giese, 
B. Rumpe, B. Schätz (Ed.): Proceedings of the 
Dagstuhl-Workshop MBEES: Modellbasierte 
Entwicklung eingebetteter Systeme III., Informat-
ics-Report 2007-01, Technical University Braun-
schweig, January 2007, Dagstuhl, Germany. 

(Farkas+03, 2007) Farkas, T. & Grund, D. (2007): 
Rule Checking in Model Based Development of 
Safety Critical Software and Information Tech-
nical Systems. 8th International Symposium on 
Autonomous Decentralized Systems (ISADS 
2007), pp. 287-294, IEEE International Confer-
ence, March 2007, Sedona, USA.

(Farkas+06, 2006) Farkas, T., Hein, C. & Ritter, T. 
(2006): Automatic Evaluation of Modeling Rules 
and Design Guidelines. European Conference 
on Model Driven Architecture - Foundations 
and Applications (ECMDA2006), Lecture Notes 
in Computer Science, ISBN-10: 3540359095, 
Springer-Verlag, July 2006, Bilbao, Spain.

(Farkas+10, 2006) Farkas, T., Leicher, A. & 
Röbig H., et al. (2006): Werkzeugübergreifende 
Konsistenzsicherung von Artefakten bei der 



���  

Quality Improvement in Automotive Software Engineering

Entwicklung softwarebasierter Systeme im Au-
tomobil. 4th Workshop on Automotive Software 
Engineering, Informatik 2006, Jahrestagung 
der Gesellschaft für Informatik, October 2006, 
Dresden, Germany. 

(Form, 2006) Form, T. (2006): Systems Engi-
neering im Spannungsfeld von Architekturen 
und Prozesse. 10. EUROFORUM-Jahrestagung 
Elektronik-Systeme im Automobil, Technical 
University Braunschweig, Munich, Germany.

(Hörmann, 2006) Hörmann, K., Dittmann, 
L., Hindel, B. & Müller, M. (2006): SPiCE in 
der Praxis - Interpretationshilfe für Anwender 
und Assessoren, dPunkt Verlag, ISBN-13 978-
3898643412, Heidelberg, Germany.

(ISO15504, 1998) ISO International Organization 
for Standardization & IEC International Electro-
technical Commission (1998): ISO/IEC	TR	15504	
- Information technology: Process assessment and 
the Assessment Requirements for CMMI.

(ISO16949, 2002) ISO International Organization 
for Standardization & IEC International Electro-
technical Commission (2002): ISO/TS	16949:2002	
Automotive Quality Standard. 

(ISO61508, 1998) ISO International Organiza-
tion for Standardization & IEC International 
Electrotechnical Commission (1998): IEC-61508	
Functional safety of electrical/electronic/pro-
grammable electronic safety-related system.

(ISO9001, 2004) ISO International Organisation 
for Standardisation (2004): ISO	9000	family	of	
Quality	management	system.	ISO	9001:2004.

(ISO9126, 2001) International Organisation for 
Standardisation (2007): ISO/IEC	 9126,	 Soft-
ware engineering — Product quality. Part 1-4,  
URL: http://www.iso.org

(Jackman, 2005) Jackman, B. & Sanyanga, S. 
(2005): A Software Component Architecture for 
Improving Vehicle Software Quality and Integra-

tion. Society of Automotive Engineers (SAE) 
Centenary World Congress, Detroit, USA.

(Kneuper, 2006) Kneuper, R. (2006): CMMI: 
Verbesserung von Softwareprozessen mit Capa-
bility Maturity Model Integration. dPunkt Verlag, 
ISBN-10: 3898643735, Heidelberg, Germany.

(Liggesmeyer, 2005) Liggesmeyer, R. & Rom-
bach, D. (2005): Software Engineering einge-
betteter Systeme. Spektrum Akademischer Ver-
lag, 1st Edition, ISBN-10: 3827415330, Munich, 
Germany.

(MAAB, 2007) The MathWorks Inc. (2007): The 
MathWorks	Automotive	Advisory	Board	(MAAB), 
URL: http://www.mathworks.com/industries/ 
auto/maab.html

(MATE, 2007) Stürmer, I., Kreuz, I., Schäfer, 
W. & Schürr, A. (2007): The MATE Approach: 
Enhanced Simulink and Statfelow Model Trans-
formation. Proc. of MathWorks Automotive Con-
ference, Jun. 19-20, Dearborn (MI), USA. 

(MDA, 2003) OMG Object Management Group 
(2003): Model Driven Architecture. MDA Guide 
Version 1.0.1, Retrieved from http://www.omg.
org/docs/omg/03-06-01.pdf

(Mercer, 2001) Kalmbach, R. & Dannenberg, 
J. (2001): Automobiltechnologie 2010. Technolo-
gische Veränderungen im Automobil und ihre 
Konsequenzen für Hersteller, Zulieferer und 
Ausrüster. Study of the HypoVereinsbank and 
Mercer Management Consulting, Munich, Ger-
many.

(MISRA, 1998) MISRA Consortium, The Mo-
tor Industry Software Reliability Association 
(1998): MISRA-C - Guidelines for the Use of the 
C Language in Vehicle Based Systems, ISBN-10: 
0952415690. URL: http://www.misra.org.uk

(MLSL, 2007) The MathWorks Inc. (2007): 
Automotive Applications - Examples in Docu-
mentation, Simulink Demos, MATLAB/Simu-



  ���

Quality Improvement in Automotive Software Engineering

link/Stateflow, Part of the MATLAB Product, 
Release 2007a.

(MLSLSF, 2007) The MathWorks Inc. (2007): 
MATLAB/Simulink/Stateflow, Products in the Re-
lease 2007a. URL: http://www.mathworks.com

(MOF, 2003) OMG Object Management Group 
(2003): Meta	Object	Facility	 2.0	Specification, 
Retrieved from URL: http://www.omg.org/cgi-
bin/doc?ptc/03-10-04.pdf

(OCL, 2003) OMG Object Management Group 
(2003): UML	2.0	OCL	Specification, Retrieved 
from URL: http://www.omg.org/docs/ptc/03-10-
14.pdf

(OSLO, 2007) Fraunhofer Institute FOKUS 
(2007): OSLO – Open Source Library for the 
Object	Constraint	 Language	 (OCL). Retrieved 
from URL: http://oslo-project.berlios.de

(Ricardo, 2007)  Ricardo UK (2007): Mint ─ Style 
checker	 for	 Simulink	 and	 Stateflow. Retrieved 
from URL: http://www.ricardo.com

(SCADE, 2007) Esterel Technologies, Inc. (2007): 
SCADE Product Suite. URL: http://www.esterel-
technologies.com/products/scade-suite

(Telelogic, 2007) Telelogic, DOORS Release 8.0, 
URL: http://www.telelogic.com /products/doors

(VDI, 2005) VDI ─ Society for Automotive and 
Traffic Systems Technology (2005): Electronic 
Systems for Vehicles. 12th International Confer-
ence, Baden-Baden, Germany. 

(VModel, 1997)  EStdIT - Entwicklungsstandard 
für IT-Systeme des Bundes (1997): V-Modell - 
Vorgehensmodell Kurzbeschreibung. Retrieved 
from URL: http://www.v-modell.iabg.de

(Zander-Nowicka, 2006) Zander-Nowicka, J., 
Schieferdecker, I. & Farkas, T. (2006): Derivation 

of Executable Test Models From Embedded System 
Models using Model Driven Architecture Artifacts 
- Automotive Domain. Proceedings of the Dagstuhl-
Workshop MBEES: Modellbasierte Entwicklung 
eingebetteter Systeme III., Informatics-Report 
2006-01, Technical University Braunschweig,  
January 2006, Dagstuhl, Germany.

 
additional reading

Two additional resources providing information 
about product quality and process quality in the 
domain of embedded systems and vehicle manu-
facturing:

The German book Embedded Systems – qual-
ity-oriented development (Bender, 2005) aims 
to provide an authoritative overview of the state-
of-the-art in the domain of embedded systems 
engineering with a strong emphasis on quality 
aspects: (Bender, 2005) Bender, K. et. Al (2005): 
Embedded Systems – qualitätsorientierte Ent-
wicklung. ISBN-10: 3540229957, 2005, Springer-
Verlag, Berlin Heidelberg New York.

The Toyota Way (Liker, 2004) gives a good over-
view for a general audience that explains manu-
facturing, management principles and business 
philosophy of the car manufacturer Toyota and 
its worldwide reputation for quality and reliabil-
ity: (Liker, 2004) Liker, J.K. (2004): The Toyota 
Way: 14 Management Principles from the World’s 
Greatest Manufacturer. ISBN-10: 0071392319, 
Mcgraw-Hill Professional, New York, USA.



�00  

Chapter XVI
Quality-Aware Model-Driven

Service Engineering
Claus Pahl

Dublin City University, Ireland

Marko Bošković
University of Oldenburg, Germany

Ronan Barrett
Dublin City University, Ireland

Wilhelm Hasselbring
University of Kiel, Germany

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

abStract

Service engineering and service-oriented architecture as an integration and platform technology is a 
recent approach to software systems integration. Quality aspects ranging from interoperability to main-
tainability to performance are of central importance for the integration of heterogeneous, distributed 
service-based	systems.	Architecture	models	can	substantially	influence	quality	attributes	of	the	imple-
mented	software	systems.	Besides	the	benefits	of	explicit	architectures	on	maintainability	and	reuse,	
architectural	constraints	such	as	styles,	reference	architectures	and	architectural	patterns	can	influence	
observable software properties such as performance. Empirical performance evaluation is a process 
of measuring and evaluating the performance of implemented software. We present an approach for 
addressing the quality of services and service-based systems at the model-level in the context of model-
driven service engineering. The focus on architecture-level models is a consequence of the black-box 
character of services.



  �0�

Quality-Aware Model-Driven Service Engineering

introduction

With software services becoming a strategic capa-
bility for the software sector, a service engineering 
discipline needs to address service development 
problems based on suitably flexible modelling 
and composition support. An increasing need 
for flexibility in this area is caused by changing 
user requirements, evolving services, and varying 
deployment contexts. Software services are appli-
cation that are provided ‘as-is’ at certain locations 
in order to be integrated into existing applications 
or composed to larger systems. Essential in this 
process are abstract descriptions or models of 
the service functionality and other service char-
acteristics. This makes model-driven software 
development both a highly suitable, but actually 
also necessary framework to adequately develop 
service-based software systems. Composition and 
integration-oriented modelling has already been 
successfully utilised for model-driven services 
development. The high complexity of modern 
software makes its development costly and error-
prone. Model-driven development (MDD) is an 
approach that deals with software complexity by 
making software models primary artefacts of the 
software development process. MDD utilises two 
aspects of models. Firstly, in various engineering 
disciplines, predictions about a software system 
can be made based on a model. Secondly, even 
complete implementations for different platforms 
and languages can be generated from models.

 The aim of this chapter is to address quality 
aspects of model-driven service engineering. We 
address two specific facets of quality assurance for 
model-driven software development: the model-
driven design and development of high-quality 
software and the identification of quality aspects in 
model-driven development. Some specific aspects 
that we discuss in the context of quality aspects 
in model-driven service development are:

•	 modelling and architecture are concept that 
are closely linked in the context of model-

driven development and service-oriented 
architecture,

•	 patterns for the model-driven development 
of service architectures to structure models 
and to enhance the integration task,

•	 model-based design and analysis of specific 
quality aspects for service-based systems.

We aim to demonstrate that model-driven 
architecture and design of this specific type of 
service-based software systems can yield high-
quality software. Based on an analysis of the 
state of the art of service engineering and its 
platform and application requirements supported 
by a case study analysis, we identify the central 
quality aspect pertinent to services. This analysis 
is necessary in order to justify techniques for the 
quality-aware model-driven service engineering. 
Factors that impact the quality are:

•	 network and platform characteristic impact-
ing on for instance performance,

•	 service-orientation to enhance interoper-
ability and reusability,

•	 evolution and change as inevitable factors 
impacting on maintainability.

Service engineering and service-oriented 
architecture as an integration and platform tech-
nology is a recent approach to service-based 
software systems integration. Quality aspects, 
however, have not been addressed in sufficient 
depth in this context. Our technical contribution 
is an architecture- and pattern-based model-driven 
service engineering framework that aims at high-
quality models as well as quality implementations. 
While functionally oriented design patterns have 
been widely used to support the development 
of large-scale software systems, we combine a 
service-specific range of these patterns with dis-
tribution patterns, which directly impact service-
specific quality aspects such as performance. We 
complement this architectural perspective with an 
empirical, model-driven performance evaluation 



�0�  

Quality-Aware Model-Driven Service Engineering

technique. To provide trustworthy software, qual-
ity attributes have to be satisfied. Performance 
is a quality attribute that shows the degree to 
which a software system or its components meet 
the objectives for timeliness. Quality attributes 
such as performance are of central importance 
for the integration of heterogeneous, distributed 
service-based systems. 

We start this investigation with an introduction 
to model-driven development and service engi-
neering in Section 2. Quality aspects are outlined 
in Section 3. Architecture modelling notations are 
introduced in Section 4 and applied in the service 
architecture context in Section 5. Distribution 
patterns as an MDD solution are discussed in 
Section 6 and model-driven performance evalu-
ation is investigated in Section 7.

Model-driven Service 
engineering

Service-oriented architecture as the architectural 
methodology and the Web Services as the deploy-
ment platform have implications on a correspond-
ing service engineering framework. This section 
motivates model-driven service engineering as 
our framework:

•	 We introduce service engineering as a 
software engineering discipline and service-
oriented architecture as an architectural 
framework. 

•	 Web services as a specific platform for ser-
vice-oriented architecture within a service 
engineering context are introduced.

•	 An overview of model-driven service de-
velopment aspects concludes this section.

This section aims to clarify the principles 
of service-based software systems and their 
development support through model-driven ap-
proaches.

Service engineering

A service in the context of service-oriented archi-
tecture (SOA) is a software component provided 
at a given location. Services are usually used 
‘as-is’, based on an abstract description published 
by the service provider in directories and used 
by potential clients to locate suitable services. 
Several aspects characterise the targeted service 
platform (Alonso et al., 2004):

•	 Distribution: This deployment aspect 
characterises the services platform as a 
distributed infrastructure. 

•	 Independent deployment: This develop-
ment aspect refers to the independent, black-
box deployment of services where different 
organisations are involved as clients and 
providers. This requires suitable description 
techniques to communicate service require-
ments and properties. 

•	 Process-orientation: The development of 
services is tightly linked to the notions of 
architecture and process-centric configu-
ration. The composition at various levels 
ranging from business workflows to service 
processes is central (Allen & Garlan, 1997; 
Plasil & Visnovsky, 2002). Orchestration 
and choreography are two perspectives on 
service process composition (Alonso et al., 
2004).

•	 Software value chain: The notion of a soft-
ware value chain emphasises the step-wise 
process of software development based on 
layered modelling techniques covering all 
stages from client-orientation to implemen-
tation by adding to models until a deployable 
service product is realised (Weber, 2005).

The composition of services to orchestrated 
processes is a major concern in current Web 
service research (Allen & Garlan, 1997; Plasil 
& Visnovsky, 2002; Bass et al., 2003). These 
developments have strengthened the importance 



  �0�

Quality-Aware Model-Driven Service Engineering

of architectural questions such as service com-
position and configuration.

Model-driven development (MDD) emphases 
automation and encourages model reuse. Service-
oriented architecture focuses on reuse-as-is in 
service form. We propose here central corner-
stones of a model-driven development framework 
for service-based software. Composition-centric 
modelling shall address services, processes, and 
layered reuse in order to improve quality for 
instance in terms of maintainability. We have 
identified a number of aspects by reviewing 
case studies, which are facets that characterise 
the framework and that reflect factors that have 
impacted the design of our proposed development 
approach.

•	 Rigorous and formal foundations – the 
foundations of the modelling notation and 
techniques in terms of formal models.

•	 Service development and deployment pro-
cess – the software process lifecycle with 
its stages and activities based on MDD.

•	 Development methods and techniques 
– composition-centric modelling and service 
architecture to support the activities.

•	 Standards and interoperability – the technol-
ogy environment with its opportunities and 
constraints focusing on model and service 
interoperability.

Model-driven development 

The general idea of model-driven development 
(MDD) is to introduce a model as a first-class 
entity. With models, the development focus is 
moved to the problem domain. Models often 
enable the exploitation of formal mathematical 
methods. With abstraction, the understanding of 
the problem and its realisation in a software system 
can be improved. Often, a complete implemen-
tation can be generated without discontinuities 
(Selic, 2003). Model Driven Architecture (MDA) 
is one approach for MDD initiated by the OMG 

(OMG, 2003), a consortium of software vendors 
and users. The MDA initiative consists of three 
complementary ideas (Selic, 2003):

•	 direct representation to shift the focus of 
software development away from technol-
ogy toward the ideas and concepts of the 
problem domain,

•	 automation to mechanize the relation of 
semantic concepts from a problem domain 
and from an implementation domain,

•	 open standards to enable interoperability, 
often in an application-specific context to 
close the semantic gap between domain 
problems and implementation technolo-
gies.

Our aim is to enable the evaluation of ser-
vice performance when the primary artefact 
is a service (or service process) model. 

Model-driven Service engineering

Modelling can support architectural questions that 
arise in service-oriented architecture. Behaviour 
and interaction processes are central modelling 
concerns for service-based software architectures. 
Fig. 1 illustrates how a UML activity diagram 
can be used to express a service orchestration. 
Four services that provide e-learning activities 
– system login, lecture participation, lab partici-
pation, and system logout – are orchestrated into 
a process starting with a login, then allowing a 
user to iteratively choose between lecture and lab 
activities, before logging out. 

Explicit descriptions and exchangeable mod-
els enable developers and clients of services to 
create reliable service architectures using tool 
support. A model-driven development approach 
can even be utilised to support automated code 
generation and performance analysis. Assuming 
that concrete, provided services are already at-
tached to each service element, then an executable 
WS-BPEL process for the Web service platform 



�0�  

Quality-Aware Model-Driven Service Engineering

can be automatically generated. As we are going 
to demonstrate later on, the service composi-
tion model can be instrumented for empirical 
performance analysis and executable processes 
including performance monitoring functionality 
can be generated.

Model-driven Service engineering 
case Study

The techniques of our framework shall be il-
lustrated in the context of a re-engineering of 
the IDLE case study system as a service-based 
software system. IDLE is the Interactive Database 
Learning Environment – a Web-based learning 
and training system for database modelling and 
programming (Pahl et al., 2004). IDLE is a chal-
lenging application in terms of its need to provide 
multimedia and interactivity across a distribute 
server and user base. It allows us to focus on 
three essential quality aspects of service-based 
software systems: performance, reusability, and 
maintainability. We illustrate quality-aware 
model-driven service engineering using a recent 
re-engineering of IDLE as a fully service-oriented 
infrastructure.

Quality in Service-baSed 
Software SySteMS

An analysis of the IDLE case study software 
system and other systems based on a literature 
review shall clarify quality considerations in the 
context of model-driven service engineering. 
This section

•	 aims to identify system-critical quality 
aspects and their determining factors from 
an empirical analysis of IDLE,

•	 evaluates the IDLE case study findings in the 
context of existing literature and discusses 
the requirements for quality-aware model-
driven service engineering,

•	 introduces quality aspects in software sys-
tems, focusing on maintenance and perfor-
mance as two specific quality attributes.

As individual quality attributes vary in the way 
they can be described, measured and analysed, 
we are not able to discuss all attribute-specific 
techniques in detail. We have selected attributes 
relevant to SOA as an integration technique – such 
as maintainability, reusability, interoperability 
and performance – and illustrate the common and 
generic features of our framework using these 
attributes. Before looking at IDLE, we introduce 
the quality and performance principles.

Figure	1.	Service	process	modelled	using	a	UML	activity	diagram	(©2007	Claus	Pahl.	Used	with	per-
mission)

login

lecture

lab

logout
{user}

{activity}

{activity}

{sessionID}

{sessionID}

{knowledge}

{knowledge}

{void}
login

lecture

lab

logout
{user}

{activity}

{activity}

{sessionID}

{sessionID}

{knowledge}

{knowledge}

{void}



  �0�

Quality-Aware Model-Driven Service Engineering

iSo 9126 Software engineering 
– Software product Quality

The ISO/IEC 9126 standard on software product 
quality (ISO, 2001) defines a two-part model for 
software product quality consisting of quality 
attributes (internal quality and external quality) 
and quality in use aspects. 

•	 The first part of the model specifies six 
characteristics for internal and external 
quality, which are further subdivided into 
subcharacteristics. The six categories are 
functionality, reliability, usability, effi-
ciency, maintainability, and portability. The 
subcharacteristics are manifested externally 
when the software is used as a part of a 
computer system, and are a result of internal 
software attributes. 

•	 The second part of the model specifies four 
quality in use characteristics. The quality in 
use characteristics are effectiveness, produc-
tivity, safety and satisfaction. Quality in use 
is the combined effect for the user of the six 
software product quality characteristics.

In principle, the internal quality determines the 
external quality and external quality determines 
quality in use.

•	 Internal metrics measure the software itself. 
Internal metrics are those which do not rely 
on software execution (static measures).

•	 External metrics measure the behaviour of 
the computer-based system that includes the 
software. External metrics are applicable to 
running software.

•	 Quality in use metrics measure the effects 
of using the software in a specific context of 
use. Quality in use metrics are only avail-
able when the final product is used in real 
conditions.

idle Software Quality

We use the IDLE system to illustrate our ap-
proach (Pahl et al., 2004). IDLE is based on a 
Web software architecture that provides a range 
of educational services:

•	 It is a multimedia system that uses different 
mechanisms to provide access to learning 
content, e.g. Web server and a (synchronised) 
audio server.

•	 It is a composite, interactive system that 
integrates components of a database de-
velopment environment (a design editor, 
a programming interface, and an analysis 
tool) into a teaching and learning context.

•	 It is a constructive environment in which 
learners can develop their database appli-
cations, supported by shared storage and 
workspace facilities and knowledge-level 
interactions between learner and system.

A comprehensive discussion of all quality as-
pects is beyond the scope of this chapter. However, 
some specific aspects shall be singled out.

•	 Portability. In particular interoperability 
shall be addressed. We identify two dimen-
sions – generic, often middleware-induced 
and domain-specific – that are relevant for 
IDLE. On the architectural levels these are 
captured through architectural styles and 
reference architectures. Architectures suit-
able to be supported by the Web services 
platform need to be considered. Addition-
ally, in order to allow specific components 
to be reused or exchanged, compliance with 
domain-specific reference architectures 
such as the Learning Technology System 
Architecture standards (LTSA) might be 
required. A current problem is the integration 
of components and content of the system into 
a national learning resource repository that 
allows these resources to be shared among 



�0�  

Quality-Aware Model-Driven Service Engineering

third-level institutions. Interoperability is an 
absolute necessity, but other qualities such 
as reliability and performance are important 
as well.

•	 Maintainability. IDLE is a system that 
has been developed over a period of more 
than 10 years in several phases. Maintain-
ability has been a critical problem due to 
high fluctuation of developers and an often 
experimental style of development driven 
by research aspects. Model-driven develop-
ment can here be a contributor to improved 
maintainability. A number of different In-
ternet-based technologies have been used in 
IDLE’s implementation, ranging from audio 
processing with specific formats and servers 
to Java servlet-based middleware applica-
tions and storage solutions. An integrated 
infrastructure based on Web services is a 
current re-engineering problem in order 
to achieve maintainability and scalability. 
Knowledge-level interactions of users with 
the system using subject-specific editors 
and processing tools have equally made 
maintenance difficult. Only semantically 
enhanced information architectures and 
models can provide solutions here.

•	 Efficiency. IDLE as a bandwidth-demand-
ing, distributed service-based Web software 
system is due to its needs arising from 
distributed multimedia delivery of content 
a system where performance is a critical 
factor. Performance evaluation – an aspect 
of the efficiency category – is important in 
order to provide users with a satisfactory 
usage experience.

In other distributed and Web-based applica-
tions, other qualities might be equally important 
– security and availability are two typical ex-
amples – but we have decided to focus in the ones 
relevant to IDLE, since a comprehensive account 
is beyond the scope of this chapter.

discussion of Quality aspects

Quality in the context of service-based software 
development is different from traditional soft-
ware development and implementation. Services 
are black-box entities, i.e. they are used as-is. 
Determining or observing qualities through the 
inspection of service internals is in general not 
possible and would violate the principle of ser-
vice computing. Consequently, quality needs 
to be considered at the architectural level. In 
particular, service compositions and service ac-
tivations across a network, possibly distributed 
infrastructure are important and determine the 
categories we have singled out, i.e. portability, 
maintainability, and efficiency. 

We can identify a number of central quality 
aspects pertinent to services. Factors that impact 
the quality are:

•	 internal, i.e., development and lifecycle-
oriented static attributes:

•	 portability and reusability as a consequence 
of service-orientation and architectural style 
compliancy,

•	 maintainability as a consequence of model-
driven controlled evolution and change,

•	 external, i.e. deployment- and execution-
oriented observable attributes:

•	 performance as a consequence of for instance 
network characteristics,

Specific techniques of model-driven service 
engineering in the context of those specific qual-
ity categories are:

•	 modelling of architecture constraints in the 
form of styles and reference architectures 
addressing portability,

•	 patterns for structured model-driven devel-
opment addressing maintainability,

•	 analysis and evaluation of quality-aware 
models addressing performance.



  �0�

Quality-Aware Model-Driven Service Engineering

A sufficiently rich and tailored modelling 
language is necessary to adequately address 
and achieve quality for service-based systems 
at the architecture model level, which is out-
lined in the next section.

architectural Modelling

Before addressing the specific aspects architecture 
constraints, architecture patterns and performance 
evaluation, we introduce some basic elements of a 
notation that we use for architecture modelling.

The objective of software architecture (Bass 
et al., 2003) is the separation of computation and 
communication. Architectures are about compo-
nents (i.e. loci of computation) and connectors 
(i.e. loci of communication). This allows a de-
veloper to focus on structures and the dynamics 
between components separately from component 
implementation. Various architecture description 
languages (ADLs) and modelling and development 
techniques have been proposed (Medvidovic & 
Taylor, 1997; Garlan & Schmerl, 2006; Cuesta et 
al., 2005; Oquendo et al., 2005). An architectural 
model captures common concepts found in a va-
riety of architectural description languages: com-
ponents provide computation, interfaces provide 
access to black-box components, and connectors 
provide connections between components.

Although UML is the most widely used mod-
elling language, we use a mix of notations here. 
Textual notations are common for architectural 
description languages; we use them for instance 
for specific aspects such as architectural types and 
interaction behaviour. UML is the predominant 
notation for model-driven development; we use 
UML often as a visualisation of textual model 
specifications to emphasise the link to model-
driven development. We use the textual notations 
as they demonstrate the link to formal specifica-
tion notations and their underlying mathematical 
theories, such as process calculi or description 

logics, which is important if reasoning capabili-
ties are to be exploited.

an architecture ontology

At the core of the notation is an architecture 
ontology that defines the central concept of the 
modelling notation. The central concepts are five 
core types of architectural elements

Configuration, Component, Connector, Role, Port

These are all derived from a general concept 
called Element that captures all architectural 
notions. 

Components und connectors are the core ele-
ments of architecture descriptions. Components 
encapsulate computation and connectors repre-
sent communication between the components. 
Components can communicate through ports. 
Connectors connect to these ports, whereby the 
connection can play a specific role. Configurations 
are compositions of components and connectors 
with their ports and roles. 

The vocabulary of the five elements shall be 
defined formally in terms of a simple logical 
formulation. This is loosely based on descrip-
tion logics, which often act as formal models of 
ontology languages such as the Web Ontology 
Language OWL.

Component ∨ Connector ∨ Role ∨ Port ∨ Configuration
       ⊆ Element
and

Configuration     =  ∃ hasPart . (Component ∨ 
        Connector ∨ Role ∨ Port)
Component     =  Element ∧ ∃ 
        hasInterface . Port
Connector     =  Element ∧ ∃ 
        hasInterface . Role

The subset relation expresses subsumption, 
i.e. the subclass-superclass relationship. The 



�0�  

Quality-Aware Model-Driven Service Engineering

predicates hasPart and hasInterface are predefined 
relationships between architecture elements. For 
instance, a configuration has parts such as com-
ponent, connector, role or port. The existential 
qualifier describes that these components might 
exist. In terms of architecture models, these ele-
ments are types, i.e. are meta-level constraints 
for a concrete architecture.

Service architectures, processes 
and dynamic dependencies

Process and interaction behaviour is an essential 
part of modelling software architectures (Plasil 
and Visnovsky, 2002), in particular for service-
based software systems. Interaction processes are 
central for the understanding of the behaviour of 
a software system. For instance, (Kazman et al., 
2000) use scenarios – descriptions of interactions 
of a user with a system – to operationalise require-
ments and map these to a system architecture. We 
have extended the notion of interaction and also 
considered system-internal interactions. We also 
allowed interaction processes to be composite. 
Interaction process descriptions are forms of 
dependencies between components based on the 
connectors that need to be captured and addressed 
explicitly.

A service is defined as a coherent set of opera-
tions. An abstract service interface description 
is usually available. More recently, research 
has focussed on the composition of service to 
processes (Alonso et al., 2004). Existing com-
ponents can be reused and assembled to form 
business or workflow processes. The principle 
of architectural composition that we look at here 
is process assembly.

architecture Modelling notation

We introduce a notation for the architectural 
modelling of service compositions and interaction 
that extends the previous structural focus of the 
architecture ontology. Our objective is to identify 

features of an architectural engineering language 
for services. This could be mapped or embedded 
into a full-scale architecture description language 
(ADL). Interaction behaviour for architecture 
configurations is an important feature for service 
architectures. Process calculi are often used in 
ADLs to express this type of information. Two 
elements define our notation. 

•	 Firstly, a description notation is needed to 
capture architectural properties of a service-
based software system. 

•	 Secondly, the notation is complemented by 
modelling and analysis techniques. 

The notation is defined in terms of the p-cal-
culus (Sangiorgi & Walker, 2001) for two reasons. 
Firstly, a simulation notion allows us to formalise 
the transformation into executable code – for 
instance for empirical performance evaluation 
and instrumentation. Secondly, mobility is similar 
to changes in context – which gives us a formal 
framework in which to define change and address 
maintainability. We have introduced a new nota-
tion in order to tailor the p-calculus: firstly, to hide 
some of the more mathematical constructs and, 
secondly, to provide a focused set of operators 
for service composition.

The basic element describing process activ-
ity is an action. Actions are combined to process 
expressions. Given a service x and data item a, 
actions can be divided into invocations inv	x	(a) 
of other services and activations receive rcv	x	(a) 
and reply rep	x	(b) through other services. The 
process combinators are:

•	 Sequences are represented by the ’;’-notation 
a;P, meaning that action a is executed and 
the system transfers to the remainder in the 
form of process P where the next action of 
P is executed.

•	 Choice means that one ai from choice ai;Pi 
(i=1,..,n) is chosen.



  �0�

Quality-Aware Model-Driven Service Engineering

•	 Multichoice mchoice ai;Pi (i=1,..,n) allows 
any number of the processes ai;Pi to be 
chosen and executed in concurrently.

•	 Iteration repeat P executes process P an 
arbitrary number of times.

•	 Parallel composition par	 (P1,P2) executes 
processes P1 and P2 concurrently.

Additionally, process abstractions shall be 
introduced. The following example introduces 
Coach as an abstraction, which is defined as a 
repeated choice of three individual actions (one 
of which is a sequence). Results of invocations 
can be assigned to variables.

Coach := repeat ( choice ( rcv getPref(); 
                   rep getPref(prefInfo), 
                                              rcv setPref(prefInfo), uri = 
                                              inv locator (resource) ) )

We cover the different aspects of architectural 
interaction modelling with this notation. Workflow 
operators are directly integrated as operators. An 
architectural design pattern can be formulated as 
an expression of a number of concurrently execut-
ing processes. Reference architectures and styles 
can be modelled on the level of abstractions in 
terms of the architecture ontology.

The architecture modelling notation is comple-
mented by modelling and analysis techniques that 
suit the architectural engineering needs. A notion 
of satisfaction is needed to capture equivalence and 
refinement – an essential element of the modelling 
aspect. A simulation definition, adopted from the 
p-calculus, satisfies this requirement for the pro-
cesses. A simulation needs to match all actions of 
the original process in the same ordering. 

Modelling approach: overview

We have used textual notations for both the 
architecture ontology and also the behavioural 
specification constructs. Both could have been 
represented in terms of UML diagrams such as 

class and activity diagrams, with some OCL exten-
sions. In order to clarify the formal background of 
these aspects, we have opted to represent them in 
terms of logics and process calculi notations.

The outline modelling notation support the 
three aspects identified earlier on. These three 
will be addressed in depth in the next three sec-
tions.

•	 A Styles and Reference Architectures Sec-
tion aims at the internal attributes portability, 
interoperability and also reusability ques-
tions at the design level. Domain-specific 
and middleware-induced architectural con-
straints will be investigated.

•	 A Patterns Section looks at patterns in the 
form of architectural, workflow and distri-
bution patterns with two aims: firstly, to 
deal with maintainability at design level; 
secondly, to address performance and in 
principle also reliability, availability and 
other external attributes at the code level.

•	 An Instrumentation Section looks at per-
formance as a specific external attribute at 
the code level. Explicit instrumentation is 
an addition to the architecture modelling in 
terms of constraints and patterns.

Deployment and execution of instrumented 
code will also be addressed briefly, although our 
focus is on the modelling aspects.

Service architecture: 
StyleS and reference 
architectureS

A central contributor to quality at architectural 
level is reuse. The reuse of architecture and 
components leads to better architectures in two 
aspects:

•	 maintainable through well understood 
structural and behavioural aspects,



��0  

Quality-Aware Model-Driven Service Engineering

•	 interoperable through standards-compliancy 
in terms of architectural aspects.

Architectural styles and reference architec-
tures are related concepts that both constrain ar-
chitectures, although with different objectives.

•	 Architectural Styles. We look at generic 
styles, like pipe-and-filter, which introduce 
a vocabulary of architectural element types 
with specific structural properties in terms 
of connectivity. The aim is to support in-
teroperability and reuse from an internal, 
middleware- and platform-oriented perspec-
tive.

•	 Reference Architectures. We look at do-
main-specific reference architectures such 
as the IEEE Learning Technology System 
Architecture LTSA for learning technol-
ogy systems. Their aim is often to support 
interoperability and reuse from an external, 
cross-organisational perspective.

The Architecture Ontology from Section 4.1 
provides here the central notation.

Software architectures often act as a bridge 
between the client-oriented requirements and the 
software implementation-oriented design stages. 
The architectural style language for service ar-
chitectures is directly based on the architecture 
ontology presented earlier. The style language is 
structural and connectivity-oriented. Styles are 
abstract models that aim to either

•	 reflect quality high-level design of software 
systems, i.e. aim typically at internal quality 
attributes, or

•	 constrain towards specific middleware and 
platform technologies, i.e. aim at interoper-
ability.

They are therefore an integral part of a qual-
ity-aware model-driven service architecture 
framework. 

architectural Styles principles

Architectural styles are reusable, recurring pat-
terns in software architectures that are proven 
to have specific quality attributes (Abowd et al., 
1995; Spitznagel et al., 1998; Baresi et al; 2004; 
Cortellessa et al., 2006; Giesecke, 2006). Typical 
examples are client-server, n-tiered, or pipe-and-
filter architectures. These architectures share a 
common vocabulary, defining the elements of the 
architecture, and common constraints, defining 
the structural and behavioural restrictions that 
might apply. 

Most ADLs focus on the component and 
connector view, i.e. model a system in terms of 
the components that will be implemented and 
executed and their connectivity. An architectural 
style language for this context needs to provide a 
type language – such as our architecture ontol-
ogy – that allows basic element types – such as 
component, connector, or port – to be instanti-
ated. The possibility to augment these types by 
structural and behavioural constraints is another 
necessary part of a style language.

architectural Style Modelling

Defining architecture styles is actually done by 
extending the basic vocabulary of core types 
from the architecture ontology. The subsump-
tion relationship serves to introduce the specific 
types that form an architectural style. This shall 
be illustrated using the pipe-and-filter style. We 
start with an extension of the hierarchy of archi-
tecture types in order to introduce style-specific 
components and ports:

PipeFilterComponent      ⊆ Component
PipeFilterPort      ⊆  Port

These new elements shall be further detailed 
and restricted to express their semantics. We 
distinguish three types of pipe-filter components, 
DataSource, DataSink and Filter. Their respec-



  ���

Quality-Aware Model-Driven Service Engineering

tive connectivity through input and output ports 
is defined as follows:

DataSource  = ≤ 1 hasPort ∧ ∃ hasPort . Output
DataSink = ≤ 1 hasPort ∧ ∃ hasPort . Input
Filter  =  = 2 hasPort ∧ ∃ hasPort . Input ∧ ∃ hasPort . Output

DataSource, DataSink, and Filter are defined 
as components of a pipe-and-filter architectural 
style. Each of these components is characterised 
through the number and types of component ports 
using so-called predicate restrictions on a numeri-
cal domain and the usual concept descriptions. 
The expression ≤ n is used to express hasPort.( 
n | n ≤ 1) for instance. In addition to these more 
structural conditions that define the connec-
tions between the component types, a number 
of semantic constraints can be formulated that 
further refine the initial enumeration of pipe-filter 
components.

•	 Disjointness requires the individual com-
ponents to be truly different:

DataSouce ∧ DataSink ∧ Filter = ⊥

•	 Completeness requires pipe-and-filter com-
ponents to be made up of only the three 
specified types:

PipeFilterComponent  = DataSource ∨ DataSink ∨ Filter

reference architectures

Reference architectures are high-level speci-
fications representing common structures of 
architectures specific to a particular domain or 
platform. If they exist, they can play an essential 
role in the architectural definition of a software 
system. Theys often emerge in an abstracted and 
standardised form from successful architectures. 
Reference architectures define accepted structures 
and processes that help to build maintainable and 
interoperable systems. In our context, these archi-

tecture abstractions can be represented similar to 
architectural styles, i.e. at a meta-level in terms 
of architectural element types and their proper-
ties. What we add to our illustration of reference 
architectures is the behavioural perspective. We 
allow them to be described in terms of service 
interactions.

In the context of educational software systems, 
the Learning Technology Standard Architecture 
LTSA provides a service-oriented reference 
architecture (IEEE, 2001). It captures common 
structural and behavioural features of learning 
technology systems. We can describe IDLE’s 
architectural characteristics using the LTSA. 

•	 An abstract structural representation of the 
LTSA in a notation resembling UML class 
diagrams can be found in Fig. 2. In terms of 
the architecture ontology, we would describe 
as follows for the component definition.

LearnerEntity ∨ Delivery  ∨ Evaluation  ∨	
Learning Resources  ∨ Coach  ∨ LearnerRecords 

⊆	Component

•	 The interaction behaviour (of the delivery 
parts) of the LTSA in terms of the interac-
tion calculus can be described as follows.

LearnerEntity : =  
prefInfo = inv getPref (); inv setPref ( alter(prefInfo) );
learnRes = inv multimedia ()
Coach := 
repeat ( choice ( rcv getPref(); rep getPref(prefInfo), 
 rcv setPref(prefInfo), uri = inv locator (resource) ) )
Delivery  :=  
rcv locator(uri); learnRes = inv retrvRes (uri); rep multi-
media (learnRes)
LearningResources : = 
rcv retrvRes(uri); rep retrvRes( retrieve(uri) )

An important goal of using a (service-oriented) 
reference architecture in our context is the identifi-
cation of services in the original IDLE system:



���  

Quality-Aware Model-Driven Service Engineering

•	 Some of the components are already services 
– an SQL execution element that is part of 
the lab resources and delivery subsystem is 
an example.

•	 Some components (implemented as Java 
objects) are not services – a feedback system 
is not encapsulated as a service; another 
example is the workspace function. We have 
decided to realise the workspace function, 
which could have been integrated into ei-
ther learning resources or learner records, 
as a separate service in the re-engineered 
system.

Quality-driven architecture

Architectures and the architectural styles and 
reference architectures they are based on have 
a critical impact on the quality of a software 
system. The use of styles in architecture design 
implies certain properties of software systems, 
as these styles are abstractions of successfully 
implemented systems that are usually easy to 
understand, to manage, to maintain etc. While 
of course functional properties of services are 
vital, non-functional quality aspects ranging from 
availability, performance, and maintainability 

guarantees to costing aspects are equally impor-
tant and need to be captured to clearly state the 
quality requirements. The reliability of a service-
based system, the availability of services, and the 
individual service and overall system performance 
are often crucial. Links exist between function-
ally-oriented architecture models and quality 
properties of these systems (Garlan & Schmerl, 
2006; Spitznagel & Garlan, 1998). A mere state-
ment of required quality properties is therefore 
often not sufficient to actually guarantee these 
properties. We look at architectural styles and 
reference architectures to illustrate this point.

•	 A catalogue of architectural styles (Barrett et 
al., 2006) may be used by software architects 
to determine general patterns that would lead 
to architectures that exhibit some desired 
quality properties. Each of the styles in the 
catalog is associated with certain quality 
characteristics, which would be exhibited 
during the deployment and execution of 
system compositions. We return to this 
aspect later on in the context of patterns.

•	 Reference architectures are different in that 
large catalogues of these are usually not 
available. Reference architectures are often 

Figure	2.	A	structural	overview	of	 the	LTSA	Reference	Architecture	 (©2007	Claus	Pahl.	Used	with	
permission)

M ultim ed ia
B ehaviour

In terac tion C ontext

Learn ing
P references

Learner 
In foC ata log

In fo

Q uery

Learn ing
C ontent

Locator
Locator

Assessm ent

D e liveryD elivery

Learner 
E ntity

Learner 
E ntity

E va luationE va luation

Learner 
R ecords

Learner 
R ecords

C oachC oach
Learn ing 

R esources
Learn ing 

R esources Learner 
In fo

M ultim ed ia
B ehaviour

In terac tion C ontext

Learn ing
P references

Learner 
In foC ata log

In fo

Q uery

Learn ing
C ontent

Locator
Locator

Assessm ent

D e liveryD elivery

Learner 
E ntity

Learner 
E ntity

E va luationE va luation

Learner 
R ecords

Learner 
R ecords

C oachC oach
Learn ing 

R esources
Learn ing 

R esources Learner 
In fo



  ���

Quality-Aware Model-Driven Service Engineering

prescribed. The quality benefit is in terms 
of interoperability and reuse. Associated 
qualities, as for styles, are not the primary 
aim.

Quality-driven development requires qual-
ity attributes to be evaluated and confirmed. 
As architectural styles are often extensible and 
composable, the qualities of newly derived styles 
cannot always be taken for granted. Only through 
empirical evaluations can these expected qualities 
be confirmed. For instance, the Goal-Question-
Metric (GQM) approach to quality goal evalua-
tion (Basili et al., 1994), a method which allows 
metrics to be derived from abstract quality criteria, 
can support this quality evaluation endeavour. 
Implemented systems can be evaluated using the 
metrics derived from the quality goals via GQM, 
but this approach can also be used to address 
internal quality attributes. We will return to this 
aspect later on in the specific context of perfor-
mance evaluation where a specific combination 
of goals and metrics is used. 

pattern-baSed Modelling, 
architecture, and 
developMent

The use of patterns in architecture design implies 
certain properties of services and systems, as these 
patterns are – similar to the higher-level styles and 
reference architectures – abstractions of existing 
system aspects that exhibit certain qualities. The 
implementation model of services in general and 
Web services in particular are based on the idea of 
service provider and service client being business 
partners. This constellation requires contracts 
to be set up, based on service-level agreements 
(SLAs). While of course functional properties of 
services are vital elements in these SLAs, non-
functional aspects – ranging from availability, 
performance, and maintainability guarantees 
to costing aspects – are equally important and 

need to be captured in SLAs to clearly state the 
quality obligations and expectations of provider 
and client. Explicit models can support SLAs for 
service-based systems deployment.

Based on the requirements for quality-aware 
model-driven service engineering, this section 
covers specific techniques for model-driven de-
velopment with pattern-based modelling using a 
UML-compliant technique based on functional 
and distribution patterns for service architectures 
at its core. The impact of the techniques on qual-
ity – of both the models and the final system – is 
highlighted. Layered pattern modelling with a 
strong emphasis on distribution patterns emerges 
as the crucial element.

We distinguish workflow patterns (van der 
Aalst et al., 2003) and architectural design pat-
terns (Garlan & Schmerl, 2006). Workflow pat-
terns relate to connector types that are used in 
the composition of services or components – they 
are actually provided as built-in operators of the 
calculus. Architectural design patterns are struc-
tural and behavioural constraints formulated on a 
number of components with particular roles. We 
join here design patterns (Gamma et al., 1995) and 
architectural patterns (Garlan & Schmerl, 2006) 
into one architectural design pattern concept.

Service composition Meta-Model

Our core notation for service configurations as 
interaction processes and remote activations was 
based on a process calculus. A service process 
based on the orchestration, or composition, of 
individual services can be also formulated in 
terms of the UML activity diagram in order to 
use a common visual notation. Its (simplified) 
definition as a process language based on activity 
nodes and edges is presented in Fig. 3.

The process-centric architecture modelling 
notation and these UML activity diagrams are 
related. Here, the structural connectivity in 
terms of service composition operators such as 
sequence, choice or parallel composition can be 



���  

Quality-Aware Model-Driven Service Engineering

represented in terms of UML using control flow 
nodes and edges such as decision, fork, merge 
and join. Thus, we combine textual architecture 
descriptions (typical for ADLs such as ACME) 
and visualisations in terms of UML (which is also 
used extensively for architecture modelling). 

layered Service Systems Modelling

A layered conceptual service architecture model 
that is tailored towards the needs of service and 
process-oriented platforms shall address the 
different levels of abstraction in service-based 
architectures:

•	 Architectural design patterns are medium-
scale patterns – usually referred to as design 
patterns or architectural frameworks.

•	 Workflow patterns are process-oriented 
patterns that represent common business 
or workflow processes in an application 
domain.

Some of these patterns qualify as distribution 
patterns, which are platform-oriented patterns 
with certain quality characteristics attached. 
These patterns are extensions of architectural 
styles. While the styles were more structurally 

oriented, these patterns put an emphasis on in-
teraction and processes. Similar to styles, their 
aim is reuse.

Design patterns are recognised as important 
building blocks in the development of software 
systems (Gamma et al., 1995). Their purpose 
is the identification of common structural and 
behavioural patterns in these systems. A rich 
set of design pattern has been described, which 
can be used to structure a software design at an 
intermediate level of abstraction. Design patterns 
in Web services architectures are discussed in 
(Topaloglu & Capilla, 2004). Usually, architec-
tural patterns (such as client-server or model-
view-controller) are distinguished from design 
patterns (such as factory, composite, or iterator). 
We see both forms of patterns as constraints on a 
system architecture, i.e. on services and on their 
patterns of interaction. 

An example of an architectural design pattern 
for service architectures is the client-dispatcher-
server pattern (Topaloglu & Capilla, 2004), repre-
sented in Fig. 4. In IDLE, a learner requests content 
from a resources server. This involves the learner 
(client), a coach (dispatcher), and the resources 
and delivery subsystem (server). The pattern is 
not identical to the structure found in the IDLE 

Figure	3.	Meta-model	for	UML	activity	diagrams	(©2007	Claus	Pahl.	Used	with	permission)

Activity

Activity Node Activity Edge

Control Flow Object Flow

input
pin

output
pin

parameter
node

decision fork merge join

initial
node

final
node

Control NodeObject Node Action

target

source

in

out

Activity

Activity Node Activity Edge

Control Flow Object Flow

input
pin

output
pin

parameter
node

input
pin

output
pin

parameter
node

decision fork merge join

initial
node

final
node

decision fork merge join

initial
node

final
node

Control NodeObject Node Action

target

source

in

out



  ���

Quality-Aware Model-Driven Service Engineering

system. However, the client-dispatcher-server 
pattern is simulated by the composite process 

par (LearnerEntity,Coach,Delivery)

of an IDLE reformulation in LTSA terminology, 
i.e. the pattern is a good abstraction of IDLE 
functionality. Abstracted pattern definitions such 
as client-dispatcher-server can act as building 
blocks in higher-level architectural specifications. 
Patterns are defined as process expressions and 
made available as process abstractions. 

Workflow patterns are small-scale process 
patterns. These are small compositions of basic ac-
tivities. The multichoice pattern is an example: 

mchoice (Lecture, Tutorial, Lab)

expresses that a selection of IDLE services Lec-
ture, Tutorial, and Lab can be used concurrently. 
Workflow patterns and the problems they cause 
when implemented in Web services infrastruc-
tures are described in (van der Aalst et al., 2003). 
To identify these patterns is important since often 
not all of them are supported by the implementa-
tion languages. In this case, predefined architec-
tural transformations can be reused in an MDD 
environment that generates executable processes 
automatically.

The IDLE storage/workspace feature can be 
integrated as a service:

WorkSpace  := 
choice ( repeat ( rcv retrieve (resId); inv provide (res) );
repeat ( rcv store (resId, res) )  )

This explicit storage and workspace service 
would require for instance the services Lear-
nerEntity and Delivery to be modified in their 
interaction patterns.

The central aim of patterns is reuse, which 
leads to improved quality as a result. The reuse 
of architectural design is one issue. For instance, 
the client-dispatcher-server pattern is a common 
pattern that divides functionality and achieves 
loose coupling, which is a way to improve main-
tainability and replaceability. Reuse in this case 
also means reuse of predefined transformations, 
as the mchoice-based workflow pattern shows.

Service distribution and topology 
Modelling

While patterns in general can influence some of 
a system’s quality characteristics, such as under-
standability or maintainability, for service-centric 
software systems specific properties arising from 

Figure	4.	Client-dispatcher-server	design	pattern	(©2007	Claus	Pahl.	Used	with	permission)

C lient

doTask
sendR equest

C lien t

doTask
sendR equest

D ispatcher

reg is terS ervice
getC hanne l

D ispatcher

reg is terS ervice
getC hanne l

S erver

acceptC onnection
runS ervice
rece iveR equest

S erver

acceptC onnection
runS ervice
rece iveR equest

requestS ervice

re turn

reg is ter
acceptC onnection

requestC onnection

C lien t

doTask
sendR equest

C lien t

doTask
sendR equest

D ispatcher

reg is terS ervice
getC hanne l

D ispatcher

reg is terS ervice
getC hanne l

S erver

acceptC onnection
runS ervice
rece iveR equest

S erver

acceptC onnection
runS ervice
rece iveR equest

requestS ervice

re turn

reg is ter
acceptC onnection

requestC onnection



���  

Quality-Aware Model-Driven Service Engineering

the distributed and cross-organisational context 
are of central importance. The reliability of a 
system, the availability of services, and the indi-
vidual service and overall system performance are 
often crucial. We introduce distribution patterns 
to provide a framework for higher levels of ab-
straction beyond the service process composition 
that addresses these quality aspects (Barrett et al., 
2006). Links exist between functionally oriented 
models and quality properties of these systems. 
A mere statement of required quality properties 
is often not sufficient to actually guarantee these 
properties. We look at distribution properties of 
service-centric software systems to illustrate 
this point.

Distribution, i.e. the consideration of locations 
of services in a complex system, affects quali-
ties of the software systems such as reliability, 
availability, and performance. We use the term 
service topology to refer to the modelling of 
service compositions as collaborating entities 
under explicit consideration of the distribution 
characteristics.

Based on experience in designing and imple-
menting service-centric software systems, a 
number of standard architectural topologies have 
emerged for distributed, service-based systems 
(Thone et al., 2002; Skogan et al., 2004; Vasko 
& Duskar, 2004). They include centralised con-
figurations such as the hub-and-hpoke or decen-
tralised ones such as peer-to-peer architectures. 
These standard topologies, or configurations, 
can be abstracted into distribution patterns for 
the SOA platform. Distribution pattern model-
ling expresses how a composed system is to be 
deployed in a distributed environment (Skogan 
et al., 2004).

The goal is to enable the generation of ar-
chitecturally flexible Web service compositions 
that have the desired quality characteristics and 
whose quality characteristics can be evaluated 
and altered at design level – we will address the 
latter aspect in the Section 7. Having the ability 
to model, and thus alter the distribution pattern, 

allows an enterprise to configure its systems as 
they evolve, and to meet varying non-functional 
requirements.

Distribution patterns and also the previously 
discussed workflow and architectural design 
patterns can be expressed in the same way in 
our notation. All patterns refer to the high-level 
cooperation of components, termed collaboration. 
Workflows are compositional orchestrations, 
whereby the internal and external messages to 
and from services are modelled. Distribution 
patterns are, similar to design patterns, abstract 
compositional choreographies, where the focus 
is on external message flow between services. A 
choreography expresses how a system would be 
deployed in a distributed environment. We denote 
these compositions as distributed compositions by 
annotating the composition operators, e.g. for the 
hub-and-spoke, which is often called Centralised, 
the specification

Centralised = d-par ( Hub, Spoke1, . . . , Spoken )

denotes a parallel distribution.
This annotation of a composition is of im-

portance if, for instance, an executable service 
process is generated. In an MDD solution to 
service engineering, the predominant execution 
language for service compositions is the process 
execution language WS-BPEL. In WS-BPEL, pro-
cess partners would be configured as distributed 
services. Semantically, we follow the architecture 
description language ACME (Garlan & Schmerl, 
2006) here and introduce a type language for 
architectural elements, i.e. processes are typed. 
The identifiers Hub and Spoke are actually ser-
vice types that can be instantiated, for instance 
by Coach and Learner services, respectively. 
The distribution annotation denotes a distribu-
tion constraint that will have to be satisfied 
by a concrete implementation. Although code 
generation is an integral element of MDD, in the 
context of the Web service platform, WS-BPEL is 
the predominant executable service composition 



  ���

Quality-Aware Model-Driven Service Engineering

language. The transformation from the activity 
diagrams (or the interaction calculus) is uncriti-
cal; we therefore keep our focus on modelling 
activities. It is worth noting that architectural 
modelling constraints such as styles and refer-
ence architectures are meta-level constraints on 
architecture, i.e. need to be considered during 
architecture modelling and need to be satisfied 
by concrete architectures, but do not have to be 
considered for code generation.

Our framework comprises a catalogue of 
distribution patterns (Barrett et al., 2006). Each 
of the patterns in the catalogue is associated with 
certain internal and external quality characteris-
tics. The patterns in the catalogue are split into 
three categories: core patterns, auxiliary patterns 
and complex patterns. Core patterns represent the 
simplest distribution patterns most commonly 
observed in Web service compositions. Auxiliary 
patterns are patterns which can be combined with 
core patterns to improve a given quality charac-
teristic of a core pattern, the resultant pattern is a 
complex pattern. This catalogue assists software 
architects in choosing a distribution pattern for a 
given application context. The catalog categories 
are briefly outlined below:

•	 Core patterns are Centralised and Decen-
tralised.

•	 An auxiliary pattern is the Ring.
•	 Complex patterns are Hierarchical, Cen-

tralised Ring, Decentralised Ring, and 
Centralised and Decentralised Hybrid.

We describe one pattern that can be applied in 
IDLE in detail to illustrate distribution patterns 
and their quality relevance. We consider here the 
hub-and-spoke pattern. This pattern abstracts a 
system that manages a composition from a single 
location, the hub, which is normally the participant 
initiating the composition. The composition con-
troller (the hub) is usually remotely accessed by the 
participants (the spokes). This is the most popular 
and usually default distribution configuration for 

Web service compositions (van der Aalst et al., 
2003). We specify Hub and Spoke as components, 
i.e. Hub ⊆ Component and Spoke ⊆ Component. 
Suitable completeness and disjointness constraints 
would need to be added.

Hub = ∃ hasPort . Input  and  Spoke = ∃ hasPort . Output

explain that hubs receive incoming requests 
from spokes. Further constraints could limit the 
number of hubs to one, whereas spokes can be 
instantiated in any number. The dynamics can be 
specified as follows:

Centralised  =  d-par (Hub, Spoke1, . . . , Spoken )
with
Hub  =  repeat ( rcv invocation(. . .); rep reply(. . .) )
Spokei  =  inv result = invocation(. . .)

Centralised is at activity level; Hub and Spokes 
are at interaction level. This could be specified 
in terms of UML Activity and Interaction Dia-
grams.

A sample application of the Centralised pattern 
in the IDLE context consists of the often widely 
distributed Learner client applications as the 
spokes and the centralised Delivery educational 
service provider as the hub. 

The advantages of the Centralised or hub-and-
spoke pattern in terms of quality aspects are:

•	 Composition is easily maintainable, as 
composition logic is all contained at a single 
participant, the central hub.

•	 Low deployment overhead as only the hub 
manages the composition.

•	 Composition can consume participant ser-
vices that are externally controlled. Web 
service technology enables the reuse of 
existing services.

•	 The spokes require no modifications to 
take part in the composition. Web service 
technology enables interoperability.



���  

Quality-Aware Model-Driven Service Engineering

The main disadvantages are:

•	 A single point of failure at the hub provides 
for poor reliability/availability.

•	 A communication bottleneck at the hub 
results in restricted scalability. SOAP 
messages have considerable overhead for 
message de-serialisation and serialisation.

•	 The high number of messages between hub 
and spokes is sub-optimal. SOAP messages 
are often verbose resulting in poor perfor-
mance for Web services.

•	 Poor autonomy in that the input and output 
values of each participant can be read by 
the central hub.

All patterns have their advantages and dis-
advantages. The selection is determined by the 
context requirements. The hub-and-spoke pattern 
is typical for learning technology systems, for 
which maintainability and interoperability are 
central. Failure is not a highly critical problem and 
the number of users is predictable – which allows 
us to neglect two of the major disadvantages.

perforMance-driven 
Modelling and evaluation

We have looked at quality aspects of service-based 
software systems. Services as black-box entities 
limit this almost to the architectural level. In this 
section, however, we investigate a model-driven 
approach to the empirical quality evaluation of 
external quality properties. We focus on perfor-
mance as one specific aspect.

We introduce an evaluation cycle, using a GQM 
approach for goal-to-measurement mapping. We 
extend service architecture modelling through an 
explicit and empirical way of dealing with quality. 
An empirical performance-oriented MDSE with 
instrumentation and measurement as example of 
one quality approach shall be presented.

Although model-based evaluation methods for 
performance exist, for example simulation and 
analytic methods, we choose an empirical ap-
proach here. Its benefits are accuracy and empirical 
validation. Our aim is to explore the potential of 
this technique under the given constraints given 
by the architecture-centricity of SOA and the 
black-box character of services to demonstrate 
the possibility of validated qualities. 

Software performance, evaluation 
and Motivation

Performance is considered as the degree to which 
a software system or component meets its objec-
tives for timeliness (Snodgrass, 1987). It can 
be evaluated with simulation techniques, with 
analytical modelling or using empirical methods 
(Lilja, 2000):

•	 Simulation is an imitation of a program 
execution. In simulations, only selected 
important parts of an execution are imitated. 
It is less expensive then building a full-scale 
software system for empirical evaluation. It 
is also flexible as changes can be dealt with 
easily if the simulation is derived automati-
cally. However, simulation can suffer from 
a lack of accuracy.

•	 Analytical modelling is a technique where 
a system is mathematically described. 
Results of an analytical model can be less 
accurate than real-system measurements. 
However, analytical models are often easy 
to construct.

•	 Empirical evaluation is performed by mea-
surements and metrics calculation. They 
provide the most accurate results as no 
abstractions are made.

We consider here model-based empirical 
performance evaluations in order to demonstrate 
the potential and limits of service-based quality 
evaluation through code-based measurement. 



  ���

Quality-Aware Model-Driven Service Engineering

Empirical evaluation can be seamlessly integrated 
into a model-driven development methodology, 
as we will demonstrate.

While code-level instrumentations and evalu-
ation techniques for services exist, we feel that in 
model-driven software development, observations 
of behaviour and their evaluation should be done 
in the terms of modelling constructs. Instrumen-
tation for observing software should be done in 
terms of modelling constructs in order to prevent 
the software architecture from having to deal 
with transformation details. A necessary part of 
empirical performance evaluation is the execu-
tion data collection, which is achieved through 
instrumentation. The next subsection gives an 
overview of the instrumentation problem.

instrumentation, Measurement and 
evaluation

In software engineering, instrumentation is the 
process of adding software probes to a program 
for observing system behaviour and evaluating 
system properties (Snodgrass, 1987). Software 
probes are pieces of code for collecting data about 
the software execution. Generally, there are two 
techniques for collecting data about a program 
execution, sampling and event tracing:

•	 Sampling is a technique where parts of a 
program are sampled during its execution 
in some time interval – an example is sam-
pling the program stack to follow program 
execution. It is a statistical technique in 
which a representative sample of the data 
about the program during execution is taken. 
An advantage of this approach is that the 
impact on the performance of the program 
does not depend on the execution of the 
program. However, collected samples are 
different from run to run. The possibility 
that infrequent events are missed is another 
drawback.

•	 Event tracing is a process of generating 
traces of events in the software execution. 
A program trace is a dynamic list of events 
generated by the program as it executes 
(Lilja, 2000). A trace contains the time-or-
dered events and can be used to characterize 
the overall program behaviour. Problems that 
can be encountered with event tracing are 
system perturbations due the measurement 
and the amount of resources that tracing 
requires. Each newly added probe causes 
execution overhead (performance) and event 
traces require resources (memory). 

Due to its greater reliability, we utilised event 
tracing. We represent traces in a relational format 
using temporal database concepts. Temporal data-
bases are databases that support a notion of time 
(Snodgrass, 1987). In contrast to conventional, 
non-temporal databases, in which only facts are 
stored, each fact stored in a temporal database is 
associated with some time information. These 
facts can be related to a valid time dimension and 
to a transaction time dimension (Snodgrass, 1988). 
The valid time dimension is related to the time 
when the fact was true in reality. The transaction 
time dimension is related to the presence of the 
fact in the database. Temporal databases which 
store only facts about the past are called histori-
cal databases (Sarda, 1990). Historical databases 
define two kinds of relations, event and interval 
relations. Interval relations are used for storing 
facts which were true for some time interval. 
Event relations are used for storing facts which 
were true at some particular point of time. 

Model-driven Service development 
and instrumentation

At present, most research in model-driven de-
velopment is dedicated to simulation and per-
formance prediction with mathematical analysis 
methods (Balsamo et al., 2004; Park & Kang, 
2004). Nevertheless, predictions have to be vali-



��0  

Quality-Aware Model-Driven Service Engineering

dated when the software system is implemented 
and deployed. Validation should be based on 
modelling constructs as predictions are made 
according to them. Currently, timing behaviour 
is analysed based on source code constructs such 
as method execution time. In MDD, the level of 
abstraction is raised. Consequently, observations 
need to be based on modelling constructs such as 
states, activities, or methods.

We introduce an approach for the model-driven 
empirical performance evaluation of service-
based software systems. We need to define a 
model-based language for service instrumenta-
tion. Instrumentation languages can enforce data 
collection in a relational format. We focus on 
compositions (orchestrations) of services to pro-
cesses and address their performance behaviour. 
Our approach comprises:

•	 An instrumentation notation for service 
models that allows specific service model 
elements such as services or composition 
and flow operators to be annotated and 
marked as providing performance-relevant 
time information at execution time. We use 
UML activity diagrams to express service 
compositions and base our instrumentation 
language on this UML diagram format.

•	 Model-driven transformation techniques 
that generate executable code including the 
monitoring instructions necessary to record 
time information. 

•	 A trace analysis query language that pro-
vides the ability to calculate performance 
metrics. The evaluation is based on the 
temporal databases theory (Zaniolo et al., 
1997). The temporal databases theory relates 
facts stored in a relational format with time 
information. A relational program trace is a 
dynamic list of events and timing informa-
tion generated by the program as it executes 
(Lilja, 2000).

The hypothesis of our approach is that the 
execution of a program, which is defined by mod-
elling elements of a modelling language, can be 
characterised as either an event or an interval. The 
most important concepts in this basic package are 
thus interval trace and event trace. For instance, 
if an element of a modelling language models 
a part of the program execution which lasts for 
some time interval, it will be instrumented by a 
specialisation of the interval trace. 

Model-based instrumentation 
language

The instrumentation technique is developed 
around an instrumentation language. This is go-
ing to be integrated with the service modelling 
language, i.e. is an extension of the UML activ-
ity diagrams that we have used to model service 
orchestrations. Both the orchestration language 
and the instrumentation language can be defined 
in terms of the Meta Object Facility (MOF) (OMG, 
2006). Our instrumentation notation comprises 
of two parts. 

•	 Firstly, a basic trace package that captures 
the notion of traces and its two variants, 
event and interval traces, and operations to 
capture these traces (Fig. 5). 

•	 Secondly, the instrumentation of activity 
diagrams using the MOF profiles extension 
mechanism (Fig. 6).

The basic trace package reflects the required 
time dimensions and the recording concepts. 
The activity diagram instrumentation utilises 
these concepts. This separation allows the basic 
instrumentation principles to be reused across a 
range of problem-specific or even model-specific 
applications. In the given instrumentation, actions 
such as the central elements of activity diagrams 
and all six control nodes are annotated. The ex-
ecution of actions, which represent services at the 
model level, takes some time, i.e. an interval trace 



  ���

Quality-Aware Model-Driven Service Engineering

should be recorded at performance evaluation or 
execution time. We assume control flow decisions 
such as the start and end of the overall process, 
choices or mergers as instantaneous events.

instrumentation application

The application of the instrumented activity dia-
gram is illustrated in Fig. 7. Two types of model 
elements – actions such as login or transfer and 
control nodes such as the start or the first decision 
point – are instrumented. An interval consisting 
of begin and end time of the service executions 
that implement the actions are recorded as a 

consequence of this instrumentation. Events, 
i.e. individual time stamps, are recorded for the 
control nodes.

For the modeller and service architect, it is 
import to find an adequate instrumentation that 
provides answers to the relevant performance 
questions. For instance, in a particular situation 
only the (average or maximum) response times 
of particular services, such as the lecture and lab 
activity services, are of interest. Then, the instru-
mentation needs to reflect these requirements.

While we consider this instrumentation of 
actions and control nodes to be the standard 
case, the approach is actually flexible enough to 

Figure	5.	Basic	trace	package	(©2007	Marko	Bošković.	Used	with	permission)

Trace

field

Operation

IntervalTraceEventTrace EventOpIntervalOp

endperiodStartperiodperiodinterval eventtime

IdentOpTrace

field

Operation

IntervalTraceEventTrace EventOpIntervalOp

endperiodStartperiodperiodinterval eventtime

IdentOp

Figure	6.	UML	activity	diagram	instrumentation	(©2007	Claus	Pahl.	Used	with	permission)

Activity

Activity Node Activity Edge

Control Flow Object FlowControl NodeObject Node Action

target

source

in

out

ActionTrace ControlNode
Trace

IntervalTrace E ventTrace

Activity

Activity Node Activity Edge

Control Flow Object FlowControl NodeObject Node Action

target

source

in

out

ActionTrace ControlNode
Trace

IntervalTrace E ventTrace



���  

Quality-Aware Model-Driven Service Engineering

accommodate context-specific customisations. 
Some of the control nodes could be excluded or 
other modelling elements could be additionally in-
cluded. This is only limited by the extent to which 
the transformation and code generation supports 
the different model element instrumentations. 
Some guidance could be provided by disabling 
the instrumentation of elements that are difficult 
to implement or whose analysis would not provide 
useful performance information.

performance Monitoring

The actual implementation of the instrumentation 
is critical insofar it should be, firstly, easy to realise 
and, secondly, implemented without significant 
overhead. Aspects and interception techniques 
can be used to implement the instrumentation 
and data collection. 

In the services context, often the problem 
arises that the addition of probes into the service 
implementation is not possible due to the nature 
of services as black-box software components. 
We therefore distinguish two scenarios:

•	 Controlled environments that allow access to 
code. Aspect Oriented Programming (AOP) 
is a programming approach, suitable for the 
controlled approach, which can be used for 
transparent software instrumentation. The 
source code of the software is here not mixed 
with probes (Debusmann & Geihs, 2003). 
Marenholz et al. (2002) use AspectC++ for 
the instrumentation of operating systems 
for debugging, profiling/measurement, and 
runtime surveillance/monitoring. AOP is 
a technique that enables the separation of 
instrumentation from the development of the 
core software functionality. With AspectJ 
and AspectC++, instrumentation can also be 
done by adding a transparent software layer 
to the application for collecting execution 
data.

•	 Open environments in which services are 
black-box components. For a transpar-
ent instrumentation of service systems, 
interceptors can be used. Interceptors are 
similar to AOP and can intercept method 
invocations to transparently instrument a 

Figure	7.	Application	of	the	instrumentation	to	the	IDLE	activity	selection	process	(©2007	Claus	Pahl.	
Used	with	permission)

login

lecture

lab

logout
{user}

{activity}

{activity}

{sessionID}

{sessionID}

{knowledge}

{knowledge}

{void}

<<ActionTrace>>
LabTrace

ServiceTime: IntervalTime

<<ActionTrace>>
LectureTrace

ServiceTime: IntervalTime <<ActionTrace>>
LogoutTrace

ServiceTime: IntervalTime

<<ActionTrace>>
LoginTrace

ServiceTime: IntervalTime

<<ControlNodeTrace>>
StartTrace

StartTime: EventTime

<<ControlNodeTrace>>
EndTrace

EndTime: EventTime
<<ControlNodeTrace>>

DecisionTrace

DecisionTime: EventTime

<<ControlNodeTrace>>
MergeTrace

MergeTime: EventTime

login

lecture

lab

logout
{user}

{activity}

{activity}

{sessionID}

{sessionID}

{knowledge}

{knowledge}

{void}

<<ActionTrace>>
LabTrace

ServiceTime: IntervalTime

<<ActionTrace>>
LabTrace

ServiceTime: IntervalTime

<<ActionTrace>>
LectureTrace

ServiceTime: IntervalTime

<<ActionTrace>>
LectureTrace

ServiceTime: IntervalTime <<ActionTrace>>
LogoutTrace

ServiceTime: IntervalTime

<<ActionTrace>>
LogoutTrace

ServiceTime: IntervalTime

<<ActionTrace>>
LoginTrace

ServiceTime: IntervalTime

<<ActionTrace>>
LoginTrace

ServiceTime: IntervalTime

<<ControlNodeTrace>>
StartTrace

StartTime: EventTime

<<ControlNodeTrace>>
StartTrace

StartTime: EventTime

<<ControlNodeTrace>>
EndTrace

EndTime: EventTime

<<ControlNodeTrace>>
EndTrace

EndTime: EventTime
<<ControlNodeTrace>>

DecisionTrace

DecisionTime: EventTime

<<ControlNodeTrace>>
DecisionTrace

DecisionTime: EventTime

<<ControlNodeTrace>>
MergeTrace

MergeTime: EventTime

<<ControlNodeTrace>>
MergeTrace

MergeTime: EventTime



  ���

Quality-Aware Model-Driven Service Engineering

program (Klar et al., 1991; Debusmann et 
al., 2002, Yeung et al., 2004). For instance, 
software probes are predefined and placed 
in stubs and skeletons during an interface 
description compilation (Debusmann et 
al., 2002). The measurement probes can be 
turned on and off at runtime. Diaconescu 
et al. (2004) introduce an approach where a 
transparent proxy layer for data collection 
is automatically generated at deployment 
time. 

The JBoss Application Server, for instance, 
enables the transparent aspect-oriented addi-
tion of functionality. Its AOP features allow the 
interception of events and addition of trigger 
functionality based on those events. AOP, inter-
ceptors, and bytecode and platform instrumenta-
tion are approaches that enable the collection of 
data without influencing the functionality code. 
We can employ these ideas to collect data about 
the software execution at the model level as a 
separate concern. 

The first step, however, is the generation 
of executable and instrumented code. Activity 
diagrams that model service orchestrations can 
be converted into executable WS-BPEL Web 
services processes if invocation information such 
as service location is added to the abstract service 
process description:

•	 AOP concepts are used to generate the in-
strumented executable service code.

•	 Interception mechanisms are used to add 
the instrumentation and data collection.

We suggest using the ATL transformation 
language and tool from the ATLAS project to 
transform activity diagrams into executable 
code. The instrumentation includes monitor-
ing and data collection functionality. Data is 
stored in a temporal or historical database – or 
by using the time extensions of traditional 
relational databases. Fig. 8 shows a sample 
recording based on the instrumentation de-
fined in Fig. 7.

performance evaluation

Performance-relevant information needs to be ex-
tracted from the basic times stored in the database 
in order to allow a software architect to assess the 
overall performance of individual services and 
also orchestrated service processes. Temporal 
and historical databases are usually extensions of 
traditional relational databases. SQL is therefore 
available as a query language to retrieve and ag-
gregate information based on the recorded event 
and interval times. We argue that SQL is actually 

Figure	8.	Collected	Data	for	Learning	Activity	Process	Instrumentation	(©2007	Claus	Pahl.	Used	with	
permission)

 

3 :293 :15

3 :123 :03

2 :452 :22

Lectu reTrace :
S erviceT im e: In terva lT im e

3 :293 :15

3 :123 :03

2 :452 :22

Lectu reTrace :
S erviceT im e: In terva lT im e

2 :50

3 :10

3 :35

3 :01

2 :19

D ec is ionTrace :
D ec is ionT im e: E ventT im e

2 :50

3 :10

3 :35

3 :01

2 :19

D ec is ionTrace :
D ec is ionT im e: E ventT im e



���  

Quality-Aware Model-Driven Service Engineering

sufficient as a query language to formulate the 
relevant performance assessment queries. More 
advanced solutions like data warehouses with their 
extended evaluation support are not required for 
typical performance assessments. Two central 
performance assessments issues are:

•	 Response time assessment: response times of 
activities are usually recorded as intervals. 
The SQL aggregate functions, such as aver-
age (AVG) or maximum (MAX), provide 
the relevant answers.

•	 Frequency and distribution of invocations: 
the distribution of invocations (workload) 
between the individual services can be de-
termined based on the calculation of ratios 
between total numbers of invocations.

The database representation directly reflects 
the modelling layer, as the representation is 
generated from the model instrumentation. The 
queries are consequently formulated in terms of 
relevant model elements – which is one of the cen-
tral objectives of our model-driven performance 
evaluation approach. 

The average response time for service Lecture 
can be determined as follows:

SELECT AVG (ServiceTime)
FROM   LectureTrace

The determination of the maximum time would 
be formulated in a similar way. In the context of 
SOA, where individual services are often provided 
by external organisations, this information is often 
part of contracts and service-level agreements.

The proportion of Lecture invocations in rela-
tion to all user selections (decisions) can also be 
formulated:

SELECT COUNT (ServiceTime) / COUNT (Decision-
Time)
FROM   LectureTrace, DecisionTrace

This allows a software architect to judge 
the frequency of individual service activations 
in typical application scenarios.

concluSion

Since the service platform is based on a busi-
ness model involving service-level agreements 
between providers and users, more than the 
service’s functionality needs to be agreed upon. 
Internal qualities such as maintainability, but also 
external and observable quality attributes such as 
performance or security are of central importance 
for clients and providers. 

Quality assurance is, however, a challenge 
as a consequence of the black-box character of 
services, at least from the client perspective. Ser-
vice-oriented architecture (SOA) is an integration 
approach and consequently architecture-centric. 
Modelling in general and quality-aware modelling 
techniques in particular need to provide tailored 
service- and architecture-centric solutions.

In the context of this arising need to address 
quality for services in a model-driven service 
engineering discipline, we have investigated the 
crucial quality aspects and techniques that can 
be employed to actually address these through 
modelling activities at the service architecture 
level. 

•	 Abstract architectural constraints in the form 
of styles and reference architectures guide 
architectural modelling towards interoper-
ability and maintainability.

•	 Pattern-based modelling of service archi-
tectures is a further step towards reuse and 
maintainability.

•	 Empirical evaluation techniques, for in-
stance for performance, complement the 
previous focus in internal quality attributes 
by external quality considerations.



  ���

Quality-Aware Model-Driven Service Engineering

The focus on one specific aspect, performance, 
in the evaluation context shows that although 
architectural approaches allow referring to and 
addressing a variety of qualities as far as model-
ling is concerned, more specific techniques are 
needed to evaluate these qualities. Performance, 
security, or maintainability require different 
approaches to be integrated in a quality-aware 
service engineering discipline.

As such a service engineering discipline is 
only emerging, we have discussed our findings 
as part of a roadmap to a comprehensive quality-
aware service engineering approach. Although 
quality assurance is difficult to achieve due to 
the character of services, with the architectural 
modelling focus and the empirical evaluation we 
have suggested two ways of dealing with internal 
and external quality attributes of service-based 
software systems, respectively. 

future reSearch directionS

Model-driven development for service-oriented 
architecture (SOA) might initially seem easy to 
tackle since SOA is an integration approach at the 
software and system architecture level. Abstrac-
tion is already given and code generation seems 
easy due to the service platform principles and 
predominate execution languages. Difficulties, 
however, arise as this simplification becomes a 
problem if quality assurance is an issue. 

SOA also creates other still unsolved problems 
for model-driven development (MDD). 

•	 Modelling of service-based systems itself 
is intrinsically different from traditional 
software modelling. Service-based systems 
are process-centric compositions. Adequate 
modelling and architecture notations need 
to be provided for an MDD approach.

•	 Due to the heterogeneity of SOA targets, 
information integration is another integra-
tion dimension in addition to service-level 

integration. The SOA community already 
investigates semantically enhanced models 
and descriptions in the form of ontologies 
– for both information and service aspects. 
Besides consistency across applications, 
a higher degree of automation would be 
enabled through semantic enhancements. 
A similar trend can be observed in the con-
text of MDD, where currently an ontology 
definition metamodel to support semantic 
modelling is being standardised by the 
OMG.

Quality-aware model-driven service architec-
ture needs to be linked to the service platform in 
order to deliver validated quality guarantees. We 
have only introduced platform instrumentation 
and interception mechanisms briefly here, but an 
in-depth investigation would allow the trade-off, 
for instance between accuracy and overhead, to 
be discussed in detail.

More within the concrete framework of our 
approach than the semantic enhancements, a 
number of issues have remained unaddressed. 
We have only looked at performance as one of the 
highly important external, observable qualities of 
a service-based system. Due to the distribution of 
service systems and the openness of the service 
platform in terms of communications infra-
structure, security is another important quality. 
Corresponding modelling concepts for security 
mechanisms ranging from encryption to access 
control to trust control need to be integrated. This 
is at least an equally complex endeavour to our 
solution of model instrumentation, monitoring and 
evaluation for performance considerations.

The idea of semantically enhanced models 
can lead to a solution in the security and trust 
context. Certified semantic descriptions of 
functional and quality properties of service and 
system, formalised in terms of ontologies, can 
support service-level agreements, even automated 
composition of services from different providers. 



���  

Quality-Aware Model-Driven Service Engineering

This, however, is a vision that is far from being 
investigated sufficiently.

referenceS

van der Aalst, W.M.P., Kiepuszewski, B., ter Hof-
stede, A.H.M. and Barros, A.P. (2003). Workflow 
Patterns. Distributed and Parallel Databases, 
14, 5–51.

Abowd, G., Allen, R. and Garlan, D. (1995). 
Formalizing style to understand descriptions 
of software architecture. ACM Transactions on 
Software Engineering and Methodology, 4(4), 
319–364.

Allen, R. and Garlan, D. (1997). A Formal Basis 
for Architectural Connection. ACM Transactions 
on Software Engineering and Methodology, 6(3), 
213–249.

Alonso, G., Casati, F., Kuno, H. and Machiraju, 
V. (2004). Web Services – Concepts, Architec-
tures and Applications. London, UK: Springer-
Verlag.

Baresi, L., Heckel, R., Thöne, S. and Varro, D. 
(2004). Style-based refinement of dynamic soft-
ware architectures. Proc. 4th Working IEEE/IFIP 
Conference on Software Architecture WICSA 
(pp. 155–164). 

Barrett, R., Patcas, L.M., Murphy, J. and Pahl, 
C. (2006). Model Driven Distribution Pattern 
Design for Dynamic Web Service Compositions. 
International Conference on Web Engineering 
ICWE’06 (pp. 129-136). 

Basili, V., Caldiera, G., and Rombach, D. (1994). 
The Goal/Question/Metric approach. Encyclope-
dia of Software Engineering, Volume I, 528–532. 
Los Alamitos, CA: Wiley.

Bass, L., Clements, P. and Kazman, R. (2003). 
Software Architecture in Practice. SEI Series in 
Software Engineering. Boston, MA: Addison-
Wesley.

Cortellessa, V., Di Marco, A. and Inverardi, P. 
(2006). Software performance model-driven 
architecture. Proc. ACM Symposium on Applied 
Computing	SAC’06 (pp. 1218–1223). 

Cuesta, C. E., del Pilar Romay, M., de la Fuente,  
P. and Barrio-Solorzano, M. (2005). Architectural 
Aspects of Architectural Aspects. Proc. 2nd 
European Workshop on Software Architecture 
EWSA	2005. Springer LNCS 3047.

Debusmann, M. and Geihs, K. (2003). Efficient 
and Transparent Instrumentation of Application 
Components using an Aspect-oriented Approach. 
Proc. IFIP/IEEE Workshop on Distributed Sys-
tems: Operations and Management DSOM 2003 
(pp. 209–220). Springer LNCS 2867.

Debusmann, M., Schmid, M. and Kroeger, R. 
(2002). Measuring End-to-End Performance of 
CORBA Applications using a Generic Instru-
mentation Approach. Proc.	 7th	 Int.	 Symp.	 on	
Computers and Communications ISCC ’02 (pp. 
181–186). 

Diaconescu, A., Mos, A. and Murphy, J. (2004). 
Automatic Performance Management in Compo-
nent Based Systems. Proc. 1st Int. Conf. on Au-
tonomous Computing ICAC’04 (pp. 214–221). 

Gamma, E., Helm, R., Johnson, R. and Vlissides, 
J. (1995). Design Patterns: Elements of Reusable 
Design. Boston, MA: Addison Wesley.

Garlan, D. and Schmerl, B. (2006). Architecture-
driven modelling and analysis. Proc. 11th Austra-
lian Workshop on Safety Related Programmable 
Systems	SCS’06, volume 69 of Conferences in 
Research and Practice in Information Technol-
ogy.

Giesecke, S. (2006). A Method for Integrating 
Enterprise Information Systems based on Mid-
dleware Styles. Proc. International Conference 
on	 Enterprise	 Information	 Systems	 ICEIS’06, 
Doctoral Symposium (pp. 24–37).



  ���

Quality-Aware Model-Driven Service Engineering

IEEE Learning Technology Standards Com-
mittee LTSC (2001). IEEE P1484.1/D8. Draft 
Standard for Learning Technology - Learning 
Technology Systems Architecture LTSA.  IEEE 
Computer Society.

ISO/IEC. ISO	9126	Software	Engineering	–	Prod-
uct Quality – Part 1: Quality Model. Published 
Standard.

Kazman, R., Carriere, S.J. and Woods, S.G. 
(2000). Toward a Discipline of Scenario-based 
Architectural Evolution. Annals of Software 
Engineering, 9(1-4), 5–33.

Klar, V., Quick, A. and Soetz, F. (1991). Tools for 
a Model–driven Instrumentation for Monitoring. 
Proc.	5th	Int.	Conf.	on	Modelling	Techniques	and	
Tools for Computer Performance Evaluation (pp. 
165–180). 

Lilja, D. J. (2000). Measuring Computer Perfor-
mance: A Practitioner’s Guide. Cambridge, UK: 
Cambridge University Press.

Mahrenholz, D., Spinczyk, O. and Schroeder-
Preikschat, W. (2002). Program Instrumentation 
for Debugging and Monitoring with AspectC++. 
Proc.	 5th Int. Symp. on Object-Oriented Real-
Time Distributed Computing ISORC’02 (pp. 
249–256). 

Medvidovic, N. and Taylor, R.N. (2000). A 
Classification and Comparison Framework for 
Software Architecture Description Languages. 
IEEE Transactions on Software Engineering, 
26(1), 70-93.

Object Management Group (2003). MDA Model-
Driven Architecture Guide V1.0.1. OMG.

Object Management Group (2004). MOF 2.0, 
OMG	document	ptc/04-10-15. web: http://www.
omg.org/cgibin/apps/doc?ptc/04-10-14.pdf. 

Oquendo, F., Warboys, B.C., Morrison, R., Din-
deleux, R., Gallo, F., Garavel, H. and Occhipinti, 
C. (2005). ArchWARE: Architecting Evolvable 

Software. Proc. 2nd European Workshop on 
Software	 Architecture	 EWSA	 2005. Springer 
LNCS 3047.

Pahl, C., Barrett, R. and Kenny, C. (2004). Sup-
porting Active Database Learning and Training 
through Interactive Multimedia. Proc. Intl. Conf. 
on Innovation and Technology in Computer Sci-
ence Education ITiCSE’04.

Park, D. and Kang, S. (2004). Design phase 
analysis of software performance using aspect-
oriented programming. Proc.	5th	Aspect-Oriented	
Modeling Workshop, UML’2004.

Plasil, F. and Visnovsky, S. (2002). Behavior Proto-
cols for Software Components. ACM Transactions 
on Software Engineering, 28(11), 1056-1075.

Sangiorgi, D. and Walker, D. (2001). The	π-calcu-
lus – A Theory of Mobile Processes. Cambridge, 
UK: Cambridge University Press.

Sarda, N. (1990). Extensions to SQL for Historical 
Databases. IEEE Transactions on Knowledge and 
Data Engineering, 2(2), 220–230.

Selic, B. (2003). The Pragmatics of Model-Driven 
Development. IEEE Software, 20(5), 19–25.

Skogan, D., Grønmo, R. and Solheim I. (2004). 
Web Service Composition in UML. Proc. 8th 
International IEEE Enterprise Distributed Ob-
ject Computing Conference EDOC’2004 (pp. 
47-57).

Snodgrass, R. (1987). The temporal query lan-
guage tquel. ACM Trans. Database Syst., 12(2), 
247–298.

Snodgrass, R. (1988). A Relational Approach to 
Monitoring Complex Systems. ACM Transactions 
on Computer Systems, 6(2), 157–196.

Spitznagel, B. and Garlan, D. (1998). Architec-
ture-based performance analysis. Proc. Confer-
ence on Software Engineering and Knowledge 
Engineering	SEKE’98.



���  

Quality-Aware Model-Driven Service Engineering

Thöne, S., Depke, R. and Engels, G. (2002). 
Process-Oriented, Flexible Composition of Web 
Services with UML. Proc. Joint Workshop on 
Conceptual Modeling Approaches for e-Business 
eCOMO 2002.

Topaloglu, N.Y. and Capilla, R. (2004). Modeling 
the Variability of Web Services from a Pattern 
Point of View. Proc. European Conf. on Web 
Services ECOWS’04 (pp. 128–138). Springer 
LNCS 3250.

Vasko, M. and Duskar, S. (2004). An Analysis 
ofWeb Services Flow Patterns in Collaxa. Proc. 
European Conf. on Web Services ECOWS’04 (pp. 
1–14). Springer LNCS 3250.

Weber, H. (2005). From Programme Engineering 
to Software Engineering . Proc. Theory and Prac-
tice	of	Software	Development	TAPSOFT’2005. 
(invited talk).

Yeung, K., Kelly, P.H.J. and Bennett, S. (2004). 
Dynamic Instrumentation for Java Using a Virtual 
JVM. Performance Analysis and Grid Comput-
ing, 175–187. 

Zaniolo,C., Ceri, S., Faloutsos, C., Snodgrass, 
Subrahmanian, V. S. and Zicari, R. (1997). Ad-
vanced Database Systems. San Fransisco, CA: 
Morgan Kaufmann Publishers.

additional reading

Architecture and Service Ontologies
General Background

Baader, F., McGuiness, D., Nardi, D. and Sch-
neider, P.P. (Eds) (2003). The Description Logic 
Handbook. Cambridge University Press.

A handbook on description logics that provides 
a comprehensive coverage of basics, extensions 
and applications of description logics, targeted at 

readers with some familiarity in formals aspects 
of computing.

Meyer, B. (1992). Applying Design by Contract. 
Computer, Oct. 1992, 40–51.

A seminal paper that outlines foundations and 
benefits	of	design-by-contract	as	a	software	design	
approach for the general computing audience.

Service-Specific Background

Lara, R., Stollberg, M., Polleres, A., Feier, C., 
Bussler, C. and Fensel, D. (2005). Web Service 
Modeling Ontology. Applied Ontology, 1(1), 
77–106.

A research article introducing the Web service 
modelling ontology WSMO

DAML-S Coalition (2002). DAML-S: Web Ser-
vices Description for the Semantic Web. Proc. First 
International Semantic Web Conference ISWC 
2002, 279–291. Springer LNCS 2342.

A research article introducing the Web service 
modelling	 ontology	 OWL-S	 (formerly	 named	
DAML-S).

Semantic Web Services Language (SWSL) 
Committee (2006). Semantic Web Services 
Framework (SWSF). http://www.daml.org/ser-
vices/swsf/1.0/.

A	Web	site	that	provides	access	to	material	(foun-
dations	and	theory,	specification,	applications	and	
case	studies,	tool	support)	on	the	Semantic	Web	
Services Framework, which carries work started 
on OWL-S further.



  ���

Quality-Aware Model-Driven Service Engineering

Standards

Object Management Group (2006). Ontology 
Definition Metamodel, Submission (OMG Docu-
ment: ad/2006-05-01). OMG.

An	OMG	Standard	that	defines	the	relationship	
between different knowledge representation 
frameworks or conceptual modelling languages 
such	as	ontology	languages	(OWL),	topic	maps,	
UML, and Entity-Relationship diagrams.

Pattern-Based Modelling
General Background

Kent, S. (2002). Model Driven Engineering. Proc. 
3rd Int. Conf. on Integrated Formal Methods IFM 
’02, 286–298, Springer-Verlag.

A research article that introduces the principles 
of model-driven development.

Service-Specific Background

Schlingloff, B.-H., Martens, A. and Schmidt, K. 
(2005). Modeling and Model Checking Web Ser-
vices. Electronic Notes in Theoretical Computer 
Science: Issue on Logic and Communication in 
Multi-Agent Systems, 126, 3–26.

A research article that investigates the principles 
of	using	formal	methods	(here	model	checking)	
to verify service system properties.

Selected Approaches

Dijkman, R. and Dumas, M. (2004). Service-
oriented Design: A Multi-viewpoint Approach. 
Intl. Journal of Cooperative Information Systems, 
13(4), 337–368.

This paper provides an example of a methodology 
to develop service-based software system.

Magee, J., Dulay, N., Eisenbach, S. and Kramer, 
J. (1995). Specifying Distributed Software Archi-
tectures. Proc. 5th European Software Engineering 
Conf. ESEC’95, Springer LNCS 989, 137–153.

A seminal paper on aspects on distributed systems 
and	their	formal	specification.

Allen, R. and Garlan, D. (1997). A Formal Basis 
for Architectural Connection. ACM Transactions 
on Software Engineering and Methodology, 6(3), 
213–249.

A seminal paper that provides a formal basis for 
architectural description languages.

Performance Evaluation
General Background

Hasselbring, W. and Reussner, R. (2006). Toward 
trustworthy software systems. Computer, 39(4), 
91–92.

A short research paper introducing the context 
of software quality and trustworthiness of soft-
ware.

Smith, C.U. and Williams, L.G. (2001). Perfor-
mance Solutions: A Practical Guide to Creating 
Responsive, Scalable Software. Addison-Wesley, 
Massachusetts, Boston, USA.

A textbook that focuses on performance as a criti-
cal aspect in the development of software.

Selected Approaches

Balsamo, S., Marco, A. D., Inverardi, P. and 
Simeoni, M. (2004). Model-Based Performance 



��0  

Quality-Aware Model-Driven Service Engineering

Prediction in Software Development: A Survey. 
IEEE Transactions on Software Engineering, 
30(5), 295–310.

A survey paper that outlines a range of approaches 
to model-based performance predication.

Hollingsworth, J.K.,  Niam, O., Miller, B.P., Xu, 
Z., Goncalves, M.J.R. and Zheng, L. (1997). MDL: 
A Language And a Compiler For Dynamic Pro-
gram Instrumentation. Proc. Int. Conf. on Parallel 
Architecture and Compiler Techniques PACT’97, 
201–213. IEEE Comp. Society.

The	 paper	 describes	 a	 technique	 (based	 on	 a	
language	and	compiler)	that	can	be	used	to	in-
strument program with probes.

Liao, Y. and Cohen, D. (1992). A Specificational 
Approach to High Level Program Monitoring 
and Measuring. IEEE Transactions on Software 
Engineering, 18(11), 969–978.

A research paper that introduces a high-level, 
model-oriented	approach	to	instrument	(monitor	
and	measure)	program	properties.

Petriu, D.B. and Woodside, M. (2004). A 
metamodel for generating performance models 
from UML designs. Proc. 7th Int. Conference 
on the Unified Modelling Language: Modelling 
Languages and Applications, 41–53. Springer 
LCNS 3273.

The paper describes a metamodel that allows 
the	definition	of	performance	models	for	existing	
UML-based software models.

Standards

Object Management Group (2005). UML Profile 
for Schedulability, Performance, and Time Speci-
fication, OMG document formal/05-01-02. 

OMG	Standard	that	defines	notions	in	the	context	
of performance and related software qualities. 
It	uses	 the	UML	profile	mechanism	 to	define	a	
performance extension to an existing model.

The Open Group (1998). Application Response 
Measurement (ARM). Technical Standard, Ver-
sion 2, Issue 4.0.

The	ARM	defines	the	collection	of	performance	
data. It provides interfaces to library components 
for performance measurement.



  ���

Chapter XVII
Model-Driven Integration in 

Complex Information Systems:
Experiences from Two Scenarios

Sven Abels
Abelssoft GmbH, Germany

Wilhelm Hasselbring
University of Kiel, Germany

Niels Streekmann
OFFIS – Institute for Information Systems, Germany

Mathias Uslar
OFFIS – Institute for Information Systems, Germany

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

abStract

This chapter introduces model-driven integration in complex information systems by giving two practi-
cal examples. It relies on the experiences the authors have made in two different research projects at 
the public utilities domain. The chapter starts with a short introduction of the general problem domain 
and it gives detailed background information about the current state of the art in model-driven integra-
tion.	Afterwards,	the	two	research	projects	are	introduced.	The	purpose	of	the	first	project	(MINT)		was	
to provide an integration approach allowing interoperability among several different legacy systems. 
Hence,	the	project	itself	was	only	acting	as	a	“bridge”	between	the	systems.		The	second	project	(DER)	
was built from scratch and got the challenge of integrating several existing third party systems into the 
newly designed system. In this project, the main system is a core element and only needed to integrate 
existing	legacy	systems	for	specific	tasks.



���  

Model-Driven Integration in Complex Information Systems

1. introduction

Business processes today usually involve several 
different information systems. A study by Marx 
Gómez and Brehm in 2007 with 658 participat-
ing SME companies in Germany turned out that 
90.3% of all companies are using more than one 
product for their financial business needs (i.e. 
ERP related tasks). More then 53% are using 4 or 
more products and almost 15% of all companies 
are using 10 or more different products, most 
of them being produced by different software 
vendors (Details can be found in Marx Gómez & 
Brehm, (2007). Considering those figures reveals 
the strong need for integrating different software 
systems into a coherent solution. This is usually 
achieved by creating interoperability between 
software systems. As defined by the IEEE, interop-
erability is „the ability of two or more systems or 
components to exchange information and to use 
the information that has been exchanged” IEEE, 
(1990). At the I-ESA 2007 conference, Jeusfeld 
argues that this topic is often neglected in the 
design of modern information systems (Jeusfeld, 
(2007)). For example, he describes that the well 
known Software Engineering Body of Knowledge 
(Swebok, (2004)) mentions interoperability only 
twice, once as an example for a system require-
ment and the second time as a title of a standard 
library of data models. Interoperability and the 
possibility to integrate different heterogeneous 
systems in a coherent architecture is, however, a 
key of the MDA strategy as defined by the OMG 
(Object Management Group) (OMG, (2003)). The 
following sections focus on this complex area and 
they put it in context of the model-driven software 
development (MDSD). This chapter demonstrates 
how to cope with integration and interoperability 
issues by explaining the intermediate results of two 
research projects, namely MINT  and DER.

The examples, used in this chapter are settled in 
the public utilities domain. Within utilities, several 
systems have a very long lifetime compared to 
systems from other domains. Once a company has 

chosen a SCADA (supervisory control and data 
acquisition system), it is unlikely to ever change 
it again in the next years or decades. Therefore, 
one has to deal with a lot of legacy systems 
which have to be integrated in both technical and 
business-related systems. The critical aspect in 
this context is that modern software systems are 
expected to quickly adapt to changing business 
processes by considering quality and reliability 
issues at the same time. This requires a flexible 
yet robust architecture and an approach to easily 
connect and enhance information systems.

2. background on the 
techniQueS uSed

Integration of software systems may take place 
on different levels. The OMG defines CIM (Com-
putation Independent Model), PIM (Platform 
Independent Model), PSM (Platform Specific 
Model) and code levels. Those are defined and 
described in detail earlier in this book. We will 
therefore focus on putting those levels into the 
domain of our specific problem of integrating 
information systems. Considering this, the fol-
lowing figure visualizes the current state of the 
art using CIM, PIM and PSM as different stages 
of abstraction.

The figure shows two different information 
systems with their levels of abstraction. Within 
one system, the OMG defines the following levels 
that can be distinguished when modelling, creat-
ing and refactoring systems in the Model-Driven 
Software Development (MDSD) approach: 

•	 CIM which is an abstract description of 
the system, mostly created by domain ex-
perts. 

•	 PIM that defines the “What and How” of an 
information system independently from the 
actual technology. 

•	 PSM that describes the “What and How” in 
a technologic dependent model and 



  ���

Model-Driven Integration in Complex Information Systems

•	 Code Level that contains the actual source 
code (e.g. C#, Oracle SQL, etc.) being the 
most technology dependent level of this 
approach.

The main idea of the overall approach is to 
use model transformation between CIM, PIM 
and PSM and automatic code generation between 
PSM and Code Level. This allows software engi-
neers to perform software development on a high 
level of abstraction and to handle very complex 
information systems.

When dealing with more than one information 
system it is, however, necessary to connect those 
information systems in order to either

i. exchange information between two equal 
systems, integrating them into an overall 
system that consists of different components 
or to

ii. exchange information between one main 
system and several sub systems that are in-
tegrated into the main system seamlessly.

This integration may happen on basically all 
levels of abstraction. There can be an early inte-
gration on CIM level, PIM or PSM level as well 
as a message-based integration on Code-Level. 
The two major European projects in Interoper-
ability issues, namely INTEROP1 and ATHENA2 
explicitly distinguish between the different inte-
gration of those levels for example in (Elvesæter 
et al., (2005)). 

Beside those different levels of integration 
Elvesæter et al. also suggest to distinguish be-
tween the integration of different aspects which 
they call “Conceptual Integration” (Elvesæter 
et al., (2005)). They distinguish between the 
integration of

1. Information aspects
 Information aspects are related to the mes-

sages or structures exchanged, processed 
and stored by software systems or software 
components

2. Service aspects
 Services are an abstraction and an encap-

Figure	1.		Integration	on	CIM,	PIM,	PSM	and	Code-Level	(©2007	Sven	Abels,	Wilhelm	Hasselbring,	
Niels	Streekmann,	and	Mathias	Uslar.	Used	with	permission)



���  

Model-Driven Integration in Complex Information Systems

sulation of the functionality provided by an 
autonomous entity

3. Process (and Rules) aspects
 Processes describe sequencing of work in 

terms of actions, control flows, information 
flows, interactions, protocols, etc. 

4. Non-functional aspects
 Additional functional qualities that can be 

applied to services, information and pro-
cesses

It should be mentioned that in this approach 
of the two projects,  INTEROP and ATHENA, 
“Non-functional aspects” also includes issues 
such as quality and security. Especially in sys-
tems that need to be available 24/7, such as in the 
public utilities domain, the two topics Quality and 
Security are usually crucial issues that need to 
be solved when integrating information systems 
in order to guarantee a coherent and consistent 
solution.

From a technical point of view, the area of 
integration can be distinguished. This defines 
where the integration takes place (see e.g. Reuss-
ner, (2005)). Considering this, we can define the 
following technological areas of integration:

i. Integration at persistence level
ii. Integration at functionality level
iii. Integration at service or process level
iv. Integration at presentation level

In the past, practical approaches incorporated 
integration on the persistence level, e.g. different 
systems using the same database, or the function 
logic level, where applications directly called func-
tions of other applications. Current approaches 
towards the integration of legacy systems focus 
on integration on the level of business processes 
using service-oriented architectures. These allow 
for the decoupling of functional aspects and their 
implementation. 

3. caSe StudieS for 
Model-driven integration

In this section, we will present two case stud-
ies for performing a model-driven integration 
considering quality and scalability constraints, 
too. We introduce two research projects from the 
utilities domain. Afterwards, we will give a brief 
description on how to connect them.

Mint

The purpose of MINT (Model-Driven INTegration 
of Business Information Systems) was to provide 
an integration approach allowing interoperability 
among several different legacy systems. Hence, 
the project itself was only acting as a “bridge” 
between the systems. 

Service Identification and Extraction

As stated in the last section, the integration in 
MINT will be performed at the service and busi-
ness process level. The problem of this kind of 
integration is that the functionality provided by 
legacy systems was not designed and not imple-
mented under the consideration of service-orien-
tation. Actually, the legacy systems that needed 
to be integrated have been up to 10 years old and 
consisted of a monolithic architecture.

We use a practical approach to solve this 
problem by implementing adapters for legacy 
systems in the form of WebServices. To build 
these adapters and describe the orchestration 
of the WebServices we applied a model-driven 
approach. This approach based on the BALES 
methodology (van den Heuvel, (2000)). The 
BALES methodology combines forward and 
reverse engineering techniques in order to create 
models for the generation of adapters. 

Integrating legacy systems and modern sys-
tems by employing service-oriented architectures 
and especially WebServices can be seen as a 
proven solution. The success of this method was 



  ���

Model-Driven Integration in Complex Information Systems

shown in several case studies as in Hasselbring, 
(2004) and Zimmermann, (2005).  The extension 
of the service-based integration by the generation 
of service adapters from architectural models 
is the subject of current research that has been 
carried out in our project. Besides the MINT 
project, there are some other approaches that use 
a similar approach as described in Winter, (2006) 
and Ziemann, (2006). 

A challenge of the integration of legacy systems 
is to identify adequate services, because legacy 
systems were not designed to provide services 
for other applications. The identification and 
design of these services is a non-trivial problem 
since usually manifold requirements have to be 
considered. Service design should therefore fol-
low certain rules. Hess, (2006) introduced such 
rules. The first rule is that the components that 
implement the services should be built by func-
tional criteria. This principle is followed in MINT. 
Service adapters for legacy systems are derived 
from business process descriptions in the CIM. 
The challenge is to find the right granularity of a 
service and match the services derived from the 
CIM to the interfaces of legacy systems.

Business Requirements

Our approach follows the MDA standard and 
especially concentrates on the interdependence 
between CIM and PIM, because it defines the 
connection between business requirements and 
the interfaces of the legacy systems. The con-
sideration of business requirements at CIM level 
allows us to add new functionality by consider-
ing new requirements. Of course this means that 
new requirements defined on CIM level must be 
transferred to the PIM level and afterwards the 
information needs to be used to create a service-
interface that is able to provide WebServices 
for the legacy systems being involved in MINT. 
Thus, the proper transformation from CIM to 
PIM is one of the major aspects for the quality 
assurance of legacy integration. MINT thereby 

focuses on process descriptions on a computa-
tion independent level from which architectural 
models are derived. These models are combined 
with interface models of the legacy systems to 
generate service adapters and orchestrations. We 
propose the use of model-driven and generative 
techniques to achieve this. The first allows the 
quick and consistent change of the requirements 
of the system by domain experts. Generative 
techniques as described in Czarnecki, (2000) 
allow the fast implementation of a software sys-
tem in a standardized engineering manner. In a 
model-driven environment this can be achieved by 
reusable transformations. These transformations 
encapsulate design decisions and recurring imple-
mentation details. Thus changing requirements 
can be implemented fast and traceable.

Considering Domain Experts

The integration of legacy systems on the pro-
cess level has two important issues from the 
software architecture point of view. The first is 
the generation of adapters to fit a legacy system 
into a modern software architecture or modern 
system landscapes. The second is the orchestra-
tion of these services according to the business 
process. 

An important quality aspect for process-based 
integration is the correct conversion of domain-
specific concepts into the generated adapters. This 
requires the participation of domain experts and 
system experts in the integration process. The 
system experts need to model the interfaces of 
legacy systems in an interface-based model of 
these systems. The domain experts on the other 
hand model the processes that integrate legacy 
systems in modern applications and are needed 
to match the concepts of the different systems to 
gain a correct integrated system. The involve-
ment of domain experts is the base of MINT to 
guarantee quality issues.

A related approach to include models in the de-
velopment process and thereby ensure the quality 



���  

Model-Driven Integration in Complex Information Systems

of the resulting software is domain-driven design 
as described by Evans, (2004). The approach also 
puts domain models into the centre of the software 
development process, but does not consider the 
generation of code from domain models.

To support the work of domain experts and 
system experts and to bring their work together in 
a consistent way new tools are required. Model-
driven development is a promising method to 
achieve this. Models are able to capture all neces-
sary information for the integration of software 
systems. Views on the models adjusted to the 
corresponding stakeholders and transformations 
between models on different levels of abstraction 
make it possible to offer an adequate working 
environment to each expert. 

Model Transformation

To realize adequate views on the same model spe-
cial modelling languages for each expert have to 
be employed. The MDA standard (OMG, (2003)) 
recommends the usage of UML to describe soft-
ware systems. In our point of view the UML is an 
appropriate language for many tasks of software 
architects and developers. But since the UML of-
fers a very technical view on software systems, 
it is not appropriate for all tasks that need to be 
fulfilled by domain experts describing their view 
and requirements on the integrated system. For this 
reason, we propose the usage of domain-specific 
languages (DSL) for the computation independent 
viewpoint of the MDA standard. 

Furthermore the transformation from compu-
tation independent models to architectural models 
is in our view an important part of the software 
development process. To assist this by the utiliza-
tion of DSL and automated model transformations 
is a step towards an engineering approach to soft-
ware development that incorporates all necessary 
steps from the definition of requirements to the 
generation of code. 

The main influences on the software archi-
tecture are decisions of the software architect 

based on the requirements of domain experts. 
Architectural decisions therefore strongly influ-
ence the transformation from CIM to PIM. Since 
the CIM only includes domain knowledge and 
requirements, it is clear that the decision for certain 
architectural aspects cannot be made out of the 
CIM alone, but also requires the knowledge of 
experiences with the influences of architectural 
decisions. These can be encapsulated in CIM-
to-PIM transformations and made configurable, 
which is proposed by Zimmermann, (2006). To 
weigh up the requirements and make a decision for 
a specific architecture is the task of the software 
architect, but the transformation can encapsulate 
former design decisions that proved of value in 
certain situations. E.g. architectural decisions can 
have a fixed influence on the usage and configu-
ration of design patterns, which e.g. is proposed 
by Becker, (2006) to introduce an engineering 
approach to component adaptation. 

In MINT, we have focussed on the quality of 
former and future architectural decisions based on 
both incorporating more existing knowledge from 
the legacy systems and the software engineers into 
future decisions. While this work mainly deals 
with quality as a non-functional requirement and 
takes code transformations into account to ease 
the development, the use case described in the 
next section will have a different focus.

der

The project DER (Distributed Energy Resources) 
is a scientific project dealing with a lot of problems 
coming from the domain of renewable energies. 
Therefore, we are going to provide an introduc-
tion to the IEC 61970 Common Information 
Model CIM. 

Due to the fact that the MDA also uses the 
word CIM as an abbreviation, we are going to 
change the abbreviation to IEC-CIM for this 
contribution. While MINT had a different focus 
which was driven by the software architecture 
rather than the domain, DER strongly takes the 



  ���

Model-Driven Integration in Complex Information Systems

domain semantics into account.  In the following, 
we are going to provide some insights to the new 
drivers which lead to new objects and therefore 
semantics to be exchanged between systems in 
the utility domain.

Legal Unbundling

Running an energy grid is a commerce often 
combined with generating energy. In the European 
Community, those monopolistic functions pro-
vided in certain domains like transport (railways), 
communications (cellular, phone) and energy are 
subject to a dissembly which should lead to new 
competitors entering the (formerly) monopolis-
tic markets Bundesministerium für Wirtschaft 
(2004), European Parliament (2003). In the util-
ity domain, there must be a dissembly of energy 
generation and energy distribution through grids. 
This applies to both electricity and gas. 

Summarizing the impact of the legal unbun-
dling, it becomes clear that the changed processes 
have new entry points for third-party participants 
which have to be satisfied using IT-technology. 
Unfortunately, all the hundreds of different for-
mats used by those companies cannot be easily 
integrated and processed.

New processes are being developed and the 
whole communication structure must be changed. 
Databases formerly used by the now unbundled 
distribution and generation structures must be 
split and kept in sync while their data schemes 
must be dissembled. This imposes both a threat 
and a chance to the systems. The chance is that 
new data schemes and techniques can be incorpo-
rated which better fit the needs of the market and 
provide less efforts needed when developing new 
adaptors and interfaces for exchanging data with 
new systems or third-party companies Robinson, 
Greg (2002)a, Robinson, Greg (2002)b. 

Different standards and frameworks have been 
developed all over the world to cover this needed 
communication and data exchange structure. 
The two most prominent ones are the NRECA 

MultiSpeak 2.0 (see MultiSpeak, 2003) standard 
and the IEC Common Information Model (IEC-
CIM) standard (see IEC (2003), Podmore, Robin 
et al. (1999)). The IEC-CIM has proven to be the 
better choice (e.g. Neumann (2003)) and is being 
further described within this contribution. 

Not only the new legal requirements impose 
changes, also environmental changes and increas-
ing needs for new and different energy producers 
lead to changes in processes, data models and field 
level communication. The concept of decentral-
ized energy producers like bio mass plants, wind 
power plants and fuel cells must be coordinated 
and their fed into the electricity power grid must 
be properly controlled and predicted Brand, 
Klaus-Peter & Buchholz, Bernd (2003). This 
leads to completely new function blocks and data 
models which have to be integrated in EMS and 
SCADA systems and must also interact with the 
commercial system like SAP.

To summarize the imposed requirements, we 
get to know that there is a strong need for coupling 
both new and old systems which have to deal with 
the proper semantics for the payloads. In order to 
use common semantics, we strongly make use of 
an existing domain ontology which is described 
in the next section.

IEC-CIM

The previous paragraph showed the two main 
drivers nowadays changing the IT-landscape in a 
utility company. Both data exchange processes and 
models heavily change with regard to complexity 
and sheer number of used standards. New stan-
dards must take this into account. As mentioned 
before, the IEC-CIM is the most prolific approach 
to deal with these problems. Due to the length 
of this chapter, more about the IEC-CIM and its 
object semantics has to be found in Uslar et al. 
(2005).  Anyway, there are still many problems 
unsolved when adopting the IEC-CIM norm. 

We have chosen the IEC TC 57 framework 
which incorporates the model as one sub-norm 



���  

Model-Driven Integration in Complex Information Systems

as the data model and communication standards 
framework. This lowers the amount of efforts 
which have to be spend on developing a domain 
model for the utility domain and market/substa-
tion communication. The IEC-CIM can serve 
as a global ontology for the utility domain and 
covers when converted into OWL (Web Ontology 
Language) about 2.500 RDF triples IEC (2004). 
Using the IEC-CIM ensures a high quality of the 
data format within the DER project since it is build 
on a solid base and since it has been evaluated and 
applied in various practical scenarios.

Currently, the IEC-CIM is mostly used for 
a message-based coupling and the exchange of 
power grid data. We are going to focus on the 
integration of heterogeneous system within this 
contribution. In order to achieve this, we created 
a RDF representation of the CIM format which 
will be transported as payload information using 
WebServices and SOAP, allowing all systems in 
the DER project to communicate and exchange in-
formation in a semantically standardized way. 

Representing IEC-CIM Using RDF and 
XML

Although the IEC-CIM itself is modelled as an 
UML diagram and provides useful insight to the 
important objects within the power industry, it is 
difficult to exchange data due to the fact that ob-
ject related databases are available but not widely 
used. Instantiated objects must be represented via 
serialization formats which can be exchanged in 
binary or ASCII format. 

The IEC proposed RDF as a proper way to 
exchange topology (power grid) data in a com-
mon format IEC (2004)b. The RDF schema is 
documented as the IEC standard 61970-501. Like 
any other XML based format, it has several ad-
vantages over binary formats. Due to XML based 
mechanisms, it is possible to extend the model 
with versioning mechanisms and, more impor-
tant, namespaces as a mechanism which is easily 
extensible and supports site-specific needs. 

RDF is both machine and human readable and 
self-describing, although it is primarily intended 

Figure	2.	Defining	payloads	for	EAI	and	EMB	in	the	context	of	CIM	(©2007	Sven	Abelss,	Wilhelm	Has-
selbring,	Niels	Streekmann,	and	Mathias	Uslar.	Used	with	permission)



  ���

Model-Driven Integration in Complex Information Systems

for programmatic access by tools which support 
the Document Object Model (DOM) API. Cur-
rent web standards can be met when using a RDF 
based representation of the data.

IEC standard 61970-501 defines standards 
mechanisms to convert the UML model into an 
RDF model. The conversion of the Rational based 
UML file can be done manually or tool-supported 
by the Xpetal converter. It reads the Rational 
Rose .mdl file and creates RDF or XML schemes 
from the corresponding model. Still, one valid 
RDF representation can differ from other valid 
representations. Furthermore, RDF models often 
tend to become quiet complex having nested tags 
and a large overhead of administrative meta-data 
compared to the actual data used. Often, large files 
describing topologies have to be exchanged while 
e.g. only some of the breakers have changed. The 
IEC standard 61970-503 IEC (2004)b therefore 
defines a simplified RDF syntax being an actual 
subset of RDF but still valid RDF and an differ-
ential model providing the chance to exchange 
tiny subsets of changes instead of complete model 
status snapshots. The amount of data exchanged 
between energy management systems or even 

companies can become very large. Processing 
this data is most often time-critical. 

Even though XML related data has proven to be 
useful due to its self-description capabilities (see 
Dag, Hasan & Urkan, Ulmut (2004), Zhou, E.Z. 
(2000)), nested tags instead of a simple serialized 
structure lead to slower process times as described 
in deVos, Arnold (2000). At implementation level, 
the IEC proposed a slightly changed syntax to a 
common RDF/XML representation, the so called 
simplified CIM/XML exchange format IEC 
(2004)b; deVos & Widergren & Zhu (2001). RDF 
provides many ways to represent the same set of 
data, e.g. an association between two resources 
can be written either with a resource attribute 
or by nesting one element within the other. This 
makes processing via XSLT tools sometimes a 
bit more difficult. The reduced syntax is still 
compatible with available RDF-de-serialization 
tools but provides a generally faster access to the 
data due to its pure simplicity.  One improvement 
of the data structure is useful for the exchange 
of partial or full model data exchange. Another 
improvement in processing speed can be achieved 
by optimizing the amount of data exchanged 

Figure	3.	A	simplified	extract	of	a	CIM/XML	file	modeling	idle	power	(q)	and	effective	power	(p)	(in	
RDF)	(©2007	Sven	Abels,	Wilhelm	Hasselbring,	Niels	Streekmann,	and	Mathias	Uslar.	Used	with	per-
mission)



��0  

Model-Driven Integration in Complex Information Systems

between companies.  After the initial data is 
exchanged, only updates need to be exchanged 
deVos & Rowbotham (2001) afterwards.

This mechanism is mostly used within the 
scope of topology exchange, the mechanisms 
dealing with EAI messages differ a bit in terms 
of serialization and tooling. 

When looking at enterprise level data ex-
change, we have to deal with more simple struc-
tures, in our case XML documents and schemes. 
The overall process is illustrated in figure 2. 

Starting with an XMI (XML metadata inter-
change) model, a different tool from XPetal is used, 
the so called open source CIMTool (http://www.
cimtool.org).  The CIMTool loads the IEC-CIM 
model as XMI file, this provides the proper base 
model for the code transformations. Afterwards, 
a wizard based interface is used to create an 
OWL representation of the needed payload. After 
completing those steps, we have a fully thorough 
semantic definition of our needed EAI payload. 
Having different base models, we can still use our 
generic editor to create the payload’s semantic 
description. Afterwards, we have to do differ-
ent steps to complete the xml scheme needed. 
We once more start the CIMTool, but instead of 
creating an OWL description, we create a flat or 
a nested xml schema based on code transforma-

tions of the OWL model. This leads to a proper 
fully semantically and syntactically compliant 
IEC-CIM based XML scheme. It is possible to 
include one’s own namespaces and routing head-
ers for the used EAI platform and the schema is 
ready to deploy. 

This overall process really simplifies the 
creation of meaningful payloads for EAI and in-
creases the overall semantic quality of the needed 
messages. The approach has several advantages 
over the existing ones:

•	 Meaningful semantics are supplied by the 
IEC-CIM that is used as a domain ontology. 
A common language can be established on 
the whole enterprise message bus.

•	 Model-driven development facilitates the 
ease of creating the payloads.

•	 Tools provide both a generic and determin-
istic way of creating the XML schemes 
which makes both for ease validation and 
introduction into the development depart-
ment.

•	 Most of the tools available are provided as 
open source tools. This lowers the costs of 
getting acquainted with the new technol-
ogy. 

Figure	4.	Choices	of	the	CIMTool	wizard	(©2007	Sven	Abels,	Wilhelm	Hasselbring,	Niels	Streekmann,	
and	Mathias	Uslar.	Used	with	permission)



  ���

Model-Driven Integration in Complex Information Systems

•	 Within the creation process, domain experts 
are mainly needed when defining the mes-
sages. Afterwards, the deployment engi-
neers can transform the OWL descriptions 
into proper and more technology oriented 
payloads.

Anyway, there are still some disadvantages.

•	 A proper versioning of the underlying 
models is needed in order to structure the 
code generation process. The semantics of 
the different artefacts incorporated in the 
process must be kept consistent.

•	 The maturity of the used tools differs be-
tween the different code levels. While the 
XML tools already have reached a good 
maturity, the OWL tools have far less overall 
capabilities and functions. This sometimes 
restricts the engineer in modelling the proper 
payloads (e.g. when constraining objects).

•	 The overall amount of data exchanged is 
increased due to the use of XML in com-
parison to pure CSV (Comma Separated 
Value) or binary data.

The overall approach is successfully used in the 
project and has proven to be a good decision. Rapid 
prototyping of the needed payloads with agreed 
semantics has been extremely easy compared to 
the previous approaches. The use of IEC-CIM, 
MDD, UML and UMM (UN/CEFACT Modeling 
Methodology) has increased the overall quality 
and decreased time-to-deployment for the needed 
payloads for coupling heterogeneous systems.

4. ScopeS of the two uSe 
caSeS

As described in the last sections, MINT and DER 
are two completely independent projects. We 
described how to create a flexible architecture 
and semantically standardized payloads. For 
both projects, it results in a comprehensive set 
of services which are provided as SOAP-based 
WebServices. This allows for performing interac-
tions between both projects by connecting their 
concepts on a service level. 

Figure 5 shows which roles DER and MINT 
play in the integration of two systems and indi-
cates where their intersection is. The systems 

Figure	5.	The	projects:	 roles	 in	 system	 integration	 (©2007	Sven	Abels,	Wilhelm	Hasselbring,	Niels	
Streekmann,	and	Mathias	Uslar.	Used	with	permission)



���  

Model-Driven Integration in Complex Information Systems

are integrated using services which interact by 
exchanging messages. DER concentrates on the 
generation of standardized messages. One of the 
focuses of MINT on the other side is the genera-
tion of service adapters for legacy systems and 
the orchestration of these services.  Hence the 
intersection point of the projects would be the 
orchestration and generation of adapters that use 
generated standard messages.

lessons learned

In the course of the two projects, the authors 
learned some lessons that can help readers when 
taking the decision of using MDI and MDSD 
based approaches. Compared to a traditional de-
velopment approach, our approach clearly needs 
more preparation time. There are two reasons for 
that. On the one hand, the approach is new and 
therefore somewhat unknown for all participants, 
which results in a learning curve at the beginning 
of the project. 

On the other hand the success of our projects 
highly depends on the modelling and the ‘ground 
work’. This means that it is even more important 
to ensure a high-quality yet flexible conceptualisa-
tion. In order to assure this, we involved domain 
experts at an early stage in MINT and used stan-
dards in DER. This has helped us to ensure a high 
quality and a standard-compliant solution.

We also realized that our approach is easier 
for new participants to join an ongoing project. 
The reason for that is the clear structure that is 
the result of our model based approach. Having 
this in mind, we result in a more transparent 
solution that should also be easier to maintain 
in the future (this statement of course has to be 
validated by the time).

Another fact is the necessity for interoperabil-
ity techniques such as a clear interface specifica-
tion and the usage of a flexible and easy to use 
intermediate exchange format. This is required 
because of the high number of different (and 
more or less independent) components that need 

to communicate within the solution. Approaches 
such as Services-Oriented Architectures can help 
achieving this.

5. concluSion and further 
actionS

Within this chapter, the model-driven integration 
approach in complex information systems was 
introduced by giving two practical examples. 
The chapter used the experiences the authors 
have made in two different research projects 
in the public utilities domain. The result of this 
chapter is a brief introduction of this topic and it 
demonstrated the different possibilities to solve 
the problem. While MINT relies on WebServices 
to integrate systems on a message level, the DER 
project focuses on creating a common informa-
tion model on a semantic basis (RDF) and uses 
WebServices only for transportation and techni-
cal integration between the heterogeneous IT 
landscape.

In order to ensure quality, MINT uses domain 
experts that should ensure the validity and the 
applicability and DER addresses quality issues 
by using a well defined standard (IEC-CIM) as 
a basis for creating the RDF messages. The two 
approaches can be combined to improve the 
quality of software development using MDI and 
MDSD techniques.

acknowledgMent

The research project MINT is supported by the 
German Federal Ministry of Education and Re-
search in the scope of the Forschungsoffensive 
Software	 Engineering	 2006. The DER project 
is supported and partly funded by the EWE AG, 
Oldenburg, Germany.



  ���

Model-Driven Integration in Complex Information Systems

additional reading

Integration and migration of legacy systems in 
the focus of model-driven software development 
is also an issue that is faced by standardization 
organizations like the OMG, who introduced the 
Architecture-Driven Modernization Initiative 
(ADM). 

In the practice of software engineering there 
are different approaches to increase the quality 
of software by using domain models to reduce 
the linguistic gap between domain experts and 
software engineers. These approaches differ 
from the ones described above since they do 
not focus on the integration of existing systems. 
Examples are the Eclipse Modeling Framework 
(Eclipse, 2007), Microsoft’s Software Factories 
(Greenfield, 2004) and language workbenches 
(Fowler, 2005).

In addition to the model driven integration 
approach, an interesting and up to a certain extent 
even completing approach is the usage of ontolo-
gies for different formats that are connected using 
Ontology Mapping or Alignment approaches. An 
overview about different concepts of this is given 
in (Doan & Madhavan & Domingos, & Halevy, 
2002), (Ehrig & Sure, 2004), (Abels & Haak & 
Hahn, 2005) and Rahm & Bernstein (2001).

More on the CIM and its scopes for message-
based integration can be found in Uslar et al., 
(2005). Other scopes of use are a bit outside the 
model-driven development process, more general 
info on the CIM can be found in Shahidehpour & 
Yang, (2003). This source provides a useful over-
view on how to use the IEC TC 57 standard and 
the CIM in context with both SCADA technology 
and message-based coupling of systems.

future (needed) reSearch

The future of software development tends toward 
model-driven development. Some of the main 
questions are addressed in the chapter: the role 

of standards, integration of existing systems and 
communication with domain experts. These will 
also be the topics in future research. The emerg-
ing standards in the MDA/ADM surroundings 
and domain specific standards like the IEC-CIM 
will be the basis for future high quality software.  
One of the main drivers will be on how fast the 
maturity of the overall process models and the 
tooling grows.

Domain models and domain-specific lan-
guages will play a more central role in software 
development. But still a lot of research has to be 
done on usability and the granularity of the lan-
guages and the decision on when to use standard 
models and transformations and when to use 
specific models and specialized languages and 
transformations.

referenceS

Abels & Haak & Hahn (2005). Identification of 
Common Methods Used for Ontology Integra-
tion Tasks. In: Proceedings of the first inter-
national ACM workshop on Interoperability of 
Heterogeneous Information Systems (IHIS05), 
CIKM conference proceedings. ACM, Sheridan 
publishing.

ADM Task Force. Why do we need standards 
for the modernization of legacy systems. White 
Paper. Retrieved June, 1, 2007, from http://adm.
omg.org/legacy/ADM_whitepaper.pdf 

Becker, Steffen & Brogi, Antonio & Gorton, Ian 
& Overhage, Sven & Romanowsky, Alexander & 
Tivoli, Massimo (2006). Towards an Engineering 
Approach to Component Adaptation. In Archi-
tecting Systems with Trustwor-
thy Components, Proceedings of Dagstuhl 
Seminar	04511.

Brand, Klaus-Peter & Buchholz, Bernd (2003). 
Systemanforderungen an interoperable Geräte 
und Systeme der Stationsautomatisierung. In 



���  

Model-Driven Integration in Complex Information Systems

(Schwarz, Karlheinz (Edt.): Offene Kommu-
nikation nach IEC 61850 für die Schutz- und 
Stationsleittechnik.

Bundesministerium für Wirtschaft (2004).  Gesetz 
für den Vorrang Erneuerbarer Energien (EEG) 
in der Fassung vom 21.7.2004, BGBL, I:1918

Czarnecki, Krzysztof & Eisenecker, Ulrich (2000). 
Generative Programming - Methods, Tools, and 
Applications. Addison-Wesley.

Dag, Hasan & Urkan, Ulmut (2004). An XML 
Based Data Exchange Model for Power System 
Studies. ARI - The Bulletin of the Istanbul Tech-
nical University, 2.

deVos, Arnold (2000). Simplified	RDF	Syntax	for	
Power System Model Exchange. Longdale Con-
sultants, 2000, available at http://www.langdale.
com.au/CIMXML/.

deVos & Rowbotham (2001). Knowledge Repre-
sentation for Power System Modeling, In (IEEE 
Publishing Edt.): Proceedings of the PICA 2001 
(The 22nd International Conference on Power 
Industry Computer Applications), IEEE Power 
Engineering Society.

deVos & Widergren & Zhu (2001). XML for CIM 
Model Exchange. In (IEEE Publishing Edt.): Pro-
ceedings of the PICA 2001 (The 22nd International 
Conference on Power Industry Computer Applica-
tions), IEEE Power Engineering Society.

Doan & Madhavan & Domingos, & Halevy 
(2002). Learning to map between ontologies on 
the semantic web. In: Proceedings of the Eleventh 
International WWW Conference, Hawaii, US.

Ehrig & Sure (2004). Ontology Mapping - An 
Integrated Approach. Proceedings of the First 
European Semantic Web Symposium. Lecture 
Notes in Computer Science, Vol. 3053, Springer 
Verlag, Heraklion, Greece, May 2004, S. 76-91.

Elvesæter, Brian & Hahn, Axel & Berre, 
Arne-Jørgen & Neple, Tor (2005). Towards an 

Interoperability Framework for Model-Driven 
Development of Software Systems, Proceedings 
of the 2005 International Conference on Interoper-
ability for Enterprise Software and Applications 
(I-ESA 2005).

European Parlament (2003). Richtlinie 2003/54/
EG des Europäischen Parlaments und des Rates 
vom 26.Juli 2003 über die gemeinsamen Vor-
schriften für den Elektrizitätsbinnenmarkt und 
zur Aufhebung der Richtlinie 96/92/EG.

Evans, Eric (2004). Domain-Driven Design 
– Tackling Complexity in the Heart Of Software. 
Addison-Wesley.

Fowler, Martin (2005). Language Workbenches: 
The Killer-App For Domain-Specific Languages? 
Retrieved 2007/05/30, from http://www.martin-
fowler.com/articles/languageWorkbench.html

Greenfield, Jack & Short, Keith & Cook, Steve 
& Kent, Stuart (2004). Software Factories: As-
sembling Applications with Patterns, Models, 
Frameworks, and Tools. Wiley. 

Hasselbring, Wilhelm & Reussner, Ralf & Jaekel, 
Holger & Schlegelmilch, Jürgen & Teschke, 
Thorsten & Krieghoff, Stefan (2004). The Dublo 
Architecture Pattern for Smooth Migration of 
Business Information Systems: An Experience 
Report. Proceedings	 of	 the	 26th	 International	
Conference on Software Engineering (pp. 117-
126). IEEE Computer Society Press.

Hess, Andreas & Humm, Bernhard & Voss, 
Markus (2006). Regeln für serviceorientierte 
Architekturen hoher Qualität. Informatik-Spek-
trum,	29(6), 395-411.

Van den Heuvel, Willem-Jan & Hasselbring, 
Wilhelm & Papazoglou, Mike (2000). Top-Down 
Enterprise Application Integration with Refer-
ence Models. Australian Journal of Information 
Systems, 8(1), 126-136.

IEC (2003). IEC - International Electrotechnical 
Commission: IEC 61970-301: Energy manage-



  ���

Model-Driven Integration in Complex Information Systems

ment system application program interface 
(EMS-API)	 –	 Part	 301:	 Common	 Information	
Model	(CIM)	Base. International Electrotechni-
cal Commission.

IEC (2004). IEC - International Electrotechnical 
Commission: IEC 61970-501: Energy manage-
ment	system	application	program	interface	(EMS-
API)	–	Part	501:	CIM	RDF	Schema	–	Revision	4. 
International Electrotechnical Commission.

IEC (2004)b. IEC - International Electrotechnical 
Commission: Draft IEC 61970: Energy Manage-
ment System Application Program Interface 
(EMS-API)	–	Part	503:	CIM	XML	Model	Exchange	
Format - Draft 3b. International Electrotechnical 
Commission.

IEEE (1990). Institute of Electrical and Electronics 
Engineers: IEEE Standard Computer Diction-
ary: A Compilation of IEEE Standard Computer 
Glossaries.

Jeusfeld, Manfred A. & Backlund, Per & Ralyté, 
Jolita (2007). Classifying Interoperability Prob-
lems for a Method Chunk Repository, Proceedings 
of the 3rd International Conference on Interoper-
ability for Enterprise Software and Applications 
(I-ESA 2007).

Object Management Group, OMG (2003). MDA 
Guide Version 1.0.1. 

Marx Gómez & Brehm (2007). KMU-Softwa-
re-Umfrage	 2006	 zur	 Nutzung	 betrieblicher	
Standardsoftware kleiner und mittelständischer 
Unternehmen in Deutschland, Dep. of Business 
Information Systems, University of Oldenburg, 
Study.

MultiSpeak (2003). MultiSpeak Version 2.2 Speci-
fication (10/07/03), NRECA, Virginia, available 
online at http://www.multispeak.org.

Neumann (2003). Comparison of IEC CIM and 
NRECA MultiSpeak, UISOL.

Podmore, Robin et al. (1999). Common Infor-
mation Model - a Developer’s Perspective. In 

(Sprague, R. Edt.): Proceedings of the 32nd Hawaii 
International Conference on System Sciences, 
IEEE Publishing.

Rahm & Bernstein (2001). A survey of approaches 
to automatic schema matching, The VLDB Jour-
nal, 10, 2001.

Reussner, Ralf (2005). MINT – Modellgetriebene 
Integration von Informationssystemen, Descrip-
tion of Work, Forschungsoffensive „Software 
Engineering 2006“.

Robinson, Greg (2002)a. Key Standards for Util-
ity Enterprise Application Integration (EAI), 
Proceedings of the Distributech 2002, Miami, 
Pennwell, 2002.

Robinson, Greg (2002)b. Model Driven Integra-
tion	(MDI)	for	Electric	Utilities, Proceedings of 
the Distributech 2002 Miami, Pennwell, 2002.

Shahidehpour, Mohammad & Wang, Yaoyu 
(2003). Communication and Control in Electric 
Power Systems: Applications of Parallel and 
Distributed Processing, IEEE Press Series on 
Power Engineering, 2003.

Uslar, Mathias et al (2005): Interaction of EMS 
related Systems by Using the CIM Standard, In: 
Walter Leal Filho, Jorge Marx Gómez, Claus 
Rautenstrauch (Hrsg.): ITEE 2005: Second In-
ternational ICSC Symposium on Information 
Technologies in Environmental Engineering: 
Proceedings, Otto-von-Guericke Universität 
Magdeburg, Shaker Verlag, 2005.

Winter, Andreas & Ziemann, Jörg (2006). Model-
based Migration to Service-Oriented Architec-
tures. In U. Kaiser, P. Kroha, A. Winter (Eds.), 3. 
Workshop	Reengineering	Prozesse	(RePro	2006)	
Software Migration (pp. 16-17). Mainz: Johannes 
Gutenberg University Mainz.

Zhou, E.Z. (2000). XML and data exchange for 
power system analysis. In (IEEE Edt.):  IEEE 
Power Engineering Review, 20, 66-68.



���  

Model-Driven Integration in Complex Information Systems

Ziemann, Jörg & Leyking, Katrina & Kahl, Timo 
& Werth, Dirk (2006). Enterprise Model driven 
Migration from Legacy to SOA. In R. Gimnich, A. 
Winter (Eds.), Workshop Software-Reengineering 
und Services (pp. 18-27). Koblenz: University of 
Koblenz-Landau.

Zimmermann, Olaf & Doubrovski, Vadim & 
Grundler, Jonas & Hogg, Kerard (2005). Ser-
vice-oriented architecture and business process 
choreography in an order management scenario: 
rationale, concepts, lessons learned. In OOPSLA 
Companion (301-312). 

Zimmermann, Olaf & Köhler, Jana & Leymann, 
Frank (2006). The Role of Architectural Decisions 
in Model-Driven Service-Oriented Architecture 
Construction. In L.A. Skar, A.A. Bjerkestrand, 
Best Practices and Methodologies in Service-Ori-
ented	Architectures,	OOPSLA	2006	Workshop. 

endnoteS

1 http://www.interop-noe.org
2 http://www.athena-ip.org



  ���

Chapter XVIII
High-Quality Software Models
of the Mid-Infrared Instrument

for the James Webb Space
Telescope

Jane M. C. Oh
Jet Propulsion Laboratory, California Institute of Technology, USA

Martin S. Feather
Jet Propulsion Laboratory, California Institute of Technology, USA

Mori A. Khorrami
Jet Propulsion Laboratory, California Institute of Technology, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

abStract

This chapter examines the experience of using model-based design in the context of development of 
critical	software.	The	software	is	being	developed	to	control	a	science	instrument	that	it	to	fly	as	part	
of NASA’s James Web Space Telescope. The chapter discusses the context and nature of this software 
development effort, and why they motivated the choice of a model-based development approach. Illustra-
tions	are	provided	of	the	elements	of	model-based	design	that	are	proving	to	be	beneficial.	The	chapter	
also considers how software assurance practices are being adapted to work with this approach.

1. introduction

The work described in this chapter covers a soft-
ware development effort being conducted at the 
Jet Propulsion Laboratory, software for control of 

an instrument that is to be a part of a deep-space 
observatory. While at first glance this may appear 
to be far removed (in not only physical distance) 
from concerns that permeate conventional soft-
ware development, in fact many of the key factors 



���  

James Webb Space Telescope

will be familiar concerns to many developers of 
terrestrial software. As we will discuss, it was 
consideration of these factors that led to the choice 
of model based development as the software de-
velopment approach to follow. We will describe 
how our experiences to date suggest this was a 
good choice. We will also describe some of the 
ramifications of this choice – changes to existing 
software development practices that are occurring 
to accommodate the changed nature of software 
development stemming from adoption of model 
based development.

The software development effort discussed 
in this chapter is the ongoing development of 
“Flight Software” (i.e., software that will be 
executed by computers on board the spacecraft) 
for a science instrument, the Mid Infra-Red In-
strument (MIRI). As its name suggests, it will 
measure light in the mid-infrared spectrum, for 
astronomy purposes. MIRI is one of four science 
instruments that together form the Integrated Sci-
ence Instrument Module (ISIM) element. ISIM 
is in turn one of three elements that comprise the 
Observatory Segment, and that in turn is one of 
the three segments that comprise the James Webb 
Space Telescope (JWST).  This is a large space 
telescope, scheduled for launch in 2013. It is being 
developed jointly by the United States’ National 
Aeronautics and Space Administration (NASA) 
and the European Space Agency; for details, see 
http://www.jwst.nasa.gov/.

This chapter will focus on the main challenges 
that pervade the development of this mission-
critical software.

2. background and 
challengeS

NASA’s spacecraft operate across the solar system 
performing a wide range of missions, includ-
ing planetary surface exploration using rovers, 

planetary observation using orbiters, and solar 
and astronomical observations using observing 
platforms at a variety of locations. As this fleet con-
tinues to expand in both number and complexity, 
there is a pressing need for increasing the role that 
on-board spacecraft software plays in controlling 
those spacecraft. This will relieve the growing 
burden levied on Earth-based ground control, and 
alleviate the bottleneck of communication back 
to earth. Furthermore, increased autonomy on the 
spacecraft themselves will enhance their capa-
bilities – responding autonomously to investigate 
interesting but short-lived phenomena, increasing 
the capabilities of surface rovers to traverse terrain 
and to perform more intricate science experiments, 
etc. This all requires more sophisticated software 
in the spacecraft/rover itself. Without some change 
in the software development process, such more 
complex software systems will take longer to 
develop and verify, potentially increasing overall 
mission cost, introducing delays, and potentially 
introducing additional risk. Model based design 
is being investigated as a means to improve the 
development process for spacecraft software so 
as to help overcome some of these problems. 
The work reported here describes ongoing use 
of model-based design in a spacecraft setting, 
and the particular areas of benefit it conveys. 
Because of the risk-averse nature required of the 
development of NASA’s spacecraft (in most cases 
well beyond reach of rescue or repair), ensuring 
the quality of the software remains of paramount 
importance. Also reported here is how software 
assurance techniques are being adapted to work 
with model-based design. One of the important 
synergies between model based design and 
software assurance is the opportunity to detect 
an increased fraction of software related defects 
earlier in the development process than would 
otherwise be the case, thus leading to net savings 
of cost and schedule, while ensuring quality.



  ���

James Webb Space Telescope

3. experience with 
Model-baSed deSign for a 
coMplex Spacecraft SySteM’S 
Software

issues, controversies, problems

MIRI’s flight software will control the operation 
of MIRI, including its interface with the rest of the 
spacecraft (both hardware subsystems, and other 
software, e.g., for data transfer). The Jet Propul-
sion Laboratory (JPL) has overall responsibility 
for MIRI (including design, development and 
testing) of the MIRI Instrument (both software 
and hardware). Hardware development is proceed-
ing concurrently with software development, and 
in some instances at geographically separated 
locations. In particular, MIRI will incorporate 
optics that are being designed and delivered 
by the European Space Agency (ESA), as their 
development continues. For these reasons it was 
anticipated that the requirements for the MIRI 
software would undergo significant changes from 
the form they took at inception, due to concurrent 
development of the novel spacecraft instrument 
hardware. 

MIRI’s software, together with flight soft-
ware for the other instruments, will become 
part of the overall ISIM flight software. In order 
to achieve compatibility, the elements of ISIM, 
MIRI included, must comply with an agreed upon 
development paradigm:

• Modeled using IBM’s Rational Rose Real-
Time

• Implemented using the C++ programming 
language 

• Hosted on the VxWorks Real-Time Operat-
ing System (RTOS)

• Execute on a Power PC 750 Flight Proces-
sor 

Lastly, MIRI’s software must interface to 
elements that are being developed outside of this 
paradigm, specifically:

• Focal Plane Electronics and Instrument Con-
trol Electronics that have been implemented 
using Field Programmable Gate Arrays.   
These FPGA’s firmware interfaces with the 
MIRI software.   

• The MIRI Cooler system, which has its 
own micro-controller and software; it too 
interfaces with the MIRI software.  

From the above description it is possible to dis-
cern key factors of MIRI’s software development 
effort: fundamentally, MIRI software is part of 
an embedded, real-time system; its development 
must comply with a pre-established paradigm; it 
must interface with elements developed outside 
of this paradigm; it must utilize preordained 
computing platform capabilities;  its require-
ments may be expected to change (because of 
concurrent development of the hardware it is 
to control); prior to receipt of actual hardware, 
its development and testing has had to proceed 
using software simulations that approximate the 
behaviour anticipated of that hardware; it is part 
of a geographically dispersed development effort; 
lastly, it has to produce highly reliable software 
(since mistakes in its control and operation of 
MIRI could compromise the science data it is 
designed to return, waste precious resources 
such as coolant, or threaten the health of the 
instrument itself and potentially even the health 
of the spacecraft). These are factors that recur in 
many software development efforts, most notably 
those for high-reliability embedded systems. Fu-
thermore, these are often viewed as risks factors 
for a software development effort (e.g., volatile 
requirements).

It was in response to these that the MIRI devel-
opment team selected model based development 
as their development paradigm, described next.



��0  

James Webb Space Telescope

Solutions and recommendations (1). 
use of uMl-rt concepts and 
technology

The MIRI development team chose to use model 
based development, specifically UML-RT (Uni-
fied Modeling Language – Real Time), to express 
MIRI’s interface and behaviour. The primary 
benefits that stem from this decision are the 
ability to use UML-RT’s agreed-upon notations 
to serve as an agreed-upon and technically rigor-
ous vehicle of communication among the project 
personnel, and to allow the use of automatic code 
generation from the models expressed using these 
notations.

In particular, MIRI’s interface and behaviour 
are being specified, and code generated, using 
this approach. UML-RT is being used to model 
these aspects using Capsule Structure Diagrams 
to express interfaces, and UML State Diagrams 
to express behaviour. We show examples of us-
ing a UML-RT Capsule Structure Diagram to 
express MIRI’s interface, followed by use of a 
UML State Diagram to express key aspects of 
MIRI’s behaviour.

The main functionality of the MIRI flight 
software includes (1) receiving commands from 
the surrounding ISIM element’s software, (2) in 
response to those commands, controlling three 
hardware components (Focal Plane Electron-
ics, Instrument Control Electronics and Cooler 
Control Electronics), (3) monitoring the status 
and heath of those hardware components, and  
(4) reporting their status and heath to the ISIM 
element. The structure of MIRI’s interface that 
allows it access to the information and control is 
described using the Capsule Structure Diagram 
in Figure 1. A UML-RT “Capsule” represents an 
active object that can communicate, and indicates 
the protocols (sets of allowable communications) 
associated with the various ports on the object’s 
interface.

The diagram employs the following UML-RT 
concepts:

•	 a capsule (denoted by the outermost large 
square red border)

• ports (denoted by the smaller red-coloured 
squares; those on the boundary are public 
ports, those in the interior protected ports)

• protocols (denoted by the small yellow-co-
loured rectangles).

• Were the diagram to be broadened to also 
include the ISWIM capsule, connections 
between the MIRI and ISWIM capsules 
would also be portrayed.

The meaning of these is as follows:

• Public ports (e.g., the one on the right hand 
border labelled cmdfePort) provide com-
munication access to MIRI for software 
both inside and outside of the MIRI capsule. 
The six public ports seen in the diagram are 
used to (1) receive commands, hardware 
telemetry packets, timer and time services, 
(2) send control commands, event messages 
and housekeeping telemetry, and (3) perform 
tables operations and maintenance.

• Protected ports (e.g., the port labelled 
mrCmdClientPort) provide communication 
access to MIRI for only software within 
the MIRI capsule. In particular, protected 
ports provide access to the capsule’s state 
machine, which we will describe shortly.

Naming conventions are followed to be indica-
tive of the roles these ports play. For example, 
telemetryPort has the role of handling telemetry 
duties, cmdfePort has the role of a command front 
end (from which the abbreviation cmdfe is derived) 
to receipt of commands from the ISIM element, 
etc. Since our focus is on the MIRI interface and 
its overall behaviour, we will skip the details of 
what specific processing occurs in fulfilling these 
duties (details that are specific to the spacecraft 
instrument itself). 

Figure 1 depicts the MIRI FSW Capsule Struc-
ture Diagram and Table 1 lists different ports and 
their types as used in the MIRI FSW capsule. 



  ���

James Webb Space Telescope

Figure 1. MIRI FSW Capsule Structure Diagram

 

+ / ta skC h e ckIn P o rt
: Ta skch e ckIn P ro to co l + / te le m e tryP o rt

: Te le m e tryP ro to co l

+ / a p p Tim e B ro a d ca st
: A p p Tim e B ro a d ca st

+ / d a ta b a se P o rt
: D a ta b a se P ro to co l

+ / s tIn te rfa ce P o rt
: S tIn te rfa ce P ro to co l

# / lo g  : L o g

+ / cm d fe P o rt
: C m fe P ro to co l

# / m rC m d C lie n tP o rt
: M rC m d P ro to co l

# / m rC m d P o rt
: M rC m d P ro to co l

Port Name Termination Connection Visibility Protocol Name

taskCheckInPort end non-wired public TaskcheckInProtocol

telemetryPort end non-wired public TelemetryProtocol

appTimeBroadcast end non-wired public AppTimeBroadcast

databasePort end non-wired public DatabaseProtocol

stInterfacePort end non-wired public StInterfaceProtocol

cmdfePort end non-wired public CmfeProtocol

mrCmdPort end wired protected MrCmdProtocol

mrCmdClientPort end wired protected MrCmdProtocol

log end non-wired protected Log

Table 1. Ports and their types used in the MIRI FSW Capsule



���  

James Webb Space Telescope

MIRI’s overall behaviour is described using 
a UML State Diagram. In general, UML State 
Diagrams offer many features. Those used in the 
software development for MIRI are illustrated 
in Figure 2. In particular, note that this diagram 
makes use of nested substates (e.g., the substate 
labelled normalOperation), conditional transitions 
(e.g., the “C” node between the rtBoundWait 
substate and the normalOperation substate), and 
deep history (the H* nodes). We say a little more 
about these:

•	 Overall, the use of the statechart notation 
is conducive to clear and rigorous com-
munication. For example, the two sub-
states, rtBoundWait and normalOperation 
distinguish between two important modes 
of operation of the software, and indicate 
the activities associated with each. The 
rtBoundWait substate refers to when the 
MIRI capsule is waiting for all its (six) ports 
to be connected successfully; the normal-
Operation substate refers to when the MIRI 
capsule is connected and performing normal 
operations with no erroneous conditions.

•	 State transitions defined in MIRI FSW may 
deal with events that require a choice be-
tween transition path segments.  The Choice 
Point mechanism denoted as the circles C 
icon in Figure 2 addresses this situation.  
This mechanism allows a single transition 
(e.g., rtBounds) to be split into two outgoing 
transition segments (moreToBound and all-
PortsBound), each of which may terminate 
on a different state. 

•	 Events that require immediate action may 
occur while MIRI software is engaged with 
ongoing activities. These events require that 
MIRI’s activity be interrupted, those events 
dealt with, and upon completion of their 
handling MIRI is to continue its interrupted 
activity. The UML State Diagram’s deep 
history mechanism is used to denote this. 
As can be seen in the figure, the transition 

to history mechanism is a widely used 
pattern in MIRI FSW. Implementation of 
deep history is done by having the system 
continually remember its most recent state 
configuration so that it can return to that 
following a deep history interruption. This 
implementation is part of the code generated 
by the UML-RT toolkit.

•	 Code generated from the statecharts does 
all the “bookkeeping” to handle the overall 
orchestration of state transitions, thus saving 
the users significant coding effort. For cases 
such as implementation of the deep history 
mechanism, this can yield both a savings 
of effort, and avoidance of risk (of defects 
introduced when hand-coding something 
of this complexity). It is important to note 
that the code generated from UML is then 
augmented manually with code fragments to 
perform the actual operations (e.g., manipu-
late counters, control memory, etc). Below 
is a code example where the hand-coded 
portion is highlighted (for the purposes of 
this presentation) in bold, the remainder 
being autogenerated:

static const char * const rtg_state_names[] =
{ 
 “TOP”, “rtBoundWait”, “normalOperation”
};
INLINE_METHODS void MIRIappMain_Actor::rtBoundWait_
rtBounds( const void * rtdata, RTProtocol * rtport )
{
 mrRtBoundCnt--; //decrement the port connection 
counter
}

Solutions and recommendations 
(2). Software assurance techniques 
applied

NASA’s missions’ flight software developments 
commonly have stringent reliability needs. MIRI’s 
flight software is no exception to this. What is dif-
ferent from usual, however, is MIRI’s adoption of 
the model-based development paradigm. Despite 
the allure of this paradigm, it could be disadvan-



  ���

James Webb Space Telescope

tageous if software models were generated by 
developers who did not understand appropriate 
use of UML-RT concepts.  In order to minimize 
this risk, all the project team members have been 
sufficiently trained on UML-RT concepts and on 
how to use the toolset.  Furthermore, software 
models have been generated by following the 
UML-RT design rules and guidelines, they have 
been iteratively and incrementally grown in size 
and complexity, and they have been periodically 
reviewed by peers and experts. This last item is 
an instance of the need to adapt software quality 
assurance to model-based development, consid-
ered in more detail in this section.

Until the advent of model-based design, soft-
ware quality assurance practiced within JPL has 
been applied predominantly to the design artefacts 
and development processes of software developed 
by “traditional” means. In the model based devel-
opment paradigm, novelty stems from the fact that 
many of the artefacts are in machine manipulable 
representations, not simply paragraphs of textual 
descriptions or drawings intended purely for 
human viewing. Furthermore, using tools that 
support the model-based paradigm allows code 
automated generation to be employed, yielding 
significant portions of machine-generated source 
code as significant parts of the development ef-

Figure 2. MIRI FSW Capsule State Diagram

 

rtB oundW ait no rm a lOpera tion

m oreToB ound

r tBo unds
a llno tB ound

Tim eB roadcasted

Initial

noopC m d

rtB ounds

rtUnb ound s m m P utRequest

a llP o rtsB ound

hsC heckinC m d

m mC o mm itRe quest

sendTlm

fwdC m d

rese tC ounte rsC m d

taskC heckinRequest

m oreToB ound

r tBo unds
a llno tB ound

Tim eB roadcasted

Initial

noopC m d

rtB ounds

rtUnb ound s m m P utRequest

a llP o rtsB ound

hsC heckinC m d

m mC o mm itRe quest

sendTlm

fwdC m d

rese tC ounte rsC m d

taskC heckinRequest



���  

James Webb Space Telescope

Software Assurance 
Activities

Software Assurance Artefacts 
relatively unchanged during 
Model based development

Software Assurance Artefacts with 
high potential for change during 

Model based development

Software 
Development 
Process and 
Monitoring

Software Development Plan, 
Project Management Plan

Software Quality Assurance 
Plan, Software Configuration 
Management Plan, Software Risk 
Management Plan

Subcontractor 
Controls

Requests for Proposals, 
Procurement Requisitions, Pre-
award Vendor Software Surveys

Statements-Of-Work

Software 
Requirements 
Analysis

Level 1, 2, 3, 4, and 5 
Requirements Documentation, 
Functional Specification, 
Interface Control Documentation, 
Operational Specs

Bi-Directional Traceability

Software Reviews

Code Walkthrough, Unit 
Test Walkthrough, Test Case 
Generation, Code Run-time 
Monitoring, Code Static Analysis

Formal Reviews

Conceptual Design Reviews, 
Preliminary Design Reviews, 
Architecture Reviews, Test 
Readiness Reviews, Assembly 
and Operation Readiness Reviews

Detailed Design Reviews

Management 
Reviews

Fever Chart, Project Insight and 
Oversight Risk Assessment

Peer Reviews Inheritance Documentation, Test 
Plans and Procedures

Software Reuses, Test Results 
Verification

Software Delivery 
Reviews

Release Description Document, 
Acceptance Test Plan/Procedures/
Report

Software Review Certification 
Records, End Item Data Packages

Software Safety 
Hazard Analysis Safety/Hazard Analysis Report Safety-critical Components 

Assessment

Software FMECA 
and Fault Tree 
Analysis

Software Failure Modes Effect 
and Criticality Analysis Software Fault Tree Analysis

Software 
Configuration 
Management

Engineering Change Requests, 
Change Control Report

Configuration Management 
Report, Build List

Software Problem/
Failure Reporting

Problem/Failure Report, Root 
Cause Analysis Report

Action Items Report, Test 
Traceability Matrix

Verification and 
Validation

Subsystem Validation, System 
Validation, Hardware Review 
Certification Records

Unit Test, Integration Test, 
System Test, User Acceptance Test

Table 2. Software assurance activities and their work products



  ���

James Webb Space Telescope

forts. We discuss the consequences of this next.
The objective of software assurance process is 

to improve the quality of mission-critical software 
and the productivity of software development 
process by detecting and removing errors and 
defects early in the life cycle. Table 2 lists in the 
leftmost column software assurance activities, 
and in the middle and right columns the artefacts 
dealt with in those activities; the middle column’s 
artefacts are those relatively unchanged by the 
shift to a Model based development paradigm, 
while the right column’s artefacts are those with 
a high potential for change, generally change for 
the better (faster and/or more thorough).

We give a more detailed example of the kind 
of adjustments to software assurance that result 
from the switch to model based design, focus-
ing on the use of checklists in support of formal 
inspections done during reviews.  Inspections 
are widely recognized as a highly cost-effective 
assurance technique (see (Shull et al, 2002) for 
a recent discussion), and they have long been in 
use at JPL; (Kelly et al, 1992) describes measure-
ments calculated of the efficacy of JPL’s tailoring 
of Fagan’s original inspections process (Fagan, 
1976). Checklists themselves are a commonly 
used means to “provide reviewers with hints and 
recommendations for finding defects during the 
examination of a workproduct” (quoting from 
(Brykczynski,  1999), which surveys 117 software 
inspection checklists from 24 sources). 

Manual inspection checklist for 
Models

The following is a partial list of checklist ques-
tions used during manual inspection to guide a 
reviewer inspecting a model. This covers questions 
that relate to areas of conformance with trace-
ability, consistency and completeness measures 
in general, and correctness measures for each 
specific type of model:

Completeness
• Does the model meet its requirements?
• Is there wrong, missing, or incomplete 

logic?
• Does the model correctly accommodate 

all required inputs, outputs, and database 
elements according to the required format, 
content, data rate, etc.?

Consistency
• Are variables named and used consistently 

throughout each component and its inter-
faces?

• Are models of all interfaces consistent with 
each other and with the interface require-
ments?

• Does the model fully describe the system?
• Are the models for similar or related com-

ponents consistent?

Traceability
• Is each component of the design traced back 

to requirements?
• Have detailed requirements for each com-

ponent been specified?
• Have component requirements been traced 

to the architectural design?

Correctness
• Class diagram 

°	 Is the aggregation relationship cor-
rect? 

°	 Is aggregation mixed up with composi-
tion? 

°	 Is generalization relationship cor-
rect? 

°	 Is the navigability direction consistent 
with ownership? 

°	 Is the multiplicity number correct? 
• Capsule structure diagram 

°	 Does the diagram identify all the pos-
sible capsules and ports? 

°	 Are all the connectors between ports 
identified? 



���  

James Webb Space Telescope

• Statechart diagram 
°	 Does the diagram identify all the pos-

sible states? 
°	 Are all the possible transitions between 

states identified? 
°	 Are all the events triggering each state's 

transition identified? 
°	 Are the necessary guard conditions 

labelled? 
°	 Are the necessary actions of event 

identified? 
°	 Does the state chart have an initial (and, 

if necessary end) state?

observations

MIRI’s adoption of model-based development, 
specifically in the form of UML-RT, was moti-
vated by the characteristics (e.g., expectation of 
changing requirements) discussed earlier. The 
expectation was that this adoption would en-
able the development team to follow an iterative 
development style, and in particular help focus 
on rigorous yet understandable specification 
of interfaces and behaviour, with consequent 
benefits to the effort as a whole. In this section 
we summarize the effects we have been able to 
discern to date on aspects of quality, flexibility, 
communication and productivity.

Quality

From the efforts to date, we have seen indica-
tions of quality-improving activities successfully 
occurring in the context of model-based design.  
For example, we have seen that MIRI software 
engineers are actually finding requirements flaws 
(e.g., incompleteness and incorrectness) early in 
the software development lifecycle, by answering 
questions such as:

• Does the model meet its requirements?
• Is there wrong, missing, or incomplete 

logic?

• Does the model correctly accommodate 
all required inputs, outputs, and database 
elements according to the required format, 
content, data rate, etc.?.

These indications suggest that the artefacts of 
model-based design can be dealt with by the gamut 
of quality assurance practices that are needed for 
critical software. 

Flexibility

The modelling approach provided a platform for 
the MIRI flight software to be developed so as to 
be more flexible and less impacted by hardware 
changes. Notably, the software design encapsu-
lated hardware control elements to allow changes 
to be made to the hardware with little or no impact 
on the other parts of applications. This need for, 
and success of, this flexibility has been evident in 
the effort to date, during several years of which the 
requirements for the control of the instrument’s 
cooling mechanism and interface to that were 
in a state of flux, while design trade-off studies 
were being conducted. The modelling approach 
allowed for the software development to progress 
even while these uncertainties remained, and to 
be readily able to adapt to the requirements and 
interfaces that ultimately emerged.

Communication

The designs artefacts (capsule diagrams, stat-
echarts, etc) that the MIRI software development 
team has constructed by following the model-
based approach are being exchanged between the 
development team (based in the United States) 
and the test team and partners (based in Europe). 
They have proven to be a useful form of conveying 
this information between these distinct groups. 
It is also encouraging to note that within the 
software development team, software engineers 
are actually exchanging information in terms of 
models and/or critiques of models, and are not 



  ���

James Webb Space Telescope

reverting to informal descriptions (charts and 
textual documents).

Productivity

The hope was that using common tools and a 
common process would save time and effort, 
especially critical in a budget constraint environ-
ment. Over the course of multiple incremental 
deliveries of hardware and software for testing, 
the experience of the test team, software team and 
the hardware team indicates that we have done it 
more efficiently than the traditional way.  

Internal to MIRI’s software development, the 
practice has been to express the design as the 
model, and thereafter utilize the modelling tool 
suite to generate sequence diagrams and code 
itself. Experience to date indicates that this has 
been a tremendous help in implementation, test-
ing, documenting and preparing for the design 
reviews.

4. future trendS

To understand where others are with respect to 
model-based design, a working group within JPL 
conducted a benchmarking study to compare 
JPL’s engineering capability to seven differ-
ent industries: Automobiles (Ford), Aerospace 
(Raytheon), Industrial Automation (Honeywell), 
Nuclear Energy (Sandia National Laboratories), 
Networks (AT&T), Airlines (United), and Weap-
ons Systems (Los Alamos National Laboratory). 
Ford, Raytheon, and LANL showed strengths in 
model-based design as follows:

• Ford has invested in model-based engineer-
ing for competitive advantage and adopted 
model-based requirements and design analy-
sis, with emphasis on design practices.

• Raytheon has used model-based design and 
simulation to address mission assurance 

requirements and made the domain expert 
and software engineer jointly responsible 
for model validation.

• Los Alamos National Laboratory has a 
mature capability and mindset for using 
virtual testbeds because of inherent domain 
limitations on physical testing.

The results of this study indicated how those 
industries took advantage of model-based design. 
However, JPL develops and builds one-off, novel 
spacecraft and systems (instruments, rovers), a 
situation that is somewhat different from those 
industry cases. Thus the advantages seen in 
industry will not necessarily apply to JPL. For 
example, JPL does not have the luxury of building 
multiple test units, nor can those test units recre-
ate the deep space environments that spacecraft 
will experience, so our focus on early-lifecycle 
assurance is more critical than for those other 
industries. There is a continuing need for research 
to adapt/invent the processes that can utilize to 
good effect model-based design practices for JPL’s 
mission- and safety-critical systems.

5. concluSion

The objective of the use of high-quality software 
models is to improve quality, productivity and 
flexibility during development of critical software. 
We have described an instance of this in ongoing 
application in development of control software 
for a spacecraft component. We have illustrated 
how this development effort makes use of key 
notations of model based design as a vehicle for 
effective communication about key aspects of 
the software’s design (notably its interface and 
overall behaviour). This development effort is also 
taking advantage of the automated code genera-
tion capabilities offered by the modelling tool to 
generate code directly from models. 

The success of model-driven software devel-
opment approach hinges on:



���  

James Webb Space Telescope

1. creation of a good quality (e.g., correct, 
complete, consistent, testable, etc.) model 
for a physical, mathematical, or logical rep-
resentation of a system, entity, phenomenon, 
or process and

2. correct implementation of the model in 
software.  

We have described some of the infusion 
and adaptation we are doing to apply leading 
software assurance techniques within the model 
based development approach, and so help ensure 
the quality of these models. It is also important 
to include all the necessary detail in the model 
so that automatic code generator can be used to 
automatically generate complete implementa-
tions.  Following this approach has proven quite 
successful in this project, since doing so leads to 
detection of defects early in design stage (rather 
than later in the test stage), compared to the tra-
ditional development approach.  In addition, the 
approach helps us more readily accommodate 
software changes forced by changes to hardware 
components and technologies used.  Finally, it has 
proven helpful that the complex embedded real-
time software system is designed with a sound 
architecture. For (2), ensuring correctness of the 
automated code generation step is also a concern, 
but has not been addressed by this chapter.

future research directions

A model-driven software development approach 
offers a plethora of techniques for software model-
ling, and UML in particular has undergone several 
iterations (e.g., UML 0.9 in 1996, UML 1.1 in 1997, 
UML 1.4 in 1999, UML-RT in 2000, UML 2.0 
in 2005). However, this form of modelling often 
requires that a level of detail below that covered by 
the models be provided. In the case of MIRI flight 
software, such detail takes the form of hand-coded 
software that fits in at the appropriate locations 
within the autocode generated from the models. 
The extent to which model based development 

can better accommodate and support this level 
of detail is an open research area.

We discusses how we believe that inspections 
have the potential to be equally effective for model-
based design, and have begun to evolve them so 
as to achieve this potential. We believe this need 
for evolution will hold true of a broad range of 
quality assurance techniques. An important part 
of future research will be to identify which of 
these techniques have the potential to be highly 
effective on model based designs, and evolve 
them accordingly. 

In addition, future research will invent new 
techniques specifically for V&V. The need for this 
is indicated by, among others, a JPL-conducted 
study (NASA 1998), which reported: “Organiza-
tions exercising existing techniques with a high 
degree of discipline are experiencing ‘quality 
ceilings.’  In these projects, traditional verification 
techniques have been improved and fine-tuned to 
the point that major quality improvements can no 
longer be achieved, even though some defects still 
remain in the developed product.” The formal 
methods community is well placed to fill this 
role, and, it seems, particularly well suited to 
align with the semantically meaningful artefacts 
that predominate in the course of model-based 
development. Rather than requiring the separate 
(and hence costly, slow and disconnected) devel-
opment of formal models for purposes of input 
to V&V tools, there is considerable interest in 
using model-based design’s artefacts as inputs to 
V&V. For example, see the range of techniques 
for checking of UML statechart specifications in 
(Pap et al, 2001). Model-based design also holds 
promise as a means to improve other analysis 
methods, including testing. For example, (Black-
burn, 1992) showed how model-based testing 
could have found the flaw in the logic of the Mars 
Polar Lander mission’s landing control software 
(a flaw which is thought to have been responsible 
for the mission failure).



  ���

James Webb Space Telescope

referenceS

Blackburn, M., Busser, R. Nauman, A. Knick-
erbocker, & Kasunder, R. (2002). Mars Polar 
Lander fault identification using model-based 
testing. In 26th	NASA	Goddard	Software	Engi-
neering Workshop, Greenbelt, MD (pp. 128-135) 
IEEE/NASA.

Brykczynski, B. (1999, January) A survey of 
Software Inspection checklists. ACM SIGSOFT 
Software Engineering Notes 24(1), 82-89.

Fagan, M.E. (1976) Design and Code Inspections 
to Reduce Errors in Program Development. IBM 
Systems Journal, 15(3), 182-211.

Kelly, J.C., Sherif, J.S., & Hops, J. (1992, Feb-
ruary). An Analysis of Defect Densities Found 
During Software Inspections. Journal of Systems 
and Software. 17(2), 150-166.

NASA. (1998). Formal	 Methods	 Specification	
and	 Verification	 Guidebook	 for	 Software	 and	
Computer Systems, Volume I: Planning and Tech-
nology Insertion. NASA/TP-98-208193 http://eis.
jpl.nasa.gov/quality/Formal_Methods/document/
NASAgb1.doc

Pap, Z. Majzik, I., Pataricza A., & Szegi, A. (2001 
April). Completeness and Consistency Analysis 
of UML Statechart Specifications, Proceedings 
of the DDECS 2001 Workshop, Győr, Hungary 
(pp. 83-90).

Shull, F.; Basili, V.; Boehm, B.; Brown, A.W.; 
Costa, P.; Lindvall, M.; Port, D.; Rus, I.; Tesori-
ero, R.; Zelkowitz, M. (2002 June). What we have 
learned about fighting defects”; Proceedings. 
Eighth IEEE Symposium on Software Metrics 
(pp. 249 – 258).

Selic, B., & J. Rumbaugh, J. (1998). Using UML 
for Modeling Complex Real-Time Systems.

additional reading

Ambler, S.W. (2003). The Elements of UML™ 
Style. Cambridge University Press.

Ambler, S.W. (2005). The Elements of UML™ 
2.0 Style. Cambridge University Press.

Alexandre, D., Möller, M. O., & Yi, W. (2002). 
Formal Verification of UML Statecharts with 
Real-Time Extensions, Fundamental Approaches 
to Software Engineering, 5th International Con-
ference, FASE 2002 (pp 208-241).

Bass, L., Clements, P., & Kazman, R. (1998). 
Software Architecture in Practice. Addision-
Wesley, 1998.

Booch, G. (1994). Object-Oriented Analysis and 
Design with Application, 2nd edition. Redwood 
City, CA: Benjamin-Cummings Publishing 
Company. 

Booch, G., Jacobson, I., & Rumbaugh, J. (2005). 
The Unified Modeling Language Reference 
Manual, Second Edition. Addison-Wesley.

Damm, W., Josko, B., Pnueli, A., & Votintseva, A. 
(2002). Understanding UML: A formal semantics 
of concurrency and communication in real-time 
UML. Proceedings of the 1st Symposium on 
Formal Methods for Components and Objects 
(pp. 70-98).

Douglass, B.P. (2000). Real-Time Design Patterns. 
Addison-Wesley.

Douglass, B.P. (1997). Real-Time UML: Efficient 
Objects for Embedded Systems. Addison-Wes-
ley.

Gamma, E., Helm, R., Johnson, R., & Vlissides, 
J. (1995). Design Patterns: Elements of Reusable 
Object-Oriented Software. New York, NY: Ad-
dison-Wesley Publishing Company.

Gomaa, H., & D. Wijesekera, D. (2003, October). 
Consistency in Multiple-View UML Models: A 



��0  

James Webb Space Telescope

Case Study. Workshop on Consistency Problems 
in UML-based Software Development, San 
Francisco.

Jackson. M. (1993). System Development. Pren-
tice Hall.

Jacobson I., Booch, G., & Rumbaugh, J. (1999). 
The Unified Software Development Process. 
Addision-Wesley.

Lange, C. F. J., Bois, B. D., Chaudron, M. R. V., 
& Serge Demeyer, S. (2006). An Experimental 
Investigation of UML Modeling Conventions. 
MoDELS 2006 (pp 27-41).

Lange, C. F. J., & Chaudron, M. R. V. (2006). Ef-
fects of defects in UML models: an experimental 
investigation. 28th International Conference on 
Software Engineering (pp 401-411).

Lange, C. F. J., & Chaudron, M. R. V. & Muskens, 
J. (2006, March). In Practice: UML Software 
Architecture and Design Description. IEEE 
Software 23(2), 40-46.

Lange, C.F.J.  (2006, May). Improving the Quality 
of UML Models in Practice. 28th International 
Conference on Software Engineering (pp 993-
996).

Lindland, O.I., Sindre, G., and Solvberg, A. (1994, 
March). Understanding Quality in Conceptual 
Modeling. IEEE Software 11(2), 42-49.

Martin, G., L. Lavagno, L. & Louis-Guerin, J. 
(1998). Embedded UML: A merger of real-time 
UML and co-design. Proceedings of Hot Inter-
connects 6. 

Mitchell, R., Graff, P., & Bacvanski, V. (2004, 
January). High-quality modeling in UML. Infer-
Data Corporation, USA.

Robbins, J., Redmiles, D. (1999, May). Cognitive 
Support, UML Adherence, and XMI Interchange 
in Argo/UML. Proceedings of the Conference on 
Construction of Software Engineering Tools, Los 
Angeles, CA (pp. 61-70).

Selic, B., & and J. Rumbaugh, J. (1998, March). 
Using UML for Modeling Complex Real-Time 
Systems. IBM Rational Technical Library, 1998

Selic, B., Gullekson, G. & Ward, P. (1994). Real-
Time Object-Oriented Modeling. New York: John 
Wiley & Sons.

Selic, B. (2001). Using UML for Modeling 
Complex Real Time System Architectures. Ob-
ject-Oriented Modeling of Embedded Real-Time 
Systems (pp. 16-21).

Selic, B., Gullekson, G., and Ward, P., Real-Time 
Object-Oriented Modeling, John Wiley & Sons, 
New York, NY, 1994.

Selic, B. (1999, October). Turning Clockwise: 
Using UML in the Real-Time Domain. Com-
munications of the ACM, 42(10), 46-54.

Unhelkar, B. (2005). Verification and Validation 
for Quality of UML 2.0 Models. John Wiley & 
Sons, Inc.

Unhelkar, B. (2003). Process Quality Assurance 
for UML-Based Projects. Boston: Addison-
Wesley.



  ���

Compilation of References

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

(Acme) The Acme Studio Homepage. http://www.cs.cmu.
edu/~acme/ AcmeStudio/index.html. 

(ArchJAvA Project, 2005) ArchJAvA Project. http://arch-
java.org/, 2005. 

(AutoFOCUS Project) AutoFOCUS Project. http://auto-
focus.in.tum.de/index-e.html.

(AutoFOCUS2 Project) AutoFOCUS2 Project. http://
www4.in.tum.de/af2. 

(CAMG, 2007) MAAB The MathWorks Automotive 
Advisory Board (2007): Control Algorithm Modeling 
Guidelines	Using	MATLAB,	 Simulink,	 and	 Stateflow,	
Version 2.0. Retrieved from http://www.mathworks.
com/industries/ auto/maab.html (MAAB_Style_Guide_
pdf_v2_00.zip)

(chArmy, 2004) chArmy Project: chArmy Web Site. 
http://www.di.univaq.it/charmy (2004). 

(CTE/ES, 2007) Razorcat Development GmbH: CTE for 
Embedded Systems, URL: http://www.razorcat.com

Abels & Haak & Hahn (2005). Identification of Com-
mon Methods Used for Ontology Integration Tasks. In: 
Proceedings of the first international ACM workshop 
on Interoperability of Heterogeneous Information Sys-
tems (IHIS05), CIKM conference proceedings. ACM, 
Sheridan publishing.

Abi-Antoun, M., & Aldrich, J. (2007). Owernship 
domains in the real world. In IWACO workshop at 
ECOOP.

Abowd, G., Allen, R. and Garlan, D. (1995). Formalizing 
style to understand descriptions of software architecture. 
ACM Transactions on Software Engineering and Meth-
odology, 4(4), 319–364.

Abrahao, S., Condori-Fernández, N., Olsina, L., & 
Pastor, O. (2003). Defining	and	validating	metrics	for	
navigational models. In Proceedings of 9th International 
Software Metrics Symposium, pp.: 200-210.

Abreu, B. F., & Melo, W. (1996). Evaluating the impact 
of object-oriented design on software quality. Third 
International	Software	Metrics	Symposium	(METRICS	
‘96), 90-99. 

Ackermann, J. and Turowski, K. (2006). A Library 
of OCL Specification Patterns to Simplify Behavioral 
Specification of Software Components. In Proceed-
ings of Conference on Advanced Information Systems 
Engineering, volume 4001 of LNCS (Lecture Notes in 
Computer Science), pages 255–269.

ADM Task Force. Why do we need standards for the 
modernization of legacy systems. White Paper. Re-
trieved June, 1, 2007, from http://adm.omg.org/legacy/
ADM_whitepaper.pdf 

ADM: Architecture-Driven Modernization home page: 
http://adm.omg.org 

Adolph, S., Bramble, P., Cockburn, A., & Pols, A. (2003). 
Patterns for Effective Use Cases. Addison-Wesley.

Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, 
M., Hähnle, R., Menzel, W., Mostowski, W., Roth, A., 
Schlager, S., and Schmitt, P. H. (2005). The KeY Tool. 
Software and System Modeling, 4(1):32–54.

Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., & Sha-
ham-Gafni, Y. (2006). Model traceability. IBM Systems 
Journal,	45(3), 515-526.

Aldrich, J., & Chambers, C. (2004). Ownership Domains: 
Separating Aliasing Policy from Mechanism. In Proc. 
of ECOOP’04 (pp. 1-25).



���  

Compilation of References

Aleman, J.L.F., & Alvarez, A.T. (2000).  Can intuition be-
come rigorous? Foundations for UML model verification 
tools. Proceedings of the 11th International Symposium 
on Software Reliability Engineering, 344-345.

Alexander, I., & Maiden, N. (2004). Scenarios, Stories, 
Use Cases through the Systems Development Life-Cycle. 
John Wiley and Sons. 

Alikacem, E. and Sahraoui, H. (2006). Generic metric ex-
traction framework. In Proceedings of IWSM/MetriKon 
2006.

Allen, R. , & Garlan, D. (1997). A Formal Basis for 
Architectural Connection. ACM Trans. on Software 
Engineering and Methodology, 6(3), (pp. 213-249).

Alonso, G., Casati, F., Kuno, H. and Machiraju, V. (2004). 
Web Services – Concepts, Architectures and Applications. 
London, UK: Springer-Verlag.

Alur, R., Courcoubetis, C., & Dill, D. L.(1990). “Model 
Checking for Real-Time Systems”. In Proc. of IEEE Fifth 
Symp. Logic in Computer Science, (pp. 414-425).

Ambler, S. W. (2002). Agile Modeling: Effective Practices 
for Extreme Programming and the Unified Process. John 
Wiley and Sons. 2002.

Ambler, S. W. (2003). The Elements of UML Style. 
Cambridge University Press.

Ambler, S.W. (2005). The elements of UML 2.0 style. 
New York: Cambridge University Press.

Anda, B. C. D. (2003). Empirical Studies of Construc-
tion and Application of Use Case Models. Ph.D. Thesis, 
University of Oslo, Oslo, Norway.

Anda, B. C. D., Sjøberg, D. I. K., & Jørgensen, M. (2001). 
Quality and Understandability in Use Case Models. The 
Fifteenth European Conference on Object-Oriented 
Programming (ECOOP 2001), Budapest, Hungary, June 
18-22, 2001. 

Angay, H. (2002). Template Use Case Pattern. Appropri-
ate Process Group White Paper. 2002.

Antoniol, G., Caprile, B., Potrich, A., & Tonella, P. (2000). 
Design-code traceability for object-oriented system. 
Annals for Software Engineering, 9, 35-58

Appleton, B. A. (1997). Patterns and Software: Essential 
Concepts and Terminology. Object Magazine Online, 
3(5), 20-25.

Astels, D. (2002). Refactoring with UML. In M. Marchesi, 
G. Succi (Eds.), Proceedings of 3rd International Confer-
ence eXtreme Programming and Flexible Processes in 
Software Engineering (pp. 67-70), Alghero, Italy.

Atkinson, C. and Kühne, T. (2001). The Essence of Mul-
tilevel Metamodeling. In Gogolla and Kobryn, editors, 
UML	2001	–	The	Unified	Modeling	Language.	Modeling	
Languages, Concepts, and Tools: 4th International Con-
ference, Toronto, Canada, October 1-5, 2001, Proceed-
ings, volume 2185 of LNCS. Springer, pages 19-33.

Atkinson, C. and Kühne, T. (2003). Model-driven Devel-
opment: A Metamodeling Foundation. IEEE Software, 
20(5):36–41.

Atkinson, C., & Kühne, T. (2002). The Role of Metamodel-
ing in MDA. Paper presented at the Workshop in Software 
Model Engineering, Dresden, Germany.

Atkinson, C., Kühne, T., & Henderson-Sellers, B. (2002, 
2002). Stereotypical encounters of the third kind. Paper 
presented at the 5th International Conference on the Uni-
fied Modeling Language «UML» 2002. Model Engineer-
ing, Concepts, and Tools., Dresden, Germany.

Aurum, A., Petersson, H., & Wohlin, C. (2002). State-
of-the-art: software inspection after 25 years. Software 
Testing	Verification	and	Reliability,	12(3), 133-154.

Autili, M., & Pelliccione, P. (2006). Towards a Graphical 
Tool for Refining User to System Requirements. In: 5th 
GT-VMT’06 - ETAPS’06, to appear in ENTCS. 

Autili, M., Inverardi, P., & Pelliccione, P.(2007). Graphi-
cal Scenarios for Specifying Temporal Properties: an 
Automated Approach, published in the Automated 
Software Engineering (ASE) journal. DOI - 10.1007/
s10515-007-0012-6. 

B. Nuseibeh. Weaving Together Requirements and Archi-
tectures. IEEE Computer, 34(3):115–117, March 2001.

B. Schmerl, D. Garlan. AcmeStudio: Supporting Style-
Centered Architecture Development. Proc. International 
Conference on Software Engineering, ICSE’04, pages 
704-705, Edinburgh, Scotland, May 2004.



  ���

Compilation of References

Baar, T. (2003). The Definition of Transitive Closure with 
OCL – Limitations and Applications. In Proceedings, 
Fifth Andrei Ershov International Conference, Perspec-
tives of System Informatics, Novosibirsk, Russia, volume 
2890 of LNCS, Springer, pages 358–365.

Bach, K. The Semantics-Pragmatics Distinction: What 
It Is and Why It Matters, Retrieved in June 2005, from 
http://userwww.sfsu.edu/~kbach/semprag.html

Baker, P., Loh, S., & Well, F. (2005). Model-Driven 
Engineering in a Large Industrial Context - Motorola 
Case Study. Paper presented at the Model Driven Engi-
neering Languages and Systems - MoDELS, Montego 
Bay, Jamaica.

Balsamo, S. , DiMarco, A., Inverardi, P. & Simeoni, M. 
(2004). Model-Based Performance Prediction in Software 
Development: A Survey. IEEE Transactions on Software 
Engineering, 30(5), 295-310.

Bansiya, J. (2000). Evaluating framework architecture 
structural stability. ACM Comput. Surv., 32(1es):18.

Bansiya, J. and Davis, C. (2002). A hierarchical model 
for object-oriented design quality assessment. IEEE 
Transactions on Software Engineering, 28(1):4–17.

Barber, K. S., Graser, T. , & Holt, J. (2001). Providing early 
feedback in the development cycle through automated 
application of model checking to software architectures. 
In Proc. of 16th IEEE International Conference on Au-
tomated Software Engineering, (pp. 341–345).

Baresi, L., Heckel, R., Thöne, S. and Varro, D. (2004). 
Style-based refinement of dynamic software archi-
tectures. Proc. 4th Working IEEE/IFIP Conference on 
Software Architecture WICSA (pp. 155–164). 

Baroni, A. L. (2005). Quantitative assessment of uml 
dynamic models. In ESEC/FSE-13: Proceedings of the 
10th European software engineering conference held 
jointly with 13th ACM SIGSOFT international sympo-
sium on Foundations of software engineering, pages 
366–369. ACM Press.

Baroni, A., Braz, S., and Abreu, F. (2002). Using OCL 
to formalize object-oriented design metrics definitions. 
In ECOOP’02 Workshop on Quantitative Approaches 
in OO Software Engineering.

Barrett, R., Patcas, L.M., Murphy, J. and Pahl, C. (2006). 
Model Driven Distribution Pattern Design for Dynamic 
Web Service Compositions. International Conference on 
Web	Engineering	ICWE’06 (pp. 129-136). 

Basili, V. & Rombach, H. (1988). The TAME project: 
towards improvement-oriented software environments. 
IEEE Transactions on Software Engineering, 14(6), 
728-738.

Basili, V. R., Caldiera, G., & Rombach, H. D. (1994). Goal 
Question Metric Paradigm. Encyclopaedia of Software 
Engineering, pp.: 528-532. John Wiley&Sons.

Basili, V. R., Green, S., Laitenberger, O., Shull, F., So-
rumgard, S., & Zelkowitz, M. V. (1996). The empirical 
investigation of perspective-based reading. Empirical 
Software Engineering, 1(2), 133-164.

Basili, V. R., Caldiera, G., and Rombach, H. D. (1994). 
The goal question metric approach. In Encyclopedia of 
Software Engineering. Wiley.

Basili, V., Caldiera, G., and Rombach, D. (1994). The 
Goal/Question/Metric approach. Encyclopedia of Soft-
ware Engineering, Volume I, 528–532. Los Alamitos, 
CA: Wiley.

Basili, V.R., & Weiss, D.M. (1984). A methodology for 
collecting valid software engineering data. IEEE Transac-
tions on Software Engineering, 10(6), 728-738.

Basili, V.R., Green, S., laitenberger, O., Lanubile,F., 
Shull, F., Sørumgård, S., et al. (1996). The empirical 
investigation of perspective-based reading, Empirical 
Software	Engineering,	1(2), 133-164.

Bass, L., Clements, P. and Kazman, R. (2003). Software 
Architecture in Practice. SEI Series in Software Engi-
neering. Boston, MA: Addison-Wesley.

Baumeister, H., Hacklinger, F., Hennicker, R., Knapp, A., 
& Wirsing, A. (2006). A Component Model for Archi-
tectural Programming. Electronic Notes in Theoretical 
Computer Science (160), (pp. 75–96).

Baxter, I. D., Yahin, A., Moura, L., Sant‘Anna, 
M., & Bier, L. (1998). Clone detection using ab-
stract syntax trees. In Proc. international con-
ference	 on	 software	 maintenance	 (ICSM	 ‘98) 
(p. 368). Washington, DC: IEEE Computer Society.



���  

Compilation of References

Beck, K., & Andres, C. (2005). Extreme Programming 
Explained: Embrace Change (Second Edition). Ad-
dison-Wesley.

Becker, S., Koziolek, H. & Reussner, R. (2007). Model-
based Performance Prediction with the Palladio Com-
ponent Model. In Proceedings	 of	 the	 6th	 Workshop	
on	Software	and	Performance	WOSP’07	 (pp. 56-67). 
ACM Press

Becker, S.; Grunske, L.; Mirandola, R. & Overhage, S. 
(2005). Performance Prediction of Component-Based 
Systems: A Survey from an Engineering Perspective. 
In Springer Lecture Notes in Computer Science Vol. 
3938 (pp. 169-192).

Becker, Steffen & Brogi, Antonio & Gorton, Ian & 
Overhage, Sven & Romanowsky, Alexander & Tivoli, 
Massimo (2006). Towards an Engineering Approach to 
Component Adaptation. In Architecting Systems 
with Trustworthy Components, Proceedings of 
Dagstuhl	Seminar	04511.

Beckers, J.B.C., & Heemels, W.P.M.H., & Bukkems, 
B.H.M. (2006). Effective industrial modeling: The ex-
ample of Happy Flow. In Heemels, W.P.M.H., & Muller, 
G.J. (Eds.) Model-based design of high-tech systems, (pp. 
77-88). Eindhoven: Embedded Systems Institute.

Beckert, B., Keller, U., and Schmitt, P. H. (2002). Trans-
lating the Object Constraint Language into First-order 
Predicate Logic. In Proceedings of VERIFY, Workshop 
at	Federated	Logic	Conferences	(FLoC).

Beine, M., Otterbach, R., & Jungmann, M. (2004). De-
velopment of safety-critical software using automatic 
code generation. In Proc. SAE world congress. Society 
of Automotive Engineers.

Bengtsson, J., Larsen, K. G., Larsson, F., Pettersson, 
P., & Yi, W.(1995). Uppaal - a Tool Suite for Automatic 
Verification of Real-Time Systems. In Proceedings of 
the 4th DIMACS Workshop on Verification and Control 
of Hybrid Systems, New Brunswick, New Jersey, (pp. 
22-24).

Berenbach, B. and Borotto, G. (2006). Metrics for 
model driven requirements development. In ICSE	’06:	
Proceeding of the 28th international conference on 
Software engineering, pages 445–451, New York, NY, 
USA. ACM Press.

Berenbach, B., & Borotto, G. (2006). Metrics for Model 
Driven Requirements Development. The Twenty Eighth 
International Conference on Software Engineering (ICSE 
2006), Shanghai, China, May 20-28, 2006. 

Bergin, J. (2000). Fourteen Pedagogical Patterns. The 
Fifth European Conference on Pattern Languages of 
Programs (EuroPLoP 2000), Irsee, Germany, July 5-9, 
2000.

Bernardo, M., & Inverardi, P. (2003). Formal Methods 
for Software Architectures, Tutorial book on Software 
Architectures and Formal Methods. SFM-03:SA Lec-
tures, LNCS 2804.

Berns, G. M. (1984). Assessing software maintainability. 
Communications of the ACM, 27 (1),      14-23.

Bertolino, A. & Mirandola, R. (2004). CB-SPE Tool: 
Putting Component-Based Performance Engineering 
into Practice. In Crnkovic, I., Stafford, J. A., Schmidt, 
H. W. & Wallnau, K. C. (Ed.), Proceedings	of	 the	7th 
International Symposium on Component-Based Software 
Engineering, CBSE2004 (pp. 233-248). Springer Lecture 
Notes in Computer Science, Vol. 3054

Bertolino, A., Marchetti, E., & Muccini, H. (2004) Intro-
ducing a Reasonably Complete and Coherent Approach 
for Model-based Testing. (In: Testing and Analysis of 
Component-Based Systems Workshop, Tacos). 

Beus-Dukic, L., & Myers, C. (2005). Use and Abuse 
Cases. The First International Workshop on Requirements 
Engineering Education and Training (REET 2005), Paris, 
France, August 29-September 2, 2005. 

Beydeda, S., Book, M., & Gruhn, V. (2005). Model-
Driven Software Development. Springer.

Bézivin, J. (2005). On the unification power of models. 
Software and Systems Modeling, 4(3), 171-188.

Bézivin, J., Jouault, F., Rosenthal, P., & Valduriez, P. 
(2005). Modeling in the Large and Modeling in the 
Small. Paper presented at the European MDA Work-
shops: Foundations and Applications, MDAFA 2003 
and MDAFA 2004.

Biddle, R., Noble, J., & Tempero, E. (2001). Patterns for 
Essential Use Cases. Technical Report CS-TR-01/02. 
School of Mathematics, Statistics and Computer Sci-
ence, Victoria University of Wellington, Wellington, 



  ���

Compilation of References

New Zealand. May 20, 2001. 

Biermann, E., Ehrig, K., Köhler, C., Taentzer, G., & 
Weiss, E. (2006). Graphical Definition of In-Place 
Transformations in the Eclipse Modeling Framework. 
In O. Nierstrasz (Ed.), Proceedings of International 
Conference on Model Driven Engineering Languages 
and Systems (pp. 425-439), Lecture Notes in Computer 
Science 4199, Heidelberg: Springer.

Bittner, K., & Spence, I. (2003). Use Case Modeling. 
Addison-Wesley.

Björnvig, G. (2003). Patterns for the Role of Use Cases. 
The Eighth European Conference on Pattern Languages 
of Programs (EuroPLoP 2003), Irsee, Germany, June 
25-29, 2003.

Blackburn, M., Busser, R. Nauman, A. Knickerbocker, & 
Kasunder, R. (2002). Mars Polar Lander fault identifica-
tion using model-based testing. In 26th	NASA	Goddard	
Software Engineering Workshop, Greenbelt, MD (pp. 
128-135) IEEE/NASA.

Blackwell, A.F. & Green, T.R.G. (2000) A Cognitive 
Dimensions questionnaire optimised for users. In: Pro-
ceedings of the Twelth Annual Meeting of the Psychology 
of Programming Interest Group (pp.137-152). 

Blunden, B. (2003). Software Exorcism: A Handbook for 
Debugging and Optimizing Legacy Code. Apress.

Bobkowska, A.E. (2001) Software Quality Prediction 
with UML, Unpublished doctoral dissertation, Gdansk 
University of Technology.

Bobkowska, A.E. (2005)  A methodology of Visual 
Modeling Language Evaluation, In: Proceedings of 
SOFSEM	2005, LNCS 3381 (pp. 72-81).

Boehm, B. (1989). Software Risk Management. Los 
Alamos: IEEE.

Boehm, B. W. (1981). Software engineering economics. 
Englewood Cliffs, NJ: Prentice-Hall.

Boehm, B. W., Abts, C., Brown, A. W., Chulani, S., Clark, 
B. K., Horowitz, E., Madachy, R., Reifer, D., & Steece, 
B. (2001). Software Cost Estimation with COCOMO II. 
Prentice Hall.

Boehm, B. W., Brown, J. R., Kaspar, H., Lipow, M., 
Macleod, G. J., & Merrit, M. J. (1978). Characteristics 
of software quality. New York, NY: North-Holland.

Boehm, B.W., Brown, J.R., & Lipow, M. (1976). Quanti-
tative evaluation of software quality, Proceedings of the 
2nd international conference on Software Engineering, 
592-605.

Boger, M., Sturm, T., & Fragemann, P. (2002). Refactor-
ing Browser for UML. In M. Marchesi, G. Succi (Eds.), 
Proceedings 3rd International Conference on eXtreme 
Programming and Flexible Processes in Software En-
gineering (pp. 77-81), Alghero, Italy.

Bois, B. D., Lange, C. F., Demeyer, S., and Chaudron, M. 
R. (2006). A Qualitative Investigation of UML Modeling 
Conventions. In (Kuzniarz et al., 2006), pages 79–94.

Bolloju, N., & Leung, F. S. K. (2006). Assisting Novice 
Analysts in Developing Quality Conceptual Models with 
UML. Communications of the ACM, 49(7), 108-112. 

Bondarev, E., de With, P., Chaudron, M. & Musken, J. 
(2005). Modelling of Input-Parameter Dependency for 
Performance Predictions of Component-Based Embed-
ded Systems. In  Proceedings of the 31th EUROMICRO 
Conference	(EUROMICRO’05) 

Booch, G. (1994) Object-Oriented Analysis and Design 
with Applications. Benjamin/Cummings.

Booch, G., Jacobson, I., & Rumbaugh, J. (2005). The 
Unified Modeling Language Reference Manual (Second 
Edition). Addison-Wesley.

Boronat, A., Carsí J.A., & Ramos I. (2006). Algebraic 
Specification	of	a	Model	Transformation	Engine. Pro-
ceedings of the Fundamental Approaches to Software 
Engineering (FASE’06). ETAPS’06. Vienna, Austria, 
262–277.

Boronat, A., Carsí, J.Á., Ramos, I. (2005). MOMENT: 
a formal MOdel manageMENT tool. School on Gen-
erative and Transformational Techniques in SE. Braga, 
Portugal. 

Bose, P.(1999). Automated translation of uml models 
of architectures for verification and simulation using 
spin. In Proc. of 14th IEEE International Conference on 
Automated Software Engineering, (pp. 102–109).



���  

Compilation of References

Botafogo, R. A., Rivlin, E., & Shneiderman, B. (1992). 
Structural analysis of hypertexts: identifying hierarchies 
and useful metrics. ACM Transactions on Information 
Systems, Vol. 10(2). pp.: 142-180.

Bottoni, P., Parisi-Presicce, F., Mason, G., & Taentzer, 
G. (2005). Specifying Coherent Refactoring of Software 
Artefacts with Distributed Graph Transformations. In 
P. van Bommel (Ed.), Handbook on Transformation of 
Knowledge, Information, and Data: Theory and Appli-
cations (pp. 95-125). Hershey, PA: Information Science 
Publishing.

Bouden, S. (2006). Étude de la traçabilité entre refac-
torisations du modèle de classes et refactorisations du 
code. Unpublished masters dissertation, Université de 
Montréal, Canada.

Bourque, P., Dupuis, R., Abran, A., Moore, J. W., Tripp, 
L., & Wolff, S. (2002). Fundamental Principles of Soft-
ware Engineering - A Journey. Journal of Systems and 
Software, 62(1), 59-70. 

Bowen, J.P., & Hinchey, M.G. (1995) Ten commandments 
of formal methods. IEEE	Computer,	28(4), 56-63.

Brand, Klaus-Peter & Buchholz, Bernd (2003). Syste-
manforderungen an interoperable Geräte und Systeme 
der Stationsautomatisierung. In (Schwarz, Karlheinz 
(Edt.): Offene Kommunikation nach IEC 61850 für die 
Schutz- und Stationsleittechnik.

Briand, L. C., Morasca, S., and Basili, V. R. (1996). 
Property-based software engineering measurement. 
Software Engineering, 22(1):68–86.

Briand, L.C., Daly, J., Porter, V., & Wüst, J. (1998). A 
comprehensive empirical validation of design measures 
for object oriented system. Proceedings of the 5th Inter-
national Software Metrics Symposium, 246-257. 

Briand, L.C., Labiche, Y., Penta, M.D., Yan-Bondoc, 
H.D. (2005). An experimental investigation of formal-
ity in UML-based development. IEEE Transactions on 
Software	Engineering,	31(10), 833-849

Briand, L.C., Wüst, J., Daly, J.W., & Porter, D.V. (2000). 
Exploring the relationships between design measures and 
software quality in object-oriented systems, The Journal 
of	Systems	and	Software,	51(3), 245-273.

Bril, R.J., Krikhaar, R.L., Postma, A. (2005). Architec-
tural Support in Industry: a reflection using C-POSH. 
Journal of Software Maintenance and Evolution.

Brito, I. (2004). Aspect-Oriented Requirements Engi-
neering. The Seventh International Conference on the 
Unified Modeling Language (<<UML 2004>>), Lisbon, 
Portugal, October 11-15, 2004. 

Brooks, F. P. (1995). No Silver Bullet: Essence and 
accidents of software engineering. In The Mythical 
Man-Month: Essays on Software Engineering, 20th An-
niversary Edition. Reading, MA: Addison-Wesley.

Brottier, E., Fleurey, F., & Le Traon, Y. (2006). Metamod-
el-based Test Generation for Model Transformations: an 
Algorithm and a Tool. In Proceedings	17th International 
Symposium on Reliability Engineering (pp. 85-94), IEEE 
Computer Society.

Broy, M., Deissenboeck, F., & Pizka, M. (2006). De-
mystifying maintainability. In Proc. the 4th workshop on 
software quality. New York, NY: ACM Press.

Brucker, A. D. and Wolff, B. (2006). The HOL-OCL Book. 
Technical Report 525, ETH Zurich, Switzerland.

Brucker, A. D., Doser, J., and Wolff, B. (2006). Semantic 
Issues of OCL: Past, Present, and Future. In Proceedings 
of	the	6th	OCL	Workshop	at	the	UML/MoDELS	Confer-
ence	2006, pages 213-228.

Brykczynski, B. (1999, January) A survey of Software 
Inspection checklists. ACM SIGSOFT Software Engi-
neering Notes 24(1), 82-89.

Büchi, J. (1960). On a decision method in restricted 
second order arithmetic. In: International Congress on 
Logic, Method and Philosophical Sciences.

Budinsky, F. , Steinberg, D., Merks, E., Ellersick, R., 
& Grose, T.J. (2003). Eclipse Modeling Framework. 
Addison Wesley. 

Buhr, R. J. A. (1998). Use Case Maps as Architectural 
Entities for Complex Systems. IEEE Transactions on 
Software Engineering, 24(12), 1131-1155. 

Bundesministerium für Wirtschaft (2004).  Gesetz für den 
Vorrang Erneuerbarer Energien (EEG) in der Fassung 
vom 21.7.2004, BGBL, I:1918



  ���

Compilation of References

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, 
P., and Stal, M. (1996). Pattern-oriented Software Ar-
chitecture: a System of Patterns. John Wiley & Sons, 
Inc. New York, NY, USA.

Cabot, J. (2006). Ambiguity Issues in OCL Postcondi-
tions. In Proceedings	of	the	6th	OCL	Workshop	at	the	
UML/MoDELS	Conference	2006, pages 194–204.

Cabot, J. and Teniente, E. (2006). A metric for measuring 
the complexity of ocl expressions. In Model Size Metrics 
Workshop	co-located	with	MODELS’06.

Caporuscio, M., DiMarco, A. & Inverardi, P. (2007),  
Model-based system reconfiguration for dynamic perfor-
mance management. Journal of Systems and Software, 
80(4), (pp. 455-473). Elsevier

Cengarle, M. V. and Knapp, A. (2004). OCL 1.4/5 vs. 
2.0 Expressions Formal Semantics and Expressiveness. 
Software and Systems Modeling, 3(1):9–30.

Chen, S.-K., Lei, H., Wahler, M., Chang, H., Bhaska-
ran, K., and Frank, J. (2006). A Model Driven XML 
Transformation Framework for Business Performance 
Management Model Creation. In International Jour-
nal of Electronic Business, volume 4, pages 281–301. 
Inderscience.

Cheng, Betty H.C, & Konrad, S.(2006). Automated 
Analysis of Natural Language Properties for UML 
Models. Jean-Michel Bruel, editor, Satellite Events 
at the MoDELS 2005, n. 3844 in LNCS, (pp. 48-57). 
Springer Verlag.

Chidamber, S.R., & Kemerer, C.F. (1994). A metrics 
suite for object oriented design. IEEE Transaction on 
Software	Engineering,	20(6), 476-493. .

Chiorean, D., Bortes, M., and Corutiu, D. (2005). Pro-
posals for a Widespread Use of OCL. In Baar, T., editor, 
Proceedings	of	the	MoDELS’05	Conference	Workshop	on	
Tool Support for OCL and Related Formalisms - Needs 
and Trends, Montego Bay, Jamaica, October 4, 2005, 
Technical Report LGL-REPORT-2005-001, pages 68–82. 
EPFL, Lausanne, Switzerland.

Chretienne, P., Jean-Marie, A., Le Lann, G., Stefani, J., 
Atos Origin, and Dassault Aviation (2004). Programme 
d’Étude Amont Mesure de la compléxité (marché n°00-
34-007). Technical report, DGA.

Chrissis, M., Konrad, M., and Shrum, S. (2003). CMMI: 
Guidelines for Process Integration and Product Improve-
ment. Addison-Wesley Professional.

Chung, L., & Nixon, B.A., & Yu, E. (2000). Non-func-
tional requirements in software engineering. Boston: 
Kluwer.

Clarke, E. M., Grumberg, O., & Peled, D. A. (2000). 
Model Checking. The MIT Press, Cambridge, second 
edition.

Clarke, E.M., & Wing, J.M. (1996). Formal methods: 
State of the art and future directions, ACM Computing 
Survey,	28(4), 626-643.

Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, 
N., Meseguer, J., & Talcott, C. (2005). Maude 2.2 manual 
and examples, from http://maude.cs.uiuc.edu/maude2-
manual

Clemen, R. T. (1996). Making Hard Decisions: An 
Introduction to Decision Analysis (Second Edition). 
Duxbury Press.

Cockburn, A. (2001). Writing Effective Use Cases. Ad-
dison-Wesley.

Cockburn, A. (2005). Crystal Clear: A Human-Powered 
Methodology for Small Teams. Addison-Wesley.

Coleman, D., Ash, D., Lowther, B., & Oman, P. W. (1994). 
Using metrics to evaluate software system maintain-
ability. Computer, 27 (8), 44-49.

Conradi, R., Mohagheghi, P., Arif, T., Hegde, L. C., 
Bunde, G. A., & Pedersen, A. (2003). Inspection of 
UML Diagrams using OORT - An Industrial Experi-
ment. European Conference for Object-Oriented Pro-
gramming (ECOOP 2003), Darmstadt, Germany, July 
21-25, 2003.

Cook, S. (2000). The UML Family: Profiles, Prefaces and 
Packages. In Evans, A., Kent, S., and Selic, B., editors, 
UML	2000	-	The	Unified	Modeling	Language,	Advanc-
ing the Standard, Third International Conference, York, 
UK, October 2-6, 2000, Proceedings, volume 1939 of 
LNCS, pages 255–264. Springer.

Corporaal, H. (2006a). Embedded System Design. In 
Progress	White	Papers	2006 (pp. 7-25). Utrecht: STW 
Progress.



���  

Compilation of References

Corporaal, H. (2006b), Embedded System Design. STW 
Progress presentation, May 10, 2006. Retrieved 4 March 
2007, from:  www.ics.ele.nl/~heco.

Correa, A., & Werner, C. (2004). Applying Refactor-
ing Techniques to UML/OCL Models. In Proceedings 
International Conference UML 2004 (pp. 173-187), 
Lecture Notes in Computer Science 3273, Heidelberg: 
Springer.

Cortellessa, V., Di Marco, A. and Inverardi, P. (2006). 
Software performance model-driven architecture. Proc. 
ACM	Symposium	on	Applied	Computing	SAC’06 (pp. 
1218–1223). 

Costal, D., Gómez, C., Queralt, A., Raventós, R., and 
Teniente, E. (2006). Facilitating the Definition of General 
Constraints in UML. In Nierstrasz, O., Whittle, J., Harel, 
D., and Reggio, G., editors, MoDELS	2006, volume 4199 
in LNCS, pages 260–274. Springer-Verlag.

Costello, R. J. and Liu, D.-B. (1995). Metrics for require-
ments engineering. J. Syst. Softw., 29(1):39–63.

Cowling, A. J. (2005). The Role of Modelling in the 
Software Engineering Curriculum. Journal of Systems 
and Software, 75(1-2), 41-53. 

Cox, K. (2000) Cognitive Dimensions of use cases: 
feedback from a student questionnaire. In: Proceed-
ings of the Twelth Annual Meeting of the Psychology of 
Programming Interest Group.

Cox, K. (2000). Cognitive Dimensions of Use Cases: 
Feedback from a Student Questionnaire. The Twelfth An-
nual Meeting of the Psychology of Programming Interest 
Group, Corigliano Calabro, Italy, April 10-13, 2000. 

Cox, K., & Phalp, K. (2000). Replicating the CREWS 
Use Case Authoring Guidelines Experiment. Empirical 
Software Engineering Journal, 5(3), 245-267.

Cox, K., Phalp, K., & Shepperd, M. (2001). Comparing 
Use Case Writing Guidelines. The Seventh International 
Workshop on Requirements Engineering: Foundation 
for Software Quality, Interlaken, Switzerland, June 
4-5, 2001.

Crosby, P. B. (1979). Quality is Free. The Art of Making 
Quality Certain. McGraw-Hill Book Company.

Cruz-Lemus, J. A., Genero, M., Manso, M. E., & Piattini, 
M. (2005). Evaluating the effect of composite states on the 
understandability of UML statechart diagrams. In Proc. 
8th int. conf. on model driven engineering languages and 
systems. Berlin, Heidelberg: Springer-Verlag.

Cuesta, C. E., del Pilar Romay, M., de la Fuente,  P. and 
Barrio-Solorzano, M. (2005). Architectural Aspects of 
Architectural Aspects. Proc. 2nd European Workshop 
on	Software	Architecture	EWSA	2005. Springer LNCS 
3047.

Czarnecki, K., & Eisenecker, E. (2000). Generative 
programming. Addison-Wesley Professional.

Czarnecki, K., & Helsen, S. (2006). Feature-based sur-
vey of model transformation approaches. IBM Systems 
Journal, 45(3), 621–645.

Czarnecki, Krzysztof & Eisenecker, Ulrich (2000). 
Generative Programming - Methods, Tools, and Ap-
plications. Addison-Wesley.

D’Souza, D., “Model-Driven Architecture and Inte-
gration: Opportunities and Challenges”, Version 1.1. 
http://www.catalysis.org/publications/papers/2001mda-
reqs-desmond-6.pdf

Dag, Hasan & Urkan, Ulmut (2004). An XML Based Data 
Exchange Model for Power System Studies. ARI - The 
Bulletin of the Istanbul Technical University, 2.

Dashofy, E. M., van der Hoek, A., & Taylor, R. N. (2002). 
An infrastructure for the rapid development of xml-
based architecture description languages. In ICSE ’02: 
Proceedings of the 24th Int. Conf. on Software Eng., (pp. 
266–276), New York, NY, USA, ACM Press.

David, A., Möller, M.O., & Yi, W. (2002). Formal veri-
fication of UML statecharts with real-Time extensions, 
Lecture	Notes	in	Computer	Science,	2306, 208-241.

Davies, I., Green, P., Rosemann, M., Indulska, M., & 
Gallo, S. (2006). How do Practitioners Use Conceptual 
Modeling in Practice? Data and Knowledge Engineer-
ing, 58(3), 358-380.

Davis, A., Overmyer, S., Jordan, K., Caruso, J., Dandashi, 
F., Dinh, A., Kincaid, G., Ledeboer, G., Reynolds, P., 
Sitaram, P., Ta, A., and Theofanos, M. (1993). Identify-
ing and measuring quality in a software requirements 



  ���

Compilation of References

specification. In Proceedings of the First International 
Software Metrics Symposium.

Davis, P. K. and Bigelow, J. H. (2002). Motivated 
Metamodels. In Proceedings of the 2002 PerMIS 
Workshop. 

De Champeaux, D.& Faure, P. (1992) A comparative 
study of object-oriented analysis methods. In: Journal 
of Object-Oriented Programming, 1(5) 21-33.

de Lara, J., & Vangheluwe, H. (2002). AToM3: A tool for 
multi-formalism modelling and meta-modelling. In Pro-
ceedings of  ETAPS/FASE’02. Lecture Notes in Computer 
Science, Vol. 2306, pp.: 174 - 188. Springer-Verlag. See the 
AToM3 home page: http://atom3.cs.mcgill.ca, and http://
astreo.ii.uam.es/~jlara/doctorado.2006/ ATOM3_deploy.
zip for the version described in this chapter.

De Miguel, M., Jourdan, J., & Salicki, S. (2002). Practical 
Experiences in the Application of MDA. Paper presented 
at the The 6th International Conference on The Unified 
Modeling Language - «UML» 2002.

De Miguel, M., Jourdan, J., Salicki, S.:(2002 ) Practical 
Experiences in the Application of MDA. In: Stevens, P., 
Whittle, J., Booch, G. (eds.): The 6th Int. Conf. on UML, 
Vol. 2460, Springer-Verlag (2002) 128-139.

Dean, M., & Schreiber, G. (2004). OWL Web Ontology 
Language Reference. W3C Recommendation. World 
Wide Web Consortium (W3C). February 10, 2004.

Debusmann, M. and Geihs, K. (2003). Efficient and 
Transparent Instrumentation of Application Components 
using an Aspect-oriented Approach. Proc. IFIP/IEEE 
Workshop on Distributed Systems: Operations and 
Management DSOM 2003 (pp. 209–220). Springer 
LNCS 2867.

Debusmann, M., Schmid, M. and Kroeger, R. (2002). 
Measuring End-to-End Performance of CORBA Ap-
plications using a Generic Instrumentation Approach. 
Proc.	7th	Int.	Symp.	on	Computers	and	Communications	
ISCC ’02 (pp. 181–186). 

Deissenboeck, F., Pizka, M., & Seifert, T. (2005). Tool 
support for continuous quality assessment. In Proc. 13th 
IEEE international workshop on software technology 
and	engineering	practice	(STEP	‘05) (p. 127-136). Los 
Alamitos, CA: IEEE Computer Society.

Deissenboeck, F., Wagner, S., Pizka, M., Teuchert, S., & 
Girard, J.-F. (2007). An activity-based quality model for 
maintainability. In Proc. 23rd international conference 
on	software	maintenance	(ICSM	‘07). Washington, DC: 
IEEE Computer Society.

Demeyer, S., Ducasse, S., & Nierstrasz, O. (2000). Find-
ing Refactorings Via Change Metrics. In Proceedings 
International Conference OOPSLA 2000 (pp. 166-177). 
ACM SIGPLAN Notices 35(10), ACM Press.

deVos & Rowbotham (2001). Knowledge Representation 
for Power System Modeling, In (IEEE Publishing Edt.): 
Proceedings of the PICA 2001 (The 22nd International 
Conference on Power Industry Computer Applications), 
IEEE Power Engineering Society.

deVos & Widergren & Zhu (2001). XML for CIM Model 
Exchange. In (IEEE Publishing Edt.): Proceedings of 
the PICA 2001 (The 22nd International Conference on 
Power Industry Computer Applications), IEEE Power 
Engineering Society.

deVos, Arnold (2000). Simplified	RDF	Syntax	for	Power	
System Model Exchange. Longdale Consultants, 2000, 
available at http://www.langdale.com.au/CIMXML/.

Di Battista, G., Eades, P., Tamassia, R., & Tollis, I. G. 
(1999). Graph Drawing: Algorithms for the Visualization 
of Graphs. Prentice-Hall. 

Diaconescu, A., Mos, A. and Murphy, J. (2004). Auto-
matic Performance Management in Component Based 
Systems. Proc. 1st Int. Conf. on Autonomous Computing 
ICAC’04 (pp. 214–221). 

Díaz, P., Aedo, I., & Panetsos, F. (2001). Modeling the 
dynamic behavior of hypermedia applications. IEEE 
Transactions on Software Engineering, 27 (6), pp.: 
550-572.

Díaz, P., Montero, S., & Aedo, I. (2005). Modeling 
hypermedia and web applications: the Ariadne Devel-
opment Method. Information Systems, Vol. 30(8), pp.: 
649-673.

Dijkstra, E. W. (1968). Goto statement considered harm-
ful. Communications of the ACM, 11 (3), 147-148.

Doan & Madhavan & Domingos, & Halevy (2002). 
Learning to map between ontologies on the semantic 



��0  

Compilation of References

web. In: Proceedings of the Eleventh International WWW 
Conference, Hawaii, US.

Dobrica, L., & Niemela, E. A Survey on Software 
Architecture Analysis Methods. IEEE Transactions on 
Software Engineering, VOL. 28, NO. 7.

Dobrzanski, L., & Kuzniarz, L. (2006). An approach to 
refactoring of executable UML models. In Proc. 2006	
ACM	symposium	on	applied	computing	(SAC	‘06) (pp. 
1273-1279). New York, NY: ACM Press.

Dromey, R. G. (1995). A model for software product 
quality. IEEE Transactions on Software Engineering, 
21 (2), 146-162.

Dromey, R. G. (2003). Software Quality - Prevention Ver-
sus Cure? Software Quality Journal, 11(3), 197-210. 

DSLTools from Microsoft, 2007: http://msdn.microsoft.
com/vstudio/DSLTools/ 

dSpace. (2006). Modeling guidelines for MATLAB/ 
Simulink/	Stateflow	and	TargetLink.

Du Bois, B. (2006). Quality-Oriented Refactoring. Un-
published doctoral dissertation, Universiteit Antwepen, 
Belgium.

Dunsmore, A., Roper, M., & Wood, M. (2001).. Systematic 
object-oriented inspection—an empirical study. Proceed-
ings of the 23rd International Conference on Software 
Engineering, 135-144.

Dwyer, M. B., Avrunin, G. S., & Corbett, J. C. (1999). 
Patterns in property specifications for finite-state veri-
fication. In ICSE, (pp. 411–420).

Dwyer, M. B., Avrunin, G. S., and Corbett, J. C. (1998). 
Property Specification Patterns for Finite-state Verifica-
tion. In FMSP	’98:	Proceedings	of	the	second	workshop	
on Formal methods in software practice, pages 7–15, 
New York, NY, USA. ACM Press.

Edmonds, B. (1999). Syntactic Measures of Complexity. 
PhD thesis, University of Manchester.

Egyed, A. (2006). Instant consistency checking for the 
UML. In Proc. International Conference on Software 
Engineering (pp. 31-390), ACM.

Ehrig & Sure (2004). Ontology Mapping - An Integrated 
Approach. Proceedings of the First European Semantic 

Web Symposium. Lecture Notes in Computer Science, 
Vol. 3053, Springer Verlag, Heraklion, Greece, May 
2004, S. 76-91.

Ehrig, H, Ehrig, K. Prange, U. & Taentzer, G. (2006). 
Fundamental Approach to Graph Transformation. 
EATCS Monographs, Heidelberg: Springer.

Ehrig, H., Ehrig, K., Prange, U., & Taentzer, G. (2006). 
Fundamentals of algebraic graph transformation. Mono-
graphs in Theoretical Computer Science. Springer.

Ehrig, H., Tsioalikis, A. (2000). Consistency analysis 
of UML class and sequence diagrams using attributed 
graph grammars. In ETAPS 2000 workshop on graph 
transformation systems (pp. 77-86).

Eick, S. G., Graves, T. L., Karr, A. F., Marron, J. S., 
& Mockus, A. (2001). Does code decay? assessing the 
evidence from change management data. IEEE Transac-
tions on Software Engineering, 27 (1), 1-12.

El Wakil, M., El Bastawissi, A., Boshra, M., and Fahmy, 
A. (2005). A novel approach to formalize and collect 
object-oriented design-metrics. In Proceedings of the 
9th	International	Conference	on	Empirical	Assessment	
in Software Engineering.

El-Attar, M., & Miller, J. (2006). Matching Antipat-
terns to Improve the Quality of Use Case Models. The 
Fourteenth International Requirements Engineering 
Conference (RE 2006), Minneapolis-St. Paul, USA. 
September 11-15, 2006. 

El-Emam, K., Melo, W., & Machado, J.C. (2001). The 
prediction of faulty classes using object-oriented de-
sign metrics. Journal	of	Systems	and	Software,	56(1), 
63-75.

Elvesæter, Brian & Hahn, Axel & Berre, Arne-Jør-
gen & Neple, Tor (2005). Towards an Interoperability 
Framework for Model-Driven Development of Software 
Systems, Proceedings of the 2005 International Confer-
ence on Interoperability for Enterprise Software and 
Applications (I-ESA 2005).

Engels, G., Heckel, R., & Küster, J.M. (2003). The con-
sistency workbench: A tool for consistency management 
in UML-based development. Lecture Notes in Computer 
Sciences,	2893, 356-359.



  ���

Compilation of References

Engels, G., Küster, J.M, Heckel, R., & Groenewegen, 
L. (2001). A methodology for specifying and analyzing 
consistency of object-oriented behavioral models. ACM 
SIGSOFT	Software	Engineering	Notes,	26(5), 186-195.

Eppler, M. J. (2001). The Concept of Information Quality: 
An Interdisciplinary Evaluation of Recent Information 
Quality Frameworks. Studies in Communication Sci-
ences, 1(2), 167-182.

Eriksson, H.-E. , Penker, M., Lyons, B., & Fado D. (2004). 
UML 2 Toolkit, chapter Ch. 7, Representing Architecture, 
(pp. 251–279). John Wiley and Sons..

Erlikh, L. (2000). Leveraging legacy system dollars for 
e-business. IT Professional, 2 (3), 17-23.

Eskenazi, E., Fioukov, A. & Hammer, D. (2004). Per-
formance Prediction for Component Compositions. In 
Crnkovic, I., Stafford, J. A., Schmidt, H. W. & Wallnau, K. 
C. (Ed.), Proceedings	of	the	7th International Symposium 
on Component-Based Software Engineering, CBSE2004. 
Springer Lecture Notes in Computer Science, Vol. 3054 
Grassi, V., Mirandola, R. & Sabetta, A. (2005). From 
design to analysis models: a kernel language for per-
formance and reliability analysis of component-based 
systems. In Proceedings	of	the	5th	international	workshop	
on	Software	and	performance,	WOSP	‘05	(pp. 25-36). 
ACM Press 

EStdIT - Entwicklungsstandard für IT-Systeme des 
Bundes (1997): V-Modell - Vorgehensmodell Kurzbes-
chreibung. Retrieved from URL: http://www.v-modell.
iabg.de

Esterel Technologies, Inc. (2007): SCADE Product Suite. 
URL: http://www.esterel-technologies.com/products/
scade-suite

ETAS GmbH (2007): ASCET Product Family, ASCET-
MD (Modeling & Design). URL: http://en.etasgroup.
com /products/ascet

European Parlament (2003). Richtlinie 2003/54/EG des 
Europäischen Parlaments und des Rates vom 26.Juli 
2003 über die gemeinsamen Vorschriften für den Elek-
trizitätsbinnenmarkt und zur Aufhebung der Richtlinie 
96/92/EG.

Evans, A., Maskeri, G., Sammut, P., & Willians, J. S. 
(2003). Building Families of Languages for Model-Driven 

System Development. Paper presented at the Workshop 
in Software Model Engineering, San Francisco, CA.

Evans, Eric (2004). Domain-Driven Design – Tackling 
Complexity in the Heart Of Software. Addison-Wes-
ley.

Fagan, M. (1976). Design and code inspection to reduce 
errors in program development. IBM Systems Journal, 
15(3), 182-211.

Fagan, M. (1986). Advances in software inspections. IEEE 
Transactions	on	Software	Engineering,	12(7), 744-751.

Fagan, M. E. (1976). Design and code inspections to 
reduce errors in program development. IBM Systems 
Journal,	15(3), 182-211.

Fagan, M.E. (1976) Design and Code Inspections to 
Reduce Errors in Program Development. IBM Systems 
Journal, 15(3), 182-211.

Fantechi, A., Gnesi, S., Lami, G., & Maccari, A. (2003). 
Applications of Linguistic Techniques for Use Case 
Analysis. Requirements Engineering, 8(3), 161-170. 

Fantechi, A., Gnesi, S., Lami, G., and Maccari, A. (2002). 
Application of linguistic techniques for use case analysis. 
In RE ’02: Proceedings of the 10th Anniversary IEEE 
Joint International Conference on Requirements Engi-
neering, pages 157–164, Washington, DC, USA. IEEE 
Computer Society.

Farkas, T. & Röbig H. (2007): Automatisierte, werkzeugü-
bergreifende Richtlinienprüfung zur Unterstützung des 
Automotive-Entwicklungsprozesses. M. Conrad, H. 
Giese, B. Rumpe, B. Schätz (Ed.): Proceedings of the 
Dagstuhl-Workshop MBEES: Modellbasierte Entwick-
lung eingebetteter Systeme III., Informatics-Report 
2007-01, Technical University Braunschweig, January 
2007, Dagstuhl, Germany. 

Farkas, T., Hein, C. & Ritter, T. (2006): Automatic 
Evaluation of Modeling Rules and Design Guidelines. 
European Conference on Model Driven Architecture - 
Foundations and Applications (ECMDA2006), Lecture 
Notes in Computer Science, ISBN-10: 3540359095, 
Springer-Verlag, July 2006, Bilbao, Spain.

Farkas, T., Leicher, A. & Röbig H., et al. (2006): 
Werkzeugübergreifende Konsistenzsicherung von Arte-
fakten bei der Entwicklung softwarebasierter Systeme im 



���  

Compilation of References

Automobil. 4th Workshop on Automotive Software Engi-
neering, Informatik 2006, Jahrestagung der Gesellschaft 
für Informatik, October 2006, Dresden, Germany. 

Favre, J.-M. (2004). Towards a basic theory to model 
driven engineering. Workshop on Software Model En-
gineering, WISME 2004, joint event with UML’2004, 
Lisbon.

Fenton, N. E. (1996). Software metrics: A rigorous and 
practical	approach	(2nd	edition). International Thomson 
Computer Press.

Fenton, N. E., & Pfleeger, S. L. (1997). Software Metrics: 
A Rigorous & Practical Approach. International Thomson 
Computer Press.

Fenton, N. E. (1991). Software Metrics: A Rigorous Ap-
proach. Chapman & Hall.

Fenton, N., & Pfleeger, S. L. (1997). Software Metrics: A 
Rigorous and Practical Approach (2nd edition). London, 
UK: International Thomson Computer Press.

Fenton, N.E. (1999). Software metrics, a rigorous ap-
proach. London: Chapman & Hall.

Fenton, N.E., & Neil, M. (1999). Software metrics: Suc-
cesses, failures, and new directions. Journal of Systems 
and	Software,	47(2-3), 149-157.

Filman, R, Elrad, T., Clarke, S., & Mehmet, A. (2005). 
Aspect-Oriented Software Development. Addison-
Wesley.

Firesmith, D., Henderson-Sellers, B., Graham, I.& Page-
Jones, M. (1996) OPEN Modeling Language (OML). 
Reference Manual. 

Fogg, B. J., & Tseng, S. (1999). The Elements of Computer 
Credibility. The ACM CHI 99 Conference on Human 
Factors in Computing Systems, Pittsburgh, USA, May 
15-20, 1999. 

Form, T. (2006): Systems Engineering im Spannungsfeld 
von Architekturen und Prozesse. 10. EUROFORUM-
Jahrestagung Elektronik-Systeme im Automobil, Techni-
cal University Braunschweig, Munich, Germany.

Fowler, M. (1999) Refactoring: Improving the Design of 
Existing Code. Addison-Wesley.

Fowler, M. (2003). UML Distilled: A Brief Guide to the 
Standard Object Modeling Language (Third Edition). 
Addison-Wesley.

Fowler, M., Beck, K., Brant, J., Opdyke, W., & Roberts, 
D. (1999). Refactoring: Improving the Design of Existing 
Code. Addison-Wesley.

Fowler, Martin (2005). Language Workbenches: The 
Killer-App For Domain-Specific Languages? Retrieved 
2007/05/30, from http://www.martinfowler.com/articles/
languageWorkbench.html

France, R., & Rumpe, B. (2007). Model-Driven Devel-
opment of Complex Software: A Research Roadmap. 
Paper presented at the 29th International Conference on 
Software Engineering, Minneapolis, MN, USA.

France, R., Evans, A., Lano, K., & Rumpe, B. (1998). 
The UML as a formal modeling notation. Computer 
Standards	&	Interfaces,	19(7), 325-334.

Frankel,D.S, Model Driven Architecture. Applying 
MDA to Enterprise Computing. Indianapolis, Indiana. 
Wiley. 2003.

 Fraunhofer Institute FOKUS (2007): OSLO 
– Open Source Library for the Object Constraint Lan-
guage	(OCL). Retrieved from URL: http://oslo-project.
berlios.de

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. 
(1995). Design Patterns: Elements of Reusable Design. 
Boston, MA: Addison Wesley.

Object-Oriented Software. Addison-Wesley Longman 
Publishing Co., Inc., Boston, MA, USA.

García, F., Bertoa, M. F., Calero, C., Vallecillo, A., Ruiz, 
F., Piattini, M., & Genero, M. (2006). Towards a consistent 
terminology for software measurement. Information and 
Software Technology 48, pp.: 631-644. Elsevier.

Garlan, D. and Schmerl, B. (2006). Architecture-driven 
modelling and analysis. Proc. 11th Australian Workshop 
on	 Safety	 Related	 Programmable	 Systems	 SCS’06, 
volume 69 of Conferences in Research and Practice in 
Information Technology.

Garvin, D. A. (1984). What does product qual-
ity really mean? MIT Sloan Management Review, 
 26 (1), 25-43.



  ���

Compilation of References

General German Automobile Association (ADAC) 
(2007): The	ADAC-Breakdown	 statistic	 2006. ADAC 
Paper Manual Nr. 5, May 2007. Retrieved from URL: 
http://www.adac.de

Genero, M., Manso, M., Visaggio, A., Canfora, G. & 
Piattini, M. (2007) Building measure-based prediction 
models for UML class diagram maintainability. Empiri-
cal Software Engineering (to appear).

Genero, M., Miranda, D., and Piattini, M. (2002). Defin-
ing and validating metrics for uml statechart diagrams. 
In Proceedings of QAOOSE’2002.

Genero, M., Moody, D., & Piattini, M. (2005). Assessing 
the capability of internal metrics as early indicators of 
maintenance effort through experimentation. Journal 
of Software Maintenance and Evolution: Research and 
Practice, 17, 225-246.

Genero, M., Piattini, M., and Calero, C. (2000). Early mea-
sures for UML class diagrams. L’Objet, 6(4):489–505.

Genero, M., Piattini, M., and Caleron, C. (2005). A survey 
of metrics for UML class diagrams. Journal of Object 
Technology, 4:59–92.

Genero, M., Piattini, M., Manso, E., & Cantone, G. 
(2003). Building UML class diagram maintainability 
prediction models based on early metrics. In Proc.	9th	
international	symposium	on	software	metrics	(Metrics	
‘03) (pp. 263-275). Washington, DC, USA: IEEE Com-
puter Society.

Genova, G., Valiente, M. C., & Nubiola, J. (2005). A 
Semiotic Approach to UML Models. The First Workshop 
on Philosophical Foundations of Information Systems 
Engineering (PHISE 2005), Porto, Portugal, June 13, 
2005. 

Genuchten, M. van. (1991). Why is Software Late? An 
Empirical Study of Reasons for Delay in Software De-
velopment. IEEE Transactions on Software Engineering, 
17 (6), 582-590.

Genuchten, M. van. (2007), The Impact of Software 
Growth on the Electronics Industry. IEEE Computer, 
40(1), 106-108.

Gheyi, R., Massoni, T., & Borba, P. (2005). A Rigor-
ous Approach for Proving Model Refactorings. In 
Proceedings 20th IEEE/ACM International Conference 

Automated	Software	Engineering	(pp. 372-375). IEEE 
Computer Society.

Gheyi, R., Massoni, T., & Borba, P. (2005). Type-safe 
Refactorings for Alloy. In Proceedings 8th Brazilian 
Symposium	 on	 Formal	 Methods	 (pp. 174-190). Porto 
Alegre, Brazil.

Ghezzi, C., Jazayeri, M., & Mandrioli, D. (2003). Fun-
damentals of Software Engineering (Second Edition). 
Prentice-Hall.

Giesecke, S. (2006). A Method for Integrating Enterprise 
Information Systems based on Middleware Styles. Proc. 
International Conference on Enterprise Information 
Systems	ICEIS’06, Doctoral Symposium (pp. 24–37).

Gîrba, T., Lanza, M., and Ducasse, S. (2005). Character-
izing the evolution of class hierarchies. In Proceedings 
of	9th	European	Conference	on	Software	Maintenance	
and	Reengineering	(CSMR’05), pages 2–11. IEEE Com-
puter Society.

Gitzel, R. and Hildenbrand, T. (2005). A Taxonomy of 
Metamodel Hierarchies. Working Paper 2/2005. 

Glass, R. L. (1989). Software maintenance is a solution, 
not a problem. System Development, 9 (1), 8-9.

Glinz, M. (2000). Problems and Deficiencies of UML 
as a Requirements Specification Language. The Tenth 
International Workshop on Software Specification and 
Design (IWSSD-10), San Diego, USA, November 5-7, 
2000.

GMF, 2007: The Eclipse Graphical Modeling Framework 
home page: http://www.eclipse.org/gmf

Goedicke, M., Meyer, T., & Taentzer, G. (1999). View-
point-oriented software development by distributed 
graph transformation: Towards a basis for living with 
inconsistencies. In Proceedings International Confer-
ence Requirements Engineering (pp. 92-99). IEEE 
Computer Society.

Gogolla, M., & Henderson-Sellers, B. (2002). Analysis 
of UML Stereotypes in the UML Metamodel. Paper 
presented at the UML 2002, Dresden.

Gomaa, H., & Wijesekera, D. (2001). The Role of UML, 
OCL and ADLs in Software Architecture. In Proc. of 
the Workshop on Describing Software Architecture with 
UML, in ICSE 2001, Toronto, Canada.



���  

Compilation of References

Gool, L. van, & Punter, T., & Hamilton, M. (2006). 
Compositional MDA. In O. Nierstrasz et al (Ed.), Pro-
ceedings	 of	 Models	 2006	 LNCS	 4199, (pp. 126-139). 
Berlin: Springer.

Goulo, M., & Abreu, F.(2003). Bridging the gap between 
Acme and UML for CBD. In Specification and Verifica-
tion of Component-Based Systems.

Graaf, B., & Weber, S., & Deursen, A. van. (2006), 
Migrating Supervisory Control Architectures Us-
ing Model Transformations. In Proceedings of 10th 
European Conference on Software Maintenance and 
Reengineering	CSMR	2006 (pp.153-164). Los Alamos: 
IEEE Computer Society.

Grassi, V., Mirandola, R. & Sabetta, A. (2007). A 
Model-Driven Approach to Performability Analysis of 
Dynamically Reconfigurable Component-Based Sys-
tems. In Proceedings	of	the	6th	international	workshop	
on	Software	and	performance,	WOSP	‘07	(pp. 142-153). 
ACM Press 

Gray, J., Rossi, M., & Tolvanen, J.-P. (2004). Special issue 
on Domain-Specific Modeling with Visual Languages 
of the Journal of Visual Languages & Computing, Vol. 
15 (3-4). Elsevier.

Green, T. R. G. (1989). Cognitive Dimensions of Nota-
tions. In: Sutcliffe, V. A., & Macaulay, L. (Eds.). People 
and Computers. Cambridge University Press, 443-460.

Greenfield, J., Short, K., Cook, S., Kent, S., & Crupi, J. 
(2004). Software factories: assembling applications with 
patterns, models, frameworks, and tools. Wiley.

Grotehen, T. & Dittrich, K.R. The MeTHOOD Approach: 
Measures, Transformation Rules, and Heuristics for 
Object-Oriented Design, Technical Report., retrieved 
in October 2003 from http://www.ifi.unizh.ch/groups/
dbtg/MeTHOOD/index.html  

Gruber, T. R. (1993). Toward Principles for the Design 
of Ontologies Used for Knowledge Sharing. In: Formal 
Ontology in Conceptual Analysis and Knowledge Rep-
resentation. Kluwer Academic Publishers.

Grünbacher, P., Egyed, A., & Medvidovic, N. (2003). 
Reconciling Software Requirements and Architectures 
with Intermediate Models. Springer Journal of Software 
and System Modeling. Accepted for publication. Pub-
lished online on SpringerLink.

Grundy, J. C., Hosking, J.G., & Mugridge W. B. (1998). 
Inconsistency Management for Multiple-View Software 
Development Environments, IEEE Transactions on 
Software Engineering, 24(11), 960-981.

Grunske, L., Geiger, L., Zündorf, A., Van Eetvelde, 
N., Van Gorp, P., & Varro, D. (2005). Using Graph 
Transformation for Practical Model Driven Software 
Engineering. In S. Beydeda, M. Book, & V. Gruhn 
(Eds.), Model-driven Software Development (pp. 91-118). 
Heidelberg: Springer.

Gu A., Henderson-Sellers B.& Lowe D. (2002) Web 
Modeling Languages: The Gap Between Requirements 
And Current Exemplars. In Proceedings Of The Eighth 
Australian World Wide Web Conference. 

Guelfi, N., Hammouche, D., Sterges, P., & Biberstein, O. 
(2001). FIDJI Project Annual Activities Report, Applied 
Computer Science Department technical report nº TR-
DIA-02-01, Luxembourg University of Applied Sciences, 
Luxembourg-Kirchberg, Luxembourg.

Guerra, E., & de Lara, J. (2006). Model View Manage-
ment with Triple Graph Transformation Systems. Proc. 
ICGT’2006. Lecture Notes in Computer Science, Vol. 
4178, pp.: 351-366. Springer.

Guerra, E., & de Lara, J. (2007). Meta-modelling and 
graph	transformation	for	the	definition	of	multi-view	visu-
al languages. Chapter of the book “Visual Languages for 
Interactive Computing: Definitions and Formalization”, 
Idea Group Publishers, edited by Fernando Ferri. 

Guerra, E., Díaz, P., & de Lara, J. (2006). Visual speci-
fication	of	metrics	for	domain	specific	visual	languages. 
In Proceedings of Graph-Transformation Visual Model-
ling Techniques. 

Guerra, E., Diaz, P., and de Lara, J. (2006). Visual specifi-
cation of metrics for domain specific visual languages. In 
Graph Transformation and Visual Modeling Techniques 
(GT-VMT	2006).

Guerra, E., Sanz, D., Díaz, P., & Aedo, I. (2007). A 
transformation-driven	approach	to	 the	verification	of	
security policies web designs. In Procedings of the 7th 
International Conference on Web Engineering. L. Baresi, 
P. Fraternali, and G. J. Houben, Eds. Lecture Notes in 
Computer Science, Vol. 4607. Springer. pp.: 269-284.



  ���

Compilation of References

Gurp, J. van, & Bosch, J. (2002). Design erosion: prob-
lems and causes. The Journal of Systems and Software, 
61 (2), 105-119.

Hacklinger, F. (2004). Java/A – Taking Components into 
Java. IASSE 2004, (pp. 163-168).

Halpin, T. A., & Bloesch, A. (1998). A Comparison of 
UML and ORM for Data Modeling. Third International 
Workshop on Evaluation of Modeling Methods in Sys-
tems Analysis and Design (EMMSAD 1998), Pisa, Italy, 
June 8-9, 1998.

Halstead, M. (1977). Elements of software science. New 
York, NY: Elsevier Science Inc.

Hamlet, D., Mason, D. & Woit, D. (2004). Properties of 
Software Systems Synthesized from Components. In 
Lau, K. (Ed.), Component-Based Software Development: 
Case Studies (pp. 129-159). World Scientific Publishing 
Company 

Happe, J., Koziolek, H., & Reussner, R. H. (2007). 
Parametric Performance Contracts for Software Com-
ponents with Concurrent Behaviour. In Electronical 
Notes of Theoretical Computer Science, Vol. 182 (pp. 
91-106 ), Elsevier.

Harmer, T. J. and Wilkie, F. G. (2002). An extensible 
metrics extraction environment for object-oriented pro-
gramming languages. In Proceedings of the International 
Conference on Software Maintenance.

Harrison, R., Counsell, S., & Nithi, R. (2000). Experi-
mental assessment of the effect of inheritance on the 
maintainability of object-oriented systems. Journal of 
Systems	and	Software,	2(3), 173-179.

Hasselbring, Wilhelm & Reussner, Ralf & Jaekel, 
Holger & Schlegelmilch, Jürgen & Teschke, Thorsten 
& Krieghoff, Stefan (2004). The Dublo Architecture 
Pattern for Smooth Migration of Business Information 
Systems: An Experience Report. Proceedings	of	the	26th	
International Conference on Software Engineering (pp. 
117-126). IEEE Computer Society Press.

Heemels, W.P.M.H., & Muller, G.J. (Eds.) (2006). Model-
based design of high-tech systems, Eindhoven, Embedded 
Systems Institute.

Heitmeyer, C. L. (1998). On the need for practical formal 
methods. In FTRTFT	’98:	Proceedings	of	the	5th	Inter-

national Symposium on Formal Techniques in Real-Time 
and Fault-Tolerant Systems, pages 18–26, London, UK. 
Springer-Verlag.

Henderson-Sellers, B. (1996). Object-Oriented Metrics, 
measures of complexity. Prentice Hall.

Hess, Andreas & Humm, Bernhard & Voss, Markus 
(2006). Regeln für serviceorientierte Architekturen hoher 
Qualität. Informatik-Spektrum,	29(6), 395-411.

Highsmith, J. (2002). Agile Software Development 
Ecosystems. Addison-Wesley.

Hissam, S. A., Moreno, G. A., Stafford, J. A. & Wall-
nau, K. C. (2002). Packaging Predictable Assembly. 
In CD’02: Proceedings of the IFIP/ACM Working 
Conference on Component Deployment (pp. 108-124). 
Springer-Verlag 

Hofmeister, C., Kruchten, P., Nord, R.L., Obbink, H.,Ran, 
A., & America, P. (2007). A general model of software 
architecture design derived from five industrial ap-
proaches. J. Syst. Softw., 80(1), (pp.106-126).

Holzmann, G. J. (2002). The logic of bugs. In Proc. 
of Foundations of Software Engineering (SIGSOFT 
2002/FSE-10).

Holzmann, G.J. (2003).The SPIN Model Checker: Primer 
and Reference Manual. Addison-Wesley.

Hommes, B.J.&  van Reijswoud, V. (2000) Assessing the 
Quality of Business Process Modeling Techniques, In 
Proceedings of the 33rd Hawaii International Confer-
ence on System Sciences.

Hong, S. & Goor, G. (1993) A Formal Approach to the 
Comparison of Object-Oriented Analysis and Design 
Methodologies. In Proceedings	of	the	26th	International	
Hawaii International Conference on System Sciences.

Hooman, J. & Mulyar, N., & Posta, L. (2004). Coupling 
Simulink and UML models. In Schnieder, B., & Tarnai, 
G. (Eds), Proceedings Symposium FORMS/FORMATS 
2004, 304-311. Retrieved 29 October  2007, from 
http://www.ita.cs.ru.nl/publications/papers/ hooman/
FORMS04.pdf.

Hörmann, K., Dittmann, L., Hindel, B. & Müller, M. 
(2006): SPiCE in der Praxis - Interpretationshilfe für 
Anwender und Assessoren, dPunkt Verlag, ISBN-13 
978-3898643412, Heidelberg, Germany.



���  

Compilation of References

Huang J., & Voeten J.P.M., & Groothuis M., (2007a). 
A Model Driven Approach for Mechatronic Systems. 
In Proceedings of IEEE International Conference 
on	Application	of	Concurrency	to	System	Design	(ACSD) 
(pp.127-136). Los Alamos: IEEE Computer Society.

Huang, J. (2005). Predictability in real-time software 
design (PhD thesis). Eindhoven: Eindhoven University 
of the Technology.

Huang, J., & Voeten J.P.M., & Ventevogel, A. (2004).  
Predictability in Real-Time System Development - (1) 
Semantics Support for Development Languages. In Va-
choux, A. (Ed.), The	Forum	on	Specification	and	Design	
Languages	(FDL’04), (pp. 123-140). Gières: ECSI.

Huang, J., & Voeten, J.P.M., & Corporaal, H. (2007b). 
Predictable real-time software synthesis. Journal of 
Real-time Systems, 36 (3), 159-198.

Huang, J., & Voeten, J.P.M., & Putten, P. van der (2002). 
Performance Evaluation of Complex Real-time Systems: 
A Case Study. In Proceedings of PROGRESS 2002, (pp. 
77-82). Utrecht: STW Progress.

Huang, S.-J., & Lai, R. (2003). Measuring the maintain-
ability of a communication protocol based on its formal 
specification. IEEE Transactions on Software Engineer-
ing, 29 (4), 327-344.

Hylands, C., & Lee, E., & Liu, J. (2003). Overview of 
the Ptolemy project, Technical Memorandum UCB/ERL 
M03/05. Retrieved 21 November 2006, from http://ptol-
emy.eecs.berkeley.edu/.

IBM (2007). Rational Software Architect. http://www-
306.ibm.com/software/awdtools/architect/swarchitect/
index.html.

IEC (2003). IEC - International Electrotechnical Com-
mission: IEC 61970-301: Energy management system 
application	program	interface	(EMS-API)	–	Part	301:	
Common	Information	Model	(CIM)	Base. International 
Electrotechnical Commission.

IEC (2004). IEC - International Electrotechnical Com-
mission: IEC 61970-501: Energy management system 
application	program	interface	(EMS-API)	–	Part	501:	
CIM RDF Schema – Revision 4. International Electro-
technical Commission.

IEC (2004)b. IEC - International Electrotechnical Com-
mission: Draft IEC 61970: Energy Management System 
Application	Program	Interface	(EMS-API)	–	Part	503:	
CIM XML Model Exchange Format - Draft 3b. Interna-
tional Electrotechnical Commission.

IEEE (1990). Institute of Electrical and Electronics 
Engineers: IEEE Standard Computer Dictionary: A 
Compilation of IEEE Standard Computer Glossaries.

IEEE Learning Technology Standards Committee LTSC 
(2001). IEEE P1484.1/D8. Draft Standard for Learning 
Technology - Learning Technology Systems Architecture 
LTSA.  IEEE Computer Society.

IEEE. (1998). 1219 Software maintenance (Standard).

IEEE-CS/ACM. (2004). Software Engineering 2004: 
Curriculum Guidelines for Undergraduate Degree 
Programs in Software Engineering (SE 2004). Institute 
of Electrical and Electronics Engineers Computer So-
ciety (IEEE-CS)/Association for Computing Machinery 
(ACM) Steering Committee. August 23, 2004.

Insfran, E. (2003). A Requirements Engineering Approach 
for Object-Oriented Conceptual Modeling, PhD Thesis, 
DSIC, Valencia University of Technology, Spain. 

Insfran, E., Pastor, O. & Wieringa, R. (2002). Require-
ments Engineering-Based Conceptual Modelling. 
Journal of Requirements Engineering, 7 (2), 61–72, 
Springer-Verlag. 

International Organisation for Standardisation (2007): ISO/
IEC	9126,	Software	engineering	—	Product	quality.	Part	1-4,	 
URL: http://www.iso.org

International Standard Organization, & Commission, I. 
E. (2001). Software engineering – Product quality Part: 
1 Quality model. Genevao. Document Number)

Inverardi, P., Muccini, H., Pelliccione, P. (2005). chArmy: 
an extensible tool for architectural analysis. In: ESEC/
FSE-13: Proceedings of the 10th European software 
engineering conference, New York, NY, USA, ACM 
Press (pp.111–114).

ISO 9126 (2001). Information technology - Software 
product evaluation, Quality characteristics and guide-
lines for their use. Geneve: ISO/IEC.



  ���

Compilation of References

ISO 9126-1 Software engineering - Product quality - 
Part 1: Quality model (International Standard). (2003). 
ISO.

ISO International Organisation for Standardisation 
(2004): ISO	9000	family	of	Quality	management	system.	
ISO	9001:2004.

ISO International Organization for Standardization 
& IEC International Electrotechnical Commission 
(1998): ISO/IEC	 TR	 15504	 -	 Information	 technology:	
Process assessment and the Assessment Requirements 
for CMMI.

ISO International Organization for Standardization & 
IEC International Electrotechnical Commission (2002): 
ISO/TS	16949:2002	Automotive	Quality	Standard.	

ISO International Organization for Standardization & 
IEC International Electrotechnical Commission (1998): 
IEC-61508	Functional	safety	of	electrical/electronic/pro-
grammable electronic safety-related system.

ISO, ISO/IEC 9126-1, (2001). Software Engineering 
– Product quality – Part 1: Quality model.

ISO/IEC (2001). ISO/IEC	9126.	Software	engineering	
– Product quality. ISO/IEC.

ISO/IEC 15939 (2002). Software Engineering  – Software 
Measurement Process. 

ISO/IEC 9126 (1991). Software Engineering  – Product 
Quality. 

ISO/IEC. ISO	 9126	 Software	 Engineering	 –	 Product	
Quality – Part 1: Quality Model. Published Standard.

Ivers, J. , Clements, P., Garlan, D., Nord, R., Schmerl, 
D., & Silva, J. R. O. (2004). Documenting Component 
and Connector Views with UML 2.0. Technical Report 
CMU/SEI-2004-TR-008, Carnegie Mellon University, 
Software Engineering Institute.

Ivkovic, I., & Kontogiannis, K. A. (2006). Framework 
for Software Architecture Refactoring using Model 
Transformations and Semantic Annotations, Proc. of the 
Conference on Software Maintenance and Reengineering 
(CSMR’06), 135–144.

Jackman, B. & Sanyanga, S. (2005): A Software Compo-
nent Architecture for Improving Vehicle Software Quality 

and Integration. Society of Automotive Engineers (SAE) 
Centenary World Congress, Detroit, USA.

Jackson, D. (2002). Alloy: A Lightweight Object Model-
ling Notation. ACM Transactions on Software Engineer-
ing and Methodology, 11(2):256–290.

Jacobson, I. (2003). Use Cases: Yesterday, Today, and 
Tomorrow. IBM developerWorks, November 20, 2003.

Jacobson, I., & Ng, P.-W. (2005). Aspect-Oriented Soft-
ware Development with Use Cases. Addison-Wesley.

Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The Uni-
fied Software Development Process. Addison-Wesley.

Jacobson, I., Christerson, M., Jonsson, P., & Övergaard, 
G. (1992). Object-Oriented Software Engineering: A Use 
Case Driven Approach. Addison-Wesley.

Jacobson, I., Griss, M., & Jonsson, P. (1997). Software 
reuse: architecture, process and organization for 
business success. New York, NY: ACM Press and Ad-
dison-Wesley.

Jerad, C., & Barkaoui, K. (2005). On the use of rewrit-
ing logic for verification of distributed software archi-
tecture description based lfp. In Proc. Of 16th IEEE 
International Workshop on Rapid System Prototyping 
(pp. 202-208).

Jeusfeld, Manfred A. & Backlund, Per & Ralyté, Jolita 
(2007). Classifying Interoperability Problems for a 
Method Chunk Repository, Proceedings of the 3rd In-
ternational Conference on Interoperability for Enterprise 
Software and Applications (I-ESA 2007).

Johannisson, K. (2005). Formal and Informal Software 
Specifications. PhD thesis, C. Technology and Göteborg 
Univ., SE-412 96 Göteborg, Sweden. 

Jouault, F., Bézivin, J., Consel, C., Kurtev, I., & Latry, F. 
(2006). Building DSLs with AMMA/ATL, a Case Study on 
SPL and CPL Telephony Languages. Paper presented at 
the 1st ECOOP Workshop on Domain-Specific Program 
Development (DSPD). 

Jurista, N. & Moreno, A. M. (2001). Basics of Software 
Engineering Experimentation. Kluwer Academic Pub-
lishers.



���  

Compilation of References

Kalmbach, R. & Dannenberg, J. (2001): Automobiltech-
nologie 2010. Technologische Veränderungen im Au-
tomobil und ihre Konsequenzen für Hersteller, Zulief-
erer und Ausrüster. Study of the HypoVereinsbank and 
Mercer Management Consulting, Munich, Germany.

Kamthan, P. (2004). A Framework for Addressing the 
Quality of UML Artifacts. Studies in Communication 
Sciences, 4(2), 85-114.

Kamthan, P. (2004). A Framework for Addressing the 
Quality of UML Artifacts. Studies in Communication 
Sciences, 4(2), 85-114. 

Kamthan, P. (2005). Pair Modeling. The 2005 Canadian 
University Software Engineering Conference (CUSEC 
2005), Ottawa, Canada, January 14-16, 2005.

Kamthan, P. (2006). How Useful are Your UML Models? 
The 2006 Canadian University Software Engineering 
Conference (CUSEC 2006), Montreal, Canada, January 
19-21, 2006.

Kan, S. H. (2002). Metrics and Models in Software 
Quality Engineering. Addison-Wesley.

Kan, S. H. (1995). Metrics and Models in Software Qual-
ity Engineering. Addison Wesley, Reading, MA.

Kan, S.,(2002) Metrics and Models in Software Quality 
Engineering. 2nd Edition; Addison Wesley.

Kande’, M. M. , Crettaz, V. , Strohmeier, A. & Sendall, 
S. (2002). Bridging the gap between IEEE 1471, Archi-
tecture Description Languages and UML. Software and 
System Modeling, 2 (pp. 98–112) 

Kandula, G. and Sathrasala, V. K. (2005). Product and 
Management Metrics for Requirements. Master thesis. 
Umea University.

Kaner, C. (1995). Liability for Defective Documentation. 
Software QA Quarterly, 2(3). 

Karlsson, E-A. (1995). Software Reuse: A Holistic Ap-
proach. Wiley.

Kazman, R., Carriere, S.J. and Woods, S.G. (2000). To-
ward a Discipline of Scenario-based Architectural Evolu-
tion. Annals of Software Engineering, 9(1-4), 5–33.

Keller, D. (1990). A Guide to Natural Naming. ACM 
SIGPLAN Notices, 25(5), 95-102.

Kelly, J.C., Sherif, J.S., & Hops, J. (1992, February). An 
Analysis of Defect Densities Found During Software 
Inspections. Journal of Systems and Software. 17(2), 
150-166.

Kent, S. (2002). Model Driven Engineering. In Proceed-
ings of the 3rd International Conference on Integrated 
Formal Methods. M. J. Butler, L. Petre, and K. Sere, 
Eds. Lecture Notes in Computer Science, Vol. 2335. 
Springer-Verlag. pp.: 286-298.

Kerhervé, B., Nguyen, K. K., Gerbé, O., & Jaumard, B. 
A. (2006). Framework for Quality-Driven Delivery in 
Distributed Multimedia Systems, Proc. of the Advanced 
International Conference on Telecommunications and 
International Conference on Internet and Web Applica-
tions and Services (AICT/ICIW 2006), 195–205.

Kerievsky, J. (2004). Refactoring to Patterns. Addison-
Wesley.

Kiewkanya, M., Jindasawat, N., & Muenchaisri, P. (2004). 
A methodology for constructing maintainability model 
of object-oriented design. In Proc. fourth international 
conference	on	quality	software	(QSIC	‘04) (pp. 206-213). 
Washington, DC, USA: IEEE Computer Society Press.

Kim, H., & Boldyreff, C. (2002). Developing Software 
Metrics Applicable to UML Models. Sixth ECOOP 
Workshop on Quantitative Approaches in Object-Ori-
ented Software Engineering (QAOOSE 2002), Malaga, 
Spain, June 11, 2002. 

Kitchenham, B. A., Pickard, L. M., and Linkman, S. J. 
(1990). An evaluation of some design metrics. Softw. 
Eng. J., 5(1):50–58.

Kitchenham, B., & Pf leeger, S. L. (1996). Soft-
ware quality: The elusive target. IEEE Software, 
13 (1), 12-21.

Kitchenham, B., Linkman, S., Pasquini, A., & Nanni, 
V. (1997, September). The SQUID approach to defin-
ing a quality model. Software Quality Journal, 6 (3), 
211-233.

Kitchenham, B., Pfleeger, S. L., & Fenton, N. (1995). 
Towards a framework for software measurement vali-
dation. IEEE Transactions on Software Engineering, 
21 (12), 929-944.



  ���

Compilation of References

Klar, V., Quick, A. and Soetz, F. (1991). Tools for a 
Model–driven Instrumentation for Monitoring. Proc. 
5th	Int.	Conf.	on	Modelling	Techniques	and	Tools	 for	
Computer Performance Evaluation (pp. 165–180). 

Kleppe, A. and Warmer, J. (2003). The Object Constraint 
Language. Second Edition. Addison-Wesley.

Kleppe, A., Warmer, J., & W. Bast (2003) , MDA Ex-
plained. The Practice and Promise of the Model Driven 
Architecture. Addison-Wesley, 2003.

Kneuper, R. (2006): CMMI: Verbesserung von Software-
prozessen mit Capability Maturity Model Integration. 
dPunkt Verlag, ISBN-10: 3898643735, Heidelberg, 
Germany.

Königs, A. & Schürr, A. (2006). Tool Integration with 
Triple Graph Grammars - A Survey . In R. Heckel (Ed.), 
Proceedings of the SegraVis School on Foundations of 
Visual Modelling Techniques (pp. 113-150). Electronic 
Notes in Theoretical Computer Science 148, Amsterdam: 
Elsevier.

Koziolek, H. & Firus, V. (2007). Parametric Perfor-
mance Contracts: Non-Markovian Loop Modelling and 
an Experimental Evaluation.  In Electronical Notes of 
Theoretical Computer Science, Vol. 176 (pp.  69-87), 
Elsevier

Koziolek, H., Happe, J. & Becker, S. (2006). Parameter 
Dependent Performance Specifications of Software 
Components. In Hofmeister, C., Crnkovic, I., Reussner, R. 
& Becker, S. (Ed.) Proceedings of the 2nd International 
Conference on the Quality of Software Architecture, 
QoSA2006	 (pp. 163-179). Springer Lecture Notes in 
Computer Science, Vol. 4214

Koziolek, H., Happe, J. & Becker, S. (2007). Predicting 
the Performance of Component-based Software Archi-
tectures with different Usage Profiles. In Szyperski, C. & 
Overhage, S. (Ed.) Proceedings of the 3rd International 
Conference on the Quality of Software Architecture, 
QoSA2007. Springer Lecture Notes in Computer Sci-
ence, To Appear

Kruchten, P. (1995). Architectural Blueprints - The “4+1” 
View Model of Software Architecture. IEEE Software, 
12(6) (pp. 42–50).

Kruchten, P. (2000). The rational Unified Process An 
Introduction, second edition, Addison-Wesley.

Kruchten, P. B. (1995). The 4+1 View Model of Archi-
tecture. IEEE Software, 12(6), 42-50. 

Kuehne, T. (2006). Matters of (meta-) modeling. Software 
and System Modeling, 5(4):369–385.

Kurtev, I. (2005). Adaptability of Model Transformations. 
PhD Thesis, University of Twente, The Nederlands.

Kutar, M., Britton, C.& Barker, T. A. (2002) Comparison 
of Empirical Study and Cognitive Dimensions Analysis 
in the Evaluation of UML Diagrams. In Proceedings of 
the Fourteenth Annual Meeting of the Psychology of 
Programming Interest Group.

Kuzniarz, L., & Staron, M. (2002). On Practical Usage 
of Stereotypes in UML-Based Software Development. 
Paper presented at the Forum on Design and Specifica-
tion Languages, Marseille.

Kuzniarz, L., Sourrouille, J. L., Straeten, R. V. D., Staron, 
M., Chaudron, M., Förster, A., and Reggio, G., editors 
(2006). Proceedings of the 1st Workshop on Quality in 
Modeling.	Co-located	with	the	ACM/IEEE	9th	Interna-
tional Conference on Model Driven Engineering Lan-
guages	and	Systems	(MoDELS	2006), Genova, Italy.

Kuzniarz, L., Staron, M., & Wohlin, C. (2004). An 
Empirical Study on Using Stereotypes to Improve Un-
derstanding of UML Models. Paper presented at the The 
12th International Workshop on Program Comprehen-
sion, Bari, Italy.

Lague, B., Proulx, D., Mayrand, J., Merlo, E. M., & Hude-
pohl, J. (1997). Assessing the benefits of incorporating 
function clone detection in a development process. In 
Proc. International conference on software maintenance 
(ICSM	‘97). Washington, DC: IEEE Computer Society.

Laitenberger, O. (2002). A survey of software inspection 
technologies. In Handbook on Software Engineering and 
Knowledge Engineering. World Scientific Publishing.

Laitenberger, O., Atkinson, C., Schlich, M., & Emam, K. 
E. (2000). An experimental comparison of reading tech-
niques for defect detection in UML design documents. 
The	Journal	of	Systems	and	Software,	53(2), 183-204.



��0  

Compilation of References

Laitenberger, O., Beil, T., & Schwinn, T. (2002). An 
industrial case study to examine a non traditional in-
spection implementation for requirements specifications. 
Empirical Software Engineering, 7(4), 345-374.

Lämmel, R. (2002). Towards generic refactoring. In 
Proceedings of the 2002 ACM SIGPLAN Workshop on 
Rule-Based Programming. ACM Press. pp.: 15-28.

Lange, C. F. J. (2006). Improving the Quality of UML 
Models in Practice. The Twenty Eighth International 
Conference on Software Engineering (ICSE 2006), 
Shanghai, China, May 20-28, 2006. 

Lange, C. F. J. and Chaudron, M. R. V. (2006). Effects 
of Defects in UML Models: an Experimental Investiga-
tion. In ICSE	’06:	Proceeding	of	the	28th	international	
conference on Software engineering, pages 401–411, 
New York, NY, USA. ACM Press.

Lange, C. F. J., & Chaudron, M. R. V. (2006). Effects of 
Defects in UML Models: An Experimental Investiga-
tion. The Twenty Eighth International Conference on 
Software Engineering (ICSE 2006), Shanghai, China, 
May 20-28, 2006. 

Lange, C. F. J., & Chaudron, R. V., Michel. (2005). 
Managing model quality in UML-based software de-
velopment. In Proc. 13th IEEE international workshop 
on software technology and engineering practice (pp. 
7-16). Washington, DC: IEEE Computer Society.

Lange, C.F. J., DuBois, B., & Chaudron, M.R.V. (2005). 
Experimentally investigating the effectiveness and effort 
of modeling conventions for the UML. Lecture Notes in 
Computer Science, 4364, 91-100.

Lange, C.F.J., & Chaudron, M.R.V. (2005). Managing 
model quality in UML-based software development, 
Proceedings of IEEE Conference on Software Technology 
and	Engineering	Practice	2005	(STEP), 7-16.

Lange, C.F.J., & Chaudron, M.R.V., & Muskens, J. 
(2006b). UML Software Architecture and Design De-
scription. IEEE Software, 23(2), 40-46.

Lange, C.F.J., & DuBois, B., & Chaudron, M.R.V. (2006a). 
An Experimental Investigation of UML Modeling 
Conventions. In O. Nierstrasz et al (Ed), Proceedings of 
Models	2006	LNCS	4199, (pp. 27-41). Berlin: Springer.

Lanza, M., & Ducasse, S. (2002). Beyond language in-
dependent object-oriented metrics: Model independent 
metrics. In Proceedings of QAOOSE’02, pp.: 77-84.

Lédczi, A., Bakay, A., Marói, M., Vögyesi, P., Nord-
strom, G., Sprinkle, J., & Karsai, G. (2001). Composing 
domain-specific	design	environments. IEEE Computer, 
pp.: 44-51.

Leffingwell, D., & Widrig, D. (2003). Managing Software 
Requirements: A Use Case Approach (Second Edition). 
Addison-Wesley.

Lehman, M. M., Ramil, J. F., Wernick, P. D., Perry D. 
E., & Turski, W. M. (1997). Metrics and laws of software 
evolution: The nineties view. In Proceedings of Inter-
national Symposium on Software Metrics (pp. 20-32). 
IEEE Computer Society Press.

Lehmann, E. & Wegener, J. (2000): Test Case Design 
by Means of the CTE XL. Proc. 8. Europ. Int. Conf. on 
Software Testing, Analysis & Review (EuroSTAR 2000), 
Copenhagen, Denmark.

Leung, F., & Bolloju, N. (2005). Analyzing the quality 
of domain models developed by novice systems analysts. 
Proceedings of the 38th Hawaii International Conference 
on System Sciences, 188b-188b.

Leveson, N. G. (1986). Software safety: why, 
what, and how. ACM Computing Surveys, 18 (2), 
125-163.

Lientz, B. P., Bennet, P., Swanson, E. B., & Burton, E. 
(1980). Software maintenance management: A study of 
the maintenance of computer application software in 
487	data	processing	organizations. Reading: Addison 
Wesley.

Liggesmeyer, P., & Rothfelder, M, & Rettelbach, M. 
(1998). Quality assurance of software-based systems (in 
German). Informatik-Spektrum, 21(5), 249-258.

Liggesmeyer, R. & Rombach, D. (2005): Software 
Engineering eingebetteter Systeme. Spektrum Aka-
demischer Verlag, 1st Edition, ISBN-10: 3827415330, 
Munich, Germany.

Lilja, D. J. (2000). Measuring Computer Performance: 
A Practitioner’s Guide. Cambridge, UK: Cambridge 
University Press.



  ���

Compilation of References

Lindland, O. I., Sindre G., & Sølvberg A. (1994). Under-
standing quality in conceptual modeling. IEEE Software, 
11(2), 42–49.

Liu, W., Easterbrook, S., & Mylopoulos, J. (2002). Rule-
based detection of inconsistency in UML models. In 
Proceedings UML Workshop on Consistency Problems 
in UML-based Software Development (pp. 106-123). 
Blekinge Insitute of Technology.

Lorenz, M. & Kidd, J. (1994) Object-oriented Software 
Metrics. A Practical Guide., Prentice Hall. 

Ma, H., Ji, Z., Shao, W., and Zhang, L. (2005). Towards the 
uml evaluation using taxonomic patterns on meta-classes. 
In Proceedings of the Fifth International Conference on 
Quality	Software	(QSIC’05), volume 0, pages 37–44.

Ma, H., Shao, W., L.Zhang, Z.Ma, and Y.Jiang (2004). 
Applying OO metrics to assess UML meta-models. In 
Proceedings of MODELS/UML’2004. UML 2004.

MAAB. (2001). Controller style guidelines for production 
intent using Matlab, Simulink and Stateflow.

Magee, J., Kramer, J., & Giannakopoulou, D. (1999). 
Behaviour Analysis of Software Architectures. In I 
Working IFIP Conf. Sw Architecture, WICSA.

Mahmood, S. and Lai, R. (2005). Measuring the com-
plexity of a uml component specification. In QSIC	’05:	
Proceedings of the Fifth International Conference on 
Quality Software, pages 150–160, Washington, DC, 
USA. IEEE Computer Society.

Mahrenholz, D., Spinczyk, O. and Schroeder-Preikschat, 
W. (2002). Program Instrumentation for Debugging 
and Monitoring with AspectC++. Proc.	5th Int. Symp. 
on Object-Oriented Real-Time Distributed Computing 
ISORC’02 (pp. 249–256). 

Manna, Z., & Pnueli, A. (1992). The temporal logic of 
reactive and concurrent systems. Springer-Verlag New 
York, Inc.

Mannion, M. & Keepence, B. (1995). SMART Require-
ments. ACM SIGSOFT Software Engineering Notes, 
20(2), 42-47.

Marinescu, R., & Ratiu, D. (2004). Quantifying the 
quality of object-oriented design: The factor-strategy 
model. In Proc. 11th working conference on reverse 

engineering	(WCRE	‘04). Washington, DC: IEEE Com-
puter Society.

Markovic, S., & Baar, T. (2005). Refactoring OCL An-
notated UML Class Diagrams. In L. Briand, C. Wil-
liams (Eds.), Proceedings International Conference 
Model Driven Engineering Languages and Systems 
(pp. 280-294). Lecture Notes in Computer Science 3713, 
Heidelberg: Springer

Markovic, S., & Baar, T. (2005). Refactoring OCL an-
notated UML class diagrams. In Proc. of the 8th Int. 
Conference on Model Driven Engineering Languages 
and Systems, 280–294.

Martin, J. (1993) Principles of object-oriented analysis 
and design, Prentice Hall

Martín, M. A. & Olsina, L. (2003). Towards an ontology 
for software metrics and indicators as the foundation for 
a cataloging Web system. In Proceedings of LA-WEB. 
IEEE Computer Society.

Martin, R. C. (1998). Java and C++: A Critical Com-
parison. In Java Gems: Jewels from Java Report, pages 
51–68.

Marx Gómez & Brehm (2007). KMU-Software-Umfrage 
2006	zur	Nutzung	betrieblicher	Standardsoftware	kleiner	
und mittelständischer Unternehmen in Deutschland, 
Dep. of Business Information Systems, University of 
Oldenburg, Study.

MathWorks. (2006). Simulink reference.

Mattsson, M. and Bosch, J. (1999). Characterizing sta-
bility in evolving frameworks. In TOOLS	’99:	Proceed-
ings of the Technology of Object-Oriented Languages 
and Systems, page 118, Washington, DC, USA. IEEE 
Computer Society.

McCabe, T. (1976). A complexity measure. IEEE Transac-
tions on Software Engineering, SE-2 (4), 308-320.

McCall, J., & Walters, G. (1977). Factors in software 
quality. Springfield, VA: The National Technical Infor-
mation Service (NTIS).

McCall, J.A., Richards, P.K., & Walters, G.F. (1977). Fac-
tors in software quality, vol. 1-3 of AD/A-049-015/055. 
Springfield.



���  

Compilation of References

McCoy, J. (2003). Use Case Quality Attributes. The Third 
Annual NASA Office of Safety and Mission Assurance 
Software Assurance Symposium (OSMA SAS 2003), 
Morgantown, USA, July 30-August 1, 2003.

McGregor, J.D. (1998),  The fifty-foot look at the analysis 
and design models, Journal of Object-Oriented Program-
ming 11(4) 10-15.

McQuillan, J. A., & Power, J. F. (2006). Some Observa-
tions on the Application of Software Metrics to UML 
Models. The First Workshop on Model Size Metrics, 
Genoa, Italy, October 3, 2006. 

McQuillan, J. A. and Power, J. F. (2006). Experiences 
of using the dagstuhl middle metamodel for defining 
software metrics. In Proceedings of the 4th International 
Conference on Principles and Practices of Program-
ming in Java.

McUmber, W.E., & Cheng, B. (2001). A general frame-
work for formalizing UML with formal languages. 
Proceedings of the 23rd International Conference on 
Software	Engineering	(ICSE	’01), 433-442.

Medina Mora, M. and Denger, C. (2003). Requirements 
metrics. an initial literature survey on measurement 
approaches for requirements specifications. Technical 
report, Fraunhofer IESE.

Medvidovic, N. & Taylor, R. N. (2000). A Classification 
and Comparison Framework for Software Architecture 
Description Languages. IEEE Transactions on Software 
Engineering, 26(1).

Medvidovic, N. , Grünbacher, P. , Egyed, A., & Boehm, 
B. (2003). Bridging Models across the Software Life-
Cycle. Journal for Software Systems (JSS), 68(3) (pp. 
199–215).

Medvidovic, N. and Taylor, R.N. (2000). A Classification 
and Comparison Framework for Software Architecture 
Description Languages. IEEE Transactions on Software 
Engineering, 26(1), 70-93.

Medvidovic, N. , Rosenblum, D. S. , Redmiles, D. F., & 
Robbins, J. E. (2002). Modeling Software Architectures 
in the Unified Modeling Language. ACM Transactions 
on	Software	Engineering	and	Methodology	(TOSEM), 
11(1).

Mellor, S. J., & Balcer, M. J. (2002). Executable UML 
: a foundation for model-driven architecture. Boston ; 
San Francisco ; New York: Addison-Wesley.

Mellor, S. J., Kendall, S., Uhl, A., & Weise, D. (2002). 
Model-Driven Architecture. Paper presented at the Ob-
ject-Oriented Information Systems, Montpellier.

Mellor, S.J., Clark, A.N., & Futagami, T. (2003). Model-
driven development – Guest editor’s introduction. IEEE 
Software,	20(5), 14-18.

Melton, A. C., Baker, A. L., Bieman, J. M., and Gus-
tafson, D. M. (1990). A mathematical perspective for 
software measures research. Software Engineering 
Journal, 5:246–254.

Mendes, O., & Abran, A. (2004). Software Engineering 
Ontology: A Development Methodology. Metrics News, 
9(1), 64-71.

Mens, T. & Lanza, M. (2002). A Graph-Based Metamodel 
for Object-Oriented Software Metrics. Electronic Notes 
in Theoretical Computer Science, Vol. 72(2)

Mens, T. (2006). On the use of graph transformations 
for model refactoring. In Proceedings of Generative and 
Transformational Techniques in Software Engineering, 
pp.: 219-257

Mens, T. (2006). On the use of graph transformations 
for model refactoring. In Generative and Transforma-
tional Techniques in Software Engineering (pp. 219-257). 
Lecture Notes in Computer Science 4143, Heidelberg: 
Springer.

Mens, T. and Lanza, M. (2002). A graph-based metamodel 
for object-oriented software metrics. Electronic Notes in 
Theoretical Computer Science, 72:57–68.

Mens, T., & Tourwé, T. (2004). A Survey of Software 
Refactoring. IEEE Transactions on Software Engineer-
ing, 30(2), 126-162.

Mens, T., Taentzer, G., & Runge, O. (2007). Analyzing 
Refactoring Dependencies Using Graph Transforma-
tion. Journal on Software and Systems Modeling, 6(3), 
269-285.

Mens, T., Van Der Straeten, R., & D’Hondt, M. (2006). 
Detecting and resolving model inconsistencies using 
transformation dependency analysis, In O. Nierstrasz 



  ���

Compilation of References

(Ed.), Proceedings International Conference on Model-
Driven Engineering Languages and Systems (pp. 
200-214). Lecture Notes in Computer Science 4199, 
Heidelberg: Springer.

Mens, T., Van Eetvelde, N., Demeyer, S., & Janssens, D. 
(2005). Formalizing refactorings with graph transforma-
tions. Journal on Software Maintenance and Evolution, 
17(4), 247-276.

Merilinna, J. (2005). A Tool for Quality-Driven Archi-
tecture Model Transformation. Espoo, VTT Electronics, 
VTT Publications.

Miliauskaitė, E. and Nemuraitė, L. (2005). Representation 
of Integrity Constraints in Conceptual Models. Informa-
tion Technology and Control, 34(4):355–365.

Miller, J., & Mukerji, J (January 2007), Model Driven 
Architecture	 (MDA),  http://www.omg.org/docs/orm-
sc/01-07-01.pdf

Miller, J., & Mukerji, J. (2003). MDA Guide.  1.0.1. 
Retrieved 2004-01-10, 2004, from http://www.omg.
org/mda/

Misic, V. B. & Moser, S. (1997). From Formal Metamodels 
to Metrics: An Object-Oriented Approach. In Proceedings 
of 24th International Conference on Technology of Object-
Oriented Languages and Systems, pp.: 330-339.

Misic, V. B. and Moser, S. (1997). From formal metamod-
els to metrics: An object-oriented approach. In TOOLS 
’97:	Proceedings	of	the	Technology	of	Object-Oriented	
Languages and Systems-Tools - 24, page 330, Washington, 
DC, USA. IEEE Computer Society.

MISRA Consortium, The Motor Industry Software 
Reliability Association (1998): MISRA-C - Guidelines 
for the Use of the C Language in Vehicle Based Systems, 
ISBN-10: 0952415690. URL: http://www.misra.org.uk

Modelware Project (2006a). D2.2 MDD Engineering 
Metrics Definition. Technical report, Framework Pro-
gramme Information Society Technologies.

Moody, D. L. (2005). Theoretical and Practical Issues 
in Evaluating the Quality of Conceptual Models: Cur-
rent State and Future Directions. Data and Knowledge 
Engineering, 55(3), 243-276. 

Mottu, J.-M., Baudry, B., & Le Traon, Y. (2006). Mu-
tation Analysis Testing for Model Transformations. 
In Proceedings 2nd European Conference on Model 
Driven Architecture – Foundations and Applications 
(pp. 376-390). Lecture Notes in Computer Science 4066, 
Heidelberg: Springer.

Muccini, H. & Hierons, R. Editors (2006). ROSATEA 
2006: The Role Of Software Architecture in Testing and 
Analysis. ACM Digital Library. 

Muller, G.J. (2004). CAFCR: A Multi-view Method for 
Embedded Systems Architecting; Balancing Genericity 
and	Specificity (PhD-Thesis). Delft: Delft University of 
Technology.

Muller, P. A., Fleurey, F., and Jézéquel, J. M. (2005). 
Weaving executability into object-oriented meta-lan-
guages. In Proceedings	of	MODELS/UML	2005.

MultiSpeak (2003). MultiSpeak Version 2.2 Specifica-
tion (10/07/03), NRECA, Virginia, available online at 
http://www.multispeak.org.

Munro, M., J. (2005). Product metrics for automatic 
identification	of	“bad	smell”	design	problems	in	Java	
source-code. In Proceedings of 11th  International Soft-
ware Metrics Symposium, IEEE Computer Society.

Murphy, G.C., Notkin, D., & Sullivan, K.J. (2001). Soft-
ware reflexion models: Bridging the gap between design 
and implementation. IEEE Transactions on Software 
Engineering,	27(4), 364-380.

Mustapic, G., Wall, A., Norstrom, C., Crnkovic, I., Sand-
strom, K., & Andersson, J. (2004). Real world influences 
on software architecture - interviews with industrial sys-
tem experts. In: Fourth Working IEEE/IFIP Conference 
on Software Architecture, WICSA (pp. 101–111).

NASA. (1998). Formal	 Methods	 Specification	 and	
Verification	 Guidebook	 for	 Software	 and	 Computer	
Systems, Volume I: Planning and Technology Insertion. 
NASA/TP-98-208193 http://eis.jpl.nasa.gov/quality/For-
mal_Methods/document/NASAgb1.doc

Nechypurenko, A., Tao lu., Gan deng. , Douglas,C & 
Anirudha Gokhule (2003) Applying MDA and Compo-
nent Middleware to Large Scale Distributed Systems, 
Vanderbilt University, Nashville,TN,USA



���  

Compilation of References

Nelson, H. J., & Monarchi, D. E. (2007). Ensuring the 
Quality of Conceptual Representations. Software Quality 
Journal, 15(2), 213-233.

Neumann (2003). Comparison of IEC CIM and NRECA 
MultiSpeak, UISOL.

Newman, M. H. A. (1942). On Theories with a Com-
binatorial Definition of “Equivalence”. The Annals of 
Mathematics, 43(2):223–243.

Nieuwelaar, B. van den (2004), Supervisory Machine 
Control by Predictive-Reactive Scheduling (PhD thesis). 
Eindhoven: Eindhoven University of Technology.

Nipkow, T., Paulson, L. C., and Wenzel, M. (2002). 
Isabelle/HOL - A Proof Assistant for Higher-Order 
Logic. Number 2283 in LNCS. Springer-Verlag Berlin 
Heidelberg New York.

Nosek, J. T., & Palvia, P. (1990). Software maintenance 
management: changes in the last decade. Journal of 
Software Maintenance, 2 (3), 157-174.

Nöth, W. (1990). Handbook of Semiotics. Indiana Uni-
versity Press.

Object Management Group (2003). MDA Model-Driven 
Architecture Guide V1.0.1. OMG.

Object Management Group (2004). MOF 2.0, OMG 
document	ptc/04-10-15. web: http://www.omg.org/cgi-
bin/apps/doc?ptc/04-10-14.pdf. 

Object Management Group (OMG) (2003). UML 2.0 
OCL	 Final	 Adopted	 Specification. http://www.omg.
org/cgi-bin/apps/doc?ptc/03-10-14.pdf.

Object Management Group, OMG (2003). MDA Guide 
Version 1.0.1. 

Object Management Group. (2003). Unified Modeling 
Language Specification v. 1.5.   Retrieved 2003-10-01, 
2003, from www.omg.org

Object Management Group. (2004, December 2003). 
Unified Modeling Language Specification: Infrastruc-
ture version 2.0.   Retrieved 2004-02-20, 2004, from 
www.omg.org

Oman, P. W., & Cook, C. R. (1990). Typographic style 
is more than cosmetic. ACM Communications, 33 (5), 
506-520.

Oman, P., & Hagemeister, J. (1992). Metrics for assessing 
a software system’s maintainability. In Proc. interna-
tional	conference	on	software	maintenance	(ICSM	‘92). 
Washington, DC: IEEE Computer Society.

OMG (2004a). MOF 2.0 specification. Technical report, 
Object Management Group.

OMG (2004b). UML 2.0 superstructure. Technical report, 
Object Management Group.

OMG (2006a). Meta	 Object	 Facility	 (MOF)	 Core	
Specification. Version 2.0. http://www.omg.org/cgi-
bin/doc?formal/2006-01-01.

OMG (2006b). Unified	 Modeling	 Language:	 Super-
structure. Version 2.1. OMG document ptc/06-04-02. 
http://www.omg.org/cgibin/doc?ptc/2006-04-02.

OMG Object Management Group (2003): Meta Object 
Facility	2.0	Specification, Retrieved from URL: http://
www.omg.org/cgi-bin/doc?ptc/03-10-04.pdf

OMG Object Management Group (2003): Model Driven 
Architecture. MDA Guide Version 1.0.1, Retrieved from 
http://www.omg.org/docs/omg/03-06-01.pdf

OMG Object Management Group (2003): UML 2.0 OCL 
Specification, Retrieved from URL: http://www.omg.
org/docs/ptc/03-10-14.pdf

OMG, (2003). MDA Guide, from http://www.omg.org/
docs/omg/03-06-01.pdf. Version 1.0.1.

OMG, (2004). Meta Object Facility (MOF) 2.0 Core 
Specification, ptc/04-10-15. 

OMG, (2005). OMG, MOF 2.0 Query/Views/Transfor-
mations Final Adopted Specification, Object Manage-
ment Group, from  http://www.omg.org/cgibin/apps/
doc?ad/05-11-01.pdf

OMG, (2006). OMG, UML 2.1 Unified Modeling Lan-
guage™ 

OMG: Object Management Group (2005). UML Profile 
for Schedulability, Performance and Time. http://www.
omg.org/cgi-bin/doc?formal/2005-01-02

Opdahl, A.L.& Henderson-Sellers, B.  (2002) Ontological 
Evaluation of the UML Using the Bunge –Wand –Weber 
Model. Journal of Software and System Modeling, 1.



  ���

Compilation of References

Opzeeland, D.J.A. (2005). Automated techniques for 
reconstructing and assessing correspondence between 
UML designs and implementations. Unpublished master 
thesis, Technische Universiteit Eindhoven, Eindhoven, 
The Netherlands.

Oquendo, F., Warboys, B.C., Morrison, R., Dindeleux, 
R., Gallo, F., Garavel, H. and Occhipinti, C. (2005). 
ArchWARE: Architecting Evolvable Software. Proc. 2nd 
European Workshop on Software Architecture EWSA 
2005. Springer LNCS 3047.

Otero, M. C., & Dolado, J. J. (2004). Evaluation of the 
Comprehension of the Dynamic Modeling in UML. 
Information and Software Technology, 46(1), 35-53.

Övergaard, G., & Palmkvist, K. (2005). Use Cases: Pat-
terns and Blueprints. Addison-Wesley.

P. R. Crossley & J. A. Cook (1991): Control	91. Confer-
ence Publication 332, IEEE International Conference, 
March 1991, Edinburgh, U.K.

Pahl, C., Barrett, R. and Kenny, C. (2004). Supporting Ac-
tive Database Learning and Training through Interactive 
Multimedia. Proc. Intl. Conf. on Innovation and Technol-
ogy in Computer Science Education ITiCSE’04.

Pap, Z. Majzik, I., Pataricza A., & Szegi, A. (2001 April). 
Completeness and Consistency Analysis of UML Stat-
echart Specifications, Proceedings of the DDECS 2001 
Workshop, Győr, Hungary (pp. 83-90).

Park, D. and Kang, S. (2004). Design phase analysis of 
software performance using aspect-oriented program-
ming. Proc.	5th	Aspect-Oriented	Modeling	Workshop, 
UML’2004.

Park, R, & Goethert, W., & Florac, W. (1996). Goal-
driven software measurement - a guidebook (SEI report 
CMU/SEI-96-HB-002). Pittsburg: Carnegie Mellon 
University/Software Engineering Institute.

Parnas, D. L. (1994). Software aging. In Proc.	16th	in-
ternational	conference	on	software	engineering	(ICSE	
‘94) (pp. 279-287). Washington, DC: IEEE Computer 
Society.

Parnas, D.L., & Weiss, D.M. (1985). Active design review: 
Principles and practices. Proceedings of the 8th interna-
tional conference on Software engineering, 132-136.

Paulk, M. C., Weber, C. V., Curtis, B., & Chrissis, M. B. 
(1995). The Capability Maturity Model: Guidelines for 
Improving the Software Process. Addison-Wesley.

Pawlak, R., Noguera, C., and Petitprez, N. (2006). Spoon: 
Program analysis and transformation in java. Technical 
Report 5901, INRIA.

Pelliccione, P. (2005). chArmy: A framework for Software 
Architecture Specification and Analysis. PhD thesis, 
Computer Science Dept., U. L’Aquila. 

Pender, T. (2003). UML Bible, chapter Part V: Modeling 
the Application Architecture, page 940. Wiley Pub.

Perez-Martinez, J. E., & Sierra-Alonso, A. (2004). UML 
1.4 versus UML 2.0 as languages to describe Software 
Architectures. In Proc. EWSA 2004. LNCS n. 3047.

Perry, D. E., & Wolf, A. L. (1992). Foundations for the 
Study of Software Architecture. ACM SIGSOFT Softw. 
Eng. Notes, 17(4), (pp. 40–52).

Petre, M. (1995). Why Looking Isn’t Always Seeing: 
Readership Skills and Graphical Programming. Com-
munications of the ACM, 38(6), 33-44.

Petriu, D. B. & Woodside, M. (2005). An intermediate 
metamodel with scenarios and resources for generat-
ing performance models from UML designs. Springer 
Journal on Software and Systems Modeling

Pfleeger, S.L., & Hatton, L. (1997). Investigating the 
influence of formal methods. IEEE	 Computer,	 30(2), 
33-43.

Phalp, K. T., Vincent, J., & Cox, K. (2007). Assessing 
the Quality in Use Case Descriptions. Software Quality 
Journal, 15(1), 69-97. 

Pilskalns, O., Andrews, A., Knight, A., Ghosh, S., and 
France, R. (2007). Testing uml designs. Information and 
Software Technology, 49(8):892–912.

Plasil, F. and Visnovsky, S. (2002). Behavior Protocols for 
Software Components. ACM Transactions on Software 
Engineering, 28(11), 1056-1075.

Ploeger, S.C.W., & Somers, L. (2006), Analysis and Veri-
fication	of	an	Automatic	Document	Feeder (CS-Report 
06-25). Eindhoven: University of Technology.



���  

Compilation of References

Podmore, Robin et al. (1999). Common Information 
Model - a Developer’s Perspective. In (Sprague, R. Edt.): 
Proceedings of the 32nd Hawaii International Conference 
on System Sciences, IEEE Publishing.

Pohjonen, R., & Tolvanen, J-P. (2002). Automated 
production of family members: Lessons learned. In 
Proceedings of International Workshop on Product Line 
Engineering The Early Steps: Planning, Modeling, and 
Managing, pp.: 49-57.

Porres, I. (2003). Model refactorings as rule-based update 
transformations. In: P. Stevens, J. Whittle, G. Booch 
(Eds.), In Proceedings	of	6th International Conference 
UML	2003	-	The	Unified	Modeling	Language.	Model	
Languages and Applications (pp. 159-174). Lecture Notes 
in Computer Science 2863, Heidelberg: Springer.

Porter, A. A., Votta, L. G., Jr., & Basili, V. R. (1995). 
Comparing detection methods for software requirements 
inspections: a replicated experiment. Software Engineer-
ing, IEEE Transactions on, 21(6), 563-575.

Porter, A.A., Siy, H.P., Toman, C.A., Votta, L.G. (1997). 
An Experiment to assess the cost-benefits of code inspec-
tions in large scale software development. IEEE Transac-
tions	on	Software	Engineering,	23(6), 329-346.

Pretschner, A., & Prenninger, A. (2007). Computing 
Refactorings of State Machines, Journal on Software 
and Systems Modeling. To appear.

Pretschner, A., Prenninger, W., Wagner, S., Kühnel, C., 
Baumgartner, M., Sostawa, B., et al. (2005). One evalua-
tion of model-based testing and its automation. In Proc. 
27th	international	conference	on	software	engineering	
(ICSE	‘05). New York, NY: ACM Press.

PRISMA: Official Web Site: http://prisma.dsic.upv.es/.

Ptolemy (2007). Ptolemy project site, University of 
California at Berkely. Retrieved October 22, 2007, from 
http://ptolemy.eecs.berkeley.edu/.

Punter, T. (2001). Goal-oriented evaluation of software 
(in Dutch) (PhD-Thesis). Eindhoven: Eindhoven Uni-
versity of Technology.

Punter, T., & Hamilton, M., & Gurzhiy, T. (2007). Model-
ing the coordination idiom. In: Voeten, J.P.M. & Engelen, 
R. van, (Ed), IDEALS: evolvability in high-tech systems 
(pp.69-79). Eindhoven: Embedded Systems Institute.

Punter, T., & Kusters, R., & Trienekens. J.J.M. (2004). The 
W-Process for Software Product Evaluation: A method for 
goal-oriented implementation of the ISO 14598 standard. 
Software Quality Journal, 12(2), 137-158.

Punter, T., & Trendowicz, A., & Kaiser, P. (2002). 
Evaluating Evolutionary Software Systems. In M. 
Oivu, & S. Komi Sirviö (Eds), Proceedings of the 4th 
International Conference PROFES 2002 LCNS	 2559. 
Berlin: Springer.

Rahm & Bernstein (2001). A survey of approaches to 
automatic schema matching, The VLDB Journal, 10, 
2001.

Rational Unified Process (RUP) is a trademark of IBM

Reinhartz-Berger, H. & Dori, D. (2005). OPM vs. 
UML—Experimenting with Comprehension and Con-
struction of Web Application Models. Empirical Software 
Engineering, 10, 57–79.

Reissing, R. (2001). Towards a model for object-ori-
ented design measurement. In ECOOP’01 Workshop 
QAOOSE.

Reiter, R. and Criscuolo, G. (1981). On Interacting De-
faults. Proceedings of the Seventh International Joint 
Conference	on	Artificial	Intelligence	(IJCAI’81), pages 
94–100.

Reussner, Ralf (2005). MINT – Modellgetriebene Inte-
gration von Informationssystemen, Description of Work, 
Forschungsoffensive „Software Engineering 2006“.

Reussner. R. H., Becker, S., Happe, J., Koziolek, H., 
Krogmann, K. & Kuperberg. M. (2007). The Palladio 
Component Model. Internal Report Universität Karl-
sruhe (TH)

Reynoso, L., Genero, M., and Piattini, M. (2003). Mea-
suring ocl expressions: a “tracing”-based approach. In 
Proceedings of QAOOSE’2003.

Ricardo UK (2007): Mint ─ Style checker for Simulink 
and	Stateflow. Retrieved from URL: http://www.ricardo.
com

Robbins, J. E. , Medvidovic, N. , Redmiles, D. F., & 
Rosenblum, D. (1998). Integrating architecture descrip-
tion languages with a standard design method. In Proc. 
20th Int. Conf. on Software Engineering.



  ���

Compilation of References

Roberts, D., Brant, J., & Johnson, R. (1997). A refactor-
ing tool for Smalltalk. Theory and Practice of Object 
Systems, Vol. 3, pp.: 253-263.

Robillard, P. N., D’Astous, P., & Kruchten, P. (2003). 
Software Engineering Process with the UPEDU. Ad-
dison-Wesley. 

Robinson, Greg (2002)a. Key Standards for Utility En-
terprise Application Integration (EAI), Proceedings of 
the Distributech 2002, Miami, Pennwell, 2002.

Robinson, Greg (2002)b. Model	Driven	Integration	(MDI)	
for Electric Utilities, Proceedings of the Distributech 
2002 Miami, Pennwell, 2002.

Roh, S., Kim, K., & Jeon, T. (2004).  Architecture 
Modeling Language based on UML2.0. In Proocedings 
of the 11th Asia-Pacific Software Engineering Confer-
ence (APSEC).

Roos, N. (2006), No to requirements (in Dutch). In 
Bits & Chips magazine,  Vol. 9. (pp. 24-26). Nijmegen: 
Techwatch.

Rosenberg, D., & Scott, K. (1999). Use Case Driven 
Object Modeling with UML: A Practical Approach. 
Addison-Wesley.

Rosenberg, D., Stephens, M. & Collins-Cope, M. (2005). 
Agile Development with ICONIX Process. Apress.

Rottger S., & Zschaler, S. (2004). Model-Driven De-
velopment for Non-functional Properties: Refinement 
through Model Transformation, In LNCS Volume 3273, 
The Unified Modelling Language (UML) Conference, 
pp. 275–289.

Rui, K., & Butler, G. (2003). Refactoring Use Case 
Models: A Metamodel. The Twenty Sixth Australasian 
Computer Science Conference (ACSC 2003), February 
4-7, 2003, Adelaide, Australia. 

Rumbaugh, J. (1999) Notation Notes: Principles for 
choosing notation, In Journal of Object-Oriented Pro-
gramming, 12, 4,.

Runeson, P., & Isacsson, P. (1998). Software quality as-
surance – concept and misconception. Proceedings of 
the	24th.	EUROMICRO	Conference	(EUROMICRO’98),	
2, 853-859.

Saeki, M. (1999). Reusing Use Case Descriptions for 
Requirements Specification: Towards Use Case Patterns. 
Sixth Asia-Pacific Software Engineering Conference 
(APSEC 1999), Takamatsu, Japan, December 7-10, 
1999. 

Saeki, M. and Kaiya, H. (2006). Model metrics and met-
rics of model transformation. In Proc. of 1st Workshop 
on Quality in Modeling, pages 31–45.

Sandee, J.H., & Heemels, W.P.M.H., & Muller, G.J. 
(2006). Threads of reasoning. In: Heemels, W.P.M.H., 
& Muller, G.J. (Eds.), Model-based design of high-tech 
systems, (pp. 43-57). Eindhoven: Embedded Systems 
Institute.

Sangiorgi, D. and Walker, D. (2001). The	π-calculus	–	A	
Theory of Mobile Processes. Cambridge, UK: Cambridge 
University Press.

Sarda, N. (1990). Extensions to SQL for Historical 
Databases. IEEE Transactions on Knowledge and Data 
Engineering, 2(2), 220–230.

Schmidt, D. (2006). Cover feature – Model Driven En-
gineering. IEEE Computer, 39(2), 25-31.

Schneidewind, N. F. (1992). Methodology for validat-
ing software metrics. IEEE Trans. Software Eng., 
18(5):410–422.

Schulmeyer, G. and Mcmanus, J. (1999). The Handbook 
of Software Quality Assurance. Prentice Hall.

Schürr, A. (1994). Specification	of	graph	translators	with	
Triple Graph Grammars. In Lecture Notes in Computer 
Science, Vol. 903, pp.: 151-163. Springer.

Schürr, A. (1994). Specification of Graph Translators with 
Triple Graph Grammars. In: G. Tinhofer (Ed.), WG94	20th	
International Workshop on Graph-Theoretic Concepts 
in Computer Science (pp. 151-163). Lecture Notes in 
Computer Science 903, Heidelberg: Springer.

SDMetric home page: http://www.sdmetrics.com

Seffah, A., Donyaee, M., Kline, R. B., & Padda, H. K. 
(2006). Usability measurement and metrics: A consolidat-
ed model. Software Quality Control, 14 (2), 159-178.

Sefika, M., Sane, A., & Campbell, R. H. (1996). Monitor-
ing compliance of a software system with its high-level 



���  

Compilation of References

design models. Proceedings of the 18th International 
Conference on Software Engineering, 387–396.

SEI (2007), Software Engineering Institute, Carnegie 
Mellon University, CMMi site. Retrieved October 22, 
2007, from: http://www.sei.cmu.edu/cmmi/.

SEI Software Engineering Institute (2006): CMMI 
- Capability Maturity Model Integration. CMMI for 
Development. Standard Version 1.2, August 2006. URL: 
http://www.sei.cmu.edu/cmmi

Seidewitz, E. (2003). What Models Mean. IEEE Soft-
ware, 20(5), 26-32. 

Seifer t, T., Beneken, G., & Baehr, N. (2004). 
Eng i neer i ng long-l ived appl ica t ions  usi ng 
MDA. In Proc. IASTED international confer-
ence on software engineering and applications  
(pp. 241-246). Calgary: IASTED/ACTA Press.

Selic, B. (2003) The Pragmatics of Model-Driven De-
velopment, IEEE Software 9, 19-25.

Selic, B., & J. Rumbaugh, J. (1998). Using UML for 
Modeling Complex Real-Time Systems

Shahidehpour, Mohammad & Wang, Yaoyu (2003). 
Communication and Control in Electric Power Systems: 
Applications of Parallel and Distributed Processing, 
IEEE Press Series on Power Engineering, 2003.

Shanks, G. (1999). Semiotic Approach to Understanding 
Representation in Information Systems. Information 
Systems Foundations Workshop, Sydney, Australia, 
September 29, 1999.

Shaw, M. (2000). Software engineering education: a 
roadmap. Paper presented at the International Conference 
on Software Engineering, Limerick, Ireland.

Shull, F.; Basili, V.; Boehm, B.; Brown, A.W.; Costa, P.; 
Lindvall, M.; Port, D.; Rus, I.; Tesoriero, R.; Zelkowitz, 
M. (2002 June). What we have learned about fighting 
defects”; Proceedings. Eighth IEEE Symposium on 
Software Metrics (pp. 249 – 258).

Simon, F., Löffler, S., & Lewerentz, C. (1999). Distance 
based cohesion measuring. In Proceedings of 2nd Euro-
pean Software Measurement Conference, pp.: 69-83.

Simon, H. (1996). The Sciences of the Artificial (Third 
Edition). The MIT Press. 

Sitaraman, M., Kuczycki, G., Krone, J., Ogden, W.F. & 
Reddy, A. (2001). Performance Specifications of Soft-
ware Components. In Proceedings of the Symposium on 
Software Reusability 2001 (pp. 3-10).

Skogan, D., Grønmo, R. and Solheim I. (2004). Web 
Service Composition in UML. Proc. 8th International 
IEEE Enterprise Distributed Object Computing Confer-
ence EDOC’2004 (pp. 47-57).

Smith, R. L. , Avrunin, G. S., Clarke, L. A., & Osterweil, 
L. J. (2002). PROPEL: An Approach Supporting Property 
Elucidation. In Proc. of 24th International Conference 
on Software Engineering (ICSE), (pp 11–21).

Snodgrass, R. (1987). The temporal query language tquel. 
ACM Trans. Database Syst., 12(2), 247–298.

Snodgrass, R. (1988). A Relational Approach to Monitor-
ing Complex Systems. ACM Transactions on Computer 
Systems, 6(2), 157–196.

Sommerville, I.: Software engineering (7th ed.). Ad-
dison-Wesley Longman Publishing Co., Inc., Boston, 
MA, USA (2004).

Sottet, J. S., Calvary, G., & Favre, J. M. (2006). Mapping 
Model: A First Step to Ensure Usability for sustaining 
User Interface Plasticity, In: Proc. of the MODELS 2006 
Workshop on Model Driven Development of Advanced 
User Interfaces.

Sowmya, K.,(2005) Reflections	on	MDA	Case	studies,	
MDA	Research	Initiative	(MRI),	Chennai,	India

Sowmya, K.,(2007) Improving Air traffic control man-
agement system by adopting the MDA strategy, MDA 
Research Initiative, Chennai, India

Spanoudakis, G., & Zisman, A. (2001). Inconsistency 
management in software engineering: Survey and open 
research issues. In Handbook of Software Engineer-
ing and Knowledge Engineering (pp. 329-80). World 
Scientific

Spitznagel, B. and Garlan, D. (1998). Architecture-based 
performance analysis. Proc. Conference on Software 
Engineering	and	Knowledge	Engineering	SEKE’98.

SPQR/20. (1995). User Manual. Software Productivity 
Research Inc.



  ���

Compilation of References

SPSS, SPSS 11.5, Syntax Reference Guide. 2002, SPSS 
Inc.: Chicago, USA.

Stahl, T., & Völter, M. (2006). Model-driven software 
development. Wiley.

Staron, M. (2006). Adopting MDD in Industry - A Case 
Study at Two Companies. Paper presented at the ACM/
IEEE 9th International Conference on Model Driven 
Engineering Languages and Systems, Genova, Italy.

Staron, M., & Wohlin, C.  (2006). An Industrial Case 
Study on the Choice Between Language Customization 
Mechanisms. In Münch, J., & Vierima, M. (Eds.), Pro-
ceedings	of	7th	International	Conference	on	Product-
Focused	Software	Process	Improvement	(PROFES	2006) 
LNCS 4034, (pp. 177-191). Berlin: Springer.

Staron, M., & Wohlin, C. (2006, June 12-14, 2006.). An 
Industrial Case Study on the Choice between Language 
Customization Mechanisms. Paper presented at the 7th 
International Conference, PROFES 2006, Amsterdam, 
The Netherlands.

Staron, M., Kuzniarz, L., & Thurn, C. (2005). An Em-
pirical Assessment of Using Stereotypes to Improve 
Reading Techniques in Software Inspections. Paper 
presented at the Third Workshop on Software Quality, 
St. Louis, MO.

Staron, M., Kuzniarz, L., & Wallin, L. (2004a). A Case 
Study on Industrial MDA Realization - Determinants 
of Effectiveness. Nordic Journal of Computing, 11(3), 
254-278.

Staron, M., Kuzniarz, L., & Wallin, L. (2004b). Factors 
Determining Effective Realization of MDA in Industry. 
Paper presented at the 2nd Nordic Workshop on the Uni-
fied Modeling Language, Turku, Finland.

Staron, M., Kuzniarz, L., & Wohlin, C. (2004). An 
Industrial Replication of an Empirical Study on Using 
Stereotypes To Improve Understanding of UML Models. 
Paper presented at the Software Engineering Research 
and Practice in Sweden, Linköping, Sweden.

Staron, M., Kuzniarz, L., & Wohlin, C. (2006). Empirical 
assessment of using stereotypes to improve comprehen-
sion of UML models: A set of experiments. Journal of 
Systems	and	Software,	79(5), 727-742.

Starr, L. (2002). Executable UML: how to build class 
models. Upper Saddle River, NJ: Prentice Hall.

STRAW ’03: Second Int. Workshop From Software 
Requirements to Architectures, May 09, 2003, Portland, 
Oregon, USA.

Stürmer, I., Kreuz, I., Schäfer, W. & Schürr, A. (2007): 
The MATE Approach: Enhanced Simulink and Statfelow 
Model Transformation. Proc. of MathWorks Automotive 
Conference, Jun. 19-20, Dearborn (MI), USA. 

Sunyé, G., Pollet, D., Le Traon, Y., & Jézéquel, J.-M. 
(2001). Refactoring UML models, In Proceedings In-
ternational	 Conference	 Unified	 Modeling	 Language 
(pp. 134-138). Lecture Notes in Computer Science 2185, 
Heidelberg: Springer.

Süß, J. G. (2006). Sugar for OCL. In Proceedings of the 
6th	OCL	Workshop	at	 the	UML/MoDELS	Conference	
2006, pages 240–251.

Szyperski, C., Gruntz, D. & Murer, S. (2002). Compo-
nent Software: Beyond Object-Oriented Programming. 
Addison-Wesley 

Tahvildari, L., & Kontogiannis, K. (2004). Improving 
Design Quality Using Meta-Pattern Transformations: A 
Metric-Based Approach, Journal of Software Mainte-
nance and Evolution, 16(4-5), 331-361.

Telelogic, DOORS Release 8.0, URL: http://www.telel-
ogic.com /products/doors

The MathWorks Inc. (2007): Automotive Applications 
- Examples in Documentation, Simulink Demos, MAT-
LAB/Simulink/Stateflow, Part of the MATLAB Product, 
Release 2007a.

The MathWorks Inc. (2007): MATLAB/Simulink/State-
flow, Products in the Release 2007a. URL: http://www.
mathworks.com

The MathWorks Inc. (2007): The MathWorks Automotive 
Advisory	Board	(MAAB), URL: http://www.mathworks.
com/industries/ auto/maab.html

The Systems Modeling Language (SysML) open source 
specification project. http://www.sysml.org/

Thelin, T., Runeson, P., & Wohlin, C. (2003). An Experi-
mental Comparison of Usage-Based and Checklist-Based 



��0  

Compilation of References

Reading. IEEE Transactions on Software Engineering, 
29(8), 687-704.

Thöne, S., Depke, R. and Engels, G. (2002). Process-
Oriented, Flexible Composition of Web Services with 
UML. Proc. Joint Workshop on Conceptual Modeling 
Approaches for e-Business eCOMO 2002.

Tian, J. (2004). Quality-evaluation models and measure-
ments. IEEE Software, 21 (3), 84-91.

Together Technologies home page: http://www.borland.
com/us/products/together

Tolbert, D., CWM: A Model-Based Architecture for 
Data Warehouse Interchange, Workshop on Evaluating 
Software Architectural Solutions 2000, University of 
California at Irvine, May, 2000. http://www.cwmforum.
org/uciwesas2000.htm

Topaloglu, N.Y. and Capilla, R. (2004). Modeling the 
Variability of Web Services from a Pattern Point of View. 
Proc. European Conf. on Web Services ECOWS’04 (pp. 
128–138). Springer LNCS 3250.

Törner, F., Ivarsson, M, Pettersson, F., & Öhman. P. 
(2006). An Empirical Quality Assessment of Automotive 
Use Cases. The Fourteenth International Requirements 
Engineering Conference (RE 2006), Minneapolis-St. 
Paul, USA. September 11-15, 2006. 

Tourwé, T., & Mens, T. (2003). Identifying refactor-
ing opportunities using logic meta programming. In 
Proceedings of 7th European Conference on Software 
Maintenance and Reengineering, pp.: 91-100.

Traore, L., & Aredo, D.B. (2004). Enhancing structured 
review with model-based verification. IEEE Transactions 
on	Software	Engineering,	30(11), 736-753.

Tsalidis, C., Christodoulakis, D., & Maritsas, D. (1992). 
ATHENA: a software measurement and metrics envi-
ronment. Journal of Software Maintenance 4, 2. pp.: 
61-81.

Tvedt, R.T., Costa, P., & Lindvall, M. (2002). Does the 
code match the design? Proceedings of the Interna-
tional	Conference	 on	 Software	Maintenance	 (ICSM), 
393-401.

Uhl, A., & Lichter, H. (2002). A UML Variant for Model-
ing System Searchability. Paper presented at the Object 
Oriented Information Systems, Monpellier.

UML 2.0 specification at the OMG home page (2006). 
http://www.omg.org/UML

Unhelkar, B. (2005). Verification and Validation for 
Quality of UML 2.0 Models. John Wiley and Sons.

Unified Modeling Language (UML) and Business 
Process Modeling Notation (BPMN) are registered 
marks of OMG
Uslar, Mathias et al (2005): Interaction of EMS related 
Systems by Using the CIM Standard, In: Walter Leal 
Filho, Jorge Marx Gómez, Claus Rautenstrauch (Hrsg.): 
ITEE 2005: Second International ICSC Symposium on 
Information Technologies in Environmental Engineering: 
Proceedings, Otto-von-Guericke Universität Magdeburg, 
Shaker Verlag, 2005.

Vaandrager, F. (2006), Does it pay-off? Model-based 
verification and validation of embedded systems! In 
Progress	White	Papers	2006 (pp. 43-66). Utrecht: STW 
Progress.

Van Belle, J. (2002). Towards a syntactic signature for 
domain models: Proposed descriptive metrics for vi-
sualizing the entity fan-out frequency distribution. In 
Proceedings of SAICSIT 2002.

Van den Heuvel, Willem-Jan & Hasselbring, Wilhelm 
& Papazoglou, Mike (2000). Top-Down Enterprise Ap-
plication Integration with Reference Models. Australian 
Journal of Information Systems, 8(1), 126-136.

van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., 
and Barros, A. (2003). Workflow patterns. In Distributed 
and Parallel Databases, Springer, 2003, 14, 5-51

van der Aalst, W.M.P., Kiepuszewski, B., ter Hofstede, 
A.H.M. and Barros, A.P. (2003). Workflow Patterns. 
Distributed and Parallel Databases, 14, 5–51.

Van Der Straeten, R. (2005). Inconsistency Manage-
ment in Model-driven Engineering: An Approach using 
Description Logics. Unpublished doctoral dissertation, 
Vrije Universiteit Brussel, Belgium.

Van Der Straeten, R., & D’Hondt, M. (2006). Model 
refactorings through rule-based inconsistency resolution. 
In Proceedings Symposium on Applied computing (pp. 
1210-1217). New York: ACM Press

Van Der Straeten, R., Jonckers, V., & Mens, T. (2004). 
Supporting Model Refactorings through Behaviour 



  ���

Compilation of References

Inheritance Consistencies. In T. Baar, A. Strohmeier, & 
A. Moreira (Eds.), Proceedings of International Confer-
ence	on	The	Unified	Modeling	Language (pp. 305-319). 
Lecture Notes in Computer Science 3273, Heidelberg: 
Springer.

Van Der Straeten, R., Mens, T., Simmonds, J., & Jonck-
ers, V. (2003). Using description logics to maintain 
consistency between UML models. In Proceedings 
International	 Conference	 on	 The	 Unified	 Modeling	
Language (pp. 326-340). Lecture Notes in Computer 
Science 2863, Heidelberg: Springer.

van Deursen, A., & Moonen, L. (2002). The Video 
Store Revisited: Thoughts on Refactoring and Testing, 
In M. Marchesi, G. Succi (Eds.), Proceedings 3rd In-
ternational Conference on Extreme Programming and 
Flexible Processes in Software Engineering (pp. 71-76). 
Alghero, Italy.

van Deursen, A., Moonen, L., van den Bergh, A., & Kok, 
G. (2002). Refactoring Test Code, In G. Succi, M. Mar-
chesi, D. Wells, & L. Williams (Eds.), Extreme Program-
ming Perspectives (pp. 141-152). Addison-Wesley.

Van Gorp, P., Stenten, H., Mens, T., & Demeyer, S. 
(2003). Towards automating source-consistent UML 
refactorings. In P. Stevens & J. Whittle & G. Booch 
(Eds.), Proceedings International Conference on The 
Unified	Modeling	Language (pp. 144-158). Lecture Notes 
in Computer Science 2863, Heidelberg: Springer.

Van Kempen, M., Chaudron, M., Koudrie, D., & Boake, 
A. (2005). Towards Proving Preservation of Behaviour of 
Refactoring of UML Models. In Proceedings SAICSIT 
2005 (pp. 111-118).

Vasko, M. and Duskar, S. (2004). An Analysis ofWeb 
Services Flow Patterns in Collaxa. Proc. European 
Conf. on Web Services ECOWS’04 (pp. 1–14). Springer 
LNCS 3250.

VDI ─ Society for Automotive and Traffic Systems 
Technology (2005): Electronic Systems for Vehicles. 12th 
International Conference, Baden-Baden, Germany. 

Verhoef, M.H.G.,  & Hooman, J.J.M. (2006). Evaluating 
embedded system architectures. In Heemels, W.P.M.H., 
& Muller, G.J. (Eds.) Model-based design of high-tech 
systems, (pp. 151-159). Eindhoven: Embedded Systems 
Institute.

Vokac, M., & Glattetre, J. M. (2005). Using a Domain-
Specific	Language	and	Custom	Tools	to	Model	a	Multi-tier	
Service Oriented Application - Experiences and Chal-
lenges. Paper presented at the Model Driven Engineering 
Languages and Systems, Montego Bay, Jamaica.

Völter, M. & Stahl, M. (2006). Model-driven Software 
Development. Wiley & Sons

Völter, M., Stahl, T., Bettin, J., Haase, A., & Helsen, S. 
(2006). Model-Driven Software Development: Technol-
ogy, Engineering, Management. John Wiley and Sons.  

Vranken, H. (1998). Design for test and debug in 
hardware/software systems (PhD thesis). Eindhoven: 
Eindhoven University of Technology.

Wagner, S., & Deissenboeck, F. (2007). An integrated 
approach to quality modelling. In Proc.	5th workshop 
on	software	quality	(5-WoSQ). Washington, DC: IEEE 
Computer Society.

Wahler, M., Koehler, J., and Brucker, A. D. (2007). 
Model-Driven Constraint Engineering. Electronic Com-
munications of the EASST, 5.

Warmer, J., & Kleppe, A. (2003). The object constraint 
language: Getting your models ready for MDA, 2nd Edi-
tion. Pearson Education. Boston, MA.

Warmer, J., & Kleppe, A. (2003). The Object Constraint 
Language: Precise Modeling with UML (Second Edi-
tion). Addison-Wesley.

Weber, H. (2005). From Programme Engineering to 
Software Engineering . Proc. Theory and Practice of 
Software	Development	TAPSOFT’2005. (invited talk).

Weinberg, G. M. (1998). The Psychology of Computer 
Programming (Silver Anniversary Edition). Dorset 
House.

Whitmire, S. A. (1997). Object oriented design 
measurement. John Wiley & Sons, Inc.
Wiegers, K. (2002). Peer Reviews in Software: A Practi-
cal Guide. Addison-Wesley.

Wilson, W. M., Rosenberg, L. H., and Hyatt, L. E. 
(1996). Automated quality analysis of natural language 
requirement specifications. In Proceeding of the PNSQC 
Conference.



���  

Compilation of References

Wing, J.M. (1990). A specifier’s introduction to formal 
methods. IEEE	Computer,	23(9), 8-24.
Winter, Andreas & Ziemann, Jörg (2006). Model-based 
Migration to Service-Oriented Architectures. In U. 
Kaiser, P. Kroha, A. Winter (Eds.), 3. Workshop Reengi-
neering	Prozesse	(RePro	2006)	Software	Migration (pp. 
16-17). Mainz: Johannes Gutenberg University Mainz.

Winters, G. (2005). Use Case Terminology. IEEE Soft-
ware, 22(2), 67. 

Wirfs-Brock, R. (1993). Stereotyping: a technique for 
characterizing objects and their interactions. Object 
Magazine, 3(4), 50-53.

Wirfs-Brock, R., Wilkerson, B., & Wiener, L. (1994). 
Responsibility-driven design: Adding to your conceptual 
toolkit. ROAD, 2(1), 27-34.

Wohlin C., Runeson P., Höst M., Ohlson M., Regnell 
B. and Wesslén A.  (2000). Experimentation in Soft-
ware Engineering: An Introduction. Kluwer Academic 
Publishers.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., 
Regnell, B., & Wesslèn, A. (2000). Experimentation in 
Software Engineering: An Introduction. Boston MA: 
Kluwer Academic Publisher.

Wolf, W. (2003). A decade of hardware / software co-
design. IEEE Computer, 36 (4), 38 – 43.

Wong, B. (2006). Different Views of Software Quality. 
In: Measuring Information Systems Delivery Quality. E. 
Duggan & J. Reichgelt (Eds.). Idea Group, 55-88.
Woodside, M., Franks, G. & Petriu D. C. (2007). 
The Future of Software Performance Engineering. 
In Proceedings	 of	 29th	 International.	 Conference	
on	 Software	 Engineering,	 ICSE’07.	Track: Future of 
Software Engineering.
Wu, X. & Woodside, M. (2004). Performance model-
ing from software components. In Proceedings of the 
4th International Workshop on Software Performance, 
WOSP2004 (pp. 290-301). ACM SIGSOFT Software 
Engineering Notes 

www.metamodel.com (2007). How do I tell a 
good metamodel from a bad one? Online arti-
cle.  http://www.metamodel.com/staticpages/index. 
php?page=20021010225607569. Visited April 2007.

Xenos, M., Stavrinoudis, D., Zikouli, K., and 
Christodoulakis, D. (2000). Object-oriented metrics 
- a survey. In Proceedings of the FESMA Conference 
(FESMA’2000).
Yeung, K., Kelly, P.H.J. and Bennett, S. (2004). Dynamic 
Instrumentation for Java Using a Virtual JVM. Perfor-
mance Analysis and Grid Computing, 175–187. 

Yilmaz, C., Krishna, A. S., Memon, A., Porter, A., 
Schmidt, D. C., Gokhale, A., et al. (2005).  Main effects 
screening: a distributed continuous quality assurance 
process for monitoring performance degradation in 
evolving software systems. In Proc.	27th	international	
conference	 on	 software	 engineering	 (ICSE	 ‘05) (pp. 
293-302). New York, NY: ACM Press.
Zander-Nowicka, J., Schieferdecker, I. & Farkas, 
T. (2006): Derivation of Executable Test Models 
From Embedded System Models using Model Driven 
Architecture Artifacts - Automotive Domain. Proceedings 
of the Dagstuhl-Workshop MBEES: Modellbasierte 
Entwicklung eingebetteter Systeme III., Informatics-
Report 2006-01, Technical University Braunschweig,  
January 2006, Dagstuhl, Germany.
Zaniolo,C., Ceri, S., Faloutsos, C., Snodgrass, 
Subrahmanian, V. S. and Zicari, R. (1997). Advanced 
Database Systems. San Fransisco, CA: Morgan 
Kaufmann Publishers.
Zhang, J., Lin, Y., & Gray, J. (2005). Generic and 
Domain-Specific Model Refactoring using a Model 
Transformation Engine. In Model-driven Software 
Development - Research and Practice in Software En-
gineering. Springer.

Zhang, P. C., Muccini, H. , & Li, B. X. (2007). A com-
parative study of model checking methods on software 
architecture. Technical Report, Chair of Software Testing 
and Verification, Southeast University. http://cse.seu.edu.
cn/people/bx.li/en/cstv.htm

Zhou, E.Z. (2000). XML and data exchange for power 
system analysis. In (IEEE Edt.):  IEEE Power Engineer-
ing Review, 20, 66-68.

Zhu, X., Maiden, N., & Pavan, P. (2003). Scenarios: 
Bringing requirements and architectures together. In 
2nd International Workshop on Scenarios and State 
Machines: Models, Algorithms, and Tools.



  ���

Compilation of References

Ziemann, Jörg & Leyking, Katrina & Kahl, Timo & 
Werth, Dirk (2006). Enterprise Model driven Migration 
from Legacy to SOA. In R. Gimnich, A. Winter (Eds.), 
Workshop Software-Reengineering und Services (pp. 
18-27). Koblenz: University of Koblenz-Landau.

Zimmermann, Olaf & Doubrovski, Vadim & Grundler, 
Jonas & Hogg, Kerard (2005). Service-oriented archi-
tecture and business process choreography in an order 
management scenario: rationale, concepts, lessons 
learned. In OOPSLA Companion (301-312). 

Zimmermann, Olaf & Köhler, Jana & Leymann, Frank 
(2006). The Role of Architectural Decisions in Model-
Driven Service-Oriented Architecture Construction. In 
L.A. Skar, A.A. Bjerkestrand, Best Practices and Meth-
odologies in Service-Oriented Architectures, OOPSLA 
2006	Workshop. 

Zou, Y., Kontogiannis, K. (2003). Quality Driven Trans-
formation Framework for OO Migration. In. Proc. 2nd 
ASERC Workshop on Software Architecture, Banff, 
Canada, pp. 18–24.



���  

About the Contributors

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Jörg Rech is a senior scientist and project manager at the Fraunhofer Institute for Experimental Soft-
ware Engineering (IESE). He worked on different German and European research projects as in the 
areas software engineering and knowledge management. In several industrial projects he helped on 
analyzing, evaluating, and improving the software development process and product for the diagnosis of 
defects and the indications of improvements. His research mainly concerns software patterns & antipat-
terns, software diagnostics (quality assurance), refactoring (software evolution), intelligent assistance, 
semantic technologies, experience-based resp. pattern-oriented software development, esp., in the area 
of model-driven software engineering. Dr. Rech authored over 35 international journal articles, book 
chapters, and refereed conference papers, mainly on software engineering and knowledge management. 
Additionally, he is a member of the German Computer Society (Gesellschaft für Informatik, GI) and 
served as a PC member for different workshops and conferences as well as an editor for several books 
in the domain of software engineering and the Semantic Web. Currently, he is also the speaker of the 
GI working group on architectural and design patterns.

Christian Bunse is an associate professor for software engineering at the International University, 
Germany. He received a PhD in computer science from the University of Kaiserslautern, Germany and 
a BS (Vordiplom) and MS (Diplom) in computer science with a minor in medicine from the University 
of Dortmund, Germany. His research interests concern model-based software development with a 
specific focus on components, adaptive service engineering, and resource awareness. Bunse authored 
several international journal articles, books (author and editor), book chapters, and refereed conference 
papers that mainly focus on software engineering, model-based development, and quality assurance. 
In addition, he served as a reviewer for several international journals, as well as a PC member and/or 
organizer of international workshops and conferences. He is a member of the German Computer Society 
(Gesellschaft für Informatik, GI).

* * *

Sven Abels is a member of the research and development group at TIE Nederland B.V. He started 
working as a freelancer about 12 years ago by founding his own software company, “Abelssoft”. Within 
those activities he conceptualized and implemented software products for end users and also offered 
IT-consulting for small and mid-sized enterprises. Abels received a bachelor’s degree (BSc), a master’s 



  ���

About the Contributors

degree (Dipl.-Inform) and a PhD (Dr) from the University of Oldenburg (Germany). He also organized 
several academic workshops and has over 40 publications in journals, proceedings and books. Abels 
joined TIE Nederland B.V. in 2006 and works in the research and development group providing concepts 
and solutions for modern e-Business. He also runs his own Web site for research issues at http://www.
svenabels.org.

Silvia Abrahão is a tenure-track assistant professor at the Department of Computer Science and Com-
putation, Valencia University of Technology (Spain), where she teaches Web quality and databases. She 
received a PhD in computer science from this same university in 2004. Currently, she is a member of 
the Software Engineering and Information Systems Research Group and the management committee 
of the COST Action 294 “Towards the Maturity of IT Usability Evaluation”. She regularly serves as an 
editorial board member of the Journal of Software Measurement, International Journal of Software 
Engineering and Its Application, and in the PC of several international conferences (ESEM, PROFES, 
ISESE, RCIS, CADUI, ICSOFT, LA-Web, Mensura, SMEF, etc.). Her current research focuses on quality 
assurance in model-driven development, usability engineering, Web quality, functional size measure-
ment and empirical software engineering.

Ronan Barrett is a postgraduate research student at Dublin City University. Barrett’s research focuses 
on service engineering and model-driven development. In his forthcoming PhD thesis, he investigates 
the role of distribution patterns in the model-driven development of high-quality service based software 
systems. He has also investigated performance aspects of distributed systems and has been involved 
in the design and implementation of Web- and service-based learning technology systems. Barrett has 
published his work across a range of highly reputable conferences and has been a reviewer for confer-
ences on Web service technologies.

Steffen Becker is a PhD student from DFG-project group Palladio at the University of Karlsruhe, 
Germany. In 2003, he graduated from the Technical University of Darmstadt with honors in informa-
tion management. Becker is speaker of the working group on model-driven software development of 
the German Gesellschaft für Informatik. He is member of the steering committee of the International 
Conferences on the Quality of Software Architectures (QoSA). His PhD thesis introduces the concept 
of coupled model transformations from high-level models into code and extra-functional models.

Anna E. Bobkowska graduated from Gdansk University of Technology, Faculty of Electronics, Tele-
communication and Informatics in 1996. She took part in the research on ‘A methodology of quality 
evaluation of information systems’ supported by National Research Council, she designed innovative 
group project methods within Tempus programme and she was developing a generic model of telecontrol 
protocols in the industrial research project COMSOFT for ABB Transmit, Finland. She defended her 
PhD thesis, “Software quality prediction with UML models” in 2001. She received young researcher 
grant from EU SegraVis project (Syntactic and Semantic Integration of Visual Modeling Techniques) 
and was visiting University of Kent, UK. She works in the Department of Software Engineering at 
Gdansk University of Technology, Poland.

Marko Bošković is a graduate student at the TrustSoft Research Training Group, University of Olden-
burg, Germany. His research interests are instrumentation, measurements and empirical performance 



���  

About the Contributors

evaluation of software systems. In his PhD thesis he investigates performance measurements and met-
rics, possibility of temporal databases application in the empirical evaluation, and integration of it in 
the process of model driven development.

Antonio Bucchiarone received his first master’s degree in computer science from the University of 
L‘Aquila (2003) and the second in information technologies from University of Pisa (2005). He is a PhD 
student at IMT of Lucca since 2005 and he is a collaborator of ISTI-CNR of Pisa. Bucchiaron’s research 
interests are in dynamic software architecture-based development and analysis of global computing 
systems, requirements engineering and service-oriented architecture. From April 2007 he is working 
at Nokia Siemens Networks of Lisbon, involved in a Research Project on Software Architecture for 
Embedded System. 

José Ángel Carsí received a PhD in computer science from the Valencia University of Technology in 
1999. He is currently an associate professor at the same university, where he teaches software engineer-
ing. His research interests are: model management, model compilers, software evolution, component 
models, software architectures and aspect-oriented software development.

Joel Champeau has a PhD in computer science on FPGA synthesis with dedicated language. He is 
teacher-researcher at the ENSIETA since 1995 in the DTN Laboratory (New Technologies Develop-
ment). He is involved in the modelling domain for embedded systems. He applies MDE methodology 
and techniques on a system modelling framework based on executable metamodels and on platform 
modelling for software and hardware code generation. This work is related to industrial concerns par-
ticularly with Thales AS, Thales Air Sys.

Michel Chaudron is an associate professor in computer science at the Technische Universiteit Eindhoven 
and at Leiden Universties’s Institute for Advanced Computer Science (LIACS). During his MSc and 
PhD he was a visitor at the Programming Research Lab at Oxford University and the Formal Methods 
Group at Imperial College, London. After completing his PhD he worked for two years for an IT com-
pany in the area of traffic and transport telematics. His research interests are in software architecting 
and component-based software development, esp. in supporting of design-trade-offs in the architecting 
of complex systems. He has been performing empirical studies into the use of UML in professional 
software development since 1999. Chaudron has published about his research in international and pro-
fessional journals and conferences. He serves on the program committee of conferences in the area of 
component-based software engineering, software processes and distributed systems.

Florian Deissenboeck is a research assistant in the Software & Systems Engineering Group of Prof. 
M. Broy at the Technische Universität München. Currently he works on his PhD thesis about software 
quality controlling. His academic interests lie in software maintenance, software product quality and 
program comprehension. He studied computer science at the Technische Universität München and the 
Asian Institute of Technology, Bangkok.

Paloma Díaz received a degree and a doctorate both in computer science from the Polytechnic Univer-
sity of Madrid. Since 1992, she has been working in the Universidad Carlos III of Madrid, where she 



  ���

About the Contributors

is currently a full professor in the Computer Science Department and is the head of the DEI research 
group. She has been mainly researching in hypermedia/Web engineering, access control modelling, 
e-learning and emergency information systems. She is co-author of several articles and books, member 
of the ACM and senior member of the IEEE.

Tibor Farkas was born 1974 in Berlin, Germany. Since 1999 he is certified as “Microsoft professional” 
(MCP) and “Microsoft certified systems engineer” (MCSE) and has been Microsoft partner and chief 
executive director of QuadConsult GmbH in 2000-2004. In 2005 he obtained his Diploma in Technical 
Informatics from the Technical University Berlin with the thesis “Model-based systems engineering of 
embedded automotive systems”. Since 2005 he works as research assistant at the Fraunhofer Institute 
FOKUS in the Competence Center Modeling and Testing for Systems and Service Solutions (MOTION), 
where since 2006 he is head of working area embedded systems engineering.

Martin S. Feather is a principal in the Software Assurance Technology & Reliability Group at the Jet 
Propulsion Laboratory, California Institute of Technology. He works on developing research ideas and 
maturing them into practice, with current activities in the areas of software validation (specification, 
analysis, test automation, V&V techniques), early phase requirements engineering and risk manage-
ment, and infusion of software engineering research results into practical application. For more details, 
see http://eis.jpl.nasa.gov/~mfeather. He obtained bachelor’s and master’s degrees in mathematics and 
computer science from Cambridge University, England, and a PhD in artificial intelligence from the 
University of Edinburgh, Scotland.

Marcela Genero is an associate professor at the Department of Information Systems and Technolo-
gies at the University of Castilla-La Mancha, Ciudad Real, Spain. She received her MSc in computer 
science in the Department of Computer Science, University of South, Argentine in 1989, and her PhD 
at the University of Castilla-La Mancha, Ciudad Real, Spain in 2002. Her research interests are: em-
pirical software engineering, software metrics, conceptual models quality, database quality, quality in 
product lines, quality in model-driven development, etc. Genero has published in prestigious journals 
(Information and Software Technology, Journal of Software Maintenance and Evolution, Research 
and Practice,	L‘Objet, Data and Knowledge Engineering, Empirical Software Engineering, Journal 
of Object Technology, Journal of Research and Practice in Information Technology, etc.), and confer-
ences (CAiSE, ER, MODELS/UML, ISESE, METRICS, ESEM, SEKE, etc). She edited with Mario 
Piattini and Coral Calero the books titled Data and Information Quality (Kluwer, 2001), and Metrics 
for Software Conceptual Models (Imperial College, 2005). She is member of the International Software 
Engineering Research Network (ISERN).

Jean-François Girard received a bachelor’s and master’s degree in computer science from McGill 
University and a PhD from the Technical University Kaiserslautern. Between 1996 and 2004 he worked 
at the Fraunhofer Institute for Experimental Software Engineering, where he was responsible for re-
verse engineering. Since 2005, he works for MAN Nutzfahrzeuge AG in the software development and 
technology department, where he is responsible for the project management and the change manage-
ment systems used in software development. Dr. Girard represents MAN in the ASAM-AE-ISSUE 
workgroup and in the AUTOSAR work package “Methodology, Configuration and Templates”. He is 
author of multiple publications.



���  

About the Contributors

Esther Guerra is an assistant professor at the Computer Science Department of the Universidad Carlos 
III, Madrid. Her research interests include meta-modelling, graph transformation, and their application to 
the generation of environments for domain specific visual languages including advanced features, such 
as consistency of multi-view languages, metrics specification and analysis mechanisms. He has been a 
doctoral researcher at the Institute of Theoretical Computer Science (TU Berlin) and the Department 
of Computer Science, University of Rome “Sapienza”.

Jens Happe is a PhD student from the Graduate School “TrustSoft”, University of Oldenburg, Ger-
many. He wrote his master’s thesis about reliability prediction for component-based software systems 
at Monash University in Melbourne, Australia. In his PhD thesis, he analyses concurrency aspects of 
component-based software systems to improve quality-of-service predictions. 

Since 2000, Wilhelm Hasselbring is professor at the Department of Computing Science, University 
of Oldenburg, Germany. His previous work included assistant professorship at the University of Til-
burg, The Netherlands and work as an assistant at the software technology group at the University of 
Dortmund, Germany. He is currently the head of the software engineering group. His main research 
interests include software engineering processes, patterns languages, grid technology, trustworthy 
computer systems and model driven software development. Hasselbring is also chair of the graduate 
school on trustworthy software systems TrustSoft at the University of Oldenburg and has been director 
of the Department of Computer Science.

Brigitte Hoeltzener received her PhD in automatic option robotic from the University Paul Sabatier, 
Toulouse France, on December 1984. She has participated as French expert to NATO Research Group 
(RSG9 AC243 Panel 3) in the fields of target detection, data fusion and recognition chain evaluation. 
Then she has integrated the department of system engineering of complex system, DSP; Délégation 
Générale de l’Armement . Actually, she works in ENSIETA in the research laboratory: E3I2 EA 3678 . 
Her research deals with the design of information system dedicated to radar and sonar applications and 
also, with the complexity of very large system including Human in the loop (Individual or collective 
integration). 

Jinfeng Huang received his BEng in computer science from China University of Mining and Technology, 
China (1997), and his MSc in computer science from Xi‘an Jiaotong University, China (2000, respec-
tively). In 2005, he received his PhD from Eindhoven University of Technology, The Netherlands, for 
his work on predictable real-time software design. Since April 2005, he works as a postdoc researcher at 
Electrical Engineering Department, Eindhoven University of Technology. His research interests include 
formal methods on concurrent, real-time and distributed systems and software synthesis.

Emilio Insfrán is an associate professor at the Department of Information Systems and Computation 
(DISC) of the Valencia University of Technology, Spain and member of the Software Engineering and 
Information Systems Research Group in the DSIC. He received an MS in computer science from the 
Cantabria University, Spain in 1994 and a PhD from the Valencia University of Technology in 2003. 
He was a visiting research scientist at the Department of Computer Science, University of Twente, The 
Netherlands (1999) and at the Department of Information Systems at the Brigham Young University, 



  ���

About the Contributors

Utah, USA (2001). His research interests are requirements engineering, model-driven software develop-
ment, and software quality. He has published more than 40 journal and conference papers and he has 
been involved in a number of national and international projects.

Jean-Marc Jezequel received an engineering degree in telecommunications from the ENSTB in 1986, 
and a PhD in computer science from the University of Rennes, France, in 1989. He first worked in 
telecom industry (at Transpac) before joining the CNRS (Centre National de la Recherche Scientifique) 
in 1991. Since October 2000, he is a professor at the University of Rennes, leading an INRIA research 
team called Triskell. His interests include model driven software engineering based on object oriented 
technologies for telecommunications and distributed systems. He is the author of the books Object-Ori-
ented Software Engineering with Eiffel and Design Patterns and Contracts (Addison-Wesley, 1996 and 
1999), and of more than 90 publications in international journals and conferences. He is a member of 
the steering committee of the MODELS/UML conference series. He also served on the editorial boards 
of IEEE Transactions on Software Engineering and Journal on Software and System Modeling: SoSyM 
and Journal of Object Technology.

Pankaj Kamthan has been teaching in academia and industry for several years. He has also been a 
technical editor, participated in standards development, served on program committees of international 
conferences, and is on the editorial board of the International Journal of Technology Enhanced Learning 
and the International Journal of Teaching and Case Studies. His professional interests and experience 
include knowledge representation, requirements engineering, and software quality.

Sowmya Karunakaran is a research engineer, who started the MDA research initiative (MRI) at Chen-
nai in May 2004. She has been doing MDA related research since 2004. Her areas of interest include 
model transformations, domain patterns, code generators, MDA tools, standards, UML and object 
constraint language. She has published several IEEE papers and whitepapers on MDA. Her whitepaper 
on “Reflections on MDA Case Studies” sought the attention and compliments of many MDA research-
ers. She has conducted experiments on piloting MDA for software projects and analyzing the benefits 
and best practices. Her other research interests include human machine interface computing and virtual 
reality. She has also suggested MDA style of development for some Fortune 500 companies. She is 
currently involved in pioneering MDA for projects and also conducting various training programs on 
MDA concepts.

Mori Khorrami is a principal in software engineering (embedded systems) at the Jet Propulsion Labora-
tory, California Institute of Technology. He is currently a project element manger on a flight software task 
in addition to being the technical group supervisor for Instrument Flight Software Development. He has 
over 27 years of experience in the Software and firmware design and development. His current interests 
are in the common architectures, H/W interface modeling and simulation, object-oriented architectures 
and design, modeling tools, and field programmable gate arrays. He obtained his bachelor’s degrees in 
electrical engineering from Tehran University and two master’s degrees in electrical engineering and 
computer science from California State University Northridge. 

Heiko Koziolek is a PhD student from the Graduate School “TrustSoft”, University of Oldenburg, 
Germany. He completed his master’s degree in computer science at the University of Oldenburg in 2005 



�00  

About the Contributors

and has worked for IBM and the Germany software company sd&m. His research focuses on modeling 
parameter dependencies for performance specification of software components.

Juan de Lara is an associate professor at the Computer Science Department, Universidad Autónoma 
in Madrid, where he teaches software engineering, model-driven development, and automata theory. 
He holds a PhD degree in computer science, and works in areas such as modelling and simulation, 
meta-modelling, visual languages and graph transformation. He has been a post-doctoral researcher at 
the MSDL Lab (McGill University), the Institute of Theoretical Computer Science (TU Berlin) and the 
Department of Computer Science of the University of Rome “Sapienza”.

Tom Mens obtained the degrees of Licentiate in Mathematics and Advanced Master in Computer Sci-
ence at the Vrije Universiteit Brussel. He was a teaching and research assistant and obtained his PhD 
at the Vrije Universiteit Brussel in September 1999. After occupying a postdoctoral fellowship of the 
Fund for Scientific Research, Flanders, he became a lecturer at the University ode Mons-Hainaut in 
October 2003. He carries out research on formal foundations and tool support for evolving software. 
He published numerous international research articles on this topic, and took part in the organisation 
of numerous international conferences and workshops. He has been involved in several interuniversity 
research projects and networks, and is director of the ERCIM Working Group on Software Evolution.

Martin Monperus is a PhD student in computer science in the University of Rennes. He received an 
engineering degree and a MSc from the Compiegne University of Technology in 2004. His research 
interests include machine learning and software engineering. He currently focuses on measurement in 
the context of model driven software engineering.

Henry Muccini received his PhD in computer science from the University of Rome – La Sapienza 
(2002). He is currently an assistant professor at the University of L‘Aquila since 2002 and he has been 
visiting professor at Information & Computer Science, University of California, Irvine in 2001 and 
2006. Muccini’s research interests are on software architecture verification and validation, model-based 
analysis, testing and model-checking. He has published over 50 conference and journal articles on these 
topics, and co-organized events on software testing, analysis, and fault tolerance. He teaches courses on 
web design, computer architecture lab, and analysis and testing of component-based systems. He is the 
coordinator of the GSEEM, the Global Software Engineering European Master degree. He collaborates 
with many industries and universities in Europe and in the U.S.
 
Dirk Müller is a research associate at the Philipps-Universität Marburg. He obtained his diploma degree 
in computer science from the University of Leipzig in 2002 and his doctoral degree in engineering from 
the University of Kassel in 2006. His field of work combines model-driven engineering and refactor-
ing with an interdisciplinary project—together with biology and philosophy—on the driving role of 
metaphors in the information sciences. He also teaches model-driven engineering at Fulda University 
of Applied Sciences.

Ariadi Nugroho is a PhD student at Leiden Institute of Advanced Computer Science (LIACS), Leiden 
Unversity, The Netherlands. He completed his master degree in ICT in business from the same institute 



  �0�

About the Contributors

in 2006. His research interest has been in the area of software modeling: he graduated with a thesis titled 
“Modeling Web Service Orchestration with Paradigm” (paradigm is a coordination language developed 
at LIACS). After finishing his master’s study, Ariadi immediately continued with his PhD research, 
which focuses on empirical research in quality of UML modeling and software fault prediction. As 
part of his research Ariadi also works regularly in an IT company to keep his research approaches and 
findings applicable to the industry.

Jane Oh is the group supervisor of the Software Assurance Technology and Reliability Group at JPL. 
She is the principal investigator of Research and Technology Development projects, “Software assurance 
for the emerging discipline of model-based design” and “FPGA based verification simulation accelera-
tor and assurance for FPGA/Firmware model-based design”. Apropos to this study, she lead a team to 
adopt model-based requirements and design analysis that enables systems reliability of safety-critical 
functions that run in real-time. Her PhD is from the University of Michigan, Ann Arbor.

Patrizio Pelliccione is an assistant professor at the University of L‘Aquila, Computer Science Department 
and he got its PhD in the same university. From April 2005 to April 2006 Patrizio was senior researcher 
at the Faculty of Sciences, Technologies and Communications of the University of Luxembourg. Patrizio 
is author of more than 30 publications in international journals and conferences. The research topics 
are mainly in software architectures, component-based systems, fault-tolerance, model checking, and 
formal methods. Patrizio is chair of the international workshop on Engineering Fault Tolerant Systems 
(EFTS), is editor of the book Software Engineering of Fault Tolerant Systems, and is reviewer of several 
workshops, conferences, and journals.

Claus Pahl is a senior lecturer and the leader of the Software and Systems Engineering research group 
at Dublin City University, which focuses on Web technologies and Web service engineering in particu-
lar. His specific interests include model-driven software development, software composition, semantic 
Web service technologies, and applications of software and service engineering in Web-based software 
systems, such as learning technology systems. Claus has published more than 150 papers including a 
wide range of journal articles, book chapters, and conference contributions on service engineering and 
model-driven development. He is on the editorial board of several journals and is a regular reviewer for 
journals in the area of software engineering, Web technologies, and e-learning. 

Mario Piattini is a full professor at the University of Castilla-La Mancha (UCLM), Spain. His research 
interests include software quality, metrics and maintenance. He gained his PhD in Computer Science at 
the Polytechnic University of Madrid, and he leads the Alarcos Research Group. He is CISA and CISM 
by ISACA. He is a member of ACM and the IEEE Computer Society. 

Teade Punter received his master’s degree from Twente University in 1991. He was course team leader 
at the Open University, The Netherlands from 1992-1996. Punter earned his PhD from Eindhoven 
University of Technology in 2001 for his work on software product certification. He worked from 2000 
till 2004 as groupleader at Fraunhofer IESE. After that he worked as consultant at the Laboratory for 
Software Quality at Eindhoven University of Technology. Since January 2007, he works as Knowledge 
Manager at the Embedded Systems Institute. Teade’s research interests are in model driven development 
of systems, testing and technology transfer.



�0�  

About the Contributors

Isidro Ramos is a full professor since 1976. He has been teaching during 36 years in several uni-
versities. Currently, he is a teacher at the Valencia University of Technology and the leader of the 
Software Engineering and Information Systems research group of the same university. He has been a 
key researcher in 21 Research Projects, member and president of different Programme Committees of 
relevant conferences. He has also been the international coordinator of the VII CYTED Subprogram 
on Applied Electronics and Computing, and the rector of the University of Castilla la Mancha. He has 
recently received the Spanish Computer Science National Award 2006. He is currently working in the 
model-driven engineering and software architectures fields.

Ralf Reussner is a professor for computer science at the University of Karlsruhe and heads the chair 
“Software Design & Quality” since 2006. He is also director at the technology transfer center FZI, 
Karlsruhe. He got his master’s degree in 1997 and his PhD in 2001 from the University of Karlsruhe. 
Reussner is editor of the German Handbook on Software Architecture and member of the steering com-
mittee of the International Conference on the Quality of Software Architectures (QoSA). His research 
interests lie in component-based software engineering and prediction of extra-functional properties.

Davide Di Ruscio received his PhD in computer science from the University of L‘Aquila (Italy) in 2007 
with a thesis titled “Specification of Model Transformation and Weaving in Model Driven Engineering”. 
Currently, he is research fellow at the Computer Science Department of the University of L‘Aquila and 
his main research interests include UML, MDA, EMF, code generation, and methodologies for Web 
development. During his PhD program, he has been involved in the study of formal and pragmatic 
characteristics of model transformations in model driven engineering. In particular, a formal approach 
based on Abstract State Machines for supporting the implementation independent specification of model 
transformations has been defined and validated in different applicative domains (data-intensive Web 
applications, software architecture, middleware based systems). Recently, he started the investigation 
of more complex model operations like model evolution, synchronization and difference. Currently, 
Di Ruscio is involved in the European project PLASTIC (Providing Lightweight & Adaptable Service 
Technology for pervasive Information & Communication) of the Sixth Framework Programme. 

Miroslaw Staron obtained a PhD in software engineering from Blekinge Institute of Technology in 
Ronneby, Sweden in 2005. He has obtained his MSc from Wroclaw University of Technology in Wro-
claw, Poland in 2001. His research interests include model driven software development and software 
measurements. His main focus is on using empirical software engineering methods in the above areas 
and close cooperation with industry – Ericsson and Volvo IT. Miroslaw is involved in organizing the 
series of consistency and quality workshops at the MODELS conference as well as the series of Nordic 
Workshops on UML and MDE. 

Niels Streekmann graduated form University of Oldenburg in 2005 with a major in computer science. 
He is currently with OFFIS, Oldenburg where he is working in the department business information 
systems. His main research focuses on the public-private project MINT dealing with the model-driven 
integration of systems in the utility domain. Streekmann is member of the GI, bringing in his expertise 
within the working group for model-driven architectures. 



  �0�

About the Contributors

Gabriele Taentzer is professor for software engineering at the Faculty of Mathematics and Computer 
Science of the Philipps-Universität Marburg in Germany. She achieved the habilitation in computer 
science at the Technische UniversitŠt Berlin in 2003. Her research interests include model-driven 
software development, especially domain-specific visual languages, model transformation, and graph 
transformation. Since 2002, she is a member of the steering committee for conferences and workshops 
on graph transformation and has been program committee member of many international workshops 
and conferences in the area of software engineering. She has been involved in various research projects 
on graph transformation, visual languages and model-based software development.

Stefan Teuchert received an electrical engineering degree, with specialization in the area of measure-
ment and control systems from the Technical University Hamburg. At MAN Nutzfahrzeuge AG, he was 
first development engineer in the central division Electric/Electronic/Control and ECU systems (TSE). 
Since 2005, Mr. Teuchert leads the software development and technology department.

Mathias Uslar graduated from Oldenburg University in 2004 with a major in computer science and a 
minor in legal informatics. Currently, he is with the OFFIS in Oldenburg, a third-party funded insti-
tute affiliated with the university. His major work deals with interoperability and enterprise applica-
tion integration in the utilities domain using the Common Information Model CIM (IEC 61970). He 
furthermore focuses on knowledge management and electronic democracy. Mathias is member of the 
GI, ACM and IEEE.

Jeroen Voeten received his master’s degree in mathematics and computing science in 1991 and his 
PhD in electrical engineering in 1997 from the Eindhoven University of Technology, The Netherlands. 
Since 1997 he is working as an assistant professor in the Electronic Systems Group, Faculty of Electri-
cal Engineering. As from January 2005 he is also working as a senior research fellow at the Embedded 
Systems Institute in Eindhoven. His research interests include system-level design methodology and 
performance modeling for embedded systems.

Stefan Wagner received a diploma in computer science from the University of Applied Sciences Augs-
burg, an MSc in distributed and multimedia information systems with distinction from Heriot-Watt 
University, Edinburgh, and a PhD in computer science from the Technische Universität München. He 
works as a post-doctoral researcher at the Software & Systems Engineering Group at TU München. His 
main interests include quality modelling, analysis and especially the connection to economics. He is 
member of the IEEE computer society, the ACM SIGSOFT, and the German informatics society (GI).

Michael Wahler is a doctoral student in the Business Integration Technologies Group at the IBM Zu-
rich Research Laboratory. He received a diploma in computer science from the Technical University 
of Munich, Germany, in 2003 and plans to complete a PhD in computer science at the Swiss Federal 
Institute of Technology Zurich, Switzerland, in 2008. Michael’s research focuses on engineering ap-
proaches for developing reliable software, particularly involving model-driven software development. 
He is currently working in the area of data modeling, for which he is developing a pattern approach for 
concise and consistency-preserving refinement of class models.



504

Index

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Symbols
σ Metric  152

A
abstract syntax  122
air traffic control system  65
AndroMDA  175, 178
architecture description language (ADL)  408
architecture description languages (ADLs)  266
ArchJava  271
ATHENA  122
automatic banking machines (ABMs)  327
automotive software engineering  374–399

B
behavior preservation  185
Build 0 Module  60
business process modeling language (BPML)  61
business process modeling notation (BPMN)  79

C
capability maturity model (CMM)  2
car manufacturers, and quality  374–399
Charmy approach  269
class models, increasing maturity of  204–235
code-centric (CC) developmen  236
cognitive dimensions of notations  331
component-based software engineering (CBSE)  97
constraint patterns  208

D
DER  431, 436
design quality assessment  4
design quality assessment, use of formal methods fo  

9
domain-specific modeling  185
domain experts  106
domain specific visual languages (DSVLs)  119–146
DSL  239

E
electronic control units (ECU)  375
embedded systems  38–56
embedded systems design  37–56
Extract Method  171
extreme programming (XP)  330

F
FAMIX  122
functions refinement tree (FRT)  307

G
generative approach, to MDSD  238
goal question metric approach  83
graphical modelling framework (GMF)  107
green field development  236

I
IEC-CIM  437
ISO/IEC 9126  405



�0�

Index

J
James Web Space Telescope  447–460
Java  272
Jet Propulsion Laboratory  447–460

L
language, formal  269
language, informal  269
legacy systems  435
loan application processing workflow  59

M
Matlab/Simulink  352
Matlab/Simulink, and embedded systems develop-

ment  353
maturity, using patterns  219
measurement of complexity  148
Meta Object Facility (MOF)  206
Middleware Company  68–69
MINT  431, 434
model-driven architecture (MDA)  302
model-driven development (MDD)  401, 403
model-driven engineering (MDE)  147–169, 204
model-driven integration, in complex information 

systems  431–446
model-driven performance  96
model-driven service engineering  400, 403
model-driven software development  79
model-driven software development (MDSD)  1, 

352–373
model-driven software refactoring  170–203
model driven engineering  37–56, 39
model driven software development (MDSD)  57–77, 

236–262
modeling technology, and increase of quality  81
MOMENT  314
multi-view DSVL (MV-DSVL)  124

N
NASA  447–460
Nixon diamonds  216

O
Object Constraint Language (OCL)  207
object identifiers  217
Object Management Group  79
OMG, query-view-transformation standard  305

P
Palladio component model  95–118
Palladio component model, an overview  100
patterns, to increase maturity  219
platform-specific model (PSM)  303
ports, public and protected  450
pragmatics  84
program refactoring  170

Q
quality, pragmatic  335
quality, semantic  334
quality, semiotic  334
quality-driven model transformations  302–326
quality assurance  11
quality assurance, in the MDE design flow  43
quality assurance, of MDSD  57
quality models  356

R
RDF schema  438
refactoring  171
reflexive associations  214
resource demanding service effect specifications 

(RDSEFF)  102

S
semantics  84
service-based software development, and quality  406
service-oriented architecture (SOA)  402
service engineering  400, 402
SLAMMER  119–146
SLAMMER, graphical patterns in  126
software architectures (SA)  263–301
software assurance techniques  452
software development, and quality assessment  211
software engineering, automotive  374–399
Software Engineering Institute  2
software models, and quality  78–94
software quality  120
software quality model  3
software services  401
software usability  177
syntax  84
system meter  149

T
TargetLink  352
transformation definition  306



Index

�0�

transformation rules  308

U
UML-RT  450
UML design  13
unified modeling language  330
university calendar  177
use case models, an overview  328
use case models, a representation  329

V
visual modeling languages  (VML)  79

X
XML  438


	Title Page
	Table of Contents
	Detailed Table of Contents

	Foreword
	Preface
	Acknowledgment
	Chapter I:
Managing the Quality of
UML Models in Practice
	Chapter II:
Quality in Model Driven
Engineering
	Chapter III:
Examples and Evidence
	Chapter IV:
Integrating Quality Criteria and
Methods of Evaluation for
Software Models
	Chapter V:
Evaluating Performance of
Software Architecture Models
with the Palladio Component
Model
	Chapter VI:
Integrating Measures and
Redesigns in the Definition
of Domain Specific Visual
Languages
	Chapter VII:
Measuring Models
	Chapter VIII:
Model-Driven Software
Refactoring
	Chapter IX:
A Pattern Approach to
Increasing the Maturity Level
of Class Models
	Chapter X:
Transitioning from
Code-Centric to Model-Driven
Industrial Projects:
Empirical Studies in Industry
and Academia
	Chapter XI:
From Requirements to Java Code:
An Architecture-Centric Approach for
Producing Quality Systems
	Chapter XII:
Quality-Driven Model
Transformations:
From Requirements to
UML Class Diagrams
	Chapter XIII:
A Framework for Understanding
and Addressing the Semiotic
Quality of Use Case Models
	Chapter XIV:
Assuring Maintainability in
Model-Driven Development
of Embedded Systems
	Chapter XV:
Quality Improvement in
Automotive Software Engineering
Using a Model-Based Approach
	Chapter XVI:
Quality-Aware Model-Driven
Service Engineering
	Chapter XVII:
Model-Driven Integration in
Complex Information Systems:
Experiences from Two Scenarios
	Chapter XVIII:
High-Quality Software Models
of the Mid-Infrared Instrument
for the James Webb Space
Telescope
	Compilation of References
	About the Contributors
	Index



