PREMIER REFERENCE SOURCE

MODEL-DRIVEN
SOFTWARE
DEVELOPMENT

Integrating Quality Assurance

JORG RECH & CHRISTIAN BUNSE

Model-Driven

Software Development:
Integrating Quality Assurance

Jorg Rech
Fraunhofer Institute for Experimental Software Engineering, Germany

Christian Bunse
International University in Germany, Germany

Information Science | INFORMATION SCIENCE REFERENCE
Hershey - New York

Director of Editorial Content: Kiristin Klinger

Senior Managing Editor: Jennifer Neidig
Managing Editor: Jamie Snavely
Assistant Managing Editor: Carole Coulson
Typesetter: Jennifer Neidig
Cover Design: Lisa Tosheff

Printed at: Yurchak Printing Inc.

Published in the United States of America by
Information Science Reference (an imprint of 1GI Global)
701 E. Chocolate Avenue, Suite 200
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

and in the United Kingdom by
Information Science Reference (an imprint of 1GI Global)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 0609
Web site: http://www.eurospanbookstore.com

Copyright © 2009 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in any form or by
any means, electronic or mechanical, including photocopying, without written permission from the publisher.

Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or companies does
not indicate a claim of ownership by 1GI Global of the trademark or registered trademark.

Library of Congress Cataloging-in-Publication Data
Model-driven software development : integrating quality assurance / Jorg Rech and Christian Bunse, editor.
p.cm.

Summary: "This book provides in-depth coverage of important concepts, issues, trends, methodologies, and technologies in quality
assurance for model-driven software development"--Provided by publisher.

Includes bibliographical references and index.

ISBN 978-1-60566-006-6 (hardcover) -- ISBN 978-1-60566-007-3 (ebook)

1. Computer software--Development. 2. Model driven architecture (Computer science) I. Rech, Jorg. Il. Bunse, Christian.
QA76.76.D47M624 2009

005.1--dc22

2008009115
British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book set is original material. The views expressed in this book are those of the authors, but not necessarily of
the publisher.

If a library purchased a print copy of this publication, please go to http://www.igi-global.com/agreement for information on activating
the library's complimentary electronic access to this publication.

Table of Contents

L 0] 111V 0] o SRRSO
o 5] =T SRS SPRSR
ACKNOWIBAGIMENT........iieeeee bbbttt ne s
Section |
Introduction: MDSD and Quality
Chapter |
Managing the Quality of UML Models in PraCtiCecccoooiiiriiiiiiiieiececeee e

Ariadi Nugroho, Leiden University, The Netherlands
Michel Chaudron, Leiden University, The Netherlands

Chapter 11

Quality in Model Driven ENGINEEIINGc.ooviiiiiiice ittt

Teade Punter, Embedded Systems Institute, The Netherlands

Jeroen Voeten, Embedded Systems Institute, The Netherlands & Eindhoven University
of Technology, The Netherlands

Jinfeng Huang, Eindhoven University of Technology, The Netherlands

Chapter 111

EXAMPIES @NA EVIABNCES.......coueeieeiiieiiee ettt ettt sttt este et e neeseeeneeneas

Sowmya Karunakaran, MDA Research Initiative, Chennai, India

Chapter IV

Integrating Quality Criteria and Methods of Evaluation for Software Models...........c..cccocevvennne.

Anna E. Bobkowska, Gdansk University of Technology, Poland

Section 11
Evaluating the Model Quality

Chapter V
Evaluating Performance of Software Architecture Models with the Palladio Component Model........ 95
Heiko Koziolek, Universitat Oldenburg, Germany
Steffen Becker, University of Karlsruhe, Germany
Ralf Reussner, University of Karlsruhe, Germany
Jens Happe, Universitat Oldenburg, Germany

Chapter VI

Integrating Measures and Redesigns in the Definition of Domain Specific Visual Languages.......... 119
Esther Guerra, Universidad Carlos 111 de Madrid, Spain
Juan de Lara, Universidad Autbnoma de Madrid, Spain
Paloma Diaz, Universidad Carlos 111 de Madrid, Spain

Chapter VII
MEASUIING IMOUEIS ...ttt e e e te e s re e st e e s reesteesbeesteesneesneesreenreenneeas 147
Martin Monperrus, ENSIETA & University of Rennes 1, France
Jean-Marc Jézéquel, University of Rennes 1 & INRIA, France
Joél Champeau, ENSIETA, France
Brigitte Hoeltzener, ENSIETA, France

Section 111
Improving the Model Quality

Chapter V111

Model-Driven Software RETACIONINGccviviiiiiiieic e 170
Tom Mens, University of Mons-Hainaut, Belgium
Gabriele Taentzer, Philipps-Universitat Marburg, Germany
Dirk Mueller, Chemnitz University of Technology, Germany

Chapter IX
A Pattern Approach to Increasing the Maturity Level of Class Modelsccccccvvvivvevciiieiiecen. 204
Michael Wahler, IBM Zurich Research Laboratory, Switzerland

Chapter X

Transitioning from Code-Centric to Model-Driven Industrial Projects: Empirical Studies

IN INAUSEY 8N ACAUBIMIAeeviiiieieeeee et bbb 236
Miroslaw Staron, IT University of Goteborg, Sweden

Chapter XI
From Requirements to Java Code: An Architecture-Centric Approach for Producing Quality
YA =110 LSO
Antonio Bucchiarone, IMT of Lucca, Italy
Davide Di Ruscio, University of L’Aquila, Italy
Henry Muccini, University of L’Aquila, Italy
Patrizio Pelliccione, University of L’Aquila, Italy

Chapter XII
Quality-Driven Model Transformations: From Requirements to UML Class Diagrams
Silvia Abrahé&o, Valencia University of Technology, Spain
Marcela Genero, University of Castilla-La Mancha, Spain
Emilio Insfran, Valencia University of Technology, Spain
José Angel Carsi, Valencia University of Technology, Spain
Isidro Ramos, Valencia University of Technology, Spain

Chapter XIII
A Framework for Understanding and Addressing the Semiotic Quality of Use Case Models.
Pankaj Kamthan, Concordia University, Canada

Section IV
QA for MDSD in Specific Domains

Chapter X1V
Assuring Maintainability in Model-Driven Development of Embedded Systems...................
Stefan Wagner, Technische Universitat Minchen, Germany
Florian Deissenboeck, Technische Universitat Miinchen, Germany
Stefan Teuchert, Durchstreichen, MAN Nutzfahrzeuge AG, Germany
Jean-Francois Girard, Durchstreichen, MAN Nutzfahrzeuge AG, Germany

Chapter XV
Quality Improvement in Automotive Software Engineering Using a Model-Based Approach
Tibor Farkas, Fraunhofer Institute FOKUS, Germany

Chapter XVI
Quality-Aware Model-Driven Service ENQiNEEringcocooeieiririneicsise e
Claus Pahl, Dublin City University, Ireland
Marko Boskovic, University of Oldenburg, Germany
Ronan Barrett, Dublin City University, Ireland
Wilhelm Hasselbring, University of Kiel, Germany

Chapter XVII
Model-Driven Integration in Complex Information Systems: Experiences from Two Scenarios...... 431
Sven Abels, Abelssoft GmbH, Germany
Wilhelm Hasselbring, University of Kiel, Germany
Niels Streekmann, OFFIS — Institute for Information Systems, Germany
Mathias Uslar, OFFIS — Institute for Information Systems, Germany

Chapter XVI1I

High-Quality Software Models of the Mid-Infrared Instrument for the James Webb Space

TR S COPIE. ...ttt bbb h b bR R b et bbbttt ner e 447
Jane M. C. Oh, Jet Propulsion Laboratory, California Institute of Technology, USA
Martin S. Feather, Jet Propulsion Laboratory, California Institute of Technology, USA
Mori A. Khorrami, Jet Propulsion Laboratory, California Institute of Technology, USA

Compilation OF RETEIENCESc.eiiiie ettt et ste e nee e 461

AN o Jo 101 A (L O gL A] o 10| (0] TR 494

Detailed Table of Contents

[T 0] 111770 (o PP Xiii

[] =101 TR XV

ACKNOWIBAGMENTottt ettt e et e et e e te e steeste e s te e teebeeteesteenreenes XiX
Section |

Introduction: MDSD and Quality

Chapter |

Managing the Quality of UML MOdelS iN PraCtiCeccccevieiiiiiiiiese e 1
Ariadi Nugroho, Leiden University, The Netherlands
Michel Chaudron, Technische Universiteit Eindhoven, The Netherlands

The quality of a model can be considered from many different perspectives. This chapter considers the
following perspectives: First, is the model complete in the sense that it describes the information that
developers need to know about a system? Second, to which degree does a model of a system corresponds
with its implementation.

Chapter 11
Quality in Model Driven ENQINEEIING ...ccuveieeiieeiieeieesieseeseesteesteeseeseestaesreestaessaesaeesseesseesreesseesseesseeas 37
Teade Punter, Embedded Systems Institute, The Netherlands
Jeroen Voeten, Embedded Systems Institute, The Netherlands & Eindhoven University
of Technology, The Netherlands
Jinfeng Huang, Eindhoven University of Technology, The Netherlands

Model Driven Engineering looks like a promising approach to addressing the late integration and the
difference in development productivity between disciplines in embedded systems design. This chapter
provides a conceptual framework for understanding the possibilities and the flaws in quality assurance
in the MDE design flow.

Chapter 111
EXAMPIES QNG EVIAENCES.......eoiiiieiiiciiee sttt ettt ettt st e et beare e e et esbaeseesresbeareenaenrens 57
Sowmya Karunakaran, MDA Research Initiative, India

This chapter aims at highlighting the increased development productivity and quality that can be achieved
by Model Driven Software Development (MDSD). The above statement is substantiated by discussing
many experiments and case studies in the field of Model Driven development. The main emphasis lies
on case studies for the measurement of the quality of the models.

Chapter IV
Integrating Quality Criteria and Methods of Evaluation for Software Models..............cccocevvviviiennnn. 78
Anna E. Bobkowska, Gdansk University of Technology, Poland

Successful realization of the model-driven software development visions in practice requires high-qual-
ity models. This chapter focuses on the quality of the models themselves and discusses context-free and
context-dependent quality criteria for models. It then moves on to methods of evaluation that facilitate
checking whether a model is good enough.

Section 11
Evaluating the Model Quality

Chapter V
Evaluating Performance of Software Architecture Models with the Palladio Component Model 95
Heiko Koziolek, University of Oldenburg, Germany
Jens Happe, University of Oldenburg, Germany
Steffen Becker, University of Karlsruhe, Germany
Ralf Reussner, University of Karlsruhe, Germany

Techniques from model-driven software development are useful for analyzing the performance of a
software architecture during early development stages. This chapter provides an overview of the Pal-
ladio Component Model (PCM), a special modeling language targeted at model-driven performance
predictions. Software architects can use the results of the analytical models to evaluate the feasibility
of performance requirements, identify performance bottlenecks, and support architectural design deci-
sions quantitatively.

Chapter VI

Integrating Measures and Redesigns in the Definition of Domain Specific Visual Languages.......... 119
Esther Guerra, Universidad Carlos 111, Spain
Juan de Lara, Universidad Auténoma de Madrid, Spain
Paloma Diaz, Universidad Carlos Ill, Spain

This chapter describes work to facilitate the task of integrating measurement and redesign tools in
modeling environments for Domain Specific Visual Languages (DSVLs). The developed DSVL called

SLAMMER includes generalizations of some of the more commonly used types of product metrics and
frequent model manipulations, which rely on visual patterns for the specification of the elements that
should be measured in each metric type.

Chapter VII
MEASUIING IMOUEIS ...ttt sttt et ettt e e e e teere e e eeeeneeneenee e 147
Martin Monperrus, ENSIETA, France
Jean-Marc Jézéquel, IRISA, France
Joél Champeau, ENSIETA, France
Brigitte Hoeltzener, ENSIETA, France

One way of assessing quality in a given domain is to define domain metrics. This chapter presents the
S metric, which is generic across metamodels and allows the easy specification of an open-ended, wide
range of model metrics.

Section 111
Improving the Model Quality

Chapter V111

Model-Driven Software REFACIOININGccveiiiiiiiiee et 170
Tom Mens, University of Mons-Hainaut, Belgium
Gabriele Taentzer, Philipps-Universitat Marburg, Germany
Dirk Mueller, Philipps-Universitat Marburg, Germany

This chapter explores the emerging research domain of model-driven software refactoring that raises
many new challenges. Based on a concrete case study with a state-of-the-art model-driven software
development tool, AndroMDA, some of these challenges are explored in more detail. Furthermore, it
proposes solutions to some of the encountered problems by relying on well-understood techniques of
meta-modeling, model transformation, and graph transformation.

Chapter IX
A Pattern Approach to Increasing the Maturity Level of Class Modelsccocioiieiiiiiiincnne. 204
Michael Wahler, IBM Zurich Research Laboratory, Switzerland

Class models are typically specified at a high level of abstraction and subsequently refined with textual
constraints requiring significant expertise and effort. In this chapter, typical refinement problems for
class models are identified and it is shown how a list of refinement tasks can be automatically compiled
from a given model.

Chapter X

Transitioning from Code-Centric to Model-Driven Industrial Projects: Empirical Studies

IN INAUSEY 8N ACAUEIMIAeeviiiiieieeeee ettt 236
Miroslaw Staron, IT University of Goteborg, Sweden

This chapter presents empirical data on several issues related to transitioning from code-centric (CC)
to MDSD projects in industry. It first presents results from a set of experiments that evaluate how a do-
main-specific notation affects the effectiveness and efficiency of reading techniques used for inspecting
models. Second, it presents a comparison of productivity increase when changing to MDSD projects
from one of the large Swedish companies. Finally, it presents a short survey on the prioritization of
products, projects, and resource metrics in MDSD projects.

Chapter XI
From Requirements to Java Code: An Architecture-Centric Approach for Producing Quality
)Y (<] 1 0 ST TSP TP PSP TP PP PP UPPPTRTIN 263
Patrizio Pelliccione, University of L’Aquila, Italy
Davide Di Ruscio, University of L’Aquila, Italy
Henry Muccini, University of L’Aquila, Italy
Antonio Bucchiarone, IMT of Lucca, Italy

Model-based specifications of a component-based system permit to explicitly model the structure and
behavior of components as well as their integration. This chapter proposes an architecture-centric
model-driven approach to validate required properties and generate the system code. Requirements are
elicited and used for identifying expected properties the architecture shall express. The architectural
compliance to the properties is formally demonstrated, and the produced architectural model is used to
automatically generate the Java code.

Chapter XII
Quality-Driven Model Transformations: From Requirements to UML Class Diagrams 302
Silvia Abrahé&o, Valencia University of Technology, Spain
Marcela Genero, University of Castilla-La-Mancha, Spain
Emilio Insfran, Valencia University of Technology, Spain
José Angel Carsi, Valencia University of Technology, Spain
Isidro Ramos, Valencia University of Technology, Spain

Usually, there are several ways to transform a source model into a target model. Alternative target mod-
els may have the same functionality but may differ in their quality attributes (e.g., understandability,
modifiability). This chapter presents an approach to dealing with quality-driven model transformations.
Specifically, it focuses on a specific set of transformations to obtain UML class diagrams from a require-
ments model.

Chapter XIII
A Framework for Understanding and Addressing the Semiotic Quality of Use Case Models........... 327
Pankaj Kamthan, Concordia University, Canada

In this chapter, a semiotic framework for understanding and systematically addressing the quality of
use case models is proposed. The quality concerns at each semiotic level are discussed and process- and
product-oriented means to address them in a feasible manner are presented.

Section IV
QA for MDSD in Specific Domains

Chapter X1V
Assuring Maintainability in Model-Driven Development of Embedded Systems...........cccccoceveniennne 352
Stefan Wagner, Technical University of Munich, Germany
Florian Deissenboeck, Technical University of Munich, Germany
Stefan Teuchert, MAN Nutzfahrzeuge AG, Germany
Jean-Francois Girard, MAN Nutzfahrzeuge AG, Germany

The automotive industry has already applied model-driven approaches for some time (usually in the
form of Matlab/Simulink) and proves to be a fertile ground for advancing assurance methods for the
maintainability of model-based systems. This chapter describes a two-dimensional quality metamodel
and presents an instance that defines maintainability for MDSD with Matlab/Simulink and TargetLink.
It exemplifies how such a model serves as the basis of all quality assurance activities and reports on
experiences made in an industrial case study.

Chapter XV
Quality Improvement in Automotive Software Engineering Using a Model-Based Approach.......... 374
Tibor Farkas, Fraunhofer Institute FOKUS, Germany

In the domain of automotive software engineering, there is a lack of automated checking for standard
conformance. In this chapter, the model-based design of automotive vehicle functions is taken as an
example to show how textual rules describing development standards to be met can be transformed into
a formal notation using the open standards Meta Object Facility and Object Constraint Language.

Chapter XVI

Quality-Aware Model-Driven Service ENQGINEEIING ...c.cccveieeieiieeieeieesieesie e ie e sneseesneseesneesnnes 400
Claus Pahl, Dublin City University, Ireland
Marko Boskovic, University of Oldenburg, Germany
Ronan Barrett, Dublin City University, Ireland

Service-oriented architecture is a recent approach to software systems integration where quality aspects
ranging from interoperability to maintainability and performance are of central importance for the in-
tegration of heterogeneous, distributed, service-based systems. This chapter presents an approach for
addressing the quality of services and service-based systems at the model level in the context of model-
driven service engineering.

Chapter XVII
Model-Driven Integration in Complex Information Systems: Experiences from Two Scenarios...... 431
Sven Abels, FlexaDot Information Systems, Germany
Wilhelm Hasselbring, University of Oldenburg, Germany
Niels Streekmann, OFFIS-Institute for Information Systems, Germany
Mathias Uslar, OFFIS-Institute for Information Systems, Germany

This chapter introduces model-driven integration in complex information systems by giving two practi-
cal examples from the public utilities domain. The purpose of the first project (MINT) was to provide
an integration approach allowing interoperability among several different legacy systems. Hence, the
project itself only acted as a “bridge” between the systems. The second project (DER) was built from
scratch and approached the challenge of integrating several existing third-party systems into the newly
designed system. In this project, the main system is a core element and only needed to integrate existing
legacy systems for specific tasks.

Chapter XVI11

High-Quality Software Models of the Mid-Infrared Instrument for the James Webb Space

L] 3T o LTS SRS URPSRPT 447
Jane M. C. Oh, Jet Propulsion Laboratory, California Institute of Technology, USA
Martin S. Feather, Jet Propulsion Laboratory, California Institute of Technology, USA
Mori A. Khorrami, Jet Propulsion Laboratory, California Institute of Technology, USA

This chapter examines model-based design in the context of development of critical software in NASA’s
James Web Space Telescope. The chapter discusses the context and nature of this software develop-
ment effort, and why they motivated the choice of model-based development approach. Illustrations
are provided of the elements of model-based design that are proving to be beneficial. The chapter also
considers how software assurance practices are being adapted to work with this approach.

Compilation of Referencescccooiiiiiiiiiiiiii s 461

ADOUL the CONEIIDULOLScooiiiiiiieiii ettt e e e e sttt s e e e e e et e et aa e s s eeeseseeesbarreeas 494

xii

Foreword

Modern model-driven development in its current, widely recognized form was born 10 years ago when
the UML 1.0 proposal was submitted to the OMG. As a unification of the leading object-oriented methods
existent at that time, UML 1.0 set aside trivial notation debates and galvanized the software engineering
community into exploring the true potential of modeling. In the early years, models were primarily seen
as an aid to analysis and design activities. By providing compact and easy-to-understand depictions of
system properties, models were found to be useful for communicating ideas to customers and fellow
developers, and for exploring design ideas. However, they were not regarded as central artifacts in the
development process, but rather as imprecise, auxiliary visualizations of the “true” product — the code.
As a result, there was little point in worrying about the quality of models — it was the quality of the code
that mattered.

With the advent of true model-driven development during the last few years, however, all this has
changed. Not only has the UML gone through several revisions, giving it a much more precise and well-
documented abstract syntax and semantics, but a new generation of tools and transformation languages
have emerged, which largely automate the translation of models into code. UML models therefore
have a much tighter and well-defined relationship to code and are no longer regarded as unimportant,
supplemental artifacts. Indeed, the day is not far off when models will become the primary development
artifacts and traditional source code will be regarded as supplemental. But as the role of models becomes
more central and more important, so does their impact on the overall quality of the software product.
This means that instead of being of marginal interest, in the years to come the quality of models will
play an ever more central role for the success of software projects and products.

Assuring quality in model-driven development is much more challenging and multi-faceted than
quality assurance at the code level, however. First, model-driven development involves a lot more views
and diagram types than code-level representations of software, and keeping all these different views
consistent and optimized is much more difficult than maintaining a single, textual view of a software
product. Second, since model-driven development regards the definition of model transformations as
a normal part of software engineering, these are primary development artifacts in their own right, and
must be subject to the same defect detection and quality assurance activities as other human-defined
documents. Third, since the abstraction gap between primary (i.e., human-developed) artifacts and ex-
ecution platforms is much greater when models are used to describe software rather than source code,
the relationships between model properties and product properties is much more tenuous and ill-defined.
A whole new genre of quality metrics therefore needs to be defined and their value as quality indictors
needs to be established and experimentally confirmed. And last but not least, there is the issue of the
expressive power and representation fidelity of the modeling notations themselves. Although the UML
was a significant step forward over previous notations, it is certainly not the last word in visual repre-

Xiv

sentation languages, and a great deal of work still needs to be done to evaluate which notations best
convey different types of information and are the least prone to errors.

Although the field is in its infancy, this book demonstrates that a lot of work has already been done
and there is an active and vibrant research community studying the quality aspects of model-driven
development. With the creation of this book, the editors and authors have compiled one of the most
comprehensive and authoritative overviews of the state of the art in model-driven quality assurance
available to date. The book therefore represents an important step in the evolution of model-driven
development and helps turn it into a mature engineering discipline. There is currently no better or more
extensive body of knowledge on quality assurance in model-driven development, and | hope you will
be able to learn from the book as I have.

Colin Atkinson
University of Mannheim
May 2008

XV

Preface

The success of the Unified Modeling Language (UML) reflects a growing consensus in the software
industry that modeling is a key ingredient in the development of large and ultra-large software systems.
Recent developments to industrialize the software development process are also using technologies
such as components, model-driven architectures (MDA), and product lines. These technologies drasti-
cally alter the software development process, which is characterized by a high degree of innovation and
productivity. MDA and model-driven software development (MDSD) focus on the idea of constructing
software systems not by programming in a specific programming language but by designing models that
are translated into executable software systems by generators. These characteristics enable designers
to deliver product releases within much shorter periods of time compared to the traditional methods.
In theory, this process makes it unnecessary to worry about for an executable system’s quality, as it is
“optimized” by the generators.

However, proponents of MDSD must provide convincing answers to questions such as “What is the
quality of the models and software produced?” The designed models are a work product that requires a
minimal set of quality aspects (e.g., the maintainability of models over a longer life-time). Furthermore,
models created in the earlier phases of development (e.g. analysis and design) are often only used as an
abstract template for the software and typically are of little value, unless they can be readily mapped to
correct and efficient executable forms, which means high-level object-oriented programming languages.
Any problem in the transformation path from requirements via models to code not only has a negative
impact on the quality of the delivered software system, but also obstructs its future maintenance and/or
reuse.

Quality assurance techniques such as testing, inspections, software analysis, model checking, or
software measurement are well researched for programming languages, but their application in the
domain of software models and model-driven software development is still in an embryonic phase. In
general, quality assurance is related to all phases of the software lifecycle, is needed within all applica-
tion domains, and comes in many different flavors, ranging from reviews and inspections via metrics
and quality models to holistic approaches for the quality-driven development of software systems. The
goals of quality assurance for model-driven software development are diverse and include the improve-
ment of quality aspects such as maintainability, reusability, security, or performance. Quality assurance
for model-driven software development will play an important role for the future wide-spread usage of
model-driven architectures in general, as well as in specific application domains.

In order to foster the development of quality assurance research in MDSD and to give a solid over-
view of the field, we have brought together research and practice in this book.

XVi

MODEL-DRIVEN SOFTWARE DEVELOPMENT

Model-driven software development methods aim at supporting software engineers in producing large
and ultra-large software systems that are very flexible, portable, and of high value to their customers.
Basically, programmers are freed from the burden of tedious standard tasks, which are also a source
of errors. It is envisioned that by systematically applying MDSD, the quality of software systems, the
degree of reuse and thus, implicitly, the development efficiency will improve.

The core idea of MDSD is that models are becoming the “source code” of a system from which the
executables are simply generated. Thus, models cover different abstraction layers, ranging from con-
ceptual diagrams in the problem space to detailed low-level models adapted to a specific platform. In
general, model-driven software development is the process of generating executable software systems
from formal models, starting with computational independent models (CIMs) that are extended to plat-
form independent models (PIMs) to be adapted into platform specific models (PSMs) and finally result
in source code (e.g., Java). In other words, models now bridge the traditional gap between, human-read-
able requirements and source code. Contemporary approaches of MDSD also create platform specific
skeletons (PSS), which have to be completed by programmers.

Typically, models have had a long tradition in software engineering and are used in many software
projects. However, there is not one commonly used language for models used in software develop-
ment. Software models may range from sketches on a whiteboard via UML diagrams to mathematical
specifications.

In order to enable the automatic generation of executable models, these models have to follow a pre-
cisely defined syntax and semantic. One widespread language for depicting such models is the Unified
Modeling Language (UML), but model-driven development is not necessarily bound to the UML. Other
modeling languages (e.g., Petri-nets, MathLab, Modelica, etc.) are successfully applied and have their
value. And while the UML provides a large selection of diagram types and a more formal specification
language (e.g., OCL), the information contained within a model is often not sufficiently concise and
precise (i.e., UML models often have to be enriched by textual specifications).

Nevertheless, by using the full power of the UML diagrams on different abstraction layers with ac-
companying textual specifications, we can model complete systems today. However, as with other work
products such as source code, this opens the question of how to assure quality within model-driven de-
velopment. Quality assurance in MDSD has to address quality issues at different abstraction levels and
has to face the challenge of the very richness (and complexity) of the UML. Today, quality assurance
is often used as a synonym for testing, but in reality it is a much wider discipline — it includes other
techniques such as inspections or metrics. Even though model-based testing is a well-known way to use
models for quality assurance, modeling has much more potential in this regard: Models can be verified
before code is generated, requirements can be modeled and checked against design models, etc.

OVERALL OBJECTIVE OF THE BOOK

This book aims at providing an in-depth coverage of important concepts, issues, trends, methodologies,
and technologies in quality assurance for MDSD. It focuses on non-testing approaches for quality as-
surance and discusses quality in the context of MDSD. This premier reference source presents original
academic work and experience reports from industry that can be used for developing and implementing
high-quality model-based software.

XVii

It is a comprehensive guide that helps researchers and practitioners in the model-driven software
development area to avoid risks and project failures that are frequently encountered in traditional and
agile software projects. The whole development process and the developed products (i.e., CIMs, PIMs,
PSM, etc.) must be analyzed, measured, and validated from the quality point of view.

TARGET AUDIENCE

The topic of integrating quality assurance into model-driven software development is broad and comes
in many different flavors. However, when applying model-driven development and quality assurance,
the basic principles and concepts have to be known to all participants of such a project. This book pro-
vides a comprehensive overview to those who are interested in studying the field of quality assurance
for model-driven software development. However, this book is not meant to be a textbook that supports
lectures or self-studies for novices. This book is aimed at researchers, project managers, and developers
who are interested in promoting quality assurance for model-driven software development, in further
educating themselves, and in getting insights into the latest achievements.

VOLUME OVERVIEW

The following chapters provide significant details about the topics outlined in this introduction. All
chapters describe innovative research and, where possible, experience collected in industrial settings.
Therefore, this book provides significant contributions to both the research and practice of assuring
quality in model-based development. Several case studies are presented as a means for illustrating ap-
proaches, methods, and techniques in order to provide evidence. Most authors use or refer to the Unified
Modeling Language (UML) in their chapters as a means for modeling the problem or solution domain.
However, it appears that the latest version of the UML (version 2.1.1) is not used consistently. Thus, it
is important to note that all references to the UML cover versions 1.x to 2.x. In summary, the book is
organized as follows:

e Section I givesan introduction to quality in model-driven software development, which is presented
in four chapter (Chapters I to V). The chapters cover quality in general, quality aspects, and quality
models for quality assurance in model-driven software development.

. Section II presents three chapters (Chapters V to VII) that are concerned with the evaluation of
software models. They cover techniques for obtaining objective information from models that
support the measurement, evaluation, and assessment of the model’s quality.

. Section III covers the improvement of a model’s quality. Six chapters (Chapters VIII to XIII)
present different techniques such as refactoring, inspections, and constraint checking that help to
improve the quality of a model. The chapters address approaches from the viewpoint of quality
criteria and describe how model-driven development might become quality-driven model-based
development.

. Section IV presents four chapters (Chapters XIV to XVIII) on using quality assurance techniques
for model-driven development in specific application domains. Most papers are devoted to the do-
main of embedded systems (esp. in the automotive domain) and report about experience collected
in specific industrial environments.

Xviii

In summary, this book provides an overview of state of the art approaches to quality assurance in
model-driven software development and presents the main challenges surrounding the subject. Each of
the following chapters presents a set of issues and problems commonly encountered when performing
research on or applying model-driven development. All authors share their vision about the importance
of quality issues and agree that quality has a strong impact on system development and deployment.
We hope that the insights and experiences described in this book will provide readers with new research
directions and valuable guidelines.

Jorg Rech and Christian Bunse
Editors

XiX

Acknowledgment

Our vision for this book was to gather information about methods, techniques, and applications for qual-
ity assurance in MDSD that does not focus on testing, but on other quality assurance techniques. This
important field will see more attention in the future, and we wanted to collect and share this information
with the community. Furthermore, we hope that this book will foster the distribution and exchange of
ideas, experiences, and evidence across projects and organizational boundaries.

This vision has become a reality only because of the hard work of the chapter authors, and we want
to thank them for their contributions. Many of the authors also served as reviewers for chapters written
by other authors. Thanks go to all those who provided constructive and comprehensive reviews.

Furthermore, we want to thank the publishing team at IGI Global for their continuing support
throughout the whole publication process. Deep appreciation and gratitude is due to Jessica Thompson,
editorial assistant at 1GI Global, and Julia Mosemann, editorial assistant at 1GI Global, who supported
us and kept the project on schedule.

Jorg Rech and Christian Bunse
The Editors
May 2008

Section |
Introduction:
MDSD and Quality

This introductory section presents several chapters that provide an overview of quality in general, its
management, and its evaluation in the context of model-driven software development.

Chapter |
Managing the Quality of
UML Models in Practice

Ariadi Nugroho
Leiden University, The Netherlands

Michael R. V. Chaudron
Leiden University, The Netherlands

ABSTRACT

Many studies have been carried out to investigate what makes up good quality software. Some of the
early models that define the quality of software come from Boehm (1976) and McCall (1977). Works in
this field of quality models have traditionally focused on quality of the final software product. Since the
19705 models of software have been used and this has recently attracted much attention through the
popularity of model-driven software development (MDSD). However, quality of software models has
rarely been considered (Lange & Chaudron, 2005). In the software development life cycle, the ability
to assure software quality long before the testing phase may save a lot of money since less defects found
in the testing phase will mean less effort to be allocated for rework. Currently, the importance of model
quality is starting to gain attention from computer scientists. Work in this area has since focused on
developing tools, metrics, and frameworks to improve the quality of models that guide implementation,
particularly in the context of UML modeling which has become the de facto standard for building object
oriented software. Quality of models can be considered from many different perspectives. In this chapter,
we will consider the following perspectives: Firstly, is the model complete in the sense that it describes
the information that developers need to know about a system? Secondly, we look at the degree in which
amodel of a system and an implementation correspond. This degree of correspondence indicates to what
extent analyses of—or predictions based on the model are valid for the implementation. We present the
main findings from case studies into quality of modeling in the software industry as well as findings from
a survey amongst professional software developers. We also provide a discussion on the contemporary
methods for design quality assessments.

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

Despite the fact that the notions of good quality
software have beenaround since four decades ago,
many software companies are still struggling to
gettheirsoftware product into production without
numerous defects. Defects can be interpreted
as deviation from specification or expectation
(Fenton & Neil, 1999).

Since defects will eventually affect the opera-
tion of software as the final product, the discussion
on defects cannot neglect the notion of software
quality. In general terms, the notion of quality
is the absence of defects. Thus, if defect means
deviations from specification or expectation, we
can perceive quality as a conformance to speci-
fication and requirements/expectations.

Managing the Quality of UML Models in Practice

Intheirsearch of qualifying aspectsinsoftware
quality, computer scientists have come up with
quality models that are generally constructed
by guantitative approaches. Two of the most re-
nowned quality models came from the work of
Boehm, Brown, and Lipow (1976) and McCall,
Richards, and Walters (1977). Boehm’s quality
model is shown in Figure 1.

While quality models are generally more fo-
cused on the quality characteristics of the final
software product, many efforts have been devoted
to prescribe standard procedures and processes
so that eventually software will have the quality
attributes as have been defined in many quality
models. Inthisregard, SEI (Software Engineering
Institute) has come up with the Capability Matu-
rity Model (CMM) that is currently becoming the

Figure 1. Boehm's quality model (©2007 Ariadi Nugroho. Used with permission)

Maintainability

|
b

Portability

Reliability

Efficiency

Human
Engineering
_

Testability

Understandability

Modifiability

Device independence

Self-containedness

Completeness

Robustness/integrity

Consistency

% /

{
V

g

Accountability
Device efficiency

essability

AL
W

1
)

Communicativeness

Conciseness

Legibility

Augmentability

Managing the Quality of UML Models in Practice

Figure 2. The ISO 9126 (©2007 Ariadi Nugroho. Used with permission)

Are the required
functions available
in the software?

How easy is to transfer
the software to another
environment?

; Functionality ;

How reliable is
the software?

How easy is to modify
the software

f Efficiency E

Is the software easy
to use?

How efficient is
the software?

de facto standard in the area of software process
improvement to achieve good quality software
(Runeson & Isacsson, 1998).

The CMM prescribes five evolutionary stages,
i.e. Initial, Repeatable, Defined, Managed, and
Optimizing, which indicate the maturity level of
an organization’s software process. The CMM is
particularly important to mention here because
it defines software quality assurance as one of
the key process areas in CMM level 2. The key
components of the CMM'’s quality assurance is
the presence of review and audit to assess the
compliance of software process and the resulted
products to a defined standards and procedures
from which manager can react upon.

Another quality model that deserves attention
is the 1SO 9126. This quality model is based on
McCall’s model. Figure 2 illustrates the 1SO 9126
quality model.

Below are the main two concepts that are
important in concluding our discussion on soft-

ware quality. Figure 3 visualizes how these two
concepts are put into the perspective of software
development:

1. Software quality model is a set of software
quality characteristicsandtheir associations.
These characteristics are generally quan-
tifiable so that eventually a quality model
can be a basis for assessing the quality of
software products. Consequently, the nature
of quality models is more product-oriented,
i.e. in the form of final software product or
transitional products of certain phases in
the software development lifecycle.

2. The effort to assure that software will have
certain quality attributes have led to the
emergence of the so-called Software Qual-
ity Assurance. Instead of focusing merely
on the products, SQA also put emphasis on
the procedures and activities to assure the
quality of the final products. It defines sets

Managing the Quality of UML Models in Practice

Figure 3. SOA and software quality assessment in software development (©2007 Ariadi Nugroho. Used

with permission)

Software Development Process

Analysis
&
Design

Implementation

Product Release
?

~
\
if (Quality Assessments (based on software quality characteristics)) ‘:
| !

\ Well-defined procedures and activities /

of activities or procedures to monitor and
control a product during its development
lifecycle so that at the end it will possess
the expected quality attributes.

Figure 3 shows a software development life-
cycle where each phase delivers a milestone that
can be assessed in terms of its quality. These as-
sessments can be quantitative in nature (e.g. using
metrics) or qualitative through informal assess-
ments such as peer review though the former is
generally more preferable since it provides more
objective and measurable results. Nevertheless,
in order to be effective, these methods or tech-
niques have to be organized into a well defined
procedures and activities. These procedures and
activities for instance, may prescribe guidelines
in reviewing or auditing products, reporting
the results, and following-up the recommenda-
tions. The quality assessments together with the
procedures of how they must be done, reported,
and followed up are essentially the very notion
of software quality assurance.

Having discussed all the above notions, the
main purpose of this chapter is to provide a dis-
cussion on how the efforts on managing software
quality vary in theory and practice. However,
special attention is given particularly on the ef-
fortin managing the quality of UML models. The

Software Quality Assurance

structure of this chapter is as follows. In Section 2
we discuss the contemporary methods for design
quality assessments. In Section 3 we discuss a
case study of quality assurance in UML model-
ing. Subsequently, future trends, conclusion, and
future research direction will be discussed in
Section 4, 5, and 6 respectively.

CONTEMPORARY METHODS FOR
DESIGN QUALITY ASSESSMENTS

As the focus of this chapter is on design quality
assurance, i.e. the activity to monitor and con-
trol design’s conformance to requirements and
specifications, in this section we will discuss the
methods and techniques for maintaining the qual-
ity of software design. From our observation in
the literature, we identified three mainstreams in
design quality assessment: design measurements,
designinspections, and the use of formal methods.
Thus, in the following passages we will further
explore these approaches in terms of methods,
characteristics, and how they can improve the
quality of software designs.

Managing the Quality of UML Models in Practice

Figure 4. Lange's framework for quality of UML models (©2007 Ariadi Nugroho. Used with permis-

sion)

Primary Use

e

.

Purpose

Modification [€

.

/I\

esting

-
| S
j—

T
Comprehension
Jaﬁ

Characteristics

7[Complexity
\[Balance

>[Modularity

‘{ Communicativeness

*[Correspondence

Communication

oy

Prediction

]

AN

. 3
™~ Implementation

-_-__'_"‘—!--__
e
|1 Analysis
—_—

| Self-descriptiveness

Precision

Esthetics

Detailedness

0. T . TS

)
)
)
)
)
)
Conciseness |
)
)
J
)
)

= Consistency
\ Code é
Generation Completeness

L

J - /

Quality Models for UML Models

A framework for quality of UML models was
proposed by Lange and Chaudron (2005). This
quality model differs from the traditional models
of Boehm, McCall and the ISO 9126 in that it con-
siders UML models as an intermediate product of
software development that derives it quality from
the degree by which it supports other software
engineering activities. Figure 4 depicts Lange’s
quality framework of UML models.

Acrelated, but more general approach to defin-
ing the quality of software models is the approach
proposed by Lindland, Sindre, and Sglvberg
(1994). Their approach distinguishes three cat-
egories: syntactic, semantic and pragmatic. As

such these criteria are not directly related to any
specific goal, nor to any specific modeling nota-
tion. Leung and Bolloju (2005) have specialized
thisframework to evaluate UML models produced
by novice software engineers.

Design Inspection

Fagan’s seminal work (Fagan, 1976) laid the
very foundations of current software inspec-
tion methodologies. Inspection was defined as
a formal, efficient, and economical method of
findings errors in design and code, and which
main aim is to detect and correct defects as close
as possible to the point where they were created.
He proposed that software inspection must be

Table 1. Summary of Fagan’s inspection process

Managing the Quality of UML Models in Practice

Operations Objectives

Planning
Overview

Preparation

Preparing the right material, people, time, and place.
Group education over what to be inspected and role assignments to participants.

Participants learn the material and prepare their respective roles for the inspection.

Inspection Find errors.
Rework Fix errors.
Follow-up Ensure all fixes are applied correctly.

performed continuously and defects found in
every intermediate product should be corrected,
and meet the exit criteria before the products can
be handed over to the next phase of the process.
Fagan also stresses the importance of people who
perform the inspection, i.e., moderator, author,
reader, and tester, and the process of the inspec-
tion. Table 1 provides a summary of the phases
in Fagan’s inspection process and their main
objectives (Fagan, 1986).

Additionally, it is worth noting other quality
assurance method, namely walkthrough. Walk-
through is very similar to inspection except that
it does not practice repeatable process and data
collection (Fagan, 1986). Thus, walkthrough can
be considered as an informal inspection.

The Development of Inspection
Methods

One of the problems with inspection is that the
defects found are often trivial or cosmetics in
nature (Laitenberger, 2002). This might be due
to inexperienced reviewers or the absence of
clear guidelines in the inspection process (e.g.,

uncertainty of which types of error to find). Ad-
ditionally, the study from Dunsmore, Roper, and
Wood (2001) revealed that most reviewers perform
assessment in a sequential order. It is presumed
that with this approach contents at the end of a
document would not get as much attention as
those at the beginning of the document.
Nowadays there exist variances of inspec-
tion methods that were proposed to improve the
effectiveness of inspection in finding defects.
Table 2 provides a comparison of six well-known
inspection methods and Fagan’s, based on the
study of Aurum, Petersson, and Wohlin (2002).
The black bars (except that of Fagan) indicate
the phases in which the listed methods have
proposed improvement from Fagan’s inspection.
For instance, Active Design Review (Parnas &
Weiss, 1985) proposed different approach in the
preparation and the inspection meeting.

Reading Techniques
Thissectionfocuses onreadingtechniquesthataid

reviewers to effectively inspect and find defects
in software artifacts.

Managing the Quality of UML Models in Practice

Table 2. Well-known inspection methods and their processes

Preparation

Inspection

Meeting Rework

Follow-up

Planning Overview

1976 Fagan s
Inspection

1985 Actl_ve Design
Review

1989 qu—person
Review

1990 N-fold -
Inspection

1993 Phased'
Inspection
Inspection

1993 without meeting

1993 Gilb inspection

Collection

Process

Reading technique is “a series of steps or pro-
cedure which purpose is to guide an inspector in
acquiring a deep understanding of the inspected
software product” (Laitenberger, 2002). As noted
previously, the way areviewer readsadocumentis
influential to the effectiveness in finding defects.
Recalling the previous example, whenadocument
is read sequentially it might be that the contents
inspected later will get less attention as the atten-
tion level of a reviewer is degrading over time.
Table 3 lists five well-known reading techniques
for inspecting software artifacts.

Design Measurement

Fenton (1999) provides a formal definition of
measurement:

Measurement is the process by which numbers or
symbols are assigned to attributes of entities in
the real world in such a way as to describe them
according clearly defined rules (p. 20).

With the above definition, Fenton suggests that
when we measure an entity, we actually measure

~

Table 3. A summary of reading techniques

Managing the Quality of UML Models in Practice

Reading Technique Description

Ad-hoc Reading for the process.

Checklist

Active Design Review

Scenario-based Reading

Perspective-based Reading

Informal procedures of inspecting design documents. No clear guideline is defined

More systematic way of assessing a document. Some questions are formulated and
must be answered by reviewers.

This method requires active involvement from the reviewers (e.g., writing code
(ADR) fragment of models) in addition to answering review questions.

Using scenario to guide inspectors in detecting defects. Each reviewer uses
different, systematic techniques to search for different, specific classes of faults.

Focus on the point of view or needs of the customers or consumers of a document.
Thus this method encourages quality assessments from various perspectives.

the attributes of that entity. We do not measure a
car, but we measure the attributes of a car, e.g.,
height, width, speed, acceleration, or weight.
Understanding the attributes of an entity helps
us to understand the entity better.

For the same reason, measurement is increas-
ingly beingappliedto software designs. Ingeneral,
design measurementistheapplication of measure-
ment to a design artifact. By employing measure-
ment to adesignwe can characterize and describe
certainaspects of the design in quantitative terms.
However, design artifacts, e.g., UML models, are
only intermediate products of a software system.
Therefore, the application of design measurement
is primarily aimed at understanding, predicting,
controlling, or improving the quality attributes
of the final software product.

The emphasis of this chapter is on quality
assurance of UML designs. Therefore, for the
rest of this section we restrict our discussion to
object-oriented design measurement.

Object-Oriented Design Metrics

The practices of measurement in software design
have been primarily revolving around the use of

metrics (Chidamber & Kemerer, 1994). We can
define design metrics as some measures of design
properties. The importance of design metrics is
highly related to the necessity to assess software
quality properties as early as possible in the
software development process. This is primarily
beneficial since the ability to fix defects earlier will
be less expensive than to fix them later in the devel-
opmentprocess. By measuring the characteristics
of an object-oriented design, it is expected that
the quality attributes of the final software product
can be predicted and/or improved. Inthis respect,
previous study by Briand, Wust, Daly, and Porter
(2000) and Abreu and Melo (1996) investigated
the relationships and impacts of object-oriented
design metrics on software quality.

The most renowned design metrics to date
originate from the work of Chidamber and Ke-
merer (1994). They developed six object-oriented
design metricsthatare still widely used in various
design measurement activities nowadays. Table
2.4 provides brief definition of these metrics.

Many of these metrics have been the subjects
of further investigation to reveal their relations
with system quality attributes such as reliability,
maintainability, and understandability. The work

Managing the Quality of UML Models in Practice

Table 4. Chidamber and Kemerer’s metrics suite for object-oriented design

Metrics Definition

Weighted Method per Class (WMC)
Depth of Inheritance Tree (DIT)

Number of Children (NOC) hierarchy

Coupling between Object Classes
(CBO)

Response for a Class (RFC)

Lack of Cohesion in Methods
(LCOM)

The sum of weighted methods in a class. Each method is weighted based
on its complexity value.

The length of inheritance tree of a class.

The number of immediate subclasses of a class in the inheritance

The number of other classes to which it is coupled.
The number of methods that can be potentially executed in response to a
message received by an object of that class.

The degree of similarity between methods in a class. The similarity is
determined by the use of common instance variables.

of Briand, Daly, Porter and Wist (1998) inves-
tigated the relation of object-oriented metrics
with the probability of fault detection in system
classes. Likewise, the work of Basili, Briand, and
Melo (1996) validated Chidamber and Kemerer’s
metrics as predictors of error-prone classes. El-
Emam, Melo and Machado (2001) proposed a
prediction model of faulty classes using object-
oriented metrics. Harrison, Counsell, and Nithi
(2000) specifically investigated the impact of
inheritance to the maintainability of object-ori-
ented systems.

Although the above previous works confirmed
the usefulness of metrics in predicting quality
attributes such as maintainability and reliabil-
ity, there are some well-known cautions for
using them. Metrics seldom provide a complete
explanation of a quality property. As stated by
Harrison, et al. (2000) for instance, DIT metric
does not provide us with a complete view of the
inheritance hierarchy of a system—-thus, DIT
metricalone does not provide clear explanations of
system quality attributes such as maintainability
or understandability. Additionally, researchers
regularly find a correlation between a metric and

a quality property, but this does not necessarily
provide a causal explanation. See the work of
Fenton and Neil (1999) for further observation
in this particular issue.

With the potential of metrics for predicting
some quality aspects of object-oriented systems,
employing them for monitoring and controlling
design quality will be beneficial. However, this
activity will be quite time-consuming if performed
manually. Although there exist many tools that
support metrics evaluation from code, few have
been developed to analyze design metrics, e.g.,
SDMetrics (www.sdmetrics.com) and MetricView
(wwwwin.tue.nl/empanada/metricview). These
tools canread XMl files produced by UML CASE
tool in order to calculate metrics values of UML
design documents. With the metrics data of the
designs, further design quality analysis can sub-
sequently be performed.

The Use of Formal Methods for
Design Quality Assessment

Inthe previous sections we have discussed design
inspection and design measurements as methods

to assess the quality attributes of design docu-
ments. In this section we discuss the application
of mathematically rigorous approach to assure
design quality.

The term formal methods refer to the use of
mathematically based techniques for describing
system properties. Using formal methods, people
can specify, develop, and verify systems in a
systematic, rather than ad hoc, manner (Wing,
1990). One of the features formal methods have
to offer is preciseness in design specifications. It
is argued that the imprecise semantics of most
currentobject-oriented methodologiesand graphi-
cal techniques often leads user and analysts to
ambiguous interpretation, which atthe end results
inthe introduction of defects (Aleman & Alvarez,
2000). Inthis particular respect, many works, e.g.,
from France, Evans, Lano, and Rumpe, (1998)
and from McUmber and Cheng (2001), have been
devotedto formalizing object-oriented design no-
tations, toincreasetheir preciseness. Itis promised
that with a formalized modeling notation, UML
models become amenable to rigorous analysis,
e.g., consistency check within and across models
(France et al., 1998).

Astudy that proposed amethod and techniques
for checking the consistency of UML model
comes from the work of Engels, Kuster, Heckel,
and Groenewegen (2001). He proposed a method
for specifying and analyzing consistency of ob-
ject-oriented models, particularly with respect to
their behavioral aspects. For this purpose a tool
called Consistency Workbench (Engels, Heckel, &
Kuster, 2003) has been developed. The consistency
checking is performed using partial translations
of models into a formal method, through which
the formulation and verification of semantic
consistency conditions are possible.

Another attempt to create more precise UML
models was performed using the OCL (Object
Constraint Language). The OCL is part of the
UML standard and was introduced to enforce the
creation of more precise and unambiguous mod-
els. An experimental investigation conducted by

10

Managing the Quality of UML Models in Practice

Briand, Labiche, Penta, and Yan-Bondoc (2005)
reported that OCL could significantly improve
engineer’s ability to understand, inspect, and
improve UML models. Provided that the use
of OCL requires intensive user training, it has
become a consideration as to what degree the
benefits of using OCL can offset the efforts and
costs for the necessary training.

Another use of formal methods with regard
to quality assessment is verification. Two well-
established approaches to verification are model
checking and theorem proving (Clarke & Wing,
1996). Model checking has been primarily used
in hardware, protocol verification, and, also, to
analyze software specifications. Theorem prov-
ing, on the other hand, is increasingly used in the
mechanical verification of safety-critical proper-
ties of hardware and software designs (Clarke
& Wing, 1996). With regard to object-oriented
design, the study from David, Moller, and Yi
(2002) proposed a formal verification of UML
state charts. Thework of Traore and Aredo (2004)
proposed to include model-based verification into
structured review.

Although the use of formal methodsto specify
and verify design artifact offers high precision
and correctness, there seems to be few works
have been devoted to examine its effectiveness
and benefits in the industry. For instance, the
work of Pfleeger and Hatton (1997) revealed that
there is no compelling quantitative evidence that
formal design techniques alone produce a higher
quality of code than informal design techniques.
Additionally, they also learnt that formal speci-
fication and design are effective under some but
not necessarily all circumstances.

Toimprove the practicality of formal methods,
some important developments have been done,
which include the introduction of more user-
friendly notations and more comprehensible feed-
backs of the model analysis results (Heitmeyer,
1998). The advance of formal methods into this
direction is very beneficial because the existence
of methods and tools that can encapsulate the

Managing the Quality of UML Models in Practice

complexity of formal methods will improve its
practicality and acceptance in the industry.

Modeling Conventions

Another approach to enforce a good quality de-
sign is the use of modeling conventions. As with
programming conventions, modeling conventions
provide some rules or guidelines to guide design-
ers in creating models of a system. Although
this approach is not as popular and mature as
programming conventions, an empirical study of
the effectiveness of UML modeling conventions
conducted by Lange, DuBois, Chaudron, Demeyer
(2005) shows that the use of modeling conventions
might potentially reduce defects in UML models.
Ambler (2005) also provides thorough guidelines
of how to create more effective UML diagrams.

Some pitfalls of using modeling conventions
exist. As with other types of conventions, the
commitment from people who use them is vital.
In order to assure user commitment, it was also
proposed that conventions must be tailored to
a particular context and created by those who

will use them. Additionally, an overly specified
modeling convention may distract designers from
addressing the main solution in the first place.
Thus, modeling conventions must be concise yet
effective to avoid common mistakes and inef-
ficiencies in modeling.

Table 5 provides a summary of design qual-
ity assessment methods that we have discussed
in this section.

A CASE STUDY ON
QUALITY ASSURANCE IN
UML MODELING

Research Context and Scopes

The findings discussed in this paper come from
case studies and a survey. The case studies were
conducted in two IT organizations in the Nether-
lands, whereas the survey was performed online
and includes several IT organizations from the
Netherlands as well as from other countries. For
confidentiality purpose, in this paper we will not

Table 5. Summary of contemporary methods in design quality assessment

Design Quality Assessments Descriptions

Quality Models for Software Models

Design Inspection

Design Measurements

product.

Formal Methods

Modeling Conventions

Describe important model quality attributes and their relations with the
quality of the final software product.

Design inspection includes methods and techniques to detect and
remove defects in software models.

Focus on the attempts to measure and quantify some measurable
attributes of model entities. It is believed that by doing so will allow
better control and prediction over the quality of the final software

Formal methods provide more rigorous approach of assessing model
quality. It uses mathematical techniques to verify the quality of models.

Modeling conventions focus on the enforcement of conventions and
rules in modeling. Having these rules or conventions, designers are
expected to develop more consistent and complete software models.

11

mention the names of those organizations. One of
the two companies within which the case studies
were conducted has diverse application domains
that include finance, insurance, e-government,
and space. The other company mainly focuses
on e-government systems.

As we have mentioned earlier, the main pur-
pose of this chapter is to investigate how software
developers manage the quality of UML designs.
To this aim, we examined four software projects
fromthe above two organizations. These software
projectsvary insize, status, and their engagement
with off-shoring activities. Nevertheless, all of
the projects were using UML in specifying the
software design. Table 3.1 provides an overview
of the project’s characteristics.

The projects were chosen based on three main
criteria. First, those projectstoalarge degree were
using UML in specifying the design. Second, the
projects were chosen because of the availability of
information sources—for instance, many of the
projectmembersare stillworking inthe company,
thus information and clarifications can be obtained
relatively easy. Finally, the projects used UML

Table 6. Project characteristics

Characteristics Project 1
Project size (man-years) 20
Approx. number of staff 25
(Expected) duration (years) 2.3
Off-shored Yes
Status Finished
Model Size (in use case) 104
UML tools used XDE

Managing the Quality of UML Models in Practice

CASE tool to create the design. Many CASE tools
now support UML data exchange through XMI.
Given this support, it was possible to export the
UML data to other tools for further analysis.

Although none of the four projects has fully
adopted a full-fledged model-driven development
approach, one project was, to a certain degree,
using automatic code generation from UML
models. The rest of the projects mainly used
UML models to communicate system designs to
software developers.

Research Questions and Research
Methods

The main research question we wanted to answer
in this case study is as follows:

“How do software developers manage the quality
of UML models?”

To answer this question, we started by investi-
gating how UML isused in software development.
The investigation involves exploring issues and

Project 2 Project 3 Project 4
10 10 50
20 30 30
3 1 6.5
Yes Yes No
Finished Finished Development
10 100 More than 80
XDE XDE RSA

12

Managing the Quality of UML Models in Practice

problems related to the use of UML in software
projects, particularly with regard the management
of design quality. We provide further discussions
over the issues in the sections that follow.

Inthis study we conducted three types of data
collection, namely interview, survey,and UML de-
signartifactscollection. The interviewwas mainly
intended for designers, although in fact we also
performed interviews with developersand project
managers. The interview was semi-structured,
wherein the same set of questions were asked to
allinterviewees. The questionswere grouped into
four categories: 1) project context, 2) the use of
UML in the project, 3) design quality assurance
in the project and, 4) the use of UML tooling.
All of the interviews were tape-recorded, and
subsequently transcribed. Intotal we interviewed
fifteen people from all the projects.

The survey was primarily aimed at software
developers. It was conducted online and the par-
ticipants were not limited to the two organizations
studied in this case study. At the end we received
65 participants from various IT organizations
originated from 10 countries.

The collection of project artifacts was focused
on UML design documents and inspection docu-
ments. Althoughthe interviews involved designers
and developers from all the projects, because of
confidentiality reasons we could not have access
to the UML design artifacts of Project 4. This
has prevented us from conducting further design
analysis for this particular project. Nevertheless,
we decided to use the results of the interviews
with the project members when necessary and
relevant.

Issues and Challenges in Managing
UML Design Quality

The essence of model-driven development lieson
two fundamental aspects—thatis, raising the level
of abstraction and raising the level of automationin
developing software (Selic, 2006). Higher level of
abstraction allows more focus on problem domains

rather than on implementation domains. On the
other hand, code generation enables automatic
model translation into code. Nevertheless, the
practice of model-driven development varies. In
the most pragmatic approach, models are used to
generate code; once the code has been generated
the models are seldom concerned. More rigorous
approach not only uses models to generate code,
but also keep the models updated as the code
changes. Inthe fully automated approach develop-
ersonly work with models and never directly deal
with the implementation code (Selic, 2006).

The issues discussed in this paper primarily
relevant to the practice of model-driven develop-
ment where not all of the implementation code is
automatically generated; hence software develop-
ers still have the role in writing some portions of
the code or solving code integration issues. Infact,
to the best of our knowledge this practice is the
most commonly observed in the industry.

From our investigation, many software de-
signers regard UML design quality as important.
In bringing up the issue of design quality in the
discussions with software designers, we introduce
two aspects that we believe pertain to the quality
of a UML design:

e The proportion and completeness of UML
designs
* The design — code correspondence

The Proportion and Completeness of
UML Designs

Design completeness is related to the decisions
taken by software designers in modeling a soft-
ware system——thatis, the degree towhichadesign
specifies the required elements of a system being
developed. For example, designers might choose
to model certain parts of a system while hiding
others. This is sometimes done proportionally,
which takes into account certain aspects of those
parts. This practice is very common because ex-

13

haustively modeling all parts of a system takes
considerable time and modeling effort.

The notion of design proportion emphasizes
the presence of conscious decisions with regard
to completeness in modeling. Use cases, for in-
stance, are one of the units of analysis to determine
proportionality. In this respect, designers might
decide not to model CRUD (create, retrieve,
update, delete) use cases in their design. When
there is no particular reason that can explain the
absence or existence of some system parts, it is
very likely that design proportion is not taken
into account in the modeling process.

According to Lange’s framework in Figure
2.1, maintaining design completenessis primarily
related to the purposes of prediction, implemen-
tation, and code generation. As the framework
suggests, design completeness influences predic-

Managing the Quality of UML Models in Practice

tion, implementation, and code generation. These
three concepts are part of the use of models in
development phase. In other words, in develop-
ment phase design completeness is particularly
important for the purpose of quality prediction,
basis for (manual) implementation, and code
generation.

One aspect of design completeness concerns
the consistency between diagrams. In capturing
a design it is common to use multiple diagram
types. Eachdiagramtype capturesthe same design
from different angle or perspective. For instance,
in describing how the functionality of a use case
is realized in an object-oriented design, we can
use a sequence diagram to depict the interaction
between objects, and a class diagram to capture
the structure and relationships of the object’s
classes. The use of multiple diagrams leads to

Figure 5. An illustration of UML design completeness (©2007 Ariadi Nugroho. Used with permission)

 Use Case Diagram

Class Diagram

letterClass

do_something()

14

Managing the Quality of UML Models in Practice

overlapping design elements, e.g., a method that
exists as a message in a sequence diagram also
appears as a method of a class in a class diagram.
These overlapping elements, if properly specified,
increase the consistency amongst diagrams and
addtotheclarity and preciseness of the concept or
design construct being specified. Figure S provides
an illustration of the above description.

AsFigure5illustrates, ause case thatis present
in a use case diagram must have a corresponding
sequence diagram(s) describing its dynamics.
Likewise, classesthatare mentioned inasequence
diagram mustalso be presentinthe corresponding
class diagram. A higher degree of completeness
can be achieved by modeling additional diagrams
toadd clarity to a design construct. In elaborating
a use case for instance, instead of only modeling
sequence diagrams, which show only the ordering
of messages, a designer can also model collabora-
tion diagrams to show the links and interactions
between objects.

Asthere can be many factors thatinfluence the
decisions of design proportion and completeness,
our main question in this respect is:

“What is the main rationale behind the practice
of creating proportionate and complete UML
designs?”’

Additionally, we also sought to answer the
following question:

“How do developers experience the degree of
design completeness in their projects, and how do
they prefer proportion and completeness realized
in a design?”’

The Rationale Behind Design Proportion and
Completeness

From the interviews that we have performed, all
designers agreed that they should not model all
parts of a system in an equal level of detail. To
give an overview of what designers regard as the
main rationale behind their decisions to design a
system in particular level of details, in Figure 3.2
we illustrate the main factors and their influences
to the design decision-making process.

In Figure 6 we point out three main factors
behind the decision toward design proportion and
completeness: comprehensiveness, simplicity,
and time constraint. Comprehensiveness is the
drive to design a software system as clear as pos-
sible. A client for instance, may require a system
documentationthat coversall main functionalities
in great details. Additionally, implementers of a
design might also ask for more extensive designs.

Figure 6. Rationale behind design proportion and completeness (©2007 Ariadi Nugroho. Used with

permission)

[Time Constraint

Comprehensiveness
- Client's requests -~
- Implementer's requests

Decision
A

— DECéSIOf‘I | - Component complexity
- Component importance

Simplicity

¢—— Influence

uML
Designs

< --=> The spectrum of decision

4. — Realize

15

Inthis respect, designersare encouragedto create
more complete and comprehensive designs.

The second factor is simplicity. In designing
a system designers generally try to be as concise
and simple as possible and yet try to capture the
essence of the solution. In this regard, we identi-
fied two qualifications that are commonly used
by designersinjustifying their decisions to model
certain parts of a system:

. Component complexity: Complexity re-
flects the level of difficulty of certain parts
to be understood and, later, implemented.
Hence, the need to focus on more complex
parts of a system is to make sure that other
parties (e.g., implementers) can easily un-
derstand difficult design constructs.

. Componentimportance: Designers model
certain system elements because of its criti-
cality tothe functioning of asystem. Design-
ers want to make sure that these important
elements are understood and implemented
correctly to avoid system failures.

Managing the Quality of UML Models in Practice

The last factor is time constraint. As with any
other phases in software development process,
design activities must be performed within a
certain time frame. Thus, designers must make
economical choicesin ordertoassure that designs
have an appropriate degree of completeness and
are delivered within the scheduled time.

As illustrated in Figure 6, designer’s design
decisions can be somewhere within the design de-
cision spectrum, which consists of two extremes:
comprehensiveness and simplicity. These two
factors have influence on the design decision as
if pulling it to be leaning toward their respective
sides. Itisgenerally the case that designerswill cre-
ate adesign as concise and simple as possible. On
the contrary, other parties, e.g., implementers, may
ask for more extensive designs. Here, designers
mustaccommodate the requests by increasing the
level of detail. Nevertheless, indoing so designers
must also take the third factor, time constraint,
into account. Figure 6 illustrates two decisions:
one leaning toward comprehensiveness and the
other leaning toward simplicity. Thissuggests that

Figure 7. The average degree of design completeness in UML projects (©2007 Ariadi Nugroho. Used

with permission)

60

ol
o

IN
[S)

N
o

Percentage of respondents
w
o

[
o

0 -

Very low Low

i =

Somewhat
low

Somewhat High
high

16

Managing the Quality of UML Models in Practice

designer’sdesigndecisionsare polarized between
being comprehensive and concise at the sametime;
and time constraint seems to be the determining
factor in justifying the right balance.

Developer’s Experience on UML Design
Proportion and Completeness

In order to understand developer’s experience
with regard to UML designs completeness, we
present the findings from a survey that we have
conducted. In analyzing the data, we decided to
also include responses originated from sources
outside the companies being studied in order to
increase the representation of the results to a
broader population.

The first finding concerns the degree of com-
pleteness of UML designs. We asked developersto
rate (onaverage) the degree of design completeness
in their projects. The results in Figure 3.3 reveal
that nearly half of the respondents, 49 percent,
rate the degree of UML design completeness in
their UML projects as somewhat low. Further,
18 percent of the respondents rate the degree of
completeness as low; and only 15 percent and 9
percent of the respondents regard the degree of
completeness as somewhat high and high respec-
tively. Finally, only 7 percent of the respondents
opted low for the degree of completeness of UML
designs in their projects.

Thenext finding is especially related to design
proportion. While in the previous section we in-
vestigated designer’sdesign decisionswith regard
to design proportion and completeness, here we
present developer’s preference over the level of
details in UML designs. We asked developers to
indicate their agreements over four statements
that reflect different approaches of designing
a software system as shown in Table 3.2 For
each statement, we asked developers to indicate
their agreement: disagree — somewhat disagree
— neutral — somewhat agree — agree. The results
are given in Figure 8.

The results in Figure 8 show that the major-
ity of the respondents agree that complexity

and criticality of system components should be
the basis of determining the level of detail, i.e.,
more complex or critical parts should be given
more emphasis. This is shown by the fact that 55
percent and 63 percent of the respondents agree
on the second and third statements respectively
(See table 7). For the last statement, which sug-
gests freedom for developer to determine imple-
mentation details, 35 percent of the respondents
agree, whereasslightly lower, 33 percent, express
somewhat agree. Although in total these figures
account for 68 percent of the respondents lean-
ing toward an agreement, the high percentage of
those opted for somewhat agree may indicate that
thereisuncertainty amongst developersastowhat
extent the freedom can be exercised. Lastly, the
first statement, which suggests equality of details
for all system parts, is not very popular amongst
developers. Forty percent of the respondents
disagree and 26 percent somewhat disagree on
the idea to specifying all system parts in an equal
amount of detail.

The above findings show that in principle
developers believe that a UML design must
concentrate on certain design elements, which
are selected based on their characteristics of
complexity and importance. This is obviously
consistent with designer’s perspective on design
proportion and completeness discussed earlier.
Yet, the finding in Figure 7 also reveals that 49
percentofthe developers participated in our survey
still consider the degree of completeness of UML
designs in their project as somewhat low. Thus,
this again confirms the importance of designer’s
role in finding the right design decisions, which
include paying attention to feedback from other
parties such as developers.

The Model: Code Correspondence
In the previous section, we have discussed how
software designers and developers thought and

dealt with the issue of design proportion and
completeness. In this section the issue of design

17

Table 7. List of statements on design proportion

Managing the Quality of UML Models in Practice

Labels Statements

Equal details for all parts
Focus on complex parts
Focus on critical parts

in more detail.

Programmers determine details

All parts of a system should be specified in an equal amount of detail.

Different parts of a system should be specified in a level of detail that is
proportional to the complexity of the parts being modeled.

Parts that are more critical for the functioning of the system should be specified

A model should explain how the system works, but allow programmers
freedom to determine implementation details.

Figure 8. Developers agreement over approaches in design proportion (©2007 Ariadi Nugroho. Used

with permission)

H Disagree
B Somewhat Disagree

Neutral
B Somewhat agree

50 +— M Agree

N
o

w
o
L

N
o
L

Percentage of respondents

i
[«]
L

Focus on
complex parts

Equal details for
all parts

Focus on critical Programmers
parts determine
details

— code correspondence will be discussed. We
first introduce the notion of correspondence and
subsequently address the issue in practice.

At the level of classes we say that a class
or group of classes in an implementation cor-
responds to a class in the model if the former
class(es) implement(s) the latter. There is a high

18

degree of correspondence between a UML model
and an implementation if a large percentage of
the elements of the model, in particular classes
and associations, corresponds to elements of
the implementation. There are several reasons
for maintaining model — code correspondence.
First, a software design is often a representation

Managing the Quality of UML Models in Practice

of the intended solution to address a certain set of
requirements. When an implementation deviates
fromitsdesigns, there isarisk that the implemen-
tation will not satisfy the requirements. Second,
the model is a roadmap for understanding the
implementation. A model provides a high level
overview fromwhichitis easier to understand the
big picture. This information is chiefly beneficial
for understanding systems in their maintenance
phase, e.g., for adding or changing functionality.
If there is low correspondence, then the model
cannot serve this purpose. Hence, if there are
good reasons to change an implementation, then
these changes must be reflected back into the
model ——otherwise it becomes obsolete.

Lange’s framework in Figure 2.1 also depicts
correspondence as a characteristic that influences
comprehension of a system. When a model is
obsolete——no longer corresponds to the code,
we lose the main benefit of model as a source of
architectural information.

Figure 9 gives an illustration of model — code
correspondence between model and implemen-
tation classes. It shows how three classes from
the model, i.e., letterClass, aClass, and
bClass are exactly mapped into their imple-
mentation classes. The correspondence can be
recognized from their similarity in properties

such as name, operation set, attribute set, or
relations. Nevertheless, there is a class in the
model without a clear corresponding class in the
implementation, i.e., cClass. Likewise, there
are three implementation classes that have no
corresponding classes in the model. Considering
its association to bClass, it may be the case that
cClasshasevolved orchangedintothe zClass
in the implementation. Class bblClass and
bb2Class, however, seem to be introduced in
the implementation.

Until now, only few methods and techniques
have been proposed to maintain correspondence.
One of'the latest works we can find in the literature
proposed the use of ametric based oninter-module
couplings (CMB) to assess software design (Tvedt,
Costa, & Lindvall, 2002). Earlier works in this
subject include the works from Sefika, Sane and
Campbell (1996), Antoniol, Caprile, Potrich, and
Tonella(2000), and Murphy, Notkin, and Sullivan
(2001). However, despite the scarcity of methods
that aid software engineers, present UML CASE
tools, such as IBM Rational (XDE and Rational
Software Architect) and Poseidon, have introduced
an automated round-trip engineering feature that
promises to maintain the design (i.e., UML mod-
els) in sync with the implementation code. As we

Figure 9. An illustration of model — code correspondence (©2007 Ariadi Nugroho. Used with permission)

Model Classes Implementation Classes
letterClass | __--4--"""[~TTTTmeea____ [letterClass
do_something() do_something()
bb1Class
‘,_{‘IS-—-"---‘_‘ '{‘3 do_BB1()
aClass |-~~~ - bClass - -|__aClass bClass Qr
do_A() do_B() do_A() do_B()
e B . [*_[bb2Class
| e ‘ do_BB2()
cCass | | | 77 zClass
do_Cf) do_Z()

19

will see later, the presence of these features does
not solve correspondence problems.

Ourmain concernswith regard to model —code
correspondence can be expressed as:

“How important is this model — code correspon-
dence in the eyes of software engineers?”

“What methods are used in practice to maintain
correspondence, if any?”

“Do developers think correspondence should be
different for different elements of the model?”

Designer’s Attitude towards Correspondence
When we asked software designers about design
— code correspondence, most of them confirmed
itsimportance. From the designer’s point of view,
we identified two main perspectives with regard
to correspondence. The first perspective views
correspondence as applicable only for some
significant elements of a system. Here, too, we
encountered the notion of disproportion, which
is considered in maintaining correspondence.
The second perspective views correspondence
as another form of traceability. It suggests that a
correspondence is satisfied as long as elements
in an implementation can be traced back to the
models.

Nevertheless, there is an opinion against the
practice of maintaining correspondence. The main
argument was that maintaining correspondence
is time consuming. It was argued that the most
important thing is to make sure that the imple-
mentation meets the requirements.

Althoughthereare different opinions amongst
designers as to what degree correspondence
should be enforced, most designers believe that
a higher degree of correspondence contributes
to the quality of the final software product. This
is particularly shown by developer’s opinion: by
maintaining model —code correspondence, design
decisions are consistently conveyed down to the
implementation. At the end, this will result in a

20

Managing the Quality of UML Models in Practice

software system that reflects the decisions taken
during the analysis and design phase.

Method Used in Maintaining
Correspondence

From all the projects we studied, there is no spe-
cial method used in maintaining model — code
correspondence. Most designers mention manual
review, i.e., manually inspect the actual imple-
mentation code and update the UML model when
there are changes, as an approach to maintain
correspondence. Some also mention that they
requested developerstoinformany changesinthe
implementation so that necessary modification to
the corresponding models can be performed. In
project 4 we identified a practice of using naming
convention to ease correspondence checking. For
instance, the names of classes in the implementa-
tion must remain the same as in the model.

The use of manual review to check model
—code correspondence is in fact popular amongst
software engineers. Fromour survey, asshownin
Figure 10, 46 percent of the responses indicate the
use of manual review. This figure is still higher
compared to the use of reverse engineering and
roundtrip engineering together (38 percent).
This shows that the use of systematic methods
to maintain correspondence is still less common
than the use of manual review. The result also
shows that a small number of responses, 14 per-
cent, indicate the absence of activity to maintain
correspondence.

Althoughtheresultof our survey also confirms
manual review as the most commonly used ap-
proach in maintaining correspondence, there is
no evidence as to explain the effectiveness of this
method compared to others. Nevertheless, there
are two reasons that might explain the popularity
of manual review amongst software engineers.
First, although some UML CASE tools already
support the round-trip engineering features, we
recognized that many designers are reluctant to
use them because of their immaturity. Second,
manually checking the correspondence between

Managing the Quality of UML Models in Practice

Figure 10. Methods used in maintaining correspondence (©2007 Ariadi Nugroho. Used with permis-

sion)

a
o

N
a

N
o

w
a

W
o

N
o

Percentage of responses
N
al

=
a

[
o

o

o

No special effort Manual review

Reverse
engineering

Round-trip
engineering

source models (reverse-engineered code) of a
large system and its models is a delicate and te-
dious activity. More advanced tools are required
in order to perform the activity effectively and
efficiently.

Strictness in Correspondence for Different
Constructs

Toinvestigate the extentto which developers value
correspondence, we asked developers to indicate
how strict certain UML design constructs should
be implemented. We asked software developersto
indicate how strictly they thought the following
statements should be applied:

e Thepackagestructureinanimplementation
should correspond to the package structure
in the design.

e The dependencies between classes in an
implementation should correspondto the de-
pendencies between classes in the design.

e Theinheritancerelationsinan implementa-
tion should correspond to the inheritance
relations in the design.

* The names of classes and methods in an
implementation should correspond to names
in the design.

e The order of method calls in an implemen-
tation should correspond to the order of
messages in the design.

The results of this questionnaire are shown
in Figure 11. These results show that maintaining
correspondence of inheritance relations is often
regarded importantto be strictly applied—that s,
46 percent of the respondents confirmed. Some-
what less, 27 percent of the respondents chose
somewhat strict for this statement. However, in
total (73 percent), the percentage is slightly lower
than that of maintaining dependency relations,
whichaccounts for 78 percent—that s, 38 percent
and 40 percent for strictly and somewhat strict
respectively. The correspondence of class and

21

Managing the Quality of UML Models in Practice

Figure 11. The strictness in implementing UML design constructs (©2007 Ariadi Nugroho. Used with

permission)

50

M Loosely
45

| M Somewhat loosely
40 1 "' Neutral

B Somewhat strict
35

T M Strictly

30

25

20 A

15 A

Percentage of respondents

10 A

Package
structure

relations

Dependency Inheritance
relations

The order of
method calls

Class and
method
names

method names follows in the third place with 32
percent for strictly and 33 percent for somewhat
strict. Next, the correspondence of package struc-
ture with 30 percent for strict and 32 percent for
somewhat strict. Finally, the correspondence of
method-call orderaccounts for 27 percent for both
strict and somewhat strict. Also note that this
statement has the highest percentage (25 percent)
for somewhat loosely or loosely applied.

The above findings show that developers
regard inheritance and dependency relations as
should be followed more rigorously than the other
UML design constructs. For instance, developer’s
conformance to these constructs surpasses the
conformance of class and method names. This is
especially interesting because class and method
names are the most obvious elements to trace
model—code correspondence. Although pri-
oritizing inheritance and dependency relations
is understandable—misapplying both concepts
in an implementation can cause high coupling
between objects, there hasto be similar awareness

22

that lack of class name correspondence mightalso
damage system maintainability.

Further, our study of the project’s UML design
artifacts revealed that the level of detail used in
modeling might be a factor that contributes to the
strictness of implementing it. Models with a low
level of detail leave more freedom for developers
to implement. This, for instance, applies to trivial
classes and methods such as getters and setters.
Additionally, in models with a low level of detail
package structures are often either not taken into
accountornotorganizedaccording toimplementa-
tion considerations. This is particularly the case
with Project 2 in which models are packaged
according to their use case associations.

The Relation between Design Completeness
and the Degree of Strictness in Maintaining
Model — Code Correspondence

As with level of detail, we believe that the degree
of model completeness also has consequences on
developer’s strictness in implementing design

Managing the Quality of UML Models in Practice

Table 8. Pearson correlation between strictness and model completeness

Package Dependency Inheritance The order of Class and
structure relations relations method calls method names
Design Completeness 0.090 0.266** 0.329** 0.363** 0.411**
R-square 0.81 0.07 0.108 0.131 0.169

** Indicates significance at p = 0.01

constructs—that is, the higher the degree of
completeness of a model, the higher developer’s
conformance is to a design. To explore this as-
sumption, we performed a correlation analysis
between the strictness of implementing design
constructs and the average degree of UML design
completeness (shown previously in Figure 8).
Table 8 indicates the correlation between the
average degrees of UML design completeness
in software projects and developer’s strictness
in implementing various design constructs. We
can see from the table that, except for the package
structure, the strictnessinimplementing all of the
design constructs is significantly correlated with
the degree of UML design completeness. The
table reveals that the strongest correlation exists
between design completeness and the strictness
of implementing class and method names. Yet,
this only accounts for 16.9 percent (R square =
0.169) of the variability in the strictness of imple-
menting class and method names——hence other
factors account for 83.1 percent of the variability.
Although the correlation coefficient does not in-
dicate the direction of causality, we believe that
model completeness affects developer’sstrictness
in implementing modeling constructs.
Although the above findings seem to confirm
ourassumption, please note that design complete-
ness is only one of the factors that might drive
developer’sstrictnessinimplementingadesign. It
contributes for 16 percent, 13 percent, 10 percent,
and 7 percent for the strictness in implementing

class and method names, the order of method
calls, inheritance relations, and dependency rela-
tions respectively. Other factors may include the
level of detail used, developer’s experience, tool
support, and so forth. Nevertheless, this is an in-
dication of how design quality affects developer’s
conformance to a design.

Techniques and Methods in Design
Quality Assurance

In this section we discuss the methods and
techniques that are used in practice to assess the
quality of the UML models. In this respect, we
especially focus on the methods used to assure
design completeness and proportion as well as
model — code correspondence.

Peer Review as an Assessment Method for
UML Design Documents

Of the four projects being studied, all have a
“formal’ approach to inspect UML design docu-
ments. Inassessing the quality of the models these
projects used review checklists. This review pro-
cess is normally performed by architects or other
experienced designers——this is why the process
is also called peer review. Nevertheless, having
reviewed the checklists, only the ones from Project
1 are proven to have comprehensively assessed
the quality properties of the designs documents.
Apart from these checklists, we did not see any
well-defined inspection process. The process

23

seems to be informal wherein checklists are cre-
ated and given to some inspectors who later come
up with feedbacks about the model.

From Project 1’sdesign review documents, we
identified some interesting checkpoints that are
related to model completeness and proportion.
These checkpoints were drawn from three design
checklists, i.e., design model, design subsystem,
and design class, out of seven design checklists
that were available (we found that these checklists

Managing the Quality of UML Models in Practice

were adopted from the RUP—the Rational Unified
Process — design review checklists).

Table 9 showsaselection of design checkpoints
that are relevant to the issue of model proportion/
completeness and design — code correspondence.
In the design model, i.e., checkpoint 1 — 4, the
checkpoints are somewhat in a high level. They
suggest how in general the modeling practice
mustbe performed. Recalling the rationale behind
model proportion and completeness discussed

Table 9. A selection of Project 1's peer review checklists

Design Model

1. The model is at an appropriate level of detail given the model objectives.

2. The model’s use of modeling constructs is appropriate to the problem at hand.

3. The model is as simple as possible while still achieving the goals of the model.

4. The design is appropriate to the task at hand (neither too complex nor too advanced).
Design Subsystem

5. Each operation on an interface realized by the subsystem is utilized in some collaboration.

Each operation on an interface realized by the subsystem is realized by a model element (or a

associated classes.

6. collaboration of model elements) within the subsystem.
Design Class
7. The class satisfies the behavioral requirements established by the use-case realizations.
8. The dern_ands on the class (as reflected in_ the class description and by the objects in sequence diagrams)
are consistent with the class’s state machine.
9. Class names follow the naming conventions specified in project design guidelines.
10. The state machine and operations completely describe the behavior of the class.
11. Each operation is used by at least one use-case realization.
12. All relationships of the class are required to support some operation of the class.
13, The role names of aggregations and associations describe the relationship between the associating and

24

Managing the Quality of UML Models in Practice

earlier, the checkpoints in the design model re-
ally reflect designer’s opinion to be selective in
modeling. For instance, checkpoint 1 and 2 are
very relevant to the notion of proportion in mod-
eling, i.e., appropriately using amount of detail
and modeling constructs by taking into account
the objectives and problems being addressed by
the model.

The remaining checkpoints, except for check-
point 9, are related to model completeness at
the diagram level. They generally suggest that
certain design elements in a diagram must have
corresponding elements in the other relevant dia-
grams, e.g., checkpoint 7: a class must satisfy the
behaviors of its instances in use case realizations
(sequence diagrams). Further, checkpoint 10 sug-
gests completeness inaclass level by introducing
state chart diagram to describe the behaviors of a
class. Nonetheless, of all the review checkpoints
observed, only checkpoint 9 that is somewhat
relevant to the notion of correspondence. It sug-
gests the use of class naming convention in the
model. This is particularly true because without
introducing class-naming conventions early in
the design phase, the risk of having poor model
— code correspondence might be higher.

The review checklists we discovered from
the other projects are basically focusing at the
same themes: simplicity, understandability, and
completeness. However, an interesting practice
that we encountered in Project 4 is to maintain
code traceability by enforcing the use of use case
references in the implementation code. In this
project, this practice is assessed and required as
an exit criterion for the code unit review. This
kind of practice is claimed by one interviewee
to be common in identifying the links between
designs and implementation.

Tool Supports in Design Quality Assurance

All the projects we studied used UML CASE
tools from IBM, i.e., IBM Rational XDE and
IBM Rational Software Architect (RSA). Interms
of model completeness, these tools offer some

basic checking features. For instance, Rational
XDE prevents designers to manually add or edit
the class reference of an instance in a sequence
diagram. For this purpose, the tool provides an
automatic referencing mechanism to the existing
classes, thus preventing designers from creating
inconsistent models. We believe that this kind of
features also present in other UML CASE tools
like Rational Rose, Power Designer, and so forth.
Moreover, as with other tools, Rational XDE and
RSA also provide model validation features that
will warn designers when certain UML models
are incomplete, e.g., operations in a sequence
diagram that do not exist in the corresponding
class diagrams.

Interms of model —code correspondence, both
Rational XDE and RSA offer a round-trip engi-
neering feature. With this feature designers can
create UML models of a system and subsequently
generate the code elements. Developers can then
add implementation details and modify the code
elementsasnecessary. Eventually, to gettheactual
picture of the implementation code, designers can
reverse engineer the code back to the model. With
this feature, model — code correspondence can be
improved and maintained.

Despite the above featuresthatare availablein
mostpresent UML CASE tools, we were interested
tounderstand the extentto which the tools/features
help in maintaining model quality. Surprisingly,
when asked about how the tools help in assuring
the quality of UML designs, most designers ex-
pressed their disappointments. Most of the disap-
pointments, however, are not related to the role
of the tool in maintaining model quality, e.g., the
usability and stability of the tools. Nonetheless,
some designers stated that they had difficulties
to use the round-trip engineering feature. It was
not easy for them to have it set up and running.
At the end, the feature was never used.

In spite of the above facts, few designers
indeed mentioned that the tools do help because
they can validate the UML models they have
created. One designer who was using Rational

25

XDE to develop a .NET application, especially
liked the integration of the tool with Visual Stu-
dio .NET. It gave him an integrated development
environment for both designing and coding the
application. This also implies that it was easier
for the designers and developers to keep the code
and model consistent.

Althoughmany UML CASE toolslike the ones
from IBM Rational have provided useful features
to assure the quality of the UML models, there is
no clear evidence that explains how effective those
features are in practice. This is especially true if
we consider some designer’s experience insetting
uptheround-trip engineering features. Moreover,
as far as model completeness is concerned, the
use of model validation or verification will not
be effective if the UML designs are in low level
of detail where many details are hidden for sim-
plicity reason. Running the validation tool in this
particular situation will only result in hundreds
of meaningless errors and warnings.

Some Reflections over the Issues

In the previous sections we have discussed the
issues of design proportion and completeness as
well as model code — correspondence and how
software designers and developers thought them
and dealt with them. In this section we highlight
what we have learnt from these studies.

Realizing Complete and Proportional
Designs

We have learnt that time constraint is almost
always a determining factor in any software de-
velopment activities. Thus, creating exhaustive
models of a software system might be at odds
with the schedule. Nevertheless, this should not
be a justification of being over-simplistic in mod-
eling. The fact that most developers still regard
the degree of model completeness as somewhat
low also supports this argument. Thus, software
designs must be proportionally complete, meaning
that designers must strategically choose which

26

Managing the Quality of UML Models in Practice

aspects to be modeled more extensively in order
to capture the most appropriate level of abstrac-
tion. To our knowledge, the design inspections
performed have addressed little, if any, issues of
completeness and proportion. In fact, of all the
projects we studied, only one project found to be
quite aware of these issues.

The above evidence has led usto the following
recommendations. First, the level of complete-
ness and proportion targeted in a project should
be established in dialogue between the creators
and users of the model. This dialogue must be
established early enoughinorderto help designers
estimating and targeting the mostappropriate level
of abstraction that meet the identified constraints,
such as time schedule and developer requests.
Second, design inspection must be applied in a
way that it will assure desigh completeness and
proportion. The use of checklist for instance, can
be improved in such a way that it also captures
multiple perspectives in a particular project,
e.g., implementer’s-, tester’s-, and maintainer’s
perspectives. By understanding the needs of the
users of the models, inspection checklists can then
be tailored to address the required aspects.

More Rigorous Approaches toward
Correspondence

In this study, we found that designers and devel-
opers agree on the importance of model — code
correspondence. In spite of this fact, we did not
see any well-defined activities or procedures to
enforce correspondence inthe projects we studied.
We learnt that this might due to the following
reasons. First, most designers and developers put
more emphasis on more general types of corre-
spondence, e.g., correspondence to requirements,
than a specific, low-level type of correspondence,
such class or method names. Second, it is often
the case that developers receive models in a low
level of detail. This encourages developers to
conform only on modeling constructs that are
more resilient or less likely to change, e.g., in-
heritance and dependency relations. Finally, the

Managing the Quality of UML Models in Practice

features in current UML CASE tools that might
help maintaining correspondence, e.g., reverse
engineering and round-trip engineering, are not
yet mature. This tends to discourage designers
and developers to spend their time and effort to
set up and use them.

Considering the above factors, we recommend
the following approaches. First, maintaining cor-
respondence is not necessarily time consuming
andtediousactivity. By introducing class-naming
convention early in the design phase for instance,
the correspondence of model and code can be
improved. Second, integrating correspondence
checking with code inspection activities might
give more insights to designers and/or architects
over deviations in an implementation. Inspectors
can perform this activity relatively cheaply and
easily by comparing model and code metrics with
tools like SDMetrics and DICTool (Opzeeland,
2005). Finally, given its importance, the notions
of maintaining correspondence should be trans-
formed into a well-defined activity, which later
can be integrated with the software development
process.

In summary, techniques for assessing model
quality and model — code correspondence are
immature. Also, activities for quality assurance
of models are generally not or poorly integrated
in development processes.

FUTURE TRENDS

We identify the following future trends in qual-
ity assurance of models. The first trend concerns
broader application of formal methods in model
quality assessments. Formal methods allow more
rigorous assessment of quality checking of mod-
els. As noted earlier in this paper, the advance
of formal methods has enabled assessments of
modelsto be executed by people withoutadvanced
mathematical knowledge, which is mainly attrib-
utable to the presence of more user-friendly tools

that can automate the process and encapsulate
the complexity of analysis in formal methods.
Therefore, future trend in this direction would
be toward the integration of formal methods into
CASE tools, whichwill also foster the application
of more formal quality assessments of models in
software development process.

Other trend in the area of quality assurance
of models is the use comprehensive model test-
ing. While many model validation approaches
generally focus only on behavioral aspects of
models, comprehensive model testing provides
better assessments by taking into account other
views of models (e.g., static structure). This is
particularly important since the behavior of a
system will be constrained by its static structure,
which in the UML is specified in class diagrams.
The work of Pilskalns et al. (Pilskalns, 2007)
for instance, proposed a method that integrates
multiple UML views, generates an integrated
model from it, generates test cases of the model,
and finally executes the model on the test cases.
Thus, future quality assessments of models with
model testing will not only take into account the
behavioral aspects of models (e.g., behavioral
consistency), but also involve broader aspects of
models such as their static structure.

Additionally, we underline the importance of
the findings of this study for quality assurance of
models. The notion of design proportion is very
practical for selecting the candidates for automatic
generation. Automatic code generation requires
design elementsto be more formally and precisely
modeled. However, not every design element de-
serves low-level of abstractions. Only those that
can be beneficial for automation are eligible for
comprehensive modeling (Mellor, Clark, Futa-
gami, 2003). In this chapter we have discussed
two of the candidates: 1) complex design elements
and, 2) critical design elements. The benefit of
focusing on complex and critical design elements
for code generation is two-fold. First, automating
the generation of complex design elements can
reduce the complexity for implementing them.

27

Second, automatic generation of critical design
elements can assure that the implementation is
addressed correctly, hence mitigating the risk of
system failures. These will consequently result
in increased productivity and improved software
quality.

One of the challenges in model-driven devel-
opment is the traceability of design artifacts (Ai-
zenbud-Reshef, Nolan, Rubin, & Shaham-Gafni,
2006). With immense design documents created
during development, manually maintaining and
tracking changes amongst related design docu-
ments can be tricky and tedious, especially when
modelsare created with different CASE tools. The
practice of checking correspondence with tool
support can somewhat reduces this traceability
problem. As with checking model — code corre-
spondence, checking the links amongst models
can be performed by comparing some design
element properties, such as classifier names or
metric profiles. These data can be exported from
CASE tools in XMI format (currently available
in most UML CASE tools). By linking design
artifacts based on their similarities, we can track
changes that occur in models as well as compare
different versions of models.

CONCLUSION

In this chapter we reported the main findings
from our case study into quality assurance of
model-based software development. The results
are based on four UML projects from two IT
organizations in the Netherlands. Additionally,
we also reported the findings from an online
survey we have performed. Both the case study
and survey were aimed at investigating issues
related to the management of model quality.
Further, this chapter also provides a discussion
on contemporary design quality assessments
methods. We explored the use of design inspec-
tions, design measurements, and formal methods

28

Managing the Quality of UML Models in Practice

for the purpose of inspecting quality attributes of
design documents.

From the case studies we identify the follow-
ing findings:

. Both designers and developers agree that
a model must be proportional and com-
plete——that is, design elements that are
important and complex must be modeled
more extensively than the trivial ones.
Furthermore, we learnt that modeling de-
cisions are influenced by three factors: 1)
the drive for being simplistic, 2) the drive
for being comprehensive, 3) time pressure.
The decision concerning proportion and
completeness is eventually a compromise
between these three factors.

e Although most designers agreed that model
— code correspondence is important, few
attempts have been performed to maintain
it.

. Despite the fact that most designers agreed
on the importance of model quality, few
considerations have been given to develop
well-defined design inspection processes to
assess model quality. So far we only see the
use of checkliststoinspect designdocuments
without clear procedures or guidelines that
guide the activity.

* We discovered that the level of detail and
the degree of completeness of models might
affectdeveloper’sstrictnessinimplementing
them. Both a low level of detail and a low
degree of completeness tend to result in low
conformance in implementing modeling
constructs. Additionally, we suspect that
these also contribute to the ineffectiveness
of UML CASE tools used to perform model
validation.

Managing the Quality of UML Models in Practice

FUTURE RESEARCH DIRECTIONS

For future works, we encourage more research
to be directed toward the development of frame-
works that will aid designers in justifying their
modeling decisions. Particularly with regard to
the issue of design proportion and completeness,
we have not seen any clear guidance that can be
used to effectively address the issues. Relevant
checkilists that were found merely cope with the
issue in a general way. Hence, frameworks that
provide well-defined guidelines and measure-
ments of model proportion and completeness
will contribute to the practice of maintaining the
quality of software designs.

With regard to the issue of model — code
correspondence, we particularly underline the
absence of well-established and effective methods
to maintain model — code correspondence. In this
respect, itis well known that current methods and
toolsto maintain correspondence often suffer from
their delicacy and ineffectiveness. Thus, future
work in this area is required to define which types
of correspondence need to be preserved, their
implications, and ways to measure them. Having
addressed these questions, further work should
be carried out to develop correspondence assess-
ments methods and techniques accordingly.

Finally, further investigations must be car-
ried out to disclose the factors that can improve
developer’s conformance to a model. We have
discovered that the level of detail and the degree
of model completeness are two of the potential
factors that influence developer’s strictness in
implementing modeling constructs.

REFERENCES

Abreu, B. F.,, & Melo, W. (1996). Evaluating the
impact of object-oriented design on software
quality. Third International Software Metrics
Symposium (METRICS ‘96), 90-99.

Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., &
Shaham-Gafni, Y. (2006). Model traceability.
IBM Systems Journal, 45(3), 515-526.

Aleman, J.L.F.,, & Alvarez, A.T. (2000). Canin-
tuition become rigorous? Foundations for UML
model verification tools. Proceedings of the 11th
International Symposium on Software Reliability
Engineering, 344-345.

Ambler, SW. (2005). The elements of UML 2.0
style. New York: Cambridge University Press.

Antoniol, G., Caprile, B., Potrich, A., & Tonella,
P.(2000). Design-code traceability for object-ori-
ented system. Annals for Software Engineering,
9, 35-58

Aurum, A., Petersson, H., & Wohlin, C. (2002).
State-of-the-art: software inspection after 25
years. Software Testing Verification and Reli-
ability, 12(3), 133-154.

Basili, V.R., Green, S., laitenberger, O.,
Lanubile,F., Shull, F., Serumgard, S., etal. (1996).
The empirical investigation of perspective-based
reading, Empirical Software Engineering, 1(2),
133-164.

Boehm, BW.,, Brown, J.R., & Lipow, M. (1976).
Quantitative evaluation of software quality, Pro-
ceedings of the 2" international conference on
Software Engineering, 592-605.

Bowen, J.P., & Hinchey, M.G. (1995) Ten com-
mandments of formal methods. IEEE Computer,
28(4), 56-63.

Briand, L.C., Daly, J., Porter, V., & Wiist, J. (1998).
A comprehensive empirical validation of design
measures for object oriented system. Proceed-
ings of the 5" International Software Metrics
Symposium, 246-257.

Briand, L.C., Wiist, J., Daly, JW., & Porter, D.V.
(2000). Exploring the relationships between design
measures and software quality in object-oriented
systems, The Journal of Systems and Software,
51(3), 245-273.

29

Briand, L.C., Labiche, Y., Penta, M.D., Yan-Bon-
doc, H.D. (2005). An experimental investigation
of formality in UML-based development. IEEE
Transactions on Software Engineering, 31(10),
833-849

Chidamber, S.R., & Kemerer, C.F. (1994). A
metrics suite for object oriented design. IEEE
Transaction on Software Engineering, 20(06),
476-493. .

Clarke, E.M., & Wing, J.M. (1996). Formal meth-
ods: State of the art and future directions, ACM
Computing Survey, 28(4), 626-643.

David, A., Méller,M.O., & Yi, W. (2002). Formal
verification of UML statecharts with real-Time
extensions, Lecture Notes in Computer Science,
2306, 208-241.

Dunsmore, A., Roper, M., & Wood, M. (2001)..
Systematic object-oriented inspection—an empir-
ical study. Proceedings of the 23rd International
Conference on Software Engineering, 135-144.

El-Emam, K., Melo, W., & Machado, J.C. (2001).
The prediction of faulty classes using object-
oriented design metrics. Journal of Systems and
Software, 56(1), 63-75.

Engels, G., Kuster, J.M, Heckel, R., & Groenewe-
gen, L. (2001). A methodology for specifying
and analyzing consistency of object-oriented
behavioral models. ACM SIGSOFT Software
Engineering Notes, 26(5), 186-195.

Engels, G., Heckel, R., & Kuster, J.M. (2003). The
consistency workbench: A tool for consistency
managementin UML-based development. Lecture
Notes in Computer Sciences, 2893, 356-359.

Fagan, M. (1976). Design and code inspection
to reduce errors in program development. IBM
Systems Journal, 15(3), 182-211.

Fagan, M. (1986). Advances in software inspec-
tions. IEEE Transactions on Software Engineer-
ing, 12(7), 144-751.

30

Managing the Quality of UML Models in Practice

Fenton, N.E. (1999). Software metrics, a rigorous
approach. London: Chapman & Hall.

Fenton, N.E., & Neil, M. (1999). Software metrics:
Successes, failures, and new directions. Journal
of Systems and Software, 47(2-3), 149-157.

France, R., Evans, A., Lano, K., & Rumpe, B.
(1998). The UML as a formal modeling nota-
tion. Computer Standards & Interfaces, 19(7),
325-334.

Harrison, R., Counsell, S., & Nithi, R. (2000).
Experimental assessment of the effect of inheri-
tance on the maintainability of object-oriented
systems. Journal of Systems and Software, 2(3),
173-179.

Heitmeyer, C. L. (1998). On the need for practical
formal methods. In FTRTFT *98: Proceedings of
the 5th International Symposium on Formal Tech-
niques in Real-Time and Fault-Tolerant Systems,
pages 18-26, London, UK. Springer-Verlag.

Lange, C.F.J., & Chaudron, M.R.V. (2005). Man-
aging model quality in UML-based software
development, Proceedings of IEEE Conferenceon
Software Technology and Engineering Practice
2005 (STEP), 7-16.

Lange, C.F. J., DuBois, B., & Chaudron, M.R.V.
(2005). Experimentally investigating the effec-
tiveness and effort of modeling conventions for
the UML. Lecture Notes in Computer Science,
4364, 91-100.

Laitenberger, O. (2002). A survey of software in-
spection technologies. In Handbook on Software
Engineering and Knowledge Engineering. World
Scientific Publishing.

Laitenberger, O., Beil, T., & Schwinn, T. (2002).
An industrial case study to examine a non tradi-
tional inspectionimplementation for requirements
specifications. Empirical Software Engineering,
7(4), 345-374.

Managing the Quality of UML Models in Practice

Leung, F., & Bolloju, N. (2005). Analyzing the
quality of domain models developed by novice
systems analysts. Proceedings of the 38" Hawaii
International Conference on System Sciences,
188b-188b.

Lindland, O. 1., Sindre, G., & Sglvberg, A. (1994).
Understanding quality in conceptual modeling.
IEEE Software, 11(2), 42-49.

McCall, J.A., Richards, PK., & Walters, G.F.
(1977). Factors in software quality, vol. 1-3 of
AD/A-049-015/055. Springfield.

McUmber, W.E., & Cheng, B. (2001). A general
framework for formalizing UML with formal
languages. Proceedings of the 23" International
Conference on Software Engineering (ICSE "01),
433-442.

Mellor, S.J., Clark, A.N., & Futagami, T. (2003).
Model-driven development — Guest editor’s in-
troduction. IEEE Software, 20(5), 14-18.

Murphy, G.C., Notkin, D., & Sullivan, K.J.
(2001). Software reflexion models: Bridging the
gap between design and implementation. |IEEE
Transactions on Software Engineering, 27(4),
364-380.

Opzeeland, D.J.A. (2005). Automated techniques
for reconstructing and assessing correspondence
between UML designs and implementations. Un-
published master thesis, Technische Universiteit
Eindhoven, Eindhoven, The Netherlands.

Parnas, D.L., & Weiss, D.M. (1985). Active design
review: Principles and practices. Proceedings
of the 8th international conference on Software
engineering, 132-136.

Pfleeger, S.L., & Hatton, L. (1997). Investigating
the influence of formal methods. IEEE Computer,
30(2), 33-43.

Pilskalns, O., Andrews, A., Knight, A., Ghosh,
S., and France, R. (2007). Testing uml de-
signs. Information and Software Technology,
49(8):892-912.

Porter, A.A., Siy, H.P., Toman, C.A., Votta, L.G.
(1997). An Experiment to assess the cost-ben-
efits of code inspections in large scale software
development. IEEE Transactions on Software
Engineering, 23(6), 329-346.

Runeson, P., & lsacsson, P. (1998). Software
quality assurance — concept and misconception.
Proceedings of the 24th. EUROMICRO Confer-
ence (EUROMICRO’98), 2, 853-859.

Sefika, M., Sane, A., & Campbell, R. H. (1996).
Monitoring compliance of a software system
with its high-level design models. Proceedings
of the 18" International Conference on Software
Engineering, 387-396.

Traore, L., & Aredo, D.B. (2004). Enhancing
structured review with model-based verification.
IEEE Transactions on Software Engineering,
30(11), 736-753.

Tvedt, R.T., Costa, P., & Lindvall, M. (2002).
Does the code match the design? Proceedings
of the International Conference on Software
Maintenance (ICSM), 393-401.

Wing, J.M. (1990). A specifier’s introduction to
formal methods. IEEE Computer, 23(9), 8-24.

ADDITIONAL READINGS

This paper reports on a controlled experiment
(consisting of two parts at different institutes) that
investigates the impact of UML documentation
on software maintenance. The results show that
for complex tasks and past a certain learning
curve, the availability of UML documentation
may result in significant improvements in the
functional correctness of changes as well as the
quality of the design. There seems not be a sav-
ings in time.

Arisholm, E., Briand, L.C., Hove, S.E., & Labiche,
Y. (2006). The impact of UML documentation on

31

software maintenance: An experimental evalua-
tion, IEEE Transactions on Software Engineering,
32(6), 365-38L1.

This paper describes techniques for analyzing
large UML models. It describes heuristics and
processes gathered from industrial projects for
creating semantically correct UML analysis-
and design models. One of its findings is that
just evaluating UML models provides important
lessons that are invaluable for improving the
modeling process.

Berenbach, B. (2004). The evaluation of large,
complex uml analysis and design models. Pro-
ceedings of the 26th International Conference
on Software Engineering (pp. 232-241). IEEE
Computer Society

This is a workshop paper that presents prelimi-
nary results on the measured benefits of follow-
ing guidelines for style and design of software.
Early results indicate that style guidelines are
often violated and that - in contrast with common
claims- one the use of design patterns - can lead
to more change prone classes.

Bieman, J.M., Alexander, R., Munger 11, PW., &
Meunier, E. (2001). Software design quality: Style
and substance. Proceedings of the Workshop on
Software Quality (WoSQ). ACM, 2001.

This is one of the earliest papers that proposes a
quality model for software based on a iterative
decomposition of the notion of quality into fac-
tors and metrics. The resulting tree-structure is
common to most software quality models.

Boehm, BW.,, Brown, J.R., Kaspar, H., Lipow,
M., Macleod, G.J., & Merrit, M.J. (1978). Char-
acteristics of software quality, volume 1 of TRW
Series of Software Technology. Amsterdam:
North-Holland Publishing Company.

32

Managing the Quality of UML Models in Practice

This paper provides an overview of the state-of-
the-art (d.d. 1999) in empirical knowledge on
object-oriented software development methods
and processes and suggests research directions.

Briand, L.C., Arisholm, E., Counsell, S., Houdek,
F.,& Thevenod-Fosse, P.(1999). Empirical studies
of object-oriented artifacts, methods, and process-
es: State of theartand future directions. Empirical
Software Engineering, 4(4), 387-404.

This paper presents an experiment that studies
the effect of design guidelines (such as cohesion,
coupling, clarity of design, depth-of-inheritance,
simplicity) on the maintainability of OO designs.
Within the limits of the experiment, the paper
reports a positive impact.

Briand, L.C., Bunse, C., & Daly. JW. (2001).
A controlled experiment for evaluating quality
guidelines on the maintainability of object-ori-
ented designs. IEEE Transactions on Software
Engineering, 27(6), 513-530.

This paper formalizes the structure of UML
models using OCL-predicates (a bit like a meta-
model approach). If a change is performed to
one diagram of a model, predicates may become
false which points to places that also need to be
adapted in order to maintain correct structure of
the UML model. This is presented as an impact
analysis method.

Briand, L.C., Labiche, Y., O’Sullivan, L., & S

‘owka, M.M. (2006). Automated impact analysis of

UML models. Journal of Systems and Softwatre,
79(3), 339-352.

This paper applies model-checking techniques to
detecting errors in behavioral descriptions.

Campbell, L.A.,Cheng, B.H.C., McCumber, W.E.,
& Stirewalt, R. E. K. (2002). Automatically de-

Managing the Quality of UML Models in Practice

tecting and visualising errors in UML diagrams.
Requirements Engineering, 7, 264-287.

This paper compares different reading techniques
that are tailored to UML models.

Cantone, G., Colasanti, L., Abdulnabi, Z.A.,
Lomartire, A., & Calavaro, G. (2003). Evaluat-
ing checklist-based and use-case driven reading
techniques as applied to software analysis and
design UML artifacts, LNCS, 2765, 142-165.

This paper examines the expressiveness of OCL as
a language for defining queries over UML models.
It concludes that OCL has enough expressivity.

Chimiak-Opoka, J., & Lenz, C. (2006). Use of
OCL in a model assessment framework: An
experience report. Proceedings of OCLApps
workshop, 53-67.

The paper describes an experiment performed at
Ericssonin Norway to evaluate the cost-efficiency
of tailored OORTs in a large-scale software proj-
ect. The results showed that the OORTs fit well
into an incremental development process, and
managed to detect defects not found by the exist-
ing reading techniques.

Conradi, R., Mohagheghi, P., Arif, T., Hedge,
L.C.,Bunde, G.A., & Pedersen, A. (2003) Object-
oriented reading techniques for inspection of UML
models — an industrial experiment. Proceedings
of the European Conference on Object-Oriented
Programming ECOOP 03, LNCS, 2749, 483-501.
Springer.

The next two papers address approaches for
analyzing extra-functional quality properties of
systems described atan architecture level by UML
diagrams. The approaches have in common that
they add annotations to commonly used UML

diagrams, and then provide a systematic transla-
tion from the annotated UML design to a model
for performance or reliability.

Balsamo, S., Marco, A.D., Inverardi, P., &
Simeoni, M. (2004). Model-based performance
prediction in software development: A survey.
IEEE Transactions on Software Engineering,
30(5), 295-310.

Cortellessa, V., Singh, H., & Cukic, B. (2002).
Early reliability assessment of UML based soft-
ware models. Proceedings ofthe 3rd international
workshop on Software and performance, pages
302-309, New York: ACM Press.

This paper describes result from a survey under
industrial software engineers as to the manner in
which the UML is used.

Dobing, B., & Parsons, J. (2005). Current prac-
tices in the use of UML. Proceedings of the 1st
Workshop on the Best Practices of UML, LNCS.
Springer.

This paper describes a technique and a support-
ing tool that automatically performs a number of
consistency checksona UML model. Itemphasizes
the performance of the proposed implementation.
It claims interactive checking is possible during
the creating of the design.

Egyed, A. (2006). Instant consistency checking for
the UML. Proceedings of the 28th International
Conference on Software Engineering (ICSE ‘06),
381-390. ACM.

This paper presentsan approach to check the com-
pliance of OO design with respect to source code.
The process works on design artifacts expressed
in (the pre-UML) OMTnotation and accepts C++
source code. Itrecoversan ““asis’ design fromthe
code, compares recovered design with the actual

33

design and points out regions of code which do not
match with design. The recovery process exploits
regular expression and edit distance to bridge the
gap between code and design.

Fiutem, R., & Antoniol, G. (1998). Identifying
design-code inconsistencies in object-oriented
software: A case study. Proceedings of the Inter-
national Conference on Software Maintenance,
94-102.

Classic paper that discusses different views on
product quality.

Garvin, D. (1984). What does ‘product quality’
really mean? Sloan Management Review, 26(1),
25—45.

The paper explores - based on a controlled
experiment - how early metrics which measure
internal attributes, such as structural complexity
and size of UML class diagrams, can be used as
early class diagram maintainability indicators.
The experiment has a small sample size. The
conclude thatearly indicators for maintainability
can be based on UML metrics, but are careful to
generalize based on the small sample size of the
experiment.

Genero, M., Piattini, M., Manso, E., & Cantone,
G. (2003). Building UML class diagram main-
tainability prediction models based on early
metrics. Proceedings of the Ninth International
Software Metrics Symposium (METRICS 2003),
263-275. IEEE.

Thisbook has over the years remained an popolar
reference for professional software engineers
because it provides practical guidelines for per-
forming software inspections.

Gilb, T., & Graham, D. (1993). Software Inspec-
tion. Addison Wesley Publishing.

34

Managing the Quality of UML Models in Practice

This paper provides quantitative approach to
determine the cost effectiveness of quality as-
surance in software (i.e., when to stop testing).
It gives insights to answer questions related to
quality in modeling.

Huang, L., & Boehm, B. (2005). Determining
how much software assurance is enough? A
value-based approach. International Symposium
on Empirical Software Engineering, p. 10.

This book attempts to provide full coverage on
metrics and models in software quality engineer-
ing. A recommended reading for both academics
and practitioners who are interested in software
measurements.

Kan, S.H. (2002). Metrics and models in software
quality engineering. Addison Wesley Profes-
sional.

Thisisaclassic paper that provides sound discus-
sion on the term of “software quality’ and why
its definition must be targeted toward a specific
goal.

Kitchenham, B., & Pfleeger, S.L. (1996). Software
quality: The elusive target. IEEE Software, 13(1),
12-21.

This paper provides a good overview of software
inspection methods and come up with a taxonomy
that can help practitioners identify inspection
experience directly related to a particular life-
cycle stage.

Laitenberger, O., & DeBaud, J. (2000). An en-
compassing life-cycle centric survey of software
inspection. Journal of Systems and Software,
50(1), 5-31.

Managing the Quality of UML Models in Practice

This paper discusses the notion of completeness
in UML designs; a very useful reference to start
with model quality assessments.

Lange, C.F.J., & Chaudron, M.R.V. (2004). An
empirical assessment of completeness in UML
designs. Proceedings of the 8th International
Conference on Empirical Assessmentin Software
Engineering (EASE ‘04), 111-121.

A paper based on an experiment that reveals the
effects of syntactic defects in UML models. It
also provide a ranking of the defects based on
their impacts.

Lange, C.F.J., & Chaudron, M.R.V. (20006). Effects
of defectsinUML models - an experimental inves-
tigation. In Proceedings of the 28th International
Conference on Software Engineering (ICSE‘06),
401-411. ACM.

Based asurvey and industrial case study, this paper
uncovers common problems in UML models and
techniques for controlling their quality.

Lange, C.F.J., Chaudron, M.R.V., & Muskens, J.
(2006). In practice: UML software architecture
and design description. IEEE Software, 23(2),
40-46.

This paper proposed some techniques to analyze
UML models, particularly related to inconsistency
and incompleteness issues.

Lange, C.F.J., Chaudron, M.R.V., & Muskens, J.,
Somers, L.J., & Dortmans, H.M. (2003). An em-
pirical investigation in quantifying inconsistency
andincompleteness of UML designs. Proceedings
of the 2nd Workshop on Consistency Problems in
UML-based Software Development, 26-34.

This paper discusses the result of an experiment
that investigated the effect of using modeling
conventions in creating UML models. The factors
measured were syntactic quality and the effort
spent in modeling.

Lange, C.F.J., DuBois, B., Chaudron, M.RV,, &
Demeyer, S. (2006). An experimental investiga-
tion of UML modeling conventions. In Oscar
Nierstrasz, Jon Whittle, David Harel, and Gianna
Reggio (Ed.), Proceedings of the 9th International
Conference on Model Driven Engineering Lan-
guages and Systems (MoDELS 2006), LNCS 4199,
27-41, Heidelberg: Springer.

This paper discusses a replicated experiment that
investigated the impact of complexity metrics in
state charts on their understandability—another
useful reference that justifies model quality as-
surance.

Miranda, D., Genero, M., & Piattini, M. (2003).
Empirical validation of metrics for UML stat-
echart diagrams. Proceedings of the Fifth Inter-
national Conference on Enterprise Information
Systems (ICEIS’03), 87-95

Avery relevant paper with respect to design-code
correspondence. It reports on design-code cor-
respondence analysis of industrial case studies
using a correspondence tool.

vanOpzeeland, D.J.A.,Lange, C.F.J., & Chaudron,
M.R.V. (2005). Quantitative techniques for the
assessment of correspondence between UML de-
signsand implementation. InHouari A. Sahraoui,
Coral Calero, Michele Lanza, Geert Poels, and
Vernando Brito e Abreu (Ed.), Proceedings of
the 9th ECOOP Workshop on Quantitative Ap-
proaches in Object-Oriented Software Engineer-
ing (QAOOSE’05), 1-18

35

This paper is one of the classic papers that initi-
ated discussion on model-based measurements. It
is a good reference for readers who are interested
in early ideas and practices in desigh measure-
ments.

Rombach, H.D. (1990). Design measurements:
Some lessons learnt. IEEE Software, 7(2), 17-25

This paper evaluates the cost of software quality
by proposing some metrics to measure its benefits.
The report was based on a real case study of
software quality improvement initiative.

Slaughter, S.A., Harter, D.E., & Krishnan, M.S.
(1998). Evaluating the cost of software quality.
Communications of the ACM, 41(8), 67-73.

From a survey amongst software developers, this
paper reported 30 problems in using the UML
1.3, which categories include inconsistency and
ambiguity.

Simons, A.J.H., & Graham, 1. (1999). 30 things
that go wrong in object modeling with UML 1.3.
In H. Kilov, Bernhard Rumpe, and I. Simmonds
(Ed.), Behavioral Specifications of Business
and Systems, chapter 17, pages 237-257. Kluwer
Academic Publishers.

This paper provides a good introduction to
Model-driven Engineering (MDE), its future,
and challenges.

36

Managing the Quality of UML Models in Practice

Schmidt, D.C. (2006). Model-driven engineering.
Computer, 39(2), 25-31.

This paper reports on the result of an experiment
that assesses the qualitative efficacy of UML dia-
grams in aiding program understanding.

Tilley, S.R., & Huang, S. (2003). A qualitative
assessment of the efficacy of UML diagrams
as a form of graphical documentation in aiding
program understanding. Proceedings of the 21st
International Conference on Systems Documenta-
tion (SIGDOC 2003), 184-191. ACM.

This paper discusses the results of an experiment
that suggests how models with higher level of
abstraction are more resilient toward some types
of changes.

Verelst, J. (2005). The influence of the level of
abstraction onthe evolvability of conceptual mod-
els of information systems. Empirical Software
Engineering, 10(4), 467— 494.

This paper is related to the notion of design-code
correspondence. It proposed an approach to
analyze the evolution of software from its logi-
cal design.

Xing, Z., & Stroulia, E. (2005). Analyzing the
evolutionary history of the logical design of
object-oriented software. IEEE Transactions on
Software Engineering, 31(10), 850—868.

37

Chapter li
Quality in Model Driven
Engineering

Teade Punter
Embedded Systems Institute, The Netherlands

Jeroen Voeten
Embedded Systems Institute, The Netherlands & Eindhoven University of Technology,
The Netherlands

Jinfeng Huang
Eindhoven University of Technology, The Netherlands

ABSTRACT

This chapter argues that embedded systems design faces several challenges of which late integration and
the difference in development productivity between disciplines are major ones. Model driven engineer-
ing (MDE) looks a promising approach to address these challenges. However, MDE is a new approach
which has to be defined and implemented in close interaction by academia and industry the near future.
We therefore provide a conceptual framework to understand the possibilities and the flaws in quality

assurance in the MDE design flow.

INTRODUCTION TO EMBEDDED
SYSTEM'S DESIGN

A. Embedded Systems

Model Driven Engineering as we deal with it
in this chapter is related to embedded systems
design. An embedded system is the information
processing and controlling part that is embedded
in another (the embedding) systems, e.g., a copier

or MRI scanner. The embedded system plays a
controlling or monitoring role in the embedding
(orhosting) system. Typically, embedded systems
communicate to their embedding systems by
actuators and sensors, not by human communi-
cation. This makes embedded systems different
frominformation systems. Nowadays, embedded
systems can be found everywhere. For example
in cars, copiers, cameras, cell phones.

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Embedded systems are complex, because of
for example, but not constrained to, their het-
erogeneity, concurrency and power constraints.
One reason that they are complex is simply that
they are big systems, e.g.,: the effort to develop
them is huge, they contain many lines of code.
Embedded systems are heterogeneous because
they are built out of various components, includ-
ing software processes, processors, accelerators,
memories, busses and networks. To design a
component, assumptions have to be made about
other (heterogeneous) components in the system.
Since embedded systems observe and control
many parts of their embedding system, multiple
processes have to run in parallel. This requires
concurrent handling. Many embedded systems
have limited power supplies such as batteries.
Battery use stresses the importance of energy
constraints in embedded systems. For example,
because they are portable (like cell phones), are
implanted in humans (like medical devices) or
are used in isolated areas (like wireless detec-
tion devices).

Characterizing Embedded
Systems Design

Embedded systems design aims at the design of
complexinformation processing (sub)systems that

Quality in Model Driven Engineering

will meet their requirements (functional as well
as non-functional). The design should be done
in a cost-effective way and should deliver the
product in time (time-to-market). An embedded
system design will therefore be judged by three
main criteria: quality, effort and time. Because of
the growing system complexity, amethodological
approach or design flow is needed to meet these
criteria. The design flow is the set of design
activities (cf. method or development process,
like Rational Unified Process (RUP)) needed
to develop the system. An example of a design
flow is the ordered set of activities: requirements
definition, design and development, integration
& testing and releasing, as shown in figure 1.a.
Other appearances of a design flow exist. For ex-
ample, because of the experience that phases are
not strictly separated but are intertwined (figure
1.b) or because of that other terminology is used
for defining the phases (figure 1.c). Software
tools are used to support the implementation of
a design flow.

Embedded system design is often charac-
terized as co-design of hardware and software
(Wolf, 2003). For example, computer architec-
ture provides designers with information about
performance and energy consumption of proces-
sors. Knowledge about hardware components,
and their cost, is needed to design software in a

Figure 1. Examples of design flows (©2007 Teade Punter, Jeroen Voeten, and Jinfeng Huang. Used with

permission)

{a)

fcl

Requirements definition |

Requirements definition

Specification

Design & development Design & development Design
|
Releasing Relsasing Deployment

38

Quality in Model Driven Engineering

way that a cost-efficient system results that will
meet its requirements. The embedding system
might include involvement of other disciplines
as well. Often disciplines are involved such as
control engineering, electrical engineering and
mechanical engineering. Taking more disciplines
into account than software and hardware is de-
noted as multidisciplinary approach (Heemels
& Muller, 2006). Each of these disciplines uses
its own terminology, models of computation and
tools. Knowledge about each of the disciplinesand
its interaction with other disciplines is needed to
design embedding systems, such as a printer.

In this chapter, we focus on the design flow of
embedded systems, more specifically: hardware
and software co-design. This design flow will
often be part of the development process of an
embedding system. Therefore there will be an
interaction of the design flow with multidisci-
plinary development. After having specified the
(high-level and low-level) system requirements,
the design phase starts which involves disciplines
such as mechanical engineering, electrical en-
gineering and software engineering. Although
these disciplines are tightly coupled in the final
system, their developmentis traditionally carried
outinarather mono-disciplinary and independent
fashion, and the engineering results are delivered
in a sequential way. Conventionally, first the me-
chanical subsystem is designed, then the hardware
and finally the software.

Challenges for Embedded
Systems Design

The need for Model Driven Engineering is often
advocated by the problems thatembedded systems
designfaces. Many problems canbedistinguished.
We focus on two of them in particular, namely:
late integration and productivity.

Late integration — Working with several dis-
ciplines requires tuning. Choices made in one
discipline, concerning for instance control rates

and the position of sensors and actuators, have an
impact on the required functionality and might
increase system’s complexity. Problems arising
fromthis complexity often become visible during
integration and testing, when the components/
subsystems have to work together. So, while test-
ing the subsystems in the separated disciplines
proceedswithout severe problems, the integration
phase results in major problems that have to be
solved, which take time that might cause project
delays (Punter et al, 2002).

System design follows the design flow as
indicated in figure 1, where system integration
is performed inevitably in a late design stage.
Due to the heterogeneity of the systems, many
(design) errors are detected during integration.
This might lead to substantial design iterations.
Inaddition, the later an error is detected, the more
costly itisto solve it (Boehm, 1989; Liggesmeyer
etal, 1998). Further, during integration, verifica-
tion and quality assessment is mainly performed
by testing the physical realization or prototype.
This is difficult because of uncontrollability and
unobservability and because of the Heisenberg
principle in testing (Vranken, 1998; Huang et al,
2002). Therefore, late integration is a challenge
in embedded system design.

Differences in productivity amongst disci-
plines — another challenge is the difference in
productivity amongst the disciplines, see e.g.
(Corporaal, 2006a). Thistrend is seen by industry
asaproblem. Forexample,at ASML -world’s larg-
est producer of wafer steppers- the technologies
for servo’s and lenses is considered to be cutting
edge, inthe leading group. Meanwhile software is
considered as being inthe rear. These differences
in technology productivity will have a negative
impact on quality, time and effort: decreasing
quality, increasing effortand time-to-market. “For
each new generation of awaferstepper the number
of software developers is doubled” (Roos, 2006).
The following figure shows that also hardware
productivity does not pace up with the total pro-

39

Quality in Model Driven Engineering

Figure 2. Differences in software and hardware productivity compared to general process productivity.

Taken from (Corporaal, 2006b).

103
Frocess productivity (+58%)
5] Hardware productivity
Spftware produgtivit Hardhware productivity (+21%)
| giap
10
Software productivity (+8%)
—
—

4 g 12

cess productivity. However, software productivity
grows slower than hardware productivity; see also
(Genuchten, 1991; 2007).

The problems of late integration and low
productivity are only two examples to advocate
Model Driven Engineering (MDE). With MDE,
the abstraction level of systems and software de-
velopmentis raised meanwhile making important
implicit structures more explicit. This enables
architectsandengineersin having abetter system
overview, which is also available more early in
the development process.

Others argue that MDE is promising to ad-
dress platform complexity and the inability
of third-generation languages to alleviate this
complexity (Schmidt, 2006). We perceive the
benefits of MDE in its assumption of yielding
significantly shorter design times. We are aware
of the danger of advocating a “silver bullet”, like
software reuse has been advertised in the past as
being the solution for low software productivity.
Little empirical data about the impact and added-
value of Model Driven Engineering exist. At this
moment MDE is more a belief. In this chapter we
do not advocate that MDE is the ultimate solu-
tion. Instead we focus on how to organize MDE

40

» Years of development
16 in discipline

to assure its process quality as well as the quality
of the resulting system. The following section
introduces Model Driven Engineering.

MODEL DRIVEN ENGINEERING
(MDE)

Model Driven Engineering (MDE) refers to the
systematic use of models as primary engineering
artifacts throughout the engineering lifecycle'.
Modeling a system might focus on its behavior
(any event or action that the system performs), its
structure or system functionality. To model we
need a particular language (formalism as well
as notation) to express the domain concepts of a
discipline effectively.

A model transformation takes as input a
(source) model and produces as output a (target)
model. Both models might be restricted by the
requirement that they conform to a source or
target meta-model. The transformation might be
conducted to refine the model into a model of a
lower abstraction level or fromalower abstraction
level toahigherone, e.g. reverse engineering. Even
the abstraction level might not change during the

Quality in Model Driven Engineering

Figure 3. Possible directions for model transformations (©2007 Teade Punter, Jeroen Voeten, and Jin-

feng Huang. Used with permission)

"Hornzontal”
iransformation

abstract 4

Abstract model

1

Vertical®

iransformalion 4

> ri+1
Abstract model

k.
(I
Concrate model
L

Implementation™

implementation i

transformation, e.g., if the model is re-factored.
The transformation from higher level models to
lower level models is often addressed as vertical
transformation. For example the transformations
from platform independent models (PIM) to plat-
form specificmodels (PSM) in software discipline,
e.g., (Gool etal, 2006). The transformation on the
same or similar abstraction level isthanaddressed
as horizontal transformation, e.g., the migration
of an architecture (with its related platform), e.g.,
(Nieuwelaar, 2004; Graaf et al, 2005).

Atransformation takesasource model asinput
and transforms it into target model or other arte-
fact, which means often that source and target are
different. However, in case of amodel redesign the
source and target model are the same. (Software)
synthesis is a particular form of model transfor-
mation during which a model is transformed into
an implementation, e.g., code.

A third element of MDE is view, which is a
graphical representation that provides a perspec-
tive on the system. Views are related or derived
from particular paradigms or models of compu-
tation. They are a set of “laws” that govern the
interaction of components in a system. Several

=| Concrete moden+!

Implementation™!

models of computation exist, e.g., (Hylands et al,
2003). In the software discipline behavior and
structure of software can be modeled by different
paradigms, like input output processes and finite
state automata.

Afourthelement of MDE isexecutable models,
which enable the execution of a behavioral model
by a simulator (a tool that simulates the model).
Executable models are especially important to
deal with concurrent and timed behavior in an
embedded system.

The way how MDE is used within a design
flow is determined by the way how models are
used by the involved disciplines. We think that
two basic strategies for applying MDE exist.

Strategy 1 starts by defining an integrated
system model, at a manageable abstraction level.
From this (unique) model, incremental transfor-
mation to less abstract and more detailed models
should be possible. These detailed models are the
starting points for code generation and synthesis
as well as for modeling in other disciplines. This
strategy requires a modeling language that can
cope with abstract system modeling in a system-
atically refined way until synthesizable models

41

can be generated. This is a feasible approach
for (digital) hardware development, but not for
multidisciplinary development of embedding
systems yet.

Strategy 2 starts fromthe ideathatdisciplines
will remaininparallel to each other during design.
Models are defined within these separate disci-
plines. Information of the models is exchanged
to models in other disciplines to ensure coherent
development of a system. The difference with the
conventional design flow (see figure 1.a) is that
early feedback is given to each of the disciplines.
Disciplines use each other for simulation purposes.
So, simulators that execute model behavior for
other disciplines, e.g., “hardware-in-the-loop”,
are necessary. This approach of MDE is advo-
cated by the Ptolemy project (Ptolemy, 2007).
This is also addressed as co-simulation in which
the interfaces between different domain-specific
modeling languages are defined, e.g., of Matlab
Simulinkto Rose Real Time (Hoomanetal, 2004).
Strategy 2 is not only used for multi-disciplinary
development. See for example in UML, where a
software system is specified by using different
models (e.g. class diagrams, sequence diagrams,
etc.), and mechanismsshould be provided in order
to guarantee their consistency.

An example of MDE is the design of the soft-
ware part of a mechatronic system: a complex
production cell system (Huang et al, 2007a). The
design consisted of two major parts: systematic
modeling and correctness-preserving synthesis.
On the one hand, the design has to provide solu-
tions to deal with concurrency and timeliness
issues of the system. On the other hand, it has to
gluedifferentdisciplines (such as software, control
and mechanics) of the system as a whole. The
modeling stage was divided into four steps, which
focused ondifferentaspects (suchasconcurrency,
multiple disciplines and timeliness) of the sys-
tem respectively. The modeling process started
from an informal description (called handshake
diagrams) of the system, where the system was
considered to be a set of concurrent components

42

Quality in Model Driven Engineering

(called players). Based on the proposed guidelines,
the players could be intuitively identified and their
interaction patterns could be easily constructed.
Following that, a concurrency model was derived
from the handshake diagram, where the un timed
interactions between different players could
be formally checked by using verification and
simulation techniques. The concurrency model
has formal semantics, which allowed us to use
existing verification tools such as SPIN to do the
verification. At the same time, the model is also
executable it is naturally ready for simulation.
After that the interactions between especially the
software and control engineers were investigated
in a refinement (multi-disciplinary model) of the
concurrency model. In the end, the quantitative
properties (real-time properties) were analyzedin
the refinement of the multi-disciplinary model.
Furthermore, the consistency between the models
at the different abstraction levels could be main-
tained so that properties that were analyzed at a
higher level model were still valid in the models
at lower abstraction level.

Afterthe specification of the important system
aspects and an analysis (of the unified model) a
software implementation was automatically syn-
thesized from the model, which correctness was
ensured by construction. The synthesisis formally
proven in (Huang et al, 2007b). The approach
was perceived as effective because it divides the
system behavior into different aspects which can
be modeled easily while the consistency between
the different models is maintained. The develop-
ment of the production cell system shows that
the 75% design time could be reduced using this
MDE approach.

Having defined the principles of MDE we
now look back at the two problems expressed
in section 2 for which MDE promises to be the
answer. MDE’s answer to the problem of late in-
tegration is by providing models that facilitate a
better understanding of the design problem. These
models provide possible solutions for design which
enables simulation earlier than waiting untill the

Quality in Model Driven Engineering

implementation is available. This advances the
integration and test phase of the design flow.

MDE’sanswer to increase software productiv-
ity is by its increasing of the levels of abstraction
which avoids implementation of platform specific
details. This will yield significantly shorter de-
sign times. An illustration is the “documentation
problem” that we noticed in some embedding
system projects. Following a waterfall-like way
of designing a system (see figure 1.a) the technical
software documents that will be produced will
be hard to verify at once. Because the system
requirements will change over time as well as
because integration and testing will give new
insights to improve design, it will be likely that
thetechnical documentation will be not up-to-date
soon. This has a negative impact on the software
productivity. By documenting design as a set of
models, and generating (or synthesizing) code
from them, it will be likely that the design can
be maintained up-to-date.

Model Driven Engineering looks a promis-
ing approach to address particular problems in
embedded systems design. This chapter further
focuses on the question how to establish quality
in an MDE design flow. We believe this has an
impact on system quality, although we are aware
that the relation between process and product
quality is still not completely understood.

QUALITY ASSURANCE IN THE MDE
DESIGN FLOW

The MDE design flow is a process. We therefore
want to apply concepts about the quality of pro-
cesses to the design flow. We do not look at the
maturity of processes and process improvement
as expressed in, e.g., the Capability Maturity
Model (SEI, 2007). Instead we look at more
fundamental principles of processes as applied
in system’s theory that was elaborated for the
software engineering domain by (Punter, 2001;
Punter et al, 2004).

System theory considers a process as a system
with an input and an output. Executing a process
means that an input is transformed into an output.
Key in this approach is the control of processes.
Control isneeded to generate an output that meets
expectations. Interms of the design flow: a design
that meets customer expectations, passing verifi-
cation and validation phases. From this theory we
formulated a framework of thinking to analyse
design flow by looking at four elements.

1. Goal formulation — controlling a process
means that the process aims at achieving
particular goals. For example, in process
approaches like done with CMMi (SElI,
2007) and 1SO15504/Spice this principle is
effectuated by the idea that a process should
be conformant to baseline- or key practices.
To be able to achieve goals, they should be
well-formulated to be able to steer the pro-
cess in the right direction. Well-formulated
means e.g., that the goals are specific and
measurable, seee.g., (Parketal, 1996) as well
as(Mannionand Keepence, 1995). We know
that goalswill by principle change over time.
Goal formulations that once were mentioned
by stakeholders as being important might
have less weight afterawhile, and vice versa.
Also new goal formulations might appear.
This s especially an issue for processes that
last for longer periods. Changing of goals
has an impact on the iterations in a design
process. Each iteration starts from a goal
formulation. Whenthe goal formulation has
changed, a new iteration starts.

2. Integrated activities — a process in control
means also that the activities are related
to each other. This implies that outputs of
activities are input for its successor activity
or activities. Unclear or non-existing rela-
tionships between activities cause activities
that are conducted in isolation; meanwhile
uncertainty exists about whether activity
outputs will be applied by successor activi-

43

ties. Managing such a process is not pos-
sible, because the relations between goals
and activities are not specified explicitly.
Therefore a controlled process requires
integrated activities.

3. Trade-off between goals and resources
—resourcesare needed to performactivities.
The appropriate resources should be chosen
to achieve the goals. People as well as tech-
niques are the main categories of process
resources. The trade-off between goals and
resources isaboutsetting the right goals with
the available resources or to acquire addi-
tional resources to achieve the stated goals.
It might be necessary to reformulate goals if
the appropriate resources are not available.
The trade-off mechanism is necessary to
find the right balance between goals and
resources. To achieve quality assurance in
a process, this mechanism should be active
continuously. When goal formulations are
available and the supportive resources are
known, the trade-off should start. But when
the trade-off is set foraprocess, disturbances
in the process, e.g., changes in goals or lack
of resources mightimply amismatch, which
requires the setting of a new trade-off.

4. Feedback — quality assurance of processes
implies also the monitoring of processes.
This is needed to determine if the process
moves intothe rightdirectionand will (prob-
ably) achieve the defined goals. Monitoring
requires feedback information about the
process. If deviations are discovered, then
steering actions are required to achieve the
desired result(s) after all.

Inthe following sections we explain what these
factors imply for the MDE design flow.

GOAL FORMULATION

Goal formulation is essentially the specification
of why a design flow is conducted. In section 5

44

Quality in Model Driven Engineering

we will see that activities in a design flow can
be of two types: analysis and design activities.
Design activities are part of the design flow in
the way that they result in the blue print of the
system. Analysis (or aspect) models are about an
aspect of the design, e.g., performance. The goals
for the respective activities are therefore different
by their type. The goal formulation of the analysis
activities for the design flow will be related to
what is commonly addressed as the specification
of quality characteristics, like reliability. In the
software discipline non-functional requirements,
e.g., (Chung et al, 2000) or the ISO-standard
for software product quality (1SO 9126, 2001)
applied. For systems engineering other proper-
ties are required, e.g., addressing evolvability
and dependability; see for an example proposal
(Muller, 2004). Goal formulation that applies to
design activities is about the phases in the design
process, such as synthesis and verification.

The goals for a design flow should be derived
from or should be related to business goals, such
as time-to-market, quality and effort. Guidelines
for refining business goals into sub goals are
provided by (Park et al, 1996) and (Punter et al,
2004). Goals cannot be formulated right while
not looking at the information about the system
and design context. A framework that will help to
define goals for multidisciplinary development is
the CAFCR-method forembedded systemsarchi-
tecting (Muller, 2004). Key views of this method
that help goal setting are: customer objectives,
application and functional areas.

Inembedded systems design —focusing on the
hardware and software discipline—we distinguish
analysis activities in a design flow; see next sec-
tion. To define the goals for analysis activities
explicitly, a template might be helpful, just like
the goal measurement template in the Goal Ques-
tion Metric (GQM) approach (Basili and Weiss,
1984). We therefore propose to formulate goals
by applying this GQM template as expressed in
table 1. The template consists of 4 topics: object,
quality focus, purpose and viewpoint. The object

Quality in Model Driven Engineering

Table 1. Proposal to formulate analysis goals in a design flow

Object

<design, synthesis, etcetera>

Quality focus evolvability>

<reliability, performance, dependability,

<understanding, improving, verification &

Purpose validation, synthezise (an implementation out of
models)>
Viewpoint <project leader, engineer, architect>

specifies the activities in the design flow upon
which the analysis will focus. Quality focus is
about the type of analysis that will be conducted.
Purpose expresses the ambition of the analysisin
the design flow. It is just to understand the design
or ifanalysis is needed e.g., to verify or to synthe-
size an implementation. Viewpoint expresses the
stakeholder(s) that will use the analysis results.

INTEGRATED ACTIVITIES

The main purpose of models is to help engineers
understand the interesting aspects of the future
system. Models are therefore widespread used by
engineersinavariety of disciplines. Forexample,
hardware engineering apply models in notations/
languages like VHDL

Integration of activities in an MDE design
flow deals with models at different abstraction
levels and the transformation(s) between them.
We distinguish here two types of models: aspect
(oranalysis) models and design models, which are
related to two types of activities in the design flow,
namely analysisand designactivities respectively.
These are mutually inverse activities that are
continuously performed during the design flow.
Design activities aim at refinement, which try to
add more implementation details to the design
models, thereby reducing the gap between the
implementation (e.g., code) and design model.

Analysisactivities try toremove (or hide) asmuch
as possible irrelevant information by abstract-
ing from the design models. This improves the
comprehensibility of the existing design models
and facilitates the evaluation of different design
solutions. Where desigh models are characterized
asbeing the core of the design flow, analysis mod-
els provide additional information to the design
models that enables the analysis of the design.
Design models are the “first class citizens” of the
design flow, see figure 4. The aspect models are
abstracted from the design models. This enables
designers to look at particular aspects, such as
concurrency and performance, which provide a
feedback to the design.

This distinction impacts the organization
of the models. Design models are organized
and categorized according to different levels of
abstraction. Aspect (or analysis) models apply
information from different design models and
therefore have to cope with information that is
related to different levels of abstraction.

Guidelines for Integrating Activities

An MDE design process can be carried out in a
stepwise or/and piecewise manner in multi-stages.
During a stepwise design stage, a series of design
decisions is made at different abstraction levels.
At each abstraction level, only a subset of the
desired properties of the system is investigated.

45

Quality in Model Driven Engineering

Figure 4. Two types of activities in a design flow: analysis and design activities (©2007 Teade Punter,

Jeroen Voeten, and Jinfeng Huang. Used with permission)

Design models

i

Aspectmodels) ..

T ..-

l Transformaticin

& Design models
\._‘_‘_________'__/

Synthesize l

Analysis
activifies

Design
activifies code

Legenda:

Maodel to model fransformation
{at similar abstraction levels)

Model to model transtormation
{from highcr to lower abstraction or
vice versa)

= Analysis of design decisions.
design models are related to
aspect models and results of
analysis are fed back to design
muodels

To make such a design process smoother, it is
crucial for MDE to support predictability, al-
lowing desired properties to carry over between
different abstraction levels of the system. As a
consequence, the properties of interest verified
at one level of abstraction can be preserved into
another level in a stepwise manner. During a
piecewise design stage, the system is constructed
by the recursive composition of separately ex-
ploited components.

Each component only contains a part of the
total functionality of the system. To ensure that
design decisions made in a component are still
valid in the integrated system, compositionality
is considered as a key feature of the MDE empha-
sizing semantic independency of components. As
a consequence, the behavior of each component
remains unchanged during the integration, and
properties of the integrated system can be derived
fromthose of the components. Design of acomplex
system can involve both stepwise and piecewise
design processes.

46

The transformation of a system from one
abstraction level to another can be achieved by
a set of independent transformations of its com-
ponents. Compositionality ensures that the trans-
formation of each component can be carried out
independently. On the other hand, the integration
of components is usually reasoned about on the
basis of the integration of their abstractions, which
is ensured by predictability. Therefore, composi-
tionalityand predictability are two interdependent
and indispensable features of MDE.

Executability is an important characteristic
of the model during system design, because in
the executable model, different aspects (such as
interaction diagrams, class diagrams and state
diagrams of UML) of the system can be naturally
integrated, where inconsistency between different
aspects can then be located (Huang et al, 2004).
As a result, many design errors can be corrected
in an early development stage, avoiding costly
and time-consuming iterations.

Quality in Model Driven Engineering

Experiences with Transformation in
the Software Discipline

MDE requires transformation. In this subsection
we present our experiences with a “vertical”
transformation (see section 2) in the software
discipline. We focused on modeling coordination
of the machine by software functionality. Input for
this is a definition of high-level services (abstract
behaviors) of awaferstepper in terms of low-level
services (resources behaviors) and the machine
parts (resources) that are needed to execute them.
Inthe existing situation the platformruns C-code,
while a higher level specification was written in
Word documents without using specific modeling
techniques (Punter et al, 2007).

The model transformation case study was
conducted to define the lower level specification
onahigher level of abstract, but also more precise
than itis done in the word documents. We started
with specifying the high-level specification of co-
ordination as a set of UML2.0 Activity diagrams
and Class diagrams. Next step was to specify the
system at concrete level of abstraction as a set of
UML2.0 Activity—and Classdiagrams. Third step
was to define the transformation itself. We have
chosen the Query View Transformation (QVT)
as a set of rules to define the transformation and
using Borland Together ® for modeling as well
as transformation purposes.

Thestructure (class) models could be relatively
easily transformed from higher level of abstrac-
tion to concrete models. It was more difficult
to transform the behavioral (activity) diagrams
when using QVT. The arbitrary concepts have to
be detailed to a level that can unambiguously be
interpreted by the platform. Therefore language
constructs were specified that helps to decompose
behavioral description of higher level into lower
level. This language is a compositional subset
of UML 2.0 activity diagrams and consists of
any activity that can be built with the patterns
proc, seq, assign, guard, if and
call (van Gool et al, 2006). It was possible to

define abstractbehaviorin their platform-specific
form that was offered to a scheduling component,
which tries to execute them in an optimal man-
ner. For each abstract behavior, the scheduling
component determines the set of resources that
are needed for its execution and when they are
needed. Although this is a first step in determin-
ing timing of behaviors, the timing itself is still
outside of the scope of the implemented model.
Appropriate timing is the responsibility of the
scheduling component.

The approach of using a compositional subset
of a standardized language (UML) turned out
beneficial. Company’s architects were quickly able
to understand the language and discuss details
of a coordination instance that was considered
very complex. Furthermore, the language’s com-
positionality guided the definition of the model
transformation.

Integrated Activities and Multiple
Disciplines

In a multidisciplinary approach the exchange of
models is required. Software development might
benefit from simulation of hardware (hardware-in-
the-loop) and vice versa. Therefore we will try to
understand models inthe disciplines as expressed
to abstraction level, the degree of complexity and
heterogeneity (or variety) inthe design space. The
general trend to deal with system complexity is
to make abstractions from reality. Abstractions
are made to maintain the overview of the system.
However, abstraction increases also the number of
possible decisions inthe design space, because the
number of concepts increases. This is denoted as
heterogeneity of modeling. As such the increase
in heterogeneity is a good thing, because of the
variety of modeling concepts that can be applied.
However, much more interpretation is required
because of multiple concepts. For example, a
hardware design that is specified on transistor
level is easier to interpret because the definition
is more deterministic than a hardware design

a7

Quality in Model Driven Engineering

Figure 5. Relation of abstraction level and heterogeneity within a discipline expressed; plus an example
of abstraction levels for hardware discipline (©2007 Teade Punter, Jeroen Voeten, and Jinfeng Huang.

Used with permission)

Hardware (discipline)

High lewvel of abstraction

Abstraction of

modeling

Implementation lewvel

functional

register transfer

logical

transistor

great ¢ T > great

restricted

Heterogeneity in modeling

specified on functional level that containing,
e.g., different processors, various memories and
specific interfaces. The price of abstraction is the
harder effort to define specified behavior: “there
is no free lunch”.

Figure 5 visualizes the trade-off between ab-
straction and heterogeneity in the design space.
The consequence of this trade-off for multidisci-
plinary system development is the need of compat-
ibility between models. For example, imagine the
situation that hardware is modelled by specifying
with VHDL targeting an FPGA. Can we also use
this model to simulate software models that are
expressed in Activity diagrams? To achieve our
goals we might need parts of different models to
make a thorough analysis.

One possibility is to define integrated models
and derive the models of the individual disciplines
(hardware, software) out of it. For example,
(Huang et al, 2007b) presents a model specified
in the POOSL modeling language on a high level
abstraction, that covers hardware and software
concepts.

48

A second optionis to define interfaces between
models in a way that models can use each other,
e.g., for “hard-in-the-loop” simulation. We are
aware that it is still difficult to determine the
similarity of abstraction levels between mod-
els of different disciplines; the shaded part in
figure 7 implies modeling at a particular level
of abstraction. However, a logical scenario for
model compatibility is to start with models of
the discipline of physics. Latter discipline will
deal with the most detailed behavior, continu-
ous control (mechanics discipline) requires low
level of control but can be specified at a higher
abstraction than in physics. Discrete event con-
trol (high-level software control) will have the
least detailed level of abstraction. Knowing the
dependencies betweenthe disciplines concerning
the levels of abstraction helps us to understand
that situation (a), expressed in figure 6, will be
anunlikely situation to integrate models, because
the physical model is defined at a high level of
abstraction, compared to other models, while for
example the software is specified at a lower level

Quality in Model Driven Engineering

Figure 6. Two situations of model at different levels of abstraction in multiple disciplines: (a) unlikely
situation, (b) more likely situation for model compatibility (©2007 Teade Punter, Jeroen Voeten, and

Jinfeng Huang. Used with permission)

Physics Hardware

Mechanics Software

(@)

Hardware

Physics

vVV

Mechanics Software

\ / \ /\ / '\ 4
® N7 N7 W 7

of abstraction. Insituation (b) also different levels
of abstraction are due, however here the order in
levels of abstraction from physics to software
enables compatibility.

Inthis section we have distinguished analysis
and design activities in a design flow. Design ac-
tivities determine product quality while design de-
cisionsare made. Analysisactivities pay attention
toparticularaspects (with definingaspect models).
Although both types of activities impact product
quality of MDE, we focus on analysis activities
further in the remainder of this chapter.

TRADE-OFF GOALS AND
RESOURCES

Trade-off is a control mechanism to match ap-
propriate resources to the stated goals. The ap-
propriateness of resources will be mainly, but

perhaps not completely, determined by three
factors, namely: effort, accuracy and usability.

Effort — Resources in a design flow are the
engineers, architects and other people that are
involved in system design as well as the tech-
niques —like model checking or synthesis tools-
that they use for (designing and) analyzing the
system. Applying resources take effort (time,
person years), which has to be estimated when
choosing a technique.

Accuracy —Resources in an MDE design flow
that are especially meant here are the techniques,
applied to modeling. Models should be build and
they should be reasonably accurate. The main
concern here is that the model is a good abstrac-
tion of reality. Thisimpliesthatan accurate model
addresses an up-to-date design problem as well
as that there is a common agreement amongst the

49

users of the model that the model represents what
it has to represent.

Usability — Resources, especially meant here
arethetechniques, should be applicable and there-
fore usable. Usability of technique is hard to define,
because it depends on the “eyes of its beholders”.
Therefore we think that a number of criteria may
be applicable to define usability. For example the
success factors for modeling inindustry (Beckers
et al, 2006) are helpful to identify usability of
modeling techniques. For example:

. Conceptually simple — easy to understand
and as such applicable for reasoning and
communication across disciplines.

. Use of conventional paradigms—e.g., of tim-
ing tables and position-time diagrams that
are in use in the company already. Hence,
outcomes of the model can be easily com-
municated.

In case we are able to express effort, accuracy
and usability of MDE- resources we expect to be
able to match the resources to goals, more specifi-
cally: the purpose of goals, see table 1. However,
little empirical evidence about MDE resources
exists today. Most information is scattered and

Quality in Model Driven Engineering

incomplete. An exception is an overview of for-
mal methods presented by (Vaandrager, 2006),
that provides an overview of formal methods,
see figure 7.

This overview shows that theorem provers,
such as PVS and Coq require great skills and
resources but allows one to solve very hard (veri-
fication) problems. Meanwhile, Model checking
(withtoolinglikemCRL,SMV and SPIN) provide
the advantage over theorem proving that once a
model and a property are specified, analysis is
in principle fully automatic. This saves some ef-
fort. Automated abstraction can be perceived as
an addition to model checking to cope with the
problem of scalability (the problem of state-space
explosion). Abstractions, like symmetries, data-
path have been proven powerful (Vaandrager,
2006). The concept of types and the development
of automatic algorithms for establishing type
correctness are examples of “invisible” formal
methods. They are completely invisible tothe user,
but still have a good return on investment, being
able to find a lot of bugs. This overview shows
that techniques will be chosen depending on the
required accuracy and the amount of available ef-
fort that those who want to verify want to spend.
These criteria apply to other goal ambitions, like
understanding a system, as well.

Figure 7. An example of expressing accuracy and effort of resources. Taken from Vaandrager, 2006.

A
acCcuracy

-

50

Theorem
Automated i
o Model proving
|(:|HVISIt|3|e) checking abstraction
orma
methods
effort

Quality in Model Driven Engineering

FEEDBACK

Feedback is a control mechanism that should
monitor ifthe design flow is behaving right. More
specifically: feedback is the identification of the
most important conflicts in a design as well as
the structuring of design options in situation of
incomplete information (uncertainty). Another
way of saying is to use feedback to determine
system’s (intermediate) quality , e.g., expressing
thisas performance or dependability: the “quality
focus” in table 1.

Feedback information will be generated for
all of the goal purposes as defined in the goal
template in table 1, but applies to the verifica-
tion and validation. Feedback information can
be provided in many different ways. It can be
the simulation information that is provided by
e.g., “hardware-in-the-loop” models to find the
constraints for the software discipline. Feedback
information will be not restricted to the end of the
design process. Especially in testing or verifica-
tion processes, feedback information is required
duringall stages. Anapproach isto conduct model
inspections, e.g., by checking model conventions,
seee.g., (Langeetal,2006a&b). Thiswill generate
design information of draft UML-models.

Also model checking might be an option. For
example, by constructing a model in a particular
process algebra language and check whether
system meets its requirements, see e.g., (Ploeger
& Somers, 2006). This approach enables early
verification and synthesizes an implementation
from the generated model.

A common approach in quality assurance
would be to apply the feedback information to in-
terpretthe quality of the resulting system by using
a quality model or set of quality characteristics,
the “-ilities” mentioned before. However, itwill be
often hard to define applicable criteria to evaluate
non-functional requirements of embedded soft-
ware systems (Punter et al, 2002). Meanwhile
the restriction in available design time (related
to time-to-market and available man power)

implies that in-depth and often time-consum-
ing modeling and analysis should be performed
only for the essential and critical issues (Sandee
et al, 2006). An alternative approach —so-called
threads of reasoning- has been applied at Océ
Technologies (Heemels, Muller, 2006). It is a
graph-based iterative technique to identify the
most important conflicts in the design problem
and possible solutions. The system architect uses
the information implicitly to integrate various
views in a consistent and balanced way, in order
to design valuable usable and feasible products.
In fact the threads makes explicit what is already
available implicit. Details of the method and
guidelines to apply the method are provided by
(Sandee et al, 2006). We remark that the “thread
of reasoning”-method, as well as other ways to
conduct feedback, depend much onthe experience
of the people involved.

In addition to the feedback mechanism we
also want to address the importance of a feed
forward mechanismin a design flow. This applies
especially to the transformations of higher level
models into more detailed models, resulting into
synthesis of code. Dealing with feed forward we
are interested in the reliability or predictability
of the transformation. How sure are we that
the specified model-to-model or model-to-code
transformation provides the right result? When
we look at the software discipline we perceive
that a lot initiatives to transform UML-models
with a model to code generation purpose focus
on the syntax of the transformation. However,
such syntactical transformation cannot always
guarantee the consistency between the model and
the implementation. To ensure the correctness by
construction, the semantics of the implementa-
tion should respect to the semantics of the model.
For instance, a synthesis approach in which this
applies is proposed for concurrent real-time sys-
tems in (Huang et al, 2007a). The execution of
the implementation follows the timing semantics
of the model by synchronizing the time in the
physical world and the time in the model.

51

FUTURE TRENDS

We see three main trends that will be relevant
for successful implementation of model driven
engineering (MDE), namely: predictability of
the transformation, heterogeneity of modeling
languages and getting empirical results.

Predictability of transformations - synthesiz-
ing implementations from models in a predict-
able way is still a challenging research topic.
The challenge is to preserve the properties of a
model transformation for a next transformation,
so that no information will be lost during the
transformation(s). In section 7 we already ad-
dressed the importance of a property preserving
transformationapproach for concurrentreal-time
systems. There are still many research chal-
lenges in this area. For instance, in a distributed
system, the software components are distributed
over a multiple-processor platform instead of a
single processor platform assumed in (Huang et
al 2007h). It is still an open issue to ensure the
correctness consistency for distributed systems
during code generation.

Heterogeneity of modeling languages — in
our chapter we have referred to heterogeneity
of modeling. Some modeling languages and
techniques for communicating (or parallel)
processes are CSP, Uppaal, SDL and POOSL.
Understanding these languages is important to
implement model driven engineering in the fu-
ture. For example, some companies will not use
off-the-shelf solutions because of high demands
on their platforms. Instead they still want to use
well-supported easy-to-learn design languages
with a feasible approach to generation of code
for all kinds of different platforms that are used
in different versions of their products.

The trade-offs to use a language depends on
domain, accuracy and scalability. We should be
able to understand these languages as good as our
community understands functional or procedural

52

Quality in Model Driven Engineering

programming languages. We also think that this
discussion on languages applies to the discussion
between domain specific languages (DSL) and
a unified modeling language (i.e. UML) in the
software community, see e.g., (Staron & Wohlin,
2006).

A hierarchy of communicating languages is
needed for this purpose. This will organize lan-
guages according to their expressiveness as well
as their efficiency (timing). Abstract languages
will than be ranked as good on their expressive-
ness, while they will likely to be worse for their
efficiency and synthesis capabilities. Finding the
trade-offs between expressiveness and efficiency
can be enriched by taking accuracy, effort and
usability of resources (section 6) into account
as well. An interesting initiative to characterize
some languages is provided by (Verhoef and
Hooman, 2006).

Getting empirical results — model based en-
gineering (MDE) like model based architecture
(MDA) are approaches that address the increas-
ing complexity of today’s systems. However,
modeling and dealing with abstraction requires
developers and engineers that are open-minded
to the approach. Training people to work with
models and providing tools that are easy to use
will than be key factors. In addition there is a
need for empirical results of application MDE
techniques in practice, as already noted in sec-
tion 7. This insight is needed to determine when
to use what technique. With this chapter we aim
at providing a quality framework to interpret
those results.

CONCLUSION

Model Driven Engineering (MDE) is the sys-
tematic use of models as primary means for
the hardware and software discipline. We think
that Model Driven Engineering addresses chal-
lenges in embedded systems design, such as late

Quality in Model Driven Engineering

integration and the difference in development
productivity. We remark that MDE should be done
in interaction with a multidisciplinary approach
-incorporating other disciplines- if applicable.

In this chapter we have recognized that MDE
is immature and that there might be the danger
of advocating a silver bullet. Therefore we have
provided a framework to think about quality in
the MDE design flow. The framework applies
to the process of a design flow. We assume that
organizing this process properly will be beneficial
for system (product) quality as well.

Thestarting pointof our framework isthe need
for control in a way that generated output of the
design flow will meet expectations. Key elements
of control are: goal formulation, integrated activi-
ties, trade-off between goals and resources and
feedback. MDE terminology and concepts were
defined for each of these elements. Successful
quality assurance requires paying attention to
each of the four elements.

Concerning activities in an MDE design
flow we distinguish between design and analysis
activities. To formulate goals for analysis activi-
ties a goal template was presented. Integration
of activities in an MDE design flow deals with
models at different abstraction levels and the
transformation(s) between them. Based on our
experiences we found that that compositionality
and predictability are indispensable features of
MDE.

To establish the right trade-off between goals
and resources it will be necessary to identify
effort, accuracy and usability of resources. Un-
fortunately, little empirical evidence about MDE
resources exists. The feedback information that
is generated during a design flow should be
particularly be fed by data about the system (or
product) quality. The opposite of feedback -but
aiming at the same need to control- is feed for-
ward. We think that MDE should be facilitated
by predictable transformation means to enable
feed forward.

Today, MDE isstill inakind of research phase.
I’s future success depends on its technical feasibil-
ity and howtointroduce itinto organisations. Our
framework is meant as a means to discuss before
-and to steer during- introduction of MDE.

REFERENCES

Basili, V.R., & Weiss, D.M. (1984). A methodology
for collecting valid software engineering data.
IEEE Transactions on Software Engineering,
10(6), 728-738.

Beckers, J.B.C., & Heemels, W.P.M.H., & Buk-
kems, B.H.M. (2006). Effective industrial mod-
eling: The example of Happy Flow. In Heemels,
W.P.M.H., & Muller, G.J. (Eds.) Model-based
design of high-tech systems, (pp. 77-88). Eind-
hoven: Embedded Systems Institute.

Boehm, B. (1989). Software Risk Management.
Los Alamos: IEEE.

Chung, L., & Nixon, B.A., & Yu, E. (2000). Non-
functional requirements in software engineering.
Boston: Kluwer.

Corporaal, H. (2006a). Embedded System De-
sign. In Progress White Papers 2006 (pp. 7-25).
Utrecht: STW Progress.

Corporaal, H. (2006b), Embedded System De-
sign. STW Progress presentation, May 10, 2006.
Retrieved 4 March 2007, from: www.ics.ele.
nl/~heco.

Genuchten, M. van. (1991). Why is Software
Late? An Empirical Study of Reasons for Delay
in Software Development. IEEE Transactions on
Software Engineering, 17 (6), 582-590.

Genuchten, M. van. (2007), The Impact of Soft-
ware Growth on the Electronics Industry. IEEE
Computer, 40(1), 106-108.

Gool, L.van, &Punter, T., & Hamilton, M. (2006).
Compositional MDA. In O. Nierstrasz etal (Ed.),

53

Proceedings of Models 2006 LNCS 4199, (pp.
126-139). Berlin: Springer.

Graaf, B., & Weber, S., & Deursen, A.van. (2006),
Migrating Supervisory Control Architectures
Using Model Transformations. In Proceedings of
10th European Conference on Software Mainte-
nance and Reengineering CSMR 2006 (pp.153-
164). Los Alamos: IEEE Computer Society.

Heemels, W.P.M.H., & Muller, G.J. (Eds.) (2006).
Model-based design of high-tech systems, Eind-
hoven, Embedded Systems Institute.

Hooman, J. & Mulyar, N., & Posta, L. (2004). Cou-
pling Simulink and UML models. In Schnieder,
B., & Tarnai, G. (Eds), Proceedings Symposium
FORMS/FORMATS 2004, 304-311. Retrieved 29
October 2007, from http://www.ita.cs.ru.nl/pub-
lications/papers/ hooman/FORMS04.pdf.

Huang, J., & Voeten, J.P.M., & Putten, P. van
der (2002). Performance Evaluation of Complex
Real-time Systems: A Case Study. In Proceed-
ings of PROGRESS 2002, (pp. 77-82). Utrecht:
STW Progress.

Huang, J., & Voeten J.P.M., & Ventevogel, A.
(2004). Predictability in Real-Time System Devel-
opment - (1) Semantics Support for Development
Languages. In Vachoux, A. (Ed.), The Forum on
Specification and Design Languages (FDL'04),
(pp. 123-140). Giéres: ECSI.

Huang, J. (2005). Predictability in real-time soft-
ware design (PhD thesis). Eindhoven: Eindhoven
University of the Technology.

Huang J., & Voeten J.P.M., & Groothuis M.,
(2007a). A Model Driven Approach for Mecha-
tronic Systems. In Proceedings of IEEE Interna-
tional Conference on Application of Concurrency
to System Design (ACSD) (pp.127-136). Los Ala-
mos: IEEE Computer Society.

Huang, J., & Voeten, J.P.M., & Corporaal, H.
(2007b). Predictable real-time software synthesis.
Journal of Real-time Systems, 36 (3), 159-198.

54

Quality in Model Driven Engineering

Hylands, C., & Lee, E., & Liu