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Preface

This book is intended to provide readers with an overview of speech communication in its
wide-ranging aspects, from a discussion of how humans produce and perceive speech to
details of computer-based speech processing for diverse communications applications. Unlike
other books in the field of speech, this one takes a broad view of speech communication, at
times sacrificing some technical depth for breadth, so that readers may see the relationships
between parts of the communication process that are often dealt with separately. A cohesive,
even-handed discussion of speech production and perception (both human and machine)
should help readers understand speech communication better than is possible with other texts.

In addition to a detailed description of human speech production and perception,
readers will learn about current techniques to analyze, code, recognize, and synthesize speech.
They will gain an understanding of the limits of current technology, as well as see future
directions for speech research.

While this text should serve students in an introductory course on speech communica­
tion or processing, additional material is included throughout the book to aid more advanced
readers. Sections that may be easily omitted in a one-semester course are noted with a double
dagger (;). For space reasons, the finer mathematical details of some speech processing
algorithms have been omitted. Ample references are provided that enable interested readers to
find these details quickly. Thus, readers should not expect to find program listings or detailed
algorithms here, but rather should read the book to understand speech processing and how
particular applications of interest fit into the broader picture of speech communication.

This is not to say that the book is unsophisticated mathematically. On the contrary, to
understand many aspects of speech communication, mathematical description is imperative.
Nonetheless, such detail is kept to the minimum necessary for adequate understanding.
Readers not familiar with engineering mathematics should not be discouraged, since the
necessary basic mathematical principles are reviewed in Chapter 2 in a way that presumes
little prior knowledge. Indeed, although there are many cross-references between chapters and
sections, readers with little mathematical background should find the book quite useful simply
by skipping over equations (or even entire sections) that seem hard to follow.

xvii



xviii Preface

It is unnecessary to read the book from the beginning to understand it. The chapters
have a logical order, but it is not necessary to understand all preceding chapters before reading
a chapter of particular interest. For example, readers interested primarily in speech synthesis
could commence directly with Chapter 9 and refer to earlier chapters as they meet references
to concepts of speech production or coding with which they were not familiar.

INTENDED AUDIENCE

Speech communication is an interdisciplinary subject. Although much of the research
material for the book comes from engineering literature (e.g., IEEE journals), a wide variety
of sources is employed (especially for Chapters 3-5). The book is directed primarily at an
engineering audience (e.g., to a final-year undergraduate or graduate course in electrical
engineering or to those in speech research), but it should also be accessible to linguists,
phoneticians, psychologists, audiologists, computer scientists, and systems engineers.
Linguists view speech in terms of language description; they characterize languages via
phonemes and intonation and note differences and similarities in how different languages
convey messages. Phoneticians examine the relationships between phonemes, their articula­
tion, and their acoustic properties. Psychologists deal in perception, noting the relationships
between acoustic properties of signals (e.g., speech) and what people hear and understand.
Audiologists deal with disorders of the hearing system and often use sounds other than speech
in their work. Speech communication is treated as a programming problem by computer
scientists; using artificial intelligence techniques, they seek to simulate the human actions of
producing and understanding speech signals or to represent speech in an efficient fashion for
transmission. Systems engineers have similar objectives and use similar tools as the computer
scientists, but tend to be more concerned with questions of efficiency and practicality,
whereas scientists seek more to understand the communication process. By simultaneously
including both technical detail and basic explanations about speech communication, this book
should address the concerns of all researchers involved in speech, as well as interest the
student wishing an introduction to the field.

Since the book covers a wide field, it should be useful as a reference text. In it, readers
will find an introduction to virtually any subject of relevance to speech communication. By
examining its up-to-date reference list, readers can quickly locate references for further
details. To facilitate such reference searches, the list contains major information sources that
should be available in most scientific or engineering libraries, such as textbooks, journals, and
a few conference proceedings. Relatively inaccessible sources, such as technical reports and
references with abstracts only, have been avoided where possible.

It is always difficult to write a book for an audience to include both students (from both
engineering and other disciplines) and professionals. I have attempted to satisfy both groups
with this book, but of necessity I have had to compromise. For students, the book is highly
tutorial, does not presume any prior knowledge about speech communication, presents topics
in a sequence that is relatively easy to follow, and provides problems at the end of most
chapters. For researchers, the coverage of the book is complete in virtually all aspects of
speech communication, the list of references is large and up-to-date [the most important
references, and those of tutorial nature, are noted by an asterisk (*)], and new developments
are put into the perspective of older, classical results. As a result, students may find the text at
times too detailed, while professionals may wish for more detail in areas that interest them. I
believe, however, that I have struck a good compromise: researchers, by using the reference
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Iist, should be able to locate further detail quickly, while one-semester students may skip over
sections noted with a double dagger (t).

Finally, this second edition has more details on major developments in speech
processing between 1987 and 1999, for example, among others, on CEL~ HMMs, and
neural networks. A related major development of the 1990s has been the massive interest in
the Internet (World Wide Web). In response, I have included a large list of relevant Web sites
for speech information. I will update this information periodically at the Web site for this
book, http://www.inrs-telecom.uquebec.calusers/spchwww/English/persons/dougolbook.html

Douglas O'Shaughnessy
Universite du Quebec

Institut National de la Recherche Scientifique
INRS-TELECOMMUNICATJONS
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ND analog-to-digital conversion
ADM adaptive delta modulation
ADPCM adaptive differential pulse code
modulation
AGC automatic gain control
ALSR average localized synchronized rate
AMDF average magnitude difference function
ANN artificial neural network
APe adaptive predictive coding
APCM adaptive pulse code modulation
AR autoregressive model of LPC
ASI automatic speaker identification
ASR automatic speech recognition
ASV automatic speaker verification
ATC adaptive transform coding
ATN augmented transition network
BP back-propagation
CELP code-excited linear prediction
CSR continuous speech recognition
CVSD continuously variable slope delta
modulation
CWR connected-word recognition
CZT chirp =-transfonn
OfA digital-to-analog conversion
dB decibel (dB)
OFT discrete Fourier transform
OM delta modulation
OPCM differential pulse code modulation
OSI digital speech interpolation

DSP digital signal processing
DTW dynamic time warping
EMG electromyography
F-ratio performance measure for speaker
recognition
FFT fast Fourier transform
FIR finite-duration impulse response
FO fundamental frequency
GMM Gaussian mixture model
HMM hidden Markov model
Hz Hertz
Ie integrated circuit
IIR infinite-duration impulse response
IWR isolated word recognition
JND just-noticeable difference
LMS least mean squares LPC method
Log-PCM logarithmic pulse code modulation
LPC linear predictive coding
LS least-squares estimation
LSF line spectral frequency
LSP line spectral pair
MA moving average model of LPC
MBE multiband excitation LPC
ML maximum likelihood
MMSE minimum mean-square estimation
MPLPC multi pulse-excited LPC
NN nearest-neighbor rule for distance
comparison
PARCOR partial correlation LPC
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peM pulse code modulation
PSO LA pitch-synchronous overlap-and-add
PST post-stimulus time histogram
Q ratio of a resonance center frequency to
bandwidth
QMF quadrature mirror filter
RAM random access memory
RELP residual excited linear prediction
ROM read-only memory
RPE regular-pulse excitation
SBC sub-band coding
SIFT simple inverse-filtering pitch detection
SNR signal-to-noise ratio

Acronyms in Speech Communications

STC sinusoidal transform coding
TASI time assignment speech interpolation
TDHS time domain harmonic scaling
UELM unconstrained endpoints, local
minimum DTW method
UWA unsupervised without averaging clustering
VFR variable frame rate
VLSI very large scale integration technology
VaT voice onset time
VQ vector quantization
VSELP vector self-excited linear prediction
ZCR zero crossing rate



Important Developments
in Speech Communications

1779
1876
1922
1924
1939
1946
1952
1953

1957
1959
1960
1962

1964
1967
1970
1970

Mechanical speech synthesis
Invention of the telephone
Electrical speech synthesis
Speech analysis by formants
Vocoder
Invention of Spectrogram device
Delta modulation
Analysis of phonemes by distinctive
features
Speech synthesis by formants
Time assignment speech interpolation
Acoustical theory of speech production
Computer speech synthesis with digital
filters
Cepstral analysis
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Introduction

1.1 WHAT IS SPEECH COMMUNICATION?

Speech communication is the transfer of information from one person to another via speech,
which consists of variations in pressure coming from the mouth of a speaker. Such pressure
changes propagate as waves through air and enter the ears of listeners, who decipher the
waves into a received message. Human communication often includes gestures, which are not
not part of speech, such as head and hand movements; such gestures, though normally part of
face-to-face communication, are not considered in this book. The chain of events from the
concept of a message in a speaker's brain to the arrival of the message in a listener's brain is
called the speech chain [1]. The chain consists of a speech production mechanism in the
speaker, transmission through a medium (e.g., air), and a speech perception process in the
ears and brain of a listener.

In many applications of speech processing (italicized below), part of the chain is
implemented by a simulation device. Automatic synthesis or generation of speech by
algorithm (by computer) can simulate the speaker's role, except for generation of the original
message, which usually comes in the form of a text (furnished by a computer user). In
automatic speech or speaker recognition, an algorithm plays the listener's role in decoding
speech into either an estimate of the underlying textual message or a hypothesis concerning
the speaker's identity. Speech coders allow replacing the analog transmission medium (e.g.,
air or telephone lines) with a digital version, modifying the representation of the signal; in this
way, speech can be efficiently stored and transmitted, often without noise problems and with
enhanced security.

1.2 DEVELOPMENTS IN SPEECH COMMUNICATION

While many of the developments affecting speech communication have occurred in the last
few decades, the basic tools for speech analysis are founded in mathematics, e.g., Fourier
analysis, developed many decades ago. A basic understanding of how we produce speech has
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existed for hundreds of years (e.g., mechanical speech synthesizers existed in the 1700s), but
detailed knowledge of audio perception is fairly recent (e.g., Bekesy's experiments on the
basilar membrane in the 1940s). Modem speech research started in the 1930s, when the
practical digital transmission method of pulse-code modulation (Pf.M) was developed and
when a mechanical synthesizer called the Voder was demonstrated. The invention of the
sound spectrograph in 1946 spurred much speech analysis work, since it allowed practical
displays of the acoustic output of the vocal tract.

Viewing individual sounds or phonemes as composed of discrete, distinctive features
originated in the 1950s and spurred development of electronic speech synthesizers, e.g., the
Pattern Playback. More efficient digital speech coding in the form of delta modulation was
developed at this time as well. Fant's benchmark work on speech acoustics appeared in 1960
[2], beginning a decade of much speech research, during which speech was first synthesized
by computer and the important analysis techniques of the cepstrum and linear prediction were
introduced.

The early 1970s saw development of time-adaptive speech coding as well as a big
increase in speech recognition work, including the Advanced Research Projects Agency
(ARPA) speech understanding project [3] and the use of dynamic programming in matching
templates from different speech signals. Digital signal processing as a discipline saw much
development [4]. In the late 1970s, more complex speech systems such as subband and
adaptive transform coders appeared. Large-scale integrated circuits made their appearance in
the form of one-chip speech synthesizers, and stochastic methods became accepted for speech
recognition (e.g., hidden Markov models).

The major developments of the 1980s included single-chip digital signal processors, the
use of vector quantization for low-rate speech coding, the search for better excitation models
for speech synthesis (e.g., multipulse excitation), the use of auditory models in speech
applications based on hearing experiments using speechlike stimuli, and the use of language
models to aid speech recognition.

The 1990s have seen widespread acceptance of speech coders, synthesizers and
recognizers, as computational power has continued to increase substantially while costs
decrease. While the pace of major breakthroughs has slowed in recent years (e.g., the last
significant new paradigm introduced in speech processing was the use of neural networks in
the late 1980s), research continues unabated, because current speech products are far from
ideal.

1.3 OUTLINE OF THE BOOK

The book is divided into two main parts: the first deals with the way humans generate and
interpret speech, and the second examines how machines simulate human speech perfor­
mance and how they code speech for efficient transmission. The first part is further
subdivided into chapters on speech production, general audition, and speech perception.
The second part has six chapters, three describing analysis, coding and enhancement of
speech, one examining speech synthesis, and two on recognition (speech and speaker). The
following sections briefly describe the different domains of scientific study found in speech
communication research.
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1.3.1 Production of Speech

3

Chapter 3 examines the first link in the speech chain: production. After a brief
introduction, Section 3.2 discusses the organs of the vocal tract that a speaker uses to
produce speech, from the viewpoint of their functions. The relationships between the
positioning and motion of these organs and the sounds of a language (using English as the
basic example) are the subject of Section 3.3. Since the speech wave or acoustic signal is of
prime importance in all practical applications, Section 3.4 discusses how each sound can be
simply described by a set of acoustic features observable in the speech signal's waveform or
frequency spectrum.

Modeling aspects of human behavior during speech communication is of major interest,
both to understand the speech process better and to suggest ways of simulating human speech
tasks by machine. Thus, Sections 3.5 and 3.6 model vocal tract behavior in relation to time
and frequency aspects of the speech signal. First, the tract is modeled by means of electrical
circuits and transmission lines, to understand how the reflection of waves inside the tract
causes different speech frequencies to be amplified or attenuated, depending on the shape of
the tract. Then practical digital filters used in speech synthesis are introduced. The final two
sections of Chapter 3 examine two major sources of difficulties in speech analysis:
coarticulation and intonation; the former refers to variations in speech sounds due to context,
and the latter denotes variations in the tone, length, and intensity of sounds.

1.3.2 Sound Perception

Aspects of human speech perception are divided into two chapters. Chapter 4 deals with
the conversion of speech waves (and other sounds) into auditory nerve patterns, including
elementary auditory psychophysics. Chapter 5 examines the relationships between the
acoustic features of sounds and what listeners perceive. After a brief introduction, Section
4.2 discusses how the organs of the ear convert acoustic speech waves into electrical signals
on the auditory nerve. Questions of how intense and long a sound must be to be heard are
discussed in Section 4.3, along with aspects of pitch perception and the perceptual effects of
one sound on another. While this section deals with simple sounds (e.g., clicks and tones),
Section 4.4 extends these ideas to examine auditory responses to speech signals.

High-quality synthetic speech requires accurate modeling of aspects of the speech
signal that are important perceptually. Since the identity of a sound in natural speech is
signaled in a complex way through many redundant cues, Section 5.2 examines the difficulty
of determining perceptually-important speech features when using synthetic speech stimuli.
Section 5.3, which analyzes different speech perception models and theories, is followed by a
summary of the results of perception experiments for vowels (Section 5.4) and consonants
(Section 5.5). How intonation is used to segment continuous speech and highlight specific
words is the subject of Section 5.7, preceded by a discussion of the utility of timing in speech.
Miscellaneous aspects of speech perception (e.g., issues of adaptation, dichotic listening,
distortions') end Chapter 5.

1.3.3 Speech Analysis

Whereas Chapters 3-5 focus on how humans utilize speech, the remaining chapters
address applications of speech communication that typically involve digital computers.
Chapter 6, an introduction to the application chapters, notes the key elements of automatic



4 Chapter 1 • Introduction

speech analysis. Chapter 7 investigates how speech signals can be coded for efficient
transmission, Chapter 8 explores ways to improve distorted speech, Chapter 9 examines
how speech is generated synthetically, and Chapters 10 and 11 consider techniques for
extraction of the message and of the speaker's identity, respectively, from a speech signal.

The basic representation of a speech signal in a digital computer requires limiting the
spectral bandwidth of the signal (e.g., Q-4 kHz), sampling it at a certain corresponding rate
(e.g., 8000 samples/s), and storing each sample with an adequate resolution, e.g., 12bits
(binary digits) each. Eliminating frequencies in speech above, say, 4 kHz causes a slight
degradation in speech quality or naturalness, but has little effect on information content. For
many communication applications, preserving the intelligibility of the speech is paramount,
and some degradations in quality are acceptable. Besides intelligibility (being able to
understand the speech message), certain information about the speaker (e.g., identity and
mood) is usually important to retain in coded speech; often, low-rate coders preserve
intelligibility while sacrificing such speaker information,

Digital signal representations of sufficient bit rate can be converted back into speech
without significant loss of quality (other than the unavoidable loss of high frequencies in the
original bandlimiting). From the perspective of information transmission, however, using
almost 100,000 bits/s of speech is very wasteful because each second of speech typically
contains 12 distinct sounds, from a inventory of about 32 = 25 linguistic units called
phonemes, which suggests an actual information rate of about 60 bit/so Speech contains
information other than the simple sequence of sounds, however, since listeners can infer
speaker identity and emotion as well as assign a linguistic structure to each utterance.
Nonetheless, simple speech coding can theoretically be improved by a factor of about 1000 by
extracting appropriate features from the signal rather than using elementary sampling.

Chapter 6 examines the basic techniques of parameter and feature extraction from
speech, which is ofdirect use to coding and recognition and of indirect use to synthesis. Since
a speech signal changes its characteristics for each new sound, speech analysis must be
performed on short windowed segments for which the vocal tract is assumed in most cases to
be essentially fixed (Section 6.2). Certain relevant features (e.g., energy and periodicity) can
be observed directly in the time-domain display of a speech signal (Section 6.3). To accurately
distinguish sounds, however, requires a spectral analysis (Section 6.4).

The important technique of linear predictive (LP) analysis is the subject of a detailed
Section 6.5, including: (a) the basic LP model in terms of the two traditional block analysis
methods (autocorrelation and covariance), (b) the relationship of spectral modeling resolution
to the order of the LP model, (c) adaptive and lattice filters, and (d) the effects of the size of
the analysis window.

Cepstral analysis, a general signal processing technique with specific application to
speech (mostly recognition), is examined in Section 6.6. Other recent developments in
analysis (e.g., wavelets) are explored in Section 6.7. The difficult task of pitch estimation is
described in Section 6.8. Issues of robustness against distortions are the subject of Section
6.9. Chapter 6 ends with a discussion of how extracted features can be smoothed in time, to
represent the speech signal more efficiently while still permitting adequate reconstruction of
the speech.

1.3.4 Speech Coding

Solving the problem of reducing the bit rate of a speech representation, while
preserving the quality of speech reconstructed from such a representation, continues in
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Chapter 7. It builds on the fundamental procedures of Chapter 6 and addresses the tradeoffs of
quality, coding rate, and algorithmic complexity. Fundamentals of linear and logarithmic
quantization of speech are described in Section 7.2, noting how coding rate can be reduced by
using basic amplitude statistics of speech signals. Section 7.3 gives an overview of the aspects
of speech that are exploited in coders that reconstruct the signal sample by sample. Section
7.4 describes measures to evaluate speech quality. Sections 7.5-7.8 describe waveform coders
that operate directly on the time signal. Various coding schemes exploit different properties of
speech: (a) its average intensity changes slowly with respect to the sampling rate (Section
7.5), (b) it has primarily low-frequency energy and is adequately parameterized in the short
term by simple models (Section 7.6), (c) it is often periodic (Section 7.7), and (d) its spectral
components vary in perceptual importance (Section 7.8).

Section 7.9 deals with many aspects of linear predictive coding (LPC), ranging from
simple differential PCM to the standard LPC vocoding method which separates two sources
of information in the speech signal (the excitation and the frequency response of the vocal
tract) for efficient manipulation and transmission. Among the topics covered are: how the
basic LPC parameters can be transformed into equivalent but more efficient representations,
how the nonstationarity of speech affects the transmission rate of LPC, how the basic all-pole
LPC model can be enhanced at the cost of extra complexity, and how we can trade
transmission rate for quality via use of more complex excitation models.

Section 7.10 describes filtering approaches to coding (where more perceptually
important frequency ranges are assigned more bits), including a frequency-transform
method (which directly codes a spectrum) and methods that code speech harmonics directly.
While LPC dominates vocoding methods, alternative vocoders (e.g., channel vocoding) are
noted in Section 7. 11.

Most speech coders transmit time or frequency samples as independent (scalar)
parameters, but coding efficiency can be enhanced by eliminating redundant information
within blocks of parameters and transmitting a single index code to represent the entire block,
i.e., vector quantization (Section 7.12). Section 7.13 examines network aspects of speech
transmission: when many speech signals are mixed with data and sent over a network where
traffic varies with time, tradeoffs of speech quality and network availability arise.

1.3.5 Speech Enhancement

Chapter 8 examines how to increase the quality of degraded speech signals. Speech is
often distorted by background noise (or other speech) and/or by poor transmission conditions.
Various filtering or other processing techniques can reduce the distortion effects, rendering
the signal easier to listen to. If noisy speech can be captured via several microphones, its
intelligibility can even be raised. Sections 8.1 and 8.2 give an introduction to the problem, and
Section 8.3 describes the types of interfering sounds we must deal with. The major
enhancement methods are summarized in Section 8.4, and then discussed in more detail:
(a) subtracting estimates of noise from noisy spectral amplitudes (Section 8.5), (b) filtering
out the distortion (e.g., adaptive noise cancellation) (Section 8.6), (c) suppressing energy
between speech harmonics icomb jiltering) (Section 8.7), and (d) resynthesis of the speech
after vocoder modeling (Section 8.8).
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1.3.6 Speech Synthesis

Chapter 9 examines automatic generation of speech. Section 9.2 introduces the major
aspects of speech synthesis: the size of the stored speech unit to be concatenated, the method
of synthesis (which usually follows a coding method from Chapter 7), and the difference in
output quality between voice response systems of very limited vocabulary and text-to-speech
systems that accept unrestricted text input. Section 9.3 represents the bulk of Chapter 9,
giving details for articulatory, formant, and LPC synthesizers. The three major reasons for
limits on synthetic speech quality are discussed: simplistic models for excitation, intonation,
and spectral time behavior. Section 9.4 examines the difficulty of simulating natural
intonation. Section 9.5 discusses how to simulate different speaking voices, and Section
9.6 notes research progress for languages other than English. Performance in speech
recognizers and in many speech coders can be measured objectively (i.e., via the percentage
of words recognized correctly, or via signal-to-noise ratios); however, there is no objective
way to evaluate speech synthesizers (Section 9.7). Chapter 9 ends with a section on
specialized hardware for synthesis.

1.3.7 Speech and Speaker Recognition

The other side of human-machine communication via speech is automatic recognition,
where either the textual message (Chapter 10) or the speaker's identity (Chapter 11) is
extracted or verified from the speech signal. Chapter 10 starts with the view of speech
identification as a pattern recognition task, where the input signal is reduced to a set of
parameters or features, which in tum are compared to templates or models in memory to find
the one with the best match. Sections 10.3 and 10.4 detail the initial stages of recognition:
normalizing the signal, and extracting parameters and features from the data. When
comparing an N-parameter model of an unknown input utterance (of, for example, a word)
with a stored model of a known utterance, distance measures should reflect how well each
parameter separates models for different words in N-dimensional space (Section 10.4).

Section 10.5 looks at the problems of comparing utterance representations to evaluate
their similarity. A lengthy Section 10.6 examines the many sources of variability in speech,
and how recognizers accommodate this variability. As an example, consider speech spoken
with different durations or speaking rates: linearly normalizing all templates to the same
duration often leads to poor comparisons, so nonlinear normalization through hidden Markov
models (HMMs) or dynamic time warping is often used. State networks are commonly used
in recognition as models of the sequence of acoustic events in speech. Each state in a network
represents an acoustic event (e.g., a sound, a word), and the transition from state A to state B is
labeled with the probability that event B follows event A in the sentences or words of the
vocabulary. Section 10.7 continues the discussion of speech variability, in noting how
recognizers can adapt to variability due to different speakers and recording conditions.

The use of statistics of sequences ofwords in text occurs in language models for speech
recognition (Section 10.8). As constraints are relaxed on speakers (e.g., allowing use of wider
vocabularies or speaking without frequent pauses), issues of computation time and memory
become significant. This leads to ways to optimize the large search space in speech
recognition.

Discriminating between phonetically similar words is often difficult for many recog­
nizers. Nonlinear techniques using artificial neural networks, based on simple models of the
human brain, are capable of more precise discrimination than HMMs, but do poorly on
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handling temporal variations (Section 10.10). Future systems will likely integrate the current
stochastic recognition methods (e.g., HMMs) with expert system approaches (Section 10.11).
Chapter 10 ends with a brief section describing available commercial recognizers.

Speaker identification is the subject of Chapter 11, whose first two sections briefly
introduce the problem and distinguish between recognition (selecting one out of N known
speakers) and verification (deciding whether a speaker is who he claims to be). The
methodology of speaker identification, examined in Section 11.3, has many similarities and
some differences compared with speech recognition techniques. If the speaker utters a text
known to the system, the methods can be very similar; however, if the training and testing
utterances use different texts, simple template matching is not possible. Section 11.4 describes
common features extracted from speech signals that help distinguish speakers; some are based
on physiological traits of vocal tracts, while others measure dynamic variations such as
speaking style. Section 11.5 investigates the design of speaker identification systems, e.g.,
how data are collected and how the use of telephone speech affects system performance.
Section 11.6 describes the related tasks of identifying the language being spoken and the
accent of the speaker. The chapter ends with a comparison of how well humans and machines
can identify speakers.

1.4 OTHER TOPICS

While the book surveys most major aspects of speech communication, of necessity certain
areas are emphasized at the expense of others. For example, the developmental aspects of
speech production and perception are not discussed. The interested reader is referred to
reviews on biological development [5] as well as on phonetic and linguistic development
[6, 7]. Also omitted for space reasons are discussions of impaired production and perception,
that is, how the human speech mechanisms function in people with speech and hearing organs
that are abnormal due to disease or injury [S]



Review of Mathematics for
Speech Processing

One common factor among the chapters to follow is the concept of a speech signal, which
mathematically represents speech, the acoustic output of a speaker's efforts. Human speakers
and machine synthesizers produce speech signals, while human listeners and machine
recognizers receive and analyze such signals. Because the analysis, processing, and synthesis
of signals are the keys to much of speech communication, this chapter develops the
mathematical tools necessary to understand signals and their manipulations. It is written as
a concise review for an electrical or systems engineer, but should also be useful for readers
who have little engineering background (such readers would also find basic calculus and
linear algebra texts useful). The key mathematical concepts necessary for signal analysis are
relatively few, and deal primarily with how to represent the energy components of signals in
both time and frequency. The sections below attempt to summarize key ideas about energy,
spectra, probabi lity, and some circuit theory, all with the view toward speech applications.

2.1 MATHEMATICAL PRELIMINARIES

Before analyzing signals, we must start with a few basic definitions, concerning real and
complex numbers, ways to graphically display complex numbers, and the means to
arithmetically manipulate sets of numbers. Such issues appear in all types of speech
processing.

2.1.1 Number Representations

Signals are typically defined in terms of quantities known as variables, e.g., amplitude
and time. Such variables are often continuous, taking on any value from the set of real
numbers, both positive and negative. For many applications, it is convenient to discuss pairs
of real numbers as complex numbers. Any complex number can be expressed as c = a +jb,
where a and b are real numbers and} is the unit imaginary number, defined as the square root

9
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of -1. The complex conjugate of c, denoted c* = a - jb, is of interest because both cc" and
c + c* are purely real. Graphically, a complex number c can be viewed on a two-dimensional
plot of rectangular coordinates (real number axes), often labelled domain x and range y,
where the horizontal x axis extends infinitely in both negative and positive directions and
represents the real part a. The vertical y axis, at a right angle to the x axis, has similar infinite
extent and represents b, the imaginary part of c (Figure 2.1).

A circular or polar coordinate number representation is often useful. Both rectangular
and polar systems use the same perpendicular axes and locate each number c at the same
point, but the polar system interprets c in terms of the length and angle of a line vector drawn
between the point c and the graph origin (where the axes cross, i.e., at c = 0). Relating the
two coordinate systems,

. ·0
c = a +jb = Icle' , (2.1)

where [c] is the magnitude of c (the length of the vector) and 0 (the phase of c) is its angle
with respect to the x axis. (See below for e = 2.1718 ... and Euler's Rule.)

Consider forming a right triangle with the line vector to c and vertical and horizontal
projections from c to each of the axes. The two representations ofa complex c in tenns of two
real numbers, (a, b), and (lei, 0), are related geometrically (via the Pythagorean theorem):

and tan 0 = b]a, (2.2)

where of course the exponent 2 means a2 = a x a. (Also a-3 = If(a x a x a) and
a2/ 3 = a2Ia3 .) As for trigonometric functions (e.g., sines and tangents), sinO = bfc,
cosO = ale, tan 0 = alb, cot 0 = bla, sec 0 = cia and cscO = cib.

2.1.2 Matrix Arithmetic

Most mathematical operations in this book involve manipulation of pairs of numbers or
functions (e.g., addition, multiplication). While such scalar arithmetic is generally adequate,
sometimes insight and computational efficiency are enhanced by grouping sets of numbers
that must undergo the same operation. An ordered set of N numbers is called an N­
dimensional vector. The set may be displayed vertically as a column vector or horizontally as
a row vector; each is considered the transpose of the other. For example, using lowercase

Im(c)

b ------.c
~ I

Icl »" I
,," I

~ I
~ f} I

o I a
I
I
I

-b - - - - - - -J c·
Figure 2.1 Representing a complex number on rectangular and
polar coordinates. A complex number c and its conjugate c· are
plotted, with their real-number components noted.
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letters in boldface notation to represent column vectors, consider a general three-dimensional
vector:

and

where T indicates a transpose and Xi (for; == 1, 2,3) are the elements of the vector.
Vectors are special cases of a more general set of numbers called a matrix, which

groups numbers in a rectangular arrangement of rows and columns. An M -by-N matrix,
having M rows and N columns, contains MN elements. Using boldface capital letters for
matrices, we have

x==

where Xij are matrix elements with i indicating the row and j the column. Transposing an M­
by-N matrix creates an N -by-M matrix, where xj i replaces each Xi./

XT == [;~~ ;~~ ;~~ ;:~ ] .

XIN X2N X3N XMN

A column vector ofN elements is simply an N -by-l matrix, while its transposed row vector is
a I-by-N matrix.

Matrices and vectors can undergo mathematical operations similar to scalar operations,
subject to certain dimensional restrictions. Typically, addition and subtraction of matrices
involve pairwise operations between parallel elements, resulting in an output matrix of
dimensions equal to those of the inputs. Thus, only matrices of identical dimensions may be
added or subtracted. Consider two M x N matrices X and Y:

[ xII -YII X12 - YI2 xl3 - Y13 xlN - YIN]
X _ Y == X21 .~.Y21 X22 - Y22 x23 - Y23 X2N - Y2N

XMI - YMI XM2 - YM2 xM3 - YM3 XMN - YMN

Multiplication of matrices usually is interpreted differently from forming element
products pairwise. Matrix multiplication is not commutative (i.e., XY =I YX) and requires
that the number of columns in the first multiplicand equal the number of rows in the second.
The product matrix Z of X, an L x M matrix, and Y, an M x N matrix, is L x N and has
I ",\1. .

e ements zij = L-k=1 XikJkj' I.e.,

z == Xy ==

XIIYII + +xIMYJfl

X21YII + + x2MY,MI

XIlYl2 + + Xl MYM2

X21Y12 + + X2MYM2

XllYIN + + Xl MYMN

X21YIN + + X2MYMN

XLIYll + ... + XLMYMI XLIYI2 + ... + xLMYM2

where L~=l X/c == XI + X2 +x3 + ... +xM·
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The (multiplicative) inverse y-I of an M x N matrix Y is an N x M matrix defined
such that yy-I = I, where I is an M x M identity matrix whose only nonzero elements are
all ones and lie on the main diagonal (from upper left to lower right):

1 0 0 0
o 1 0 0

1= 0 0 1 0

000 0
o 0 0 1

To divide a matrix X by another matrix Y, we instead multiply X by y-I. This is analogous to
scalar division, where the division of a by b can be expressed as alb = ab- I , and
bb- 1 = bib = I.

The determinant IXI of a square N x N matrix X may be viewed intuitively as its scalar
"magnitude" and is defined recursively in terms of component (N - 1) x (N - 1) matrices
X;:

N ;+)
IXI = E(-I) xlilXil,

i=l

where Xi is obtained by eliminating the top row and the ith column of X, e.g.,

[

X21

X2 = ~~I.

XMl

Finally, a square matrix X is called positive-definite if yTXy > 0 for all y ¥- 0, a matrix of
zeros.

2.2 SIGNALS AND LINEAR SYSTEMS

A signal is a function of time that specifies a unique value or amplitude for every instant of
time. Such functions are described by a correspondence or mapping, relating one set of
numbers (the independent variable, e.g., time) to another set (the dependent variable, e.g.,
amplitude). Continuous or analog signals map a real-valued continuous-time domain into a
range of real or complex amplitudes. Notationally, x(t) denotes both a signal in general and its
value at any specific time t, where t may be any real number from -00 to +00. The time
origin (t = 0) is usually defined relative to some event, such as the start of some speech
activity. Speech signals, as portrayed (e.g., on an oscilloscope) by converting acoustic
pressure at the mouth into variations in voltage via a microphone, are continuous in time
and real-valued. The simplest representation of a signal is its time waveform, which displays a
two-dimensional plot of the signal (amplitude) value on the y axis and time on the x axis
(Figure 2.2).
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Figure 2.2 Time waveform of a continuous speech signal and its sampled (discrete-time)
version (see Section 2.5 for a discussion of sampling).

2.2.1 Simple Signals

Because speech signals have complicated waveforms, they are usually analyzed in
terms of simpler component signals. Examples of the latter are steps, impulses, sinusoids, and
exponentials (Figure 2.3). A step has value zero for negative time and unity for positive time:

· {Ou(t) = I
for t < 0
otherwise.

(2.3)

The derivative of a step, an impulse £5(t), is a useful mathematical function having two
properties: (a) £5(t) = 0 for all t :j:. 0, and (b) unit area (f ~(t)dt = 1). While an impulse is not
physically realizable, it may be considered as the limit of a very narrow pulse whose width is
inversely proportional to its height.

While an introduction to calculus is beyond the scope of this book, think of integrals
and derivatives as inverse functions, where f: x(t)dt = the area enclosed between vertical
lines t = a and t = b and between x(t) and the x axis (the area below the x axis counts
negatively). If integral y(t) = f~oo x(s)ds, then derivative dyjdt = x(t); e.g., if y(t) is the
location of a car at time t, then x(t) is its velocity.

Sinusoidal signals are periodic, oscillating functions of special interest owing to their
simple spectral properties. A periodic signal repeats itself every cycle or period of T seconds
(i.e., p(t) = p(t + T». The fundamental frequency or repetition rate of such a signal is
F = liT in cycles/s or Hertz (Hz), or 21T.IT in radians/s." When a sinusoidal signal is
associated with transmission, the distance it propagates during one period is called a

• Following standard abbreviations, s = second, ms = millisecond, m = meter, g = gram, ern = centimeter,
and so on.
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Figure 2.3 Time waveforms of an (a) impulse, (b) step, (c) exponential, (d) sine, and (e)
cosine. Dashed lines show continuous-time signals; filled dots with vertical
bars note corresponding discrete-time signals.

wavelength A. = cfF, where e is the signal speed (3 x 108 mls for electrical or optical signals,
but only 340 mls for sound in air).

A sinusoid of frequency F is described in terms of sines and cosines, which are related
as follows:

sin(2nFt) = cos(2n(Ft - 0.25)).

The 0.25 term refers to a !-cycle delay between a sine and its cosine, i.e., a 90° phase shift.
Consider a clock with one hand rotating at a uniform rate of 360° (a full cycle) every T
seconds: if we take a line through 3 and 9 o'clock as an x axis, the projection of the tip of the
hand onto this axis (e.g., a in Figure 2.1) would describe a sine waveform if the hand starts at
12 o'clock at t = o. The projection (b in Figure 2.1) on they axis (i.e., a line through 12 and
6 o'clock) describes a cosine. Treating each hour on the clock as 30°, the relative rotation of
the hand at t = 0 denotes the phase shift of the sinusoid. Other transcendental junctions,
besides sines and cosines, are defined as follows:

sin(t)
tan(t) = -(-) ,

cos t

1
sec(t) = -(-) ,

cos t

1
cot(t) = -() ,

tan t

1
csc(t) = -=--() .

sin t

An exponential signal is one that increases (or decreases) in amplitude by a fixed
percentage every time interval:

(2.4)
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where a is called the base. Most often, a is either 10 or the natural constant e == 2.71828 ....
For example, a natural exponential e(t) with a time constant or decay time of r seconds
unifonnly decays to 37% of its size (1Ie) every r s:

e(t) == exp( -tlr) = e- t
/
r .

The inverse of an exponential is a logarithm: if y == a", then x = loga(y).
Complex exponentials are related to sinusoids by Euler's theorem:

eiO= cos 0 + j sin 0, (2.5)

where () may be a function of time (see Equations (2.1) and (2.2». This complex-valued
exponential has a cosine as its real part and a sine of the same variable as its imaginary part. If
() == (2rrFt) + ¢, F is the frequency of the sinusoid or complex exponential, and <p is its
phase. (In general, two physical or real signals may be combined for mathematical purposes
to yield a complex-valued signal, as in Equation (2.5).)

From Equation (2.5) it follows that

fiO + e-j O

cos 0 == 2 and
fiO - e-j 8

sin () = 2j

which suggests another set of functions called hyperbolic functions, for example:

eO + e-o
cosh( 0) = cos(jO) = 2 and

eO - e-o
sinh(O) = -j sin(jO) == 2 .

Many functions (e.g., sinusoids or exponentials) can be expressed as an infinitely long
polynomial or power series:

fey) = f f(k)~O)I.
k=O k.

where k! (kfactorial) is the product of all integers from 1 to k, andf(k)(O) is the kth derivative
of1(Y) evaluated at y == O. For example,

. y3 I y7
sinty) =y - - +- - - ...

3! 5! 7! .
(2.6)

Power series are especially useful for approximations when the terms in the series become
increasingly smaller at higher powers of y; e.g., if lYl < 1, the ratio of the second and first
terms in Equation (2.6) is 116 < 0.17, the ratio of the third and first terms is y41120 < 0.01,
etc., so that sine}') ~ y - y3 16 to within ± 1010.

A signal may contain a large amount of information in the sense that many numbers or
bits of information must be used to represent or reconstruct the signal. Signal processing
often involves reducing signal information to a smaller set of features or parameters. One
common signal feature is its energy E, which measures the signal intensity over a portion of
time. The energy in a real signal x(t) between times t} and ': is

1
11

Ex = ~ X1(t)dt.
1=1,
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2.2.2 Filtering and Convolution

Speech processing often employs filters to modify (e.g., attenuate or amplify), as a
function of frequency, the energy in a signal. In their output or response, lowpass filters
preserve only low-frequency components of an input signal, while highpass filters reduce
energy at low frequencies. Bandpass and bandstop filters preserve or eliminate, respectively,
signal components in specific ranges of frequencies. In this book, filters are assumed to be
linear, which means that if inputs XI (r) and X2(t) yield YI (t) and Y2(t), respectively, as outputs,
then Axl (t) + BX2(t) yields AYI(t) + BY2(t) for all choices of constants A and B. We also
typically assume shift invariance for nonadaptive filters; i.e., Xl (t - T) yields YI (t - T) for all
values of T.

A common measure of a filter is its impulse response h(t), the output signal when we
are given a simple impulse t5(t) as input. If the filter has stationary characteristics (i.e., not
changing with time) and is linear, then the response y(t) to a general input x(t) is related to
h(t) through a commutative operation called convolution (denoted by *):

y(t) = x(t) * h(t) = J:-oo x(r:)h(t - r:)dr:. (2.7)

While impulses do not exist physically, their extreme simplicity (nonzero at only one
infinitesimally small time point) explains their common usage in mathematics.

2.3 FREQUENCY ANALYSIS

The aspects of speech signals that are most relevant to production and perception involve
concepts of spectral frequency. When a speaker repeats a sentence, producing two utterances
that sound identical, there are usually much larger differences in the two time waveforms than
in corresponding spectral displays. In terms of time signals, speech analysis typically extracts
only periodicity and energy measures. Much more relevant information can be obtained
spectrally.

Periodic signals (e.g., vowels) are often analyzed in terms of sinusoidal components via
Fourier series. Sinusoids are signals with energy at only one frequency, but each practical
periodic signal xp(t) can be expressed as a linear combination of weighted sinusoids (noted
here as complex exponentials, for convenience of simpler mathematical notation):

00

xp(t) = L ck exp(j2nkt/T),
k=-oo

(2.8)

where T is the signal period and Ck is a (theoretically infinite) Fourier series of coefficients
defined as

J
T+ To

Ck = I=T
o

x/t) exp( -j21tkt/T)dt,

where To can be any constant. For the kth harmonic (multiple) of the fundamental frequency
liT, the complex-valued Ck notes the required amplitude and phase (see Equation (2.1» of
the sinusoidal component of frequency k / T Hz so that the sum of all the sinusoids equals
xp(t). Periodic signals have a discrete spectrum, with energy only at multiples of the
fundamental, where ICk 1

2 is the energy of the kth harmonic (see Figure 2.4).
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Figure 2.4 The time signal and discrete spectrum of a square wave (a simple periodic
signal). The spectral envelope is A sin(njT/2)/(rcjT).
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The role of the sinusoid or exponential in Equation (2.8) can be filled by other sets of
basis functions ¢k(t) as long as they have the property of orthogonality:

for all i =f- j.

2.3.1 Fourier Transform

The principle of expressing time signals as sums of weighted sinusoids can be extended
to aperiodic signals as well. Indeed, since all practical signals are of finite duration, we cannot
limit our discussion to theoretical, periodic signals. The Fourier transform of a general signal
x(t) is

X(f) = J:-oo x(t)exp(-j2nft)dt.

The Fourier transform is an invertible operation, with the inverse being

x(t) = J:-oo XU) exp(j27ift)df·

(2.9)

(2.10)

Thus no information is lost in these I: 1 reversible mappings. The transform of a filter's
impulse response is called its frequency response.

Signals symmetric about their time or frequency origin (e.g., x(t) = x( -t» are called
even, while antisymmetric signals (e.g., x(t) = -x( -t» are odd. If x(t) is purely real, e.g.,
with physical signals such as speech, X(f) is conjugate symmetric (X(f) = X*( -f) (its real
part is even and its imaginary part is odd), and the frequency response is typically viewed
only for positive frequencies.
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The Fourier series can be viewed as a special case of the Fourier transform, if we allow
X(f) to have impulses. Using the series coefficients Ck' the Fourier transform of a periodic
signal is

00

Xp(f) == L cklJ(f - kiT).
k=-oo

Such a discrete spectrum is a weighted sequence or train ofequally spaced impulses. From the
similarity ofEquations (2.9) and (2.10), we can infer that a periodic function in either the time
or frequency domain has a transform that is a weighted impulse train. Thus, a periodic
impulse train in time has a transform that is also a periodic impulse train. In particular, a
uniform train of impulses, each of unit area and spaced at intervals of T s, transforms to
another uniform impulse train, but with impulses spaced at intervals of 1IT Hz. This is an
example of the inverse relationship between time and frequency: signals compact in one
domain are proportionately spread out in the other.

Filtering or convolving two signals corresponds to multiplication of their Fourier
transforms, i.e., ify(t) = x(t) * h(t), then Y(f) == X(f)H(f). This property is exploited when
designing filters: a bandpass filter sets its response H(f) to unity within desired frequency
bands (ranges) and to zero for undesired frequencies. Another useful property of Fourier
transforms is that a differentiated time signal dx(t)ldt has a transform of j2njX(f).

2.3.2 Spectra and Correlation

The absolute value of a signal x(t)'s frequency response, IX(f)l, is called the
magnitude spectrum or simply the spectrum of x(t). For both filters and speech signals, the
phase part O(f) ofX(f) = IX(f)1 exp(jO(f» is often ignored as being much less important
(for applications) than the spectrum. For signals with finite energy, the power spectrum
lX(f)12 has a corresponding time-domain signal called the autocorrelation. Since
1X(f)12 = X(f)X*(f), the inverse Fourier transform of R(f) = lX(f)1 2 is the convolution
of x(t) and x*(-I), which in the case of real signals (X(I) = x*(t» is

r(t) = J:-oo x(r)x(t + r)dr. (2.11 )

Autocorrelation r(t) retains spectral information about x(t) but loses phase detail; it effectively
measures how similar x(t) is to itself under different delays.

2.3.3 Laplace Transform: Poles and Zeros

The Fourier transform, a function of a real frequency variable j", is sometimes extended
into two frequency dimensions via a Laplace transform:

X(s) = J:-oo x(t) exp( -st)dt,

where s is complex-valued, s == (J +[Ittf. Laplace transforms are primarily useful in
explaining the spectral behavior of a signal. Many practical signals have Laplace transforms
that are ratios ofpolynomials in s. For example, passive filters employing resistors, capacitors,
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and inductors connected in various series and parallel networks have input x(t) and output yet)
voltages and currents related by differential equations of the form

(2.12)

where y(k)(t) indicates the kth derivative of yet). Applying Laplace transforms to Equation
(2.12), a transfer function relating input and output is

(2.13)

The roots of the numerator and denominator polynomials are called zeros and poles,
respectively, because H(s) is zero at a zero frequency of the system and is infinitely large
at a pole frequency. Evaluating H(s) on the vertical axis (where (J = 0) of the s plane yields
the Fourier transform H(f). The magnitude IH(f)1 tends to dip or rise, respectively, as f
nears a zero or a pole (e.g., as f approaches 1", where s = (Jp + j2nJ;, is a pole or zero
location). Such deviations are most pronounced when the pole or zero is close to the vertical
axis and well away from opposite singularities (e.g., poles and zeros in proximity tend to
cancel each other 's effects).

2.4 CIRCUITS

In the past, most filters contained discrete components, e.g., resistors and capacitors. While
signal analysis for today's digital filters does not require an understanding of the physical
behavior of such components, in Chapter 3 it will be useful to model the vocal tract with such
traditional elements, and thus a brief introduction to circuit theory follows.

Electrical circuits or networks consist of interconnections of elements and subnetworks,
in which current flows from points of high voltage to points of low voltage (Figure 2.5). Often
a reference voltage of zero is called ground. A typical component is linked to the network
through wires at two or more port locations. Points at which components are connected are
called nodes, and the sum of all currents flowing into each node equals the sum of those
flowing out of that node (Kirchhoff's current law). If components are connected so that a
closed loop is formed among nodes (i.e., current can flow from a node through components
and back to the same node), the sum of voltage drops across the components in the loop is
zero (Kirchhoff's voltage law).

Figure 2.5 Simple RLC bandpass filters.
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For two-port elements (e.g., resistors) (transistors have three ports), it is common to
describe the relationship betweenthe current 1 flowing through the element and the amount of
voltage drop V from one port to the other. (In a case where the composition of a network is
unknown, it may be called a black box and is usually described via V-I relationships among
its ports.) By convention, V is obtained by subtracting the voltage at the port where current
leaves from the voltage at the other port. A resistor has a simple linear V-I characteristic:
V = IR, where R is a constant resistance with units of ohms. For a capacitor, I = C dVIdt,
and for an inductor, V = L dlfdt, where the capacitance C (in farads) and the inductance L
(in henries) are constants. In the latter cases, both voltage and current vary with time. Current
is said to lead voltage in a capacitor and lag it in an inductor, where the phase differences are
90° in the case of sinusoidal signals.

Using Laplace transforms, the V-I functions can be expressed in the frequency domain:
1 = CsV and V = LsI, since a time derivative multiplies the transform by s. Treating the ratio
of voltage to current as an impedance Z to current flow, Z equals R for a resistor, 1/sC for a
capacitor, and sL for an inductor. In RLC networks (i.e., circuits containing resistors,
inductors and capacitors), inductors have low impedance at low signal frequencies, while
capacitors have high impedance; the opposite occurs at high frequencies.

2.5 DISCRETE-TIME SIGNALS AND SYSTEMS

Physical signals (e.g., speech) are continuous in both time and amplitude; i.e., an analog xa(t)
varies continuously, taking on a value from a (theoretically) uncountably infinite number of
possible amplitudes at an uncountably infinite number of times t (i.e., amplitude and time
values are real numbers). However, since virtually all applications of speech processing
involve digital computers, which operate on discrete numbers at periodic clock cycles,
continuous signals must be converted into number sequences. A discrete-time sequence x(n)
is defined to have a real (analog) value for every (discrete) integer value of n. To obtain
a digital signal, the x(n) values must also be quantized in amplitude via an analog-to-digital
(AID) converter, which represents each real x(n) sample by a number selected from a finite
set; e.g., for an 8-bit AID converter, the set has 28 = 256 numbers. Representing a real-valued
sample by a digital sample adds distortion called quantization noise, which is inversely
proportional to the size of the set of possible digital numbers used to represent a signal. This
noise affects both signals and digital filter coefficients.

2.5.1 Sampling

The x(n) sequence is typically obtained by sampling xa(t) at periodic intervals T (e.g.,
clock cycles): x(n) = xa(nT) (Figure 2.6). If xa(t) is lowpass filtered before sampling so that
all its energy is below 0.51T Hz, xa(t) can be perfectly reconstructed mathematically from the
xa(nT) samples. (Reconstruction via a digital-to-analog (D/A) converter is imperfect due to
practical limitations.) The Nyquist theorem requires that the sampling frequency F, = liT be
greater than twice the highest signal frequency (having energy) to permit exact signal
recovery. Sampling xa(t) at uniform time intervals T is equivalent to multiplying xa(t) by a
uniform impulse train:

00 00

xs(t) = xa(t) L b(t - nT) = L xa(nT)b(t - nT).
n=-oo n=-oo
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Figure 2.6 The time and frequency displays for sampling a section of a signal.

Since multiplication in one domain (e.g., time) corresponds to convolution In the other
(frequency)

(2.14)

If Xa(f) is nonzero only for If I < 1/2T, there is no aliasing (overlapping) in Xs(f) of the
copies of Xa(f), which are repeated every IITHz. Thus Xa(f) (and hence xa(t) can be
recovered by a simple lowpass filtering ofXs(f) to eliminate all copies ofXa(f) except that at
zero frequency (i.e., the k = 0 copy in Eq. (2.14» (Figure 2.6). Bandpass signals can also be
efficiently sampled at low rates if the highest signal frequency is a multiple of the signal
bandwidth; aliasing is avoided when F, ~ 2W for such signals with no energy below F, Hz or
above F, + W Hz.

Although sampling is restricted to signals of finite bandwidth (i.e., lowpass and
bandpass), two basic continuous-time signals that contain high-frequency energy have
discrete-time versions defined in similar fashion (see Figure 2.3). The discrete-time analog
of a step u(n) is zero for negative n and unity otherwise. The analog of an impulse, a unit
sample £5(n), is zero except at n = 0, where it equals 1. A linear, shift-invariant filter is
completely described by its unit-sample response h(n). Passing a signal x(n) through a filter of
response h(n) corresponds to discrete-time convolution, which is defined with summation
replacing integration in Eq. (2.7), due to the discrete nature of the signals:

00

y(n) = x(n) * h(n) = h(n) *x(n) = L x(k)h(n - k).
k=-oo
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2.5.2 Frequency Transforms of Discrete-time Signals

For discrete-time signals, the Laplace transform is replaced by the z transform:

00

X(z) = L x(n)z-n,
n=-oo

(2.15)

where z is a complex frequency variable, usually defined in polar coordinates
(z = [z] exp(jw», because the regions of the z plane for which the series in Equation (2.15)
converges (i.e., sums to a finite value) involve circles in the z plane rather than the vertical
lines in the s plane of Laplace transforms. For example, for an exponential x(n) = anu(n)
(often called "dying" if lal < 1),

00

X(z) = L(az-1)n,
n=O

which is a power series that converges to 1/(1 - az- 1) if laz-11 < 1 or [z] > lal (the region
boundary is a circle of radius lal). As in the continuous-time case, passing a discrete-time
signal through a filter with unit-sample response h(n) corresponds to multiplying the z
transforms of the signal and h(n).

By evaluating the z transform on a circle of unit radius (z = exp(jw) in Equation (2.15»
in the z plane, the discrete-time Fourier transform is obtained:

00

X(dW
) = L x(n)e-j wn

n=-oo

because the vertical axis used in the s plane for continuous-time Fourier transforms maps into
the z plane unit circle. For x(n) obtained from the usual Nyquist sampling, the sand z planes
are related by z = exp(sT), which maps horizontal strips of the s plane of frequency width
1IT into the entire z plane (Figure 2.7). Continuous-time frequencies f are mapped linearly
into discrete-time radian frequencies t» by OJ = 2njT. In discrete-time filters, "high"
frequencies mean values of (JJ near tt rad since OJ = n corresponds to 112T Hz, the highest
frequency represented with a sampling period of T without aliasing. For signals with energy
above 1/2T Hz, aliasing corrupts X(z) so that X(s) cannot be recovered exactly. Other s ~ z
mappings exist that avoid aliasing (e.g., the bilinear transformation, used in digital filter

1m (z)
Im(s)

21trr

Re(s)

21trr

Re(z)

Figure 2.7 Illustration of a standard mapping between the sand z planes. The portion of
one strip of the s plane that corresponds to the inside of the unit circle in the z

plane is shaded.
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design [1]), but this book assumes z = exp(sT), which corresponds to simple time-domain
sampling and maps frequencies linearly.

Since the discrete-time Fourier transform is a continuous function of w, it must be
sampled for manipulation in digital computers. The discrete Fourier transform (DFT) serves
this purpose:

N-I

X(k) = L x(n) exp( -j2rrknlN).
n=O

(2.16)

Like the continuous-time Fourier transform, the OFT has an inverse of virtually identical
form:

N-I

x(n) = (liN) L X(k)exp(j2nknIN).
n=O

(2.17)

Equation (2.16) is called an N-point OFT because it accepts as input a sequence of only N
samples (indexed in time n from 0 to N - 1) and can be obtained from X(e JW) by uniform
sampling at W = Zttk1N for k = 0, 1, 2, ... , N - 1 (Figure 2.8). Due to the periodicity of
X(e JW), X(k) is also periodic, with period N. Intuitively, the reason for limiting the OFT input
to a finite range of N samples (which restricts the OFT to representing only a portion of an
arbitrary time signal) is that N frequency samples X(k), k = 0, I, 2, ... , N - I can only
model a signal with N degrees of freedom. Alternatively, sampling X(e JW) every Ztik]N rad
corresponds to convolving x(n) with a unit-sample train of period N; aliasing and loss of
accurate signal representation occur if x(n) is not timelimited to N samples. If x(n) is real­
valued, the N DFT samples are conjugate symmetric, and only values for
k == O. I. 2..... N 12 are normally displayed, since the other (N 12) - 1 samples are mirror
images.

2.5.3 Decimation and Interpolation

Sometimes, speech processing manipulates one or more bandlimited portions of the
discrete-time speech signal, instead of operating on the fullband speech. In such cases, it is
computationally efficient to reduce the sampling and storage rate of the reduced-bandwidth
signals. Since AID conversion is relatively expensive compared to digital filtering, sampling
rates are typically changed by manipulating discrete-time signals rather than by sampling a
continuous-time signal several times at different rates.

Reducing the sampling rate of a signal x(n) by a factor M is called M: 1 decimation;
increasing it is called I:M interpolation. To decimate x(n), we delete M - lout of every M
samples, i.e., y(n) = x(Mn). This is equivalent to having sampled xa(t) originally every MT s

o
Rc(z)

Figure 2.8 The frequencies at which the z transform is sampled to
obtain an N -point discrete Fourier transform are noted in the case
N = 8.
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(assuming that x(n) = xa(nT». Aliasing problems arise unless x(n) is sufficiently lowpass; in
the range Iwl ~ 7[, X(e j W) must have energy limited to Iwl ~ 7[/M to avoid aliasing during
M: 1 decimation. This is readily seen by viewing the spectral effects of multiplying x(n) by a
unit-sample train of period M and then compressing the time axis: the first operation places
copies of X(e jW) every 2n/M rad, and the second expands the w axis by a factor M (Figure
2.9). Typically, x(n) is lowpass filtered prior to decimation since it is preferable to lose high­
frequency information than to corrupt (via aliasing) information in the decimated signal.

Raising the sampling rate via interpolation is useful primarily to reconstruct fullband
signals from several decimated signals (e.g., after they have been individually processed). To
interpolate x(n) by a factor M, a series of M - 1 zero-valued samples is inserted after every
original sample; that is, the time axis is expanded:

y(n) = {~(n/M) for n = 0, ±M, ±2M, ±3M, ... ,
otherwise

Spectrally, interpolation compresses the co axis by a factor M: Y(e jW) = X(e j wM ) (Figure
2.10). Assuming that interpolation should be the inverse of decimation (i.e., except for the

(a)
J(n)

2Jr
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o

din) = :c(n)i(n)
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Figure 2.9 Decimation in the time and frequency domains: (a, b) a short section of a
speech signal and its Fourier transform; (c, d) the same signals after lowpass
filtering to preserve only (1/ M)th of the original bandwidth (M = 3 is used
to illustrate); (e, f) multiplying x(n) by a uniform sample train i(n) of period
M aliases M copies of X(eiW

) ; (g, h) the time axis is compressed and the
frequency axis expanded, both by the factor M.
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Figure 2.10 Interpolation in the time and frequency domains: (a, b) a signal x(n) and its
Fourier transform (for convenience, the final signals in Figure 2.9 are used);
(c, d) expanding the time axis and compressing the frequency axis by a
factor N (here, N = 4); (e, f) lowpass filtering with a cutoff of 1[/N rad
preserves the shape of the original x(n).

lowpass filtering prior to decimation to avoid aliasing, decimation followed by interpolation
by the same factor should not change a signal), the zero-insertion operation must be followed
by a lowpass filter with cutoff of 1t/ M rad. This interpolation filter smooths the waveform, to
have the same shape as the signal before interpolation. Viewed in terms of analog signals,
interpolated discrete-time signals are oversampled beyond the Nyquist rate by a factor M.

The prior discussion assumes that M is an integer. To change sampling rates by a
fractional factor, e.g., M / N, a signal is first interpolated (M - 1 zeros inserted after each
sample), then lowpass filtered (with a cutoff of n t M or ll/N, whichever is smaller), and
finally only every Nth sample is retained.

2.6 FILTERS

Filters are the basic elements of most speech processing systems. In coding and recognition,
speech analysis often selects, attenuates, or amplifies energy in certain frequency bands.
Speech synthesizers frequently consist of filters, each simulating a vocal tract resonance. For
the purposes of this book, a filter is a linear device that transforms an input signal into an
output signal. A simple amplifier is a degenerate case of a filter that (theoretically) preserves
phase and raises equally the amplitudes of all frequency components of an input signal.
Nonlinear devices, e.g., rectifiers (which yield the magnitude of a signal, y(t) = Ix(t)l), are
used in some processing, but are not considered filters.
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2.6.1 Bandpass Filters

For many applications, an ideal filter would pass certain frequencies without modifica­
tion (i.e., have a gain of 1) and totally eliminate other frequencies (a gain of zero). Although
such a filter cannot be realized physically, close approximations to the ideal are possible.
Bandpass filters are usually designed so that (a) the gains in the passbands are within a certain
percentage of unity, (b) the gains in the stopbands are below a certain small amount, and (c)
the widths of the transition bands orftlter skirts (the frequency ranges between stopbands and
passbands) are small. Better filters have skirts with steeper slopes. Slopes are often expressed
in decibels/octave (dB/oct), where octave is a doubling of frequency and decibel is a
logarithmic unit of amplitude. An amplitude factor of A (e.g., a filter that amplifies a 6 V
input into a 6A V output) corresponds to 20 10glOA dB. When dealing with energy or power,
which varies as the square of amplitude, a factor of B = A2 means 10logloB dB since
log(A 2) = 210gA. Logarithmic amplitude scales are common for representing signals of large
dynamic range.

The frequency selectivity of a bandpass filter is sometimes noted by Q, the ratio of the
center frequency of the passband to its bandwidth. Bandwidth is usually measured at half­
power points, where the filter gain is 1/-J2 of its maximal gain (i.e., 3 dB lower); i.e., if
IH(h)1 = C at the center h of the passband and the spectrum falls monotonically to a value
of C/ -J2 at fi and fi (below and aboveh, respectively), the bandwidth is (fi - fi) Hz.

The simplest bandpass filter is a three-component RLC filter with the elements in a
single path (in series or cascade) or with all elements connected to two nodes (in parallel)
(see Figure 2.5). If we treat circuit voltage as an input and current as an output, gain is largest
in a series circuit when impedance is minimal; resonance is said to occur at this frequency.
(For parallel circuits, the current is viewed as input, and resonance occurs when impedance is
maximal.) To evaluate impedance in terms of frequency f, replace s in the impedance
formulas of Section 2.4 with j2nf. In series, the circuit impedance is Z, =
R + j2nfL + 1/(j2nfC), while in parallel the relationship is described in terms of inverse
impedances (admittances):

1 1 1
Yp = Zp = R+j2njL +j2njC.

The magnitudes of z, and Yp are minimal near f = (2nv'LC)-1.

2.6.2 Digital Filters

Continuous-time filters contain RLC elements, transistors, diodes, and other analog
components. They tend to be bulky, hard to design precisely, and not easily modified.
Implementations of discrete-time systems via digital computers, on the other hand, are
increasingly compact. Advances in VLSI (very-large-scale integration) design continue
unabated, following an informal Moore s Law: a doubling of available chip capacity about
every 18 months. Digital processing is limited in precision only by the number of bits
assigned to each signal sample, and programmable filters are easily modified. Most digital
filters consist of only three elements: (1) an adding device that sums two inputs every clock
cycle, (2) a multiplier that scales its single input by a constant factor every cycle, and (3) a
delay that simply passes its input on as output after one cycle (Figure 2.11).
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Figure 2.11 A digital bandpass filter: (a) implementation with adders, multipliers, and
delays; (b) frequency responses of the digital filter (solid line) and a
continuous-time counterpart (dotted line).

Digital filters are typically displayed as flow diagrams with an input signal at a port on
the left and an output on the right. Each multiplier appears as a circle or an arrow, labeled with
the value of the multiplier coefficient or scale factor. An addition is shown as a circle with a
plus sign or simply as a node with two (or more) inputs. A node with more than one output
signifies that the signal is sent down multiple paths. A delay is usually noted as a box or arrow
labeled z', i.e., the z transform of a delayed unit sample (the unit-sample response of this
delay "filter"). The transfer function relating the z transform of a filter's input to that of its
output is thus easily determined from simple network evaluation.

2.6.3 Difference Equations and Filter Structures

Signal behavior in continuous-time filters is often represented by differential equations
(e.g., Equation (2.12) because of the time-differential relationships of voltage and current in
capacitors and inductors. These lead to transfer functions of ratios of polynomials in s

(Equation (2.13», which in tum facilitate spectral interpretation via poles and zeros. The
parallel situation for discrete-time signals involves difference equations of the form

N M

y(n) == L akY(n - k) + L bkx(n - k),
K=) k=O

where output y(n) is the sum of N delayed and weighted output samples and M + I delayed
and weighted input samples. The order of the filter is the maximum of M and N, the number
of feedforward and feedback paths. After being delayed k samples but before summing, each
input and output sample is multiplied by a constant coefficient, ak or bk, respectively. Figure
2.12 shows two digital filters whose direct-form structure follows immediately from Equation
(2.18). The series of delays is sometimes called a delay line, and the multiply branches are
taps. In theory, filters in cascade can be reordered without affecting the overall input-output
relationship because time convolution is commutative. Exchanging the order of the two
subfilters in Figure 2.12(a) leads to the more efficient structure in Figure 2.12(b), which uses
fewer delay elements or memory, without affecting the overall filter response.

In practice, however, the effects of quantization noise are nonlinear, and filter ordering
can be important. The noise arises from clipping or truncating the results of addition and
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(a) (b)

Figure 2.12 Two direct-form implementations of a fourth-order digital filter: (a) follow­
ing the difference equation exactly; (b) with minimal use of delay elements.

multiplication to fit into finite-length computer registers. For example, the product of two 8­
bit numbers contains 16 bits, whose least significant 8 bits must be dropped to fit into an 8-bit
word for the next filter step. Distortion effects increase with the order of the filter. Thus, to
minimize filter sensitivity to digital quantization, most applications strive to use first- and
second-order filters. Second-order filters are necessary to keep the arithmetic simple because
real-valued signals often have complex poles and zeros that occur in conjugate pairs; pairing
them up in second-order filters allows all multipliers to be real.

High-order filters can be realized with low-order subfilters by placing the latter in
cascade or in parallel (Figure 2.13). By taking z transforms of Equation (2.18), we obtain the
transfer function of a general digital filter:

(2.19)

where ao is assumed to be 1 for simplicity. By factoring the numerator and denominator
polynomials into first- and second-order polynomials with real coefficients, H(z) can be
expressed as the product of ratios of polynomials of order no greater than two; e.g., if
M=N=4,

H(z) =



Section 2.7 • Probability and Statistics 29

Y(I1)

xtn)

Figure 2.13 Examples of a fourth-order digital filter, implemented using second-order
subfilters (a) in cascade and (b) in parallel.

Alternatively, a parallel set of second-order filters can be selected by factoring only the
denominator and determining individual low-order polynomials for the numerator by a
technique called partial fraction expansion [4]:

H(z) = +

Some applications require passing or attenuating a large number of equally spaced
frequencies, e.g., harmonics in a periodic signal. Filters with many equally spaced passbands
and stopbands are known as comb filters. In discrete-time filters, a delay line with M delays
but only two taps, one at each end of the delay line, yields a simple approximation to a comb
filter: H(z) = 1 - z-M has M zeros in the z plane, all on the unit circle and uniformly spaced
every 2n/M rad. Thus a signal passing through such a filter will have energy attenuated at
frequency multiples of 2n/M rad.

2.7 PROBABILITY AND STATISTICS

Communication is the transmission of information from one place to another. The receiver
may have prior knowledge or statistics about the sent information, but the latter is not
completely predictable. Describing information in terms of signals involves aspects of
probability theory. Indeed, all aspects of speech communication have phenomena that are
best determined probabilistically:
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(a) In speech production, articulator muscles move in response to thousands of neural
commands, which can only be coarsely related to the speech message being
communicated; no two speech signals are exactly alike, due to minute statistical
variations in muscle commands and execution.

(b) The auditory system converts acoustical vibrations from speech into neural firings
in the inner ear in a partly random fashion.

(c) In coding, speech signals must be quantized for digital representations. Quantiza­
tion effects are usually modeled as effectively adding random noise to the original
signal. Modeling the time behavior and amount of energy in such noise requires
elementary probability theory.

(d) Speech analysis (e.g., for automatic recognition) often requires averaging data for
more efficient and robust speech representations. Measuring the variability of such
data also helps to determine their reliability for use in making recognition
decisions. Such estimation of averages and variances involves simple statistics.

(e) Speaker recognition can involve decisions based on statistics of many parameters
extracted from speech signals. To measure the interdependence of these parameters,
the concepts of joint and conditional probability are important.

2.7.1 Probability Densities and Histograms

A basic probability event involves an experiment that may have one of N possible
outcomes. On any given trial of the experiment, the outcome is unpredictable but can be
described statistically; e.g., when a fair die is tossed, there is a one-sixth chance for each of
the six faces to appear. Letting X be the number of the face that appears, the probability
density function (pdf) describing this experiment (Figure 2.14) is

{
1/6

Prob[X = x] = Px(x) = 0
for x = 1,2,3,4,5,6,
otherwise.

X is called a random variable, and the sum of all its probabilities is unity.
In many physical systems, the pdf of an experiment is not known but must be estimated

from observations. If the experiment is repeated enough times, a statistical histogram
approximates the actual pdf. A histogram plots the frequency of occurrence of an event as
a function of some index of the event; in the case ofa random variable X, X itself is the index.
If a die is tossed exactly 6 times, the probability that each face appears once is less than 2%
(5!/65) ; thus with few trials, a face might be incorrectly assumed to never occur. A histogram
based on few trials is a poor approximation to the pdf. If, on the other hand, the die is tossed

1
6'

x
23456

Figure 2.14 Probability density function for a toss of a fair die.
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1000 times, it is very likely that each face will appear about 167 times (plus or minus a few), a
more accurate percentage estimate.

In speech processing, the set of possible outcomes is often very large, unlike the simple
six-outcome case of the die. A speech measurement at a given time (e.g., energy near a certain
frequency) has a theoretically infinite number of possible values. Many probability densities
are defined for continuous random variables, which may take on values of any real number, as
opposed to discrete variables, which have nonzero probability only at discrete intervals (e.g.,
integers 1-6 in the die case). For a continuous random variable X, the probability ofX having
a specific outcome is usually infinitesimally small; so we talk instead of the probability of X
occurring in a finite range called a bin (c5):

J
X+b

Prob[x ::: X < x + 15] = x=x Px(~)d~.

In practice, the finite resolution of all measuring devices limits the number of outcomes
for continuous signals such as speech; for example, a measurement stored in an 8-bit register
has only 256 (= 28) possibilities. A histogram with such a large number of values on the
horizontal axis is hard to interpret. In such cases, the axis is usually compressed so that each
plotted point represents a set of similar outcomes. For example, in the 8-bit case, the least
significant 2 bits might be ignored, averaging contiguous sets of 4 points to plot only 64
values in the histogram. As the bin width increases from 1 to 4, the scale of the vertical axis
(relative percentages) increases proportionately and the histogram becomes smoother in
appearance. Bin widths are often 5-100/0 of the range, so that 10-20 classes are displayed.

2.7.2 Averages and Variances

The two most useful statistics of a random variable X are its mean or average, X, and its
variance, ai. X indicates the most typical value for X, and a} measures how much variation
X exhibits. Both values are defined in terms of a weighted average (weighted by the
probability density), where E(g(X» = g(X) is the average or expected value of a function
g of the random variable X. Consider a discrete pdf Px(x) that is nonzero only at integer
values of X:

00

E[g(X)] = g(X) = L g(i)px (i) ,
;=-00

(2.20)

where g(i)Px(i) is evaluated for all possible integers i and the products summed. To calculate
X from Equation (2.20), we simply use the identity function g(X) = X; for the variance a},
let g(X) = (X - X)2. Thus the mean is the probability-weighted average of the set of
outcomes for X, and the variance is a weighted average of the square of the deviation of X
from its mean. The square root of the variance is called the standard deviation ax.

2.7.3 Gaussian Probability Density

Many physical measurements of probabilistic systems (e.g., speech production) tend to
have histograms with most values relatively tightly clustered about a mean, with rapidly
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.r
Figure 2.1S Plot of the Gaussian probabil­
ity density. The peak value coincides with the
mean, and one standard deviation is noted.

decreasing probability as the distance from the mean increases. Such systems are often
modeled well by the Gaussian density (Figure 2.15)

(
- 2)1 -(X -X)

PX(X) =~ exp 2 2 '
2nax ax

which has the property that X is within one standard deviation of the mean on 68% of the
trials and 95% within ±2ax. Each Gaussian has the nice property of being fully specified by
just two numbers, its mean and variance. Although the Gaussian density employs a
continuous random variable, it is easily applied to discrete random variables by dividing
up the range for X into uniform bins (e.g., every y units ofX) and defining a discrete random
variable Z with density

J
Z+Y/ 2

pz(z) = Px(ex)dex.
a.=z-y/2

2.7.4 Joint Probability

Often probabilistic events are related to one another; e.g., if a speech signal has large
amplitude at time t I' it is likely to continue to be intense for times Ii soon afterward. Some
events, however, have no effect on one another, and knowledge of one event yields no
information about the other; i.e., the events are independent. The relationship between
probabilistic events is often described by a joint probability: Prob[A, B] is the likelihood of
events A and B both occurring.

The effect of one event on another is measured via conditional probability: Prob[AIB] is
the probability of event A, given that event B occurs. A joint probability can be noted as the
product of a conditional probability and the probability of the event the first probability is
conditioned on:

Prob[A, B] = Prob[AIB]Prob[B] = Prob[BIA]Prob[A].

Bayes' rule follows directly:

[ ]
_ Prob[BIA]Prob[A]

Prob AlB - Prob[B] .

If events A and B are independent,

Prob[AIB] = Prob[A] and Prob[BIA] = Prob[B],

Prob[A, B] = Prob[A]Prob[B].

These relationships hold as well for random variables.
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2.7.5 Noise
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In all electrical circuits and transmission systems, signals are corrupted by noise
distortion, similar in effect and nature to the quantization noise in digital filters. Noise is
usually modeled as a random signal that is added to the signal of interest; e.g., speech
transmission over telephone lines typically is subject to additive, continuous low-level
background noise as well as other dynamic distortions.

Probabilistic signals such as noise are extensions of random variables called random
processes. Such a process X(t) can be viewed either as a randomly chosen time signal or as an
infinite series of random variables indexed on time t. In speech applications, noise is usually
viewed as an additive signal, independent of the speech signal. Measuring the energy (as a
function of frequency) in the noise component of a signal, relative to the energy in the speech
part, is of prime interest. Fourier transforms cannot directly handle random signals, but
instead operate on autocorrelations of such signals. The autocorrelation of a stationary
random process X(t) is

Rx(r) == E[X(t)X(t + r)l,

where the expectation E treats X(t) and X(t + r) as random variables whose joint density can
be obtained. Rx ( t) is a deterministic function and has the same interpretation as the
autocorrelation of deterministic signals (Equation (2.11 ». Its Fourier transform, the power
spectrum Sx(!), can be intuitively viewed as the square of the magnitude of the spectrum ofa
typical random signal.

Many cases of noise are modeled as white noise, W(t), which has a flat power spectrum
(i.e., constant Sx(!», with equal energy at all frequencies. The inverse Fourier transform of a
constant is an impulse (R Jt'(r) = A<5(r», which implies that samples of white noise at different
times are uncorrelated and independent. Due to the mathematical simplicity of white noise,
both quantization noise created in a speech coder and channel noise added during transmis­
sion are often viewed as white noise, even though such spectra are bandlimited in practice.

Integrating the power spectrum over a frequency range of interest yields a measure of
the average energy in a random signal at those frequencies. The ratio of the average energy in
an uncorrupted signal (e.g., speech prior to coding or transmission) to the average energy in
noise that later distorts the signal is called the signal-to-noise ratio (SNR).

2.8 SUMMARY

Further detail on the subjects introduced in this review chapter can be found in references on
the following topics: digital signal processing [1,2], probability [3], signals and systems [4],
and linear algebra (matrices) [5].



Speech Production and
Acoustic Phonetics

3.1 INTRODUCTION

Speech serves to communicate information from a speaker to one or more listeners.
Mechanisms to produce speech in humans have evolved over many years, yielding a vocal
system that is efficient in this information transfer and allows the speaker to use a minimum
of effort. The speaker produces a speech signal in the form of pressure waves that travel from
the speaker's head to the listener's ears. This signal consists of variations in pressure as a
function of time and is usually measured directly in front of the mouth, the primary sound
source (although sound also comes from the nostrils, cheeks, and throat). The amplitude
variations correspond to deviations from atmospheric pressure caused by traveling waves. The
signal is nonstationary (time-varying), changing characteristics as the muscles of the vocal
tract contract and relax. Speech can be divided into sound segments, which share some
common acoustic and articulatory properties with one another for a short interval of time.
Since the speaker wishes to produce a sound sequence corresponding to the message to be
conveyed, most major vocal tract movements have a voluntary basis. For each sound, there is
a positioning for each of the vocal tract articulators: vocalfolds (or cords), tongue, Ups, teeth,
velum, andjaw (Figures 3.1 and 3.7). Sounds are typically divided into two broad classes: (a)
vowels, which allow unrestricted airflow in the vocal tract, and (b) consonants, which restrict
airflow at some point and have a weaker intensity than vowels.

After a preparatory inhalation of air into the lungs, speech is produced as air is exhaled
(speech while inhaling is very rare [1]). Changes in articulatory positions influence this
pulmonic egressive airstream (so-called because the air leaves the lungs). Speech production
can be viewed as a filtering operation in which a sound source excites a vocal tract filter; the
source may be either periodic, resulting in voiced speech, or noisy and aperiodic, causing
unvoiced speech. The voicing source occurs in the larynx, at the base of the vocal tract, where
airflow can be interrupted periodically by vibrating vocal folds. The pulses of air produced by
the abduction and adduction (opening and closing, respectively) of the folds generate a
periodic excitation for the vocal tract. Roughly proportional to the glottal area, the pulse

35
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Nasal Cavity
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Figure 3.1 The speech organs. (After Sonesson [3], 1968, "The
functional anatomy of the speech organs," Manual ofPhonetics, B.
Malmberg [North Holland: Amsterdam].)

volume (vs time) resembles half a sine wave, with the glottal closure more abrupt than its
opening. Small deviations from a periodic, smooth pulse waveform (due to nonlinearities in
the vocal tract) are likely an aspect of the naturalness of human speech (that synthesizers have
difficulty replicating) [2].

Unvoiced speech is noisy due to the random nature of the signal generated at a narrow
constriction in the vocal tract for such sounds. For both voiced and unvoiced excitation, the
vocal tract, acting as a filter, amplifies certain sound frequencies while attenuating others.

As a periodic signal, voiced speech has spectra consisting of harmonics of the
fundamental frequency of the vocal fold vibration; this frequency, often abbreviated FO, is
the physical aspect of speech corresponding to perceived pitch. The harmonics are energy
concentrations at multiples of FO. A truly periodic signal has a discrete-line spectrum, but
since the vocal tract changes shape almost continually, voiced sounds are instead only locally
quasi-periodic (almost periodic). Whether or not the speech signal is voiced, its character­
istics (e.g., spectral amplitudes) are often relatively fixed or quasi-stationary over short
periods of time (tens of milliseconds) as one sound is produced, but the signal varies
substantially over intervals greater than the duration of a distinct sound (typically 80 ms).

Time waveform displays of speech (Figure 3.2) are used to discover aspects of the
signal, e.g., its periodicity, the durations and boundaries of individual sounds, and amplitude
relationships in sound sequences. Several important aspects of speech can be noted: (a) the
quasi-periodicity of voiced speech during vowels and some consonants; (b) the wide range of
amplitudes and frequency content in different sounds, e.g., vowels with large, low-frequency
waveforms and fricatives with weak, high-frequency signals; (c) the tendency of the signal to
gradually change pattern between sounds. Speech is not a sequence of steady-state sounds,
abruptly changing from one to the next. The transition between most pairs of sounds is quite
gradual; the signal slowly changes from the characteristics of one sound to those of the next.
Even in cases of relatively sudden transitions, additional small signal changes often occur
just before or after the abrupt discontinuity. Changes in the shape of the speech signal,
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Figure 3.2 A speech signal corresponding to the words
"the goo...... Each plot shows successive 100 ms
segments.
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whether gradual or abrupt, result from movements of the vocal tract articulators, which
rarely stay fixed in position for more than 40 ms at a time (except perhaps in careful, slow
speech).

This chapter is limited to human speech; a broader class of vocalizations includes
sounds from animals and infants, which will not be discussed here. Section 3.2 describes the
articulators; Section 3.3 explores the relationships between vocal tract configurations and the
sounds they produce. Section 3.4 discusses the acoustic properties of phonemes. Section 3.5
details the mathematics relating speech signals and spectra to models of speech production;
Section 3.6 formulates practical digital versions of these models. Section 3.7 addresses the
effects of context on human speech production, and Section 3.8 examines intonation.

3.2 ANATOMY AND PHYSIOLOGY OF THE SPEECH ORGANS

Unlike the ear, which has evolved expressly for hearing, organs used in speech production
share speech with other body functions (breathing, eating, and smelling) [3-6]. The multiple
roles of these organs suggest that they may not have evolved to be as optimal a source (in a
communication sense) as might have occurred if they were dedicated to speech. (To
accommodate the complexities of speech, the human vocal tract is less efficient in breathing
and eating than that of our ancestors.)

In electronic communications, an optimal source creates a signal with the least energy
and shortest duration possible to convey information reliably, subject to the bandwidth and
noise constraints of a transmission channel. Many parallels exist between electronic and
human speech communication. Much of speech production can be interpreted in commu­
nication terms of minimizing effort ("energy" and time, in some sense), while maximizing
perceptual contrast [7]. The bandwidth of human speech communication is approximately the
frequency range up to 7 kHz, because both production and perception organs are most
efficient at these low frequencies.
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3.2.1 The Lungs and the Thorax

The speech organs can be divided into three main groups: lungs, larynx, and vocal tract
(while the term vocal tract can refer to the whole system, our use includes only the
supralaryngeal articulators) (Figure 3.1). The lungs are the source of an airflow that passes
through the larynx and vocal tract, before leaving the mouth as pressure variations
constituting the speech signal. Situated in the chest or thorax cavity, the lungs primarily
serve breathing, inspiring and expiring a tidal volume of air (about 0.5 liter) every 3-5 s at
rest. Normal exhaling takes about 60% of each breathing cycle. Breathing is accomplished
primarily with the diaphragm at the bottom of the thorax; the contraction of the diaphragm
expands the lungs, and relaxation of the diaphragm allows the elastic recoil of the lungs and
ribs to expel air. Intercostal (rib) and abdominal muscles also aid breathing: the external
intercostals pull the rib cage up and outward for inhaling, and internal intercostal muscles pull
the ribs together to help exhalation. (The internal muscles of each organ lie entirely within the
organ, whereas its external muscles connect the organ to other organs.) Airflow patterns differ
for speaking and for normal breathing. Since all sounds in English (and most sounds in
virtually all languages) are formed during expiration (egressive sounds), it is more efficient to
spend greater time exhaling than inhaling-typical inputoutput ratios are 1: 10, but they can
be up to 1:30 in long-winded cases [4]. Speech while inspiring (e.g., gasps of surprise, infant
cries) is much less efficient than egressive speech [8].

Much rarer ingressive sounds (e.g., clicks) are caused by inward airflow due to sucking
actions (such as kissing) [1,9, 10]. Closing off a section of the vocal tract at two locations and
then causing the volume in such a cavity to increase creates a drop in pressure for the cavity
with respect to the outside air. An abrupt release of the closure between the cavity and the
outside air allows a sudden inward air movement causing a sound burst. Ejectives follow an
opposite path: raising the larynx in such a closed system causes pressure build-up prior to an
oral release [11].

Sound amplitude increases with airflow rate. To produce speech of several seconds,
more than 0.51 (500 crrr') of air must be expelled. Typical resting lung volume is about 4-5 I
for an adult male, of which about 1-2 residual liters cannot be expelled. The maximal
difference (vital capacity) between fully inflated and deflated lungs is about 51 in adult males
(4 I for women) [12]. Ordinary speech employs up to half the vital capacity, while very loud
speech uses as much as 80%. The volume velocity of air leaving the lungs is controlled by
chest and abdominal muscles to be relatively constant at about 0.21/s during sustained
sounds. This may require contraction of inspiration muscles during the first part of a long
speech expiration (to delay lung collapse). More typically, utterances are short enough so that
lung recoil need not be checked. Contracting expiration muscles can force air out past normal
breathing levels for long utterances.

Conversational speech requires a relative lung pressure of about 10em H20 (pressure is
often measured in terms of the height of a column of water in an inverted vacuum tube
suspended in a pool-roughly the pressure needed to blow into a straw immersed in such a
depth of water). This compares to 1-2 em H20 during normal breathing. Even very loud
speech sounds have a maximum pressure deviation of only about 20 ern H20 (about 2 kPa),
which is very small compared to atmospheric pressure (14.7Ib/in2 or 976cm H20 at sea
level, caused by the force of the atmosphere pulled by gravity toward the Earth; such pressure
diminishes to half at 5.5 km altitude). (Aerodynamic power in speech is about 1W,
approximately 1% of the metabolic power of the body.) While air pressure in the lungs
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stays relatively constant during an utterance, airflow varies significantly due to time-varying
obstructions in the larynx and vocal tract.

Starting from a phonation threshold pressure (the minimum lung pressure to maintain
voicing), speech intensity increases 8-9 dB per doubling of excess pressure (with 2-3 dB of
this due to less symmetry in glottal waveshape) [13]. A similar increase follows a doubling of
FO, if pressure is proportional to the threshold. Vowel amplitude is also a function of the first
resonance bandwidth and the spectral tilt of the vocal fold excitation [14].

3.2.2 Larynx and Vocal Folds (Cords)

Normal breathing creates little audible sound because air expelled by the lungs passes
unobstructed through the vocal tract. As pressure varies, sound occurs when the airflow path
is narrowly constricted or totally occluded, interrupting the airflow to create either turbulent
noise or pulses of air. The source of most speech occurs in the larynx where vocal folds can
obstruct airflow from the lungs (Figure 3.3). The larynx is a framework of four cartilages
(thyroid, cricoid, arytenoid, and epiglottis) joined by ligaments and membranes; it connects
the lungs to the vocal tract through a passage called the trachea (Figure 3.1). About 12 em
long and 1.5-2 em in diameter, the trachea divides into two bronchial tubes for the lungs. The
epiglottis serves to cover the larynx when food is intended to descend the alimentary tube to
the stomach. Within the larynx are the vocal folds, a pair of elastic structures of tendon,
muscles, and mucous membranes that lie in an anterior-posterior direction behind the Adam S
apple (thyroid cartilage) [4]. The vocal folds are typically 15 mm long in men and about
13mm in women, weigh about 1g each, and vibrate about 1 mm. By means of various muscle
contractions, the vocal folds can be varied in length and thickness and positioned in different
configurations.

The anterior ends of the vocal folds are attached together to the thyroid cartilage, but the
posterior (rear) ends are connected to two individual arytenoid cartilages, which can rock and
slide so as to abduct or adduct the vocal folds. During normal breathing, the vocal folds
remain sufficiently parted to allow free air passage without creating sound (for heavy
breathing, they abduct farther for maximal airflow). If they are adducted sufficiently, airflow
may be hindered enough to create a turbulent noise at the glottis, the variable opening

Thyroid
Cartilage

True
Vocal
Folds

Figure 3.3 Larynx cross-section as viewed from the front.
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between the vocal folds (about 8 nun wide at rest). Speech arising from such noise is called
whisper or aspiration and is similar to sighing (it also corresponds to the phoneme Ihl in
Table 3.1). Noise can be generated by the same mechanism farther up the vocal tract, at a
narrow constriction involving either the tongue and the palate (roof of the mouth) or the lips
and teeth. In such cases, frication noise generates fricative sounds, which are distinguished

TABLE 3.1 English phonemes and corresponding features.

Phoneme Manner of Place of Voiced? Example
(IPA symbols) articulation articulation word

vowel high front tense yes beat
vowel high front lax yes bit

e vowel mid front tense yes bait
e vowel mid front lax yes bet
IE vowel low front tense yes bat
0. vowel low back tense yes cot
:) vowel mid back lax rounded yes caught
0 vowel mid back tense rounded yes coat
U vowel high back lax rounded yes book
u vowel high back tense rounded yes boot
/\ vowel mid back lax yes but
3" vowel mid tense (retroflex) yes curt
a vowel mid lax (schwa) yes about
o.j (0.1) dipthong low back~ high front yes bite
:)j(:)I) dipthong mid back~ high front yes boy
o.w(o.U) dipthong low back~ high back yes bout

glide front unrounded yes you
w glide back rounded yes wow

liquid alveolar yes lull
liquid retrofax yes roar

m nasal labial yes maim
n nasal alveolar yes none
n nasal velar yes bang

f fricative labiodental no fluff
v fricative labiodental yes valve
(J fricative dental no thin
s fricative dental yes then

fricative alveolar strident no sass
z fricative alveolar strident yes zoos

f fricative palatal strident no shoe

3 fricative palatal strident yes measure
h fricative glottal no bow

p stop labial no pop
b stop labial yes bib
t stop alveolar no tot
d stop alveolar yes did
k stop velar no kick
g stop velar yes gig

tf affricate alveopalatal no church

d3 affricate alveopalatal yes judge
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from whisper in having mainly high-frequency energy (e.g., "Shhh!"), A noise source
primari ly excites the portion of the vocal tract in front of its source constriction, and the
shorter cavities excited in frication lead to higher frequencies than for whisper. All sounds
involving noise are aperiodic.

If the vocal tract or glottis is closed completely, airflow ceases and no sound emerges. A
class of sounds called stops or plosives utilizes such airflow interruptions of 20-150 ms, with
difTerent acoustic aspects depending on whether the closure occurs at the glottis (vocal folds),
in the vocal tract (tongue against palate; e.g., It/), or at the lips (e.g., Ip/). With the chest
muscles continuing to attempt to expel air, pressure builds behind the closure until it is
released by opening the occlusion.

3.2.2.1 Vocal fold motion during voiced sounds. Fricative sounds employ a narrow
vocal tract constriction, while plosive sounds close and release a full occlusion. A third and
most important class of sounds is the sonorant sounds, which excite the vocal tract through
periodic vocal fold vibration (e.g., li,m/). Air leaving the lungs in sonorants is rapidly
interrupted by periodic closing and opening of the vocal folds; the rate of vibration is the
fundamental frequency (FO). The fundamental period or pitch period between successive
vocal fold closures, To = liFO, has an average value that varies with the size of the speaker's
vocal folds, roughly LI1.7 ms, where L is the length (in nun) of the membranous portion of
the folds (the nonvibrating, cartilagenous portion remains about 2 rom throughout life) [15].
Thus, infants have very short periods (L = 2 at birth), adult males long periods. (Again, the
use of the term "period" does not indicate true repetition, but merely quasi-periodicity over
intervals of tens of ms.)

Phonation (vibration of the vocal folds) occurs when (a) the vocal folds are sufficiently
elastic and close together, and (b) there is a sufficient difference between subglottal pressure
Psub (below the glottis) and supraglottal pressure Psup (above the glottis). Unlike voluntary
muscle actions that occur in stop closures, vocal fold vibration is caused by both
aerodynamics and the elasticity of muscle tissue, and is explained by the myoelastic
aerodynamic theory of voicing [16]. Constant Psub causes air to flow rapidly through the
narrow glottal constriction of adducted (but not fully closed) vocal folds. Voicing typically
uses Psu b = 5-15 em H20 and peak glottal airflow of 250-750 crrr' Is [17]. While fricatives
employ a fixed vocal tract constriction, glottal constrictions usually involve elastic vocal
folds, which move in response to airflow (Figure 3.4). A negative pressure develops in the
glottis due to a Bernoulli force and closes the vocal folds in a sucking action.

The force can be explained in terms of conservation of energy. Air flowing through a
tube has a constant sum of kinetic and potential energy at all points in the tube. Potential
energy is proportional to air pressure, whereas kinetic energy follows the square of air
velocity. As velocity increases in the narrow glottis, local pressure must drop. When a
sufficient pressure difference exists across the glottis to cause a large airflow, a negative
pressure develops in the glottis and forces the vocal folds to close. Glottal closure interrupts
airflow, and a pressure gradient develops across the glottis, eventually building to a point
where the vocal folds open again. In most voiced sounds, the vocal tract is relatively open and
the average Psup is at atmospheric pressure. During fricatives and especially stops, a
significant pressure drop also develops at the vocal tract constriction, which lessens the net
pressure drop across the glottis [19]. In voiced stops, FO falls as the glottal pressure drop
decreases, and vibration may cease completely if the vocal tract remains closed long enough.
During voiced fricatives, the vocal folds relax to maintain vibration with less effort.
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Figure 3.4 Schematic cross-sections of the larynx at six time intervals during a cycle of
voicing. (After Vennard [18].)

Because lower portions of the vocal folds are more compliant than the upper parts, there
is a time lag in which the lower portions close and open before the upper parts do. The vocal
fold cycle of motion exhibits both vertical and horizontal components: (a) the folds move
upward during closure as Psub gradually forces the vocal folds apart and downward during the
open phase before the lower portions of the vocal folds close again; (b) the folds tend to
separate in the posterior glottis before the anterior portions part. This self-sustained
oscillation is aided by the elastic recoil of the vocal folds, which tends to return them to
their original adducted state. Maximal glottal area during voicing is about 20 mrn? for men

Trachea ~~~~.m~ii~"D Vocal tract

l-..- Vocal--l
r-- cords ----,

Figure 3.5 Two-mass vocal fold model, which accounts for phase effects between the
upper and lower parts of the vocal folds. Each vocal fold is viewed as having
two masses coupled by a spring, where each of the masses is attached to
tracheal walls by a system consisting of a spring of stiffness s, and a resistance
device rio (After Flanagan [26].)
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and 14 mrrr' for women. Vocal fold models range in complexity from simple one-mass
models or two- and three-mass systems [20,21] (Figure 3.5) to a 16-mass system capable of
modeling both vertical shear effects and lateral mucosal effects [22,23]. Nonlinear three­
dimensional models of glottal vibration describe the pulsating jet air flow through a
modulated orifice with deformable, compliant walls [24]. Many efforts are underway to
improve glottal flow models (including the popular LF model) [2], which could have
significant effects in lowering bit rate in speech coding [25].

3.2.2.2 Fundamentalfrequency of voicing vibrations. Although vocal fold closures
do not follow individual muscle contractions, muscle variations can change the characteristics
of the quasi-periodic airflow. Variations in Psub and vocal fold elasticity due to the muscles of
the chest and larynx, respectively, cause changes in the waveshape of glottal air pulses,
including their duration and amplitude, which lead to changes in perceived pitch and
loudness. A doubling of Psub raises output sound intensity by about 8-12 dB (speech is
usually less than 90 dB, which is equivalent to 10mW power at 0.5 m distance [13]). FO
exhibits some correlation with Psub ' increasing 2-7 Hz/em H20 [4], but FO variations are
primarily due to two laryngeal muscles (the vocalis of the vocal folds and the cricothyroid),
which increase FO by lengthening (up to about 4 nun) and tensing the vocal folds [27,28].
Rapid lowering of FO may utilize both muscle relaxation and some active contractions of the
thyroarytenoid and the (external) sternohyoid muscles [15]. FO tends to increase slightly with
tongue height, which may relate to greater tension on the vocal folds when the tongue is
pulled upward [29J. A model attempts to use biomechanical principles to show how FO varies
under different muscle conditions [30].

Typical speech uses an FO range of about an octave (doubling)--about 80-160 Hz for
males-while singers often use a two-octave range. Most speakers are capable of two octaves
but limit FO variation in normal speech, because extremes of FO require increased effort.
Average FO values of 132 Hz and 223 Hz for males and females, respectively [311 are in the
lower parts of their ranges, which suggests that higher FO requires more effort than low FO.
Rapid FO changes (more than 1 HZ/IDS [32]) are possible because FO-adjusting laryngeal
muscles respond very quickly, some in about 20 ms [33]. The switch between unvoiced and
voiced sounds usually takes longer, about 100-200 ms; the abducting (cricoarytenoid) and
adducting iinterarytenoid, cricothyroid, and lateral cricoarytenoid) muscles are slower than
the muscles controlling FO. When a stop occlusion is released into a voiced sound, the time
from stop release (the start of the resulting sound burst) to the start of vocal fold periodicity is
called the voice onset time (VOT). Aspiration often occurs during the VOT, while the vocal
folds are being positioned for voicing. (A corresponding voice offset time is rarely examined
[34].)

3.2.2.3 Types of phonation. In addition to the normal modal register voicing just
described, there are other phonation types [15] (sometimes called dysphonic), which may
involve nonlinearities (and may be modeled via chaos theory [35]). Breathy or murmur
phonation combines voicing and whispering by keeping a posterior portion of the glottis
(between the arytenoid cartilages) open while anterior parts of the vocal folds vibrate (Figure
3.6); such glottal airflow has both periodic pulses and a noisy component similar to aspiration.
Creaky voice is a rarer type of phonation in which the vocal folds are tightly adducted,
allowing only a small part of the vocal folds to vibrate; such a voice sounds harsh and has an
irregular FO and low intensity. Vocalfry or pulse register phonation is the opposite of creaky
voice in that the vocal folds are short, thick, and relaxed, leading to a very low and irregular
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Figure 3.6 Pictures of the glottis, viewed from above during (a) normal breathing, (b) deep
breathing, (c) voicing, (d) whisper. (After Sonesson [3], 1968, The functional
anatomy of the speech organs, in Manual of Phonetics, B. Malmberg (ed)
[North-Holland: Amsterdam].)

FO (in the range 3-50 Hz). The effective mass of the vocal folds may increase by coupling
with a second set of folds (called the ventricular or false vocal folds) above the vocal folds.
Vocal fry, in which each glottal pulse may be long enough to be perceived separately, often
occurs at the end of an utterance as lung pressure dies out and laryngeal muscles relax. The
vocal folds are closed most of the time during fry, with each period having typically 1-3
overlapping pulses of 3-4 ms followed by a long closed phase of 11-27 ms [36].

Virtually all speech employs modal register voice, which is capable of wide variation in
FO (1.5 octaves) and amplitude, while exciting a 4-6-octave span of vocal tract frequencies.
Besides pulse and modal registers, a third register,jalsetto or loft, is often identified with high
FO. In this register the vocal folds are so thin that the vertical and horizontal lag effects of
modal register disappear and only central portions of the vocal folds vibrate. In falsetto the
vocal folds often do not close completely, adding a breathy quality to the voice.

Natural glottal pulses are not truly periodic, exhibiting jitter and shimmer, which are
period-to-period variations in duration and amplitude, respectively. Normal voices have jitter
of 0.5-1.0% (e.g., 1 Hz) and shimmer of about 0.04-0.21 dB [37] (of which about 12% is
due to heartbeats [38]). Such low-level variations are normally not directly perceptible, and
roughness is heard only in speech with about 2% jitter or 1dB shimmer. Hoarse voices are
characterized by considerable deviation ofthe glottal signal toward aperiodicity. Hoarseness is
often quantified in terms of the amount of aperiodic noise found in speech relative to its
periodic components [39], but recent research suggests that hoarse voices have a loss of
energy in the harmonics of FO relative to the amplitude of the fundamental [40,41].
Pathological voice qualities (e.g., breathiness and roughness) are difficult to quantify, but
are often multidimensional and interrelated [42].

Besides the obvious correlation of vocal tract size with speech frequencies (i.e., smaller
tracts having higher FO and resonant frequencies), female speech tends to be more breathy,
leading to wider bandwidths and steeper spectral slope [43]. Glottal flow and speech
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amplitude are greater for males, and the glottis remains open a smaller percentage of the pitch
cycle, leading to higher speech energy, despite the fewer number of excitations (due to lower
FO) [2].

3.2.3 Vocal Tract

The lungs provide the airflow and pressure source for speech, and the vocal folds often
modulate the airflow to create sound, but the vocal tract is the most important component in
speech production. A tubular passageway composed of muscular and bony tissues, the vocal
tract provides the means to produce the many different sounds that characterize spoken
language. The vocal tract has two speech functions: (1) it can modify the spectral distribution
of energy in glottal sound waves, and (2) it can contribute to the generation of sound for
obstruent (stop and fricative) sounds. Different sounds are primarily distinguished by their
periodicity (voiced or unvoiced), spectral shape (which frequencies have the most energy),
and duration. The vocal folds specify the voicing feature, and a sound's duration is the result
of synchronized vocal fold-tract actions, but the major partitioning of speech into sounds is
accomplished by the vocal tract via spectral filtering.

The vocal tract can be modeled as an acoustic tube with resonances, called formants,
and antiresonances. (The formants are abbreviated Fi, where F I is the formant with the lowest
frequency.) Moving the articulators of the vocal tract alters the shape of the acoustic tube,
which in tum changes its frequency response (the simple presence of the vocal tract boosts
output speech intensity by 1G-15 dB, as an impedance match between the glottis and free
space beyond the lips [13]). As volumes of air and corresponding sound pressure waves pass
through the vocal tract, certain frequencies are attenuated and others amplified, depending on
the filter's frequency response. The vocal tract filter amplifies energy around formant
frequencies, while attenuating energy around antiresonant frequencies between the formants.
The resonances are due to the poles of the frequency response, while some spectral nulls are
due to zeros of the response. In addition to studying laryngeal speech behavior, this chapter
emphasizes aspects of vocal tract physiology and dynamics, and their effects on the acoustic
phonetics of speech.

Figure 3.7(a) shows salient aspects of the vocal tract. In an adult male, the vocal tract is
about I7 em long from the glottis (I) to the lips (8), with cross-sectional area up to about
20 em", After the larynx, air from the lungs passes through the pharyngeal and oral cavities in
tum, eventually exiting at the lips. The boundary between these two cavities is at the uvula (6)
because airflow at this point may enter the nasal cavity or pass into the oral cavity. The uvula
is the tip of a movable tissue structure called the velum or soft palate (5), which is raised for
most speech sounds, closing off the nasal cavity from receiving air. During breathing and
nasal sounds, however, the velum lowers to allow air through the nostrils, in place of: or in
addition to, airflow via the lips.

The vocal tract is often modeled as a chain of cylinders of varying cross-sectional area,
but the actual shape is much more complex because its walls vary in shape [44]. The tongue,
lower teeth, and lips are subject to much movement. The upper and posterior boundary of the
vocal tract is relatively fixed (in relation to the head) but its composition is diverse: the rear of
the pharynx is smooth and continuous, while the oral cavity roof consists of a flexible soft
palate at its rear, followed by a stiff hard palate, and finally the upper lip and teeth. The nasal
cavity is quite different, consisting of a labyrinth of passages lined with mucous tissue, with
no movable structures under voluntary control. It has a large interior surface area compared to



46 Chapter 3 • Speech Production and Acoustic Phonetics

Figure 3.7 A cross-sectional view of the vocal tract. (a) Speech articulators: (l) vocal
folds, (2) pharynx, (3) velum, (4) soft palate, (5) hard palate, (6) alveolar
ridge, (7) teeth, (8) lips, (9) tongue tip, (10) blade, (II) dorsum, (12) root, (13)
mandible (jaw), (14) nasal cavity, (15) oral cavity, (16) nostrils, (17) trachea,
(18) epiglottis. (b) Places of articulation: (1) labial, (2) dental, (3) alveolar, (4)
palatal, (5) velar, (6) uvular, (7) pharyngeal, (8) glottal.

its volume (about 60 ern", with individual sinuses less than 20 em") and acts as a highly
damped resonator, significantly attenuating the energy of sound waves that pass through (the
overall pharyngonasal volume is about 120cm3) [45]. The opening between the nasal and
pharyngeal cavities is called the velopharyngeal port, and its size controls the amount of
acoustic coupling between the cavities and hence the amount of nasal emission; full opening
in an adult male is about 5 crrr'. The opening at the nostrils is about 0.8 em".

3.2.3.1 Articulators. Structures in the vocal tract that move in the production of
different sounds are called articulators. In terms of the number of different sounds produced,
the most important articulators are the tongue and lips, but the velum and larynx also have
important speech roles. The primary function of the larynx is to control airflow through the
glottis, but the larynx can also be raised or lowered to alter the length of the vocal tract: (a) to
raise or lower, respectively, formant frequencies, (b) to enlarge the pharynx for longer vocal
fold vibration in voiced stops, or (c) to facilitate movement of the upper articulators connected
to the larynx. The jaw or mandible is considered an indirect articulator because it assists
positioning of the tongue and lips for many sounds.

The most visible articulators are the lips, a pair of muscular folds on the face that
function in two ways: (1) they effect a vocal tract closure or narrow slit when they are pressed
together or when the lower lip presses against the upper teeth; or (2) in varying degrees, they
either round and protrude (pucker) or spread and retract. Closure is usually accomplished by
moving the jaw and lower lip, while rounding is due to the orbicularis oris, the lip muscle,
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which surrounds the lips. Transverse muscles entering the lips at the corners of the mouth
retract and spread the lips.

Among the teeth, only the four front upper incisors seem important for speech. Dental
obstruent sounds involve either the lower lip (e.g., IfI) or the tongue tip (e.g., I(JI) contacting
these teeth. Behind the teeth on the upper wall of the oral tract is the hard palate, a dome­
shaped structure consisting offour bones. Many speech sounds involve a constriction between
it and the tongue (e.g., It,s/). The alveolar ridge in the hard palate just behind the teeth
provides a major contact point. The back of the vocal tract consists of the pharyngeal wall,
which contains layers of horizontal muscles; relaxing these muscles and contracting hyoid
muscles may enlarge the pharynx during voiced stops, but otherwise the pharynx is passive in
speech production.

The most important and complex articulator, the tongue, consists of 12 interactive
muscle pairs and some passive tissues. It can be divided into four components: tip or apex,
blade, dorsum, and root. They are all part of the same muscular tongue structure but each can
function independently to a certain degree. Since the tongue provides virtually all of the lower
wall of the pharyngeal and oral tracts, and since the upper wall components (except the
velum) have little freedom of movement, it is primarily tongue positioning that creates the
many vocal tract shapes necessary to produce different speech sounds. The tip is the quickest
and most agile part of the tongue; being thin and narrow, it can make and break contact with
the palate up to nine times per second. The dorsum is the surface of the tongue, of which the
anterior portion is called the blade; the tongue body or root positions the dorsum so that
constrictions may be made at different locations in the vocal tract (Figure 3.8). The tongue is
very flexible, capable of many different shapes (but limited in number [46]), and can move
rapidly from one position to another, often in less than 50 ms. Almost completely composed
of muscle, the tongue has intrinsic (internal) muscles that primarily change its shape, e.g.,
flattening it or curling its tip and edges. Among the extrinsic muscles (those attached to both
the tongue and other structures), the genioglossus is the largest and is basically responsible for
tongue height (up-down positioning) and lateral (anterior-posterior) position (Figure 3.9).
Specifically, the vertical fibers of the genioglossus pull the tip down and back, its middle
fibers flatten the dorsum, and the lower fibers move the root forward. Contraction of the
styloglossus muscle pulls the root up and back, the palatoglossus raises and humps the
dorsum, and the hyoglossus pulls the root down and back.

Figure 3.8 Typical articulatory positions for (a) a vowel, showing two tongue height
positions; (b) a high vowel, showing front and back positions; (c) a stop,
showing alveolar and velar places of articulation (for a nasal, the only
difference is a lowered velum); and (d) an alveolar fricative.
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Figure 3.9 Diagram of the tongue, including
extrinsic muscles (italicized) and related structures:
(1) inferior longitudinal muscle (intrinsic), (2)
dorsum, (3) styloglossus muscle, (4) styloid
process of temporal bone, (5) hyoglossus muscle,
(6) stylohyoid muscle, (7) stylopharyngeal muscle,
(8) thyroid cartilage, (9) hyoid bone, (10) genio­
hyoid muscle, (11) genioglossus muscle.

3.2.3.2 Articulator movement Each articulator moves in response to neural
commands to its intrinsic and extrinsic muscles. Commands from the brain descend along
axon paths, eventually reaching muscle fibers that contract in response to an all-or-nothing
neural firing. Most speech articulators have low fiber:neuron ratios, which allow relatively
precise movements by controlling which fibers contract and how often they do so. Most
muscles exist in antagonistic pairs, where movement in one direction occurs by contracting
one muscle and/or relaxing the second, and motion in the opposite direction is caused by
reversing the roles of the two muscles. Two types of motion are apparent in the speech organs:
ballistic and controlled. In rapid ballistic motion, one muscle contracts and its antagonist
relaxes. The motion stops only when the articulator hits another part of the vocal tract or
reaches the end of its dynamic range and connective tissue arrests the motion. Closures of the
vocal tract (e.g., lip closures or tongue motion toward the palate) are examples of ballistic
motion [47].

During controlledmotion, on the other hand, both antagonistic muscles contract to different
degrees. Motion follows the muscle contracting more strongly, until the braking action of its
antagonist grows strong enough to stop the articulator. Controlled movements are slower than
ballistic ones, but they are necessary to achieve all vocal tract positions except closures. The
behavior ofantagonistic muscles can explain asymmetry in transition durations: in vowel-stop-­
vowel sequences (e.g., /a.do./), closure is often faster than opening because closure is ballistic
whereas the transition to the ensuing vowel requires controlled movements. Most articulator
movements toward a target position start as ballistic but become controlled as the target is neared
or as muscle commands are issued for a new target. Peak velocity is often linearly related to
displacement [48]. Movements are often less than 1ern, at speeds up to 30 cm/s.

3.3 ARTICULATORY PHONETICS

Speech sounds can be analyzed from several points of view: articulatory, acoustic, phonetic,
and perceptual. This section describes articulatory phonetics, which relates linguistic features
of sounds to positions and movements of the speech organs. Knowledge in this area is limited
by a lack of data on the motion of the vocal tract; visual and X-ray observation does not
permit a complete dynamic three-dimensional model. Due to their dangers, full X-rays are no
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longer made, although old data are still useful [49]. X-ray microbeam experiments minimize
the health risks by focusing very limited doses on lead pellets attached to the tongue, and have
led to limited views of the vocal tract. Tongue shapes have also been determined through
small coils on the tongue and electromagnetics or ultrasound [50,51]. Magnetic resonance
imagery experiments provide good 3D data, but have been limited to the study of sustained
speech sounds, due to their long acquisition times [52,53].

While humans can produce a very large number of sounds (within the constraints of the
vocal tract), each language has a small set ofabstract linguistic units called phonemes to describe
its sounds. A phoneme is the smallest meaningful contrastive unit in the phonology ofa language.
The sounds associated with each phoneme usually have some articulatory gesture(s) or
configuration in common. Each word consists of a series of phonemes corresponding to the
vocal tract movements needed to produce the word. Except for homonyms, English words differ
from each other in some aspect oftheir phonemic composition or stress pattern. Most languages
have 20-40 phonemes (some have fewer, while a few have more than 100), which provide an
alphabet ofsounds to uniquely describe words in the language. The alphabet ofphonemes is large
enough to allow such differentiation; e.g., the set of words (including words not currently used in
English but phonologically permissible) heed, hid, ahead, hayed, had, hod, hawed, hoed, hood,
who d, hide, hud, howed. heard, hoyed illustrates how the 15 vowel sounds ofEnglish are needed
to distinguish words. Similarly, the set thin, sin, fin, tin, pin, kin, din, lin, gin shows how
consonants can distinguish words.

Although languages vary widely in semantic and grammatical structure, they employ the
vocal tract in similar ways. The vowel sounds li,a,ul appear in most languages, but other sounds
are particular to a few (e.g., the th sounds ofEnglish are relatively rare). Most ofthe examples of
phonemes in this chapter concern English, but other languages are mentioned where the set of
English sounds is too restrictive for a general discussion of speech production.

Phonemes may be associated with linguistic features or articulatory configurations [54];
e.g., the following discussion notes that the phoneme /sl has the features unvoiced, fricative,
and alveolar and that producing an /s/ involves an open glottis, a raised velum, and a single
narrow constriction in the alveolar region. Evidence (although controversial [55]) for the
psychological reality of phonemes is found in studies of speech errors, which usually involve
substitution or exchange of phonemes [56,57]. Articulatory phonetics relates features for each
phoneme to the positions and gestures of vocal tract articulators that produce them.

The physical sound produced when a phoneme is articulated is called a phone. Since
the vocal tract is not a discrete system and can vary in infinitely many ways, an infinite
number of phones can correspond to each phoneme. (Repeated pronunciations of the same
phoneme by a single speaker differ from one another, but by a lesser degree than versions
from different speakers.) The term allophone usually describes a class of phones correspond­
ing to a specific variant of a phoneme, especially where various vocal tract shapes yield the
same phoneme. For example, /k/ requires occlusion of the tongue dorsum with the roof of
the mouth, but the range of permissible occlusion points is broad enough that significantly
different allophones of /k/ occur. Preceding a front or back vowel, respectively, /k/ closure is
sufficiently forward or back in the velar region to cause perceptible acoustic differences. Stop
consonants tend to have more allophones than other phonemes; e.g., depending on context,
alveolar stop phonemes may be either aspirated or unaspirated, voiced or unvoiced, long or
short [58]. If, in a speech signal, one were to exchange allophones ofa phoneme, intelligibility
should not be affected, although the modified signal may sound less natural.

The transformation of phonemes into allophones involves coarticulation, a phenom­
enon by which the articulatory configurations of neighboring phonemes affect the articulation
of each phoneme. Speech signals cannot be segmented into discrete phones with a simple I : 1
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correspondence to phonemes. In many applications, speech is divided into segments whose
boundaries are times of major spectral change, which usually correspond to major changes in
vocal tract state (e.g., occlusion, narrow constriction, or onset/offset of voicing). Since a
phoneme's features affect the speech signal beyond these times, however, they do not
correspond to "phoneme boundaries" in a strict sense. The gestures associated with
successive phonemes overlap so much that each phoneme's features often affect several
preceding and ensuing phones. Further discussion ofcoarticulation is postponed until after we
examine the features and gestures that characterize each phoneme.

Words are traditionally divided into phonological units called syllables. Each syllable
has one vowel (or diphthong), which is its most intense sound and for which the vocal tract is
most open. (A few "words" such as psst, shh, tsk, and hmmm have no vowel; their most
intense sound is a either a fricative or a syllabic nasal.) Each syllable may contain consonants
before and after the vowel; such consonants include glides, liquids, nasals, stops, fricatives,
and affricates (Table 3.1). Vowel and consonant phonemes are classified in terms of manner
and place of articulation and voicing. Manner of articulation concerns how the vocal tract
restricts airflow: (a) completely stopping airflow by an occlusion creates a stop consonant; (b)
vocal tract constrictions of varying degree occur in fricatives, liquids, glides, and vowels; and
(c) lowering the velum causes nasal sounds. Place ofarticulation refers to the location in the
vocal tract, usually in terms of the upper wall, of the most narrow constriction. Nominally, a
phoneme is considered voiced if the vocal folds vibrate during its realization, but the
following discussion shows that such an analysis is too simplistic.

3.3.1 Manner of Articulation

Manner of articulation is concerned with airflow: the path(s) it takes and the degree to
which it is impeded by vocal tract constrictions. The largest class of English sounds is that of
vowels and diphthongs, in which air flows (at rates of 100-200 crrr' Is) directly through the
pharyngeal and oral cavities, meeting no constriction narrow enough to cause turbulent flow
(frication). For vowels, the area of minimum constriction ranges from 0.3 to 2.0 crrr' [17].

Glides are similar to high vowels but employ narrow vocal tract constrictions that, under
conditions ofunusually strong airflow,may cause frication; each glide is close in articulation to a
high vowel (i.e., Ij/-/il and IwI-lui). Liquids too are similar to vowels but use the tongue as an
obstruction in the oral tract, causing air to deflect around the tip or dorsum. In the liquid III (also
called a lateral), for example, the tip contacts the alveolar ridge and divides airflow into two
streams on either side of the tongue. In syllable-initial position (before the vowel), III is called
light due to the tongue's small area ofcontact in the alveodental region. English uses a dark Ill,
with greater contact area, for syllable-final laterals.

The rhotic liquid [t] has a more variable articulation but generally involves either (a) the
tongue tip pointing toward the alveolar ridge and often curling back (retroflex) or (b) a raised and
"bunched" dorsum with secondary pharyngeal and labial constrictions [53,59,60]. The sides of
the tongue also contact the upper molar teeth in [tI,restricting the airflow path. There are several
allophones of [t]; e.g., prevocalic Irl tends to have more lip rounding, a more advanced tongue,
and less tongue grooving than [t] in other positions. The English Irl is a rare sound that can
achieve the same acoustics with very different articulations, and is found in very fewofthe world's
languages; in most languages where [r] exists, it is more like a fricative.

The velum is lowered during nasal sounds, which allows airflow through the nostrils.
The only nasal phonemes in English are consonants, during which the oral tract is completely
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closed at the lips or with the tongue against the palate. Some languages (e.g., French) have
nasalized vowels, in which air passes through both oral and nasal cavities. Vowels may be
nasalized in English, but the distinction is allophonic and not phonemic (i.e., vowel identity
does not change); French, on the other hand, has pairs of words that differ only in whether a
vowel is nasalized.

All phonemes in the manner classes above (vowels, diphthongs, glides, liquids, and
nasals) employ voicing and excite the vocal tract solely at the glottis; these continuous,
intense, and periodic phonemes are also known as sonorants. The remaining obstruent
phonemes (stops and fricatives) are weak and aperiodic, and each is primarily excited at its
major vocal tract constriction.

Stop iplosive) consonants involve the complete closure and subsequent release of a
vocal tract obstruction. The velum must be raised to prevent nasal airflow during closure.
After a rapid closure, pressure builds up behind the occlusion (to about 6 em H20, due to
persistent lung pressure) and is suddenly released with a rush of air that creates a brief (e.g.,
10 ms) acoustic burst or explosion (in the first few ms, the area increases at about 50 cm2/s

[61]). As the vocal tract widens and the vocal folds adduct in preparation for voicing in an
ensuing sound, a period of noisy aspiration may occur before voicing starts. Closure for a
stop occurs in the oral tract (except for the glottal stop, which closes the glottis for 30-60 ms).

Fricatives employ a narrow constriction in the oral tract, in the pharynx (more rarely),
or at the glottis [9]. If pressure behind the constriction is high enough (e.g., 3-8 em H20) and
the passage sufficiently narrow (0.05-0.2 crrr'), airflow becomes fast enough (41 m/s) to
generate turbulence at the end of the constriction [62]. Noise is generated when the Reynolds
number, defined as ch]» (where v is air particle velocity, h is the width of the orifice, and
\' = 0.15 crrr' Is is the viscosity of air), exceeds about 1800. The turbulence is due to random
rotation of air molecules from eddies and vortices (about the size of h) at the constriction
termination, where rapidly moving air molecules in the constriction abruptly slow down upon
entering the cavity in front of the constriction. At low Reynolds numbers, airflow is laminar
(smooth) and roughly parallel to the sides of the vocal tract.

In the case of strident fricatives, noise amplitude is enhanced by airflow striking a
surface (e.g., the upper incisors during Is/ or I JI) as it leaves the constriction. Frication
ceases when the constriction widens enough to drop air velocity below about 13 m/s. Airflow
for most fricatives is about 200-500 ern" Is, while aspiration (including the phoneme Ih/)
uses 500-1500 em:'Is [17]. (Airflow U through a constriction of area A is U = AJ(2PIp ),
where P is pressure and p = 1.15 kg/m3 is the air density [61]).

Most phonemes (vowels, liquids, nasals, fricatives) are characterized by an articulatory
position and can be sustained in steady state (until the speaker runs out of breath). Stops are
transient consonants involving a sequence of articulatory events (closure followed by release).
Glides are also transient because they are usually released into an ensuing vowel. As a
succession of sounds, speech in general is transient; steady sounds constitute a small
percentage of time in speech. Due to coarticulation and the freedom speakers have in
articulating sounds (within the constraints that listeners understand the speech), there is much
variability in speech signals; no two repetitions of the same word are exactly alike.

Certain phonemes may be viewed as having phoneme subsequences: diphthongs (vowel
followed by a glide) and affricates (stop followed by a fricative). Phonological convention
dictates that diphthongs and affricates be considered single phonemes, although there are also
articulatory and acoustic justifications (e.g., an affricate usually has less duration than other
stop + fricative sequences).
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3.3.2. Structure of the Syllable

Words are composed of phoneme sequences called syllables, each having one vowel or
diphthong as a nucleus. Consonants are affiliated with the syllable of an adjacent vowel,
forming an initial consonant cluster of one or more consonants before the vowel and/or a
final consonant cluster after the vowel. Syllable boundaries, which affect FO and duration, can
be ambiguous for consonants between two vowels (e.g., the word tasty could be divided
ta/sty, tas/ty or tast/y), Certain rules of sonority hold in virtually all languages, however,
facilitating boundary location. Sonority corresponds to the degree of vocal tract constriction:
vowels are most sonorous, followed by glides, liquids, nasals, and then obstruents. Within a
syllable, sonority and amplitude start low in initial consonants, increase to a peak during the
vowel, and then fade during ensuing consonants. (In the case of successive syllables with
adjacent vowels, an amplitude dip may not be evident.) Ifpresent in a syllable, a glide must be
immediately adjacent to the vowel. The liquids Ir,ll (in that order) are the next closest to the
vowel, after which may come a nasal consonant. Furthest away from the vowel are the least
vowel-like sounds, the obstruents.

Fricatives and stops appear in many combinations at the beginning or end of a syllable,
but most languages require that obstruents in a cluster have the same voicing feature. In a
series of obstruents between two vowels, the voicing characteristic can change only once-at
the syllable boundary. English allows initial and final clusters with up to three and four
consonants, respectively (e.g., sphere Isfir/, streak /strik/; textsltEksts/, helmslhElmz/); it
has more complex syllable structures than most languages. In French, for example, most
syllables are open, i.e., they have no post-vowel consonants, and final clusters have at most
three consonants. Many languages (e.g., Japanese) forbid consonant clusters, and many do
not allow any consonant after the vowel (or limit severely the possible consonants). Many
languages have a simple consonant + vowel structure for all syllables.

3.3.3 Voicing

Both types of obstruents, stops and fricatives, may be either voiced or unvoiced. For
most unvoiced obstruents, an open glottis allows air to pass without impediment from the
lungs to the vocal tract constriction. The glottal obstruents are necessary exceptions: (a) the
fricative /h/ maintains a narrow glottal opening, generating (unvoiced) glottal noise that
excites a relatively unconstricted vocal tract, (b) the stop I?I completely closes the glottis.
Voiced fricatives have two sources of sound excitation, periodic glottal air pulses and noise at
the vocal tract constriction, which cause the speech to have noise amplitude-modulated at the
rate of FO. The glottal excitation in voiced fricatives is not uniformly periodic; the perception
of voicing here depends primarily on periodicity (e.g., fricatives are judged as voiced if
periodicity is absent for at least 60 ms [63]), but prosodic factors are also relevant [64].

For most sounds, Psub is dissipated in one major pressure drop, either across the glottis
(in most voiced sounds) or at a narrow vocal tract constriction (in unvoiced obstruents).
Voiced obstruents, however, divide the pressure gradient in the vocal tract between the glottis
and the constriction, which leads to decreased FO (unless Psub or vocal fold tension is raised)
and weaker noise intensity than for unvoiced obstruents.

The voicing feature in most phonemes is a direct function of periodicity during the
sounds. Due to the transient nature of stops, voicing there is more complex. In many
languages (e.g., French and Spanish) and in certain dialects of English, periodicity is
maintained during the closure of voiced stops. Since vibrating folds require air to enter the
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vocal tract behind the stop occlusion, the tract must expand until the occlusion is released.
Sound is weakly radiated through the walls of the vocal tract. Vocal fold vibration can be
prolonged (up to about 100 ms for a typical 10ml volume expansion) by lowering the larynx,
allowing the pharynx and/or cheeks to expand, and/or relaxing the vocal folds [65,66]. As
the intraoral pressure builds behind the occlusion, however, the falling pressure drop across
the glottis eventually causes voicing to cease. In most dialects of American English, such
prevoicing before stop release occurs only in intervocalic stops. "Voiced stops" without
prevoicing are distinguished from "unvoiced stops" by their relatively short VOTs: vocal
folds adduct immediately after the voiced stop release, and voicing commences within 10­
30 ms. Unvoiced stops typically have an aspiration period of 40-100 ms before voicing starts.
Unvoiced and voiced obstruents are often described as "tense" and "lax," respectively,
possibly reflecting a general difference in muscle tension. Intraoral pressure, for example, is
about 1-2 em H20 higher during unvoiced than voiced stops, which causes more intense
release bursts.

3.3.4 Place of Articulation

While manner of articulation and voicing partition phonemes into the broad categories
used by most languages, it is the place of articulation (point of narrowest vocal tract
constriction) that enables finer discrimination of phonemes. Languages differ considerably as
to which places are used for phonemes within the various manner classes. Virtually all
languages employ vowels, nasals, stops, and fricatives, but the number and choice of places of
articulation within each class are highly variable across languages. Many languages use as
few as 3-5 vowels, whereas English has 13 and French 15. English and French have only
three distinct places of articulation for stops (ignoring the rare glottal stops), whereas other
languages employ as many as six [9). Even when two languages appear to use the same
phoneme, slight variations in tongue positioning between the languages often yield different
sounds.

3.3.4.1 Consonants. Place of articulation is most often associated with consonants,
rather than vowels, because consonants use a relatively narrow constriction. Along the vocal
tract, approximately eight regions or points are traditionally associated with consonant
constrictions, as follows:

1. Labials: if both lips constrict, the sound is bilabial; if the lower lip contacts the upper
teeth, it is labiodental.

2. Dental: the tongue tip or blade touches the edge or back of the upper incisor teeth (if
the tip protrudes between upper and lower teeth, as in /0/, the sound is interdenta/).

3. Alveolar: the tongue tip or blade approaches or touches the alveolar ridge.

4. Palatals: the tongue blade or dorsum constricts with the hard palate; if the tongue tip
curls up, the sound is retroflex.

5. Velar: the dorsum approaches the soft palate. Some linguists use the term compact
for velars because their spectra concentrate energy in one frequency region.

6. Uvular: the dorsum approaches the uvula.

7. Pharyngeal: the pharynx constricts.

8. Glottal: the vocal folds either close or constrict.
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Each language typically employs a relatively small subset of these places for phoneme
discrimination. For example, English requires only five places to partition sounds into
phoneme classes: labial, dental, alveolar, palatovelar, and glottal. Stops occur at four
points: bilabial, alveolar, velar, and glottal. Fricatives occur at five locations: labiodental,
dental, alveolar, palatal, and glottal. While seven separate place categories are implicated for
the obstruents, five emerge by combining close categories that differ by manner of
articulation. For example, English has palatal fricatives and velar stops, but no palatal
stops or velar fricatives; thus a broad palatal/velar place can be defined for which the actual
constriction would vary with manner of articulation.

While a consonant is classified by its point of narrowest constriction, some also have a
secondary constriction. Common points for secondary articulation are the lips, hard palate,
soft palate, and pharynx, for which sounds are labialized, palatalized, velarized, and
pharyngealized, respectively; for example, Iw/ is a velarized bilabial glide, and [t] is
often a pharyngealized retroflex liquid.

3.3.4.2 Vowels. Despite their relatively open vocal tracts, vowels can nonetheless be
distinguished by points of constriction, but additional information is required about the
degree of constriction. Vowels are primarily described in terms of tongue position and lip
rounding. Vowel "place of articulation" refers to a lip constriction and/or the horizontal
position of the tongue body (forward, middle, or back); the tongue height and degree of lip
rounding are also important factors. Mouth opening ranges typically from 1 to 5 cm2 between
the most rounded vowel /ul and the most open /0,1. Most vowels in virtually all languages
can be classified in binary terms for horizontal tongue position (front or back) and lip
rounding (rounded or unrounded), although the degrees of positioning vary across vowels.
(Norwegian's three high rounded vowels and Swedish's three high front vowels are excep­
tions.) Some vowels (e.g., the common 10,/) often occupy a mid-horizontal position, with no
other low contrasting vowel; in English, /0,1 is "back", with lrel (much rarer in the world's
languages) front and low. Two other English vowels are best classified as having a middle
horizontal tongue position, but they are distinguished from other vowels by special features:
/3-/ is rhotic (see below) and la/, the schwa vowel, is short and weak.

Vowel tongue height is more complex than other production dimensions, requiring at
least four levels (in order of widening constriction): high (close), mid-high, mid-low, and low
(open). All languages have vowels with at least two contrasting heights [67]. In English, all
front vowels (/i,I,e,£,~/) and two back vowels (/0,,/\/) are unrounded, while the other back
vowels (/:::),o,U,u/) are rounded (with the degree of rounding increasing with tongue height).

The vowels may be divided into tense and lax classes, depending on duration and on
how far the tongue is displaced from a neutral, central position. Longer vowels with more
extreme articulation positions are considered tense: /Le.ee.u.o.u.sv. (In English, the
shorter lax vowels II,U,/\I may not end a syllable, unless one occurs as a reduced
pronunciation of a tense vowel.) An alternate place system classifies vowels into four
categories depending on the location of major tongue constriction: (I) the hard palate for
high front vowels (/i,e,£/); (2) the soft palate for high back vowels (/u, UI); (3) the upper
portion of the pharynx for low back vowels (/0,:::)/); and (4) the lower portion of the pharynx
for low vowels (/a,~, /\ I) [68]. Vowels within each class can be further specified by the
degree of constriction (e.g., li/vs/E/) and/or the degree of mouth opening (e.g., 10/vs/~/).

Vowels are usually produced with the velum relatively closed, but about 20% of
languages allow both oral and nasalized vowels. Because the nasal tract has higher impedance
than the oral tract, airflow patterns are similar in both types of vowels, i.e., there is little flow
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through the nostrils. Coupling the nasal and oral cavities, however, has significant acoustic
consequences that enable nasalized and oral vowels with the same place of articulation to be
distinguished. While the velum must be lowered significantly for intended nasalization or be
closed for obstruents, velar height is more variable during oral vowels and tends to be
proportional to tongue height [69]. Low vowels with wide oral cavities tolerate a low velum
because the impedance of the oral tract is low compared to that of the nasal tract, and little air
enters the nasal cavity unless the velum is very low.

3.3.5 Phonemes in Other Languages

Except for trills [70] and ingressive sounds (those produced while sucking air into the
lungs), English provides good examples of sounds used in various languages. Languages
differ mostly in aspects of place of articulation: for a given voicing characteristic and manner
of articulation, different languages have phonemes with different places of constriction in the
vocal tract. Languages usually share phonemes such as the cardinal vowels /i,o',u/ and
/p.t.k/, but the actual vocal tract shapes are usually slightly different for these sounds in
different languages. Languages rarely use all possible combinations of voicing and manner;
e.g., in many languages, stops or fricatives may be voiced or unvoiced but not both. English is
typical of most languages in voicing all nonobstruent sounds, but some languages even have
unvoiced nasals (i.e., snorting sounds).

Languages usually differ most significantly in the set of vowels used. Many languages
have only a few vowels; 25% of the world's languages (e.g., Spanish and Japanese) have only
five vowels /i,e,a,o,u/, many just have /i,u,u/, and a few use only two vowels. Vowels are
usually widely separated in the FI-F2 space to minimize perceptual confusion. In most
languages, including English, lip rounding occurs for all back vowels, and not for front (or
central) vowels. French and German allow front rounded vowels, while Russian and Turkish
permit back unrounded vowels. (Like other high vowels, the front rounded vowel /y/ has a
glide counterpart Ill/.) Such sounds are difficult for native English speakers to produce
because they do not occur in English.

In most languages, vowel nasalization is nonphonemic; it occurs in vowels adjacent to
nasal consonants and does not change the perceived identity of the vowel. In French, however,
vowels with similar vocal tract shapes and formant frequencies cue different phonemes based
on nasalization.

Many languages (but not English) employ duration and FO directly to cue different
phonemes. Long and short vowels are used contrastively in some languages (e.g., Estonian
has three vowel durations). Languages such as Mandarin and Thai are called tone languages
because different patterns ofFO cue different phonemes; e.g., the same syllable Imn/ has four
completely different meanings in Chinese depending on whether FO is high, low, rising, or
falling. Swedish also employs grave and acute FO accents as a reduced type of tone language.

3.3.6 Articulatory Models

A number of complex models have recently appeared for describing the way the vocal
tract behaves, in terms of physiology, biomechanics, and muscle control. Such models usually
accept inputs of muscle activation levels, and output kinematic variables describing vocal
tract configuration (and eventually acoustics) [71,72].
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Having described the mechanics of speech production, we now tum to its acoustics. The
relationships between phonemes and their acoustic realizations form the bases for many
speech applications (e.g., recognition, synthesis) as well as for an understanding of speech
perception. A later section will examine relationships between speech acoustics and aspects of
articulatory models of the vocal tract. In light of the earlier discussion of the articulator
mechanisms for different phonemes, this section investigates the waveform and spectral
properties of speech sounds; we delay to Section 3.5 the mathematical justifications for the
observed phenomena.

Acoustic phonetics treats the speech signal as the output of the speech production
process and relates the signal to its linguistic input (e.g., a sentence). It considers the
differentiation of sounds on an acoustic (not articulatory) basis. Since each phoneme can be
articulated in different ways and by different vocal tracts, there is much variability in speech
signals for the same phoneme. In the ensuing discussion, common acoustic aspects are
described for each phoneme, and figures give example waveforms and spectra.

As we will see in Chapter 6, most speech analysis uses spectral displays, which show
the distribution of speech energy as a function of frequency. The importance of spectral
analysis is highlighted in Chapter 4, which shows that the ear effectively extracts spectral
amplitudes from speech signals. While the speech waveform contains the information
necessary for speech communication, the information is encoded in a form not subject to
easy interpretation. Most acoustic-phonetic features are more apparent spectrally than in the
time domain. The following discussion focuses on the dynamic behavior of formants and
spectral regions of energy, which appear to be the primary acoustic cues to phonemes.

3.4.1 Spectrograms

A basic tool for spectral analysis is the wideband spectrogram, which is discussed
further in Chapter 6. A spectrogram converts a two-dimensional speech waveform (ampli­
tude/time) into a three-dimensional pattern (amplitude/frequency/time) (Figure 3.10). With
time and frequency on the horizontal and vertical axes, respectively, amplitude is noted by the
darkness of the display. Peaks in the spectrum (e.g., formant resonances) appear as dark
horizontal bands [73]. Voiced sounds cause vertical marks in the spectrogram due to an
increase in speech amplitude each time the vocal folds close. The noise in unvoiced sounds
causes rectangular dark patterns, randomly punctuated with light spots due to instantaneous

u

Figure 3.10 Spectrogram of short sections of English vowels from a male speaker.
Formants for each vowel are noted by dots.
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variations in energy. Spectrograms portray only spectral amplitude, ignoring phase informa­
tion, following the assumption that phase is relatively unimportant for many speech
applications.

While analog spectrograms have a dynamic range (from white to black) of only about
)2 dB, the digitally produced spectrograms in this book have a greater range. Spectrograms
are used primarily to examine formant center frequencies. If more detailed information is
needed about the spectrum (e.g., resonance bandwidths, relative amplitudes of resonances,
depths of spectral nulls), individual spectral cross-sections (displays of amplitude vs
frequency) must be analyzed (Figure 3.11). Despite these limitations, spectrograms furnish
much information relevant to acoustic phonetics: the durations of acoustic segments, whether
speech is periodic, and the detailed motion of formants, As will be explained in Chapter 6,
wideband spectrograms employ 300 Hz bandpass filters with response times of a few ms,
which yield good time resolution (for accurate durational measurements) but smoothed
spectra. Smoothing speech energy over 300 Hz produces good formant displays of dark
bands, where the center frequency of each resonance is assumed to be in the middle of the
band (provided that the skirts of a resonance are approximately symmetric).

3.4.2 Vowels

Vowels (including diphthongs) are voiced (except when whispered), are the phonemes
with the greatest intensity, and range in duration from 50 to 400 ms in normal speech. Like all
sounds excited solely by a periodic glottal source, vowel energy is primarily concentrated
below 1 kHz and falls off at about -6 dB/oct with frequency. Many relevant acoustic aspects
of vowels can be seen in Figure 3.12, which shows brief portions of waveforms for five
English vowels. The signals are quasi-periodic due to repeated excitations of the vocal tract by
vocal fold closures. Thus, vowels have line spectra with frequency spacing of FOHz (i.e,
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Figure 3.12 Typical acoustic waveforms for five English vowels. Each plot shows 40 ms of
a different vowel, which comprises about 5-6 pitch periods for this speaker.
Note the quasi-periodic nature of such voiced speech as well as the varying
spectral content for different vowels.

energy concentrated at multiples of FO). The largest harmonic amplitudes are near the low­
formant frequencies.

Vocal fold excitations cause an abrupt signal increase once every period, after which
amplitude decays exponentially with a time constant inversely proportional to the bandwidth
of the formant(s) of highest energy (usually FI). Fl can be readily identified in time plots of
many vowels as the inverse of the period of dominant oscillation within a pitch period. Front
vowels in particular have a wide separation between FI and F2, and the lowpass nature of the
glottal source causes F1 to have much more energy than higher formants in these cases.

Vowels are distinguished primarily by the locations of their first three formant
frequencies. Figure 3.10 shows spectrograms of typical vowel spectra, and Table 3.2 has
mean formant values from a study of 32 male and 28 female speakers, who repeated twice ten
monosyllabic nonsense words of the form jhVdj, where V was one of ten different vowels.
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TABLE 3.2 Average formant frequencies (in Hz) for English vowels by adult male and female speakers from a
classic study (see also [74] for a replication). (After Peterson and Barney [31].)

Iii III Iv lre/ IOJ 1-::>1 lUI lui 1/\1 13-1

Ft male 270 390 530 660 730 570 440 300 640 490
female 310 430 610 860 850 590 470 370 760 500

F2 male 2290 1990 1840 1720 1090 ·840 1020 870 1190 1350
female 2790 2480 2330 2050 1220 920 1160 950 1400 1640

F3 male 3010 2550 2480 2410 2440 2410 2240 2240 2390 1690
female 3310 3070 2990 2850 2810 2710 2680 2670 2780 1960

Due to varying vocal tract shapes and sizes, formants vary considerably for different speakers;
Figure 3.13 plots values for F1 and F2 for the ten vowels spoken by 60 speakers. There is
much overlap across speakers, such that vowels with the same FI-F2 are heard as different
phonemes when uttered by different speakers. Other aspects of the vowels (e.g., FO, upper
formants, bandwidths) enable listeners to make correct interpretations. Each speaker keeps
his vowels well apart in three-dimensional F I-F3 space. A plot of mean F I-F2 values for
vowels shows a pattern called the vowel triangle (Figure 3.14), where the point vowels /i,Q,u/
have extreme F I-F2 values and most other vowels have formant values lying close to one of
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Figure 3.13 Plot of FI vs F2 for vowels spoken by 60 speakers. (After Peterson and
Barney [31].)
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the sides of the triangle: the li/-Ial axis for the front vowels and the lui-luI axis for the
back vowels. (For English, a "vowel quadrilateral" is more appropriate, including IreI as the
fourth point vowel, but the relative infrequency of lrel in other languages has led to the
tradition of a vowel triangle.) The vowel triangle has articulatory as well as acoustic
interpretations: F I decreases with tongue height, and F2 decreases as the tongue is shifted
backward. Thus, the high front Iii has the lowest FI and highest F2 of all vowels, and the low
vowel lui has the highest Fl. Vowels tend to have a more central tongue position laterally as
tongue height decreases, and so the F2 difference between low vowels lrel and Inl is much
less than between the high vowels Iii and lui. Vowel intensity decreases with tongue height
over a 4-5 dB range. High vowels have little energy outside F1, due to a combination of a
wide separation ofFl and F2 (from low Fl values) and the -6 dB/oct spectrum falloff, while
lower vowels have more significant energy in other formants as well.

Although vowel formants occur on average every 1kHz for adult males, F2 varies more
than other formants. Table 3.2 notes a 460 Hz range for FI (270-730 Hz) and a 1450 Hz range
for F2 (840-2290 Hz). The range for F3 is also large (1690-3010 Hz), but eight of the ten
vowels have F3 in a narrow 2240-2550 Hz range. In synthesis applications, F3 and higher
formants are often kept fixed (e.g., F3 = 2500, F4 = 3500), except for F3 in 13-/ and perhaps
Iii, with little perceptual degradation. A very low F3 (almost 1600 Hz) is the distinguishing
aspect of the English rhotic vowel 13-1 and consonant [t] [60]. Nonrhotic constrictions in the
vocal tract only lower F3 from its average position by 200-300 Hz [75].

The values in Table 3.2 do not necessarily reflect standard American English, even
though a large number of speakers are pooled. A recent revisit to this data notes that
dialectical variation is significant across large regions [76]. The descriptions we use in this
book reflect a -common view of American English. The reader should be aware of large
deviations in particular dialects, e.g., degree of lip rounding in lui.

3.4.3 Diphthongs

There is some dispute over what constitutes a diphthong. The three diphthongs of Table
3.1 are universally accepted; they consist of a dynamic vowel sound in which the tongue (and
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lips) move between two vowel positions [77]. The three can be described as a vowel followed
by a glide, but the articulators rarely attain the full constriction of a glide. The glide + vowel
sequence Ijul of Figures 3.15 and 3.16 is sometimes called a diphthong, but there are many
other glide + vowel sequences (vs only three vowel + glide ones, all called diphthongs).

The vowels lei and 101 in English are diphthongized (sometimes noted as leiI and
low I, following formant trajectories for IEll and I:> UI, respectively. Other European
languages diphthongize these vowels to a much lesser extent (if at all). Part of a foreigner's
accent when speaking English is often the result of an inadequate use of diphthongs;
conversely, native English speakers are easily spotted by their inappropriate use ofdiphthongs
in other languages. Diphthongs should not be confused with sequences of two vowels; e.g.,
the word brake has a diphthongized lei, while algebraic has two vowels leI/. The difference
reflects the general rise + fall pattern of amplitude in syllables: amplitude falls during the
glide portion of a diphthong, whereas the amplitude in a sequence such as leII might dip only
briefly, continuing strong for the second vowel.
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3.4.4 Glides and Liquids

Glides and liquids are sonorant consonants, very similar to vowels in that they have
periodic, intense waveforms (Figure 3.17a) with most energy in the low formants (Figures
3.18a, band 3.19a-d). They are weaker than vowels because they require a greater average
constriction of the vocal tract, but airflow is rarely constrained enough to generate noise. Also
known as semivowels, glides can be viewed as brief high vowels of greater constriction than
corresponding vowels (/j/: Iii, IwI: lui). Glides tend to be transient, sustaining a steady
spectrum for much less time than vowels do [79].

The liquids II,rI have spectra very similar to vowels, but they are usually a few decibels
weaker. The English [t] causes F3 to descend much lower than for any other phoneme. In
other languages, Irl is quite variable, ranging from a velar or uvular fricative (both voiced and
unvoiced) in French to a trill (rapid aerodynamic vibration) or even a single tap of the tongue
tip in Spanish. The presence of multiple acoustic paths for II! (air passing on either side of
the tongue tip) leads to an antiresonance in the F2-F4 region and a possible extra resonance
near F4 [80]. The English 11/ is often characterized by a deep spectral null near 2 kHz and a
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high F3. Discontinuities appear in formant slopes when the tongue tip makes or breaks
contact with the alveolar ridge.

3.4.5 Nasals

The waveforms of nasal consonants (called murmurs) resemble those of vowels (Figure
3.17b) but are significantly weaker because of sound attenuation in the nasal cavity. For its
volume, the nasal cavity has a large surface area, which increases heat conduction and viscous
losses so that formant bandwidths are generally wider than for other sonorants. Owing to the
long pharyngeal + nasal tract (about 20 em, vs a 17 em pharyngeal + oral tract), formants
occur about every 850 Hz instead of every 1kHz. F1 near 250 Hz dominates the spectrum, F2
is very weak, and F3 near 2200 Hz has the second-highest formant peak (Figure 3.18c-e). A
spectral zero, whose frequency is inversely proportional to the length of the oral cavity behind
the constriction, occurs in the 750-1250 Hz region for [in], in the 1450-2200 Hz region for
[u], and above 3 kHz for /111 [81]. Since humans have relatively poor perceptual resolution
for spectral nulls, discrimination of place of articulation for nasals is also cued by formant
transitions in adjacent sounds (Figures 3.1ge and 3.20). Spectral jumps in both formant
amplitudes and frequencies coincide with the occlusion and opening of the oral tract for
nasals.

The velum often lowers during a vowel preceding a nasal consonant, which causes
nasalization of the vowel (Figures 3.1ge and 3.20) (less often the nasalization continues into
an ensuing vowel, if the oral tract opens before the velum closes). Vowel nasalization
primarily affects spectra in the F1 region: an additional nasal resonance appears near F I and
the oral first formant weakens and shifts upward in frequency [82]; there is also less energy
above 2 kHz [45].
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As obstruents, fricatives and stops have waveforms (Figure 3.17c-j) very different from
sonorants: aperiodic, much less intense, and usually with most energy at high frequencies
(Figure 3.18f-n). The reduced energy is due to a major vocal tract constriction, where airflow
is (relatively inefficiently) converted into noise much weaker than glottal pulses. The
obstruents of English and many other languages may be either voiced or unvoiced. Since
acoustic properties can vary significantly depending on voicing, unvoiced and voiced
fricatives are discussed separately.

Unlike sonorants, in which the entire vocal tract is excited, unvoiced fricatives have a
noise source that primarily excites the portion of the vocal tract anterior to the constriction,
which results in a lack of energy at low frequencies. Unvoiced fricatives have a highpass
spectrum, with a cutoff frequency approximately inversely proportional to the length of the
front cavity. Thus the palatal fricatives are most intense, with energy above about 2.5 kHz;
they have a large front cavity, since the constriction is a 10-12 mm wide groove behind the
posterior border of the alveolar ridge [83]. With a groove 6-8 rom wide and further forward,
the alveolar fricatives lack significant energy below about 3.2 kHz and are less intense. The
labial and dental fricatives are very weak, with little energy below 8 kHz, due to a very small
front cavity. The glottal fricative Ihl also has low intensity since the whisper noise source of
the glottis is usually weaker than noise from oral tract constrictions, but energy appears at all
formants since the full vocal tract is excited; in general, Ihl is a whispered version of the
ensuing vowel.

Voiced fricatives have a double acoustic source, periodic glottal pulses and the usual
frication noise generated at the vocal tract constriction. The nonstrident voiced fricatives [v I
and I blare almost periodic, with few noise components, and resemble weak versions of a
glide such as IwI. The fricatives [z] and 13/, on the other hand, usually have significant
noise energy at high frequencies typical of lsi and I f I, respectively. In addition, they exhibit
a voice bar (very-low-frequency formant) near 150 Hz and sometimes have weak periodic
energy in the low formants typical of sonorants. The spectra of unvoiced fricatives are rarely
characterized in terms of formants because low frequencies are not excited and the excited
upper resonances have broad bandwidths. Since the glottal pulses of voiced fricatives may
excite all resonances of the vocal tract, however, formants can characterize voiced fricatives.

3.4.7 Stops (Plosives)

Unlike other sounds, which can be described largely in terms of steady-state spectra,
stops are transient phonemes and thus are acoustically complex (Figures 3.17i, j, 3.20 and
3.21). The closure portion of a stop renders the speech either silent (for most stops) or having
a simple voice bar with energy confined to the first few harmonics (for some voiced stops).
When present, the voice bar is due to radiation of periodic glottal pulses through the walls of
the vocal tract; the throat and cheeks heavily attenuate all but the lowest frequencies.

The release of the vocal tract occlusion creates a brief (a few ms) explosion of noise,
which excites all frequencies, but primarily those of a fricative having the same place of
articulation. After the initial burst, turbulent noise generation (frication) continues at the
opening constriction for 10-40 ms, exciting high-frequency resonances, as the vocal tract
moves toward a position for the ensuing sonorant. Unvoiced stops average longer frication
than do voiced ones (35 vs 20 ms) [84]. In voiced stops, vocal fold vibration either continues
throughout the entire stop or starts immediately after the burst. The vocal folds are more
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widely separated during the closure for unvoiced stops and begin to adduct only near the time
of release. Before the vocal folds begin to vibrate, a condition suitable for whisper usually
occurs at the narrowing glottis. In such aspirated stops, the whisper source excites the
resonances of the vocal tract, which are moving toward positions for the ensuing sonorant for
about 30 ms after the frication period [84].

Unaspirated stops have little periodic energy at low frequency in the first 20 ms after
stop release. Voiced stops in English are not aspirated, nor are stops after fricatives in initial
consonant clusters. Other languages permit the independent specification of aspiration and
voicing, thus creating four classes of stops. Stops are identified on spectrograms as sounds
with very little intensity (at most a voice bar) for 20-120 ms during occlusion, often followed
by a brief noise burst. Stops at the end of a syllable are often unreleased, in that little burst is
apparent, due to a relaxation in lung pressure or a glottal stop, which reduces oral pressure
behind the stop occlusion.

Stops can be very brief between two vowels. Alveolar stops, in particular, may become
flaps in which the tongue tip retains contact with the palate for only 10-40 ms. The shortest
flaps occur between low vowels, where rapid ballistic motion is more feasible than between
high vowels (due to the longer distance the tongue tip moves with low vowels) [58].

The burst release of alveolar stops is broadband, with energy primarily above 2 kHz.
The peak for It/ is usually near 3.9 kHz, but it drops to 3.3 kHz before rounded or retroflex
vowels; peaks for Idl are about 365 Hz lower than for [t], The different allophones of /kl
lead to radically different burst spectra: a compact peak at about 2.7 kHz for /kl before a front
vowel and a lower-frequency peak with a secondary peak above 3 kHz before a back vowel
(the lower peak averages 1.8kHz before unrounded vowels and 1.2 kHz before rounded
vowels) [84]. Alveolar and velar bursts average about 16 dB weaker than ensuing vowels,
while labial bursts are the weakest (28 dB less than vowels). The acoustics of affricates
resemble that of stop + fricative sequences [61].
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Common variants of normal speech are whisper, shout, and song. In whispered speech,
the glottal periodic source for voiced speech is replaced by glottal frication (aspiration).
Unvoiced obstruents are unaffected, but sonorants become unvoiced and decrease substan­
tially in amplitude so that fricatives are louder than whispered vowels. At the other extreme of
speech intensity is shouted voice, typically 18-28 dB louder than normal voice [85]. Both
extremes suffer from decreased intelligibility, but for different reasons. In whisper, voiced and
unvoiced obstruents are often confused. In shouting, the distinctions between many phonemes
are sacrificed to increase amplitude so that the voice can be heard at a distance. Speakers often
raise their voice intensity, without shouting, in inverse proportion to the distance from
listeners (to compensate for the inverse square law of sound power radiating from the lips); FO
level also goes up (but not FO range) and vowels lengthen [86,87]. Speakers also increase
duration and intensity (among other factors) when faced with a noisy environment (the
Lombard effect) [88,89].

Vowels, especially open vowels, dominate shouted speech in terms of duration. It is
much easier to raise intensity for vowels than for obstruents, so shouting emphasizes vowels.
Physiologically, the vocal tract tends to be more open for shouted than for normal voice,
which raises FI and general amplitude but alters the speech spectra. The main difference,
however, occurs at the glottis, where increased subglottal pressure raises amplitude, and
altered vocal fold tension reduces the duration of the open phase in vocal fold vibration
(similar glottal changes occur in emotional or stressed speech [90]). The resulting sharper
glottal air puffs resemble square pulses rather than the normal rounded shape and thus have
more high-frequency energy. FO also rises considerably, and formants tend to neutralize,
deforming the vowel triangle [85].

Fundamentally, singing differs from normal voice mostly in intonation: (a) durations are
modified to accomplish various rhythms, usually extending vowels (as in shouting) rather
than consonants, and (b) FO is held fixed for musical intervals corresponding to different
notes, rather than allowed to vary continuously as in speech. However, singing is often
correlated with increased intensity (e.g., in opera), and singers can modify their articulations
to have up to 12 dB more intensity via a fourfold increase in airflow with the same lung
pressure [13.91]. One such change is a lowered larynx in vowels, which appears to add a
singing forman! (also called vocal ring) at about 2.8 kHz, boosting energy by about 20 dB in
the F3-F4 range, which is usually weak in normal voice [92]. This "formant" is actually a
clustering of existing formants (F3-F5), and appears to relate to the narrow epilarynx tube
(vocal tract right above the glottis). This tube is about 3 em long and 0.5 crrr' in area (vs 3 crrr'
in the pharynx); being about ~ the length of the vocal tract, its quarter-wavelength resonance
(see below) is about 3 kHz. Like the mouthpiece of a brass musical instrument, it matches a
high glottal impedance to the lower impedance of the wider pharynx [93].

As we will see in Chapter 10, the style of speech significantly affects accuracy rates in
automatic speech recognition. Spontaneous and conversational speech is the most difficult to
recognize, due to its often faster rate, high use of words familiar to the listener, and frequent
disfluencies. The latter include pauses at unexpected locations (e.g., within words), repetitions
of portions of words, and filled pauses (e.g., "uhh" or "umm") [94]. At the other extreme,
"hyperarticulate" or "clear" speech may be used when talking to computers or foreigners, on
the assumption that such listeners cannot handle normal speech; such speech is slower with
more pauses and fewer disfluencies [95].
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Lastly, other human vocalizations include coughs and laughs. While not strictly speech,
their analysis is relevant, especially in the context of speech recognition applications, where it
would be useful to distinguish pertinent, linguistic sounds from other human sounds.
Laughter usually consists of a series of 200-230 ms bursts of a breathy neutral vowel,
often at higher FO than normal speech [96]. Coughs are irregular, brief: broadband noise
bursts.

3.5 ACOUSTIC THEORY OF SPEECH PRODUCTION

This section gives mathematical details for acoustic and electrical models of speech
production that are suitable for many speech applications. Since more readers are familiar
with electrical circuits than acoustics, electrical analogs of the vocal tract will be analyzed.
Such analog models are further developed into digital circuits suitable for simulation by
computer.

3.5.1 Acoustics of the Excitation Source

In modeling speech, the effects of the excitation source and the vocal tract are often
considered independently. While the source and tract interact acoustically, their interdepen­
dence causes only secondary effects. Thus this chapter generally assumes independence.
(Some recent literature examines in more detail these interactions, e.g., influences on
formants due to the subglottal regions, and on glottal flow due to supraglottal load, which
is raised by oral constrictions [2]).

In sonorant production, quasi-periodic pulses of air excite the vocal tract, which acts as
a filter to shape the speech spectrum. Unvoiced sounds result from a noise source exciting the
vocal tract forward of the source. In both cases, a speech signal s(t) can be modeled as the
convolution of an excitation signal e(t) and an impulse response characterizing the vocal tract
v(t). Since convolution of two signals corresponds to multiplication of their spectra, the output
speech spectrum 8(0) is the product of the excitation spectrum £(0) and the frequency
response V(O) of the vocal tract. This section models e(t) and £(0) for different types of
excitation.

Unvoiced excitation, either frication at a constriction or explosion at a stop release, is
usually modeled as random noise with an approximately Gaussian amplitude distribution and
a flat spectrum over most frequencies of interest. The flat range is about 2-3 octaves, centered
on a frequency of U j(5A 3/ 2) (which equals typically 1kHz), where A is the area of
constriction generating the noise and U is its volume velocity [17]. White noise, limited to
the bandwidth of speech, is a reasonable model; in this case, 1£(0)1 has no effect on 18(0)1.
The phase of £(0) is rarely analyzed because (a) spectral amplitude is much more important
than phase for speech perception, and (b) simple models for random (unvoiced) e(t) suffice
for good quality in speech synthesis.

More research has been done on voiced than on unvoiced excitation because the
naturalness of synthetic speech is crucially related to accurate modeling ofvoiced speech. It is
difficult to obtain precise measurements of glottal pressure or volume velocity waveforms.
Photography using mirrors at the back of the throat has shown how the glottal area behaves
during voicing, but glottal airflow is not always proportional to glottal area because acoustic
impedance varies during the voicing cycle (e.g., airflow follows the third power of glottal area
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for small areas [62]). Two methods to measure glottal signals employ inverse filtering or a
reflection/ess tube attached to the mouth.

In inverse filtering, an estimate 1V(Q)I is made of 1V(Q)I, using the observed IS(Q)I and
knowledge of articulatory acoustics. The excitation estimate then is simply

1£(0)1 = 1~(n)1 .
IV(Q)I

(3.1 )

A problem here is that errors are often made in estimating IV(Q)I, and this estimate is often
adjusted to yield a smooth e(t), following preconceived notions of how glottal pulses should
appear [97]. An alternative method extends the vocal tract with a long uniform tube attached
to the mouth, which effectively flattens IV(Q)I by preventing acoustic reflections that would
otherwise cause resonances. The spectrum of the output of the long tube should be I£(Q)I if
the coupling at the mouth is tight and the entire system (vocal tract + tube) can be modeled as
a long, uniform, hard-walled passageway. Since the vocal tract cross-sectional area is not
uniform, however, certain distortions enter into I£(Q)I, especially for narrowly constricted
vocal tract shapes [98].

The glottal volume velocity e(t) of voiced speech is periodic and roughly resembles a
half-rectified sine wave (Figure 3.22). From a value of zero when the glottis is closed, e(t)
gradually increases as the vocal folds separate. The closing phase is more rapid than the
opening phase (thus the glottal pulse is skewed to the right) due to the Bernoulliforce, which
adducts the vocal folds. A discontinuity in the slope of e(t) at closure causes the major
excitation of the vocal tract; i.e., a sudden increase in Is(t)1 (Figure 3.12) every glottal period
occurs about 0.5 ms after glottal closure (sound travels from glottis to lips in 0.5 ms). The duty
cycle or open quotient (ratio of open phase-both opening and closing portions-to full
period) varies from about 0.4 in low-FO shouts and pressed voice to above 0.7 in breathy, low­
amplitude voices.

To analyze voiced excitation spectrally, assume that one period of e(t) is a glottal pulse
g(t). Periodic e(t) results in a line spectrum IE(Q)I because (a) e(t) can be modeled by the
convolution of a uniform impulse train ;(t) with one pulse g(t), and (b) 1£(0)1 is thus the
product of a uniform impulse train I/(Q)I in frequency and IG(Q)I. Since e(t) and thus ;(t) are
periodic with period T = I/FO, both I/(Q)I and I£(Q)I are line spectra with FOHz spacing
between lines. The relatively smooth function g(t) leads to a lowpass IG(Q)I, with a cutoff
frequency near 500 Hz and a falloff of about - 12 dB / oct. Increased vocal effort for loud
voices decreases the duty cycle of e(t), causing more abrupt glottal closure, hence a less
smooth g(t) and more high-frequency energy in IG(Q)I.

o A A+B T T+A 2T

Figure 3.22 Simplfied glottal waveforms during a voiced sound.
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3.5.2 Acoustics of the Vocal Tract

Except for a falloff with frequency, the amplitudes of the spectral lines in IS(Q)I for
voiced speech are determined primarily by the vocal tract transfer function IV(Q)I. A later
section calculates IV(Q) I for a number of simplified models of the vocal tract. This section
uses a general model to analyze vocal tract acoustics heuristically in terms of resonances and
antiresonances. In its simplest model, speech production involves a zero-viscosity gas (air)
passing through a 17em long, hard-walled acoustic tube of uniform cross-sectional area A,
closed at the glottal end and open at the lips. In practice, such modeling assumptions must be
qualified: (a) vocal tract length varies among speakers (about 13em for women, and 10ern for
8-year-old children) and even within a speaker's speech (protruding the lips or lowering the
larynx extends the vocal tract); (b) the walls of the vocal tract yield, introducing vibration
losses; (c) air has some viscosity, causing friction and thermal losses; (d) area A varies
substantially along the length of the vocal tract, even for relatively neutral phonemes; (e)
while glottal area is small relative to typical A values, the glottal end of the vocal tract is truly
closed only during glottal stops and during the closed phases of voicing; (f) for many sounds,
lip rounding or closure narrows the acoustic tube at the lips. The effects of each of these
qualifications will be examined in tum, but we ignore them for now.

3.5.2.1 Basic acoustics ofsound propagation. Sound waves are created by vibration,
either of the vocal folds or other vocal tract articulators or of random motion of air particles.
The waves are propagated through the air via a chain reaction of vibrating air particles from
the sound source to the destination of a listener's ear. The production and propagation of
sound follow the laws of physics, including conservation of mass, momentum, and energy.
The laws of thermodynamics and fluid mechanics also apply to an air medium, which is
compressible and has low viscosity.

In free space, sound travels away from a source in a spherical wave whose radius
increases with time. When sound meets a barrier, diffractions and reflections occur, changing
the sound direction (variations in air temperature and wind speed also affect the direction of
travel). At most speech frequencies of interest (e.g., below 4 kHz), however, sound waves in
the vocal tract propagate in only one dimension, along the axis of the vocal tract. Such planar
propagation occurs only for frequencies whose wavelengths A are large compared to the
diameter of the vocal tract; e.g., for energy at 4 kHz,

340m/s
A. = elf = = 8.5 ern,

4000/s
(3.2)

which exceeds an average 2 em vocal tract diameter. (The speed of sound e is given for air at
sea level and room temperature; it increases at about 0.6 mls per °C [99], and is much higher
in liquids and solids.) Due to its mathematical simplicity, planar propagation is assumed in
this book, even though it is less valid at high frequencies and for parts of the vocal tract with
large width. The initial discussion also assumes that the vocal tract is a hard-walled, lossless
tube, temporarily ignoring losses due to viscosity, heat conduction, and vibrating walls.
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Linear wave motion in the vocal tract follows the law of continuity and Newton's law
(force equals mass times acceleration), respectively:

1 Bp .
--+dlVV==O
pe2 at

av
p at + grad p == 0

(3.3)

(3.4)

where p is sound pressure, v is the vector velocity of an air particle in the vocal tract (a three­
dimensional vector describes 3D air space), and p is the density of air in the tube (about
1.2 mg/crrr') [98]. In the case of one-dimensional airflow in the vocal tract, it is more
convenient to examine the velocity of a volume of air u than its particle velocity v:

u == Av, (3.5)

where A is the cross-sectional area of the vocal tract. In general, A, U, v, and p are all functions
of both time t and distance x from the glottis (x == 0) to the lips (x = /) (e.g., I = 17 ern),
Using volume velocity u(x,t) and area A(x,t) to represent v under the planar assumption,
Equations (3.3) and (3.4) reduce to

au I a(pA) aA
------+-ax - pe2 at at '

Bp a(ujA)
--==p--.ax at

(3.6)

(3.7)

For simple notation, the dependence on both x and t is implicit. While closed-form solutions
to Equations (3.6) and (3.7) are possible only for very simple configurations, numerical
solutions are possible by specifying A(x,t) and boundary conditions at the lips (for the speech
output) and at the sound source (e.g., the glottis).

3.5.2.2 Acoustics ofa uniform lossless tube. Analysis is simplified considerably by
letting A be fixed in both time and space, which leads to a model of a steady vowel close to
jaj. Other steady sounds require more complex A(x) functions, which are described later as
concatenations of tube sections with uniform cross-sectional area. The analysis for a single
long uniform tube applies to shorter tube sections as well. The tube is assumed straight,
although actual vocal tracts gradually bend 90°, which shift resonant frequencies about 2-8 0

/ 0

[100]. With A constant, Equations (3.6) and (3.7) reduce to

au A ap
==ax pe2 at and

_ ap _!: au
ax - A at· (3.8)

To obtain an understanding of the spectral behavior of a uniform tube, assume now that
the glottal end of the tube is excited by a sinusoidal volume velocity source uG(t) and that
pressure is zero at the lip end. Using complex exponentials to represent sinusoids, we have

(3.9)

p(/, t) = 0



(3.10)
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where 0 is the radian frequency of the source and VG is its amplitude. Since Equations (3.8)
are linear, they have solutions of the form

p(x, t) = P(x, O)e i nt

u(x, t) = U(x,O)e i n t,

where P and U represent complex spectral amplitudes that vary with time and position in the
tube. Substituting Equations (3.10) into equations (3.8) yields ordinary differential equations

dU dP
- dx = YP and - dx =ZU, (3.11)

where Z = jOp1A and Y = jnA1pc? are the distributed acoustic impedance and admittance,
respectively, of the tube. Equations (3.11) have solutions of the form

P(x, 0) = at eYx + a2e-Yx, (3.12)

where the propagation constant y is

y = m =jQlc (3.13)

(3.14)

(3.15)

in the lossless case (losses add real components to Z and ~ causing a complex y). Applying
boundary conditions (Equations (3.9» to determine the coefficients a., we have the steady­
state solutions for p and u in a tube excited by a glottal source:

(x, t) = Z sin(Q(l- x)/c) U (Q)ei Q 1

P J 0 cos(Qllc) G

( ) = cos(n(/- x)/c) IT (n).Jnt
U x, t cos(nllc) VG ~~ e ,

where Zo = pcfA is called the characteristic impedance of the tube. Equations (3.14) note the
sinusoidal relationship of pressure and volume velocity in an acoustic tube, where one is 900

out of phase with respect to the other. The volume velocity at the lips is

"nt UG(Q)t!OJ
ui], t) = U(/. Q)e' = cos(QI/c) .

The vocal tract transfer function, relating lip and glottal volume velocity, is thus

v Q _ U(/, Q) _ 1
( ) - UG(Q) - cos(QI/c)

The denominator is zero at formant frequencies F; = n;/(21t), where

(3.16)

{
Q;/Ic = (2i - 1)(1t/2)

F; = (2i - l)c/(4l)
fori= 1,2,3, .... (3.17)

If I = 17 em, V(Q) becomes infinite at F; = 500, 1500, 2500, 3500, ... Hz, which indicates
vocal tract resonances every 1kHz starting at 500 Hz. For a vocal tract with a length l other
than 17 em, these F; values must be scaled by 17/1. Linear scaling of formants for shorter
vocal tracts of nonuniform area is only approximately valid because the pharynx tends to be
disproportionately small as length decreases in smaller people [101,102].

Similar analysis using Laplace transforms instead of Fourier transforms shows that V(s)
has an infinite number of poles equally spaced on the jn axis of the complex s plane, a pair of
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Figure 3.23 Spatial distribution of volume velocity at
frequencies of the first four resonances of an ideal
vocal tract having uniform cross-sectional area. Places
of maximum volume velocity are noted in a schematic
of the vocal tract.

~
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poles for each resonance at s, = ±j21tF;. Since a fixed acoustic tube is a linear time-invariant
system, it is fully characterized by its frequency response V(O). The spectrum 8(0) of the
tube output is thus VG(O)V(n), for arbitrary excitation VGas well as for the simple sinusoidal
example of Equations (3.9).

A tube closed at one end and open at the other resembles an organ pipe and is called a
quarter-wavelength resonator. The frequencies at which the tube resonates are those where
sound waves traveling up and down the tube reflect and coincide at the ends of the tube. As an
alternative to the lengthy derivation above, vocal tract resonances can be heuristically
computed using only boundary conditions and the phase relationship of pressure and
volume velocity. Formant frequencies match boundary conditions on pressure P (relative to
outside atmospheric pressure) and net volume velocity V: a closed end of the tube forces
U = 0, whereas P ~ 0 at an open end. P is 90° out of phase with U, much as voltage and
current are at quadrature in transmission lines or in inductors and capacitors. Given the bound­
ary conditions and the 90° phase shift, resonance occurs at frequencies F;, i = 1, 2, 3, ... ,
where IVI is maximum at the open end of the vocal tract and IPI is maximum at the closed
end. Such frequencies have wavelengths A; where vocal tract length I is an odd multiple of a
quarter-wavelength (Figure 3.23):

I = (A;/4)(2; - 1),

which leads to Equation (3.17).

for i = 1,2,3, ... , (3.18)

3.5.2.3 Resonances in nonuniform tubes. A uniform acoustic tube is a reasonable
vocal tract model only for a schwa vowel. To determine formant frequencies for other sounds,
more complex models must be employed. One approach that yields good models for many
sounds follows perturbation theory. If the uniform tube is modified to have a constriction with
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slightly reduced diameter over a short length of the tube, the resonances perturb from their
original positions. The degree of formant change is correlated with the length and narrowness
of the constriction. Consider a resonance F; with maxima in U and P at alternating locations
along the tube. If the tube is constricted where U is maximum, F, falls; if P is maximum there,
F, rises. In particular, a constriction in the front half of the vocal tract (i.e., between lips and
velum) lowers FI, and a constriction at the lips lowers all formants, The effects on formants
above Fl of constrictions not at the lips are complex due to the rapid spatial alternation of P
and U maxima as frequency increases.

This phenomenon derives from simple circuit theory. The relationships of volume
velocity U (acoustical analog of electrical current l) and pressure P (analog of voltage V) can
be described in tenns of impedances Z, involving resistance, inductance, and capacitance. As
we will see later, modeling an acoustic tube by discrete elements (e.g., simple resistors,
capacitors, and inductors) has severe drawbacks. A distributed model of impedances, as for a
transmission line, is more appropriate for an acoustic tube.

The mass of air in a tube has an inertance opposing acceleration, and the compres­
sibility of its volume exhibits a compliance. The inertance and compliance are modeled
electrically as inductance and capacitance, respectively. The local distributed (per unit length)
inductance L for a section of tube with area A is p / A, while the corresponding capacitance C
is A / pe-. Following transmission line theory [1031 the characteristic impedance is

Zo = JL/C = pcfA, (3.19)

If A is a function of distance x along the tube, then wide and narrow sections of the tube will
have large values of C and L, respectively.

In passive circuits such as the vocal tract, an increase in either inductance or capacitance
lowers all resonant frequencies (e.g., the resonance ofa simple LC circuit is (2n~)-1), but
in varying degrees depending on the distribution of potential and kinetic energy. Perturbing a
uniform tube with a slight constriction reduces A at one point along the tube. If at that place,
for a given resonance Fi, U is large without the constriction, kinetic energy dominates and the
change in L has a greater effect on F; than do changes in C. Similarly, for those places where
P is large, potential energy dominates and changes in C dominate F; movement. Since
reducing A raises L and lowers C, F; increases if the constriction occurs where P is large and
decreases where U is large [80].

Calculating the amount of formant change is left to a later section, but certain vocal
tract configurations facilitate acoustic analysis. If the vocal tract can be modeled by two or
three sections of tube (each with uniform area) and if the areas of adjacent sections are quite
different, the individual tube sections are only loosely coupled acoustically, and resonances
can be associated with individual cavities. Except for certain extreme vowels (e.g., /i,o.,u/),
most vowels are not well represented by tube sections with abrupt boundaries; consonants,
however, often use narrow vocal tract constrictions that cause A(x) to change abruptly with x
at constriction boundaries. Thus, resonant frequencies for most consonants and some vowels
can be quickly estimated by identifying resonances of individual cavities, which avoids the
mathematical complexities of acoustic interaction between cavities.

3.5.2.4 Vowel modeling. The vowel /0,/ can be roughly modeled by a narrow tube
(representing the pharynx) opening abruptly into a wide tube (oral cavity) (Figure 3.24a).
Assuming for simplicity that each tube has a length of 8.5 cm, each would produce the same
set of resonances at odd multiples of 1 kHz. Each tube is a quarter-wavelength resonator,
since each back end is relatively closed and each front end is relatively open. At the boundary
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4--ll~

(b)

lc

(c)

Figure 3.24 Two- and three-tube models for the vocal tract. In the two-tube case, the first
tube section of area A I and length II may be viewed as modeling the
pharyngeal cavity, while the second section of area A2 and length 12
models the oral cavity. The first two models represent the vowels: (a) In/
and (b) [i], The three-tube model (c) has a narrow section corresponding to
the constriction for a consonant. (After Stevens [104].)

between the tube sections, the narrow back tube opens up, whereas the wide front tube finds
its area abruptly reduced. If the change in areas is sufficiently abrupt, the acoustic coupling
between cavities is small and the interaction between cavity resonances is slight. Since each
tube is half the length of the vocal tract, formants occur at twice the frequencies noted earlier
for the single uniform tube. Due to actual acoustic coupling, formants do not approach each
other by less than about 200 Hz; thus F1 and F2 for / a/ are not both at 1000 Hz, but rather
Fl = 900, F2 = 1100, F3 = 2900, and F4 = 3100. Deviations from actual observed values
represent modeling inaccuracies (e.g., a simple two-tube model is only a rough approximation
to I a/; nonetheless, this model gives reasonably accurate results and is easy to interpret
physically.

The respective model for Iii has a wide back tube constricting abruptly to a narrow
front tube (Figure 3.24b). In this case, the back tube is modeled as closed at both ends (the
narrow openings into the glottis and the front tube are small compared to the area of the back
tube), and the front tube has open ends. These tubes are half-wavelength resonators because
their boundary conditions are symmetrical: a tube closed at both ends requires U minima at its
ends for resonance, whereas a tube open at both ends requires P minima at its ends. In both
cases, the conditions are satisfied by tube lengths I that are multiples of half a resonance
wavelength i.,.:

1_;
/ =-i

2
and

c ci
F; = ~ = 2/'

I",
for i = 1, 2, 3, .... (3.20)

Thus, for Iii, both tubes have resonances at multiples of 2 kHz (again, in practice the
formants of one tube are slightly below predicted values and those of the other are above,
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when the tubes have identical predicted resonances). Besides the formants of Equation (3.20),
another resonance at very low frequency occurs for vocal tract models containing a large tube
(e.g., the back cavity) closed at both ends. This corresponds to Fl, which decreases from a
value of 500 Hz in a one-tube model as a constriction is made in the forward half of the vocal
tract. In the limiting case of a tube actually closed at both ends, F1 approaches a zero­
frequency (infinite-wavelength) resonance, where the boundary conditions of minimal U at
both ends are satisfied. In practice, F1 goes no lower than about 150 Hz, but many consonants
and high vowels approach such Fl values. Back rounded vowels (e.g., /o,u/) can be modeled
as having two closed tubes with a constricted tube between them; in such cases both F1 and
F2 are relatively low.

3.5.2.5 Consonant modeling. A three-tube model appropriate for many consonants
(Figure 3.24c) employs relatively wide back and front tubes, with a narrow central tube to
model a vocal tract constriction. The back and central tubes are half-wavelength resonators
(one closed at both ends, the other open at both ends), whereas the front tube is a quarter­
wavelength resonator. Thus, three sets of resonances F; can be defined:

ci ci c(2i - 1)

21b ' 21e ' 41[
for i = 1, 2, 3, ... , (3.21 )

where Ib, Ie' ~ are the lengths of the back, central, and front tubes. Figure 3.25 shows how the
front and back cavity resonances vary as a function of the position of the constriction,
assuming a typical consonant constriction length Ie of 3 em, The resonances of the

,/'
F2~'" 'F~

-----------
10 12

Length of back cavity (cm)
14

Figure 3.25 Formant frequencies as a function of the length of the back tube in the model
of Figure 3.24(c), using 16cm as the overall length of the three tubes and
3 cm as the constriction length. The dashed lines show the lowest two front
cavity resonances, the solid lines the lowest four back cavity resonances.
Dotted lines show the effect of a small amount of coupling between tubes,
which prevents coinciding formant frequencies. The arrows at right note the
formants (F2, F3, F4) of an unconstricted 16cm long tube. (After Stevens
[104] 1972 Human Communication: A. Unified View, E. David and P Denes
(eds), reproduced with permission of McGraw-Hill Book Co.)
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constriction occur at multiples of 5333 Hz and can be ignored in many applications that use
speech of 4 or 5 kHz bandwidth.

Labial consonants have virtually no front cavity, and thus all formants of interest are
associated with the long back tube, yielding values lower than those for a single uniform open
tube. A model for alveolar consonants might use a 10 em back tube and a 3 ern front tube;
Figure 3.25 suggests that such consonants should have a back cavity resonance near 1.7 kHz
for F2 and a front cavity resonance for F3 around 2.8 kHz. Alveolars are indeed characterized
by relatively high F3 compared with average F3 values for vowels. Velar constrictions are
more subject to coarticulation than labials or alveolars, but an 8.5 em back tube and a 4.5 ern
front tube is a good model that leads to close values for F2 and F3 near 2 kHz. The dominant
acoustic characteristic of velars is indeed a concentration of energy in the F2-F3 region
around 2 kHz. If the velar has a relatively forward articulation (e.g., if it is adjacent to a
forward vowel), F2 is a back cavity resonance and F3 is affiliated with the front cavity. The
opposite occurs if the velar constricts farther back along the palate, e.g., when the velar is near
a back vowel. A similar effect occurs between F3 and F4 for alveolar and palatal fricatives:
lsi and I JI might have 11 em and IOcm back tubes, respectively, which lead to a front
cavity resonance of F3 for I JI but of a higher formant for is].

The distinction between front and back tube resonance affiliation is important for
obstruent consonants because speech energy is dominated by front cavity resonances.
Frication noise generated just anterior to an obstruent constriction primarily excites the
cavities in front of the constriction. Posterior cavities are usually acoustically decoupled from
the noise source, until the constriction widens, at which point the noise ceases. Alveolars and
front velars have dominant energy in F3, while F2 is prominent for back velars. Labial
consonants with no front cavity to excite simply have low energy.

In stop + vowel production, the stop release is marked by a noise burst that excites
primarily the front cavities, giving rise to different spectral content for different stops. A velar
constriction provides a long front cavity, with a low resonance near 2 kHz (F2 or F3). Alveolar
resonances are higher (F4 and F5) due to shorter front cavities. The spectrum of a labial burst
is relatively flat and weak since there is essentially no front cavity to excite.

3.5.2.6 Resonances and antiresonances. Postponing technical details, we can heur­
istically estimate the frequencies of antiresonances (zeros) in fricatives using simple acoustic
tube models. When a sound source has only one acoustic path to the output (the mouth), the
vocal tract frequency response has only resonances (poles) and no zeros. For nasals and
obstruents, however, multiple acoustic paths cause zeros in the transfer function. In the case of
fricatives, noise generated at a constriction outlet may propagate into the constriction as well
as toward the mouth. At frequencies where the impedance looking into the constriction is
infinite, no energy flows toward the mouth, and thus the output speech has antiresonances.

A similar situation might be thought to occur at the glottis, i.e., sound energy could
enter the lungs as well as the vocal tract. However, the glottal source is viewed as a volume
velocity source, whereas frication noise is better modeled as a pressure source [62, but cf
105]. Zeros in voiced speech due to a glottal source are not considered part of the vocal tract
response. Frication noise sources, on the other hand, have flat spectra with no apparent zeros.
As a pressure source, the noise can be modeled in series with impedances due to the
constriction and the front cavity. At those frequencies where the constriction impedance is
infinite, no air flows and the output speech has no energy.

This circuit analog holds for pole estimation as well. At the boundary between tubes of
a two-tube model of the vocal tract, the impedance Zb looking back into the posterior tube is
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in parallel with Zf looking forward into the front tube. In such a parallel network, resonances
occur at frequencies where

(3.22)

For a tube closed or open at both ends, Z = 0 at frequencies where tube length is an even
multiple of a quarter-wavelength; for a tube closed at one end and open at the other, Z = 0
where tube length is an odd multiple. If, on the other hand, tube length is an odd multiple in
the first case or an even multiple in the second, then Z = 00. (Mathematical justification for
these observations is given later.) When the boundary between tube sections is not abrupt
enough to view the end of a section as fully open or closed, Z takes on intermediate values,
and resonances cannot be associated with a single tube (as Equation (3.22) suggests).

A simple two-tube model with abrupt section boundaries is valid for many fricatives,
with a narrow back tube modeling the constriction and a wide front tube for the mouth cavity.
The large pharyngeal cavity is ignored in such models because it is essentially decoupled
acoustically from the frication excitation by the abrupt boundary between such a cavity and
the constriction. The resonances of the pharyngeal cavity are canceled by its antiresonances in
such cases. Thus, fricatives have resonances at frequencies where l.r is an odd multiple of a
quarter-wavelength or Ie is a multiple of a half-wavelength. Conversely, zeros occur where Ie
is an odd multiple of a quarter-wavelength. If alveolar fricatives /s,z/ are modeled with a
2.5 cm constriction and a 1em front cavity, a zero appears at 3.4 kHz and poles at 6.8 and
8.6 kHz, with the two lowest frequencies being due to the constriction [106]. Palatal fricatives
present a longer Ie and thus lower values for the first pole-zero pair, whereas dental and labial
fricatives have very short Ie and i.r, leading to very high pole and zero locations. Fricatives
have little energy below the frequency of their first zero and have energy peaks near the first
pole frequency. Thus, in the frequency range of primary interest below 5 kHz, fricative energy
is only at high frequencies, with more energy for the strident fricatives, having longer
constrictions and longer front cavities.

3.5.3 Transmission Line Analog of the Vocal Tract

Some insight can be gained into the spectral behavior of an acoustic tube by modeling it
as a uniform lossless transmission line (T-line). Equations (3.8) (the acoustic wave equations)

(b)

R/2

~

L/2 R/2
(e)

Figure 3.26 Two-port electrical network to model a length of uniform acoustic tube or
transmission line: (a) "black box" showing input and output currents and
voltages; (b) equivalent T-sectiontwo-port network; (c) realization ofnetwork
with discrete components, which is valid if I is sufficiently small.
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have a direct parallel with the behavior of voltage v(x,t) and current i(x,t) in a uniform lossless
transmission line [103]:

and
av ai

--=L-ax at'
(3.23)

with the following analogies: current-volume velocity, voltage-pressure, line capacitance C­
acoustic capacitance AIpc?, and line inductance L-acoustic inductance pIA. (As above, all
inductances and capacitances are distributed, i.e., per unit length of tube or transmission line.)
The acoustic impedance pcIA is analogous to Zo, the characteristic impedance of a
transmission line. Using only basic properties ofT lines, we can easily calculate the frequency
response of vocal tract models involving more than one acoustic tube in terms of T-line
impedances. Consider a T-line section of length 1as a two-port network, with voltages VI at
the input and V2 at the output and current II into the T line and 12 out (Figure 3.26a). As a
passive network,

and (3.24)

where ZII and Z22 are the input and output impedances of the T line, respectively, and Zl2 and
Z21 are cross-impedances. By symmetry,

ZI2 = -Z21 and ZII = -Z22 (3.25)

(the minus signs are due to the definition of /2 as flowing out of the T line and II into it). If /2
is set to zero by leaving the output port as an open circuit, ZII can be identified as the input
impedance of an open-circuited T line [103]:

ZII = Zo coth(yl), (3.26)

where Zo and ~' are from Equations (3.19) and (3.13). If V2 is set to zero by making the output
port a short circuit, Equations (3.24) give

/2 /2
Z21 =-Z22-=ZII-'

II II (3.27)

VI = [Zo coth(yl)]I} + Z12 I 2 ·

In addition, VI can also be described via the input impedance ofa short-circuited T line [103]:

Thus

Z21 = Zo csch(yl).

(3.28)

(3.29)

(3.30)

Under the assumption of zero pressure at the lips (Equation (3.9» and using Equation (3.13),
we obtain the tube transfer function for current (or volume velocity):

/2 V 2 Z21 Zo csch(yl) 1 1
J; = VI = ZI. = Zo coth(I'l) = cosh(y/) = cos(n/le)·

Thus, the same result for a lossless model of the vocal tract is obtained through T-line
(Equation (3.30» or acoustic analysis (Equation (3.16».

It is often convenient in circuit theory to model a symmetric network as a T section. The
impedances of Figure 3.26(b) can be easily determined from Equations (3.25), (3.29) and
(3.26) and simple circuit theory to be

Za = Zo tanh(~'/12) and Zb = Zo csch(y/). (3.31)
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(3.32)if Ixl = lyl121 « 1.

If I is sufficiently small, the hyperbolic tangent and cosecant functions of Equation (3.31) can
be approximated by the first terms in their power series expansions, e.g.,

x3 as
tanh(x) = x - 3" +15 - ... ~ x,

Discrete components can thus replace the complex impedances in Equation (3.31):

and
1 yl

Zb~ Zo = I(G +JOC). (3.33)

The last steps of equation (3.33) simply assign values Rand G to the real parts of functions of
y and 2o, and L and C to their imaginary parts, for the general case of a T line with loss. The
earlier definition ofy in Equation (3.13) assumed a lossless case, for which G and R would be
zero. R represents viscous loss, which is proportional to the square of air velocity, while G
represents thermal loss, proportional to the square of pressure; both Rand G also have
components related to the mechanical losses of vibrating vocal tract walls [62]. The usual
interpretation of R and L as resistors and inductors in series and of G and C as resistors and
capacitors in parallel reduces Figure 3.26(b) to that of Figure 3.26(c) when I is small enough.
The model using such discrete components in place of the usual distributed model is valid
only if Iyll « 1. Assuming a frequency F in a loss less system,

Iy/l = nile = 2nFlle« 1. (3.34)

To model frequencies F below 4 kHz, I must be much less than 1.4 em. Thus an analog model
of a 17 cm vocal tract using discrete components would require well over 20 T sections to
accurately represent frequencies up to 4 kHz. A more practical analog representation would
model each of the four resonances below 4 kHz separately, perhaps with an RLC network. The
T-section model has the advantage ofa close relationship to vocal tract shape (each impedance
Za and Zb for a short section of the vocal tract model would be specified by its local cross­
sectional area), but building such a model is impractical. Indeed, all analog models are of little
practical use because they are difficult to modify in real time, which is necessary to simulate
time-varying speech. Models practical for speech simulation are discussed later.

3.5.3.1 Two-tube model: An earlier heuristic analysis for two-tube vocal tract models
was limited to configurations with very abrupt tube-section boundaries and decoupled
acoustic cavities. Equations (3.24}-(3.33) permit a resonance analysis of a general two­
tube model in which concatenated sections are modeled by T-line networks. A two-tube
model can be viewed as a network in which two circuits are in parallel at the juncture between
the two sections. At the juncture, the impedance 2 1 looking back into the first tube and Z2
looking up into the second tube serve to model the effects of the two circuits. The poles of a
general circuit with N parallel components are those frequencies where their admittances add
to zero:

N N 1
LYj=Lz.=O.
;=1 ;=1 I

(3.35)

A circuit of only two parallel components can also be viewed as a series circuit, where poles
occur at frequencies for which impedances add to zero. With either approach, the poles of a
two-tube model satisfy

(3.36)



Section 3.5 • Acoustic Theory of Speech Production 81

Since the glottal opening is usually much smaller than AI' the first tube (modeling the
pharyngeal cavity) is assumed closed at the glottal end. In T-line analogs, an open circuit (zero
current) models the closed end of an acoustic tube (zero volume velocity). Defining Zo; as the
characteristic impedance of tube section i (Zo; = pcIA;), Equation (3.26) gives

(3.37)

where p = 01c in the loss less case. For unrounded phonemes, the mouth termination of the
second tube is considered to be open, and the opening is modeled by a T-line short circuit.
Thus, Equation (3.28) yields

22 = Z02 tanh(yI2 ) = j Z02 tan(p I2 ) '

Combining Equations (3.36)-(3.38) gives

(3.38)

(3.39)
Al

cot({311) = - tan(pI2 ) '
A2

Models for several sounds (e.g., Ii, la/ ,3/) allow I) = 12, which facilitates an explicit
solution of Equation (3.39) in terms of formants F;:

for i = 1, 2, 3, .... (3.40)

(3.41 )

More general cases have easy graphical solutions at those frequencies for which plots of the
tangent and cotangent curves of Equation (3.39) intersect (Figure 3.27). There are intersec­
tions every I kHz on average (most easily seen in Figures 3.27c and d). For a model in which
I} ~ 12 (e.g., Figure 3.27c), both curves have periods of about 2 kHz. For lal, A2 » A I and
pairs of resonances occur near odd multiples of 1kHz; Iii conversely has pairs of resonances
near even multiples of 1kHz.

3.5.3.2 Three-tube model for nasals. The resonances for the three-tube model of
Figure 3.24(c) are not as easily determined as for the two-tube case because two tube
junctions must be considered. One approach, valid for a general model of N tube sections,
determines the transfer function of NT-section circuits in series and then solves for the roots
of its denominator [62]. For more insight, however, consider the three-tube model of Figure
3.28, which applies to nasal sounds. Since the nasal tube joins the rest of the vocal tract at the
velum, the entire system can be modeled as three tubes (pharyngeal, nasal, and oral) joined at
one point, with circuits for the three in parallel. The poles of such a model are specified by
Equation (3.35) (using the notation of Figure 3.28):

I 1 1
-+-+-=0,z, z; z,

where Zp = -jZop cot(Plp), Zm = -jZom cot(Plm), and Z; = jZon tan(pln ) . The mouth and
pharyngeal tubes have closed acoustic terminations, while the nasal tube is open. Its graphical
solution is complex because of the interaction of three curves, but the dimensional similarity
of the pharynx and nasal tubes allows a simplification. If Ip = In = 10.5 em, each of l/Zp and
1/ Z; has periods of about 1.6 kHz and the function 1/Zp + 1/Z; has infinite values about
every 800 Hz. The mouth tube for nasal consonants is often significantly shorter than the
other tubes (e.g., 3-7 em), A plot of the slowly varying -1 IZm vs the more rapid l/Zp + l/Zn
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Figure 3.27 Two-tube approximations to vowels /i,lE,o.,a/ and graphical solutions to their
formant frequencies using Equation (3.39). The solid lines are the tangent
curves, the dashed lines the cotangent curves; the vertical dashes note where
the curves attain infinite values. (After Flanagan [62].)
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Figure 3.28 Three-tube vocal tract model for nasal consonants. Typical cross-sectional
area and length values are noted for the pharyngeal, nasal and mouth (oral)
cavities. The glottal source is modeled by a piston. Output volume velocity
U" emerges from the nostrils. (After Flanagan [62].)
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would note intersections roughly every 800 Hz, with additional intersections every period of
-l/Zm·

Nasal consonants are characterized by (a) formants every 800 Hz (due to the longer
pharynx + nasal tube than the normal pharynx + mouth tube), (b) wider formant band­
widths, and (c) zeros in the spectrum [107]. When airflow from the lungs reaches the velum
junction, it divides according to the impedances looking into the mouth and nasal tubes.
Spectral zeros occur at frequencies where Zm = 0, which results in no airflow into the nasal
tube and thus no nasal speech output. Solving Zm = -j2om cot(21tF;lmlc) = 0 for F; yields
zeros at odd multiples of c/4lm. The mouth tube for Im/ is about 7 ern, which gives zeros at
1.2, 3.6, 6.0, ... kHz. Shorter tubes for Inl and tn). about 5 and 3 ern, respectively, mean
fewer zeros below 5 kHz: only one each at 1.7 and 2.8 kHz, respectively. Besides the poles
due to the pharynx and nasal cavities, which occur every 800 Hz, nasal spectra have pole-zero
pairs due to the mouth cavity; i.e., each zero is close in frequency to a mouth cavity pole.

Nasalized vowels are much stronger than nasal consonants because virtually all airflow
passes through the relatively unconstricted oral cavity, which reduces the role of the lossy
nasal cavity. In terms of the three-tube model, the major difference between nasalized vowels
and consonants is that the mouth cavity has an open termination, Thus Zm should be replaced
by jZom tan(fJlm) in Equation (3.41). The major difference in pole positions between oral
vowels and their nasalized counterparts is a shift in Fl and an additional nasal formant near
F I [82]. Since much more sound exits the mouth than the nose in nasalized vowels, the nasal
cavity is viewed as an acoustic side branch specifying zero frequencies (other small side
branches off the vocal tract near the glottis, called piriform fossa, add spectral zeros near
4-5 kHz and slightly reduce lower formants [93,108]). The fixed nature of the nasal cavity
suggests that zeros should not vary significantly for different nasalized vowels and should be
found at frequencies F; where

Z; =jZon tan(21tFilnl c) = 0, (3.42)

i.e., at odd multiples of about 1.7 kHz.
The transition from an oral vowel to a nasal consonant (and vice versa) may involve an

intermediate nasalized vowel sound, as the velum lowers before (or raises after) oral closure.
As the velum lowers, nasal pole-zero pairs are created with the nasal tract as a side resonator.
When the mouth cavity closes, these pairs disappear and other pole-zero pairs due to the
mouth cavity appear. The process reverses for the release of a nasal consonant.

3.5.3.3 Three-tube model for fricatives. Unlike the previously modeled sonorants,
virtually all obstruents have an excitation source in the oral cavity. From the noise source,
sound waves at most frequencies flow out the mouth as speech, but some are trapped in
cavities behind the source (via spectral zeros) and thus are not present in the speech output.
This situation does not arise for sonorants, because the glottis closes at the primary excitation,
forcing one-way airflow during the closed phase of voicing. While the poles of a transfer
function for a system such as the vocal tract are independent of the location or type of
excitation source, zeros are highly dependent on the source. In most unvoiced fricatives, the
first few resonances (due to the back cavities) of the vocal tract have their spectral effects
canceled by zeros.

The three-tube model of Figure 3.24(c) is appropriate for many fricatives. The noise
excitation is usually modeled as a pressure source at the juncture of the constriction and the
front tube (Figure 3.29). For lsi, typical model parameters would be Ie = 2.5 cm,
Ac = 0.2 crrr'. and Ah = At = 7 em", Due to the large AhlAe ratio, the back cavity is



84 Chapter 3 • Speech Production and Acoustic Phonetics

10.2 cm 2

t:=~======::::.Source 7 cm2

--+--2.5 cm-----
(a)

Cavities
in front

of source

(b)

Noise source

Cavities
behind
source

Mouth cavityConstriction

Figure 3.29 Production models for fricatives: (a) a simplified model of the vocal tract for lsi; (b)
an equivalent circuit representation. (After Heinz and Stevens [106] and Flanagan
(62].)

(3.43)

effectively decoupled from the noise source and can be ignored. From Equations (3.19),
(3.28), and (3.36), the poles of the remaining two-tube system occur where

pc pc
Ze + Zf =j- tan(Qlelc) +j- tan(Q~/c) = O.

Ae Af

Since Af » Ae, poles occur near frequencies where Ze = 0 (half-wavelength resonances of
the constriction) and where Zf is very large (quarter-wavelength resonance of the front tube).

Zeros occur in the output speech spectrum where the impedance Z; of the constriction is
infinite because no airflow circulates at those frequencies in a series network such as that of
Figure 3.29(b). Z; = }ZOe tan(2nFile/c) becomes infinite at odd multiples of c/(4Ie) (i.e.,
when Ie is quarter-wavelength). For a 2.5 cm constriction, the first zero is at 3.4 kHz. As
discussed earlier, palatal fricatives have longer values for Ie and If' resulting in lower­
frequency zeros and poles, whereas If,()1 have much higher zeros and poles.

When the front tube is very short, its spectral effects can be ignored at most frequencies
of interest. A two-tube version of Figure 3.24(c) ignoring the front tube permits investigation
of the effects of the large cavity behind the constriction, especially during transitions to and
from the fricative, where the back cavity is not fully decoupled acoustically. Most low­
frequency poles are due to the back tube and occur near frequencies where cot(f31b) = 00

(half-wavelength resonances at multiples of 1360 Hz for Ib = 12.5 em), but poles also appear
near fre.quencies where cot(fJle ) = 00 (half-wavelength resonances at multiples of6800 Hz for
Ie = 2.5 em). The zeros can be shown [62] to solve

(3.44)

Since Ab » Ae and Ib » Ie' most zeros occur where tan(fJlb ) = 0 and effectively cancel out
the corresponding poles of the back cavity. The uncanceled zeros occur where tan(f3le ) = 00,

i.e., Ie is an odd multiple of quarter-wavelength (e.g., 3.4 kHz in the example).
For some sounds (e.g., If/), the noise source is close to the junction between the back

tube and the constriction [62]. Using the same two-tube model as above, the poles do not
change, but the zeros can be shown to occur where

(3.45)
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i.e., where Ih is a multiple of half-wavelength. Again, the back cavity poles are canceled by
zeros.

3.5.3.4 Four-tube vowel model: While a few vowels can be roughly approximated
with only two tubes, others require at least three tubes due to a tongue constriction between
the pharyngeal and oral cavities. Lip rounding can require a fourth short tube to model the
lips (Figure 3.30). If the constriction length /2 is kept fixed at 5 ern (the middle six points), F2
falls and Fl rises as the back length /1 decreases. Note the similarity of Figures 3.30 and 3.25.
In general, modeling accuracy improves as more (and shorter) tubes are employed, but
complexity also increases with the number of tubes (Figure 3.31). Models of 2-4 tubes do not
produce the spectra of natural sounds with great accuracy, but they have the advantage of
insight into articulatory-acoustic relationships.
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Figure 3.30 Four-tube vocal tract model for vowels and their first three formants: (a)
model in which the first three areas are fixed at A I = A3 = 8 cm2 and
A2 = 0.65 em2 and the lip length /4 is fixed at I em; (b) curves 1, 2, 3,
and 4 represent mouth areas of 4, 2, 0.65, and 0.16 cm2, respectively. The
horizontal axis varies the lengths of the first three tubes. (After Fant [109] and
Flanagan [62].)
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Figure 3.31 (a) The graphs show typical area functions for nine vowels, specifying the radius of
consecutive! em long cylindrical sections of the vocal tract model; (b) corresponding
measured formant frequencies. (After Stevens et al. [110].)

3.5.4 Effects of Losses in the Vocal Tract

Under the assumptions of a hard-walled tube containing a zero-viscosity gas, there are
no losses in the vocal tract. Resonances and antiresonances have zero bandwidth (i.e., poles
and zeros on the jn-axis of the s plane or on the unit circle of the z plane), and electrical
circuit models have no resistive components. In practice, however, losses are introduced at
each step of the speech production process. When the glottis is open, a varying glottal
impedance affects the spectrum of the glottal source. As air flows up the vocal tract, yielding
walls react to pressure variations and vibrate, primarily at low frequencies due to the massive
size of the walls. Viscous friction between the air and the walls, as well as heat conduction
through the walls, causes energy loss. Big losses occur during nasals due to the large, yielding
surface area of the nasal cavity. Finally, sound radiation at the lips adds significant energy
loss. Viscous, thermal, and radiation losses occur primarily at high frequencies, since
radiation losses are proportional to F 2 and the other two losses increase with P [62,111].

For the basic acoustic equations, terms would be added to Equation (3.6) to account for
the volume velocity shunted by wall motion and to Equation (3.7) to account for viscous
pressure drop [98]. Viewing losses in terms of formant bandwidths (which are proportional to
the distance of the poles from the unit circle in the z plane), wall vibration is significant only
below 2 kHz and dominates (along with glottal damping) the bandwidth of Fl. Radiation
losses dominate formant bandwidths above 2 kHz. Friction and thermal losses can be
neglected below 3-4 kHz, except for nasals.
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Up to now, we have ignored lip radiation and assumed that sound pressure at the lips
was zero (e.g., an electrical short circuit or an open termination for an acoustic tube). In
practice, the lips are more accurately modeled as an opening in a spherical baffle representing
the head [112], where a lip impedance ZL(n) describes the relationship of lip volume velocity
UL(O) and pressure PL(Q):

(3.46)

ZL(n) can be modeled as a parallel RL (resistor-inductor) circuit, which acts as a highpass
filter with a cutoff frequency near 6 kHz. The L reactance models the effective mass of
vibrating air at the lips. Thus ZL behaves like a differentiator: very small at low frequencies
and growing at 6 dB/ oct over frequencies of interest. A similar radiation effect occurs for
nasal consonants, where sound radiates out the nostrils. The combination of vocal tract
resonances (Equation (3.30» and losses (including radiation) produces the typical vocal tract
transfer function of Figure 3.32. Actual speech spectra also include the effects of excitation.

3.5.6 Model of Glottal Excitation

During the closed phase of voiced excitation, the vocal folds are shut, and the model of
an electrical open circuit or a tube with a closed termination is accurate. Maximal glottal area
during voicing is sufficiently small compared with the pharyngeal area to justify use of the
same model even during the open phase for high frequencies. At low frequencies, however, a
better model employs a glottal volume velocity source with a parallel glottal impedance
ZG(Q), which is the ratio of the transglottal pressure head to the mass flow rate of air (24).
ZG(Q) acts as a series RL circuit, whose impedance increases at 6 dB/oct above a certain
break frequency. As with yielding vocal tract walls, ZG(Q) has its primary effects on the
lowest formants, broadening their bandwidths. zG(n) is not a fixed impedance but oscillates
with the vocal folds. This is most visible in the decay rate of a vowel waveform, which is
dominated by the bandwidth of FI (and F2, if Fl and F2 are close). The main vocal tract
excitation occurs at vocal fold closure, after which ZG(Q) is infinite and the FI bandwidth is

o

-30

-60

1
Frequency (kHz)

4 5

Figure 3.32 Frequency response for a uniform vocal tract relating lip pressure to glottal
volume velocity.
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small; when the vocal folds open, zG(n) decreases, widening F1, and the speech wave
oscillations damp out more rapidly than when the vocal folds are closed [Ill].

Most speech models assume that the vocal tract and glottal source can be manipulated
independently and have separate acoustic effects. For frequencies near F1, however, the vocal
tract impedance is comparable to the high glottal impedance, and significant source-tract
interaction occurs [62]. Furthermore, sounds with a narrow vocal tract constriction produce a
pressure drop at the constriction sufficient to affect the glottal source. The load of the vocal
tract impedance skews glottal pulses away from a symmetric waveform and toward a more
rapid closing phase [113]. Accurate modeling of vocal fold behavior may lead to improved
quality in speech synthesis [114, 115]. For most sounds and frequencies, however, source­
tract independence is a good approximation that permits independent analyses of the glottal
and supraglottal systems.

3.5.7 Quantal Theory of Speech Production

The relationship between speech spectra and the vocal tract shapes that produce them is
highly nonlinear. Large articulatory movements sometimes cause small acoustic effects, and
other small movements yield large changes in formants. One theory of speech production
[1 16] holds that sounds have evolved to take advantage of articulatory positions that can vary
to a degree without causing large acoustic variations; e.g., spectra for the vowels /i,al
correlate well with simple two-tube models, for which small changes in tube length have little
effect on formant locations. Evidence for this quantal theory comes from both speech
production and perception [68]. Changes in the manner of articulation often relate to the
narrowness of a vocal tract constriction, while place of articulation relates to the position of
the constriction along the vocal tract. Since changes in manner have larger acoustic effects
than do changes in place, evidence that vertical tongue positioning is more accurate than
horizontal location [117] supports the quanta I theory.

The point vowels /i,a/, governed by one constriction, exhibit acoustic stability (i.e.,
steady formants) over a relatively wide range of constriction positions, while the acoustics is
still highly sensitive to the degree of constriction, although motor commands show a quantaI
(nonlinear) relationship with the degree [118]. The latter is not evident for lui, which exploits
two constrictions (lips and pharynx) to control the formant patterns.

Revisions of this theory of speech production (theory ofenhancement) hypothesize that:
(1) distinctive features represent well the sounds of languages (with groups of such features
simultaneously forming phoneme segments), (2) the acoustic manifestations ofa subset called
primary features are more salient, and (3) features with varying degrees of strength can
enhance each other [54].

3.6 PRACTICAL VOCAL TRACT MODELS FOR SPEECH ANALYSIS
AND SYNTHESIS

Analog speech production models employing electrical circuits or T lines are useful for
understanding the behavior of airflow and pressure in the vocal tract and for predicting
spectral resonances and antiresonances. For automatically generating speech, however, these
models are too cumbersome, and digital models are invariably employed. One type of
practical model is based directly on vocal tract shape, while another derives from the time and
spectral behavior of the output speech signal and is only indirectly based on articulation. We
examine the articulatory model first and the terminal-analog model later.
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A digital articulatory model of the vocal tract is an extension of earlier lossless multi­
tube models, e.g., the two- and three-tube models that facilitated resonance analysis. For
simplicity, the effects of vibration, friction, and thermal losses are included only in the glottal
and lip termination models. Consider a model of N lossless cylinders of lengths I, and cross­
sectional areas Ai concatenated in series, where i runs from I at the glottal end to N at the lips
(Figure 3.33). N is typically 8-12, which allows more accurate articulatory representation
than is possible with only 2-3 tubes. For some sounds, however, even 1.4 cm sections (as with
N == 12) are not short enough to yield accurate models.

Earlier, we interpreted the basic laws of acoustics spectrally and established models
relating vocal tract shape to the impedances of uniform tube sections or T lines. Whether
heuristically relating tube or T line lengths to resonance wavelengths or explicitly solving for
resonances in complex impedance relationships of vocal tract transfer functions, the spectral
approach gave little insight into the time-domain behavior of sound waves. The most common
digital model for the vocal tract, however, is based on time signal relationships.

3.6.1.1 Traveling waves. Returning to the basic acoustic laws for a time-domain
interpretation, recall that Equations (3.8) hold for a loss less uniform acoustic tube and thus
are followed in each of the N tube sections for the current model. To find the volume velocity
ui(x, t) in the ith tube, combine Equations (3.8) into a second-degree equation:

cY-U I cYu
ax2 == c2 at2 '

which has a solution of the form

Ui(x, t) == ui(t - x/c) - uj(t + xfc),

(3.47)

(3.48)

where x is measured from the glottal end of each tube (0 ~ x ~ Ii). The pressure Pi(X, t) has a
similar solution, which can be expressed in terms of Equation (3.48) as

pc
Pi(X, t) == -[ui(t - xlc) + uj(t + x/c)].

Ai
(3.49)

The functions ui(t - x/c) and uj(t + xlc) represent traveling waves of volume velocity
moving up and down the ith tube (to the right and left in Figure 3.33), respectively.

--=:J C------I...-/4 ----.
-11~13-

4-/2-'

Figure 3.33 Model of the vocal tract using a concatena­
tion of four loss less cylindrical acoustic tubes, each of
length l, and uniform cross-section area Ai. GLOTTIS LIPS
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Boundary conditions between sections are due to physical conservation principles,
which specify continuity in both time and space for both p;(x, t) and u;(x, t). At the boundary
between sections i and i + I,

(3.50)

(3.52)

where 't; = l;/c is the time for a sound wave to propagate through the ith section. The left side
ofEquation (3.50) is the net volume velocity u;(l;, t) at the left edge of the boundary, while the
right side corresponds to u;+l (0, t) at the right edge. The parallel result for pressure is

PAc [ui(t - 't;) + uj(t + 't;)] = A
PC

[U~l (t) + uH-l (t)]. (3.51)
; ;+1

In an analogy to T lines, when a traveling wave in a uniform tube meets a discontinuity
in area, part of the wave propagates to the next section and part is reflected back. Propagation
is 1000/0 only if the impedance of the next section matches that of the current section, i.e., if
the sectional areas are the same or if the tube is terminated in a load impedance identical to
the characteristic impedance of the present tube. This relationship is clarified by solving
Equations (3.50) and (3.51) for the outgoing waves in tenns of the incident waves:

Ut.I (t) = {3;ui(t - Ti) + riuH-1 (t)

uj(t + 't;) = -r;ut(t - r;) + <PiUt+l (t),

where

r, = A;+I - Ai = ZOi - ZOi+1
I Ai+ 1 +A; ZOi + ZO;+1 '

2A;+1/3; = = 1+ r;,
A;+I +A;

(3.53)

2A·l/J; = I = 1 - rio
A;+I +A;

The term r; is called the reflection coefficient between sections i and i + 1 because it indicates
how much of the wave traveling to the left (i.e., down the vocal tract) is reflected back to the
right. The magnitude of r; is bounded by unity and is equal to unity only when one of the
areas at a boundary is zero or infinite; the entire volume velocity wave is reflected back when
it meets a closed end of a tube (e.g., ro = 1 during the closed phase of glottal vibration) or
when it meets the lip juncture (rN = -1, ignoring lossy radiation effects). Reflection in the
case of an open termination changes the sign of the wave. Pi and l/Ji represent the amounts of
the waves propagated past the boundary for the two traveling waves.

Equations (3.53) can be expressed in a flow graph (Figure 3.34) where the wave transit
times 't; become delay elements, labeled arrows denote multiplications, and circular nodes
represent the addition of signals on incident paths. An N-tube model of the vocal tract would
have N pairs of delay elements and N - 1 junctions, each characterized by a reflection
coefficient. The glottal and lip boundaries, however, need further investigation.

3.6.1.2 Lip and glottal junctions. The lip junction is relatively easy to analyze. There
is no incident downward wave uN+1 since the upward wave ut, once past the lip juncture,
meets no further obstacles and is not reflected back. Instead of a tube impedance ZN+l at the
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Figure 3.34 Signal-flow diagram of the boundary between two lossless tubes. The boxes
represent delay elements of the noted duration.

lips, ut sees the radiation load impedance ZL of Equation (3.46). Thus the reflection
coefficient for the final lip juncture is

(PC/AN) - ZL
rL == (PC/AN) + ZL .

(3.54)

(3.55)

Complex ZL can be handled by using frequency-domain versions of the preceding equations
or by using differential equations (e.g., the inductive component of a radiation load relates UL

and PL by a first-order differential equation). Losses leading to finite formant bandwidths are
often implemented via ZL'

Modeling the glottal termination as a volume velocity source UG(t) in parallel with an
impedance ZG' we obtain the net volume velocity into the first tube section:

ut(t) - ul"(t) = uG(t) - PI (t) = uG(t) _ ZOI (ut(t) + ul"(t» ,
ZG ZG

where PI (1) is the pressure at the left end of the first tube. Solving for ut(t), we have

where (3.56)

has the usual reflection coefficient interpretation. The (1 + rG)/2 term of Equation (3.56)
equals ZG/(ZG + ZOI), which illustrates that the amount of UG propagated into the first tube
follows the usual "current divider" function of parallel impedances ZG and ZOI' Earlier
analysis showed ZG, like ZL, to be a complex function of frequency; for simplicity, however,
many practical applications use real approximations for both ZG and ZL'

3.6.1.3 Digital interpretations. A complete vocal tract model using three tubes is
shown in Figure 3.35. If we choose r l and r2 according to Equation (3.53), the network can
produce a volume velocity speech signal VL(t) for any three-tube model with areas AJ, A 2,

and A 3 . (For tubes of different lengths, it suffices to use the appropriate delay in each section.)
The frequency response of such a system is readily obtained from basic flow-graph or circuit
theory, where a delay of r seconds has a Fourier transform of exp( -jo.r:) or a Laplace
transform of exp( -Sf). Solving for the roots of the numerator and denominator polynomials
in such a Laplace transfer function yields the zeros and poles of the model, respectively,
which coincide with the heuristic and spectral analyses of earlier sections.
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Figure 3.35 Signal-flow diagrams for a lossless model of the vocal tract using three tube
sections of equal length and different uniform cross-sectional areas: (a)
analog system, (b) equivalent discrete-time system, (c) system of part (b)
modified to reduce the number of delay components.

Since the flow graph of Figure 3.35(a) contains only additions, multiplications, and
delays, it can be easily converted into a discrete-time or digital model. The only restriction is
that the delay times for all tubes must be a multiple of some time unit T that corresponds to
the clock cycle of the discrete-time model. Since operations in such a model occur every T
seconds, the delays are represented by shift registers or memories where an input sample is
held for an integral number of cycles before being output. The most common implementation
assumes equal tube lengths Ii = I (Figure 3.35) so that T can be a multiple of t = lie. If the
number N of tubes is large enough, such an assumption does not hinder modeling complex
vocal tract shapes.

Consider an impulse excitation for uG(t) in a model ofN tubes, each of length l. Energy
from this impulse first reaches the output UL(t) after N't ms, and then every 2r ms (the round
trip for an impulse due to two reflections within each tube) thereafter. If the sampling period T
of the discrete-time model is set to 2r, however, the system of Figure 3.35(b) results since z-l
is the z transform of a unit delay; it is nonetheless a good choice to minimize computation
because the two half-delays in each section can be merged into one unit delay (Figure 3.35c)
without serious consequences to the output. The delay around any closed loop path is the
same for the two cases of Figures 3.35(b) and (c). The only significant difference is that the
delay between input and output is twice that of the original model. Since N r = 0.5 ms for a
typical vocal tract, doubling the delay adds a mere 0.5 ms, which is irrelevant even in real­
time applications.

Another important factor in choosing T is the bandwidth of the speech to be represented
in discrete time. Before speech is sampled every T seconds, it must be lowpass filtered to
eliminate energy above 1/(21) Hz. For a 5 kHz bandwidth, T must be less than 0.1 IDS.
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Ignoring radiation effects, the transfer function [119] for an N-tube model is
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(3.57)

where a; are coefficients that depend on r; (cfChapter 6). H(z) has N poles and no zeros (other
than trivial ones at z = 0). In general, most of the N poles occur in complex conjugate pairs,
which represent formants, but some wide-bandwidth poles contribute to spectral shaping.

H(z) has no zeros because it is based on a model with one path from the excitation to the
output and no side branches. We have not derived corresponding versions of Figure 3.35 for
the nasal and fricative models of Section 3.5, because the all-pole model is capable of
producing waveforms that are very similar to actual nasals and fricatives (the reflection
coefficients in such cases would, of course, not correspond to the vocal tract shapes that
produce natural sounds). Further discussion of the utility of all-pole models is postponed to
Chapter 6.

In the implementation of Figure 3.35(c), each junction requires four multiplications and
two additions. Since each multiply involves a simple factor ri (i.e., ±ri or 1 ± ri ) ,

straightforward manipulation of the circuit allows alternative models with less computation.
There are, for example, standard two- and one-multiply versions of these junctions, which
require 3-4 additions, however [119]. Multiplication operations usually require an order of
magnitude more computation than additions in microprocessors: thus practical irnplernenta­
tions minimize multiplies. Other implementation factors must be considered, however, such as
control of computation and quantization effects. Digital filters differ from discrete-time
models in that signals and coefficients have finite resolution (e.g., 16-bit numbers); some of
the resulting nonlinear quantization effects are discussed in Chapter 7.

3.6.2 Terminal-Analog Model

We will see in Chapter 7 that the articulatory model of the last section is very useful for
speech coding, but we now tum to another practical model of speech production that will be
exploited in Chapter 9. Due to the complexity of the vocal tract and the difficulty of obtaining
precise data on articulatory motion and cross-sectional areas, most speech applications
concentrate on model ing the acoustic aspects of speech rather than the vocal tract dynamics
that produce it. Terminal-analog models attempt to represent the speech production process in
terms of its (terminal) output. The fact that different vocal tract shapes may produce the same
sound is irrelevant to terminal-analog models. Virtually all speech coders and all practical
synthesizers are of this type, where the systems attempt to faithfully code and/or reproduce
either the speech waveform or its amplitude spectrum. Even the applications that use the
articulatory model above do not attempt to determine actual vocal tract areas, but use the
model only to find reflection coefficients that produce appropriate speech. The (incorrect)
lumping of all: losses at the ends of the vocal tract, for simplicity, leads to area estimates that
often differ considerably from actual values [120].

In the most common terminal-analog system, a spectral vocal tract model H(z) and
radiation model R(z) are excited by a discrete-time glottal excitation "G(n), which is switched
between a voiced and an unvoiced source (Figure 3.36). The unvoiced noise source has a flat
spectrum and is often modeled by a simple random number generator. Periodic (voiced)
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Figure 3.36 Typical terminal-analog model of speech production.

excitation employs a train of impulses exciting a lowpass filter G(z) to produce a waveform
with an amplitude spectrum similar to those of glottal signals. This excitation system, also
used with articulatory models, is flawed in that voiced fricatives cannot be correctly
represented since noise and periodic excitation are mutually exclusive. Since [v, b/ have
only a small noise component and since the lack of a voice bar for /z,3/ causes little
perceptual degradation, the simplicity of the model has nonetheless led to widespread
acceptance. While ua(n) is identified as a glottal signal, it represents frication excitation
equally well if H(z) is modified to correspond to a fricative spectrum.

In most terminal-analog models, the vocal tract transfer function has an all-pole form
(rewriting Equation (3.57», where G specifies the speech amplitude and where the poles of
H(z) occur atp;, i = 1,2, ... , N:

G
H(z) = N

I - EQ;Z-i
;=1

G
=-----

N
n(l _p;z-l)
;=1

(3.58)

To model each formant in the speech spectrum, a pair of poles Pi' P; is needed (where *
indicates the complex conjugate). A typical pair ofpoles in H(s) at -(J; ±j2nF; in the s plane
maps into the z plane at exp(-(liT ±j21tF;T), where F; is the formant frequency and C1;/1t is
its bandwidth. Since the vocal tract is a stable system, all poles are inside the unit circle in the
z plane.

To simulate a speech sound with this terminal-analog model, the spectrum of the sound
must be analyzed to determine the positions ofenough poles in Equation (3.58) so that H(z) is
a close match. This usually involves analyzing the first few formants as well as specifying
poles for a reasonable glottal spectrum.

The radiation component is often modeled by a simple first difference:

R(z) = 1 - z-I, (3.59)

corresponding to the +6 dB/oct spectrum of R(Q) for frequencies of interest. The speech
spectrum S(Q) is the product of the spectra for the excitation, the vocal tract response, and the
radiation effect:

8(0) = £(0)V(Q)R(Q). (3.60)

The global trend for 18(0)1 is specified by 1£(n)R(n)1 because the formant peaks of 1V(Q) 1
tend to have similar amplitudes. For voiced speech, 1£(0)1 typically falls off at -12 dB/oct,
which results in a net -6 dB/oct decay for 18(0)1 when the radiation effect is considered.
(The amount of the falloff is proportional to the glottal duty cycle; thus, high frequencies are
emphasized in shouted voice but are attenuated in breathy voice.) In the case of a noise
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source, 1£(0)1 has a -6 dB/oct falloff, which results in a flat spectral trend for IS(Q)I
(ignoring the local effects of IV(Q)l).

3.7 COARTICULATION

Speech production involves a sequence of articulator gestures timed so that certain key
aspects of vocal tract shape occur in an order corresponding to the intended phoneme
sequence. Gestures for successive phonemes overlap in time so that the vocal tract shapes
during a phone are highly dependent on the phone's context. The phenomenon of coarticula­
tion involves changes in the articulation and acoustics of a phoneme due to its phonetic
context. The most direct evidence of coarticulation occurs at the articulatory level and is
measured by visual observation (photography, X-ray radiography, resonance imagery) or
observation of muscle activity (electromyography, EMG) [121]. Due to the difficulty of
obtaining such data and to the fact that acoustic (instead of articulatory) effects tend to be
more important for speech applications, coarticulation is often examined indirectly from its
acoustic and perceptual effects. Furthermore, individual EMG (hence muscular) activations
do not directly reflect specific higher-level commands.

Because different phonemes have varied requirements for the articulators, there is much
freedom in the timing and degree of vocal tract movements. When an articulator gesture for a
sound does not conflict with those of a preceding phoneme, the articulator may move toward
or adopt a state appropriate for the latter phoneme during the former. Such forward
coarticulation is called anticipatory or right-to-left (R-L) because a target for a phoneme
(on the "right") induces motion in an articulator during a prior phone (on the "left"). Such
anticipation implies either that some articulators for a phoneme start moving (perhaps a fixed
time [122-124]) earlier than others or that planning for speech production scans ahead so that
each articulator may move towards its next required state as soon as the last phone that needs
it has finished. Evidence seems to indicate that the latter is more likely and that a feature for
one phoneme spreads over preceding phones. For example, lip rounding for a vowel usually
commences during preceding nonlabial consonants; the formant lowering that the rounding
imposes does not cause these consonants to be perceived differently. Indeed, there is much
perceptual evidence that listeners expect such anticipatory coarticulation [125]. Some
coarticulation is likely centrally planned (especially anticipatory effects), while some can
be explained by properties of the peripheral speech apparatus.

Although coarticulation is not symmetric in time, the same articulatory freedom that
allows R-L coarticulation also permits backward carryover or left-to-right (L-R) coarticula­
tion, in which some of a phoneme's features persist into ensuing phones. This is most obvious
for formant transitions during vowels after a consonant, which are heavily influenced by the
consonant [125]. The effects of coarticulation often extend across syllable and syntactic
boundaries. L-R coarticulation appears to be a low-level phenomenon in speech production,
closer in origin to vocal tract movements than to speech planning in the brain. They are
usually ascribed to the mechanical inertia of articulators, whereas R-L coarticulation appears
to involve a more active look-ahead planning. Both cases involve the communication
principle of least effort: it likely requires less muscle effort to move an articulator gradually
toward a target over several phones than to force its motion into a short time span "between
phonemes"; similarly, letting an articulator gradually return to a neutral position over several
phones is easier than using a quick motion right after the phone that needed it. (The peak
velocity of an articulator is likely a good measure of biomechanical effort [126].)
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The planning of vocal tract movement by the central nervous system is likely to be
organized by coordinating several muscle groups (both agonist and antagonist pairs), rather
than controlling individual muscles. Such "coordinative structures" must exist at levels high
enough to deal simultaneously with uncoupled articulators such as the larynx and lips, since a
perturbation of the lips affects glottal behavior [127].

3.7.1 Where Does Coarticulation Occur?

A phone is usually associated with a phoneme when all the articulators needed for the
phoneme are in proper position. The phone "ends" when one or more articulators move
(often abruptly) toward positions for the next phoneme and thus cause acoustic changes in the
speech signal. Intuitively, one might say [122] that a phoneme's "articulation period" exceeds
its "acoustic period" because the gestures for a phoneme start during a preceding phone and
finish during an ensuing one. The times of largest acoustic change between phones, identified
as phone boundaries, are usually associated with changes in manner of articulation, which
often involve vocal tract constriction. Except for sequences of sonorants without major
constrictions, the motion of articulators directly involved in a phoneme's constriction specify
the boundaries of its phone, while other articulators are freer to coarticulate. Phonemes with a
labial constriction allow the tongue to coarticulate, and lingual phonemes pennit labial
coarticulation, e.g., the lip-rounding feature of a labial spreads to adjacent lingual consonants.

Not all articulators coarticulate in all contexts. Coarticulation occurs in varying degrees
depending on context. The motion of articulators from positions for one phoneme to those for
the next leads to different vocal tract movements depending on the phoneme sequence; thus
the speech signal during such transitions is affected by context. The most obvious cases
involve formant transitions before and after oral tract closure for stops and nasals, which
provide primary cues to their place of articulation. In other cases, however, the amount of
coarticulation may depend on speaking style and rate. Classical steady-state positions and
formant frequency targets for many phonemes are rarely achieved in actual speech. Indeed,
many models emphasize the importance of dynamic articulatory gestures and suggest that
transitions, not steady-state targets, may be the units of speech production [128]. One theory
assumes that movement arises from changes in neural control variables that shift equilibrium
points in the motor system [129]. Undershooting of articulators (and hence of formant
transitions) moving toward phoneme targets occurs most often when one speaks rapidly
[130, 131]. Coarticulation effects beyond immediately adjacent phones are not required for
fluent speech production, but they aid in reducing the speaker's effort.

Acoustic variability, such as changes in duration or formant frequencies across different
phones for the same phoneme, can be separated into inherent variability and effects of
context. Comparing segments in identical phonetic contexts, a speaker produces variations
(standard deviations) on the order of 5-10 ms in phone durations and 50-100 Hz in F I-F3.
Variations in different contexts beyond these amounts can be attributed to coarticulation.

While the mechanisms may differ between vocal tract articulators and the glottis (vocal
folds), coarticulation also seems to apply to FO; e.g., FO patterns in tone languages show
significant modifications in context [132].

3.7.2 Coarticulation Effects for Different Articulators

To explain coarticulation, it helps to identify six relatively independent articulators:
glottis, velum, tongue body, tongue tip, lips, and jaw. The glottis controls the presence of
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voicing and acts as a constrictor for /h/. Glottal coarticulation may include delays in the onset
and offset of voicing; e.g., the boundaries between unvoiced fricatives and sonorants can be
associated with the times of onset/offset of either voicing or frication, which do not always
coincide. Variations in voice onset time (VQT) after a stop release are other examples of
glottal coarticulation. VOT (a) increases as stop place of articulation occurs more posterior in
the oral tract (Figure 3.37) (e.g., velars have the longest VOTs); (b) increases with the height
of the ensuing vowel [1]; and (c) is longer before sonorant consonants than before vowels
[84,133]. The first effeet is due to vocal tract motion away from the stop closure, preserving
frieation conditions (i.e., a narrow constriction) longer for velars than for labials. In the latter
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Figure 3.37 Examples of waveforms and spectra sampled at the release of three voiced
and unvoiced stops into the vowels lal and luI. The 26 ms analysis time
window used to calculate the spectra is superimposed on waveforms (a) and
(d). The smooth spectra are derived from pre-emphasized linear prediction
analysis (see Chapter 6). Note the long VOT for the unvoiced stops,
especially the velar. Note also the increase in burst intensity for place of
articulation further posterior in the vocal tract. (After Blumstein and Stevens
[134].)
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two cases, ensuing sounds with more vocal tract constriction delay voice onset because they
preserve some intraoral pressure behind the constriction, which lowers the available pressure
drop across the glottis.

Like the glottis (with the exception of /h/), the velum is not involved in oral tract
constrictions that primarily specify manner of articulation and hence is relatively free to
coarticulate. The velum is closed during most speech but often lowers well in advance of a
nasal consonant, causing the spread of nasalization to adjacent phones (especially in the
anticipatory direction). While nasal consonants require both a lowered velum and an occluded
oral tract, the nasal phone is associated with the period of the occlusion. The velum is
typically lowered before oral closure and raised after oral opening. Nasalization of adjacent
phones is blocked only when a raised velum is essential (i.e., in obstruents or where
nasalization would specify another phoneme, such as in French vowels, which have nasalized
counterparts).

Vocal tract constrictions involve tongue and lip articulators. When one articulator
constricts for a phoneme, the others are relatively free to coarticulate (if they do not cause an
additional constriction). The constricting articulator may also coarticulate to a limited degree
when the point or shape of constriction for the phoneme is flexible. Vowels, for example,
exhibit considerable coarticulation in which the tongue is displaced toward targets for
preceding or ensuing phonemes. Phonemes requiring a complex lingual constriction (e.g.,
the strident fricatives, especially palatals) allow little tongue coarticulation [135], whereas the
occlusion location for velar stops has sufficient freedom to allow coarticulation (e.g., front
and back allophones for /k,g/).

The role of the jaw in speech production is to position the tongue and lips for
the appropriate amount of tongue height and lip rounding. Just as the tongue body and tip
are not truly independent articulators and therefore limit each other's ability to coarticulate,
the jaw has limited coarticulation due to its connections to the lips and tongue. Nonetheless,
the jaw may exhibit coarticulation into a preceding phone and up to two ensuing
phones [125].

3.7.3 Invariant Features

While coarticulation causes significant problems for automatic speech recognition
(Chapter 10), its effects aid speech perception (Chapter 5). Most phonemes can be identified
by portions of the speech signal from the middle (e.g., steady-state portion) of their phones.
Some articulatory gestures have a clear acoustic effect; e.g., a narrow constriction of the vocal
tract causes a rapid spectral change, usually lowering F 1 to near 200 Hz. Acoustic cues to
place of articulation, however, are often complex, involving formant frequencies and
amplitudes. Coarticulation, in particular, often complicates the relationship between place
and spectrum. Certain sounds have simple place cues; e.g., place in strident fricatives is cued
by the cutoff frequency in their highpass spectra. Except for undershoot, vowels in general
seem to resist coarticulation. The schwa vowel however is highly coarticulated, virtually
assimilating with its phoneme neighbors (its traditional, but perhaps misplaced, status as a
neutral vowel at the center of the vowel triangle notwithstanding) [136].

For stops, nasals, and weak fricatives, however, the speech signal during most of the
phoneme gesture is often inadequate (too weak in the case of obstruents and too similar in the
case of nasals) for reliable place perception. Place is primarily cued in these phones by
spectral transitions that occur before and after oral tract closure. Coarticulation causes these
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transitions to be complex functions of phonetic context, however, which has led to the search
for invariant acoustic features for place of articulation [137-139].

Invariance may be found in spectral transitions (primarily F2 and F3) to and from stops,
but the stop burst spectrum may also be a sufficient cue to place. When the spectra of stop
bursts are examined (e.g., using 26ms windows starting at stop release) (Figure 3.37), labials
tend to have diffusely falling or flat spectra, alveolars have diffusely rising patterns, and velars
exhibit compact spectra (Figure 3.38) [134,140]. The labels diffuse and compact refer to the
absence or presence, respectively, of one prominent spectral peak. Velars, alone in their
excitation of a low-frequency front-cavity resonance, provide the only case of a single strong
spectral peak, while the other stops show several peaks, with spectrum either generally rising
(alveolars) or falling (labials).

This analysis also applies to the release of nasal consonants, despite the lack of a release
burst, if we examine one glottal period (with a 6 ms window) exactly at the release. About
80% of all stop bursts, in both consonant-vowel (CV) and vowel-consonant (VC) syllables,
and of nasal releases can be correctly characterized using templates based on the patterns
described above (Figure 3.38) [134]. The procedure is considerably less successful for spectra
sampled at the vowel offset in VC syllables. (Furthermore, the templates are such that spectra
can satisfy more than one template simultaneously, and 70% ofalveolar nasals fit both diffuse
templates. )

Certain cues to stop place appear to be invariant but may be too small for reliable use in
perception. The durations of both Fl transition (from release to vowel steady state) and VOT
are relatively long for velars and short for labials; the differences, however, are often less than
can be consistently resolved perceptually, suggesting that such place cues are only secondary.
It is likely that the primary place cues vary with context; e.g., one study showed that F2-F3
patterns were able to correctly classify place in 97% of initial voiced stops in stressed
syllables if the vowel context was known, but in only 68% of the cases when context was
ignored [75]. Invariant cues were found only for alveolars, where formant transitions into
different vowels seemed to arise from loci (constant starting positions) at 1.8 kHz for F2 and
2.6 kHz for F3. The idea of a locus as a target for formant transitions derives from perceptual
experiments using synthetic speech: transitions heard as the same phoneme tend to "point
toward" fixed loci depending on the place of articulatory constriction [141]. Applying locus
theory to acoustic analysis of natural speech, however, appears to require modification of the
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Figure 3.38 Guidelines for spectral templates to characterize stop bursts for alveolar?
labial. and velar places of articulation, respectively. The diffuse templates
require a spread of peaks at least 500 Hz apart to be within a I0 dB range of
either rising or falling parallel lines. Alveolars must have a high peak above
2.2 krlz: labials must have a peak below 2.4 kHz. Velars have a single gross
peak in the range 1.2-3.5 kHz (peaks closer than 500 Hz count as one). (After
Blumstein and Stevens [134].)
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perceptual loci. The perceptual F2 locus for labials was 720 Hz, but two loci at 1645 Hz (for
front vowels) and 1090 Hz (for back vowels) model natural speech better (although a single
locus at 2337 Hz suffices for F3) [75].

3.7.4 Effects of Coarticulation on Duration

Duration is an implicit parameter of coarticulation. Coarticulation is usually described
in terms of (a) spatial effects on articulator motion or (b) the degree of acoustic effects (e.g.,
formant undershoot), but sometimes the effects are primarily temporal [142]. The simplest
coarticulation effects are rapid, involving the movements of articulators responsible for vocal
tract constrictions of successive phonemes; the durations of longer coarticulation effects may
relate to how fast articulator muscles can contract. Duration, however, can also be explicitly
specified by phonetic context. If phones are assigned "inherent" base durations related to
their length in "neutral" phonetic contexts, durational deviations may be attributed to
coarticulation. Consonants generally have shorter durations in clusters, in part due to shorter
articulatory distances for the relatively closed vocal tract during consonants (i.e., vowel­
consonant alternations require opening and closing the tract) [133]. Low vowels are typically
longer than high vowels because the slow jaw must be moved (maximum jaw speed is about
20cm/s, with typical acceleration less than that of gravity [126]). Stressed vowels are longer
before voiced than before unvoiced consonants and longer before fricatives than before stops
[143]. Some of these effects may be due, at least in part, to learned phonological variation (to
aid communication) rather than to mechanical coarticulation only.

3.7.5 Models for Coarticulation

To explain the wide range of coarticulation phenomena, several models have been
proposed. They typically represent each phoneme with a set of features or articulatory targets,
which may spread to adjacent phones as long as the features/targets for such phones do not
conflict with the spreading ones. In one view, speech production is a series of vowel-to-vowel
articulations on which consonant articulations are superimposed [47,144,145]. (Some models
limit the articulation base to stressed vowels, with consonants and unstressed vowels
superimposed.) Vowels tend to use large muscles that are less complex and less precise in
timing than the muscles for consonants. As examples of long-duration coarticulation, lip
rounding and nasalization involve slow-acting muscles, which are not needed for many
phonemes. One version of this model [146] views coarticulation as a "coproduction" of
"coordinative structures" ofmuscles functionally grouped together so that the vocal tract may
attain articulatory target positions for different phonemes. Research on compensatory speech
supports this view [147]: when a person speaks with an artificial constraint (e.g., with
clenched teeth or an object in the mouth), the articulators tend to deviate from normal
positions so that the output speech approaches normal acoustics. In a similar coarticulation
model, the articulatory gestures for successive phonemes have a constant amount of temporal
overlap, although different articulators for a phoneme may start motion at different times (e.g.,
large, slow muscles commence before faster muscles when both are needed) [122]. Such
coproduction models, with their view of uniform overlapping gestures, contrast with "look­
ahead" or "feature-migration" models, which view anticipatory coarticulation as allowing
features (e.g., lip rounding) to spread far ahead via planning and have a different mechanism
for carryover coarticulation (e.g., inertia).
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Linear regressions of F2 transitions in CV syllables (called locus equations [148]) have
shown promise in modeling coarticulation and in the search for invariant features. Labial
stops have steeper slopes than alveolars, suggesting stronger coarticulatory influence of lip
closure on the tongue position for an ensuing vowel. As in the older locus theory, velars need
two regression lines (one with a flat slope for front vowels, having little coarticulation, and a
steep one for back vowels). Comparisons with VC syllables suggest that CV F2 transitions are
more precisely controlled than for VCs, which dovetails with the view that CVs are more
dominant in speech communication [148]. (Locus equations do not seem to provide invariant
features across different manners of articulation [149].)

Most researchers support the notion that auditory feedback is important for produc­
tion-that control of production is directed toward auditory goals [150]. Speakers economize
their effort when the context permits (e.g., less clear speech among friends), while articulating
more clearly under more stressful conditions. Supporting evidence includes the Lombard
effect and the deterioration of speech with deafness [151] (or when disrupting audition).
While some think that articulatory goals replace auditory ones after language acquisition
[152], compensation experiments (e.g., putting a bite block or tube in the mouth) show that
speakers can radically adjust their articulators to accomplish the acoustic goals needed for
speech communication [153,154].

The task-dynamic model [155,156] suggests that coordination of articulators ("vocal
tract variables" specifying constriction locations and degrees) is paramount, rather than vocal
tract shapes. A related theory describes gestures both spatially and temporally [152]; such
gestural theories are based in articulation, while other theories integrate acoustics and
perception as other factors influencing speech production. The degree to which individual
speakers consistently use different articulatory strategies [157] supports this theory. Motor
task models based on vocal tract shapes correlate well with actual tract movements [158]. The
increasing analysis of large databases of speech (e.g., TIMIT) has led to better models of
speech variability [159].

3.8 PROSODY (SUPRASEGMENTALS)

This chapter has concentrated so far on the segmentals of speech, acoustic aspects of speech
signals that help identify each acoustic segment (phone) with a phoneme. Each phone's
segmentals derive primarily from vocal tract movements during its articulation and concern
dynamics of a sound's spectral envelope (e.g., formants). Other relevant aspects of speech
called suprasegmentals or prosody have domains of interpretation well beyond phone
boundaries. Prosody concerns the relationships of duration, amplitude, and FO of sound
sequences. Pronunciations of a word can have substantially varied prosody without affecting
the word's identity: phones can be long or short, loud or soft, and have various pitch patterns.
In general, segmentals cue phoneme and word identification, while prosody primarily cues
other linguistic phenomena. Prosody assists word recognition, however, especially in tone
languages, where different FO patterns superimposed on identical segment sequences cue
different words. Even in English, there are definite relationships between phonemics and
prosody: some phones inherently are longer, have more amplitude, or have higher FO than
others. Nonetheless, the suprasegmentals are relatively free in many languages to cue aspects
of a linguistic message besides phonemics.

Highlighting stressed syllables against a background of unstressed syllables is a
primary function of prosody. Details of stress perception are examined in Chapter 5; stressed
syllables are longer, more intense, and/or have FO patterns that cause them to stand out
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against unstressed syllables. A word is considered "stressed" if its lexically stressed syllable
(so marked in dictionary entries) has sufficient acoustic marking to be perceived as stressed.
Prosody also serves several syntactic purposes: (a) segmenting long utterances into smaller
phrasal or clausal units, (b) noting the relationships between such phrasal units, and (c)
indicating whether an utterance is a question expecting a yes/no answer. The emotional state
and identity of the speaker are also reflected in prosody; e.g., utterances reflecting anger, fear,
or sorrow are typically longer than in normal speech [160,161]. Emotions can even be cued
with relatively short words [162]. Speakers often adjust their prosody to make speech clearer
(e.g., slower, louder) in the presence of noise or following loss of hearing (indicating the
importance of auditory feedback in aspects of speech production) [163].

The many degrees of freedom that prosody has leads to large interspeaker variability,
especially across accents [164]. Intonation is often the last aspect of speech production a
foreign speaker masters in learning a new language.

3.8.1 Duration

Conversational speech employs 150-250 word/min, including pauses, which average
about 650 ms each [165]. Phone durations vary considerably due to factors such as speaking
style (reading vs conversation), stress, the locations of pauses and of word and syllable
boundaries, place and manner of articulation, and rhythm [166-170]. A typical syllable
duration is about 200 ms, with stressed vowels averaging 130ms and other phones about
70 ms. Phone durations vary widely for phonemes with different features (especially for
phonemes of different manner of articulation); e.g., schwa vowels are typically 45 ms,
whereas diphthongs in conversation average 180ms [171]. Vowels average about 30ms
longer than sonorant consonants, which in tum are about 5 IDS longer than obstruents.
Diphthongs are about 75 IDS longer than vowels, and tense vowels exceed lax and schwa
vowels by about 60 ms; unvoiced stops tend to be about 15ms longer than voiced stops [165].
In read speech, syllable-initial consonants are about 20 ms longer than consonants that
terminate a syllable, and unvoiced fricatives are about 40 ms longer than voiced ones [133].

The difference in style between read and conversational speech can have significant
durational effects; e.g., typically half of conversation time consists of pauses, compared to
only 200/0 in read speech. Three durational phenomena common in read speech do not seem
to occur in conversation [172]: (1) phrase-final lengthening, (2) polysyllabic shortening, and
(3) consonantal effects on preceding vowels. (1) The final syllable of major phrases (word
sequences grouped together by syntax) in English tends to be up to 200 ms longer than
syllables in other positions. (2) Average syllable duration tends to decrease with more
syllables in a word. The relative shortening of syllables in polysyllabic words in read speech
may relate to communication efficiency: words with many phonemes are easier to identify
than short words, which could allow spending less time per phoneme without risking
perceptual mistakes. (3) Vowels are longer before voiced consonants than before unvoiced
ones [171,173]. Vowels lengthen before voiced consonants in many languages, but the effect
appears to be largest in English prepausal read speech (up to 100ms lengthening) [171]. In
conversation, such lengthening appears to be limited to tense vowels before voiced stops
[165]. English nasal consonants also tend to be much longer before voiced than before
unvoiced stops; e.g., nasals in limp, lint and link are briefer than those in dimmed or pinned
(e.g., 35 ms vs 95 ms [133]). Phonological redundancy may explain this nasal effect: the place
of articulation feature is the same for both phonemes in nasal + unvoiced stop clusters, so
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perception of nasalization in /1/ (without requiring a long nasal consonant) is sufficient to cue
the / m-n-n / distinction in the unvoiced context.

Both voiced and unvoiced speech exhibit a general prepausal lengthening of the last
few syllables just prior to a pause, in which most phones (but not stops) lengthen compared
with nonpausal contexts. The final prepausal syllable typically doubles in duration, while
earlier syllables have lesser lengthening. The effect has been attributed to a slowing down of
speech in anticipation of a pause, aiding perceptual cues to syntactic boundaries, and/or
additional time needed to accomplish large FO movements that often occur in prepausal
speech. In read speech, similar lengthening often occurs at syntactic boundaries without
pauses. There is some evidence for rhythmical patterns in read speech: one study of Swedish
notes a tendency for durations of phones (62.5 ms average), unstressed syllables (125 ms),
stressed syllables (250 ms), interstress intervals (500 ms) and pauses (0.5 and 1.0 s) to be
multiples of each other [174].

When compared to single consonants in syllables, consonants in clusters tend to shorten
in general; e.g., consonant durations in CCV or vee syllables are shorter than those in eve
syllables, even for clusters containing a syllable boundary [172]. Some of these effects can be
attributed to shorter articulatory distances in clusters, but others are more likely to have a
phonological basis. A study of stressed monosyllabic words in read speech found that
consonants in clusters shorten about 15ms for articulatory reasons, with the largest changes
occurring in word-initial sonorants [133]. Following an obstruent, /w/ shortened 70 ms and
other sonorants shortened 35-55 ms or 25 ms following an unvoiced or voiced obstruent,
respectively. In the unvoiced case, the shortening was compensated by an increase of 15­
25 ms in aspiration between the obstruent release and voice onset in the sonorant.

Unvoiced stops in initial /s/ + stop clusters are unaspirated, thus resembling voiced
stops. They cannot be confused with voiced stops, because English does not allow voicing to
change between the initial /s/ and an ensuing stop. The fact that voicing cannot change inside
clusters may account for a tendency to lengthen consonants in final clusters, while initial
cluster consonants shorten. If the extra duration of initial consonants is a cue to syllable
boundaries, it is less necessary in clusters that often block boundary possibilities; e.g., the /n/
in "a near ... " is longer than in "an ear ... ," possibly to cue the word boundary, but in "a
sneer ... " the initial ts] forces /n/ to be part of the second syllable, and [n] shortens.

Because there appears to be a certain rhythm to stressed syllables in English, it is
known as a stress-timed language; i.e., there is some regularity in the duration between onsets
of stressed syllables. Other languages (e.g., French, Japanese), which have a lesser tendency
to reduce unstressed syllables, are often called syllable-timed, in which syllables (or "morae"
in Japanese) are supposedly regularly spaced. Evidence for either position (i.e., regular
spacing of stresses or syllables) is weak in terms of speech production [175], although the
percept seems to be there.

3.8.2 Effects of Stress and Speaking Rate

The durations of phones are heavily influenced by stress and speaking rate. As noted
above, stressed syllables are longer than unstressed ones. Stress primarily affects vowel
duration, whereas syllable-final consonants have little stress variation; durations typically
differ 10-20 % between stressed and unstressed syllables. Stressed syllables are usually
found in words considered important by the speaker for proper communication of a message.
Function words (e.g., prepositions, articles, conjunctions, pronouns) are rarely stressed, while
most content words (nouns, verbs, adverbs, adjectives) are stressed. Words unexpected by the
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listener or new to a conversation (new information) typically are stressed. Infrequently used
words have longer durations than common words [172].

When a person speaks more slowly than normal, pauses account for about 80% of the
durational increase (about 55% are new pauses and 25% are extensions of pauses at the
normal rate) [165]. At rates faster than normal, all durations shorten about 30% [176], but the
effect in English may be nonlinear. In read speech, unstressed syllables shorten more than
stressed ones [143], vowels more than consonants, and unvoiced stops more than voiced ones
[177]. Some studies, however, suggest a more linear relationship (especially in conversational
speech [165]) at the acoustic level [176] or the EMG level [178]. Many of the durational
contrasts that may help cue phonemics at slow and normal rates tend to neutralize at fast rates
[179]. For example, Ibl and /w/ can be distinguished by the rate at which the labial
constriction is opened (a rapid transition cues IbI), but the Ib/ transition is resistant to rate
changes whereas Iwl shortens with increasing rate [180].

Each phone may have a minimal "incompressible" duration related to the speed of its
articulators [171]. When subject to several shortening phenomena (e.g., a cluster consonant in
an unstressed, polysyllabic word at a fast speaking rate), the net effect ofall shortenings is less
than the sum of all the individual effects. However, durations in such cases tend toward an
asymptote longer than can be explained on articulatory grounds [179]. In modeling duration,
there has been no agreement whether rules for lengthening or shortening should be expressed
absolutely or in percent and whether the rules should combine by addition or multiplication
[171,179].

Although increases in speaking rate and decreases in stress both shorten duration, rate
changes appear to have few effects on FO and formants, whereas stress affects both formants
and prosody [178l Decreases in stress reduce FO variation and centralize formants, suggesting
that articulator movement decreases in unstressed syllables. Unstressed English vowels tend
toward the center of the vowel triangle [181]: tense vowels become lax, lax vowels tend
toward schwa, and vowels may even become very brief and devoiced. In polysyllabic words,
some vowels resist reduction despite lack of stress (e.g., in constitutionalize, the first and third
syllables have secondary and main stress, respectively, and their vowels cannot reduce, while
the other vowels may reduce, except the final one in this case-such unstressed, unreduced
vowels are often diphthongs).

Rate increases tend to decrease the time phones spend in steady state; while the speed
of articulators increases at very fast rates, more often articulators are simply displaced shorter
distances [182], e.g., a smaller transition toward a glide target in a diphthong. One study of
dorsum motion found that the ratio ofmaximum velocity to displacement was proportional to
speaking rate [183].

3.8.3 Fundamental Frequency (FO)

FO provides speakers with a tool of significant power to communicate information other
than phonemics, especially in nontone languages (e.g., English), where FO is virtually
independent of segmentals [184,185]. Phone duration has only one degree of freedom to
cue information, but FOtrends (reflecting tension in the larynx) may change several times in a
single phone and thus FO may signal stress or syntactic information via both its relative value
and its slopes. Most phones have a simple rising or falling FO pattern, but a single phone may
contain a rise + fall + rise.

The FO contour over an utterance may be viewed as a superposition of effects, ranging
from global (sentential) to local (segmental) [186]. The global basis for FO in many utterances
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is flat, although most read utterances have a downward trend called declination after the first
stressed word [187]. The declination pattern is often reset at major syntactic boundaries in
long utterances and is sometimes associated with breath groups (inspirations often increase
prior to long utterances [12]), although the correlation of FO and subglottal pressure is weak.
In most English utterances, FO starts at a medium level, rises rapidly on the first stressed
syllable, declines during ensuing words, and finally falls to a very low level at the end.
Questions anticipating a yes/no answer deviate from this pattern: FO tends to decline at a
much slower rate during the question and then to rise to a very high value at the end [188].

Upon this global FO base are found phrase-level rise + fall obtrusions, sometimes
called hat patterns if the terminating FO fall is delayed for a few syllables. In typical English
phrases, FO rises on the first stressed syllable and falls on the final one. Phrases that are not
sentence-final are often marked by a continuation rise in FOon their last syllable or two. Thus
an FO rise on a lexically stressed syllable cues its word as important and signals the start of a
syntactic unit; a rise on an unstressed syllable (especially if followed by a pause) cues the end
of a unit; a sharp fall cues the last stressed syllable in a unit; level or slightly falling FO is the
default for other syllables.

For syllables with unvoiced consonants, FO is interrupted when voicing ceases. In such
cases, an FO rise "on" a syllable includes any upward jump in FO during a preceding
unvoiced interval, while a fall includes any FO drop in an ensuing unvoiced period. In stressed
syllables, FO tends to jump to a higher level if the syllable has an initial unvoiced consonant
than if it starts with a vowel or voiced consonant. The high FO at the initiation of voicing is
likely related to the adducting motion of the vocal folds, which causes the initial periods to be
short. Voiced consonants tend to show a small dip in FO, presumably resulting from a
decreased glottal pressure drop due to the consonantal constriction of the vocal tract.
Assuming a carryover coarticulation from consonant to vowel, the effect is best explained
in tenns of slack vocal folds for voiced consonants (to aid vibration under low pressure
conditions) and stiff vocal folds for unvoiced consonants (to prevent vibration) [189].

Figure 3.39 illustrates a number of FO effects: (a) the word that has a larger FO stress
rise when it acts as an adjective (3.39a) than as a simple function word; (b)fish, true, and the
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Figure 3.39 Contours of FO as a function of time for two utterances: (a) "That fish is
tasty" (solid Jines) and (b) "That fish is tasty is true" (dashed Jines). Straight
Jines were fit to the actual FOdata during the high-amplitude portions ofeach
syllable.
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Figure 3.40 FO-contours for (a) "The good flies quickly passed" (solid lines) and (b) "The
good flies quickly past" (dashed lines).

first syllable of tasty have both FO stress rises and falls, but the rises exceed the falls when
introducing a phrase rather than finishing one; (c) the second syllable of tasty shows a typical
continuation rise (Figure 3.39b); (d) FO during the is words exhibits the declination effect; and
(e) "That fish is tasty" in Figure 3.39(b) suggests a hat pattern.

Potential syntactic ambiguities are usually resolved by word or conversational context,
but prosody assists in many cases [190, 191]. For example, phrases of the "A or Band C" type
could be segmented before or after the B word (i.e., Band C together or A alone vs either A or
B accompanies C, respectively). Placing a pause and/or a continuation rise after A or B
resolves the ambiguity, as would putting an FO rise or fall on B (in the latter case, a fall on B
groups "A or B" together). In Figure 3.40, the rapid stress FO fall on eitherflies or good cues
the end ofthe first syntactic phrase and resolves its ambiguity. Note also the complexity of the
FO pattern on good in Figure 3.40(b).

As a final example, Figure 3.41 contrasts the terminal FO rise of yes/no questions (" ...
steak?") with the fall on other questions that (like declarative sentences) exhibit terminal fall
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Figure 3.41 FO contours for (a) "What's for dinner, Stan?" (solid lines) and (b) "What's
for dinner, steak?" (dashed lines).
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(H ... dinner?"). Both sentences here end with "tag" words. Figure 3.41(b) displays two
questions, the first with a terminal fall (" ... dinner?"), the second with a rise (" ... steak?").
Figure 3.41(a) asks only one question but adds the vocative Stan, which is associated with an
FO pattern starting low and then rising abruptly at the end. Always occurring at the end, the
rise in a vocative contour is thus easily distinguished from a stress rise that occurs early in the
syllable.

3.9 CONCLUSION

This chapter has examined the mechanisms and acoustics of human speech production, noting
the physiology and movements of the vocal tract, as well as the acoustic-phonetic relation­
ships of speech communication. It has concentrated on normal production, and omitted (for
space reasons) aspects specific to child speech [192], aging [193], and speech disorders
[57,194].

PROBLEMS

P3.1. Draw a diagram of the vowel triangle, giving the approximate positions of the basic 11
English vowels. Explain the significance of such a diagram in terms of acoustics and
physiology.

P3.2. Briefly explain the difference between nasal consonants and fricative consonants in terms
of (a) how they are produced physically and (b) their acoustic characteristics. What aspects
of a fricative's vocal-tract shape determine the shape of its speech spectrum?

P3.3. Using the two-tube lossless model of the vocal tract in Figure 3.24, find (to the nearest
10Hz) the formant resonance frequencies when (i) Al = 5 em", /1 = 17em, A2 = 0,
12=0; (ii) A1=6cm

2, 11=8.5cm, A2=3cm
2, '2=8.Scm; (iii) A1 = 3 cm2,

11 = 6cm, A2 = 6cm2, /2 = 11em,
(a) In each case, which phoneme does the model approximate best?
(b) In case (ii), if A2 shrinks to near zero, how would the resonance frequencies change?
(c) How does the speech spectrum change if all areas are scaled proportionally?
(d) If a short constriction is made at the lips, how would the spectrum change?
(e) In case (ii), at what times would an impulse exciting the left, glottal end of the model

cause outputs at the right, lip end?
(f) In case (ii), what is the acoustic impedance, looking up into the oral cavity, from a point

midway in this vocal tract model?

P3.4. Assume an infant with a vocal tract length of 8.5.cm and a fundamental frequency of
400 Hz utters a vowel sound with a vocal tract of uniform cross-sectional area. Give a
detailed sketch of the spectral amplitude as a function of frequency, up to 4 kHz, noting
specifically the formant locations.

P3.5. Using the three-tube lossless model of the vocal tract in Figure 3.24, draw a network flow
diagram, using delay elements and reflection coefficients, for the case where A I = 0.8 ern",
/1 = 10cm, A2 = O.2cm2, /2 == 2cm, A3 == 0.6cm2 , /3 == Scm. Include glottal and lip
effects.
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4.1 INTRODUCTION

Speech communication is the transmission of information from the brain of a speaker to that
of a listener via a speech signal. Chapter 3 dealt with the first part of this process, and now we
examine how the signal entering a listener's ears is converted into a linguistic message. Two
processes are involved: audition or hearing, which registers the speech sounds in the brain,
and speech perception, which decodes the speech message from the neural representation of
the sounds. Audition is the subject of this chapter, and speech perception is discussed in
Chapter 5. Much technical detail is known about the audition process, in which pressure
variations in the outer ear are converted into neural firings on the auditory nerve. The
mechanisms by which the brain translates these neural firings into a linguistic message are
much less understood. This chapter examines the functioning of the organs of the ear, at the
anatomical and physiological levels, whereas Chapter 5 explores the psychoacoustics of the
hearing process. Psychoacoustics is the study of auditory perception at the psychological
level, relating acoustic signals to what the human listener perceives. We will limit ourselves to
normal hearing, and not discuss hearing disorders [1], cochlear implants [2], or other hearing
aids [3].

4.2 ANATOMY AND PHYSIOLOGY OF THE EAR

The human speech production and hearing mechanisms are likely to have evolved in parallel,
each system taking advantage of properties of the other. The ear is especially responsive to
those frequencies in the speech signal that contain the most information relevant to
communication (i.e., in the 200-5600 Hz range). The listener can discriminate small
differences in time and frequency found in speech sounds in this frequency range. Indeed,
parts of the ear aid perception by amplifying sound energy at speech frequencies, which may
partially compensate for the decline with frequency in voiced speech energy above 400 Hz.

Many of the phenomena discussed in this chapter have been explored in detail for the
auditory systems of animals. While humans, alone among animals, can talk (although animals
can produce noises, and some birds can replicate speech sounds), virtually all animals can
hear. Human audition is very similar to that for other mammals, and shares many features
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with the auditory systems of birds. There are important differences; e.g., cochlear hair cells,
when damaged by loud sounds, regenerate with time in birds, but not in mammals [4].
Another difference is that of size: mammals larger than humans have bigger auditory
structures, and hence are more sensitive to lower sound frequencies (and vice versa for
smaller animals; e.g., bats can hear to 200 kHz). Given the danger of experiments on live
human auditory systems, most results below derive from animal studies.

The ear is composed of three sections: the outer ear, middle ear, and inner ear (Figure
4.1) [5-11]. The outer ear directs speech pressure variations toward the eardrum, where the
middle ear transforms these variations into mechanical motion. The inner ear converts these
vibrations into electrical firings in the auditory neurons, which lead to the brain.

4.2.1 Outer Ear

The external, visible part of the outer ear, called the pinna, funnels sound waves into the
ear canal (or external auditory meatus). The pinna (a cartilaginous flap of skin) helps in sound
localization [13], and by its asymmetric shape makes the ear more sensitive to sounds coming
from in front of the listener than to those coming from behind. The meatus, an air-filled cavity
open at one end (pinna) and closed at the other (eardrum), acts as a quarter-wavelength
resonator. The canal in an adult is about 2.7 em long (and about 0.7 em in diameter); thus the
first resonance is near 3 kHz. This resonance amplifies energy in the 3-5 kHz range by up to
15 dB [14], which likely aids perception of sounds having significant information at these
high frequencies (e.g., obstruents). The resonance is fairly broad because the ear canal has
yielding walls and especially a pliant eardrum.

Eustachian
Tube

Vestibula

Figure 4.1 The structure of the peripheral auditory system. (After Lafon [12], 1968, The
functional anatomy of the speech organs, Manual ofPhonetics., B. Malmberg
(ed) [North-Holland: Amsterdam].)
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4.2.2 Middle Ear

III

The eardrum (tympanic membrane) marks the beginning of the middle ear, an air-filled
cavity of about 6 crrr' that contains the tiny ossicular bones (malleus or hammer, incus or
anvil, and stapes or stirrup). These three dense bones linearly transmit eardrum vibrations to
the oval window membrane of the inner ear. The middle ear accomplishes an impedance
transformation between the air medium of the outer ear and the liquid medium of the inner ear
[15]. The acoustic impedance of the inner ear fluid is about 4000 times that of air. This
impedance mismatch is such that, without the transformer effect of the ossicles, all but 0.1%
of the pressure waves hitting the eardrum would be reflected back, with little energy entering
the inner ear. There is an increase in sound pressure within the middle ear (peaking at about
20 dB near I kHz [16]), partly due to a lever action in the ossicles but mostly due to the
difference in surface area between the large eardrum and the small area on the oval window
that the stapes contacts. The vibrating area of the eardrum is approximately 55 mrrr ,
compared to the stapes area of 3.2 mnr'. For a given force on the eardrum, the concentration
of area through the middle ear raises the effective pressure (force per unit area) at the input to
the inner ear. Spectrally, the middle ear acts as a lowpass filter with attenuation of about
- 15 dB / oct above 1 kHz.

The middle ear also protects the delicate inner ear against very strong sounds. As sound
intensity increases, the stapes motion changes from a pumping action to one of rotation, so
that inner ear oscillations do not increase proportionally with sound levels. When low­
frequency sounds of more than 85-90 dB reach the eardrum, the middle ear muscles contract
in an acoustic reflex to attenuate pressure transmission by up to 20 dB [14, 17]. The reflex has
a latency of approximately 60-175 ms and activates only for frequencies below 2 kHz, thus
providing little protection for impulsive sounds. Voicing in the speaker's vocal tract activates
his own acoustic reflex, perhaps to avoid overloading the hearing mechanism while talking.
Pressure is equalized between the outer and middle ear via the eustachian tube, which leads to
the nasopharynx. Unequal pressure, sometimes felt in air travel, hinders proper eardrum
vibration and causes discomfort.

4.2.3 Inner Ear

The cochlea, a tube filled with a gelatinous fluid called endolymph and located in the
inner ear, transforms mechanical vibrations at its oval window input into electrical excitation
on its neural fiber outputs. The tube is coiled in a snail-shaped spiral of about 2.5 turns. Two
membranes and a thin bony shelf divide the interior of the cochlea along its 35 mm length,
creating three separate tunnels of lymphatic liquid. The largest chamber (54 mm"), the scala
vestibuli, is separated from the small middle cavity, the cochlear duct or scala media (7 mm"),
by the delicate Reissner s membrane (Figure 4.2). Between the cochlear duct and the scala
tympani (37 mrrr') is the sturdy basilar membrane.

The stapes of the middle ear attaches to the scala vestibuli through the oval window
membrane, all of which vibrate in response to sound pressure entering the ear. Since the walls
of the cochlea are hard bone and the liquid is incompressible, oval window vibrations cause
motion in the flexible cochlear membranes. Perilymph (much thinner than the endolymph
elsewhere in the inner ear) from the scala vestibuli can enter the scala tympani via a small
opening (the helicotrema) at the apex (interior) of the cochlea. Pressure in the scala tympani
can be relieved by the round window membrane at the basal end of the cochlea.
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Figure 4.2 Structural and anatomical features of the cochlea: (a) cross-section of the
cochlea; (b) the structures within the scala media.

The cochlea has a cross-sectional area of about 4 mnr' at its base near the stapes and
tapers gradually to about 1mm2 at its apex. The basilar membrane is 32-35 mm long,
increasing from a width of 0.04 mm at its base to 0.5 mm at the apex. On the basilar
membrane lies the organ ofCorti, which contains about 30,000 sensory hair cells, arranged in
several rows along the length of the cochlea. The endings of the auditory nerve terminate on
these hair cells, each ofwhich has about 40-140 hairs (stereocilia grouped in a bevelled shape
and suspended in the endolymph) that bend (about 1run) from vibrations in the basilar and
tectorial membranes (Figure 4.2b), causing neural firings (electrical potentials) to propagate
in the auditory nerve. The inner hair cells (IHCs) lie in a single row of about 5000 cells, on
which nearly 950/0 of the nerve fibers terminate, while the more numerous outer hair cells
(OHCs) form several rows and share the remaining nerve fibers; OHCs and IHCs have
different response characteristics.

Stimulus-dependent electrical potentials in the organ of Corti consist of an alternating
waveform called the cochlear microphonic (which resembles the input acoustic signal) and an
offset value (-60 mV) known as the summating potential (due to different concentrations of
sodium and potassium ions in the two lymph fluids). OHCs are primarily responsible for the
cochlear microphonic, while IHCs generate the summating potential [6, 18-20]. The tips of
the OHCs are embedded in the tectorial membrane (Figure 4.2b), whereas the IHCs barely
make contact with it. One theory holds that the OHCs are moved directly by the basilar
membrane, while the IHCs respond to the velocity of the basilar membrane through the
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viscous drag of fluid around them [5]. The OHCs are sensitive to bending across the basilar
membrane, whereas the IHCs react to motion along the membrane.

The OHCs are motile, thus lengthening and shortening due to efferent nerve fiber
messages from the brain (the afferent fibers send to the brain), which increase auditory
sensitivity, hence causing sharper responses. The OHCs thus control the IHC responses, but
do not send information themselves [14, 21].

After leaving the cochlea, neural information follows an ascending pathway to the
brain. In tum, the auditory firings pass through (and are recoded in) the cochlear nucleus, the
trapezoid body, the superior olivary complex, the lateral lemniscus, the inferior colliculus, and
finally the medial geniculate body, before entering the cerebral brain cortex [22]. Firings
arriving at the cochlear nucleus are processed by two types of neurons: onset chopper units
extract precise temporal features, while transient chopper units get spectral information [23].
The former respond strongly to the onsets of high-frequency tones; the latter have small
range, but avoid saturation due to inhibitory inputs from high-threshold fibers over a wide
range.

Such a system occurs for most mammals, and a similar system is found in birds (despite
their evolutionary divergence 300 million years ago). Both groups separately developed
specialized hair-cell populations arranged across the width of a sensory epithilium (e.g., the
basilar membrane in mammals). The avian basilar papillae differ from the mammalian organ
of Corti in being much shorter, yet having similar numbers of hair cells.

4.2.4 Basilar Membrane (BM) Behavior

Since the basilar membrane (8M) varies gradually in tautness and shape along its
length, its frequency response varies accordingly. The BM is stiff and thin at the basal end, but
compliant and massive at the apex (the ratio of stiffness between ends exceeds 100). Each
location along the BM has a characteristic frequency (CF), at which it vibrates maximally for
a given input sound. For a specific location, the response curve (as a function of the vibration
frequency of the oval window) is that of a bandpass filter with almost constant Q (fixed ratio
of center frequency to bandwidth) (Figure 4.3a). Because of this constant-percentage
bandwidth, frequency resolution along the basilar membrane is best at low frequencies. A
hair cell linked with a high-CF location on the BM fires in response to a broader set of
frequencies than does a low-CF hair cell.

The response curve has a similar shape when BM vibration is shown as a function of
distance from the stapes along the membrane, using a tone (a sound of single frequency)
input. For every input frequency, there is a point on the BM of maximal vibration. This point,
measured in distance from the apex of the 8M, is roughly proportional to the logarithm of the
sound frequency (Figure 4.3b).

When a tone excites the oval window, pressure is applied to the entire cochlea at once,
causing the BM to vibrate at the same frequency as the input. Since the velocity of sound in
cochlear fluid is 1600m/s and the cochlea is only 35 nun long, there is essentially no phase
delay in pressure along the 8M. Whether sound reaches the cochlea through the bones of the
head or through the ear canal, the resulting BM motion is similar because of this simultaneous
application of pressure. The motion of the 8M, in response to a sinusoidal pressure, is that of
a traveling wave, progressing from the base to the apex. The characteristics of the wave are
due entirely to the properties of the BM and are not related to the source location of the oval
window. There is no obvious reflection at the apex or any standing wave structure. The speed
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Figure 4.3 Displacement of the BM due to an input sound: (a) the phase (solid line) and
amplitude (dashed line) ofBM vibration, at 33 mm from the stapes; (b) phase
and amplitude envelopes for four tones at low frequencies; (c) the amplitude
envelope (dashed lines) and two waves (solid lines) of a 200 Hz vibration
separated by 90°. These curves were based on experiments using human
cadaver ears and very intense sounds; live human ears exhibit sharper curves
(e.g., higher Q). (After von Bekesy [24].)

of the wave decreases as it travels: very rapid at the base, about 15era]ms in the middle of the
BM, and about 1cm/rns at the apex. At any point along the 8M, the motion is periodic, with
a period equal to that of the sound excitation. The traveling wave reaches a maximum
amplitude at the point on the BM whose CF matches the input frequency. Each section of the
BM vibrates sinusoidally in time, with a phase delay (with respect to the oval window
vibration) proportional to the distance between the two points (Figure 4.3c). Since the basal
end is thin and stiff, the maximum of the traveling wave occurs there for high-frequency
inputs; the apex responds maximally to low-frequency tones. Only very-low-frequency inputs
(less than 20 Hz) cause sufficient BM motion near the helicotrema to move liquid back and
forth between the scala vestibuli and scala tympani.

In response to an impulsive sound, e.g., a click (having short duration, with energy at all
frequencies of interest), each point along the BM responds at its own CF, commencing
vibration in phase with the input pulse (after a certain propagation delay) (Figure 4.4). Unless
the input pulse is repeated, the BM vibration dies out in time, ranging from a rapid decay at
the base (less than 1ms) to slow decay at the apex (several ms). The wave progressively loses
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Figure 4.4 Computer simulation for 8M displacement as a function of time and CF
(noted along the ordinate); each trace is the response for a different point
(separated by 0.5 mm) along the basilar membrane to alternating positive and
negative sound pulses of I00 us duration at a rate of 200 pulses/s. (After
Flanagan [8].)

its high-frequency components as it travels toward the helicotrema; this motion has been
modeled using filters [25].

4.2.5 Electrical Activity in the AUditory Neurons

The hair cells in the organ of Corti are connected to the brain via the eighth cranial
(auditory) nerve, which is composed of nerve cells (neurons). The neurons "fire" (an "all-or­
nothing" 0.5-1.0ms spike or pulse deviation from resting potential) in response to bending
and shearing forces (of about 100 run) experienced by the hair cells to which they are
attached. The tension on the hair cells (which act as capacitor plates) alters their electrical
conductance, which influences the release of a chemical substance, which in tum causes the
attached neuron to fire [26]. (The helicotrema relieves any static pressure that might cause the
basilar membrane to deform, and bend the hair cells, in the absence of sound.)

Studies of hearing in cats and monkeys, who have similar auditory mechanisms to
humans, show distinct firing patterns in response to simple click and tone stimuli. Without
sound stimuli, each neuron fires in a random, spontaneous sequence at average rates of
10-50/s. In the presence of sound, neurons also act stochastically, but spikes are more likely
at certain times than at others, depending on the intensity and frequencies of the sound input.
Each nerve fiber follows a tuning curve that plots, as a function of tone frequency, the sound
intensity necessary to raise its firing rate above the low, spontaneous rate (Figure 4.5). The V­
shaped curve for each neuron indicates a CF, at which a tone of minimal amplitude will raise
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Figure 4.5 Representative tuning curves of cat auditory fibers, for eight different
frequency regions. For each fiber, the frequency threshold is a function of
stimulating frequency. The curves have been arbitrarily positioned on the
ordinate for clarity. (After Evans (33].)

the tendency for that neuron to fire. These CFs correspond well to the mechanical behavior of
the basilar membrane, at the point where the neuron contacts the 8M. The frequency-selective
nature of auditory fibers in the cochlea provides a tonotopic organization, mapping sound
frequency into place information along the 8M, which is preserved in varying degrees in the
ascending neural pathway to the brain (at least as far as the inferior colliculus) [27]. Several
models for the neural activity patterns exist [28-31], including ones in software [32].

The tuning curves resemble inverted forms of the bandpass filters of Figure 4.3(b), with
approximately constant Q at frequencies above 500 Hz. They are more sharply defined (about
200 dB/oct above the CF and 60 dB/oct for frequencies just below the CF) than the BM
responses. This sharpening (sometimes called a second filter effect) appears to be due to
nonlinear active amplification via the motile outer hair cells (OHCs) [34, 35], especially as
frequency increases [36]. Resulting otoacoustic emissions (OAEs) are weak sounds (usually
< 0 dB) in the outer ear that originate in the inner ear, most likely from rapid length changes
in the OHCs, which normally derive from changes in the IHCs. Such active feedback
enhances the selectivity of the tuning curves, and appears to be unique to primates. When
two tones (at frequencies fi < fi) enter the ear, distortion products are generated at
nit - fi (n = 2, 3, ...) [37], of which the one for n = 2 is strongest. Such OAEs are easily
observable in humans (although not audible by humans themselves) and give a useful tool to
analyze inner ear behavior and to detect ear disorders. This phenomenon is also studied
subjectively through combination tones at the same distortion product frequencies.

For a specific fiber, plots of average spikes/s as a function of frequency resemble
inverted tuning curves, for low and medium sound amplitudes (Figure 4.6). However, at high
intensity, such plots become trapezoidal, where maximal firing rates are achieved over a broad
range of frequencies above and below the fiber's CF. The broadening of these contours
indicates a recruitment of adjacent neurons to fire, whose CFs are near but not identical to the
stimulus frequency. When sound intensity reaches the upper limit of a neuron's range, its
firing rate "saturates" and does not increase further in response to higher amplitudes.
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Figure 4.6 Firing rates as a function of the frequency of a stimulus tone for an auditory
nerve fiber in a squirrel monkey, plotted for eight different sound intensities
(25-95 dB) (iso-intensity contours). The fiber's CF is 1700 Hz. (After Rose et

al. [43].)

Saturation rate varies among neurons, but sustained firing rates above 300/s are rare. The
range of pure tone intensities for which the firing rate of a given neuron varies with intensity
is only about 20-40 dB, and the range of thresholds for most neurons at a given CF is only
about 20 dB. Low-threshold fibers have a small dynamic range (about 20 dB) and high
spontaneous rates (50/s), while other fibers have thresholds 15 dB higher, a wider range
(40 dB), and low spontaneous rates (15/s) [23].

This suggests a maximum range of 60 dB in which the integrated firing rate increases
with sound intensity. The timing patterns of neural firings, however, relate to intensities over a
much wider range ( > 80 dB) in sounds more complex than tones [38]. A small minority of
fibers (about 9%) [39] have dynamic ranges greater than 60 dB, which could help explain the
wide range of perceived sounds, but a more likely interpretation is that the timing patterns, as
well as the average number, of firings affect perceived loudness [40-42].

4.2.5.1 Timing ofneural firings. The properties of a nerve fiber are often measured
using histograms of spikes, in response to many click and tone stimuli over long durations.
These displays show the number of firings at specific time delays with respect to each other or
to the sound stimulus: post-stimulus histograms record the delay relative to the initiation of
the stimulus, period histograms show the delay relative to the (sometimes arbitrarily defined)
"start" of each period in a periodic stimulus, and interval histograms display the times
between successive firings (Figure 4.7). These histograms have shown that firings tend to be
synchronized with displacements of the basilar membrane in a certain direction. When the
8M vibrates sinusoidally with sufficient amplitude, a nerve fiber tends to fire on synchronous
half-cycles of the movement at the point where the fiber is attached. Histograms of the times
of the spikes (synchronized to the period of the sound stimulus) closely resemble half-wave
rectified versions of the 8M movement near the neuron (Figure 4.8). There also appears to be
a form of automatic gain control (with an approximate response time of 20 ms), by which
loud and soft stimuli yield very similar timing histograms; i.e., higher probability of neural
firing at peaks in the sound waveform, relatively independent of its amplitude.

In response to input clicks, preferred firing times are well modeled by a delay plus a
multiple of the inverse of the fiber's CF. The delay (up to 3 ms at the BM apex) is well
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Figure 4.8 Period histograms of a fiber activated by a low-frequency tone. Each plot is
fitted with a sinusoid corresponding to the stimulus frequency, with varying
amplitude but fixed phase. The bin width or horizontal (time) resolution in
this figure is coarse compared with that of Figure 4.7. (After Rose et a/. [43].)

modeled by the propagation time for a traveling wave from the stapes to the hair cell in
question. Several firings in response to one click are possible, depending on the click's
intensity. With tone stimuli, the spikes tend to occur at intervals of multiples of the period of
the input tone. In each case, there is some time jitter (usually less than 1ms) in the actual
firing times; i.e., the intervals between firings are not perfect multiples of the BM period. Each
neuron normally fires just prior to maximal membrane displacement.

Neurons have a latency period of 1-3 ms in which, having once fired, a neuron cannot
fire again, no matter how intense the stimulus. Thus at low frequencies of BM motion (e.g.,
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below 1kHz), a neuron could fire on each half-cycle of a sinusoidal vibration, and the spikes
would be time-synchronized (phase-locked) to a tonal sound input. At higher frequencies, the
latency period is too long to allow such synchronous firings, although a set of adjacent
neurons would exhibit an average synchronous pattern. Above about 4-5 kHz, phase locking
disappears due to the smearing in time caused by jitter, which becomes comparable in range
to the fundamental period. With an input of two sinusoids, phase locking in a fiber may occur
with one or both tones, depending on their relative intensities and how close their frequencies
are to the fiber's CF [5l

4.2.6 Adaptation

An auditory neuron can fire at rates up to 1000/s for short periods of time in response
to a sudden loud stimulus, but if the sound remains, the neuron adapts slowly and decreases
its firing rate by about half (exponentially with a time constant r of about 40 ms, relatively
independent of signal level). Most of the decay occurs in the first 15-20 ms after stimulus
onset (especially at high stimulus intensities) [44, 45]. When the stimulus is removed, the
firing rate falls to near zero and then exponentially increases back to the spontaneous rate
characteristic of the neuron (the recovery time constant is about 2.S!, and is larger for neurons
with lower spontaneous rates [46]). This behavior can be explained in terms of depletion and
regeneration of the chemical transmitter substance in the hair cells associated with the neuron.
Adaptation is more pronounced and has a more complex form for neurons higher in the
auditory nervous system than for those in the cochlea. Such adaptation suggests that the brain
may interpret sound intensities and some spectral information from changes in firing patterns
rather than from steady-state patterns. There may be two classes of auditory neurons: one that
responds primarily to steady-state sounds and another that fires more often when the stimulus
is of rapidly changing frequency. This sensitivity of the latter class to change in frequency
persists over a wider range of sound intensities than is the case for the steady-state neurons.
Indeed, the sensitivity is more pronounced near normal sound levels such as in speech
(physiological levels) than at levels near the hearing threshold. This contrasts with steady­
state neurons, which often have saturated firing rates at physiological levels. Neurons in the
cochlear nucleus and at higher levels exhibit recoding of the cochlear firings, in that they
often respond in a complex fashion with respect to the sound stimulus, e.g., responding only
to the start or end of a stimulus [5].

4.3 SOUND PERCEPTION

The primary questions in sound perception [5, 47] concern what sounds are perceptible, what
a person hears, and how different sound components affect or interfere with one another.
Whether a sound can be heard depends on its intensity and spectrum; we discuss percept­
ibility in terms of hearing thresholds. What a person hears in response to a sound is a more
complicated question, and we will initially limit our discussion to how a sound's structure
relates to its perceived pitch. Finally, we address the complex question of masking or
interference. The behavior of the ear in response to simple tones is relatively straightforward,
but most sounds are dynamic and have many spectral components. The cochlear processes of
basilar membrane vibration and neural firings are highly nonlinear, with the result that
perception of sound energy at one frequency is dependent on the distribution of sound energy
at other frequencies as well as on the time course of energy before and after the sound.
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4.3.1 Auditory Psychophysics

Auditory psychophysics is concerned with the resolving power of audition. Basic
sounds such as tones and clicks are often used as acoustic stimuli. How well listeners can
discriminate the timing and frequencies of such sounds is likely relevant to speech perception.
However, experiments using stimuli closer to speech (than clicks and tones) lead to a more
direct correspondence between the acoustic aspects of a speech signal and how it is perceived.
Asked to discriminate two similar sounds resembling speech, listeners may utilize linguistic
knowledge, attempting to label the stimuli as different linguistically (e.g., as representing
different phonemes). Alternatively, they may simply listen for some salient difference in
timing or spectral content. Listeners are much better at discriminating two sounds than at
labeling them; e.g., they can distinguish tones near 100 Hz to within 1Hz accuracy, but cannot
consistently group such tones into fine categories such as 100, 101, 102, ... Hz. A typical
listener, in ordering a set often tones at 1Hz intervals from 100 to 109 Hz, must listen to them
in pairs, each time deciding which is higher.

4.3.2 Thresholds

The ear is capable of hearing sounds over a wide frequency range, from about 16Hz to
18 kHz. (This range of about 10 octaves is much larger than that for vision-about 0.7 oct,
from infrared to ultraviolet.) Sounds of frequency below 1kHz or above 5 kHz require
significantly more energy to be heard than those in the 1-5 kHz range (Figure 4.9). The
intensity of a sound is measured in terms of sound pressure level (SPL) in units of decibels
(dB). The reference level for SPL is an intensity of 10-16 W/cm2 (0.0002 dyn/crrr' or ubar of
pressure) at a frequency of 1kHz, which corresponds to 0 dB. At the extreme frequencies of
the audible range, sounds can be perceived only over a narrow amplitude range, whereas at
the frequencies where the ear is most sensitive (1-5 kHz), sounds are detectable over a range
of more than 100dB (which slightly exceeds the 90 dB range for vision).

The minimum intensity at which sounds can be perceived is called the auditory or
hearing threshold, which rises sharply with decreasing frequency below 1kHz and with
increasing frequency above 5 kHz. This spectral bandpass effect is due both to the filtering
action of the outer and middle ear and also to the smaller number of hair cells toward extreme
CFs. Loud sounds can actually be felt in the ear, which leads to two other thresholds: of
feeling (the intensity at which a sound is felt) and of pain (intensity causing pain). These
upper thresholds are much less variable with frequency than the auditory threshold is; e.g., the
pain threshold is near 120-140 dB for all frequencies in the auditory range, whereas the
auditory threshold varies over a 100dB range. Speech normally occupies only a portion of the
range between the thresholds of hearing and pain (known as the auditory field). With
frequencies ranging from 100Hz up to perhaps 8 kHz, speech has amplitudes between 30 and
90 dB (measured at a distance of 1m from the lips). Since speech has dynamic intensity, we
can define a slowly varying speech level that reflects the peak SPL over periods of the order of
a second. Speech perception is optimal when peak amplitudes are in the 60-70 dB range.

The auditory threshold remains almost constant across most speech frequencies; e.g.,
between 700 and 7000 Hz the hearing threshold stays within ±3 dB of 0 dB. While the
threshold increases substantially above 7 kHz, speech energy at such high frequencies is
significantly present only for fricatives and has little effect on either speech intelligibility or
naturalness. The threshold is more relevant for frequencies below 700 Hz, which is the region
of the first formant as well as the fundamental frequency and its most intense harmonics. At
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Figure 4.9 The areas of speech perception inside the limits of overall hearing. The
partition grid corresponds to the auditory differential limen (Section 4.4) of
pitch and loudness under the influence of wideband noise. The lowest curve
is also known as an audiogram and can vary by up to 20 dB in individual
listeners of normal hearing. (After Winckel 1968 Acoustical foundations of
phonetics, B. Malmberg (ed) in Manual of Phonetics, Amsterdam: North­
Holland [48].)

an average F1 of 500 Hz, the hearing threshold is elevated by about 10 dB compared to the
F2-F3 regions. A typical FO at 100 Hz needs almost 40 dB more intensity to be heard than
harmonics at higher frequencies. For vowel sounds at physiological levels (those typical of
speech), all the harmonics are normally audible (but not equally loud) up through F4, with
harmonics between formants at higher frequencies sometimes falling below audibility.
However, as speech amplitude is reduced, e.g., in quiet speech, it is likely that the
fundamental and its first few harmonics are lost perceptually. These frequencies are not
crucial to intelligibility since, for example, speech is understood over the telephone network,
which severely attenuates frequencies below 300 Hz. While irrelevant for intelligibility,
frequencies below 300 Hz contribute to naturalness, and their lack is one aspect of the
quality limitations of telephone speech.

The hearing threshold concerns the detectability of steady tones. If the sound duration is
less than 0.3 s, the threshold is elevated since overall energy becomes important for perceiving
short stimuli. For wideband noise, sounds under 0.3 s, the threshold increases about 3 dB for
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each halving of duration [47]. In tones with changing frequency (tone glides) and very short
duration (50 ms), the hearing threshold can be higher by up to 5 dB for falling than for rising
tones [49, 50]. This can be relevant for transition sounds in speech, where most spectral
movement at phoneme boundaries occurs over durations of less than 50 ms. It is difficult to
extrapolate the audibility of speech sounds from these tone thresholds because hearing is a
nonlinear process; the detectability of a sound consisting of many spectral components is not
a simple function of the detectability of its components.

4.3.3 Just-Noticeable Differences (JNDs)

Most psychophysical experiments use sounds that differ along one or more acoustic
dimensions (e.g., intensity or FO) but are otherwise identical. Listeners are asked whether two
successive sounds are identical (AX procedure: does X sound the same as A?), or are presented
with three sounds and asked which of two of the sounds resembles most the third (ABX or
AXB procedure: does X sound closest to A or B?). The first technique is most common and
yields a plot of percentage "different" responses as a function of the acoustic difference. If
the acoustic dimension varied is perceptually relevant, the plot typically goes from a low
percentage ("same") to a high percentage ("different") monotonically as the acoustic
difference increases. The acoustic value at which 75% of responses are "different" is
normally selected as the just-noticeable difference (JND) or difference limen. In the second
procedure (ABX or AXB), X is the same as either A or B, and the number of correct
identifications increases as the difference between A and B increases; the point where subjects
correctly identify 75% of the stimuli is the JND. An alternative procedure, which tends to
yield smaller JND values, asks listeners to adjust some parameter of a sound to resemble a
reference sound; the standard deviation of selected parameter values provides the JND [51].
JNDs are relevant for both speech perception and coding: JNDs measure the resolving power
of the ear and the limits of audition, and suggest how precisely speech parameters need to be
quantized for transmission.

Due to the frequency variation in auditory thresholds, the perceptual loudness of a
sound is specified via its relative intensity above the threshold. A sound's loudness is often
defined in terms of how intense a reference I kHz tone must be, to be heard as equally loud as
the sound. Loudness units are called phons and are identical to dB for tones near 1kHz. At
speech frequencies, equal-loudness contours parallel the hearing threshold curve (Figure 4.9).
At low frequencies, however, 1dB can have the effect of two phons (Figure 4.10). The JND
for loudness is essentially constant at about 0.5-1.0 dB for noise bursts, but varies for tones:
ranging from 0.3 dB in optimal conditions (e.g., a 60 dB tone at 1kHz) to more than 1dB
at low intensities; they also increase with frequency at low levels [52]. Greater JNDs are
found at very high intensities [53] or with durations less than 250 ms [47]. Sounds of equal
intensity increase in loudness with duration up to about 200 ms. Another measure of loudness
is the sone, by which a doubling of loudness is equivalent to an intensity increase of about
IOdB.

Below 1 kHz, two equally intense tones must differ by about 1-3 Hz to be distinguished
in frequency. At higher frequencies, the JND is progressively larger (e.g., at 8 kHz, it is
100 Hz) [47, 55]. The JND increases substantially if the sound is weak or brief, i.e., less than
20 dB above threshold or shorter than 100 ms. Over the entire auditory field, there are about
1600 distinguishable frequencies and 350 such intensities, leading to about 300,000 tones of
different combinations of frequency and intensity that can be distinguished by listeners in
pairwise tests [48, 56]. People in general cannot, however, identify so many tones in isolation;
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Figure 4.10 Equal-loudness contours as a function of tone frequency. (After Robinson
and Dadson [54].)

they must be heard in successive pairs. (Those few who possess "absolute pitch," and thus
have the musical ability to name tones without context, do not appear to have smaller JNDs
[57J.)

The figures above are valid for sounds lasting more than 100-200 ms; the ear is less
sensitive with shorter sounds. For example, there are 850 distinguishable frequency levels for
tones of more than 250 ms, but only 120 levels for 10 ms tones. Similarly, the number of
discriminable intensities is halved as duration decreases to 10 ms. Other sounds are less
precisely perceived than tones; e.g., for narrowband noise bursts, only 132 frequency steps
and 120 intensities can be distinguished, which represents only 5% of the number of
distinguishable tones.

4.3.4 Pitch Perception

Distinguishing two tones (or other periodic sounds) is usually done through pitch, the
perception of the "basic" frequency of a sound. Pitch is usually affiliated with periodic
sounds, and most closely corresponds to the fundamental rate of sound vibration; it is
however much more complicated than a simple acoustic: perceptual mapping of FO:pitch. A
sound is said to have a certain pitch if it can be reliably matched to a tone by adjusting the
tonal frequency (usually using a 40 dB sine) [58]. Sounds lacking periodicity can be said to
differ in timbre [59], e.g., /s/ has brighter timbre than / J/ because /s/ has most energy at
higher frequencies; timbre reflects a sound's spectral envelope.

Information relevant to a sound's perception can be obtained from the rates and timing
of neural firings at different locations along the basilar membrane. A sound's loudness may be
perceived in proportion to the overall rate of neural firings, but spectral perception is more
complex. The timing or volley theory holds that low frequencies, e.g., those corresponding to
the first harmonics of the fundamental frequency (FO) in speech, are perceived in terms of
time-synchronous neural firings from the 8M apex. The place theory, on the other hand,
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suggests that, especially for higher frequencies such as those in the formants of speech,
spectral information is decoded via the 8M locations of the neurons that fire most [6].

Thus there are two types of pitch: the "normal" pitch corresponding to the inverse of
the fundamental period of the sound (FO), and a "spectral" (or place) pitch corresponding to
timbre (e.g., /ul with its low-frequency concentration of energy sounds lower in spectral
pitch than does Iii). The normal pitch is also called residue or virtual pitch since it is
perceived even when the FO component is absent [60]. For example, in speech over the
telephone, the fundamental and harmonics below 300 Hz are absent, yet a pitch correspond­
ing to an FO of 100 Hz would be detected by the presence of higher harmonics separated by
100 Hz each. Virtual pitch can be regarded as the perceived repetition frequency of a periodic
sound and is apparently determined by the positions of about the eight lowest harmonics [61,
62].

The harmonics in the Fl region are especially important for pitch perception. Even
though pitch is most naturally associated with temporal repetition, pitch perception seems to
follow spectral measures (e.g., harmonics) more closely than changes in the time signal; in
particular, changes in the phases of harmonics do not affect pitch but change waveform
structure [63]. When speech is simulated with one sinusoid per formant ("sinusoidal speech,"
with three tones centered at three formant frequencies), unnatural speech results, but pitch
usually follows the tone at the F1 frequency [64]. Phase is less important than other perceptual
factors, but listeners can distinguish a phase shift of 2-4° in one harmonic of a complex tone
when phases are set to zero (but not when randomized) [65].

Some sound stimuli give conflicting pitch cues. For example, short clicks of alternating
polarity every 5 ms have an FO of 100Hz but a pulse rate of 200 pulses/so The BM
displacement resolves each pulse in time at its basal, high-frequency end, and associated
neurons fire in cycles of200/s [8]. However, the apical end vibrates sinusoidally near 100 Hz,
leading to time-synchronous neural firings there at FO. When there are sufficient time­
synchronous firings at the base (usually the case for FO above 100 Hz), they dominate the
perception of pitch. At lower rates, even the apical end of the 8M resolves the pulses in time,
and the perceived pitch corresponds to the pulse rate, not FO. The same results occur with
complex waveforms whose phase is inverted every half-period, which suggests that neural
time patterns are insensitive to phase inversions in low-frequency stimuli [66].

Such ambiguous pitch seems to arise mostly when a stimulus has a small number of
high-frequency harmonics within a critical band (see below), leading to unresolved harmonics
(i.e., ones interacting within a single auditory filter) [60, 67]. Indeed, the FO JND increases
with the frequency of the lowest harmonic in such sounds.

The place theory is supported by the varying frequency sensitivity with displacement
along the BM and by the tonotopic organization of neurons in the auditory pathway to the
brain. The maximal vibration of a specific BM location in response to a tone could be
signaled to the brain by a pathway "labeled" cognitively with the tone frequency. The timing
theory instead presumes that the central nervous system can convert timing patterns into
pitch. This theory is limited to low and middle physiological frequencies because the
synchronization of spikes to tonal inputs disappears above 4-5 kHz (due to latency effects),
whereas the place theory cannot explain the high pitch resolution of the ear to low
frequencies. It is likely that both processes operate in parallel, with one or the other dominant
depending on the frequency and type of sound [68]. One theory holds that spectral selectivity
in the cochlea serves to separate broadband sounds into a number of channels, within which
temporal analyses are performed [69]. Another recent model uses inhibitory gating neurons
[70].
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An important aspect of hearing is the phenomenon of masking, by which the perception
of one sound is obscured by the presence of another. Specifically, the presence of one sound
raises the hearing threshold for another sound, for sounds heard either simultaneously or with
a short intervening delay. Simultaneous sounds cause frequency masking, where a lower­
frequency sound generally masks a higher-frequency one (such masking can be directly
related to speech recognition in low-frequency noise [71]). Sounds delayed with respect to one
another can cause temporal masking of one or both sounds. Masking is the major nonlinear
phenomenon that prevents treating the perception of speech sounds as a summation of
responses to their tone and bandlimited noise components. In some speech coding applica­
tions, quantization noise that arises in the coding process can be distributed across
frequencies to take advantage of masking effects, such that the noise may be masked by
high speech energy in the fonnant regions. Masking involving tones (e.g., harmonics in
speech) and noise is thus especially relevant.

Classic masking experiments show the effect of one tone on another as a function of the
frequency separation between them [61, 72]. With a stimulus consisting of two tones above
the threshold of hearing, a listener tends to hear only the lower-frequency tone in certain
conditions. If one tone is fixed at 1200 Hz and 80 dB, a second tone below 800 Hz can be
heard as low as 12dB. However, when that second tone is within 100 Hz of 1200 Hz, it needs
at least 50 dB to be heard. This masking effect remains for higher frequencies as well: at least
40 dB is required for the second tone (up to 4 kHz) to be perceptible. In general, low
frequencies tend to mask higher frequencies, with the largest effects near harmonics of the
low-frequency masker.

Masking effects are usually described with functions of a masked threshold (the energy
a masked signal needs to be heard) or the amount ofmasking (the additional energy needed to
hear the signal in the presence of the masker) as a function of signal frequency (Figure 4.11 ).
Such psychophysical tuning curves are obtained using simple perceptual experiments and
provide analogs to the tuning curves of auditory fibers [73]. The actual inhibition of neural
firings caused by a masker can be displayed via suppression areas superimposed on tuning
curves (usually just outside the curve's skirts), which indicate the amplitude required, as a
function of frequency, for a tone to act as a suppressor. The mechanism for such suppression
may be saturation [74].

When tones are used as both signal and masker, the analysis is complicated by beats
and combination tones, which can change masked thresholds by more than 10 dB near
the frequencies of the difference tones; e.g., in response to tones at fi and h Hz (ji <'/;),
the inner ear appears to generate perceivable combination tones at fi -.f.. Hz and
.Ii + nUi - h) Hz (for integer n) [6, 76].

Against a background of narrowband masking noise, a probe tone near the center
frequency f of the noise must have an elevated intensity to be heard (Figure 4.12). This
masked threshold elevation is assumed to measure the activity produced by the masker in
neurons with CFs at! The probe is detected only if it produces more activity than the masker
alone. There is an upward (frequency) spread of masking at high-intensity levels due to the
asymmetry of neural tuning curves. Since tuning curves have less steep skirts (especially for
high intensities) on the low-frequency side of a CF, a masker has more effect on tones above
its frequency than on those below it. The asymmetry of masking tends to disappear and even
to reverse below signal levels of 40 dB [77], but this latter phenomenon is of little relevance to
speech except in very quiet environments.
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elevation in hearing threshold of a probe tone is shown as a function of the
probe frequency. (After Egan and Hake [72].)
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A 1kHz tone in a narrow band of noise becomes inaudible when it is 2-6 dB below the
noise level, but for the tone instead to completely mask the noise, it must be 24 dB higher than
the noise [78, 79]. This asymmetry is due to the way humans perceive tones: small variations
in tone amplitude or frequency, such as caused by small amounts of added noise, can easily be
heard in the otherwise repetitious tone signal, whereas small spectral variations in noise, e.g.,
from a low-level tone in the midband of this noise, easily escape detection in the
unpredictable noise. Since (undesired) quantization noise in speech coders tends to be
broadband and (desired) vowel harmonics are similar to tones, this perceptual asymmetry
is relevant in the design of speech coders.

4.3.6 Critical Bands

Many masking phenomena can be explained in terms of ranges of sound frequencies
known as critical bands. A critical band can be related to a bandpass filter whose frequency
response corresponds roughly to the tuning curves of auditory neurons. A critical band
defines a frequency range in psychoacoustic experiments for which perception abruptly
changes as a narrowband sound stimulus is modified to have frequency components beyond
the band. When two competing sound signals pass energy through such a critical-band filter,
the sound with the higher energy within the critical band dominates the perception and masks
the other sound. The amount of masking is approximately equal to the total amount of masker
energy (above the auditory threshold) within the critical band of the probe [80]. A band of
noise kept at constant spectral level, while its bandwidth (and energy) is increased, is heard
with constant loudness until the critical bandwidth is attained. Thereafter, noise loudness
increases as neurons, presumably, from adjacent critical bands fire in response to the broader­
band noise. (This model is not fully valid for time-varying signals, whose masking effects are
more complex [81].)

The shapes of critical-band filters have been determined in experiments using broad­
band low- or high-pass noise to mask a tone. As the cutoff frequency of a lowpass noise is
increased past the tonal frequency f, more noise energy enters the critical-band filter centered
at f (the critical band to which the tone perception corresponds). By varying the relative
amplitudes of the noise and the tone, the masked threshold is found as a function of the noise
cutoff frequency, which provides one definition of the shape of a critical-band filter. The filters
are nearly symmetric on a linear frequency scale, with very sharp skirts, which range from
65 dB/oct for critical bands at 500 Hz to over 100 dB/oct at 8 kHz [82]. Below 500 Hz,
critical bandwidth is roughly constant at about 100 Hz. For higher frequencies, it increases
with frequency (roughly logarithmically above 1kHz), reaching bandwidths of 700 Hz near
4 kHz. The filters are approximately constant Q (i.e., bandwidth proportional to frequency) at
frequencies above 1 kHz (Q ~ 5-6). One-third- or one-sixth-octave filters are often used as
critical-band models [31]. The increasing bandwidth with frequency means better temporal
resolution at higher frequencies (since wider filters have shorter time constants), which is
confirmed up to 10kHz [83].

Critical-band filters have symmetric shapes only for sound levels below about 45 dB; at
higher amplitudes, bandwidth increases due to a flattening of the lower-frequency skirt of the
filter. This corresponds well with the flattening of neural tuning curves at low frequencies as
amplitude increases above a certain level, and with the asymmetry of masking (upward
spread), which apparently occurs only at sufficiently high sound intensities.

Critical bandwidths correspond approximately to 1.5 mm spacings (1200 primary nerve
fibers) along the 8M, suggesting that a set of 24 bandpass filters (having bandwidth
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increasing with frequency) would model the BM well. A perceptual measure, called the Bark
scale or critical-band rate, relates acoustical frequency to perceptual frequency resolution, in
which one Bark covers one critical bandwidth. An analytical expression [84] mapping
frequency f into critical-band rate z is

z = 13 tan-I (O.76~z)+ 3.5 tan-I (7.;kHZ) 2.

In a similar measure called the mel scale, the mapping is approximately linear in frequency up
to 1kHz and logarithmic at higher frequencies, e.g.,

m = 259510glo(1 +f /700), (4.2)

although simpler representations may be valid (e.g., m = f [iaf + b) [85]). Using equivalent
rectangular bandwidths (ERBs) is yet another related approach [86].

Loudness sensation appears to depend on the total sum of auditory nerve fiber activity.
The loudness of a sound can be approximated by summing the contributions from each of 24
critical-band filters, raised to the 0.23 power [76]. (This 0.23 compression factor appears in
other sound perception phenomena, such as the additivity of spectrally nonoverlapping
maskers: when two such maskers are combined, masking effects can be substantially larger
than predicted by a linear model, but adding the effects after an exponential compression
provides a good model [87], e.g., a modified power-law model [88].) The output of each filter
is calculated by convolving the spectral density of the input sound with a 8M spreading
function having lower and upper skirts of +25 and -10 dB per critical band, respectively [78].
(The upper skirt flattens to - 5 dB per critical band for loud stimuli, which results in an
upward spread of masking for intense sounds.)

Neural spectrograms have been proposed [89] using bandpass filter analysis, with
bandwidths equal to critical bands, rather than fixed as in traditional spectrograms. Such an
inner spectrum (as seen by the auditory nerve), however, is not easy to interpret (in tenus of
traditional spectrogram viewing). To remedy this, (a) low-frequency filters could have double
the critical bandwidth (to eliminate the effect of harmonics moving between filters as FO
changes), and (b) high-frequency filters could have slightly larger bandwidths (Q = 4) to
make the patterns similar for wide ranges of FO (e.g., for men and women).

4.3.7 Nonsimultaneous or Temporal Masking

Masking extends in time as well as across frequencies [90]. Successive signals with
energy in the same critical band can interfere with each other's perception if the intervening
delay is sufficiently short; e.g., a noise signal will mask an ensuing tone burst in the same
critical band if the noise has sufficient energy. (Note that tonal bursts are not true tones, only
at one frequency, due to their limited duration.) The noise energy needed to mask the tone
increases with: (I) the delay between the end of the noise and the tone onset, and (2) the tone
duration. This forward masking is most effective if the tone burst starts within 10ms of the
noise offset; the effect (in terms of decibels of masking) decreases with time to nil beyond
about a 200 ms delay. Short masker durations are less effective than those longer than 100 ms
[91]. The effect is weaker than simultaneous masking, i.e., an increase in masker intensity has
a greater masking effect when the two signals co-occur than when one follows the other.

Backward masking also occurs, e.g., a short tone burst is not heard when followed
immediately by sufficient noise within the tone's critical band. Backward masking falls off
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rapidly with time and has the effect only with delays less than 20 ms. Nonetheless, it is a
strong phenomenon: a short tone burst ending 1ms before noise onset can experience 60 dB
of masking (i.e., require 60 dB more amplitude to be heard than without the masker), whereas
the same pulse I ms after noise offset is limited to 30 dB of masking.

Since simultaneous and forward masking are effective only when the two signals enter
the same ear and occupy the same limited frequency range, they likely involve peripheral
auditory processes using temporal integration of energy [92] (e.g., modeled by correlograms
[32]). Such integration accounts for the fact that sounds of varying duration can appear
equally loud [93]. Neuron fatigue has been suggested to explain forward masking because
firing rates for a tone are reduced in proportion to the intensity of a preceding sound (within
the same critical band) and in inverse proportion to the time delay between the sounds.
Backward masking, which can occur contralaterally (masker in one ear, test signal in the
other) and at wider frequency ranges than critical bands [6], likely involves a blocking
phenomenon, in which the auditory processing of a tone burst is interrupted by an ensuing
loud noise if the noise arrives before the tone perception is completed. The time delays at
which backward masking can occur suggest blocking at higher levels of auditory processing
than the cochlea. However, the relatively sharp tuning curves for auditory neurons correspond
to long response times, so cochlear responses to nonsimultaneous stimuli could still overlap at
the basilar membrane [94].

The masker bandwidth has a direct effect on forward masking: assuming a masker of
bandpass noise having a fixed spectral level (W1Hz), as the bandwidth (and hence energy)
increases, the threshold for detecting an ensuing tone first increases and then decreases after a
noise bandwidth called the rollover bandwidth is attained. Increasing the noise bandwidth
initially produces more neural activity within the critical band of the tone, thus raising the
amount of energy needed to hear the tone [95]; as bandwidth exceeds the critical band, neural
activity within the band is decreased by the stimulation of neighboring suppression bands.
This lateral suppression effect is instantaneous but is normally not evident in simultaneous
masking since both the masker and tone signal should be suppressed equally (except for low­
level simultaneous suppression [96]). A masker preceding a tone is subject to its own masking
effects when its bandwidth exceeds a critical band, lowering its effectiveness in masking an
ensuing tone.

One problem in interpeting nonsimultaneous masking is that listeners, in attempting to
detect sounds, may use sound aspects other than energy within critical bands. In particular,
short probe sounds are often used, and these sounds necessarily are not simply narrowband.
Short tone bursts have most energy concentrated near the tone frequency, but the percentage
of a burst's energy outside a given bandwidth is inversely proportional to signal duration.
Such energy splatter can lead to ofJ-frequency listening, in which a listener detects a probe
signal from its energy away from the center frequency (when the masker is sufficiently
narrowband) [97]. Listeners may also be sensitive to quality differences between the signal
and masker, involving temporal structure as well as spectral composition.

Forward masking can operate conversely: a masker with a spectral notch (missing
frequencies among a broadband noise) enhances perception at the notch frequency after the
masker is removed. For example, listeners often have difficulty discriminating ("hearing out")
harmonics in a complex sound of several harmonically related tones, but not when the sound
is preceded by a masker containing all the harmonics of the signal except the one of interest
[98]. Enhanced perceptibility at the notch frequency appears to result from the masking of
adjacent frequencies by the masker. This suppression phenomenon is related to the fact that in
simultaneous masking, as more components are added to a masker, the masked threshold
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usually increases, but with certain configurations of forward masking the addition of a second
masker can decrease masking effects [99, 100].

Psychophysical tuning curves (PTCs) describing the masked threshold are sharper in
forward masking than in simultaneous masking. This difference has led to numerous
proposals for additional tuning mechanisms in the ear such as the second-filter effect and
off-frequency listening. PTCs are often assumed to reflect neural tuning curves and hence to
measure the frequency selectivity of the auditory system, although PTCs appear to be variable
under different experimental conditions [101].

4.3.8 Origins of Masking

While most evidence of masking has come from psychoacoustic experiments, masking
patterns are also readily evident in auditory nerve firings [69]. Changes in the average firing
rate of auditory neurons due to the addition of a masker correspond directly to patterns of
psychoacoustic masking. Masking levels have also been directly related to changes in
synchronized firing rates [102], which will be noted below as relevant to speech perception.

Because masking patterns appear to change little over a wide range of masker levels,
masking seems to have its origin at the basilar membrane level. The lack of saturation effects
in masking phenomena appears to rule out masking origins above the hair cell level since
neural firings are subject to saturation. Masking cannot be due to neural inhibition because it
occurs with little latency delay, does not adapt with time, and does not affect spontaneous
discharge rates. One theory suggests that masking arises in the neuroelectric processes of hair
cell firings or in the cochlear microphonics near the tectorial membrane [102]. BM motion, at
least at low sound levels, appears to be linear (however, see [103]), suggesting nonlinear
transformations of the sound information in the organ of Corti.

4.3.9 Release from Masking (t)

Given the importance of masking in sound perception, much recent research has
explored its mechanisms in detail. In particular, masking can be affected by sounds distant in
time or frequency, e.g., by modulation detection interference (MDI), in which the threshold
for detecting amplitude modulation (AM) in a sound can be substantially raised (e.g., lO­
IS dB) by AM at a distant frequency [104]. It is unlikely that audition exploits autocorrelation
directly (despite the spectral behavior of the cochlea, which is often modeled with reverse
correlation functions [105]), but some auditory cells respond to AM [60].

Thus the ability to hear a sound in the presence of a simultaneous masker can be
affected by additional sounds spectrally distant. When the masker and maskee have the same
amplitude envelope, masking thresholds are reduced icomodulation masking release (CMR»
[106]. Similar threshold reductions occur if the extra sound is coherent. Acoustic coherence
may come from sounds with synchronous onsets/offsets or from harmonic relations [62]; e.g.,
a formant filled with noise syncronized with normal higher formants gives coherence, even in
the absence of harmonic relations [107]. Unlike MDI, CMR depends on the target-masker
frequency separation (and seems to have limited effects in normal speech conditions), and
hence may reflect local-frequency processing (vs global MDI effects).

Such release from masking can occur in different ways. In two-tone suppression, adding
a second tone to a tonal masker at a frequency 10-20% higher improves the audibility of a
masked tone, which may involve both mechanical BM phenomena and neural inhibition
[108]. In signal enhancement (also called overshoot or temporal decline of masking), a
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simultaneously masked sound is easier to hear (by about 10-15 dB) if its onset is delayed
relative to that of the masker [108]. Such phenomena vary significantly across different
subjects.

A related phenomenon is release from broadband masking of speech by modulating the
noise [109]; sinusoidal modulation at 10-20 Hz allows significant low-noise intervals of about
the duration of a phoneme, thus raising intelligibility (at lower rates, many phonemes are
entirely masked, and at higher rates, the reduced-noise "windows" are too short to help
perception). Such "glimpsing" experiments have been extended to modulating the frequency
range as well (i.e., gating the noise on/off in both time and frequency), in which masking
release occurs when the spectrum is divided into 2-4 bands (but not 8) [110].

4.3.10 Sound Localization (t)

Using differences in the sound arriving at one's two ears can allow one to localize where
a sound is originating. Such an ability is important for safety, as well as for paying attention to
one sound in the presence of others. Interaural differences in level and timing allow estimation
in one dimension (lateralization): the horizontal direction from which a sound comes (it
arrives first and louder at the closer ear). Spectral cues, due to filtering by the pinna, which
emphasizes sound from a forward direction, also help in localization, especially in estimating
location in the vertical plane (where interaural cues do not help) or when one ear is blocked
[13]. The interaural JNO (the smallest delay between ears giving a perceived change of
direction for a sound) is about 0.05 ms, corresponding to a 5° change of direction [58]. (This
is much smaller than the typical temporal resolution of 2 ms monaurally.) One can detect a 2°
change directly in front, but the JNO increases to 10° on the side.

Until recently, most audio applications have involved monaural (e.g., telephone
handset) or stereo listening conditions. Increasing interest in virtual reality environments
has shown the need for a better 30 (three-dimensional) understanding of sound perception.
Binaural headphones are often used to simulate sounds from different directions, using
interaural time and level differences. However, such experiments often yield sound "images
within the head," but closer to one ear than the other, rather than coming from outside the
head. With an interaural level difference exceeding 30 dB, the image is heard only in the ear
with the stronger signal; a JND for displacement is 1-2 dB [58]. The "law of the first
wavefront" is a general observation that we tend to localize in terms of where the first sound
comes from, even if later echos are stronger (unless they arrive > 50 ms later). When pinna
filtering and a "head transfer function" are taken into consideration, a virtual auditory space
can be simulated for better 30 effects [Ill, 112].

4.4 RESPONSE OF THE EAR TO COMPLEX STIMULI

Auditory studies using stimuli more complex than simple clicks and tones, e.g., frequency
sweeps and wideband noise, have shown that firing patterns for such sounds cannot be easily
extrapolated from results for simpler sounds. For example, there appear to be two classes of
neurons in the cochlear nucleus: those that respond best to steady-state or slowly varying
sounds and those that respond best to rapidly changing sounds [69]. Such a division is not
evident in the primary auditory neurons, but higher-level processing in the cochlear nucleus
apparently can help in recoding the information in transient sounds. The neural processing
that a listener uses for simple sounds may be different from that used for more complex
sounds.
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4.4.1 Speech Stimuli (t)

In response to steady-state synthetic vowels and fricatives, high firing rates have been
found in neurons whose CFs correspond to frequencies of high energy (e.g., formants) [113,
114]. Complicating factors arise in the form of suppression of firing in high-frequency
neurons due to high energy in the first formant. Other nonlinearities include saturation effects:
the firing patterns in many neurons tend to saturate above 60 dB SPL, which limits frequency
resolution along the basilar membrane. It may be that certain neurons with low spontaneous
activity and high firing thresholds (compared to other neurons, those with spontaneous rates
below 18/s have thresholds elevated by about 10 dB) do not saturate at these levels [115] and
thus preserve a firing rate profile distinctive for different speech sounds. In any event,
saturation is a problem only for vowels and sonorants since fricatives and stop bursts are
usually 10-20 dB less intense than vowels, leading to few saturated neurons.

Interspike intervals as well as place information seem to be relevant in decoding speech.
Since most speech energy is below 5 kHz, neural firings are phase-locked following the
temporal envelope of the speech filtered by the neuron's tuning curve; the firings appear to
phase-lock to formant frequencies over a large range of sound levels. Synchrony to harmonics
not near formants is suppressed more as speech intensity increases [116], with the net effect of
enhancing formants. In response to synthetic consonant-vowel (CV) stimuli, individual
neurons with a CF near a moving formant frequency are able to track its changing frequency,
in that the average intervals between firings vary inversely with the formant frequency [117,
118]. Cochlear nonlinearities appear to emphasize the dominant formant frequency in neural
synchronized firing rates [119].

A measure called the average localized synchronized rate (ALSR) has been related to
dynamic formant patterns in CV ([120]; see [121] for similar measures, such as the
synchronization index). The ALSR computes the Fourier transform of post-stimulus time
histograms of 20 ms speech segments with a typical resolution of 50 Hz and averages the
spectrum at each frequency over those fibers whose CFs are within ±0.25 octave of the
frequency. Although its utility at higher levels in the auditory chain is in doubt [122], the
ALSR provides a measure of the average firing rates as a function of place along the basilar
membrane while also reflecting the degree of phase locking of the neural firings. The fine
spectral structure of the speech (pitch harmonics, if voiced) is preserved in the ALSR. Since
neural firings are thought to arise from rectified BM vibration, the time signal chosen for
Fourier analysis is usually a compound histogram that sums together post-stimulus time
histograms at half-period delays in response to periodic stimuli of opposite polarity. Rate­
difference measures simpler than the ALSR seem to suffice for vowel discriminability [123].

4.4.2 Masking Due to Complex Stimuli (t)

The masking patterns (tone threshold elevations as a function of frequency) caused by
steady-state synthetic vowels resemble the vowel spectra, with the first 2-3 formants clearly
represented [124]. The formants are more obvious in the patterns of forward masking than in
those of simultaneous masking, which suggests that lateral suppression serves to enhance
spectral contrasts in speech. Masking is unaffected when the phases of the individual
harmonics of the masker are changed, suggesting that the temporal structure of a vowel
masker has no effect on the thresholds of an ensuing tone.

Short tone glides ( < 200 ms), which are very simple models of formant transitions,
cause less masking than tones with equivalent energy if the glide range extends beyond a
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critical band. For a given duration and intensity, glides have broader spectra than tones; when
masking a tone, only the masker energy within the tone's critical band has an effect, integrated
over about 250 ms [80]. Thus, tone glides over wide frequency ranges have less masking
effects than narrower-band signals, but are capable of masking a wider frequency range.

While it is difficult to integrate all the results from different masking studies, we can
nonetheless attempt to find a simple model for masking relevant to speech. Consider whether
a particular spectral component (e.g., a harmonic) in a speech sound is perceptible. This will
depend primarily on sound components nearby in frequency and in time. Since simultaneous
masking is stronger than temporal masking, the primary concern is whether nearby harmonics
(within a critical band) are more intense than the harmonic of interest. In addition, formant
frequencies below a harmonic of interest will mask such a high-frequency harmonic beyond
the range of a single critical band. In normal CVs, strong Fl energy can hinder stop place
identification, since place cues reside in weaker, higher-frequency regions [125].

For a spectral component in a weak sound immediately following a strong sound (e.g., a
fricative after a vowel), forward masking may obscure the initial portion of the weak sound.
The formants in a vowel (even at high frequencies) may have enough energy to mask an
ensuing brief, nonstrident fricative. The audibility of a simple sound after a vowel has been
simulated by examining the masking of a tone following a sound complex of ten equal­
amplitude harmonics [126]. First, at low frequencies, masking can be as much as 10 dB less
for a probe tone between harmonics of the masker than for one at a harmonic frequency; this
suggests that noise away from harmonics will be more noticeable than nearby noise. Second,
as the tone duration increases from 10 to 40 ms, the amount of masking decreases by about
0.3 dB/ms (to about 15 dB, given a masker of 71 dB). Thus, shorter sounds are more subject
to masking following a vowel; the longer a sound lasts, the more likely it can be heard.

Backward masking could play a role in the perception of consonants followed by
(intense) vowels. Stop bursts are typically 30 dB weaker than ensuing vowels, and occur
within the range of backward masking (especially for voiced stops with short VOTs). The
detectability of the bursts is normally not in question [127], but perhaps perception of place of
articulation is affected by masking. The stop place is usually identified through spectral
transitions at and right after the stop release. Strong vowel formants could mask brief, weak
frication energy during the burst and aspiration period to cause phonemic confusion
(especially in the presence of background noise).

4.4.3 Adaptation (t)

Adaptation refers to changing sensitivity in response to a continued stimulus, and is
likely a feature of the mechanoelectrical transformation in the cochlea, which allows better
hearing in noisy conditions. When compared to measures such as the ALSR, spectral profiles
of average firing rates are more subject to adaptation effects and display less information
concerning formants and pitch. Many speech sounds are characterized by sudden changes in
amplitude and spectra. Adaptation effects in neurons may serve to emphasize such transitions
in the patterns of neural firings [128]. For example, the rise time of a noise burst can
determine whether a fricative or an affricate is perceived; a slow onset of 40 nlS leads to
fricative perception, whereas a sudden 1ms onset causes an affricate to be heard. Sudden
onsets cause brief, large increases in neural firings that do not occur with more gradual
amplitude changes. Most neurons have limited dynamic response ranges to steady-state
sounds, typically going from spontaneous firing rates to saturation with stimulus changes of
about 25 dB. The neural dynamic range for transient sounds with sudden onsets is greater by
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about 10-15 dB. Thus, the ear may be well tuned to provide information to the brain about
transients of the type common in plosives, fricatives, and perhaps nasals.

Adaptation likely plays a role in sudden spectral changes as well as in sudden amplitude
changes. Neurons with CFs in a range where energy is significant for one sound often do not
exhibit large changes in firing patterns in response to large spectral and amplitude changes for
a following sound. For example, for [me], low-CF neurons do not increase firing at the onset
of /a/, which is louder than [tn], because these neurons adapt to the low-frequency energy in
[m], The higher-CF neurons, however, will respond in normal fashion to the presence of
energy at the higher frequencies in lal [44].

At typical speech levels, single-formant stimuli cause varied firing patterns, depending
on the proximity of the neuron's CF to the formant frequency. Near the formant, the neurons
fire near saturation level at times synchronous with the formant frequency. For neurons whose
CF is distant from the formant, the neurons tend to saturate only at the start of each pitch
period, where the stimulus has maximum intensity. In these synthetic speech stimuli, the onset
of a pitch period is sudden; for a brief time at the start of each pitch period, the spectrum is
fairly broad (as in a click stimulus), and these latter neurons respond as to a click. Thus the
fundamental pitch period is easily visible in the firing patterns. Since their CFs are distant
from the formant, these latter neurons tend to fire at times related to both the formant
frequency and the neuron's own CF.

The addition of broadband noise to synthetic vowels typically reduces the neural firing
rates but does not strongly affect their timing patterns [114]. Thus formant frequency
information could be decoded from the intervals between neural spikes, even in the presence
ofmoderate noise. Even with intense vowels (causing spikes at saturated rates), most auditory
fibers fire in synchrony with intervals inversely related to one of the first 2-3 formants. Such
patterns are robust in noise and distinctive since they differ from broadband noise response,
which causes firings at intervals related to the neural CF.

4.4.4 Just-Noticeable Differences (JNDs) in Speech

Consider speech from a synthesizer in which one formant frequency is varied in steady­
state vowel stimuli. The formant frequency JND is in the range 1.5-5% [8, 129], e.g., about
14 Hz for Fl. Listeners are less sensitive when dynamic vowels, with changing spectra more
typical of natural speech, are used; e.g., JNDs are 9-14% for symmetric formant trajectories
in 200ms CVC syllables [130]. However, simultaneous parallel movement of Fl and F2 halve
JNDs [131]; resonance bandwidths also affect JNDs [132]. These JNDs give lower bounds to
the formant resolution necessary when synthesizing vowels, because it is not necessary to
simulate natural formant behavior more accurately than it can be heard in such ideal,
controlled circumstances. Listeners usually can distinguish simple speech stimuli with more
precision than in normal speech perception.

Typical JNDs for formant amplitudes are 1.5 dB for FI (the most intense and
perceptually most prominent formant) and about 3 dB for F2. Varying only one harmonic
in a vowel spectrum yields amplitude JNDs ranging from about 2 dB for those in the middle
of F1 or F2 to more than 13dB for harmonics in spectral valleys between formants. (Similar
results are found for complex tones [133].) The large JNDs in regions of relatively low
amplitude are likely due to masking effects and suggest that speech synthesizers should
concentrate on modeling well the spectral content of natural vowels near the formant
frequencies. Spectral accuracy between formants seems to be much less perceptually
important than accuracy at formant peaks.
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Since formants typically encompass several harmonics, it could be that listeners identify
the formant frequency as that of the loudest harmonic. Studies have shown, however, that the
perceived frequency follows a weighted average of adjacent harmonics, with minimal change
in perceived vowel quality as FO (and thus harmonic spacing) is changed [134]. This appears
to be true even at very high values of FO, e.g., in soprano singing, where only 1-2 harmonics
occur in each formant bandwidth [135]. Finally, perception of center frequencies for formants
is largely independent of spectral detail beyond the three strongest harmonics of a formant
[136].

Formant bandwidths are poorly discriminated compared to their center frequencies;
listeners can only note differences of 20-400/0 in the bandwidths of FI-F2. In experiments
with harmonic complexes in which only two harmonics per formant were increased above an
otherwise-constant level, only a 2 dB elevation was needed for good vowel discrimination
[137]. Synthesizers often take advantage of such poor formant bandwidth resolution and use
fixed-bandwidth formants, especially for the less perceptually relevant higher formants. Time
variation of bandwidths is primarily important for nasal phonemes.

Using steady-state synthetic vowels, the JND for monotonic FO is 0.3-0.5% [8], or less
than 1 Hz [138]. The JND is larger for high than for low vowels, presumably due to the
masking of more harmonics by the lower-frequency F 1 in high vowels. In vowels with either
(more natural) dynamic FO [139] or background noise [140], the JNDs were an order of
magnitude larger. This suggests that, while FO should be coded precisely to match natural
speech in certain circumstances, the more common uses of FO to signal stress and syntactic
groupings could allow less accurate modeling. Subjects are most accurate in perceiving rising
vs falling pitch with stimuli of longer duration [141]. Changes in FOof less than 5 Hz, or those
during voiced segments of less than 50 ms, are likely perceived as average, level pitches [142].
Differences in FO of less than a quarter octave are unlikely to be useful in linguistic
communication [143].

Noise sounds in fricatives and stops tend to have broadband spectra, with many
irregularities in an otherwise locally flat spectrum. IND studies have shown that listeners
cannot hear spectral peaks in such noise with Q< 5, or spectral notches with Q < 8. Thus
most spectral irregularities in obstruent consonant spectra are likely perceptually irrelevant.
Fricatives have been well modeled acoustically in terms of two high-frequency poles (with Q's
of 5-13) and one lower-frequency zero (with Q of 2-4). The location of the lowest-frequency
pole appears to be of greatest perceptual importance; it specifies the cutoff frequency of the
highpass frication noise, which determines place of articulation perception.

The abruptness in time with which a phoneme begins or ends is often a cue to phonemic
or allophonic contrast; e.g., IJI is distinguished from Icl by the rate of noise onset (/cl
having a relatively abrupt onset). A rise (or decay) time for phoneme onsets (or offsets),
defined as the transition time from 10% to 900/0 of peak intensity expressed in decibels, varies
from 10 to 150 ms in typical speech. The JND is about 25-300/0, which suggests that
discrimination is too poor to reliably cue more than two phonetic categories (e.g., abrupt vs
smooth) [144. 145].

Related to JND experiments is a study of perceptual distance among similar vowels
[146] (see also [147, 148]), in which aspects of a synthetic lre/ were varied and listeners
judged pairs of vowels as to how different they sounded. Formant bandwidth changes
appeared to affect perception primarily through their effects on formant amplitudes. The
valleys between formants were less important than formant peaks, but small-amplitude
changes at very low frequencies (the first and second harmonics) caused large perceptual
distances. Total elimination of harmonics between formants was ignored unless the spectral
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notch removed energy very close to a formant or at very low frequencies. Setting the phases
of the harmonics to zero or to random values resulted in large perceptual effects (e.g., harsh
speech), which suggests a temporal component to speech perception since an auditory
analysis in the ear that provides only an amplitude spectrum would be insensitive to phase.
Auditory phase insensitivity is likely limited to small amounts of phase distortion. It may be
that the ear primarily discriminates phase within each critical band and that speech
degradation is perceived only when large phase differences occur between harmonics
within a critical band.

In masking, when the task is not simply to detect one signal in the presence of another
but rather to identify some aspect of the signal, the tenn recognition masking is used. Signal
threshold is higher in such recognition tasks; e.g., to understand a speech signal amid
background noise typically requires 10-12 dB more intensity than to simply note the presence
of the speech. Speech reception thresholds serve to measure intelligibility [149].

4.4.5 Timing

Time plays a major role in speech perception; thus the temporal resolution of the ear is
crucial. Two brief clicks are perceived monaurally as one, unless separated by at least 2 ms.
Similarly, the onsets of two signals must differ by at least 2 IDS for a listener to hear them as
different [80]. To identify the order of two such signals, however, about 17ms of separation
are needed. This temporal order identification threshold decreases for stimuli durations less
than 300 ms, but can double as stimulus rise times increase from 10 to 100 ms (both typical
values for speech sounds) [150]. Detecting a temporal gap in a narrowband sound (vs a
wideband click) requires increasing gap duration as the center frequency of the sound
decreases (22.5 ms at 200 Hz), perhaps due to longer impulse response times of the basilar
membrane at locations with lower CFs (i.e., the narrower bandwidths lead to more ringing in
the time response) [151]. The equivalent window durations of auditory filter models are
4-5 ms [152].

Sounds with onsets faster than 20 fiS are heard as abrupt plucks rather than gliding
bows [153]. For these and other reasons (e.g., the maximum rise time for a stimulus onset
yielding an overshoot in auditory neural firings is about 20 ms), 20 ms is often used as an
integration time typical of auditory processing. (The question of auditory time constants is
difficult to assess, since for sound detectability the ear appears to integrate energy over
200 fiS, whereas durations as short as 2 ms are relevant in some masking experiments [92,
154].)

To note the order in a set of sequential short sounds, each sound must be about 125­
200 ms long. Listeners cannot identify the order of a repeating sequence of four 200 ms
steady-state vowels, but have no problem with even shorter vowels if the vowels have gradual
onsets and offsets with 50 ms pauses intervening [155]. People use rhythmic sound sequences,
in which amplitude regularly rises and falls, for perceptual segmentation. A lack of transitions
apparently disrupts perceptual processing; normal speech contains many such transitions,
permitting speech to be perceived at rates up to 40-50 phonernes/s [156], although
12 phonemes/s is a more typical rate.

Short sounds near the threshold of hearing must exceed a certain intensity-time product
to be perceived. This value is roughly constant (for a given sound frequency) over the
approximate range of 10-200 ms. The lower time limit is likely related to critical-band effects
(e.g., a 10 ms tone burst has a half-power bandwidth of 100 Hz-approximately a critical
band), while the upper limit may reflect some unit of auditory processing time. The values for



Section 4.4 • Response of the Ear to Complex Stimuli 137

the auditory threshold described in Section 4.3 apply to sounds longer than 200 ms. Peripheral
auditory analysis also operates under a time-frequency tradeoff in which the product of time
resolution and frequency resolution stays essentially constant within certain limits. Spectral
resolution is limited to critical bandwidths (about a quarter to a third octave), while timing is
smoothed through a window of several ms. Thus, the ability to finely discriminate tone bursts
decreases as the burst duration becomes smaller, and conversely fine timing discrimination is
possible only for broadband signals. Similarly, successive short sounds are best resolved in
time when they have energy in identical frequency bands [157]. In sound perception, the
auditory system appears to tune its focus of attention to the frequency range of highest
energy; this focus frequency changes only in response to a sound with primary energy at
another frequency. The ability to discriminate is best when successive sounds do not require
much movement of this focus. Such discrimination appears also to trade off spectral and
temporal cues within frequency ranges of an octave and over intervals of 120 ms [158].

Although timing is very important in speech production to obtain natural speech, little
research has been done on duration JNDs in utterances of more than a few syllables. Listeners
are known to be more sensitive to durational changes in vowels than to changes in consonants
[159]. Natural speech timing is based more on events at the syllable level than at the phoneme
level [160] (i.e., changes in syllable durations are more noticeable than changes in adjacent
phonemes that leave the syllable with the same duration). Typical stressed vowels can be
varied over a 40 ms range without deviating from what listeners consider "normal."
Durational JNDs for natural speech generally range from 10 to 40 ms [138], although some
authors have found shorter values [161]. It has been argued that, while listeners may tolerate a
deviation of up to 100 ms in a single segment within an utterance, the average durational
deviation over all phonemes should be less than 10ms [162]. JNDs vary with (a) the absolute
duration of the segment (Weber's law is roughly followed, i.e., JNDs are directly proportional
to overall segment durations); (b) the syllable position within a word (JNDs are smaller in
word-initial than in word-final syllables); and (c) word position within a sentence [163]. The
wide range of JND values obtained in different studies may be explained by examining the
experimental paradigms. In many studies, the same word or sentence is repeated many times,
so that a listener develops a stable psychological reference pattern, which hones his ability to
hear small differences. Large values for JNDs tend to be found in studies that compensate for
this adaptation effect.

4.4.6 Separating Sound Sources

Humans often hear several simultaneous sound sources, and attempt to recognize
important aspects of each source. This is important for identifying potential dangers, and for
deciding to which source to pay primary attention. We do well at focusing on one source (e.g.,
one voice in a crowded room), while still being able to pay secondary attention to other
sources (e.g., background listening with limited comprehension, to enable us to switch
attention when needed). How we do this segregation of multiple sound sources involves
issues of perceptual streaming. It is likely that paying attention to different sound sources in
an auditory scene has two stages: an initial, data-driven automatic feature-extraction process
and then a higher cognitive process [164-167].
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An understanding of how the ear transforms speech into auditory information is important in
many applications of speech processing. To the extent that speech recognition systems
simulate human auditory processes, knowledge of which aspects of the speech signal are
perceptually important should guide system development. Since synthetic speech is destined
for human ears, the time and frequency resolution of the ear provides guidelines in
synthesizer design; it is important for high-quality synthetic speech to follow natural
speech in those aspects that are perceptually important. In speech coding, the information
preserved in a narrow bandwidth transmission should eliminate redundancies and take
advantage of the masking properties of auditory perception.

This chapter discussed the structure and mechanics of the ear from the perspective of
signal transmission. How time and frequency information in speech is transformed into a
linguistic message in the brain is well understood only up to the point of primary auditory
neural firings. The 30,000 cochlear hair cells and their attached neurons code sounds in a
complex fashion related to the time and frequency components of the sounds. How the higher
levels of the auditory system treat sound information coded in the neural firings remains a
subject of long-term research. In bridging the gap between neural firings and speech
perception, basic elements of auditory psychophysics were discussed. The perceptibility of
a sound component in the context of neighboring sound components (nearby in time or in
frequency) was discussed in terms of thresholds and masking effects. The next chapter
continues to examine the auditory process, specifically looking at how speech sounds are
heard and transformed into linguistic units, discovering the acoustic aspects of speech that are
linguistically relevant.

PROBLEMS

1. Two narrow bands of noise of equal bandwidth are centered at 250 Hz and 1000 Hz,
respectively.
(a) If their intensities are kept equal to each other but gradually increased from a very low

value, which will be heard first? Explain.
(b) The bandwidth of the noise centered at 250 Hz is now increased in steps while keeping

its power density (energy per unit frequency) constant. How would this change the
results of part (a)?

2. Two short noise bursts (centered at 1kHz) are separated in time by 600 ms. A 10ms tone
burst at I kHz occurs between the two noise bursts. Sketch the threshold amplitude for
hearing the tone burst, as a function of the delay of the tone burst onset to the end of the
first noise burst. Explain.

3. Trace the path of perception for a simple 200 Hz sine wave from the outer ear to the neural
firings in the cochlea, in terms of where the energy undergoes conversion and how the
inner ear behaves for such a stimulus. How would the situation change for a 3000 Hz sine
wave of equal amplitude?

4. Consider two neurons, one attached to the basal end of the basilar membrane and the other
near the apex.
(a) Describe the likely times that these two neurons might fire, in response to (i) a click and

(ii) a sinusoidal tone.
(b) Explain why the effects of masking are asymmetrical in frequency.
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(c) Explain why critical bands are not uniform in frequency width.
(d) What effects do the outer and middle ear have on the firing of neurons in the cochlea?

Explain.
(e) Describe the critical-band phenomena in hearing.

5. Assume the ear receives a sound consisting of a periodic train of very brief rectangular
pulses (clicks). The pulses arrive every Nms, but every fourth one is negative (the other
three in each period have positive sign).
(a) What pitch is perceived? Note how the pitch might change nature for different ranges

of N.
(b) Explain this pitch perception in terms of how the basilar membrane reacts to the

stimulation.
(c) Add a train of bandpass noise bursts to the stimulus. Relative to the timing of the

original train, when should the noise bursts occur and what frequency range must they
occupy to mask the perception of the original pulse train?

6. Consider a 5 ms tone burst and a 100 ms noise burst, both with frequencies centered at
2kHz.
(a) If they have similar amplitudes, by how much time must one signal be delayed with

respect to the other before both signals are distinctly heard?
(b) If they occur simultaneously but the bandwidth of the noise is decreased from 1000 Hz

to 50 Hz, how does that affect the intensity the tone must have to be heard in the
presence of the noise?

7. A 1kHz tone at 40 dB SPL is used to mask one of two tones separately, one at 750 Hz, the
other at 1500 Hz.
(a) What are the intensity levels at which the tones are just audible above the masking

tone?
(b) The two masked tones are now adjusted to 10 dB SPL; which tone will appear louder

(the one at 750 Hz or at 1500 Hz)?
(c) The intensity of the 1000 Hz masker is now reduced to 20 dB SPL, while the levels of

the 750 Hz and 1500 Hz masked tones are unchanged. Which tone appears louder
now?

8. Why is the just-noticeable difference (INO) for intensity smaller for a tone than for a
vowel, while the JND for fundamental frequency is bigger for a tone than for a vowel?



Speech Perception

5.1 INTRODUCTION

While much is known about audition, which converts speech signals into patterns of auditory
nerve firings, the mechanisms by which the brain translates these firings into a linguistic
message are much less understood [1]. Speech perception research usually views a listener as
a black box, an entity without analyzable parts. In experiments, acoustic stimuli are played to
Iisteners via earphones or loudspeakers, and the listeners respond to questions about the
stimuli. Such questions involve detectability of sounds, discrimination among stimuli, and
identification of stimuli using linguistic categories.

The chapter is divided into sections examining perceptually relevant aspects of speech,
models of speech perception, vowel perception, consonant perception, intonation perception,
and finally some miscellaneous topics. Section 5.2 notes that speech contains multiple,
redundant acoustic cues to the perception of phonemes and their component features. In
estimating the perceptual importance of these interactive cues, control is virtually impossible
with natural speech; however, synthetic speech often omits minor cues, which leads to
intelligible but unnatural speech stimuli.

Examples of some of the many proposed models for general speech perception are
described in Section 5.3, including active models that directly relate speech production to
perception and passive models that view these processes separately. The nonlinear mapping
between acoustic cues and perception is exemplified by categorical perception, where equal
changes along an acoustic continuum can lead to widely varying perceptual effects. There is
no consensus on the best speech perception model, mostly due to the difficulty of designing
tests to evaluate a model's validity.

Vowel perception (Section 5.4) is relatively simple since the positions of the first three
formants relate directly to perceiving different vowels. The contextual nature of perception is
nonetheless apparent for vowels. People weigh context heavily in making phoneme decisions.
Directly, context changes perception via coarticulation; indirectly, certain aspects of the
speech signal (e.g., speaking rate, average intensity and pitch, typical formant locations), both
before and after a section of interest, influence phonemic judgments.

Unlike vowel perception, consonant perception (Section 5.5) is an area of continuing
controversy. While the acoustic cues to discrimination of manner of articulation are under-
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stood, the search continues for invariant cues to the features of voicing and place of
articulation. The distinction between voiced and unvoiced consonants lies not simply in
detecting periodicity, but also in such diverse cues as voice onset time and formant transitions.
The acoustic similarity of stops with different place features has led to much discussion of the
relative merits of formant transitions vs burst frequency location.

The importance of duration as a cue to phoneme perception is noted in Section 5.6.
While duration is usually not a primary cue to phonemic distinctions, durational changes have
significant effects. To the extent that duration influences phoneme decisions, the speaking rate
acts as an additional indirect influence. Duration, FO and intensity are the acoustic cues of
prosody (Section 5.7), which help to segment utterances into smaller linguistic units, identify
the units' syntactic functions, and highlight important words. Because of the many ways that
prosody can be manipulated, even in short utterances, the psychoacoustic relationships of
intonation remain an active area of research.

5.2 PERCEPTUALLY IMPORTANT FEATURES OF SPEECH SIGNALS

Experiments on the intelligibility of bandpass-filtered speech in a noisy background, using
measures such as the articulation index [2, 3], have shown that the 200-5600 Hz frequency
range contributes most to speech perception. This range matches the frequencies of greatest
auditory sensitivity and highest speech energy, and suggests that in language evolution the
phonemes that are easily produced and perceived by human speech organs survived. Key
perceptual aspects of a speech signal are more evident when represented spectrally (e.g., by
the Fourier transform of the signal) than in the time domain. Temporal speech properties that
are perceptually relevant, e.g., the amplitude envelope (which cues syllable structure, rhythm,
and prosody), can be readily obtained from a spectrogram.

The importance of different frequency ranges can be measured by how speech
perception is affected when they are omitted or obscured by noise. If frequencies below
1kHz are filtered out of the speech signal, confusions occur in voicing and manner of
articulation for weak obstruents [4] (e.g., Ipl vs Ibl vs IvI). Iffrequencies above 1.2kHz are
eliminated instead, errors occur primarily in place of articulation (e.g., Ipl vs /t/). Additive
broadband noise causes few voicing errors, some stop-fricative confusions, but mostly errors
in place of articulation. (Small-room reverberation, with delays near 800 ms, causes mostly
place errors, likely due to multiple reflections acting as speech-shaped masking noise [5].)
Masking experiments suggest that noise with a flat spectral level obscures frequencies with
low energy, e.g., in the upper formant regions or during phoneme transitions when energy is
changing rapidly. Since place of articulation is cued both in high-frequency bursts and in the
F2-F3 region (in contrast to voicing cues in the strong FI region), place perception suffers the
most in broadband noise.

These results follow the view that (a) voicing is perceived through harmonic structure
(which is strongest at low frequencies, but normally present at least up to 3 kHz), (b) manner
cues are strongest at low frequencies, and (c) place cues are found mostly above 1kHz
(especially in the F2 region). Similarity judgments ofconsonants rate phonological features of
manner, voicing, and place in decreasing order of importance, which reflect their robustness
in noise. These features are important because they represent a recoding stage of speech
information that seems to be retained in short-term auditory memory more readily than are
other aspects of the speech signal.
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5.2.1 Synthetic vs Natural Speech
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Listeners use more than acoustic information when interpreting a spoken message.
Their familiarity with the speaker and subject of the conversation aids perception. When
available, visual cues (e.g., facial gestures) also assist [6]; indeed, for deaf people, lipreading
provides the main cues. Thus, perception experiments must be carefully controlled to
demonstrate a direct relationship between a variation in an acoustic stimulus and a perceptual
effect. Since there are so many variables in the production of natural speech, perceptual
experiments often use synthetic stimuli produced by computer. Automatic speech synthesis
can provide stimuli resembling natural speech, as well as accurate control impossible with
human speakers.

Extending the results of perceptual experiments using synthetic stimuli to natural
speech perception, however, is not straightforward. Listeners may not interpret acoustic cues
in synthetic speech the same way they do for natural speech. A synthetic speech experiment
shows that listeners can interpret certain acoustic variations linguistically, but it does not
prove that such a process is relevant for natural speech perception. It is nonetheless usually
assumed that., if the synthetic stimuli are sufficiently close to natural speech, the perceptual
results represent a valid model for natural speech. Unfortunately, most reports of perceptual
experiments include few objective comments on the naturalness of their synthetic speech.

The problem is especially acute when simplistic models lead to synthetic speech
significantly different from natural speech. For example, classical studies of place of
articulation in plosives used stimuli with two steady formants and either a bandlimited
burst of noise or formant transitions [7, 8]; natural plosives have more complex closure
releases in terms of varying energy at different frequencies, and only severely bandlimited
natural vowels have just two formants. It is likely that listeners respond to natural speech in
ways similar to responses given to simplified synthetic speech, but in cases where the acoustic
cues for a particular linguistic feature (e.g., place of articulation) are complex and interrelated,
simplified experiments run the risk of demonstrating only how listeners react to distorted
speech (from which some of the acoustic cues normally utilized have been removed).
Synthetic speech generally provides the major acoustic cues needed for perception, while
often omitting minor, redundant cues that enrich natural speech.

5.2.2 Redundancy in Speech

Speech is highly redundant; e.g., infinite peak clipping of the signal (i.e., reducing it to
a binary waveform) eliminates virtually all amplitude information, yet listeners can still
understand such distorted 'speech'. As another example, eliminating all frequencies either
above or below 1.8 kHz still allows 67% of all syllables to be correctly identified [9]. Unlike
visual perception of a scene in which discrete objects are discerned, speech perception
involves decoding auditory signals in which the (linguistically discrete) phonemes are
realized as overlapping acoustic events. The perception of a phoneme is usually dependent
on context; i.e., the acoustic signal before and after the actual articulation of the phoneme is
crucial to its perception. Speech perception is also highly dependent on forms ofcontext other
than the coarticulation of time-adjacent acoustic sounds. Listeners adjust their perceptual
framework to fit expectations about the incoming speech signal, often anticipating it from
their knowledge of the speaker, the context of the conversation, and their general knowledge.
Thus we often can understand speech in extremely noisy conditions when it comes from
someone we know, but not from a stranger. Words with ambiguous phonetic cues tend to be
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perceived under the assumptions that they are meaningful words, consistent with the semantic
context of the rest of the sentence, and that the speaker usually maintains a constant speaking
rate [10].

The redundant cues of speech aid perception in adverse circumstances, e.g., a noisy
environment or a speaker with a foreign accent. Speakers usually exploit this redundancy,
articulating clearly [11] when needed, but speaking rapidly and casually in informal
conversations. Perception experiments have tried to determine the nature of these cues in
the speech signal; in particular, acoustic-phonetic cues are sought that may be invariant to
context or speaker. Sufficient cues have been discovered that can describe much about the
perception of phonemes within a language, but the cues often vary with respect to phonetic
context, stress, and speaking rate. Listeners may be born with or develop certain feature
detectors, which could be invoked to classify speech sounds into linguistic categories that
differ by one or more features.

5.3 MODELS OF SPEECH PERCEPTION

Speech perception involves several stages of analysis: auditory, phonetic, phonological,
lexical (word), syntactic, and semantic. These could be viewed as serial processes, in which
the speech signal is transformed at each stage into a more refined representation, eventually
ending with a linguistic message. However, some stages must occur in parallel (perhaps
simultaneously) with feedback, to correct low-level (e.g., phonemic) misinterpretations using
more global (e.g., sentential or contextual) knowledge and also to allow low-level processes
the option of delayed decisions when the signal does not provide sufficient information. The
following sections review common speech perception models.

5.3.1 Categorical Perception

Finding and measuring which acoustic aspects of an auditory signal are relevant for
perceptual discrimination provide a useful characterization of audition (auditory psychophy­
sics). Labeling sound stimuli, on the other hand, as members of a class of linguistically
relevant sounds (e.g., as phonemes) is a concern of auditory psycholinguistics. Categorizing a
sound according to some linguistic criterion that one has learned is a convenient way to
discriminate sounds that resemble speech, but is limited to categories with which the listener
is familiar. One cannot use linguistic knowledge to distinguish two sounds that do not
resemble phonemes, nor two sounds that resemble the same phoneme. In general, acoustic
criteria are used to distinguish sounds, but linguistic knowledge can assist perceptual
resolution when two sounds straddle a linguistic boundary (e.g., when such sounds can be
perceived as having different linguistic features); e.g., a listener can detect a 1Hz difference
between two tones but cannot label or order such tones separately because they have no
linguistic meaning.

Like most physical stimuli, most sounds (including many speech sounds) are perceived
on a continuous scale; i.e., as their physical aspects slowly change, the sounds are gradually
perceived as being different. Certain stimuli appear to be perceived in categorical or
psycholinguistic fashion, where the ability to discriminate two stimuli depends mainly on
the ability to label them as different linguistically [12]. For such sounds, there are ranges
along a physical continuum in which large physical changes yield no perceived difference (all
the stimuli are labeled as identical); in other ranges a small physical change causes a large
perceived difference (a new label). The effect of voice onset time (VOT) on initial stop voicing
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is one example (Section 5.5): for very short or long VaTs, listeners hear voiced or unvoiced
stops, respectively, and are not able to distinguish small changes in VaT. However, at the
boundary (near 30 ms of VaT for English) listeners can detect 10 ms changes because they
result in a labeling change for the stimulus between voiced and unvoiced.

Categorical perception normally presumes that discrimination of stimuli within a
category should be at chance level, i.e., that performance is equivalent to guessing one out
of N trials correct in a forced-choice test with N alternatives. However, well-practiced
subjects usually can distinguish such stimuli above chance level, while exhibiting yet higher
discriminating ability for stimuli straddling the category boundaries. Most evidence in favor
of categorical perception has used the ABX paradigm, in which the listener judges whether
the third (X) of three stimuli presented in sequence is more similar to A or to B. The
phenomenon may be due to categoric memory rather than categorical perception, since the
delay in hearing X after A and B may require short-term memory storage in terms of
categorical features [13]. When subjects rate speech sounds along a continuum, perceptual
resolution is primarily continuous, with perhaps enhanced discriminability between stimuli
across a phoneme boundary.

Rather than preserving many aspects ofA and B in short-term memory, the listener may
simply identify A and B as specific phonemes (where possible) and then recognize X as being
in the phoneme class of A or B. If phoneme decisions are not feasible, perhaps the listener
represents a sound as a set of features, which is simpler to retain in memory than a complex
time-frequency pattern. Enhanced discrimination between sounds near a phonetic boundary
is evidence for phonetic processing of speech. If (more general) psychoacoustic processing
were used in speech perception, discriminability would follow direct acoustic factors,
independent of phonetic categories [14]. Vowels are generally viewed as not subject to
categorical perception [15].

5.3.2 Distinctive Features

A linguistic approach to phoneme classification uses a set of distinctive features.
Rather than consider phonemes as minimal units of language, a small set of orthogonal (often
binary) properties or features can classify both phonemes [16] and other levels of phonology
and phonetics [I 7]. Such features as voiced, labial-alveolar-velar. nasal, fricative, etc., are
based on acoustics and articulation, not on perception. Nonetheless, since phoneme confu­
sions correlate well with these features (e.g., sounds in distorted conditions are more often
confused in proportion to the number of features they share), distinctive features have been
widely used in perception studies. Of particular relevance here are time-varying acoustic cues
during phones that lead to phonemic perception; how such cues relate to the perception of
phonemes and their assigned distinctive features is discussed below.

The role of formants in speech perception has been widely debated. It is clear that (a)
formants are useful in describing the acoustics of speech production, (b) simple formant
information is preserved in auditory neural firing patterns, and (c) formant movements cause
direct perceptual effects. However, formants per se are not necessarily the most important
spectra) cues to speech perception, nor do they provide invariant cues in many phonetic
contexts. Gross spectral shape, rather than formant locations, may furnish better explanations
of perceptual phenomena. There is no evidence that speech perception tracks formants;
indeed, the difficulty of automatic formant tracking [18], even by trained phoneticians using
spectrograms, is evidence that the ear interprets speech in ways other than by simply
following the trajectories of FI-F3. Perceived vowel distance, in tenns of how different
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two vowels sound, does not follow a linear measure of formant separation [19]. It is more
likely that the auditory system does a more general spectral analysis, in which formants play
an important but indirect role in shaping spectra, especially for periods of speech where
formants are not readily distinct (e.g., in voiced-unvoiced transitions). In this view, the
listener recognizes spectral patterns while identifying phoneme sequences or distinctive
features. These patterns can often be efficiently described in terms of formants, but the
specific presence of formant detectors in auditory processing is unlikely.

A similar debate exists over the presence of speech-specific auditory detectors of
phonetic features. Evidence for feature analyzers comes from perceptual confusion studies
[4], cross-adaptation [20], the perception of stimuli with conflicting acoustic cues [21], and
categorical consonant perception [22, 23]. However, these studies merely suggest the
possibility of phonetic feature detectors. Much of the research on selective adaptation (see
Section 5.8) has attempted to prove the existence of feature detectors, yet what those studies
actually show is that certain perceptual contrasts change with fatigue [24]. There is no proof
that speech-specific features exist in the early stages of speech perception, and perception
based on more elementary spectral aspects of speech is a reasonable alternative; e.g., speech
production errors tend to manipulate entire phonemes rather than only component features
[25]. Distinctive features describe well the organization of languages and possible phonetic
contrasts in production and perception, but it is not clear that the features are directly used
either by the speaker at the articulatory level or by the listener at the acoustic level. More
likely are general innate property detectors found in all mammals [26], although there may be
innate linguistic "knowledge" in newborn infants that predisposes humans to language [17].
Infants from many language backgrounds appear to categorize sounds into groups that can be
characterized by distinctive features.

Speech perception is a specialized aspect of the general human ability to seek and
recognize patterns. The processes of speech perception and production are likely to have
evolved in parallel. Sounds easily produced by the vocal tract, capable of consistent
differentiation with minimal effort by the speaker, while presenting at the same time similar
acoustic patterns across different speakers, were likely those sounds chosen for verbal
communication. The capability of the hearing mechanism to consistently perceive and
discriminate these sounds from different speakers must be a dominant factor in language
evolution.

5.3.3 Active Models

Many models of speech perception have been proposed to account for the diverse
results ofexperiments with different methodologies. Listeners use the speech signal to decode
information about the vocal tract configurations and movements that produced the signal [27,
28]. One controversial suggestion is that there is a special speech mode of listening that is
invoked when a listener first hears (or expects to hear) speech [29, 30]; a listener then pays
more attention to speech-specific parameters (e.g., formants) than normally, An alternative
motor theory of perception states that listeners decode incoming speech by unconsciously
producing an internal articulatory version of the speech to compare to the actual speech [29].
This theory presumes a close mapping between phonemes and their corresponding articu­
latory commands, in which invariant patterns could be found for phonemes independent of
context. According to this view, the lack of invariance at the acoustic level is due to
coarticulation and results from overlapping articulatory commands for successive phonemes.
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Electromyographic recordings of articulator muscle activity, however, show that invariance in
motor commands is limited to higher cognitive levels, at best.

In a related theory called analysis by synthesis, the listener unconsciously produces a
"synthetic .... version of the input speech based on a coarse auditory analysis (Figure 5.1). If the
two versions match, the analysis is considered successful; if they do not match, more refined
processing of the input is necessary. Such a dual-process model incorporates both top-down
and bottom-up cognitive processes in speech perception, and hypothesizes that the listener
decodes details about the speech signal only to the extent that he cannot predict them from
context. A highly redundant conversation between friends in a quiet room requires little
acoustic decoding, whereas a chance conversation on a noisy street involving strange dialects
relies heavily on bottom-up acoustic analysis.

Categorical perception is often cited [31] as evidence for a dual-process model of
speech perception, with a bottom-up auditory process and a top-down phonetic process. The
auditory process interprets the speech signal in terms of acoustic features and stores them in
short-term auditory memory; the phonetic process yields phoneme perception based on the
features in auditory memory. The theory holds that sounds that are perceived categorically are
coded in terms of features which disappear rapidly from auditory memory and are recoded
phonetically for the longer term, whereas continuously perceived sounds have more lasting
features in auditory memory. This theory remains controversial [13, 24, 32-34].

Categories are often interpreted via their purported boundaries, i.e., the ability to
distinguish two sounds would depend on whether they lie on opposite sides of a boundary
separating them in some sort of phonetic space. An alternative prototype theory holds that
long-term memory contains speech prototypes and that sounds can be judged on how "good"
they are as category exemplars [35]. (Working memory available for speech understanding
appears to decline with age [36].) A related perceptual magnet effect may occur only in
humans, unlike categorical perception, which humans share with animals; the latter would be

Input speech
Likely future words

Syntax &. Output
semantics

analysis text

Spectrum
II. feature
synthesis

Best word candidates

Figure 5.1 Simplified block diagram of an analysis-by-synthesis model of speech
perception. Memory buffers are represented by circles.
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found in an early auditory processing stage of perception, while humans exploit a later
phonetic stage. (Such an effect may however simply relate to better discrimination across,
rather than within, phonetic categories [37].)

Listeners may recognize words by matching aspects of the acoustic input to patterns
stored in their lexical dictionary [38]. Recognition involves cognitive processes other than
simply matching auditory patterns, however. The listener utilizes context to anticipate future
words. If a word cannot be immediately recognized, the following words often help. This
presumes a short-term acoustic memory (of about 200-300 ms [39]) in which spectral
information about running speech is temporarily stored, perhaps in the form of features
representing a partial decoding of the signal. It is necessary to store phonetic details ofat least
a syllable's duration, since consonant and vowel perception use interdependent, parallel
perception processes that, due to coarticulation, often involve acoustic detail over several
phonemes. Transient acoustic information in this memory may be lost unless it is quickly
recoded into a more compact phonetic form for longer-term memory. The latter memory
(termed a precategorical acoustic store [40]) is useful when a listener must backtrack, i.e.,
after misinterpreting acoustic cues. Experiments examining intelligibility in background noise
suggest that long-term memory has a duration of about seven syllables [41]. (This number of
syllables may be related to a general limitation on memory; psychology tests often show that
only about seven concepts can be retained in memory unless one imposes a cognitive
structure. )

There is evidence that word recognition may not require the identification of individual
phonemes as an intermediate step: (a) listeners have quicker reaction times to words than to
phonemes [42], (b) word onsets can sometimes be identified by allophonic variations
(variants in spectral patterns of a phone depending on context, which still cue the same
phoneme) [43], (c) clicks superimposed on speech tend to be heard at word boundaries [44].
Most word boundaries in fluent speech are not marked acoustically (a glottal stop between a
word ending in a vowel and a word starting with a similar vowel is an exception), and the few
that are marked usually coincide with a syntactic boundary.

For multisyllabic words, perception may involve syllables as intermediate processing
units. Listeners make use ofthe phonological constraints of syllable context in perception. For
example, in consonant clusters within a syllable, only certain sequences of consonants are
permissible: (a) English requires that obstruents within a cluster have common voicing, i.e.,
all voiced or all unvoiced (e.g., "steps," "texts," "dogs"); (b) in initial /s/+stop clusters, the
stop is considered unvoiced (although the VOT is very short); and (c) in final nasal-l-unvoiced
stop clusters, the consonants must have the same place of articulation (e.g., "limp," "lint,"
"link"). Words that violate these and other limitations are judged as nonsense words more
quickly than words that conform. Perception ofwords is easier if they are less confusable with
other words, i.e., words with few neighbors in lexical or phonetic space are easier to identify
[45].

5.3.4 Passive Models

The active models for speech perception assume that perception involves direct access
to speech production processes. Alternative passive models make no reference to articulation
and assume a direct mapping from acoustic features to phonetic categories (see Figure 5.2). A
speech signal (A) is transformed into firing patterns in the auditory nerve (B) and is coded
directly into distinctive auditory features (C), which in tum permit recognition of linguistic
units (D) at the level of phonemes and larger units. The auditory patterns at Care
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subphonemic, i.e., involve features at the level of acoustic events (e.g., stop bursts) and could
deal with identification of periodicity or of speech energy at different frequencies. Any
analysis-by-synthesis is invoked, after the speech has been converted into linguistic units of
phonemes or words (E). In motor theories, speech production is an integral part of perception,
but for passive models production provides a parallel process, which can interact indirectly
with perception through distinctive features (K).

One such model [47] is based on speech recognition systems. Listeners, in decoding
speech into words, may generate lexical hypotheses directly from a spectral representation
without identifying phonetic segments. Acoustic-phonetic knowledge and word-boundary
phonology can be precompiled into a network of spectral templates capable of handling the
listener's entire lexicon. Phonetic segments and phonological rules would assist only in the
network compilation (developed as one learns the language) and not in direct analysis of
speech. Acknowledging that speech perception often involves both top-down cognitive
processes (word hypotheses predicted from syntactic and semantic context) and bottom-up
analyses (identifying words directly from the speech signal), this model [48] concentrates on
bottom-up processes. Listeners' knowledge about phonological phenomena (e.g., coarticula­
tion, palatalization, missing and added segments, etc.) can be precompiled into network form.
Spectral movement between phonemes is coded via diphones, involving transitions between
presumed steady states of successive phonemes. To the extent that phonological phenomena
extend beyond diphones, larger context-sensitive allophones may be necessary [49].

Both active and passive models provide material for interesting speculation about
speech perception, but experiments to critically evaluate models are difficult to design. It is
unlikely that a model with many states and paths would correspond to actual mental processes
during natural speech perception. Many perception theories assume direct relationships (e.g.,
invariant features) between the discrete domain of phonology (e.g., words, syllables,
phonemes) and either (or both) of the physical domains (articulatory and auditory) [23].
The active models assume that simple relationships exist at the gestural level [12, 28] or the
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auditory level [50]. While there is clearer evidence for the importance of auditory objects
(than gestural invariants) in speech perception, ample experimental evidence shows difficul­
ties with any theory that assumes simple phonological relationships [51].

5.4 VOWEL PERCEPTION

The production of steady-state vowels can be described in terms of static vocal tract shapes,
which provide prototype targets when vowels are articulated in words. The perception of
vowels in isolation (without the coarticulation effects of neighboring phones) is based on their
steady-state spectra, usually interpreted in terms of the locations of FI-F3 [52]. For
diphthongs, the endpoint steady states appear to be important [53].

5.4.1 Perceived Formant Location in Synthetic Vowels

A systematic variation ofFI and F2 (following vowel triangle positions) in two-formant
synthetic vowel stimuli can create distinguishable versions of all English vowels (although
including F3 aids in the perception of certain vowels, such as /3-/) (see Figure 3.10). Rear
vowels, having low values for F2 and therefore a concentration of energy below 1kHz, can be
perceived with only one broad low-frequency formant in the FI-F2 region. Front vowels have
so much separation between F1 and F2 as to require two individual resonances in synthetic
stimuli. Multidimensional scaling analyses have shown that F1 and F2 are two good
orthogonal dimensions to separate the vowels, on both perceptual and production grounds
[54].

One way to evaluate the perceptual relevance of spectral peaks is to ask listeners to
move the formant (called F1') in a one-formant synthetic "vowel" so that it sounds similar to a
two-formant (FI and F2) stimulus. They locate FI' about midway between FI and F2 if the
latter are separated by less than 3.0-3.5 bark (1 bark = 1 critical band). (This frequency
distance has been successfully applied to multispeaker vowel recognition [55].) If FI and F2
are more widely separated, Fl' is located close to one of the actual formants [56]. This
suggests a form of spectral integration, where a center-of-gravity of energy concentration
within a range ofa few bark is a prime perceptual correlate. When listeners are asked to adjust
the formant frequencies (FI', F2') of two-formant synthesized vowels to perceptually match
more natural three- and four-formant vowels, they usually locate one formant (Fl') in the
vicinity of FI and place F2' near either F2 or F3, depending on the major concentration of
spectral energy [57]. The exact placement ofF2' appears to be a complicated function ofFI­
F4 locations that involves critical-band spectral resolution of the ear. Such experiments note
the difficulty of extending results obtained with two-formant stimuli to normal speech
perception, even though virtually all vowels can be identified based on their F I-F2 alone.

5.4.2 Context Normalization

A specific set of formants in a synthetic vowel does not guarantee unambiguous
phoneme perception. Listeners, familiar with the speech of many talkers, have expectations
about FO and formants. High-pitched vowels are presumed to come from female (or child)
vocal tracts [58, 59], which are shorter than adult male vocal tracts and thus have higher
formant frequencies. When one hears a voice with an FO of 100 Hz, one expects it to have
formants spaced roughly every 1kHz [60]. With an FO of 200 Hz, one expects formants
shifted up 10-15%, corresponding to typical female voices. As a result, two vowels with the
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same formants may be perceived as closely related but distinct phonemes if FO is sufficiently
different in each. The perceptual shift due to FO is similar to the types of errors found in
normal vowel perception: confusions between vowels with similar formants, e.g., between III
and Iii. (Issues of speaker recognition will be addressed in Chapter 11; we know relatively
little about how individual voices are represented in perception and memory [61, 62].)

The mapping from phones (with their varied acoustic correlates) to individual
phonemes at the phonological level is likely to be accomplished by analyzing auditory
patterns over sections of speech corresponding roughly to syllables. Since the same phoneme
produced by different vocal tracts yields different spectral patterns and formant frequencies,
speech perception must use some form of normalization, by which different acoustic
realizations are interpreted as the same phonetic unit [63]. A linear scaling of formant
frequencies with (perceived) vocal tract length provides a reasonable first-order approxima­
tion, but is not fully adequate because different-sized vocal tracts are not simply scaled
versions of one another. (For example, the ratio of male to female vocal tract dimensions is
greater for the pharynx than the oral cavity: a typical adult female has a pharynx 2 em shorter
than a male's, but the female's oral cavity is only 1.25 em shorter.) Listeners are likely to
interpret acoustic patterns based on preliminary assumptions (e.g., visual cues of the speaker,
when available) and on an analysis of the initial speech from the speaker (e.g., the point
vowels li,~,ul may provide a reference formant space to infer the acoustic patterns of other
phonemes). Formant normalization may be an automatic process, involving cues of both FO
and formant spacing [64, 65]. F3 and higher formants are relatively constant for a given
speaker and may provide a reference to evaluate the variations in F I-F2. However, there is
sufficient information in the spectra of very short vowel segments to uniquely identify them
with little context needed [66].

5.4.3 Coarticulation Effects

When vowels are produced in typical contexts (i.e., not in isolation), they coarticulate
with adjacent sounds. Formants undershoot their "targets" and are otherwise modified by the
phonemic context. Perception of such vowels seems to depend on a complex auditory analysis
of the formant movements before, during, and after the vowel. In eve (consonant-vowel­
consonant) syllables, if the middle 50-650/0 of the vowel is excised and played to listeners,
they perform worse in phoneme identification than if the Cv and ve transitions (containing
the other 35-50% of the vowel) are heard instead [67]. Short portions of the CV and ve
transitions often permit identification of the vowel when a large part of the vowel is removed
[68, 69]. The importance of spectral transitions in coarticulated vowel perception is clear, but
it is uncertain how listeners utilize the spectral information [70].

Given that vowel formants are modified in consonantal context, it might be expected
that vowels are less well identified in a eve context. Such is usually found with synthetic
stimuli [71], but naturally produced vowels in certain contexts are identified more accurately
than in isolation, even in multispeaker experiments [72]. It appears that vowels in continuous
speech are specified by dynamic acoustic parameters and that these spectral patterns over the
course of a syllable are used in vowel perception.

"Target" theories of vowel perception hold that the essential cues reside in an
asymptotic spectrum approached toward the middle of the vowel, while other theories
focus attention on the whole complex of acoustic events in the transitions. Initial ev and
final VC transitions specify formant trajectories whose asymptotes approximately correspond
(perhaps after a transformation to compensate for undershoot) to static vowel targets [29].



152 Chapter 5 • Speech Perception

While spectra dominate in vowel perception, temporal factors also affect phoneme identifica­
tion; e.g., lax and tense vowels, respectively, tend to be heard with slow and fast formant
transitions. Indeed, speech is perceived well when temporal envelope information is
preserved, while spectral detail is replaced by a few broad bands of noise [73].

Formant transitions, in addition to helping cue phoneme identification, aid in auditory
stream integration or continuity [74]. Synthetic speech without such transitions, linking
vowels with low-frequency energy to high-frequency fricatives and noise bursts, tends to be
perceived as two separate sound streams. Inadequate modeling of formant transitions may
lead to fricatives being heard as isolated hisses superimposed on the rest of the synthetic
speech.

5.5 CONSONANT PERCEPTION

Consonants are traditionally classified by the features of voicing and manner and place of
articulation. Perception of manner is related to gross spectral distribution of speech energy
and to periodicity, while cues for place pertain to finer aspects of the spectrum. Consonant
voicing is simply related to periodicity for fricatives, but has several interrelated cues for
stops. Among the distinctive features, those dealing with manner of articulation are the
simplest to explain. The voicing and place of articulation features, on the other hand, involve
complex interactions of several acoustic cues and continue to be researched.

5.5.1 Perception of the Manner of Articulation Feature

Manner perception concerns acoustic cues that permit the listener to classify speech
into the following categories: vowels (including liquids), glides, nasals, stops, and fricatives.
A vowel is heard when the sound is periodic with sufficient amplitude and duration and a
strong formant structure (i.e., the lower formants excited with relatively narrow bandwidths).
Glides can usually be distinguished from vowels through weaker amplitude, briefer durations,
and a greater tendency toward dynamic spectral patterns. Nasals can be distinguished from
vowels by their weaker amplitude, wider bandwidths, and higher concentration of energy at
low frequencies. Stops are heard when a period of silence interrupts the speech signal,
especially when followed by a short burst of noise. Sounds with high-frequency noise of
sufficient duration are perceived as fricatives. The crucial cues that separate these manner
classes involve amplitude, duration, general formant structure, and the balance between low­
frequency voiced energy and high-frequency frication. Whether a sound is harmonically
structured with no noise (vowels, glides, and nasals) or it has an aperiodic component (stops
and fricatives) is the basic manner cue.

The most common confusions due to perceptual errors in manner of articulation involve
the nonstrident voiced fricatives [v .Bland voiced stops (especially jbI) and to a lesser extent
their unvoiced counterparts (If, e, p/) [4]. The nonstrident fricatives are sufficiently weak that
they are often hard to distinguish from a stop, especially a labial stop, which is usually weakly
released and has formant transitions similar to those of the labial and dental fricatives.

5.5.1.1 Glides. Each consonant involves a constriction in the vocal tract. The timing
of transitions to and from such a constriction influences consonant perception; e.g., when
steady formants are preceded by linearly rising formants, one hears Ibl if the transition is
short and jwl if more than 40ms [75]. With very long transitions (>lOOms), a sequence of
vowels is heard, the first being lui. In all cases, an initial low formant pattern signals labial
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articulation, but the transition duration specifies the manner feature. When falling formants
are used, [g]; Ij/, and Iii are successively heard as the transition duration increases (Figure
5.3). When the transition is rapid, a (prior) stop is detected; further lengthening of the
transition approaches the more gradual articulation of glides. Extending the transition of a
glide beyond its normal value leads to the perception of two vowels. The amplitude envelope
(rapid rise for stops, gradual rise for glides) is also a critical acoustic property for the contrast
of continuant (glide) vs noncontinuant (stop) [76].

The glides /i.w] can be reasonably approximated with only two formants since their
spectra are quite similar to the vowels li,u/, respectively. The liquids II,r/, however, require a
third formant to be perceived: a low F3 for the retroflex If/and a high F3 for the lateral /1/.

5.5.1.2 Nasality feature. Acoustic cues for the perception of nasal consonants
include abruptly lower intensity (compared to vowels) and an additional, distinctive low­
frequency resonance (the nasal murmur) at about 250 Hz. Acceptable nasals can be
synthesized with the murmur extending (via coarticulation) into adjacent sonorants by
about 50 ms. Often the murmur is accompanied by a spectral zero between it and F 1, with
about 100 Hz separating the nasal pole and zero [77]. Wide bandwidths and a relative lack of
energy at high frequencies also contribute to the perception of nasality. In vowel+nasal
sequences, the vowel becomes gradually nasalized as the nasal approaches, with widening
bandwidths and the introduction of antiresonances. Nasality is especially strongly perceived
in response to a wider and weaker first formant (relative to oral vowels).

Due to the multiplicity of cues to nasality [78], some perceptual studies have used
articulatory synthesizers, which directly model the lowering of the velum. The amount of
acoustic coupling of the nasal tract to the oral tract governs nasality but results in diverse
acoustic cues that are difficult to specify in a formant-based synthesizer. For example,
listeners compensate for ensuing vowel height when perceiving nasality (e.g., whether the
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consonant in a CV stimulus was /d/ or /n/) [79]; this follows production phenomena in
which velum height is proportional to vowel height (i.e., more nasal coupling for lower
vowels). Among English listeners, nasality is perceived categorically with consonants, but not
with vowels; Hindi listeners exhibit categorical perception in vowels as well [80]. (Hindi, like
French and unlike English, uses nasality in vowels phonemically.)

5.5.2 Perception of Place of Articulation of Consonants

Acoustic cues to the perception of consonant place reside primarily in the spectral
transitions between the consonant and adjacent phones. For continuants, the steady-state
consonant spectrum is also of major importance. For example, distinguishing among the
fricatives is mostly based on the amplitude and spectrum of the frication noise [81]. Strong
amplitude indicates a rear place (e.g., Is,SI), while weak frication signals a forward place
(e.g., If,OI). The cutoff frequency for the high-frequency frication energy distinguishes
alveolar and palatal fricatives: energy at a lower frequency cues the palatal.

Steady-state spectra are also primary cues for distinguishing among II,r, w,j/; e.g., in
syllable-initial position, Irl and IwI can be distinguished by the separation of F2 and F3
(/wI having the wider spacing) [82]. However, for stops and the forward fricatives, spectral
transitions are more reliable cues to place perception [83]. In prevocalic stops: (1) velar bursts
are more effective at signaling place than other bursts, (2) formant transitions for Ibl are
better than for Id/, (3) the burst dominates before front vowels, while transitions are more
important before other vowels, (4) unvoiced bursts are more important than voiced ones, (5)
transitions are more useful than gross cues (e.g., spectral tilt) [84]. Weak continuant
consonants are primarily distinguished by spectral transitions at phoneme boundaries, but
the nasal murmur contributes as well to place perception in nasals [85]. The liquids /I,rl are
distinguished through F3 position and the abruptness of F1 motion (the tongue-palate contact
in III leads to abrupt formant motion, especially at release) [86].

Like most phonetic distinctions, place perception involves multiple acoustic cues.
Articulatory adjustments necessary to change perception from one phonetic category to
another cause changes along several acoustic dimensions (e.g, spectrum, duration, amplitude,
FO) [87]. Perceiving a change of phonetic category may be the net effect of several acoustic
cues. Individual cues can be ranked according to their perceptual effect, when the other cues
are kept constant. Primary cues provide the dominant perceptual effects, causing a phonetic
effect even in the presence of conflicting secondary cues. The latter can cause the same
phonetic percept as primary cues, but only when the primary cues cooperate or are
ambiguous. Trading relationships among cues can be quantified by varying the cues in
synthetic speech in opposite directions so that their perceptual effects cancel; e.g., sufficient
variation in one acoustic cue may cause a change in phonemic perception, but then a change
in another cue restores the original phoneme. Some view this as evidence that different
acoustic cues can act as independent phonetic carriers of information [31], while others
explain it on psychoacoustic grounds [14].

5.5.2.1 Stop-s-vowel stimuli. In the case of unreleased plosives in VC (vowel+conso­
nsonant) syllables, spectral transitions provide the sole place cues. For released plosives in
CV syllables, the situation is more complex since place cues occur in: the spectrum of the
burst release and during the ensuing aspiration period, and (if followed by a voiced phoneme)
the aspiration duration, as well as in spectral transitions during adjacent phones. Early
research [7] found evidence of a starting locus of F2 for each of Ib,d,gl in the perception of
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two-formant CV stimuli. With Fl having a 50ms rising transition (typical of all voiced stops),
if F2 started at 1.8 kHz, /d/ was heard, whereas an initial 720 Hz caused /b/ perception. A
3 kHz start yielded /g/ for most ensuing vowels, but for high and mid-rear vowels, a much
lower locus was necessary. In general, one can say that rising F2 indicates a labial stop,
relatively flat F2 tends to be heard as alveolar, and a falling F2 yields velar perception. In all
cases, it is necessary, however, to eliminate the first 50 ms of the F2 transition (so that the
transition "points to" the locus rather than actually starting there); otherwise different stops
are heard (Figure 5.4).

Another early study used steady-state two-formant stimuli (representing vowels)
preceded by a brief narrowband noise burst at various frequencies. Figure 5.5 shows that
listeners heard /t/ with high-frequency bursts and /p/ with low-frequency bursts. In a large
mid-frequency region (720-2880 Hz), however, place perception involved an interaction of
burst frequency with the ensuing vowel formant frequencies. When the burst was at or just
above the ensuing F2, listeners heard /k/; otherwise, a /p/ tended to be heard.

The extension of these results to natural speech (with more than two formants) is
unclear. Many two-formant CV stimuli lack naturalness and provide listeners with ambiguous
phonetic cues. For CV stimuli from natural speech, stop bursts and ensuing formant
transitions may have equivalent perceptual weight and act in complementary fashion
depending on context [88]. When formant transitions are brief, due to short articulator
movements (e.g., with a lingual stop followed by a high vowel) or to anticipatory coarticula­
tion (e.g., labial stop before a rounded vowel), the release burst lies near the major spectral
peak of the following vowel and contributes significantly to place perception. Conversely,
when formant transitions are extensive, the burst is distinct from the vowel spectral peaks, and
the formant transitions are more important for stop place perception. In VCV stimuli, the CV
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transition dominates place perception; i.e., if the VC and CV transitions provide conflicting
place cues, listeners perceive place according to the CV transition [89].

Finally, although the primary cues to place are spectral, VOT and amplitude also playa
role. When F2 and F3 transitions give ambiguous cues in synthetic CV stimuli, VOT duration
can distinguish labial from alveolar stops [90]. Changes in spectrum amplitude at high
frequencies (F4 and higher formants) can reliably separate labial and alveolar stops: when
high-frequency amplitude is lower at stop release than in the ensuing vowel, labials are
perceived [91]. In general, more intense release bursts lead to perception of alveolars rather
than labials [92].

5.5.2.2 Static onset vs dynamic spectral transitions. Certain aspects of spectral
patterns of releases in voiced stops appear to distinguish place of articulation. The
concentration or spread of energy (diffuse vs compact) and whether the main spectra) trend
is rising, flat, or falling with frequency have been suggested as crucial spectral cues [22, 23,
93]. Manipulating burst spectra and initial formant frequencies in synthetic CV stimuli led to
unambiguous place identification when the onset spectrum was either diffuse-falling (/b/),
diffuse-rising (/d/), or compact (/g/) (see Figure 3.38). Stimuli with spectra not fitting any of
the three categories yielded equivocal responses from listeners. When the stimuli were
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truncated to 10-46 ms versions of the original CV syllables (starting at stop release), place
identification was good, even when the noise burst was eliminated and when the second and
higher formants held steady.

Thus the gross properties of the spectrum during the initial 10-20 ms of a stop
consonant provide important cues to place perception. When the initial spectrum is
ambiguous (e.g., diffuse but flat), listeners apparently utilize formant transitions to distinguish
place. Such transitions temporally link the primary place cues in the stop release to the slowly
varying vowel spectrum, with no abrupt spectral discontinuities after the stop release. In this
view, the formant patterns act as secondary cues, which are invoked when the primary cues of
the release spectrum are ambiguous.

The performance of this model was evaluated by comparing listeners' judgments of
place in isolated CV syllables with the model's predictions based on the initial CV spectra.
The model achieved 85% accuracy for CV syllables, but only 760/0 for yes; furthermore,
nasal consonants performed more poorly. One problem with this model is that the proposed
templates involve fixed loci, which is at variance with earlier experiments [7]. The templates
emphasize static acoustic features rather than dynamic ones, and much other evidence points
to the relevance of spectral changes [94]. Dynamic aspects of the CVover the initial 40 ms are
likely crucial for stop perception [95]. For example, velar stops are poorly identified (730/0) on
a basis of only the first 20 ms of natural CV stimuli, and when stimuli contain cues conflicting
between onset spectra and formant transitions, listeners apparently rely more on the dynamic
cues [96]. The relevant cues may not reside in the formant transitions per se, but in other time­
dependent spectral features, e.g., VOT, spectral tilt, presence of mid-frequency spectral peaks,
abruptness of energy onset at high frequencies, and onset of a prominent low-frequency peak
[97]. Labial and alveolar/ dental stops can be distinguished by a metric involving relative
change in energy at high and low frequencies between burst and voice onset: the labials show
equal or less change at low frequencies than at high frequencies [98]. Formant transitions,
however, seem to be the most important cues for stop place perception [99], e.g., locus
equations (straight-line regression fits to critical points in formant transitions) [100].

5.5.2.3 Interaction of cues. Perception of place of articulation and other consonant
features are interdependent. In synthetic voiced stops and nasals, place can be reliably cued by
F2-F3 transitions, but the boundaries on formant continua between labials and alveolars are
not the same for stops as for nasals [101]. The same holds for voiced stops and weak voiced
fricatives [102]. Such interactions between place and manner perception appear to occur at
the phonetic (and not auditory) level since place boundary shifts can occur with identical
acoustic stimuli perceived differently as to manner (due to ambiguous manner cues) [103].
One possibility to explain the shift in the case of stops and fricatives is that slightly different
places of articulation are involved: Ibl is a bilabial with an extreme forward place of
articulation and Idl has a constriction farther to the rear than either IfI or I (}I, which have
intermediate constriction points. Thus the perceptual boundary along an acoustic continuum
of F2 and F3 'is likely to be different for stops and fricatives.

Coarticulation appears to affect perception in various ways. Normally the distinction
between lsi and / fI follows the steady-state frication energy: energy at lower-frequency cues
If /. (Since these fricatives differ only in the place feature, discriminating between the two is
done by place perception.) Formant transitions to and from the fricative provide secondary
cues, due to the coarticulation of the fricative with adjacent phonemes. When a fricative with
spectrum ambiguous between lsi and I fI is followed by a rounded vowel or an unrounded
vowel, listeners tend to hear lsi or IJI, respectively [104]. The effect occurs with synthetic
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stimuli and also when naturally spoken phonemes are concatenated with synthetic ones.
Similar perceptual shifts along stop continua occur when a stop ambiguous between ItI and
Ikl is preceded by either Is/ or IJI [105] and when a stop ambiguous between Idl and Igl is
preceded by III or [tI [106]. These effects exhibit a form ofperceptual compensation for the
presumed coarticulation that occurs in natural speech production. For example, in the context
of a rounded vowel, natural fricative spectra are shifted lower, and listeners expect to hear
lower-frequency energy in a fricative adjacent to a rounded vowel; thus they shift their
perceptual boundary so as to hear lsi with more low-frequency energy than occurs next to an
unrounded vowel. The fricative-vowel effect shrinks in proportion to the temporal separation
between frication offset and ensuing vowel onset and also varies with the presumed sex of the
synthetic voice, both of which imply that listeners use tacit knowledge of speech production
during speech perception. These phenomena could be due to auditory contrast or nonsimul­
taneous masking, but a phonetic interpretation is more likely, in which the listener integrates
disparate acoustic cues (frication noise and formant transitions) in phoneme identification.

5.5.3 Perception of Voicing in Obstruents

The linguistic feature voiced is used to distinguish the voiced class of obstruents
Ib,d,g,v,o,z,31 from the unvoiced class Ip,t,k,f,o,s,fl. For obstruents, voiced does not
simply mean "having vocal cord vibration." Phonemic perception of the voiced/unvoiced
distinction in stops and fricatives is correlated with a diverse set of acoustic properties.
Fricatives provide the simpler case, with voicing usually perceived when the speech signal is
periodic during the steady portion of the fricative. If vocal cord vibration produces enough
energy at the fundamental and low harmonics (the voice bar on spectrograms), voiced
fricatives are heard, at least for syllable-initial fricatives. Voicing perception in syllable-final
fricatives (which have weaker periodicity) involves multiple cues; e.g., the duration of
frication affects its voicing perception: shorter fricatives tend to be heard as voiced, and vice
versa [107].

5.5.3.1 Syllable-final obstruents. One voicing cue for both stops and fricatives in
syllable-final position is the duration of the preceding vowel. Given that many syllable-final
"voiced" obstruents have little vocal cord vibration, the primary cues may be durational:
voicing is perceived more often when the prior vowel is long and has a higher durational
proportion of formant steady state to final formant transition [108]. The ratio of vowel
duration to consonant duration in ves has also been proposed to distinguish final consonant
voicing since final voiced obstruents tend to be shorter than unvoiced counterparts; however,
the data favor consonant and vowel durations as independent voicing cues [109]. It is not the
physical duration of a preceding vowel that determines consonant voicing, but rather its
perceived length; e.g., equal-duration vowels are perceived to be longer when FO varies rather
than remains monotonic [110]. Thus, with VC durations ambiguous as to consonant voicing,
voiced identifications increase with FO variation during a synthesized vowel [111]. Because
FO patterns do not vary consistently before voiced and unvoiced stops, caution must be used
in generalizing this last result (and others) to natural speech.

English stop voicing perception is complex, in part because most voiced stops consist
primarily of silence during the closure interval, with the voice bar much less in evidence than
in other languages. Therefore, the obvious cue of vocal cord vibration is less available to
distinguish stop voicing. However, even in other languages where voiced stops are truly
"voiced" (vocal cord vibration throughout the oral closure), the situation remains far from
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simple. In French vowel-l-stop sequences, the duration of the closure, the duration and
intensity of voicing, and the intensity of the release burst, as well as the preceding vowel
duration, all affect voicing perception [112].

While most English voiced stops show little periodic structure, in VC contexts the
glottal vibration in the vowel usually continues into the initial part of a voiced stop, whereas
voicing terminates abruptly with oral tract closure in unvoiced stops. This difference in voice
offset timing appears to be a primary cue to voicing perception in final English stops [I 13].
When a naturally produced syllable ending in a voiced stop has enough "voicing" removed
(by substituting silence for periods of the speech signal) around the VC boundary, the
corresponding unvoiced stop is heard. Since removing glottal periods from the vowel
effectively lowers the durational V: C ratio, such an effect cannot be due to the primary
cue of duration noted above. Rather, acoustic analyses of the stimuli reveal that unvoiced
stops tend to be heard with high F I offset frequencies and short amplitude-decay times,
suggesting rate of voicing offset as the crucial cue.

5.5.3.2 Syllable-initial stops. Voicing in syllable-initial stops involves interactions
between temporal factors (VaT and the timing of the Fl transition) and spectral aspects
(intensity and shape of the FI transition). It has been argued [114] that the diverse acoustic
cues available for voicing perception in stops are all due to laryngeal timing with respect to
the oral tract closure and that the listener integrates the varied acoustic cues into one voicing
decision, based on the implicit knowledge that they arise from a common articulatory source ..
The primary cue seems to be VaT: a rapid voicing onset after stop release leads to voiced stop
perception, while a long VaT cues an unvoiced stop. Along a continuum of VOT, the voiced­
unvoiced boundary is near 30 ms, with shifts of about 5-10 ms lower or higher for labial or
velar stops, respectively [101]. Thus perception appears to compensate for production: in
natural speech, VOT decreases with the advancement of place of articulation, and in
perception longer VOTs are needed to hear an unvoiced stop as the constriction moves
farther back.

A secondary cue to initial stop voicing is the value of F I at voicing onset [115]: lower
values cue voiced stops. This again follows speech production since F 1 rises in CV transitions
as the oral cavity opens from stop constriction to vowel articulation. Thus, F 1 rises during the
aspiration period and is higher at voicing onset after longer VOTs. The duration and extent of
the F 1 transition significantly affect stop voicing perception [116], whereas the behavior of
the higher formants has little effect. Natural stop--vowel sequences do not always have a clear
boundary between the end of aspiration and the onset of voicing (e.g., voicing often starts in
F1 while higher formants still have aperiodic structure). Confining periodic energy to the
fundamental for the first 30 ms of voicing has little effect on perceived stop voicing, but more
voiced stops are heard if voicing starts simultaneously in all formants (rather than just in F1)
[117].

A third cue to stop voicing is aspiration intensity. The perceptual salience of vaT may
not reside in duration but in integration of aspiration energy. Listeners may utilize VOT
differences as voicing cues, not in terms of timing judgments but rather via detection of
presence vs absence of aperiodic aspiration [33]. Many psychoacoustic experiments note the
salience of energy integrated over time; e.g., equally loud stimuli can trade duration for
amplitude, with integrated energy being the perceptually relevant parameter. Thus, listeners
may judge a stop to be unvoiced if they hear enough aspiration after stop release rather than
using direct temporal cues.
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Finally, when the primary acoustic cues to voicing are ambiguous, spectra and FO can
affect voicing perception in CV sequences [90]. Recall that, when an obstruent is released
into a vowel, FO starts relatively high if the consonant is unvoiced, and low if voiced. When
VOT is ambiguous as to voicing in synthetic stimuli, rising FO at stop release cues stop
voicing, and falling FO signals an unvoiced stop [118]. However, the FO cue is easily
overridden by VOT in normal circumstances.

The secondary voicing cues trade with VOT; e.g., changes in FI onset values can shift
the voiced-unvoiced boundary along a VOT continuum. Before open vowels, a 1 Hz change
in F1 onset is perceptually equivalent to a 0.11 ms change in VOT [119]. Similarly, a VOT
decrease of 0.43 ms is equivalent to a 1dB increase in aspiration intensity [120]. This sensory
integration of spectral and temporal cues to make phonetic decisions does not appear to be
restricted to speech sounds [121].

5.6 DURATION AS A PHONEMIC CUE

Hearing utterances of syllables in isolation, listeners can distinguish phonemes with very
short stimuli. If normal isolated vowels are cut back so that only the first few periods are
presented, listeners can identify (above chance levels) tongue advancement and height
features based on the first 10ms alone, but they need 30 ms to distinguish the tense-lax
feature [122]. The stop place of articulation in CVs can be identified based on the first 10ms
after release, but the voicing feature requires about 22 ms (voicing in velar stops requires the
longest duration, 29 ms). It appears that longer portions of the stimuli are needed to
discriminate certain phonemes, namely those whose distinguishing features involve timing
as well as spectra: duration is crucial for the tense-lax vowel distinction and voicing in stops
(VOT), but tongue advancement (place of articulation) and height can be specified by the
spectra of the first 10ms. Trading relationships may exist in durational perception at other
levels [123].

5.6.1 Manner Cues

Unlike some languages (e.g., Swedish and Japanese), English does not use duration
directly as a phonemic cue, in the sense that phonemes differ only by duration and not
spectrally. Nonetheless, with synthetic speech, duration alone can cause phonemic distinc­
tions, which suggests that duration can be a secondary phonemic cue utilized when a primary
cue is ambiguous; e.g., in the word rabid, the fbi closure duration is normally short; if the
closure is artificially prolonged, rapid is heard. The tendency for unvoiced sounds to be
longer than voiced sounds apparently affects perception. Since the stop follows the stressed
vowel here, VOT is a reduced voicing cue, being short in both voiced and unvoiced cases.
Thus, the cues for voicing may be found in the durational balance between the stop and the
preceding vowel [124].

Similarly, when enough silence is added after lsi in slit, it sounds like split. In normal
/spf clusters, the /p/ release is weak; thus the lack of a burst (in the extended version of s_lit)
is insufficient to deter the perception of a stop. Normally a short, silent interval (about 10 ms)
intervenes between the cessation of frication in a fricative+sonorant cluster and the onset of
voicing. When this duration exceeds about 70 ms, the listener apparently decides that the
interval is too long for a transition between phonemes and must itself be a stop phoneme.
Silence duration interacts in a trading relation with spectral cues in signaling the presence of a
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stop here. The amount of duration necessary to hear a stop is greater if the formant transitions
are more appropriate for slit than for split (conflicting cues) [125]. Stop duration also trades
with (a) burst amplitude and duration in say-stay continua (e.g., stay is heard with a very
short stop closure if the stop release burst is strong enough) [126] and (b) glottal pulsing in
the perception of voicing in stops [127].

5.6.2 Place Cues

An apparent secondary cue for place perception in stop consonants in stressed ev
contexts is the duration of VOT. Due to coarticulation, labial stops have the shortest VOTs,
while velar stops have the longest, with bigger differences (of about 40 ms) occurring in
unvoiced stops. Labial stops permit tongue movement in anticipation of the ensuing vowel,
which allows more rapid voicing onset since the vocal tract attains a proper vowel
configuration more rapidly than for alveolars or velars. The velars have the longest VOTs,
presumably because the tongue body moves slowly (compared to the tongue tip, used in
alveolars) and because the tongue body usually must move for an ensuing vowel.

Place perception in stops is affected not only by the duration ofVOT but also by closure
duration in some cases. Stop closures tend to be longer for labials than for alveolars or velars,
and the listener's tacit knowledge of this production fact appears to affect perception: longer
stops are biased toward labial perception [92]. As another example, if a silence interval of
100-200 ms occurs between two synthetic vowels and formant transitions are ambiguous as to
place, listeners tend to hear two separate stops (i.e., VeeV) [128]. If the initial ve transition
specifies one stop, an ambiguous CV transition is perceived as a different stop, presumably
because the listener expects two different stop consonants with a silence interval of sufficient
duration between two vowels. If the silence interval is short (~25 ms), the CV transition
dominates in place perception of one stop [129]. If the silence is greater than 200 ms, a pause
instead tends to be perceived.

5.6.3 Speaking Rate Effects

In virtually all situations where duration can function as a phonemic cue, its effect is
relative to speaking rate [10, 130]. Segment durations both before and after a given phoneme
affect that phoneme's recognition when duration is a critical identification cue [131]. For
example, with an acoustic continuum Ibal- Iwal where the duration of the initial formant
transitions cues the manner of articulation, longer transitions are needed to hear Iwal as the
syllable is lengthened [132]. As syllable duration is increased from 80 to 300 ms, the Ibl - IwI
boundary increases from transitions of 28 ms to 44 ms. Listeners apparently judge the
abruptness of the transition in relation to speaking rate or syllable duration, assuming
slower average transitions with slower speaking rates. The effect is nonlinear, most likely
because duration is not the only cue to phonemic identity and because rate changes do not
affect all speech events equally. The effect also appears to be local; i.e., the durations of
adjacent phonemes have much more perceptual effect than phonemes more distant [133].
Finally, the effect tends to shrink under conditions closely approximating natural speech [134].

Coarticulation and formant undershoot are dependent on timing, with the percentage of
time that vowels have steady-state formants decreasing as speaking rate increases. Listeners
apparently compensate for coarticulation in interpreting different formant patterns in eve
contexts (with different consonants) as the same vowel. They also seem to compensate for
speaking rate since identical syllables preceded by syllables spoken at different rates cause
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varying vowel perception [135, 136]. In hearing a syllable excised from a sentence, listeners
assume the syllable was spoken in isolation with relatively long duration and little presumed
formant undershoot, and thus they tend to misidentify the vowel. If the syllable is placed in a
context where the speaking rate is different from the original utterance, listeners interpret the
inserted syllable accordingly, judging the vowel duration and amount of formant undershoot
in proportion to what would normally occur at the new speaking rate. Since duration is a
secondary cue to vowel perception (i.e., some vowels with ambiguous formant cues are heard
as tense if long and lax if short [136]), it is not clear whether listeners normalize vowel
perception based on anticipated duration or formant undershoot.

Similar speaking rate effects occur in consonant perception. If the closure duration of
/p/ in topic is lengthened, listeners hear top pick, but the boundary threshold is a function of
the contextual speaking rate. At faster rates, a given rendition is more likely heard as top pick
[137]. Similar results occur for slit-split [133]. The VOT boundary for voicing perception in
stop-l-vowel syllables can be shifted by up to 20 ms through manipulations of speaking rate
[138]; similar effects occur with the duration of the burst release [139]. Voicing perception is
most affected by the durations of the immediately adjacent context of the stop and can be
cued equally through the steady-state durations of neighboring vowels or the durations of
consonant transitions [138]. Furthermore, the effect of preceding context decreases as a
function of the duration of any silence gap that occurs just prior to the stop. Finally, the
phonemic effect of speaking rate is primarily due to the articulation rate (syllables per second)
rather than the proportion of time spent in pauses, even though both factors contribute to the
overall perception of speaking rate [132].

Compensations for speaking rate are not always straightforward. The distinction
between fricative and affricate (e.g., shop, chop) is cued by the duration of frication, the
duration of any preceding silence, and onset characteristics of the noise [32]. A normal
trading relationship is found between the duration ofsilence and frication: long frication tends
to cue a fricative, while long silence cues an affricate [140]. When contextual speaking rate is
varied, however, more silence is needed to hear the affricate at faster rates. One possible
explanation is that, as speaking rate changes, frication duration normally changes more than
silence duration, and the listener perceptually compensates for the overall effect of rate and
also uses inherent knowledge of which acoustic segments vary more or less with rate changes.
Silence duration may be perceived differently when cueing a manner distinction rather than a
voicing distinction.

5.7 INTONATION: PERCEPTION OF PROSODY

Thus far this chapter has concentrated on how listeners perceive and discriminate individual
sounds. Another important aspect of speech perception concerns prosody, whose domain of
variation extends beyond the phoneme into units of syllables, words, phrases, and sentences.
The perception of rhythm, intonation, and stress patterns helps the listener understand the
speech message by pointing out important words and by cueing logical breaks in the flow of
an utterance. The basic functions of prosody are to segment and to highlight. Cues in rhythm
and intonation patterns notify the listener of major syntactic boundaries, which help one to
mentally process speech units smaller than the entire sentence. The alternation of stressed and
unstressed syllables identifies the words that the speaker considers important to understand
the speech message and also helps in word comprehension (via placement of lexical stress).

Besides segmenting utterances, prosody signals other aspects of syntactic structure. In
many languages, a question requesting a yes/no answer from a listener ends with an
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intonation rise. There are usually cues in the choice of words or word order that also signal
that the utterance is a question (e.g., subject-verb inversion: "Has Joe studied?"). However,
sometimes the only cue lies in the intonation (e.g., "Joe has studied?"). Intonation can also
signal whether (a) a clause is main or subordinate, (b) a word functions as a vocative or an
appositive, (c) the utterance (or a list of words) is finished.

While prosody usually helps a listener segment utterances perceptually, it can also serve
as a continuity guide in noisy environments. This prosodic continuity function is very useful
when there are several competing voices and the listener attempts to follow a specific voice.
Experiments with two equal-amplitude voices have shown that listeners use intonation
continuity and separation of pitch to follow one voice [141]. Even if two voices are presented
binaurally through earphones and periodically switched between ears, listeners find it easiest
to concentrate on one voice if its FO range differs from the other voice and if the FO contour is
reasonably smooth (especially at the times when the voices switch between ears). Aspects of
phase also seem to playa role in identifying simultaneous vowels [59].

Prosody also provides cues to the state of the speaker; attitudes and emotions are
primarily signaled through intonation. FO and amplitude patterns vary with emotions [142],
emotions often raise FO and amplitude levels and their variability [143, 144], increased FO
range sounds more "benevolent" [145], and emotions (e.g., anger, sorrow, and fear) cause
changes in FO., timing, articulation precision, average speech spectrum, and waveform
regularity of successive pitch periods [146, 147].

Prosody is so important to normal speech perception that communication can occur
even with severely distorted segmentals [148]: if speech is spectrally rotated so that high­
frequency energy appears at low frequency and vice versa, segmental information is
effectively destroyed. Nonetheless, subjects can converse under such conditions by exploiting
the preserved aspects of FO, duration, and amplitude.

5.7.1 Stress: Lexical and Sentential

There are two levels of stress in speech: lexical (word) stress, and sentential (phrase)
stress. At the word level, one syllable in each word is inherently marked to receive stress, but
only certain of these syllables in each utterance (i.e., those in words with sentential stress)
actually receive prosodic variations that perceptually cue stress. In many languages, one
syllable in each polysyllabic word pronounced in isolation receives more emphasis than the
others; this syllable is considered to be lexically stressed (e.g., "computer"). (For long words,
there may also be another stressed syllable with secondary stress.) The correct lexical stress
pattern is as important to the identification of a spoken word as the use of the proper sequence
of phonemes. A speaker with a foreign accent often misplaces lexical stress, which may make
words with the same sequence of phonemes sound entirely alien to native listeners. In some
languages, lexical stress is completely predictable; e.g., every word in French is stressed on its
final syllable. Other languages have tendencies toward stress on a certain syllable position
(e.g., the first syllable in English) but have no fixed pattern in general.

When spoken as an isolated "word" or in a simple list of words, each lexically stressed
syllable has the acoustic cues leading to stress perception. However, in normal utterances the
speaker selects a subset of words to highlight and does not stress the others (whose lexically
stressed syllables then are prosodically very similar to the non-lexically stressed syllables).
Typically, the speaker stresses words that provide nel'V information to the listener, in the sense
that the listener must pay most attention to words least likely to be anticipated from prior
conversational context. When speakers attempt to make a contrast with some prior concept,
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they stress the relevant words, sometimes to the extent of stressing syllables normally
considered not lexically stressed (e.g., "I said involve, not revolve!").

5.7.2 Acoustic Correlates of Stress

Stress perception follows the perceived attributes of pitch, loudness, length, and
articulation precision. For each of these four perceptual features there is a corresponding
acoustic correlate: FO, amplitude, duration, and vowel timbre, respectively. Vowel timbre (or
spectrum) is not always included as a suprasegmental since it directly relates to segmental or
phoneme perception, but it has an indirect effect on stress perception (e.g., stress tends to
raise energy more at higher frequencies [149]).

The mapping between physical acoustics and perceived prosody is neither linear nor
one-to-one among the four features; e.g., variations in FO are the most direct cause of pitch
perception, but amplitude and duration also affect pitch. In vowels, spectral content has a
slight pitch effect: at the same FO and intensity, low vowels yield about 2% higher pitch than
high vowels [150]. Pitch varies monotonically with FO, but the mapping is closer to
logarithmic than linear [151]; similar comments hold for length and loudness. FO is often
reported in Hz (linear scale) or tones (logarithmic; 12 semitones = 1 tone = an octave), but a
more accurate measure is the ERE-rate scale (e.g., syllables tend to be heard as equally
prominent with FO movements that are equivalent on this scale [152]).

In comparing two phonemically identical syllables, one is heard as more stressed than
the other if it has higher amplitude, longer duration, higher or more varied FO, and/or
formants farther away from average values. While one usually thinks of stress as binary (i.e., a
syllable is stressed or unstressed), stress is actually a relative feature along a continuum.
Listeners can discriminate many levels of stress, in the sense that they can order a set of
several syllables from least to most stressed, by making repeated pairwise comparisons. On
isolated presentation, however, listeners seem unable to consistently group syllables into more
than three stress classes (i.e., unstressed, weakly stressed, and strongly stressed).

Stress cannot be heard on a time scale smaller than that of the syllable (e.g., one cannot
stress only a vowel or a consonant, but rather the entire syllable containing a vowel and its
adjacent consonants). Nonetheless, the vowel likely contributes most to stress perception
since it generally occupies the largest durational part of the syllable, forms the loudest
component, and is voiced (thus having pitch). During a syllable, there are many ways to vary
FO, duration, and amplitude, thereby leading to a complex relationship between stress and its
acoustic correlates. Which of the correlates is most important for stress and how they trade in
cases of conflicting cues are questions of interest.

English has certain words that are identical phonemically but that function as different
parts of speech depending on which syllable is stressed (e.g., "export," noun; "export," verb).
(This follows a trend toward nouns having their first syllable lexically stressed and verbs their
last.) Experiments with synthetic speech can control all aspects other than FO, amplitude, and
duration in exploring how stress is related to these acoustic features [153-156]. Other studies
examine natural speech for noun-verb pairs [157, 158], nonsense CVCV words [159],
sentences [160, 161], and even paragraphs [162]. Due to the diversity of experiments, it is
difficult to compare results, but the consensus is that FO is most important for stress in
English, that duration is secondary, and that amplitude ranks third. (Vowel timbre has rarely
been systematically tested as a stress correlate, other than to note that F1 and F2 in vowels
tend toward their average values-the middle of the vowel triangle-as the vowels become
less stressed [158].) This ranking was determined by testing the strength of each cue in the
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presence of conflicting cues (e.g., export was heard as a noun when the first syllable had high
FO, even though the second syllable was long and loud). Typically, FO, duration, and
amplitude are measured from both noun and verb versions of the words, and then each
parameter is allowed to vary over its range between the two cases. The test cases in other
languages are, of course, different, but for languages that admit syllables of varying stress, the
acoustic correlates are quite similar to those for English [151]. FO change, rather than high FO
[159], is a more likely indicator of stress across languages, especially in cases like Danish, in
which a stressed syllable immediately follows an FO fall [163]. Upward obtrusions in FO are
heard as more stressed than downward movements [155]. English listeners tend to hear
utterance-initial syllables more often as stressed, probably due to an implicit FO rise at the
start of each utterance [164].

One problem with measuring the relationship between FO and stress is the many
possibilities for FO contours during a syllable. While each phone in a syllable has only a
single duration, FO in naturally spoken phones is not limited to a simple average value, but
can have patterns as complex as rise+fall+rise (each with a different range) within a single
vowel. In comparing syllables with level FO patterns, the one with the higher FO is perceived
as more stressed, but changing FO usually invokes more stress perception than flat FO, even
when the average FO over the syllable is lower than the flat FO contour. A FO rise early in a
syllable cues stress better than a late rise [165].

Another difficulty in these experiments involves the inherent values for FO, amplitude,
and duration, which vary phonemically as well as with the position of a phoneme in the
utterance. Each phoneme has its own inherent average duration and intensity. Vowels have
more amplitude and duration than consonants; low vowels have more intensity than high
vowels; nonstrident fricatives are weaker than strident fricatives, etc. Thus in synthesizing a
word like export, one cannot give each phoneme the same duration and amplitude without
rendering the speech unnatural; e.g., vowels such as lal and Iii can sound equally loud even
though their intensities are quite different [166]. FO also varies phonemically in stressed
syllables: high vowels have higher FO than low vowels (by about 5-10 Hz), and in CV
contexts FO in the vowel starts higher if the consonant is unvoiced than if it is voiced.

Phoneme position is important for FO, duration, and amplitude. The tendency for FO to
fall gradually throughout an utterance spoken in isolation (the case for most prosodic
experiments) affects perception [167]. Syllable-initial consonants tend to be longer than
syllable-final consonants [168]. Amplitude tends to fall ofT during the final syllable of an
utterance [169], which can especially affect short utterances (e.g., two-syllable words).

A technique called reiterant speech can eliminate much of the phonemic variation in the
analysis of intonation [170]. A speaker thinks of a sentence and pronounces it with its proper
intonation while replacing all syllables with repetitions of one syllable, e.g., Im':J.I. Instead of
pronouncing a sentence like "Mary had a little lamb," the speaker says "Marna rna rna mama
rna," with the rhythm and stress of the original sentence. This enables the analysis of FO,
duration, and amplitude, based on stress and syntactic phenomena, without the interference of
phonemic effects [171]. A major (and risky) assumption here is that prosody is unaffected
when pronouncing one sentence while thinking of another, however closely related they may
be.

5.7.3 Perception of Syntactic Features

As the domain of analysis increases from syllables and words to phrases and sentences,
the perceptual effects of prosody shift from the highlighting effects of stress to syntactic
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features. The primary function of prosody in these larger linguistic units lies in aiding the
listener to segment the utterance into small phrasal groups, which simplifies mental
processing and ultimate comprehension. Monotonic speech (i.e., lacking FO variation)
without pauses usually contains enough segmental information so a listener can understand
the message, but it is fatiguing to listen to. Since the objective of speech communication is to
facilitate the transfer of information from speaker to listener, the speaker usually varies
rhythm and intonation to help the listener identify major syntactic structures.

5.7.3.1 Segmentation. In normal sentential utterances, the speaker develops a rhythm
of stressed and unstressed syllables. Certain languages (e.g., English and German) have been
called stressed-timed because stressed syllables tend to occur at regular time intervals. Other
languages (e.g., French and Japanese) are syllable-timed because each syllable tends to have
equal duration. In both cases, the phenomenon is more perceptual than acoustical since
physical measurements of duration vary considerably from the proposed isochronies [172].
The production regularity may exist not at the acoustic level but at the articulatory level, in
terms of muscle commands for stressed syllables coming at regular intervals [27]. None­
theless, there are acoustic differences between the two types of languages: stress-timed
languages significantly reduce the durations of unstressed syllables compared to stressed
ones, while syllable-timed languages do so to a much lesser extent.

The rhythm, whether stress-timed or syllable-timed, is often interrupted at major
syntactic boundaries, as well as when the speaker hesitates. In many languages the speaking
rate (measured in phonemes/s) slows down just prior to a major syntax break, whether or not
a pause occurs at the break [I 73]. Prepausal lengthening of the last one or two syllables in a
syntactic group is usually greater if a pause actually follows, but the lengthening itself is often
sufficient to signal a break in rhythm to a listener. In English, major syntactic boundaries are
usually cued by FO as well. At sentence-internal boundaries, FO often rises briefly on the
syllable immediately prior to the break. Such short rises (on the order of 10-30 Hz for a
typical male voice) are called continuation rises [174, 175] because they signal the listener
that the sentence has not finished and that the speaker does not wish to be interrupted.

Finally, most languages vary FO, duration, and amplitude at the end ofan utterance. The
last few syllables typically are lengthened relative to the rest of the utterance, and the last few
phonemes frequently have diminishing amplitude. FO usually falls, often sharply, at the end of
most sentences, to the lowest value in the entire utterance. The depth of the FO fall is often
correlated with the perception of finality. Exceptions occur when the speaker is ready to say
something else and, in the case of yes/no questions, where FO instead rises rapidly on the last
word in the sentence, often to the highest level in the utterance. In perceptual experiments
with synthetic speech, listeners associate low and falling FO with declarative statements, high
and rising FO with yes/no questions, and level terminal FO with talking to oneself (when
speaker and listener are the same, the need for intonational syntax cues diminishes!) [176,
177].

5. 7.3.2 Resolving syntactic ambiguity. One common paradigm to establish some
relationships between syntax and intonation concerns syntactically ambiguous sentences,
having words phonemically identical yet with different meanings depending on intonation.
Examples are "The good flies quickly passed/past" (isflies a noun or a verb?) and "They fed
her dog biscuits" (did she or her dog eat?). Such situations are usually resolved by
conversational context, but these sentences provide a viable method to evaluate the
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segmentation effects of intonation. Inherently ambiguous coordinate constructions also have
been investigated, e.g., "Sam and Joe or Bob went" (did one or two people go?) and "A plus
B times C" (which comes first: multiplication or addition?). Since English allows many words
to act as both adjective and noun, many three-word phrases can also be ambiguous (e.g.,
"light house keeper"). In all these cases, the ambiguity can be resolved through segmenta­
tion; placement of a perceptual break through intonation suffices [178]. A break located
before or after flies or dog will decide whether good flies and dog biscuits are syntactic units;
likewise for Joe. B, and house in the examples above. The assumptions are that normal
rhythm and intonation act to group words into logical phrasal units and that interruptions in
the prosody will override the default groupings, forcing perceived boundaries at intonation
junctures.

FO, duration, and amplitude each serves as a boundary marker in this fashion [179].
Duration is the most reliable cue [180, 181], in the form of pauses and prepausal lengthening,
which often occur at major syntactic breaks. Insertion of 150 ms pauses is sufficient to shift
the perception from one syntactic interpretation to another. From a rhythmic point of view, an
English utterance consists of similar-duration feet, which are the intervals between the
successive onsets of stressed vowels. When a foot containing a potential boundary is
lengthened (whether by pause insertion, prepausal lengthening, or lengthening of other
phonemes) in ambiguous sentences, listeners tend to hear a break [182].

Amplitude is a less reliable boundary cue. Its use as a boundary cue appears related to
stress: part of a natural juncture cue is often an increase in stress on the last word prior to the
break. This word normally has longer duration and larger FO movement, which raise its stress.
Amplitude tends to rise a few decibels just prior to a major syntactic break and then drop
down a few decibels right after the break. However, when FO and duration cues are neutral or
in conflict with this amplitude cue, boundary perception is weak.

Ambiguities concerning word boundary placement are less consistently marked and
nlake less use of FO movement than other syntactic cases. For example, a name vs an airn or
gray tie vs great eye are phonemically identical but can be resolved through intonation
juncture cues [183]. Duration again seems to be the primary cue, with longer (and stronger)
consonants at potential word boundaries suggesting that the consonant follows the boundary,
and vice versa. Spectral differences can also be prominent here: word boundaries appear to
affect formant transitions in complex fashion. In the latter example pair above, how strongly
the /t/ is released is a strong cue to the word boundary since word-final plosives are often
unreleased.

Sometimes syntactic ambiguity can be resolved using stress alone. In sentences of the
fonn "John likes Mary more than Bill," Bill can act as either the subject of a deleted phrase
(44Bill likes Mary") or the object (44 John likes Bill"), The interpretation can be shifted by
stressing John or Mary, respectively [184]. Listeners tend to hear a parallel structure and
assume that the deleted words were unstressed; e.g., if John is stressed, listeners assume that
John and Bill are from parallel positions in successive clauses (subjects) and that Mary acts as
the object of both clauses and has been deleted in the second clause since it is repeated
information,

Since the syntactic effects of intonation occur over relatively broad speech domains, it
has been difficult to construct simple controlled perceptual experiments. The few tests that
have been done have varied widely in technique. Usually only duration is varied, by inserting
pauses or linearly expanding phoneme durations on either side of a possible syntactic
boundary. Since FO and amplitude variations involve contours over time, they are typically
replaced as whole patterns, using a vocoder. The effects of stress have been readily examined
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using two-syllable utterances, but the effects of syntax usually require longer sentences.
Given the multiplicity ofpatterns available for FO, duration, and intensity over long sentences,
much research remains to be done in understanding the relationships of syntax and intonation.

5.7.4 Perceptually Relevant Pitch Movements

Because of the complex relationship between FO and linguistics, FO has been virtually
ignored in speech recognition systems, and most speech synthesizers have at best rudimentary
FO variations such as the declination line and obtrusions for stressed syllables. A major
problem has been to determine what is perceptually relevant in the FO contour, i.e., to separate
the linguistic aspects of FO movement from free variation having no perceptual effect on
intelligibility or naturalness. For example, FO contours can be smoothed (via lowpass
filtering) to a large extent without perceptual effect [185]. Only gross FO movements (e.g.,
large rises and falls) appear to be important perceptually, with listeners more sensitive to rises
than falls [186]. Perception of the slope of an FO contour may also be important since listeners
can detect changes in slope as small as 12Hz/s in synthetic vowels [187]. Pitch perception is
most influenced by FO during high-amplitude portions of an utterance (i.e., during the
vowels), and FO variations during consonants (which are often irregular) appear to be mostly
disregarded [188]. FO interruptions due to unvoiced consonants do not seem to have much
effect on pitch perception: similar intonation is perceived whether FO moves continuously
through a voiced consonant or jumps during an unvoiced consonant [175].

Some Dutch researchers have attempted to model the infinite number of FO contours by
concatenations of short FO patterns taken from a set ofabout 12 prototypes [175]. They found
that large FO movements are not perceived in certain contexts and suggest that listeners
interpret intonation in terms of recognizable patterns or perceptual units. The declination
effect appears to be important, even though most listeners are not conscious of declining
pitch. The actual FO contour can apparently be replaced without perceptual effect by a
standard declination line with superimposed sharp rises and falls. FO rises early in a syllable
or falls late in a syllable correlated with perceived stress on the syllable, while late rises and
early falls were heard as unstressed. A hat pattern can describe many syntactic phrases, in
which FO rises early on the first stressed syllable in a phrase, then declines slowly at a high
level, and finally falls to a low level late in the last stressed syllable of the phrase.

5.8 OTHER ASPECTS OF SPEECH PERCEPTION (t)

This chapter has discussed the major psychoacoustic aspects of phoneme and intonation
perception as well as general models of speech perception. This last section describes
additional topics that have not received as intense research attention.

5.8.1 Adaptation Studies

Speech perception is often analyzed in terms of thresholds, in which sounds with an
acoustic aspect on one side of a physical boundary are perceived as being in one category
while sounds on the other side are perceived differently. Such boundaries can be shifted
temporarily by selective adaptation. A sound is repeatedly played to a listener; this adapting
stimulus usually has some characteristics of the sounds whose threshold is being examined.
For example, plosive voicing in English /ta/ - Ida/ can be cued by VaT, with a threshold
near 30 ms. If a listener hears many repetitions of [ta] and then some stimuli along a
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It':1.1 - Id:xl continuum, the perceptual boundary typically shifts toward the adapting stimulus
(e.g., the person will hear Ida.1 more often due to the contrast with the adapting stimulus).
Such a phenomenon is usually explained in terms of a fatiguing of linguistic feature detectors
in the brain (see [24, 189] for opposing viewpoints, however). Selective adaptation must
involve central, rather than peripheral, auditory processing because it occurs with adapting
and test stimuli presented to different ears. Perceptual biases similar to those caused by
selective adaptation are also found in anchor experiments, in which an anchor stimulus is
heard more often than others, causing listeners to shift their normal perceptual frame of
reference [190]. Clearly, listeners make perceptual judgments based on contextual contrasts in
speech (e.g., accuracy in discriminating sounds in a foreign language depends on whether
such sounds are contrastive in one's native language [191]).

5.8.2 Dichotic Studies

The auditory nerves for each ear are connected contralaterally to the opposite side of the
brain. The right ear and left brain hemisphere perceive many speech sounds more accurately
than the left ear. However, specialized speech processors are not exclusively found in the left
hemisphere, nor is the right ear advantage a simple phenomenon restricted to speech. If
speech in only one ear is masked by noise, the other ear compensates to keep intelligibility
high.

Individual listeners show large variations in this phenomenon for a given sound, but
groups of listeners on average demonstrate consistent patterns across several sounds [192].
Ear advantage is not affected by speech vs nonspeech, the overall duration of sequential
sounds, or the presence of formant transitions. Rather, the bandwidth and complexity (in
terms of the number of dynamic auditory dimensions) of the sounds, as well as the rate of
change within the sound, affect ear advantage. Some studies have used dichotic presentation
of speechlike stimuli to explore different levels of speech perception. Since some auditory
processing occurs in each ear, while some happens only at higher levels (after the auditory
nerves from each ear merge), and since phonetic processing probably occurs only in the brain,
splitting apart speech sounds into separate stimuli in different ears is a viable technique for
examining the hierarchy of sound perception. For example, how formant transitions in
different ears merge into one perceptual speech image is in debate [193].

5.8.3 Phase Effects

The ear appears to be relatively insensitive to phase variations in the sound stimulus, as
long as group delay variations are less than a few milliseconds [194]. Randomizing the phase
angles in a short-time Fourier transform of speech has less perceptual effect than changing its
amplitude spectrum. In particular, time-invariant linear phase transformations of an acoustic
signal entering the inner ear cannot be heard. Many speech synthesizers take advantage of this
phenomenon by using a simple excitation source whose harmonics all have zero phase.
However, while time-invariant phase distortion is relatively unimportant perceptually, time­
varying phase affects the naturalness of a speech signal [195], as evidenced by the lower
quality of most synthetic speech.

When synthetic vowel-like stimuli with identical formants and harmonics but differing
via phase in the time waveform are matched with natural vowels, different phonemes may be
perceived if the formants are ambiguous between the two vowels [196]. Similarly, formant
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frequency glides typical of jejj and luw j (diphthongization) can be heard, without actual
formant movement, when time structure is varied [197].

5.8.4 Word and Syllable Effects

That linguistic context and the effects of coarticulation are important in speech
perception is evident from tests where words excised from normal conversations are played
in isolation to listeners: only about half the words are identified without the supporting
context [198]. (About 1s of continuous speech is necessary to avoid perceptual degradation.)
Listeners hear "what they want to hear" in cases where linguistic context does not assist
perception [199]. Sentences in a noisy background are more easily understood if they make
syntactic and semantic sense; thus adjacent words help identification of words in sentences
[200, 201]. When certain phonemes in an utterance are replaced by noise bursts of
corresponding amplitude and duration, listeners are unable to locate the timing of the noise
intrusion and do not perceive that a phoneme is missing [202, 203]. Similarly, intelligibility of
speech passed through two narrowband filters at widely spaced frequencies is good [204].
Such phonemic restoration [205] suggests that one can use context to "hear" phonemes not
actually present, suppressing actual auditory input information.

When listeners are asked to indicate when they hear a specific phoneme, they react
more quickly to target phonemes in words easily predicted from context. English, with its
stressed syllables approximately rhythmically spaced, permits faster reaction times in stressed
syllables than in unstressed ones, but only in sentences where the stressed syllables can be
predicted from context [206]. Listeners are likely to focus their attention at rhythmic intervals
on these anticipated stressed words, thus permitting a cyclic degree of attention, which is less
perceptually demanding than constant attention to all words [207].

One theory proposes that words are perceived one at a time, with the recognition of
each word locating the onset of the next one in the speech stream [208]. Shadowing
experiments are cited in which subjects try to repeat what they hear as quickly as possible.
Typical running delays of 270-800 ms suggest that listeners treat syllables or words as
processing units [209]. These experiments support the perceptual importance of the start of
the word, if one notes that mispronunciations are perceived more easily at the beginning than
later in a word and that reaction times are faster to mispronunciations in later syllables within
a word. Further evidence for syllables as perceptual units is found in reaction-time
experiments where listeners respond more quickly to syllable than to phoneme targets,
implying that phonemes are identified only after their syllable is recognized. Finally, speech
alternated rapidly between ears over headphones may be disruptive to perception when
switching occurs near the syllabic rate [210]. Although syllables and words appear to be
important perceptual units, we most likely understand speech not word by word, but rather in
phrasal units that exploit stress and prosodic structure [211].

5.8.5 Perception of Distorted Speech

Speech can be distorted in many ways, leading to loss of speech quality (in terms of
lower intelligibility or naturalness, increased annoyance [212], or vocal roughness [213]). It
was noted earlier that adding noise, bandpass filtering, or clipping the signal reduces the
intelligibility of speech; Chapter 7 will examine the perception of speech under digital coding
distortions. Degradations from noise or echos seem to be mostly due to less evident temporal
envelope modulations, but distorted fine structure is also a factor [214]. Decreased perception
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due to loss of spectral detail (found in practice in some echoic or noise situations) has been
explored by smearing formants: averaging across 250 Hz (as in wideband spectrograms) has
little effect, but smearing across 700-2000 Hz is equivalent to a 13-16 dB loss [215].
Similarly, smearing that simulates a significant expansion of auditory filters primarily affects
perception only in noise [216].

Normal conversation has a level around 60 dB, but increases by about 20 dB in shouted
voice, where perceptual accuracy decreases. In a quiet background, intelligibility of isolated
shouted words can decrease up to 13% [217]. The decrease reaches about 30% in noisy
environments; noise must be lowered 10-15 dB for shouts to achieve the same intelligibility
for normal voice. Most errors concern obstruent consonants that are relatively weak in shouts
because shouting raises the amplitude of voiced sounds more than unvoiced sounds.

5.8.6 Speech Perception by the Handicapped

In evaluating the speech perception process, this chapter has assumed that the listener
has normal hearing. If instead a listener has a hearing impairment, e.g., some loss of reception
of certain frequencies of sound, then devices such as hearing aids may assist speech
perception. (Gradual elevation of the speech reception threshold is normal in the aging
process, up to I dB/yr [36].) When there is some auditory reception in the 300-3000 Hz
range, a simple amplifier with gain matching the hearing loss suffices (although masking by
the amplified sounds may cause side effects). If, however, some frequency range is entirely
absent, aids may shift relevant speech energy to other frequencies within the remaining range
of hearing [218]. This latter approach is not always successful since the user must adapt to
new, unnatural sounds and learn to understand them as replacing normal perceived speech.

For the fully deaf, lipreading can be a method of receiving partial information about
speech. Phoneme distinctions that rely on front-rear tongue position (e.g., velar-alveolar
consonants, front vs rear vowels) are not easily discerned this way, however. Alternatively
(and exclusively for the blind-deaf), tactile aids can transform speech into a three-dimen­
sional display that can be felt [219]. Normally, a simple spectral display indicates the amount
of speech energy within a small number of frequency bands, similar to a wideband
spectrogram with a raised surface showing amplitude. A pitch detector may also be integrated
into the display. Such spectral and prosodic information can also be displayed visually for the
sighted deaf [220]. Finally, if adjacent to the talker, a blind-deaf person can feel the talker's
face to obtain information such as lip and jaw movement, airflow, and laryngeal vibration
[221 ].

5.9 CONCLUSION

While the basic aspects of speech psychoacoustics are well understood, many details remain
to be explored for a complete model of speech perception. One indication of the state of our
knowledge is the quality of synthetic speech generated by rule, which is usually intelligible
but far from natural. Perception research has often been based on knowledge of human speech
production and resulting formant models of synthesis. These models lead to a good
understanding of first-order effects (i.e., primary acoustic cues to perception) but often
leave secondary factors vague. Thus, much research into perception currently is investigating
areas where production models are inadequate. In particular, the search for invariant cues to
phoneme perception is active for voicing and place of articulation features. Since production
models of coarticulation (and context effects in general) are less well advanced than models of
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isolated phone production, much perceptual research continues for the effects of context.
Contextual effects beyond the syllable especially are still poorly understood; thus consider­
able research remains unfinished in the prosodic area, where intonation acts over long time
spans. Compared to prosody, the relatively good understanding of phoneme perception
reflects the fact that most phonemic cues are local (i.e., confined to a short section of the
speech signal).

PROBLEMS

P5.1. Speech over telephone lines is limited to the 300-3300 Hz frequency band. What
phonemes are distorted most? Explain, giving examples of confusions that would be
expected among words over the telephone.

P5.2. Explain the difference between categorical and continuous perception. Give an example
using stop consonants, describing a typical experiment and its results.

P5.3. Consider filtering speech with a bandpass filter, eliminating all energy below X Hz and
above Y Hz.
(a) What is the smallest range of frequencies (X, Y Hz) that would allow all English

phonemes to be distinguished? Explain.
(b) If X = 1kHz and Y = 2 kHz, explain which phonemes would be most confused with

one another.
P5.4. (a) Which phonemes are most easily confused with Ib/? Explain.

(b) If a two-formant synthetic vowel with F1= 600 Hz and F2 = 1300 Hz is preceded by a
short burst ofnoise, at what frequency should the noise be located to hear IbI, Id/, and
I g/, respectively?

(c) In natural speech, which acoustic features enable a listener to discriminate among /bI,
Id/, and Ig/?

P5.5. Models of speech perception vary in many ways:
(a) What acoustic aspects of speech are considered most important?
(b) How does timing affect the perception of phonemes?
(c) Is the speech production process necessarily involved in perception?

P5.6. List acoustic cues useful for distinguishing voicing in prevocalic stops.

P5.7. Why is place perception less reliable than manner perception?



Speech Analysis

6.1 INTRODUCTION

Earlier chapters examined the production and perception of natural speech, and described
speech-signal properties important for communication. Most applications of speech proces­
sing (e.g., coding, synthesis, recognition) exploit these properties to accomplish their tasks.
This chapter describes how to extract such properties or features from a speech signal s(n)-a
process called speech analysis. This involves a transformation of s(n) into another signal, a
set of signals, or a set of parameters, with the objective of simplification and data reduction.
The relevant information in speech for different applications can often be expressed very
compactly; e.g., a lOs utterance (requiring 640,000 bits in basic coding format) typically
contains about 120 seconds and 20-30 words (codable as text in a few hundred bits). In
speech analysis, we wish to extract features directly pertinent for different applications, while
suppressing redundant aspects of the speech. The original signal may approach optimality
from the point of view of human perception, but it has much repetitive data when processed
by computer; eliminating such redundancy aids accuracy in computer applications and makes
phonetic interpretation simpler. We concentrate here on methods that apply to several
applications; those that are particular to only one will be examined in later chapters.

For speech storage or recognition, eliminating redundant and irrelevant aspects of the
speech waveform simplifies data manipulation. An efficient representation for speech
recognition would be a set of parameters which is consistent across speakers, yielding similar
values for the same phonemes uttered by various speakers, while exhibiting reliable variation
for different phonemes. For speech synthesis, the continuity of parameter values in time is
important to reconstruct a smooth speech signal; independent evaluation of parameters frame­
by-frame is inadequate. Synthetic speech must replicate perceptually crucial properties of
natural speech, but need not follow aspects of the original speech that are due to free
variation.

This chapter investigates methods of speech analysis, both in the time domain
(operating directly on the speech waveform) and in the frequency domain (after a spectral
transformation of the speech). We want to obtain a more useful representation of the speech
signal in terrns of parameters that contain relevant information in an efficient format, Section
6.2 describes the tradeoff's involved in analyzing speech as a time-varying signal. Analyzers
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periodically examine a limited time range (window) of speech. The choice of duration and
shape for the window reflects a compromise in time and frequency resolution. Accurate time
resolution is useful for segmenting speech signals (e.g., locating phone boundaries) and for
determining periods in voiced speech, whereas good frequency resolution helps to identify
different sounds. Section 6.3 deals with time-domain analysis, and Section 6.4 with spectral
analysis. The former requires relatively little calculation but is limited to simple speech
measures, e.g., energy and periodicity, while spectral analysis takes more effort but
characterizes sounds more usefully.

Simple parameters can partition phones into manner-of-articulation classes, but
discriminating place of articulation requires spectral measures. We distinguish speech
parameters that are obtained by simple mathematical rules but have relatively low informa­
tion content (e.g., Fourier coefficients) andfeatures that require error-prone methods but yield
more compact speech representations (e.g., formants, FO). Many speech analyzers extract
only parameters, thus avoiding controversial decisions (e.g., deciding whether a frame of
speech is voiced or not). Linear predictive analysis does both: the major effort is to obtain a
set of about 10 parameters to represent the spectral envelope of a speech signal, but a voicing
(feature) decision is usually necessary as well. Section 6.5 is devoted to the analysis methods
of linear predictive coding (LPC), a very important technique in many speech applications.

The standard model of speech production (a source exciting a vocal tract filter) is
implicit in many analysis methods, including LPC. Section 6.6 describes another method to
separate these two aspects of a speech signal, and Section 6.7 treats yet other spectral
estimation methods. The excitation is often analyzed in terms of periodicity (Section 6.8) and
amplitude, while variations in the speech spectrum are assumed to derive from vocal tract
variations. Finally, Section 6.9 examines how continuous speech parameters can be derived
from (sometimes noisy) raw data.

The analysis technique in this chapter can be implemented digitally, either with
software (programs) or special-purpose hardware (microprocessors and chips). Analog
processing techniques, using electronic circuitry, can perform most of the tasks, but digital
approaches are prevalent because of flexibility and low cost. Analog circuitry requires specific
equipment, rewiring, and calibration for each new application, while digital techniques may
be implemented and easily modified on general-purpose computers. Analyses may exceed
real time (where processing time does not exceed speech duration) on various computers, but
advances in VLSI and continued research into more efficient algorithms will render more
analyses feasible without computational delay.

6.2 SHORT-TIME SPEECH ANALYSIS

Speech is dynamic or time-varying: some variation is under speaker control, but much is
random; e.g., a vowel is not truly periodic, due to small variations (from period to period) in
the vocal cord vibration and vocal tract shape. Such variations are not under the active control
of the speaker and need not be replicated for intelligibility in speech coding, but they make
speech sound more natural. Aspects of the speech signal directly under speaker control (e.g.,
amplitude, voicing, FO, and vocal tract shape) and methods to extract related parameters from
the speech signal are of primary interest here.

During slow speech, the vocal tract shape and type of excitation may not alter for
durations up to 200 ms. Mostly, however, they change more rapidly since phoneme durations
average about 80 ms. Coarticulation and changing FO can render each pitch period different
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from its neighbor. Nonetheless, speech analysis usually assumes that the signal properties
change relatively slowly with time. This allows examination of a short-time window of speech
to extract parameters presumed to remain fixed for the duration of the window. Most
techniques yield parameters averaged over the course of the time window. Thus, to model
dynamic parameters, we must divide the signal into successive windows or analysis frames,
so that the parameters can be calculated often enough to follow relevant changes (e.g., due to
dynamic vocal tract configurations). Slowly changing formants in long vowels may allow
windows as large as 100 ms without obscuring the desired parameters via averaging, but rapid
events (e.g., stop releases) require short windows of about 5-10 ms to avoid averaging
spectral transitions with steadier spectra of adjacent sounds.

6.2.1 Windowing

Windowing is multiplication of a speech signal s(n) by a window w(n), which yields a
set of speech samples x(n) weighted by the shape of the window. w(n) may have infinite
duration, but most practical windows have finite length to simplify computation. By shifting
lv(n), we examine any part of s(n) through the movable window (Figure 6.1).

Many applications prefer some speech averaging, to yield an output parameter contour
(vs time) that represents some slowly varying physiological aspects of vocal tract movements.
The amount of the desired smoothing leads to a choice of window size trading off three
factors: (I) It'(n) short enough that the speech properties of interest change little within the
window, (2) u'(n) long enough to allow calculating the desired parameters (e.g., if additive
noise is present, longer windows can average out some of the random noise), (3) successive
windows not so short as to omit sections of s(n) as an analysis is periodically repeated. The
last condition reflects more on the frame rate (number of times per second that speech
analysis is performed, advancing the window periodically in time) than on window size.
Normally, the frame rate is about twice the inverse of the w(n) duration, so that successive
windows overlap (e.g., by 50%), which is important in the common case that w(n) has a shape
that de-emphasizes speech samples near its edges (see Section 6.4).

The size and shape of lv(n) depend on their effects in speech anlaysis. Typically w(n) is
smooth, because its values determine the weighting of s(n) and a priori all samples are
equally relevant. Except at its edges, w(n) rarely has sudden changes; in particular, windows

s(n)
w(2N-n) w(3N-n) w(4N-n)

\/A\ \/A\ \/A\
\ / \ / \
~ \

\

Figure 6.1 Speech signal s(n) with three superimposed windows, offset from the time
origin by 2N. 3N, and 4N samples. (An atypical asymmetric window is used
for illustration.)
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rarely contain zero- or negative-valued points since they would correspond to unutilized or
phase-reversed input samples. The simplest common window has a rectangular shape r(n):

w(n) = r(n) = {~ for 0 ~ n ~ N - 1
otherwise.

(6.1)

This choice provides equal weight for all samples, and just limits the analysis range to N
consecutive samples. Many applications trade off window duration and shape, using larger
windows than strictly allowed by stationarity constraints but then compensating by emphasiz­
ing the middle of the window (Figure 6.2); e.g., if speech is quasi-stationary over 10 ms, a
20 ms window can weight the middle 10ms more heavily than the first and last 5 ms.
Weighting the middle samples more than the edge relates to the effect that window shape has
on the output speech parameters. When w(n) is shifted to analyze successive frames of s(n),
large changes in output parameters can arise when using r(n); e.g., a simple energy measure
obtained by summing s2(n) in a rectangular window could have large fluctuations as w(n)
shifts to include or exclude large amplitudes at the beginning of each pitch period. If we wish
to detect pitch periods, such variation would be desired, but more often the parameters of
interest are properties of vocal tract shape, which usually vary slowly over several pitch
periods. A common alternative to Equation (6.1) is the Hamming window, a raised cosine
pulse:

w(n) = h(n) =I~.54 -0.46COS(:n:1) for 0 ~ n ~ N - 1

otherwise.
(6.2)

or the very similar Hanning window. Tapering the edges of w(n) allows its periodic shifting
(at the frame rate) along s(n) without having effects on the speech parameters due to pitch
period boundaries.

6.2.2 Spectra of Windows: Wide- and Narrow-band
Spectrograms

While a window has obvious limiting effects in the time domain, its effects on speech
spectra are also important. Due to its slowly varying waveform, w(n) has a frequency
response of a lowpass filter (Figure 6.3). As example windows, the smooth Hamming h(n)
concentrates more energy at low frequencies than does r(n), which has abrupt edges. This
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Figure 6.2 Common time windows, with durations normalized to unity.
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Figure 6.3 Magnitude of Fourier transforms for (a) rectangular window, (b) Hamming
window.

concentration helps preserve the integrity of spectral parameters obtained from windowed
signals, since x( n) = s(n)w( n) corresponds to a convolution of spectra:

(6.3)

To minimize distortion in the output spectral representation, W(e jW) should have a limited
frequency range and a smooth shape; e.g., an ideal lowpass filter (rectangular frequency
pulse) strictly limits the frequency range and has a constant value. The output spectrum
X(e j UJ ) is a smoothed version of S(ejW) , where each frequency sample is the average of its
neighbors over a range equal to the bandwidth of the lowpass filter. A window with a
rectangular spectrum has (usually undesirable) edge effects in frequency (as did r(n) above for
time); e.g., for voiced speech, X(e jW) fluctuates as harmonics are included/excluded in the
convolution process, depending on the interaction between the filter bandwidth and the
speech FO.

An ideal lowpass filter is not a feasible window, due to its infinite duration. Practical
windows however are flawed in not having strictly limited frequency ranges: each sample in
X(e jW ) is not only the (desired) average of a range of S(e jW) but also has contributions from
many other frequencies. This undesirable behavior can be limited by concentrating most of
W(e j W ) in a main lobe centered at zero frequency. Since the Hamming H(e j W) is closer to an
ideal lowpass filter than R(e j W

) (Figure 6.3), the former yields a better X(e j W ), more closely
approximating the original S(ej W) . For a given window duration (a critical factor in
computation and time resolution), however, hen) acts as a lowpass filter with twice the
bandwidth of the rectangular r(n) and thus smooths the speech spectrum over a range twice as
wide (thus reducing the spectral detail) (Figure 6.4).

A properly smoothed output spectrum is often preferred; e.g., wideband spectrograms
and formant detectors need spectral representations that smooth the fine structure of the
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window; (b) the corresponding spectrum (note that harmonic structure is
strongest at low frequencies); (c) signal multiplied by a 5 ms Hamming
window; (d) its corresponding spectrum.

harmonics while preserving formant structure, which varies more slowly with frequency. For
a given shape of window its duration is inversely proportional to its spectral bandwidth; the
choice of window duration trades off time and frequency resolution. Traditional wideband
spectrograms use a window of about 3 ms (fine time resolution, showing amplitude variations
within each pitch period), which corresponds to a bandwidth of 300 Hz and smooths the
harmonic structure (unless FO > 300 Hz) (Figure 6.4).

Narrowband spectrograms, on the other hand, use a window with a 45 Hz bandwidth
and thus a duration of about 20 ms. This allows a resolution of individual harmonics (since
FO > 45 Hz) (Figure 6.4) but smooths the signal in time over a few pitch periods. The latter
spectral displays are good for FO estimation, while wideband representations are better for
viewing vocal tract parameters, which can change rapidly and do not need fine frequency
resolution.
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For windowing of voiced speech, a rectangular window with a duration of one pitch
period (and centered on the period) produces an output spectrum close to that of the vocal
tract impulse response, to the extent that each pitch period corresponds to such an impulse
response. (This works best for low-FO voices, where the pitch period is long enough to permit
the signal to decay to low amplitude before the next vocal cord closure.) Unfortunately, it is
often difficult to reliably locate pitch periods for such pitch-synchronous analysis, and system
complexity increases if window size must change dynamically with FO. Furthermore, since
most pitch periods are indeed shorter than the vocal tract impulse response, a one-period
window truncates, resulting in spectral degradation.

For simplicity, most speech analyses use a fixed window size of longer duration, e.g.,
25 ms. Problems of edge effects are reduced with longer windows; if the window is shifted in
time without regard for pitch periods in the common pitch-asynchronous analysis, the more
periods under the window the less the effects of including/excluding the large-amplitude
beginning of any individual period. Windows well exceeding 25 ms smooth rapid spectral
changes (relevant in most applications) too much. For FO estimation, however, windows
must typically contain at least two pitch periods; so pitch analysis uses a long window--often
30-50 ms.

Recent attempts to address the drawbacks of a fixed window size include more
advanced frequency transforms (e.g., wavelets-see below), as well as simpler modifications
to the basic OFT approach (e.g., the 'modulation spectrogram' [1], which emphasizes slowly
varying speech changes around 4 Hz, corresponding to approximate syllable rates, at the
expense of showing less rapid detail).

6.3 TIME-DOMAIN PARAMETERS

Analyzing speech in the time domain has the advantage of simplicity in calculation and
physical interpretation. Several speech features relevant for coding and recognition occur in
temporal analysis, e.g., energy (or amplitude), voicing, and FO. Energy can be used to
segment speech in automatic recognition systems, and must be replicated in synthesizing
speech; accurate voicing and FO estimation are crucial for many speech coders. Other time
features, e.g., zero-crossing rate and autocorrelation, provide inexpensive spectral detail
without formal spectral techniques.

6.3.1 Signal Analysis in the Time Domain

Time-domain analysis transforms a speech signal into a set of parameter signals, which
usually vary much more slowly in time than the original signal. This allows more efficient
storage or manipulation of relevant speech parameters than with the original signal; e.g.,
speech is usually sampled at 6000-10,000 samplesjs (to preserve bandwidth up to 3-5 kHz),
and thus a typical 100 ms vowel needs up to 1000 samples for accurate representation. The
information in a vowel relevant to most speech applications can be represented much more
efficiently: energy, FO, and formants usually change slowly during a vowel. A parameter
signal at 40-100 samples/s suffices in most cases (although 200 samplesjs could be needed
to accurately track rapid changes such as stop bursts). Thus, converting a speech waveform
into a set of parameters can decrease sampling rates by two orders of magnitude. Capturing
the relevant aspects of speech, however, requires several parameters sampled at the lower rate.
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While time-domain parameters alone are rarely adequate for most applications, a combined
total of 5-15 time- and frequency-domain parameters often suffice.

Most short-time processing techniques (in both time and frequency) produce parameter
signals of the form

00

Q(n) = E T[s(m)]w(n - m).
m=-oo

(6.4)

The speech signal s(n) undergoes a (possibly nonlinear) transformation T, is weighted by the
window w(n), and is summed to yield Q(n) at the original sampling rate, which represents
some speech property (corresponding to T) averaged over the window duration. Q(n)
corresponds to a convolution of T[s(n)] with w(n). To the extent that w(n) represents a
lowpass filter, Q(n) is a smoothed version of T[s(n)].

Since Q(n) is the output of a lowpass filter (the window) in most cases, its bandwidth
matches that of w(n). For efficient manipulation and storage, Q(n) may be decimated by a
factor equal to the ratio of the original sampled speech bandwidth and that of the window;
e.g., a 20 ms window with an approximate bandwidth of 50 Hz allows sampling of Q(n) at
100 samples/s (100: 1 decimation if the original rate was 10,000 samples/s). As in most
decimation operations, it is unnecessary to calculate the entire Q(n) signal; for the example
above, Q(n) need be calculated only every 10ms, shifting the analysis window 10ms each
time. For any signal Q(n), this eliminates much (mostly redundant) information in the original
signal. The remaining information is in an efficient form for many speech applications.

In addition to the common rectangular and Hamming windows, the Bartlett, Blackman,
Hann, Parzen, or Kaiser windows [2, 3] are used to smooth aspects of speech signals, offering
good approximations to lowpass filters while limiting window duration (see Figure 6.2). Most
windows have finite-duration impulse responses (FIR) to strictly limit the analysis time range,
to allow a discrete Fourier transform (OFT) of the windowed speech and to preserve phase.
An infinite-duration impulse response (IIR) filter is also practical if its z transform is a rational
function; e.g., a simple IIR filter with one pole at z = a yields a recursion:

Q(n) = aQ(n - I) + T[s(n)]. (6.5)

IIR windows typically need less computation than FIR windows, but Q(n) must be calculated
at the original (high) sampling rate before decimating. (In real-time applications, a speech
measure may be required at every sample instant anyway). FIR filters, having no recursive
feedback, permit calculation of Q(n) only for the desired samples at the low decimated rate.
Most FIR windows of N samples are symmetric in time; thus w(n) has linear phase with a
fixed delay of (N - 1)/2 samples. IIR filters do not permit simple delay compensation.

6.3.2 Short-Time Average Energy and Magnitude

Q(n) corresponds to short-time energy or amplitude if T in Equation (6.4) is a squaring
or absolute magnitude operation, respectively (Figure 6.5). Energy emphasizes high ampli­
tudes (since the signal is squared in calculating Q(n», while the amplitude or magnitude
measure avoids such emphasis and is simpler to calculate (e.g., with fixed-point arithmetic,
where the dynamic range must be limited to avoid overflow). Such measures can help
segment speech into smaller phonetic units, e.g., approximately corresponding to syllables or
phonemes. The large variation in amplitude between voiced and unvoiced speech, as well as
smaller variations between phonemes with different manners of articulation, permit segmen­
tations based on energy Q(n) in automatic recognition systems. For isolated word recognition,
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such Q(n) can aid in accurate determination of the endpoints of a word surrounded by pauses.
In speech transmission systems that multiplex several conversations, this Q(n) can help detect
the boundaries of speech, so that paus~s need not be sent.

6.3.3 Short-Time Average Zero-crossing Rate (ZCR)

Normally, spectral measures of speech require a Fourier or other frequency transfonna­
tion or a complex spectral estimation (e.g., linear prediction). For some applications, a simple
measure called the zero-crossing rate (ZCR) provides adequate spectral information at low
cost. In a signal s(n) such as speech, a zero-crossing occurs when s(n) = 0, i.e., the waveform
crosses the time axis or changes algebraic sign. For narrowband signals (e.g., sinusoids), ZCR
(in zero-crossings/s) is an accurate spectral measure; a sinusoidal has two zero-cross­
ings/period, and thus its FO = ZCR/2.

For discrete-time signals with ZCR in zero-crossings/sample,

FO = (ZCR * Fs)/2, (6.6)

for F, sample/so
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The ZCR can be defined as Q(n) in Equation (6.4), with

T[s(n)] == 0.5Isgn(s(n» - sgn(s(n - 1»1 (6.7)

where the algebraic sign of sen) is

sgn(s(n» = { ~ I
for s(n) ::: 0
otherwise,

(6.8)

and wen) is a rectangular window scaled by liN (where N is the duration of the window) to
yield zero-crossings/sample, or by Fs / N to yield zero-crossings/so This Q(n) can be heavily
decimated since the ZCR changes relatively slowly with the vocal tract movements.

The ZCR can help in voicing decisions. Most energy in voiced speech is at low
frequency, since the spectrum of voiced glottal excitation decays at about -12 dB/oct. In
unvoiced sounds, broadband noise excitation excites mostly higher frequencies, due to
effectively shorter vocal tracts. While speech is not a narrowband signal (and thus the
sinusoid example above does not hold), the ZCR correlates well with the average frequency of
major energy concentration. Thus high and low ZCR correspond to unvoiced and voiced
speech, respectively. A suggested boundary is 2500 crossings/s, since voiced and unvoiced
speech average about 1400 and 4900 crossings/s, respectively, with a larger standard
deviation for the latter (Figure 6.6).
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Figure 6.6 Typical distribution of zero-crossings for voiced sonorants, for unvoiced
frication, and for voiced frication.
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For vowels and sonorants, the ZCR corresponds mostly to F 1, which has more energy
than other formants. Interpreting ZCR is harder for voiced fricatives, which have both
periodic energy in the voice bar at very low frequency and unvoiced energy at high frequency.
This, of course, is a problem for all voiced/unvoiced determination methods; a binary
decision using a simple threshold test on the ZCR is inadequate. Depending on the balance of
periodic and aperiodic energy in voiced fricatives, some are above the threshold (e.g., the
strident /z/) and others (e.g., [v /) are below. This problem is also language-dependent; e.g.,
English appears to have relatively weak voice bars, while French has strong ones.

Unlike short-time energy, the ZCR is highly sensitive to noise in the recording
environment (e.g., 60 Hz hum from a power supply) or in analog-to-digital (A/D) conversion.
Since energy below 100 Hz is largely irrelevant for speech processing, it may be desirable to
highpass filter the speech in addition to the normal lowpass filtering before A/D conversion.

The ZCR can be applied to speech recognition. If speech is first passed through a bank
of bandpass filters, each filter's output better resembles a narrowband signal, whose frequency
of major energy concentration the ZCR easily estimates. Such a frequency could be a single
harmonic (for filter bandwidths less than FO) or a formant frequency (for bandwidths of about
30G-500 Hz). A bank or eight filters covering the 0-4 kHz range provides a simple set ofeight
measures, which could replace a more complex spectral representation (e.g., a OFT) in some
applications.

6.3.4 Short-Time Aurocorrelation Function

The Fourier transform S(e}W) of speech s(n) provides both spectral magnitude and
phase. The time signal r(k) for the inverse Fourier transform of the energy spectrum
(IS(e}W)12) is called the autocorrelation of s(n). r(k) preserves information about harmonic
and formant amplitudes in s(n) as well as its periodicity, while ignoring phase (as do many
applications), since phase is less important perceptually and carries much less communication
information than spectral magnitude. r(k) has applications in FO estimation, voiced/unvoiced
determination, and linear prediction.

The autocorrelation function is a special case of the cross-correlation function,

00

cPsy(k) = L s(m)y(m - k),
m=-oo

(6.9)

which measures the similarity of two signals s(n) and yen) as a function of the time delay
between them. By summing the products of a signal sample and a delayed sample from
another signal, the cross-correlation is large if at some delay the two signals have similar
waveforms. The range of summation is usually limited (i.e., windowed), and the function can
be normalized by dividing by the number of summed samples.

When the same signal is used for s(n) andy(n), Equation (6.9) yields an autocorrelation.
It is an even function (r(k) = r( -k», it has maximum value at k = 0, and r(O) equals the
energy in s(n) (or average power, for random or periodic signals). If s(n) is periodic in P
samples, then r(k) also has period P. Maxima in r(k) occur for k = 0, ±P, ±2P, etc.,
independently of the absolute timing of the pitch periods; i.e., the window does not have to be
placed synchronously with the pitch periods.
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The short-time autocorrrelation function is obtained by windowing s(n) and then using
Equation (6.9), yielding

00

Rn(k) = L s(m)w(n - m)s(m - k)w(n - m + k).
m=-oo

(6.10)

Equivalently, the product of speech s(n) with its delayed version s(n - k) is passed through a
filter with response w(n)w(n + k) (time index n indicates the position of the window).
Equation (6.10) is evaluated for different values of k depending on the application. For linear
prediction (Section 6.5), Rn(k) for k ranging from 0 to 10-16 are typically needed, depending
on the signal bandwidth. In FO determination, Rn(k) is needed for k near the estimated
number of samples in a pitch period; if no suitable prior FO estimate is available, Rn(k) is
calculated for k from the shortest possible period (perhaps 3 ms for a female voice) to the
longest (e.g., 20 IDS for men). With a sampling rate of 10,000 samples/s, the latter approach
can require up to 170 calculations of Rn(k) for each speech frame, if a pitch period resolution
of O. I ms is desired.

Short windows minimize calculation: ifw(n) has N samples, N - k products are needed
for each value of Rn(k). Proper choice of w(n) also helps; e.g., using a rectangular window
reduces the number of multiplications; symmetries in autocorrelation calculation can also be
exploited (see LPC below). While the duration of w(n) is almost directly proportional to the
calculation (especially if N» k), there is a conflict between minimizing N to save
computation and having enough speech samples in the window to yield a valid autocorrela­
tion function: longer w(n) give better frequency resolution. For FO estimation, w(n) must
include more than one pitch period, so that Rn(k) exhibits periodicity and the corresponding
energy spectrum IXn (e }W)12 resolves individual harmonics of FO (see Figure 6.4). Spectral
estimation applications (e.g., LPC) permit short windows since harmonic resolution is
unimportant and the formant spectrum can be found from a portion of a pitch period.

For FO estimation, an alternative to using autocorrelation is the average magnitude
difference function (AMDF) [4]. Instead of multiplying speech s(m) by s(m - k), the

1
cu-==(a) i 0 ++-+-+~~~--I'+-l~-+-i~oIft'-~++-~-+-........,~~~~~~r-+~

e
~

-1

Time (ms)

1
cu-==

(b) io
E
<

-1

Figure 6.7 Typical autocorrelation function for (a) voiced speech and (b) unvoiced speech,
using a 20 ms rectangular window (N = 20 I).
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magnitude of their difference is taken:

oo

AMDF(k) = L Is(m) - s(m - k)l·
m=-OQ

(6.11 )

Since subtraction and rectification are much simpler operations than multiplication, the
AMDF is considerably faster. Where Rn(k) peaks for values of k near multiples of the pitch
period (Figure 6.7), the AMDF has minima (Figure 6.8).

Some speech recognition applications have used a simplified version of the autocorre­
lation [5]:

(Xl

tjJ(k) = L sgn(s(m»s(m - k).
m=-oo

(6.12)

Replacing s(m) by its sign in Equation (6.9) eliminates the need for multiplications and
reduces the emphasis that r(k) normally places on the high-amplitude portions of s(n).

6.4 FREQUENCY-DOMAIN (SPECTRAL) PARAMETERS

The frequency domain provides most useful parameters for speech processing. Speech signals
are more consistently and easily analyzed spectrally than in the time domain. The basic model
of speech production with a noisy or periodic waveform that excites a vocal tract filter
corresponds well to separate spectral models for the excitation and for the vocal tract.
Repeated utterances of a sentence by a speaker often differ greatly temporally while being
very similar spectrally. Human hearing appears to pay much more attention to spectral aspects
of speech (e.g., amplitude distribution in frequency) than to phase or timing aspects. Thus,
spectral analysis is used to extract most parameters from speech.
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6.4.1 Filter-Bank Analysis

One spectral analysis method (popular due to real-time, simple, and inexpensive
implementations) uses a filter bank or set of bandpass filters (either analog or digital), each
analyzing a different range of frequencies of the input speech. Filter banks are more flexible
than DFT analysis since the bandwidths can be varied to follow the resolving power of the ear,
rather than being fixed, as in DFTs. Furthermore, many applications require a small set of
parameters describing the spectral distribution ofenergy, especially the spectral envelope. The
amplitude outputs from a bank of 8-12 bandpass filters provide a more efficient spectral
representation than a more detailed DFT. Filters often follow the bark scale, i.e., equally
spaced, fixed-bandwidth filters up to 1 kHz, and then logarithmically increasing bandwidth.
One-third-octave filters are also common. Certain speech recognition systems use two levels
of spectral analysis, a coarse filter bank with only a few filters for preliminary classification of
sounds, followed where necessary by a more detailed analysis using a larger set of narrower
filters.

6.4.2 Short-Time Fourier Transform Analysis

As the traditional spectral technique, Fourier analysis provides a speech representation
in terms of amplitude and phase as a function of frequency. Viewing the vocal tract as a linear
system, the Fourier transform of speech is the product of the transforms of the glottal (or
noise) excitation and of the vocal tract response. For steady-state vowels of fricatives, the
basic (infinite-time) Fourier transform could be used by extending or repeating sections or
pitch periods of the speech ad infinitum. However, speech is not stationary, and thus short­
time analysis using windows is necessary.

The short-time Fourier transform of a signal s(n) is often defined as

00

Sn(e}W) = L s(m)e-jwmw(n - m).
m=-oo

(6.13)

If co is considered fixed, the transform has an interpretation as Q(n) in Equation (6.4), where
the transformation T corresponds to multiplication by a complex exponential of frequency co,
which has the spectral effect of rotating energy through a frequency shift of OJ rad. Assuming
w(n) acts as a lowpass filter, Sn(e j W) is a time signal (a function of n), describing the
amplitude and phase ofs(n) within a bandwidth equivalent to that of the window but centered
at co rad. Repeating the calculation of Sn(e j W) at different co of interest yields a two­
dimensional representation of the input speech: an array of time signals indexed on frequency,
each noting the speech energy in a limited bandwidth about the chosen frequency.

A second interpretation of Sn(e j W) views n as fixed, thus yielding the Fourier transform
of s(m)w(n - m), the windowed version of s(m) using a window shifted to a time n with
respect to the speech. This calculation could be repeated for successive n to produce an array
of Fourier transforms index on time n, each expressing the spectrum of the speech signal
within a window centered at time n.

For computational purposes, the DFT is used instead of the standard Fourier transform,
so that the frequency variable w only takes on N discrete values (N = the window duration,
or size, of the OFT):

N-l
Sn(k) = L s(m)e-j21Ckm/N w(n - m).

m=O

(6.14)
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(In practice, each frame of speech samples s(ln) is shi fted by the time delay n to align with a
start at m = 0, allowing a simple N-sample window \v(nl) to replace w(n - m), and the fast
Fourier transform or FFT is used to implement the DFT [6]. Since the Fourier transform is
invertible, no information about s(n) during the window is lost in the representation Sn(e)W),
as long as the transform is sampled in frequency sufficiently often (i.e., at N equally spaced
values of (1)) and the window \1'(n) has no zero-valued samples among its N samples, The
choice of N is thus crucial for short-time Fourier analysis. Low values for N (i.e., short
windows and DFT's of few points) give poor frequency resolution since the window lowpass
filter is wide, but they yield good time resolution since the speech properties are averaged
only over short time intervals (see Figure 6.4). Large N, on the other hand, gives poor time
resolution and good frequency resolution.

Assuming a rectangular window \v(n) = r(n) and viewing the main spectral lobe of
R(e iw) as its bandwidth, common choices are a 3.3 ms wideband window (300 Hz bandwidth)
for good time resolution or a 22 ms narrowband window (45 Hz bandwidth) for good
frequency resolution. The time-frequency tradeoff in resolution is related to window shape.
Finite-duration windows theoretically have energy at infinitely high frequencies, but most is
concentrated in a lowpass bandwidth. The abrupt r(n) in particular has much of its energy
beyond the main lobe of the lowpass filter. While the problem is reduced for other windows,
frequency range and window duration cannot be completely limited simultaneously. Viewed
as a time signal, Sll(e iw) primarily notes energy components around frequency ())F.fi/2n Hz but
has contributions beyond the main lobe bandwidth in varying degree, depending on the
window shape.

Alternatives to the rectangular r(n) are common in spectral analysis due to r(n) 's high
proportion of energy outside the main lobe and despite its narrow main lobe, which provides
good frequency resolution for a short-time window. It is preferable to use another window
with an appropriate increase in window duration to achieve the same frequency resolution,
rather than accept the frequency distortion due to poor lowpass filtering. The allowable
window duration is limited by the desired time resolution, though, which usually corresponds
to the rate at which spectral changes occur in speech (e.g,. as rapidly as 5-10 ms). Any single
spectral representation usually does not contain enough information for all speech processing
applications. Short windows serve for formant analysis and segmentation, where good time
resolution is important and where the smoothing of spectral harmonics into wider-frequency
formants is desirable. Long windows are good for harmonic analysis and FO detection, where
individual harmonics must be resolved.

Because it retains sufficient information to completely reconstruct the windowed speech
x(n), the short-time Fourier transform is not economical for representing speech, in terms of
the number of data samples. For fixed w, Sn(e)W) is a time signal of bandwidth roughly equal
to that of the window and must be sampled at the Nyquist rate of twice the highest frequency.
For fixed-time n, Sn(e)(!) is a Fourier transform to which an appropriate sampling rate in
frequency may be calculated by applying the Nyquist theorem through the duality of the
Fourier transform and its inverse. Since common windows are strictly "timelirnited," Sn(ei(l))
must be sampled at twice the window's "time width"; e.g., with a rectangular window of N
samples and speech at F, samples/s, the main spectral lobe occupies the range O-Fs/N Hz.
Thus each time function Sn(eiw) must be sampled at 2Fs j N samplesjs, and N time functions
must be retained at N uniformly spaced frequencies from w = 0 to 2n. Since speech s(n) is
real, Sn(e)(') is conjugate symmetric, and therefore the latter function need be retained only
for 0) = 0 to ti. However, since the Fourier transform is complex-valued, the net requirements
are 2F.fi real-valued samplesjs, which is twice the original sampling rate. With the Hamming
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and other windows, coding rates are even higher because of the larger bandwidths for the
same window durations.

The short-time Fourier transform is thus not directly used for efficient coding, but as an
alternative speech representation that has simpler interpretation in terms of the speech
production and perception processes. Chapter 7 will explore coding applications that exploit
data reduction of Sn(e j W) while limiting speech quality degradation. More economical
representation of speech parameters is achieved when the transform is subsampled below
the Nyquist rate. This does not permit exact reconstruction of the speech waveform, but the
ear is very tolerant of certain changes in speech signals that are more easily exploited in
spectral form than in the time domain.

6.4.3 Spectral Displays

For decades a major speech analysis tool has been the spectrogram, or sound spectro­
graph, which provides a three-dimensional representation of short speech utterances (typically
2-3 s). The short-time Fourier transform Sn(e jW) is plotted with time n on the horizontal axis,
with frequency co (from 0 to n) on the vertical axis (i.e., O-Fs/2 in Hz), and with magnitude
indicated as degrees of shading (weak energy below one threshold shows as white, while very
strong energy is black; the range between the two displays a varying amount of gray) (Figure
6.9). Since the transform phase is often of little interest, only the magnitude of the complex­
valued Sn(e j W) is displayed, typically on a logarithmic scale (following the dynamic range of
audition). In the past, spectrograms used analog filtering, transferring electrical energy to
Teledeltos paper through an electromechanical operation [7]; the dynamic range of such paper
was only about 12 dB, which nonetheless was adequate to study most formant behavior.
Recent computer-generated spectrograms are much more flexible.

Wideband spectrograms display individual pitch periods as vertical striations corre­
sponding to the large speech amplitude each time the vocal cords close (Figure 6.9a). Voicing
can be easily detected visually by the presence of these periodically spaced striations. Fine
time resolution here permits accurate temporal location of spectral changes corresponding to
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vocal tract movements. The wide filter bandwidth smooths the harmonic amplitudes under
each formant across a range of 300 Hz, displaying a band of darkness (of width proportional
to the formant's bandwidth) for each formant. The center of each band is a good estimate of
formant frequency.

Narrowband spectrograms display separate harmonics instead of pitch periods, and are
less useful for segmentation because of poorer time resolution (Figure 6.9b). Instead they aid
anlaysis of FO and vocal tract excitation. A traditional, but tedious, way to estimate FO is to
divide a low-frequency range (e.g., 0-2 kHz, chosen due to the presence of strong formants)
by the number of harmonics there. Due to limited range on spectrograms or to filtering of the
speech (e.g., in the telephone network), however, harmonics are often invisible (i.e., their
weak energy shows as white).

Since the amplitude of voiced speech falls off at about -6 dB/oct, dynamic range is
often compressed prior to spectral analysis so that details at weak, high frequencies may be
visible. Pre-emphasizing the speech, either by differentiating the analog speech sa(t) prior to
A/D conversion or by differencing the discrete-time s(n) = sa(n T), compensates for falloff at
high frequencies. If speech is to be reconstructed later using data from pre-emphasized
speech, the final synthesis stage requires the inverse operation of de-emphasis or integration,
which restores the proper dynamic range. The most common form of pre-emphasis is

y(n) := s(n) - As(n - 1), (6.15)

where A typically lies between 0.9 and 1.0 and reflects the degree of pre-emphasis.
Effectively, s(n) passes through a filter with a zero at z := A. The closer the zero to z := I,
the greater the pre-emphasis effect. The attenuation at frequencies below 200 Hz can be large,
but such low frequencies are rarely of interest in spectral analysis applications.

The -6 dB/oct falloff applies only to voiced speech, since unvoiced speech tends to
have a flat spectrum at high frequencies. Ideally, pre-emphasis should be applied only to
voiced speech. In practice, however, the slightly degraded analysis of pre-emphasized
unvoiced speech does not warrant limiting pre-emphasis only to voiced speech. Most
applications use pre-emphasis throughout the entire speech signal and limit its effects on
unvoiced speech by choosing a compromise value for A (e.g., 0.9).

6.4.4 Formant Estimation and Tracking

An assumption for much speech analysis is that the signal can be modeled as a source
exciting a time-varying vocal tract filter. The source is either the quasi-periodic puffs of air
passing through the glottis or broadband noise generated at a constriction in the vocal tract.
The vocal tract filter response normally varies slowly because of constraints on movements of
the tongue and lips, but it can change rapidly at articulator discontinuities (e.g., when a vocal
tract passage closes or opens). The spectrum of voiced speech is the product of a line
spectrum (harmonics spaced at FO Hz) and the vocal tract spectrum. The latter is a slowly
varying function of frequency, with an average of one formant peak/kl-lz.

The behavior of the first 3-4 formants is of crucial importance in many applications,
e.g., formant vocoders (voice coders), some speech recognizers, and speech analysis leading
to formant-based synthesis. Typical methods to estimate formant center frequencies and their
bandwidths involve looking for peaks in spectral representations from short-time Fourier
transforms, filter bank outputs, or linear prediction [8-11]. Such peak-picking methods appear
to be accurate to within ±60 Hz for the first and second formants, but simple Fourier
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transforms allow an accuracy of only ±110 Hz for F3 [12]. This compares to errors of
±40 Hz for manual measurements of spectrograms. For dynamic formants, wideband
spectrograms (e.g., with a 6 ms analysis window) allow accurate tracking, especially pitch­
synchronously [13].

The automatic tracking of formants is difficult, despite the typical spacing of formants
every 1kHz (for a vocal tract 17cm long), the limited range of possible bandwidths (3D­
500 Hz), and the generally slow formant changes. Occasional rapid spectral changes limit the
assumption of formant continuity. In oral vowel and sonorant sequences, formants smoothly
rise and fall, and are readily followed via spectralpeak-picking, Acoustic coupling of the oral
and nasal cavities during nasals causes abrupt formant movements as well as the introduction
of extra formants. Zeros in the glottal source excitation or in the vocal tract response for
lateral or nazalized sounds also tend to obscure formants. Many sounds have two formants
close enough that they appear as one spectral peak (e.g., FI-F2 in /0, a], F2-F3 in Iii).
Continuity constraints can often resolve these problems but are frequently thwarted by nasal
and obstruent consonants, which interrupt the formants and abruptly alter the spectral
distribution of energy. During obstruents, the sound source excites only a forward portion
of the vocal tract; thus F1 and often F2 have little energy.

One way to track formants is to estimate speech S(z) in terms of a ratio of z
polynomials, solve directly for the roots of the denominator, and identify each root as a
formant if it has a narrow bandwidth at a reasonable frequency location. This process can be
precise but expensive since the polynomial often has order greater than 10 to represent 4-5
formants (see however a recent fixed-point algorithm [14]). Another approach [15-17] uses
phase information to decide whether a spectral peak is a formant. In evaluating S(z) along the
unit circle z = exp(jw), a large negative phase shift occurs when co passes a pole close to the
unit circle. Since formants correspond to complex-eonjugate pairs of poles with relatively
narrow bandwidths (i.e., near the unit circle), each spectral peak having such a phase shift is a
formant. The phase shift approaches -180° for small formant bandwidths.

When two formants may appear as one broad spectral peak, a modified DFT can resolve
the ambiguity. The chirp z transform (CZT) (named after a chirp, or signal of increasing
frequency) calculates the z transform of the windowed speech on a contour inside the unit
circle. Whereas the DFT samples S(z) at uniform intervals on the unit circle, the CZT can
follow a spiral contour anywhere in the z plane. It is typically located near poles corresponding
to a spectral peak of interest and is evaluated only for a small range of frequency samples.
Such a contour can be much closer to the formant poles than for the DFT; thus the CZT can
resolve two poles (for two closely spaced formants) into two spectral peaks (Figure 6.10).
Because formant bandwidths tend to increase with frequency, the spiral contour often starts
near z = C(, just inside the unit circle (e.g., C( = 0.9), and gradually spirals inward with
increasing frequency wk = 2nkiN (zk = C({I exp(jwk1 with Pjust less than 1). This contour
follows the expected path of the formant poles and eliminates many problems of merged
peaks in DFT displays. CZT algorithms can reduce the amount of calculation necessary,
approaching that of the DFT, by taking advantage of the spiral nature of the contour in the z
plane [18].

Formant trackers have great difficulty when FO exceeds formant bandwidths, e.g.,
FO > 250 Hz [12], as in children's voices. Harmonics in such speech are so widely separated
that only one or two constitute each formant. Thus, most spectral analyzers tend to label the
most prominent harmonic as the formant, which is erroneous when the center frequency is not
a multiple of FO. An analysis using critical band filters, rather than formants, has been more
successful in classifying children's vowels [19].
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Schafer and Rabiner [9].)

6.4.5 Other Spectral Methods (t)

While formants are widely viewed as important spectral measures for much of speech
processing, the difficulty of reliably tracking them has led to related measures. One recent
analysis method passes speech through a bank of bandpass filters, and then calculates an
autocorrelation of each bandpass power spectrum; following the mel scale, the subband filters
have increasing bandwidth with frequency [20]. Another method uses principal components
analysis on 16 filter outputs, reducing speech information to as little as two dimensions,
which correspond roughly to F I-F2 (but do not require formant tracking) [21].

6.4.6 Energy Separation (t)

Following recent evidence of significant amplitude and frequency modulations (AM
and FM) within pitch periods (due to nonlinear air flows in the vocal tract), an Energy
Separation Algorithm (ESA) was developed to analyze these modulations [22]. Each formant
is viewed as an AM-FM signal x(t) = aCt) cos(4J(t) with AM aCt) and a time-varying
frequencyJ(t) = (I /2rr)dljJ(t)/dt = Ie + fm(t), with oscillationh,,(t) around the formant center
fe. An "energy operator" is defined as '¥(x(t)) = (dx(t)/dt)2 - x(t)(d2x(t)/dt2 ) (in discrete
time: '¥d(x(n» = (x(n»2 - x(n - 1)x(n + I». Under some reasonable assumptions on band­
widths and deviations, it can be shown that f(t) ~ (1/2n)J\Il(dx(t)/dt)/'P(x(t)) and
la(t)1 ~ 'P(x(t))/ J'P(dx(t)/dt) [22]. In discrete time, estimations of the envelope and
instantaneous frequency only require simple manipulations of a 5-sample moving window
[23].

An iterative ESA converges quickly if given good initial estimates for Ie, but requires
another form of formant tracker for the initial values. A simulation of what humans do for
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estimating formants from narrowband spectrograms uses local rmruma and maxima in
harmonic amplitudes over a range of frequencies B, where B is 250 Hz at low frequency
and extends to 750 Hz for the high formants [23]. This method has shown significant AM and
FM in formants within pitch periods, presumably due to nonlinearities in vocal tract air flow.
The ESA method also provides reliable formant tracking, including good bandwidth estimates
[11].

6.5 LINEAR PREDICTIVE CODING (LPC) ANALYSIS

As a model for speech, a popular alternative to the short-time Fourier transform is linear
predictive coding (LPC). LPC provides an accurate and economical representation of relevant
speech parameters that can reduce transmission rates in speech coding, increase accuracy and
reduce calculation in speech recognition, and generate efficient speech synthesis. Chapter 7
examines applications of linear prediction in adaptive differential pulse-code modulation
(ADPCM) systems and LP coders, and Chapters 9 and 10 show man-machine applications of
LPC.

LPC is the most common techniques for low-bit-rate speech coding and is a very
important tool in speech analysis. The popularity of LPC derives from its compact yet precise
representation of the speech spectral magnitude as well as its relatively simple computation.
LPC has been used to estimate FO, vocal tract area functions, and the frequencies and
bandwidths of spectral poles and zeros (e.g., formants), but it primarily provides a small set of
speech parameters that represent the configuration of the vocal tract. LPC estimates each
speech sample based on a linear combination of its p previous samples; a larger p enables a
more accurate model. The weighting factors (or LPC coefficients) in the linear combination
can be directly used in digital filters as multiplier coefficients for synthesis or can be stored as
templates in speech recognizers. LPC coefficients can be transformed into other parameter
sets for more efficient coding. We examine below how to calculate the parameters, and also
examine spectral estimation via LPC.

LPC has drawbacks: to minimize analysis complexity, the speech signal is usually
assumed to come from an all-pole source; i.e., that its spectrum has no zeros. Since actual
speech has zeros due to the usual glottal source excitation and due to multiple acoustic paths
in nasals and unvoiced sounds, such a model is a simplification, which however does not
cause major difficulties in most applications. Nonetheless, some efforts have been made to
modify all-pole LPC to model zeros as well.

6.5.1 Basic Principles of LPC

LPC provides an analysis-synthesis system for speech signals [24, 25]. The synthesis
model consists of an excitation source U(z) providing input to a spectral shaping filter H(z),
yielding output speech S(z). Following certain constraints, U(z) and H(z) are chosen so that
S(z) is close (in some sense) to the original speech S(z). To simplify the modeling problem,
U(z) is chosen to have a flat spectral envelope so that most relevant spectral detail lies in H(z).
A flat spectrum is a reasonable assumption for U(z) since the vocal tract excitation for
unvoiced sounds resembles white noise. For voiced sounds, the source is viewed as a uniform
sample train, periodic in N samples (the pitch period), having a line spectrum with uniform­
area harmonics (below we discuss problems of viewing a uniform line spectrum as "flat").
The vocal cord puffs of air, which are normally viewed as the excitation for the vocal tract in
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voiced speech, can be modeled as the output of a glottal filter whose input is the sample train.
The spectral shaping effects of the glottis and the vocal tract are thus combined into one filter
H(z).

To simplify obtaining H(z) given a speech signal s(n), we assume the speech to be
stationary during each window or frame of N samples. This allows the H(z) filter to be
modeled with constant coefficients (to be updated with each frame of data). H(z) is assumed
to have p poles and q zeros in the general pole-zero case, i.e., a synthetic speech sample s(n)
can be modeled by a linear combination of the p previous output samples and q + 1 previous
input samples of an LPC synthesizer:

p q

s(n) = L aks(n - k) + G L b[u(n - I),
k=) [=0

where G is a gain factor for the input speech (assuming bo = 1). Equivalently,

q I
A 1+ Lb,z-

H) S(z) G 1=1
(z ---

- U(z) - 1 ~ -k .
- L akz

k=1

(6.16)

(6.17)

Most LPC work assumes an all-pole model (also known as an autoregressive, or AR,
model), where q = O. (Any zeros at z == 0 are ignored here, because such zeros do not change
the spectral magnitude and add only linear phase, since they result from simple time delays.)
An all-zero model (p = 0) is called a moving average (MA) model since the output is a
weighted average of the q prior inputs. The more general, but less popular, LPC model with
both poles and zeros (q > 0) is known as an autoregressive moving average (ARMA) model.
We assume here the AR model. If speech s(n) is filtered by an inverse or predictor filter (the
inverse of an all-pole H(z»

P -k
A(z) = I - L akz ,

k=1

the output e(n) is called an error or residual signal:

p

e(n) == s(n) - L Qks(n - k).
k=l

(6.18)

(6.19)

The unit sample response for A(z) has only p + 1 samples and comes directly from the set of
LPC coefficients: a(O) = 1, a(n) == -an for n == 1,2, ... ,p. To the extent that H(z)
adequately models the vocal tract system response, E(z) ~ U(z). Since speech production
cannot be fully modeled by a p-pole filter H(z), there are differences between e(n) and the
presumed impulse train u(n) for voiced speech (Figures 6.11 and 6.12). If s(n) has been
recorded without phase distortion [26] and if the inverse filtering is done carefully (e.g., pitch­
synchronously), an estimate of the actual glottal waveform can be obtained after appropriate
lowpass filtering of e(n) (to simulate the smooth shape of the glottal puff of air) [27, 28].

6.5.2 Least-squares Autocorrelation Method

Two approaches are often used to obtain a set of LPC coefficients ak characterizing an
all-pole H(z) model of the speech spectrum. The classical least-squares method chooses ak to
minimize the mean energy in the error signal over a frame of speech data, while the lattice
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Figure 6.11 Examples of pre-emphasized speech signals and their corresponding predic­
tion error signals for five vowels ju, a, e, 0, if.

approach pennits instantaneous updating of the coefficients (at the expense of extra
computation). In the former technique, either s(n) or e(n) is windowed to limit the extent
of the speech under analysis. The first of two least-squares techniques is the data-windowing
or autocorrelation method, which multiplies the speech by a Hamming or similar time
window

x(n) =: w(n)s(n) (6.20)

so that x(n) has finite duration (N samples, typically corresponding to 20-30 ms), Thus
x(n) = 0 outside the range 0 ~ n ~ N - 1. As in other speech analyses, s(n) is assumed to be
stationary during each window. LPC equally considers all speech samples within each frame;
thus for nonstationary speech, the LPC coefficients describe a smoothed average of the signal.

Let E be the error energy:

00 00 [ P J2
E = n=~CXl e

2(n)
= n=~oo x(n) - k~ aixtn - k) • (6.21)

where e(n) is the residual corresponding to the windowed signal x(n). The values of ak that
minimize E are found by setting 8E/8ak = 0 for k = 1,2,3, ... ,p. This yields p linear
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equations

00 p 00

E x(n - i)x(n) = E ak E x(n - i)x(n - k),
n=-oo k= 1 n=-oo

for i = 1, 2, 3, ... , p, (6.22)

in p unknowns ak' Recognizing the first term as the autocorrelation R(i) of x(n) and taking
advantage of the finite duration of x(n), we have

N-l
R(i) = E x(n)x(n - i),

n=;

so that Equations (6.22) reduce to

p

E akR(i - k) = R(i),
k=l

fori= 1,2,3, ... ,p,

fori= 1,2,3, ... ,p.

(6.23)

(6.24)

(6.25)

The autocorrelation could be calculated for all integers i, but since R(i) is an even function, it
need be determined only for 0 ~ i ~p. From Equations (6.21) and (6.24), the minimum
residual energy or prediction error Ep for a p-pole model is

p

Ep = R(O) - E akR(k),
k=l

where the first term R(O) is simply the energy in x(n). For synthesis, setting G2 = Ep in
Equation (6.16) yields an energy match between the original windowed speech and the
synthesized version. The match can be imprecise when output pitch periods overlap
significantly (yielding only slight speech degradation), but may cause overflows [29] when
implementing LPC synthesis in fixed-point arithmetic [30].

The conventional least-squares method is equivalent to a maximum likelihood (ML)
approach to parameter estimation; it simplifies computation, but ignores certain information
about speech production. Alternative maximum a posteriori (MAP) methods exploit better the
redundancies in the speech signal, but at a high cost. Constraints on the MAP estimation
process (e.g., smooth time contours) which aid speech applications are feasible [31].

6.5.3 Least-Squares Covariance Method

An alternative least-squares technique of LPC analysis, the covariance method,
windows the error e(n) instead of s(n):

00

Ep = E e2(n)w(n).

n=-oo

Setting aEjlJak = 0 again to zero leads to p linear equations

(6.26)

where

p

E ak4>(i, k) = 4>(0, i),
k=l

1 .s i s p, (6.27)

00

4>(i, k) = E s(n - k)s(n - i)w(n)
n=-oo

(6.28)
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is the covariance function for sen). Usually the error is weighted uniformly in time via a
simple rectangular window of N samples, and Equation (6.28) reduces to

N-I

¢(i, k) = L sen - k)s(n - i),
n=O

for °:s ti, k) :s p. (6.29)

The autocorrelation R and covariance 4> functions are quite similar, but they differ in the
windowing effects. The autocorrelation method uses N (Hamming) windowed speech
samples, whereas the covariance method uses no window on the speech samples. The
former thus introduces distortion into the spectral estimation since windowing corresponds to
convolving the original short-time S(e}W) with the frequency response of the window W(e}W).
Since most windows have lowpass spectra, the windowed speech spectrum is a smoothed
version of the original, with the extent and type of smoothing dependent on the window shape
and duration. The covariance method avoids this distortion, but requires knowledge of N +P
speech samples (s(n) for -p :s n ::: N - 1 in Equation (6.29».

6.5.4 Computational Considerations

In the autocorrelation method, the p linear equations (Equation (6.24» to be solved can
be viewed in matrix form as R4 == r, where R is a p x p matrix of elements
R(i, k) == R(li - kl), (1 :s i, k ::: p), r is a column vector (R(I), R(2), ... , R(p»T, and A is
a column vector of LPC coefficients (ai' a2' ... , ap)T. Solving for the LPC vector requires
inversion of the R matrix and multiplication of the resultant p x p matrix with the r vector. A
parallel situation occurs for the covariance approach if we replace the autocorrelation matrix
R with the p x p covariance matrix' of elements ~(i, k) == ¢(i, k) and substitute the r vector
with a ¢ vector (¢(O, 1), ¢(O, 2), ... , 4>(O.p». Calculation of the minimum residual error Ep

can also be expressed in vector form as the product of an extended LPC vector

(6.30)

with either the r or 4> vector augmented to include as its first element the speech energy (R(O)
or ¢(O, 0), respectively). The extended LPC vector contains the p + 1 coefficients of the LPC
inverse filter A(z).

Redundancies in the Rand , matrices allow efficient calculation of the LPC
coefficients without explicitly inverting a p x p matrix. Both matrices are symmetric (e.g.,
4>(;, k) == 4>(k, i»; however, R is also Toeplitz (all elements along a given diagonal are equal),
whereas , is not. As a result, the autocorrelation approach is simpler (2p storage locations
and O(P2) math operations) than the basic covariance method (p2/2 storage locations and
O(P3)operations, although this can be reduced to O(P2) operations [32]). (O(P) means "of the
order ofp" and indicates approximation.) If N » p (often true in speech processing), then
computation of the R or , matrix (O(PN) operations) dominates the overall calculation. (N
often exceeds 100, while p is about 10.) Assuming the' matrix is positive definite (generally
true for speech input), its symmetry allows solution through the square root or Cholesky
decomposition method [33], which roughly halves the computation and storage needed for
direct matrix inversion techniques.
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The additional redundancy in the Toeplitz R matrix allows the more efficient
Levinson-Durbin recursive procedure [25, 33], in which the following set of ordered
equations is solved recursively for m = 1, 2, ... ,p:

m-l

R(m) - L Qm_l(k)R(m - k)
k = k=J

m Em- 1

Qm(m) = km ,

am(k) = am-l (k) - kmam-l(m - k)

Em = (1 - k;,)Em-1,

for 1 :s k ~ m - 1,

(6.31 a)

(6.31b)

(6.31c)

(6.31d)

where initially Eo = R(O) and Qo = O. At each cycle m, the coefficients am(k) (for
k = 1, 2, ... , m) describe the optimal mth-order linear predictor, and the minimum error
Em is reduced by the factor (1 - k;). Since Em' a squared error, is never negative, Ikml ~ 1.
This condition on the reflection coefficients km , which can be related to acoustic tube models,
also guarantees a stable LPC synthesis filter H(z) since all the roots ofA(z) are then inside (or
on) the unit circle in the z plane. The negatives of the reflection coefficients are called partial
correlation, or PARCOR, coefficients. The km rarely have magnitude equal to unity since that
would terminate the recursion with Em = 0 and yield H(z) poles on the unit circle, a
marginally stable situation. Unlike the covariance method, the autocorrelation method, even
when not calculating the reflection coefficients directly, guarantees a stable synthesis filter
when using infinite-precision calculation.

One radical way to reduce calculation in LPC analysis is to center-clip and infinite-peak
clip the speech signal before LPC processing. Clipping is useful for FO estimation as a means
to simplify the speech signal, eliminating formant detail while preserving periodicity. If the
clipping level is lowered to about 20% of its value in FO estimation, formant detail is also
preserved, yet the signal may be simplified to contain only values of -1, 0, and +1.
Calculating the autocorrelation matrix for LPC using such a signal involves no multi­
plications, which greatly reduces computation. Some supplementary multiplications must be
done, however, to find the LPC gain since clipping destroys energy information. The cost for
such efficiency is that synthetic LPC spectra differ from the original by about 2 dB [34],
which can be significant.

6.5.5 Spectral Estimation via LPC

Parseval's theorem for the energy E of a discrete-time signal (e.g., the error signal e(n))
and its Fourier transform is

(6.32)

(6.33)

Since e(n) can be obtained by passing speech s(n) through its inverse LPC filter
A(z) = G/ H(z), the residual error can be expressed as

G2 J7t IS(ejW)1
2

E =- 2dw.
p 2n w=-7t IH(ejW)1

Obtaining the LPC coefficients by minimizing Ep is equivalent to minimizing the average
ratio of the speech spectrum to its LPC approximation. Equal weight is given to all
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frequencies, but IH(eJW)1 models the peaks in IS(ejW)1 better than its valleys (Figure 6.12c)
because the contribution to the error Ep at frequencies where the speech spectrum exceeds its
LPC approximation is greater than for the opposite condition. The LPC all-pole spectrum
IH(ejW)1 is limited, by the number p of poles used, in the degree of spatial detail it can model
in IS(ejW)I. For a typical p = 10, at most five resonances can be represented accurately. A
short-time voiced-speech spectrum, with rapid frequency variation due to the harmonics as
well as the slower variations due to the formant structures, cannot be completely modeled by
such an IH(ejW)I. Locating the (smooth) LPC spectrum well below the (ragged) speech
spectrum (to model spectral valleys well) would cause large contributions to the overall error
at spectral peaks. IH(ejW)1 tends to follow the spectral envelope of IS(eJW)\ just below the
harmonic peaks, which balances small errors at peak frequencies with larger errors in valleys
(which contribute less to Ep ) . Thus, the valleys between harmonics are less well modeled than
the harmonic peaks, and valleys between formants (including those due to zeros in the vocal
tract transfer function) are less accurately modeled than formant regions. The importance of
good formant modeling has been underlined recently by suggested modifications to LPC to
emphasize narrow bandwidth components in the spectral model [35].

6.5.5.1 Pre-emphasis. Many analysis methods concentrate on the high-energy
portions of the speech spectrum. It is nonetheless clear that relatively weak energy at high
frequencies is often important in many applications. To help model formants of differing
intensity equally well, input speech energy is often raised as a function of frequency prior to
spectral analysis (e.g., LPC) via pre-emphasis. The degree of pre-emphasis is controlled by a
constant x, which determines the cutoff frequency of the single-zero filter through which
speech effectively passes. This reduces the dynamic range (i.e., "flattens" the speech
spectrum) by adding a zero to counteract the spectral falloff due to the glottal source in
voiced speech. The pre-emphasis and radiation zeros approximately cancel the falloff, giving
formants of similar amplitudes. In speech coding, the final stage of synthesis must contain a
de-emphasis filter 1/( 1 - f3z-1) to undo the pre-emphasis. With values of a and f3 of typically
about 0.94, pre-emphasis acts as a differentiator, while de-emphasis performs integration. In
addition to making spectral analysis more uniform in frequency, pre-emphasis reduces a
signal's dynamic range, facilitating some fixed-point implementations [24].

Usually f3 is chosen equal to ex. so that the de-emphasis exactly cancels the pre-emphasis
effects, but when :t is near unity, a slight mismatch often yields higher-quality speech. Such
common high values for ~ locate the pre-emphasis zero at very low frequency, causing
significant attenuation in the region below FI, which in tum is poorly matched by the usual
LPC analysis. Frequently, LPC spectra overestimate gain at these low frequencies. By
allowing fJ < :t (e.g., 0.74 and 0.94, respectively), this mismatch can be reduced, while
having little effect on the formant spectra [36]. Whereas intelligibility depends little on
frequencies below F I, much energy is present there in voiced speech, and a proper spectral
match is important for naturalness.

6.5.5.2 Order of the LPC model. In the LPC model, the choice of the order p is a
com-promise among spectral accuracy, computation time/memory, and transmission band­
width (the last being relevant only for coding applications). In the limit as p ~ 00, IH(eJW)\

matches 15(e jW)I exactly (Figure 6.13), but at the cost of memory and computation. In
general, poles are needed to represent all formants (two poles per resonance) in the signal
bandwidth plus an additional 2-4 poles to approximate possible zeros in the spectrum and
general spectral shaping (e.g., the standard for 8 kHz sampled speech is 10 poles [37]). The
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Figure 6.13 Signals and spectra in LPC for 20 ms of an la-I vowel at 8000 samples/s: (a)
time waveform, (b) speech spectrum, (c}-(g) LPC spectra using 4, 8, 12, 16,
and 20 poles, respectively.

latter effects come mostly from the spectra of the glottal waveform and lip radiation, but zeros
also arise from nasalized and unvoiced sounds. It is usually unnecessary to add more poles to
the model for nasals, despite the extra nasal formants in such speech, since high-frequency
formants in nasals have wide bandwidths and so little energy that their accurate spectral
modeling is unimportant.

The all-pole LPC model can handle zeros indirectly; e.g., a zero at z = a (Ial < I) can
be exactly represented by an infinite number of poles:

(l-az-1) =--00--­
1 - E(az-1)n

n=1

(6.34)
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Figure 6.14 Normalized prediction error as a function of the LPC model order. (After Atal
and Hanauer [39].)

Evaluating on the unit circle (z = e j W) , we can approximate the infinite-order denominator
with a finite number of terms (e.g., M) and hence a finite number of poles. The high-order
terms in Equation (6.34) can be ignored if aM « 1. Wide-bandwidth zeros (i.e., those with
small laD are more accurately modeled with a few poles than are zeros whose bandwidths are
comparable to those of the formants. It is generally (but not universally [38]) assumed that
2-4 poles can handle the zeros and other glottal effects, given the ear's greater sensitivity
to spectral peaks than valleys.

The prediction error energy Ep is often used as a measure of the accuracy of an LPC
model. The normalized prediction error (i.e., divided by the speech energy), Vp = Ep / R(O)
(see Equation (6.31d», decreases monotonically with predictor order p (Figure 6.14) (i.e.,
each additional pole improves the model). For voiced speech, after having enough poles to
model the formant structure (e.g., p = 10), additional poles do little to improve the spectral fit
(as measured by Vp ) , but they add significantly to the computation (and to bit rate, for
vocoders). Unvoiced speech yields larger Vp because its excitation signal is spread out in
time. The usual calculation of LPC coefficients ignores u(n) in Equation (6.16). (The effects
of u(n) for voiced speech are small for a small analysis frame located in the middle of a pitch
period, but this requires a period detector to find the FO epochs before LPC analysis.)
Unvoiced u(n) has relatively constant energy over the analysis frame; in voiced speech, u(n)

has energy concentrated at the start of each pitch period (primarily when the vocal cords
close), allowing u(n) to be ignored for most of the speech samples. Thus, the LPC model is a
better fit to voiced speech because ignoring u(n) is valid for more time samples in Equation
(6.21) for voiced speech. Some algorithms exploit this distinction by basing voiced-unvoiced
decisions on the relative Vp (high, unvoiced; low, voiced).
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A recent proposal to account for u(n) in the LPC representation of voiced speech
suggests modifying the spectral coefficients at the synthesis stage, to make the original speech
and the corresponding synthetic speech more similar. Specifically, the first p + 1 autocorrela­
tion coefficients R(i) should be identical for the two signals, except for the interference of
multiple excitations in u(n) for the speech within the frame of analysis. In the case of voices
with high FO (leading to more excitations per frame), two iterations modifying the LPC
coefficients to guarantee the R(i) match lead to significant improvements in synthetic speech
quality [40].

6.5.6 Updating the LPC Model Sample by Sample

We earlier described the block estimation approach to LPC analysis, where spectral
coefficients are obtained for each successive frame of data. Alternatively, LPC parameters can
be determined sample by sample, updating the model for each speech sample. For real-time
implementation (e.g., echo cancellation in the telephone network [41]), this reduces the delay
inherent in the block approach, where typical frame lengths of 20-30 ms cause 10-15 ms
delays. Chapter 7 notes that ADPCM with feedback adaptation requires an instantaneous
method for updating its predictor, based only on transmitted residual samples. Feedforward
ADPCM allows block LPC estimation, but feedback ADPCM with its minimal delay and lack
of side information does not. In instantaneous LPC estimation, a recursive procedure is
necessary to minimize computation. Each new sample updates some intermediate speech
measure (e.g., a local energy or covariance measure), from which the LPC parameters are
revised. Recalculating and inverting the covariance matrix for each speech sample, as in the
block methods, is unnecessary.

6.5.7 Transversal Predictors

The two basic ways to implement a linear predictor are the transversal form (i.e., direct­
form digital filter) and the lattice form. The transversal predictor derives directly from
Equation (6.16) and updates N LPC coefficients ak(n) (the kth spectral coefficient at time n)
as follows:

ak(n + 1) = vak(n) + (1 - v)at + Gk(n + l)e(n + I), (6.35)

where a* is a target vector of coefficients that is approached exponentially in time (depending
on the damping factor v) during silence (i.e., when the LPC error e(n) = 0) and G is an
"automatic gain control" vector (based on the N previous speech samples) that controls the
model adaptation. The gradient or least-mean-square (LMS) approach assigns simple values
to G:

G ( )
= s(n - k)

k n N-l

C + L wis2(n - i-I)
;=0

(6.36)

where the denominator is simply a recent speech energy estimate (with weighting controlled
by a damping factor w) and C is a constant to avoid division by zero during silence.
Alternatives to the gradient approach, e.g., the Kalman algorithm, trade more computation for
G against more accurate LPC coefficients [2, 42].
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6.5.8 Lattice LPC Models
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The lattice method for LPC typically involves both a forward and a backward
prediction [43]. (These should not be confused with feedforward and feedback adaptation
ofwavefonn coders.) Block LPC analysis uses only forward prediction (i.e., the estimate s(n)
is based on p prior samples of s(n», but the estimation can be done similarly from p ensuing
samples in a form of backward "prediction." Consider am(n) to be the unit-sample response
of a fixed Am(z), the inverse LPC filter for a block of data at the mth stage of the Durbin
recursion (Equation (6.31» (i.e., for an nt-pole model). The usual (forward) error signalj~(n)

is the convolution of s(n) with anr(n). Applying Equation (6.3lc),

f,,1(n) = s(n) * am-l(n) - kms(n) * am_ l (nl - n), (6.37)

whose first term is the forward error from an (m - 1)th predictor and whose second term is a
parallel backward error. Assigning bm(n) to this backward error yields a recursion formula:

where

n

bm(n) = s(n) * am(m - n) == L s(l)am(m - n + I).
/=n-m

(6.38)

(6.39)

Shifting index I by n - m samples and noting that am(O) = 1 (from Equation (6.18», we
obtain

m

bnr(n) = s(n - m) - L am(l)s(n - m + I),
/=1

(6.40)

which has the interpretation of predicting sample s(n - m) from m ensuing samples of s(n)
(note the similarity to Equation (6.19». The same set of m + 1 samples is involved in both the
forward prediction ofs(n) and the backward prediction ofs(n - m). The recursion formula for
the mth stage of backward prediction can be derived in similar fashion:

(6.41)

The recursion Equations (6.38) and (6.41) lead to the lattice flow diagram of Figure
6.l5(a), with initial conditions of fo(n) = bo(n) = s(n); i.e., using no predictor gives an
"error" equal to the speech signal itself. The corresponding synthesis filter in Figure 6.15(b)
can be derived directly from the same recursion equations by viewing Equation (6.38) as

(6.42)

The lattice synthesizer has the same form as one of the vocal tract models in Chapter 3,
viewed as a lossless acoustic tube of p sections of equal length with uniform cross-sectional
area Am within each section. The reflection coefficients km could specify the amount of plane
wave reflection at each section boundary:

A -Ak = m m-l.
m Am +Am- 1

(6.43)

Efforts to relate these km (obtained from speech) to corresponding vocal tract areas, however,
have met with only limited success because (a) natural vocal tracts have losses, and (b)
standard models using km must locate all losses at the glottal or labial ends [44]. If glottal
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Figure 6.15 Lattice filters: (a) inverse filter A(z), which generates both forward and backward
error signals at each stage of the lattice; (b) synthesis filter l/A(z).

pressure can be measured (e.g., through skin accelerometers attached to the throat) in addition
to the speech signal, then accurate vocal tract shapes can be determined automatically [45].

Applying z transforms to Equation (6.37), we have

(6.44)

If S(z) is temporarily considered as unity (i.e., to find the filter's unit-sample response, using
s(n) = b(n», then Fm(z) = Am(z), yielding a recursion formula for the mth stage of the LPC
inverse filter via the reflection coefficients:

(6.45)

(6.46)

Minimizing the forward energy over an appropriate time window, Equation (6.38) gives

k f _ E[fm(n)bm(n - 1)]
m+l - E[b~(n - 1)] ,

where E[ ] means expectation (averaging), k!, denotes the reflection coefficient obtained using
forward error minimization at the mth stage of LPC lattice analysis, and k£+l is equal to the
ratio of the cross-correlation between the forward and backward errors to the backward error
energy. Equivalently, minimizing the backward error energy leads to

kb _ Elfm(n)bm(n - 1)]
m+l - E[f~(n)] , (6.47)

the ratio of the cross-correlation to the forward error energy. The disadvantage of both
approaches is that neither guarantees that km < 1 for all m, although it can be shown that
either k!, or ~ must be so bounded for each m.
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For instantaneous adaptation of LPC coefficients obtained via the lattice approach, the
ltakura and Burg methods [33, 46] are popular. The ltakura method follows directly from the
Levinson-Durbin recursion and defines the reflection coefficients as

k _ E[fm-l(n)bm-1(n - 1)]

m - {E[f~_1 (n)]E[b~_l (n - 1)]}l/2 '
(6.48)

i.e., the partial correlation between forward and backward error signals, normalized by their
energies. As PARCOR coefficients, the km ::s 1, thus guaranteeing stable synthesis filters
(even when using quantized coefficient values and finite-wordlength computation [24]).

Windowing the error instead of the speech signal suggests an adaptive method to update
the model sample by sample. The Burg technique minimizes

00

Em = L w(n)[f~(n) + b~(n)],
n=-oo

(6.49)

where the w(n) error window could be rectangular (as in the Itakura method) or shaped so that
more recent speech samples are weighted more heavily, e.g., simple real-pole filters of the
form

1
W(z) = (1 _ [3z-1l · (6.50)

(Good-quality speech results when L = 3 and f3 = 1 - (IOOL/Fs ) [47].) This leads to
reflection coefficients involving the ratio of the cross-correlation between the forward and
backward errors to the average of the two error energies:

(6.51)

Coefficient magnitudes are bounded by unity if w(n) > 0 (over its finite duration). Figure 6.16
illustrates how the reflection coefficients for time n + 1 can be obtained from the immediately
prior error samples. The filter memories for W(z) retain the necessary information about
earlier speech samples in the window. See [2, 48] for alternative least-squares (LS)
approaches. Two-bit (16 kbit/s) ADPCM with fourth-order adaptive prediction performs
best with the LS lattice approach, which yields SEGSNR of 15 dB, about 1-2 dB better than
nonadaptive or other adaptive methods [2].

Square t--_~~

Square ..----~~

Numerator
w(z) ...------.

w(z) t--------'

Denominator

Figure 6.16 Adaptive estimation of reflection coefficients (only the mth stage of p
identical stages is shown).
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Traditional lattice methods, updating the LPC parameters every sample, require 5p
multiplication operations per speech sample (where p is the LPC order), compared to p
multiplies/sample in calculating the autocorrelation or covariance matrices in the block
approaches. (This assumes that each sample is used in one matrix calculation, i.e., in
nonoverlapping blocks ofdata, and ignores the matrix inversion for N » p, which adds O(P2)
or O(P3) multiplies.) Similarly, three memory locations per sample (to store the forward and
backward errors, and the speech) are needed in the lattice approach, compared with one
location per sample for the other methods. More efficient techniques, however, exist, for
block-lattice LPC analysis, making that approach computationally comparable to other block
estimation LPC [46].

6.5.9 Window Considerations

Both window size N and order p should be small to minimize calculation in LPC
analysis. However, since p is usually specified by the speech bandwidth, only N allows any
flexibility to trade off spectral accuracy and computation. Due to windowing distortion, the
autocorrelation LPC window must include at least two pitch periods for accurate spectral
estimates (20-30 ms typically, to guarantee two periods even at low FO). In the lattice and
covariance methods, the lack of signal windowing theoretically allows windows as short as
N =p, but spectral accuracy usually increases with larger N. The major difficulty with short
windows concerns the unpredictability of the speech excitation signal u(n). The LPC model
predicts a speech sample based on p prior samples, assuming that an all-pole vocal tract filter
describes the signal. It makes no attempt to deconvolve s(n) into h(n) and u(n) and cannot
distinguish vocal tract resonances and excitation effects. The poles of the LPC model
correspond primarily to vocal tract resonances but also account for the excitation disturbance.

Most LPC analysis is done pitch-asynchronously, i.e., without regard for FO; e.g.,
adaptive lattice techniques evaluate for every sample, and block methods usually examine the
sets of N samples which are shifted periodically by N or N /2 samples. This leads to poorer
spectral estimation when pitch epochs (the large initial samples of periods, which are
unpredictable for small p) are included during an analysis frame. The problem is worse
when N is small because some analysis frames are then dominated by poorly modeled
excitation effects. Spectral accuracy improves if N is large enough to contain a few pitch
periods, because the LPC model is good for speech samples in each period after the first p
(i.e., after the first p samples, s(n) is based on prior samples that all include the effects of the
major pitch excitation). Use of a rectangular window to evaluate the error signal pitch­
asynchronously leads to fluctuating spectral estimates, with the size of the variations inversely
related to window length. They can be reduced by using a smooth (e.g., Hamming) window to
weight the error in Equation (6.28) [49], at the cost of some increased computation. Another
possible solution which trades offcomputation for improved spectral estimates, is to eliminate
from the analysis window those speech samples s(n) that lead to values of e(n) exceeding a
specified threshold [50]. These large-error samples (usually near pitch epochs) degrade the
spectral estimates the most. This approach does not need a pitch epoch locator as in pitch­
synchronous methods, but uses less efficient algorithms than the standard autocorrelation or
covariance techniques do.

These problems can be partly avoided by pitch-synchronous analysis, where each
analysis window is fully within a period. This, however, requires an accurate FO estimator
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since short windows yield poor spectral estimation for frames improperly placed. The extra
computation required for (sometimes unreliable) epoch location has deterred most LPC
analysis from using short windows. For rapidly changing speech, however, accurate estimates
require pitch-synchronous techniques [51]. Here, the covariance method is typically used
since (unlike the autocorrelation method) it requires no explicit window that would distort the
signal significantly over short frame analyses of less than one pitch period. The standard Burg
method does not perform well with short windows because its use of both forward and
backward errors presumes similar energy in the two residuals [52]. A modified Burg
technique, which weights the instantaneous LPC error with a tapered window prior to
error minimization, yields spectral estimates approaching those of the covariance method,
except that formant bandwidths are underestimated [53].

6.5.10 Modifications to Standard LPC

The standard forms of all-pole LPC analysis, minimizing the energy in the error signal
over a time window, are simple and computationally efficient. However, their spectral
estimates are flawed due to inherent limitations in the procedure. Zeros in the speech
spectrum can only be approximately modeled by poles, and their presence causes the pole
estimates to deviate from actual formant values. Not accounting for vocal tract excitation in
pitch-asynchronous LPC analysis leads to vocal tract estimates that vary with the fine
structure of the speech spectrum. Such structure depends on environmental noise and the
choice of analysis window as well as on the actual vocal tract excitation. Placement of the
analysis window not aligned with a pitch period causes variation in LPC parameters even
during stationary speech [54], which can cause warbling in LPC speech.

The problem of poor spectral estimation is especially acute for high-FO voices, where
several pitch impulses occur in a typical analysis frame and few harmonics are available to
define the center frequencies and bandwidths of the crucial F I-F2 formants, When one
harmonic dominates a formant, LPC often incorrectly places a pole frequency to coincide
with the harmonic, Synthesis based on such parameters is usually poor when FO deviates from
its original values, as when FO is quantized or when an alternate FO counter is used.

Basic LPC analysis weighs high-amplitude frequencies (e.g., harmonic peaks) more
than spectral valleys, which corresponds well with perceptual resolution. For high-FO voices,
however, the weighting could be adjusted to improve spectral estimates and vocoder speech
quality. One could compress the amplitude of the speech spectrum before LPC analysis (e.g.,
by taking its cube root) [55]. This, however, may require a preliminary OFT and inverse OFT
on the windowed speech signal (before and after the root operation, respectively) to obtain a
transformed autocorrelation signal for LPC analysis. In a vocoder application, two more
DFTs in the synthesis stage would be needed to compensate for the spectral distortion of the
analysis stage.

A less costly way is to identify the harmonic peaks (through FO estimation and a peak
picking operation on the speech spectrum) and to transform the ragged speech spectrum
IS(ejW)1 (with ripples due to the fine structure of the harmonics) into a smooth approximation
of the vocal tract spectrum IH(eJl!J)1 via parabolic interpolation of the peaks [55]. Such a
transformation preserves the basic shape of the spectral envelope, eliminating most of the
fine-structure interference. After an inverse DFT, the resulting autocorrelation function can be
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used as input to standard autocorrelation method LPC analysis. For high-FO voices, this
approach improves spectral estimation and speech quality at the cost of extra computation.

Another approach, called Perceptual Linear Prediction (PLP), is useful for speech
recognition. It follows some auditory phenomena in modifying basic LPC, e.g., using a
critical-band power spectrum with a logarithmic amplitude compression. The spectrum is
multiplied by the equal-loudness curve and raised to the power 0..33 to simulate the power law
of hearing [56, 57]. Seventeen critical-band (CB) filters equally-spaced in Bark z,

map the range 0-5 kHz into 0-17 Bark. Each CB is simulated by a spectral weighting,

for z ~ Yk'
for Yk < z < Yk + 1,
for Z ~ Yk + 1,

where Z/c are the center frequencies (roughly, 1, 2, ... 17 Bark) and Yk = Zk - 0.5 (the zeroth
filter is arbitrarily set equal to the first filter). The 10 dB/Bark roll-off for low frequencies and
-25 dB/Bark roll-off for high frequencies matches typical CB filters. A fifth-order PLP can
suppress speaker-dependent aspects of the speech spectrum, leading to improved speech
recognition.

A related auditory-based analysis method called Ensemble-Interval Histograms (EIH)
models synchrony phenomena with 85 cochlear filters equally spaced in log-frequency in the
200-3200 Hz range. It has seen some success in speech recognition. Another similar
technique is the correlogram, which shows a series of short-time autocorrelations of
auditory-neuron firing rates [58]. The ERB-scale (equivalent rectangular bandwidth) is yet
another frequency scale of practical relevance, motivated by auditory phenomena [59].

In noisy conditions, doing LP analysis on part of the autocorrelation vector (rather than
on the speech itself) has been shown to yield more robust parameters. One version of this
method [60] models the magnitude spectrum of a one-sided (i.e., causal) autocorrelation (this
involves the Hilbert transform); the benefit comes from an enhancement of peaks in the
spectrum, at the expense of noise-corrupted valleys. Basic LPC models peaks rather than
valleys, due to the use of the mean square error as a criterion; this method raises the spectrum
to the second power, emphasizing the peaks even more. It and a related method (short-time
modified coherence) [61] require more computation than basic LPC.

6.5.11 EmphasiZing Low Frequencies

Standard LPC weighs all frequencies in the speech spectrum equally, although lower
frequencies are better resolved by the ear and are more important for speech intelligibility
than are higher frequencies. LPC modeling could be improved by combining subband coding
(see Chapter 7) with LPC, which allows LPC analyses of different orders to model different
frequency ranges according to their perceptual importance. Selective linear prediction [25]
models the FI-F3 frequency range with the standard 2 poles/klfz (plus 2-3 poles for general
shaping) and relies on only a few poles for the higher frequencies, where formant structure is
of less importance (Figure 6.17). The filtering problems of subband coding, however, reduce
the advantages of this approach.
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Figure 6.17 Speech spectrum (ragged line) and LPC spectrum (smooth line), correspond­
ing to a 14-pole LPC analysis in the 0-5 kHz region and a 5-pole analysis in
the 5-10 kHz region. (After Makhoul [25] ~£) IEEE.)
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Other ways to emphasize low frequencies in LPC analysis include modifying the error
function or warping the frequency axis (as in PLP) following the perceptually based mel or
Bark scale. Minimizing the standard LPC error treats all frequencies equally; attempts to
utilize a frequency-weighted error without substantially increasing computation have been
partially successful [54, 62]. If frequency is warped with an all-pass transformation (a
standard procedure in designing digital filters [6]), DFTs and inverse DFTs are not needed,
thus reducing additional computation [63]. Such frequency-warping, however, appears to
yield improved speech quality only for very-low-order LPC vocoders (e.g., p < 8 for 4.8 kHz
bandwidth speech). In standard LPC analysis, too Iowan order causes perceptually important
lower formants to be inadequately modeled; but in frequency-warping LPC, the low­
frequency range takes on increased significance in proportion to the degree of the warping.
Frequency warping appears useful only where bit rate constraints impose a low order on the
LPC model.

In some applications, the behavior of the LPC inverse filter A(e)W) is of concern at high
frequencies, where very high gain is possible if most of the energy near t» == 1r has been
eliminated during the lowpass filtering of the original analog speech (prior to AID
conversion). In some coders, a predictor P(e)W) == 1 - A(e)W) is usually placed in a feedback
loop around a quantizer, which filters coarsely quantized speech samples. The quantization
adds broadband noise (including energy around w == 1£) to the input of the predictor filter,
which yields an output with unwarranted large gains at high frequencies. One solution is to
add a small amount of highpass noise to the digitized speech for input to the LPC analysis
(ideally the noise spectrum should be the complement of the AID lowpass filter spectrum)
[49]. The noise is used only in determining A(z), not in the actual waveform coding.

6.5.12 Pole-Zero LPC Models

Almost all applications of LPC use the all-pole (AR) model. By not modeling zeros
directly, the analysis equations (e.g., Equation (6.24») are linear and have symmetries that
reduce computation. Pole-zero (ARMA) models require solution of nonlinear equations to
obtain the optimal set of parameters [64]. Since the quality of ARMA speech is only slightly
better than AR speech [65], pole-zero modeling is rarely used for coding. ARMA has
however shown good results in formant and voicing estimation [66], and can handle lossy
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vocal tract models [67]. It has also been suggested for processing noisy speech [68], since the
all-pole AR model is less valid in noise. Faster special-purpose hardware may increase use of
ARMA in the future [69].

Approaches to ARMA modeling may trade off strict optimality in spectral representa­
tion and computation time. For instance, one method involves a two-step procedure that
locates the poles first by a standard AR technique and then models the spectral inverse of the
residual signal with a second AR model [70]. The residual after the first AR model
presumably contains the effects of the zeros; thus, inverting its spectrum provides the input
for a second all-pole modeling. Solving for the poles and zeros sequentially is efficient but
does not guarantee that the pole-zero locations obtained would be those of a simultaneous,
optimal solution.

A major difficulty in ARMA modeling is determining the order of the model, i.e., how
many poles and zeros to use. A poor choice of model order leads to inaccurate estimation of
both poles and zeros [71]. One study of 4.8 kHz male speech suggests using ten poles for
voiced sounds and only five poles for unvoiced consonants, plus three zeros for the latter and
five zeros for nasals [72]. The magnitude spectrum of any type of speech with 4 kHz
bandwidth can be very accurately modeled with a high-order all-pole model, e.g., 40-50
poles [73]. In such a model, strong harmonics are directly approximated by pairs of poles.
One may decompose such a high-order model C(z) into low-order polynomials:

r -k Q(z)
C(z) = L Ck Z = PC ) ,

k=l Z
(6.52)

where Q(z) represents the zeros and P(z) represents the poles, both with order much less than
r ~ 45. Assumingp poles and q zeros, the problem reduces to solvingp + q linear equations
involving the high-order LPC coefficients ci, with a cross-correlation between the high-order
residual signal and the original speech, and autocorrelations of the speech and the error
signals [73]. Requiring 4-7 times as much computation as AR analysis, this ARMA method
yields accurate results.

6.6 CEPSTRAL ANALYSIS

In speech analysis we usually estimate parameters of an assumed speech-production model.
The most common model views speech as the output of a linear, time-varying system (the
vocal tract) excited by either quasi-periodic pulses or random noise. Since the easily
observable speech signal is the result of convolving excitation with vocal tract sample
response, it would be useful to separate or "deconvolve" the two components. While
unfeasible in general, such deconvolution works for speech because the convolved signals
have very different spectra.

One step in cepstral deconvolution transforms a product of two spectra into a sum of
two signals. If the resulting summed signals are sufficiently different spectrally, they may be
separated by linear filtering. The desired transformation is logarithmic, in which
10g(EV) = log(E) + log(V), where E is the Fourier transform of the excitation waveform
and V is the vocal tract response. Since the formant structure of V varies slowly in frequency
compared to the harmonics or noise in E, contributions due to E and V can be linearly
separated after an inverse Fourier transform.
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6.6.1 Mathematical Details of Cepstral Analysis
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Consider a simple signal x(n) = anu(n) and its z transform X(z) = I I( 1 - az- 1
) , with a

pole at z == a and a zero at z == O. For 10g(X(z» in a power series,

OC an
10g(X(z» == L _z-n,

n=l n
if [z] > lal. (6.53)

(A similar expansion holds for n < 0, if the region of convergence is Izi < lal.)The complex
cepstrum .r(n) (the circumflex notation is often used to denote cepstra) is the inverse transform
of 10g(X(z». In this example,

an
wr(n) == - - u(n - 1)

n
(6.54)

by simple inverse z transform, term by term. Thus x(n) retains its exponential form in x(n),
except for a more rapid decay due to the lin factor.

Because the logarithm of a product equals the sum of the individual log terms, a more
complicated z transform consisting of several first-order poles and zeros results in a complex
cepstrum that is the sum of exponential terms, each decaying with the extra 1In factor. Since
log( 1IA) = - 10g(A), the only difference between the effect of a pole and that of a zero in the
complex cepstrum is the sign of the power series. The equal treatment of poles and zeros is an
advantage for cepstral modeling (vs all-pole LPC).

For a more general X(z) (e.g., speech) that converges on the unit circle, poles P« and
zeros Zk inside the unit circle contribute linear combinations of plein and -z'kln, for n > 0,
while corresponding poles ak and zeros bk outside the unit circle contribute summed terms of
the form -p'kln and ='kIn, for n < O. The complex cepstrum is of infinite extent, even if x(n)
has finite duration. However, given a stable, infinite-duration x(n), x(n) decays more rapidly in
time than the original x(n):

pln l
Ix(n)1 < ~-,

Inl
for Inl ~ 00, (6.55)

where ~ is a constant and f3 is the maximum absolute value among all Pr- Zk' Ilak' and I/bk

(which corresponds to the closest pole or zero to the unit circle).
For speech, the closest pole involves F1, which has relatively narrow bandwidth and

dominates the rate of amplitude decay in most pitch periods. While many periods in speech
s(n) have time constants about 10-30 ms, the lin factor in Eq. (6.54) causes s(n) to decay
rapidly within a few milliseconds of n = 0. This is in distinct contrast to the excitation
component e(n) of voiced speech s(n), which may be viewed as the convolution ofa sample
train e(n) (where N = pitch period) and the vocal tract response v(n) (including glottal
effects). Using Fourier transforms (for convergence when using impulse signals), recall that
E(el'") is a uniform train of impulses with frequency spacing of 2nlN. Taking the logarithm
of the Fourier transform affects only the areas of the impulses, not their spacing. Thus the
complex cepstrum e(n) retains the same form as e(n), i.e., a sample train of period N. Since
S(z) = E(z)V(z), 10g(X(z) = log(E(z» + 10g(V(z» and s(n) = e(n) + v(n). With v(n) decay­
ing to near zero over its first few milliseconds and e(n) being nonzero only at n = 0, ±N,
±2N, ±3N. . . . , the two functions are easily separated via a rectangular window. A suitable
boundary for that window would be the shortest possible pitch period, e.g., 3-4 ms.
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The duration and shape of the speech analysis window w(n) can have a significant effect
on the cepstrum. The simple discussion above must be modified, since the signal under
analysis is

x(n) = s(n)w(n) = [e(n) * v(n)]w(n).

Much research has assumed that Equation (6.56) can be approximated by

x(n) ~ [e(n)w(n)] * v(n),

which is valid for impulsive e(n) (as in voiced speech) only if

w(n) ~ w(n + M),

(6.56)

(6.57)

(6.58)

where M is the effective duration of v(n). Unfortunately, typical cepstral analysis windows
tend to violate Equation (6.58). As a result, the vocal tract contribution to the cepstrum is
repeated every pitch period and is subject to a double sine-like distortion [74]. Applications
using the windowed cepstrum should compensate for this distortion and should employ a
cepstral window no larger than half the expected pitch period to avoid aliasing.

6.6.2 Applications for the Cepstrum

(6.59)

Applications for cepstral analysis occur in speech vocoders, spectral displays, formant
tracking (Figure 6.18), and FO detection [75]. Samples of x(n) in its first 3 ms describe v(n)
and can be coded separately from the excitation. The later is viewed as voiced ifx(n) exhibits
sharp pulses spaced at intervals typical of pitch periods, and the interval is then deemed to be
I/FO. If no such structure is visible in x(n), the speech is considered unvoiced. The Fourier
transform of v(n) provides a "cepstrally smoothed" spectrum, without the interfering effects
of e(n) (see Figure 6.18).

In practice, the complex cepstrum is not needed; the real cepstrum suffices, defined as
the inverse transform of the logarithm of the speech magnitude spectrum:

1 J27tc(n) = -2 logIX(e1"w)le1"wn dco.
1t w=o

For real signals x(n), c(n) is the even part of x(n) because

X(dW
) = log(X(e jW» = log IX(e jW)1 + jarg[X(e1"W)] (6.60)

(6.61 )for n = 0, I, ... , N - 1.

and the magnitude is real and even, while the phase is imaginary and odd. In cepstral speech
coding, as in other coding techniques (see Chapter 7), the phase may be discarded for
economy, at the risk of some degradation in output speech quality.

To render the cepstrum suitable for digital algorithms, the DFT must be used in place of
the general Fourier transform in Equation (6.59):

1 N-I

cd(n) = N k'fo )ogIX(k)lei2d :n/N

Replacing X(eiW) with X(k) is equivalent to sampling the Fourier transform (multiplication
by an impulse train) at N equally spaced frequencies from co = 0 to 21t. Including the inverse
DFT, the net effect is to convolve the original c(n) with a uniform sample train of period N:

00

cd(n) = L c(n + iN).
;=-00

(6.62)
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Figure 6.18 Automatic formant estimation from cepstrally smoothed log spectra. (After
Schafer and Rabiner [9].)

Thus, the "digital" version cd(n) of the cepstrum contains copies of c(n), at intervals of N
samples. The resulting aliasing is not important if N, the duration of the DFT analysis
window, is large enough. N is usually a few hundred samples, which more than suffices to
eliminate any aliasing problem in the v(n) part of the cepstrum. The e(n) components for
voiced speech extend into the high time range of c(n), though, and may cause aliasing
problems for cd(n). Typically, however the analysis frame contains a few pitch periods that are
sufficiently nonidentical to cause the impulses in e(n) to be of lower amplitude as n increases.
This minimizes the interference of aliased copies of c(n) on the copy of interest near n = O.

The cepstrum has not been popular for speech coding due to its computational
complexity. Two DFTs and a logarithm operation are needed to obtain c(n), which is
windowed to separate v(n) and e(n). Then inverse operations (two more DFTs and an
exponential) reconstruct v(n), which is convolved at the synthesis stage with a synthetic e(n)
to generate output speech. In addition, good-quality speech has required coding up to 3 ms of
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c(n), which involves more stored samples/s of speech than other coding approaches, for
comparable quality.

Cepstral analysis is more practical for FO or formant estimation (especially in speech
recognition) since response reconstruction is unnecessary. A further application for cepstra is
the elimination of fixed-time echos in speech signals, e.g., in the telephone network. An echo
in a speech signal x(n) can be modeled as convolution with J(n) +AJ(n - N), where A is the
percentage of echo and N is the number of samples in the echo delay. The effect is similar to
that of periodic e(n) samples exciting v(n), with the echo introducing into c(n) a set of
impulses, decaying in amplitude with time n and spaced at intervals of N samples. A comb
filter, with notches located at multiples ofN, can eliminate the echo effects in c(n), which can
then be converted back into speech, much as in the manner of a cepstral speech coder. This
procedure works best when the echo delay N is fixed (so that the comb filter need not be
dynamic) and when N is outside the range where c(n) would be significantly nonzero; e.g., an
echo at a pitch period interval would result in whispered output speech after comb filtering.

Several modifications to basic cepstral analysis have been suggested. One claims to
overcome a tendency for the cepstrum to overestimate formant bandwidths, and accounts for
some auditory traits in a way similar to PLP [76]. "Root cepstral analysis" also has some
potential advantages [77]. Lastly, an LPC spectrum is often used in Equation (6.61) instead of
a DFT, to eliminate FO effects.

6.6.3 Mel-Scale Cepstrum

The most popular analysis method for automatic speech recognition uses the cepstrum,
with a nonlinear frequency axis following the Bark or mel scale. Such mel-frequency cepstral
coefficients cn (MFCCs) provide an alternative representation for speech spectra which
incorporates some aspects of audition. An LPC or DFT magnitude spectrum S of each
speech frame is frequency-warped (to follow the bark or critical-band scale) and amplitude­
warped (logarithmic scale), before the first 8-14 coefficients c; of an inverse DFT are
calculated. A common approach [78] simulates critical-band filtering with a set of 20
triangular windows (Figure 6.19), whose log-energy outputs are designated Xk ; if M cepstral
coefficients are desired, they are

for n == 1, 2, ... , M. (6.63)

These windows are sometimes called filters, but they simply weight spectral SCi) values across
a frequency index t (i.e., they do not filter time signals).

The initial Co coefficient represents the average energy in the speech frame and is often
discarded (amplitude normalization); Cl reflects the energy balance between low and high
frequencies, positive values indicating sonorants and negative values for frication. (This is due
to the cosine weighting in the final IDFT of the cepstral calculation: for Cl' the one-period
cosine weights the lower half of the log spectrum positively and the upper half negatively.) For
i > 1, c, represent increasingly fine spectral detail (as the cosine with i periods weights shorter
frequency ranges (corresponding to 0.25Fs / i Hz) alternately positively and negatively). As
with LPC at, no simple relationship exists between Cj and formants; e.g., in speech with four
formants, a high C2 suggests high energy in FI and F3 and low energy in F2 and F4, but such
a relationship is only approximate when the formants deviate from their average positions.
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Figure 6.19 Filter bank for generating mel-based cepstral coefficients. (After Davis and
Mermelstein [78] ·r IEEE.)

6.7 OTHER SPECTRAL ESTIMATION METHODS (t)

Since the spectral distribution of speech energy as a function of both time and frequency is
widely considered to be the most important factor in speech production and perception,
analysis applications search for efficient time-frequency representations (TFRs). The Fourier
Transform (FT) and related spectral measures, such as LPC and the cepstrum, are by far the
most common TFRs. This is due to their mathematical simplicity, ease of computation, and
easy interpretation. Spectrographic displays show clearly where energy is concentrated in
two-dimensional time-frequency plots. However, the use of a fixed window for each display
leads to an obligatory compromise for resolution between time and frequency (e.g., good time
and poor frequency resolution in wideband spectrograms). Some alternative TFRs have been
explored for speech analysis to avoid this compromise, at the cost of some loss of ease of
interpretation.

6.7.1 Karhunen--Loeve Transform (KLT)

The objective of speech analysis is usually to reduce the dimensionality of an input
signal vector, while retaining the pertinent information of the vector for applications such as
coding or recognition. Relatively simple transformations such as the FT or LPC are most
common. However, as computers increase in capacity, more complex algorithms become
feasible. The KLT has the advantage of being optimal in compressing a vector, but is
expensive in computation. For KLT, an N-dimensional speech vector X is converted to a set
of N eigenvectors <Pj and N corresponding weights (eigenvalues) Aj . The ~ can be rank­
ordered in terms of the relative energy (and thus perceptual importance) of each <Pj (the <Pj act
as basis functions). The FT is a special case of the KLT, where <Pj are harmonically related
sinusoids (where FOcorresponds to the frame length). The more general KLT allows different
<Pj for each frame of data, which usually yields a much more efficient choice of basis
functions. As a result, the speech frame can be very compactly represented by a few
eigenvectors. As an example, suppose the input vector is one pitch period of a voiced speech
signal; the KLT would likely select damped sinusoids (corresponding to the formants) as
eigenvectors, and the eigenvalues would decrease in value with frequency (that for Fl being
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highest), following the usual spectral tilt of voiced speech. Since formants and FO are so
dynamic, the simpler FT uses undamped harmonically related sinusoids usually with no
correlation to FO; as such, the spectral information is widely spread throughout the Fourier
coefficients. The KLT, while costly in determining a new set of <Pj for each frame, has a much
more compact representation. Due to its need for much calculation, it has not had wide
application in speech processing [79].

6.7.2 Wavelets

The logarithmic scale seems to play an important role in speech production and
especially in perception. The decibel, mel, and semitone scales correlate better with
perception than do linear scales for energy and frequency. The ear's resolution decreases as
energy and frequency increase. The decibel scale easily handles the nonlinearity for energy,
but most spectral displays retain a fixed analysis bandwidth for simplicity. The wavelet

transform (WT) replaces the fixed bandwidth of the FT with one proportional to frequency
(i.e., constant Q), which allows better time resolution at high frequencies than the FT
(especially for brief sounds). The resulting loss of frequency resolution as frequency increases
is acceptable in most applications. The discrete WT for a speech signal s(n) is

00

WTn(k) = L s(m)y(n, m, k).
m=-oo

(6.64)

The WT simply replaces the frequency-shifted lowpass filter e-j21tkm/Nw(n - m) of the FT
with a wavelet y(n, m, k). Both the FT and WT preserve time shifts (i.e., a delayed speech
signal simply delays the spectral representation), but the WT replaces the FT's preservation of
frequency shifts with one of time scaling instead. The most common wavelet has the form
y(n, m, k) = y«m - n)k); y(n) is usually a bandpass function (often Gaussian-shaped)
centered in time around n = O. Since the WT suffers the same basic problem of trading
time and frequency as does the FT, its application to speech has been limited [80-82] (see
however a recent coder [83]).

6.7.3 Wigner Distribution

While the linear properties of the FT and WT are very useful, their inherent time­
frequency trade-off is often a problem. The choice of the length of the FT fixes a constant
time and frequency resolution; the WT gives good time resolution at high frequencies and
good frequency resolution at low frequencies (which may correspond better to human
perception). The basic trade-off nonetheless remains. A class of quadratic TFRs, of which
the Wigner (or Wigner-Villes distribution (WD) is prominent, is able to show fine resolution
in time and frequency simultaneously, but at the cost of significant interference terms (ITs) in
the representation, as well as negative values, which hinder their interpretation. Linear TFRs
(e.g., the FT) have the advantage that the distortion of ITs for multicomponent signals (e.g.,
speech, with its many harmonics) is limited to the time and frequency ranges where the
components overlap. Energy in spectrograms is smeared in time or frequency over a range
depending on the analysis bandwidth, but the smearing is local and often easily tolerated in
visual or algorithmic interpretation. In quadratic TFRs, ITs go beyond simple smearing to
appear at distant time and frequency locations (typically at points corresponding to averages
in time or frequency). With a priori knowledge about the nature of the components in an
input signal (e.g., harmonics), distant ITs may sometimes be attenuated, but in general the
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interpretation and use of quadratic TFRs are more complicated than for the common linear
TFRs.

Given the importance of energy in speech analysis, a quadratic TFR is desirable, but the
power or energy spectrum contains cross-terms that do not occur in the linear FT. For a signal
with N components s(n) == L~l s;(n), the power spectrum has N desired tenus (the FT of
each s;(n)) and (N 2 - N)j2 (undesired) cross-terms (the FT of2s;(n)sj(n) for each i =1= j). The
large number of cross-ITs hinders use of quadratic TFRs. There is a general compromise
between good time-frequency concentration (e.g., in the Wigner distribution) and small ITs
(e.g., in the FT). The WD has many desirable mathematical properties [81], e.g., it is real­
valued, preserves time and frequency shifts, and can be viewed as a two-dimensional display
of energy over the time-frequency plane:

W(t,f) = lS(t + rj2)s*(t - r/2)exp(-j2rift)dr = t S(f + vj2)S*(f - vj2)exp(j2nvt)dv.

(6.65)

The ITs of the WD are oscillatory in nature, and thus can be attenuated by smoothing.
A smoothed WD trades decreased ITs for some broadening of time-frequency concentration;
the Choi-Williams distribution is a popular version. It is doubtful that wavelets or quadratic
TFRs will displace the FT [13, 84], which remains the primary basis of speech analysis. A
recent application to speech (minimum cross-entropy time-frequency distribution) shows
promise, but at high cost [85].

6.7.4 Other Recent Techniques

The search for better analysis methods has led to nonlinear techniques [86], which
sacrifice simplicity and efficient calculation to obtain more compact or useful representations
of speech. One motivation for nonlinear analysis is that, as a random process, speech is not
Gaussian, and thus has non-zero third-order (and higher) moments (Gaussians are fully
described by their mean and variance). Relatively little speech research has explicitly
exploited third- and higher-order statistics ("cumulants") [87]. Linear models cannot
handle higher-order statistics of this sort. In particular, apparently random aspects of
speech (e.g., in the residuals of LPC) may be due to chaos (and hence predictable with
nonlinear models) [88]. In most cases, the added cost of nonlinear methods and the small
modeling gains (e.g., 2-4 dB in SNR [88]) have limited their application (e.g., nonlinear
prediction is much less used than LPC [89]). Recent analysis methods from other domains
(e.g., fractals [90]) often do not apply easily to speech, although a recent coder reports good
results [91].

6.8 FO ("PITCH") ESTIMATION

Determining the fundamental frequency (FO) or "pitch" of a signal is important in many
speech applications. (Although pitch is perceptual, and what is being measured is actually FO,
the estimators are commonly called "pitch detectors.") In voiced speech the vocal cords
vibrate; "pitch" refers to the percept of the fundamental frequency of such vibration or the
resulting periodicity in the speech signal. It is the primary acoustic cue to intonation and
stress in speech, and is crucial to phoneme identification in tone languages. Most low-rate
voice coders requires accurate FO estimation for good reconstructed speech, and some
medium-rate coders use FO to reduce transmission rate while preserving high-quality speech.
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FO patterns are useful in speaker recognition and synthesis (in the latter, natural intonations
must be simulated by rule). Real-time FOdisplays can also give feedback to the deaf learning
to speak.

FOdetermination is fairly simple for most speech, but complete accuracy has eluded the
many published algorithms, owing to speech's nonstationary nature, irregularities in vocal
cord vibration, the wide range of possible FO values, interaction of FO with vocal tract shape,
and degraded speech in noisy environments [26, 92, 93]. Instrumental methods can estimate
FO using information other than the speech signal, e.g., by measuring the impedance of the
larynx as the vocal cords open and close through the use of contact microphones or
accelerometers attached to the body, or via ultrasound or actual photography of the vocal
cords. Most FOdetectors, however, are algorithms using only the speech signal as input. They
often yield a voicing decision as part of the process, in which up to four classes of speech can
be distinguished; voiced, unvoiced, combined (e.g., /z/), and nonspeech (silence, or back­
ground noise). Unlike FO estimation, voicing determination (involving discrete categories)
appears well suited to pattern recognition techniques [94, 95]. Voicing estimates can be
accurate to about 95°A, if SNR exceeds 10dB, but fail for SNR below 0 dB [96]. While
voicing decisions are often a by-product of FO estimators, better accuracy can result with
separate algorithms.

FO can be determined either from periodicity in time or from regularly spaced
harmonics in frequency. Time-domain FO estimators have three components: a preprocessor
(to filter and simplify the signal via data reduction), a basic FO extractor (to locate pitch
epochs in the waveform), and a postprocessor (to correct errors). The algorithms try to locate
one or more of the following aspects in the speech signal: the fundamental harmonic, a quasi­
periodic time structure, an alternation of high and low amplitudes, or points of discontinuities.
Harmonics and periodicities usually provide good results but fail in certain instances. The FO
algorithms trade complexity in one component for that in another; e.g., harmonic extraction
requires a complex filter as preprocessor but allows an elementary basic extractor that may
simply count zero-crossings of the filtered speech. Nonzero thresholds and hysteresis are used
in postprocessing to eliminate irrelevant zero-crossings. The preprocessor is often a simple
lowpass filter, but problems in choosing its cutoff frequency arise due to the large range of
possible FO values from different speakers.

Frequency-domain methods for FOestimation involve correlation, maximum likelihood,
and other spectral techniques where speech is examined over a short-term window. Auto­
correlation, average magnitude difference, cepstrum, spectral compression, and harmonic
matching methods are among the varied spectral approaches [92]. They generally have higher
accuracy than time-domain methods, but need more computation.

Real-time FO estimators must produce values with little delay. Since most frequency­
domain methods require a buffer of speech samples prior to the spectral transformation, they
are not as fast as those operating directly on the time waveform, Some FO detectors can be
modified for speed, but lose the timing of pitch periods; e.g., periodicity (and the duration of
the period) can be evaluated more quickly than finding the actual locations of periods. Such
FO estimators do not output period times (useful for segmentation purposes) but yield period
durations suitable for applications such as voice coders.

6.8.1 Time-Domain FO Techniques

FO estimation seems simple; humans, especially trained phoenticians, can easily
segment most speech into successive pitch periods. Since the major excitation of the vocal
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tract for a pitch period occurs when the vocal cords close, each period tends to start with high
amplitude (referred to as an epoch) and then to follow a decaying-amplitude envelope. Since
voiced speech is dominated by first-formant energy, the rate of decay is usually inversely
proportional to the F I bandwidth. Except when speech has short periods or a narrow F1,
sufficient decay allows epoch location by simple peak-picking, with some basic constraints on
how long periods may be. If speakers may range from an infant or soprano singer to a deep
baritone, possible pitch periods extend from less than 2 ms to more than 20 ms, i.e., a range
> 18 ms, although typical ranges are smaller, e.g., about 6 ms for adult males. The rate of FO
change is limited; in a voiced section of speech, FO usually changes slowly with time, rarely
by more than an octave over 100 ms. Before applying such continuity constraints, one must
find reliable pitch periods within each voiced section since FO can change greatly during
unvoiced speech (i.e., the resumption of voicing after a silence or obstruent can have FO very
different from that at the end of the previous voiced section).

Most FO estimation difficulties occur at voiced-unvoiced boundaries, where continuity
constraints are less useful and where pitch periods are often irregular. Other problems are due
to sudden amplitude and formant changes that may occur at phone boundaries. To aid peak­
picking and other methods, the input speech is normally lowpass-filtered in a preprocessing
stage to retain only Fl (e.g., the 0-900Hz range). This removes the influence of other
formants (which confound FO estimation) while still retaining enough strong harmonics to
yield a "cleaner" signal for peak-picking. One approach chooses candidates for epochs with a
variable-amplitude threshold: since all periods exceed 2 ms, the threshold remains high for
2 ms after each estimated epoch, ignoring all signal excursions right after the start of a period,
and then the threshold decays exponentially at a rate typical of pitch periods [97].

A more direct approach filters out all speech energy except the fundamental harmonic
and then detects zero crossings (which occur twice every period for a sinusoid such as the
fundamental). A major difficulty is determining the cutoff for the lowpass filter: high enough
to allow one harmonic from a high-FO voice yet low enough to reject the second harmonic of
a low-FO voice. Secondly, many applications use bandpass-filtered speech (e.g., telephone
speech, which eliminates the 0-300 Hz range), and the fundamental harmonic is often not
present. One solution to this latter problem is to reconstruct the fundamental from higher
harmonics via a nonlinear distortion, e.g., passing speech through a rectifier, which generates
energy at all harmonics.

FO estimation in the time domain has two advantages: efficient calculation, and
specification of times for the pitch epochs. The latter is useful when pitch periods must be
manipulated (e.g., for pitch synchronous analysis, or to reconstruct the glottal waveform)
[27]. FO values alone suffice for many analysis applications, e.g., vocoders. However, systems
that vary speaking rate (speeding or slowing, depending on preferred listening rates) often
delete or duplicate pitch periods, splicing at epoch times to minimize waveform disconti­
nuities. Knowledge of period locations is crucial here, as well as for types of speech synthesis
and coding which concatenate periods. Spectral FO estimators do not provide such informa­
tion, but normally yield more reliable FO estimates.

6.8.2 Short-Time Spectral Techniques

The second class of FO estimators operates on a block (short-time frame) of speech
samples, transforming them spectrally to enhance the periodicity information in the signal.
Periodicity appears as peaks in the spectrum at the fundamental and its harmonics. While
peaks in the time signal are often due to formant (especially F1) interaction with the glottal
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excitation, spectral peaks are usually easier to relate to FO. In these systems, one can view the
spectral transformation as a preprocessor and a spectral peak detector as the basic FO
estimator; a postprocessor then examines estimates from successive frames to correct obvious
errors. These errors could be major, e.g., FO doubling or halving, which result from confusing
FOwith its first harmonic. Doubling tends to occur when the energy level in the fundamental
is weak compared to adjacent harmonics. (FO halving is more common in time-domain
methods, when two periods are mistaken as one.) Since FO cannot physically change one
octave during a frame (typically 10-30 ms), a postprocessor applies continuity constraints to
smooth any estimates out of line with the neighboring FO contour. Fine FO errors of a few
hertz are more difficult to deal with than coarse, major errors (e.g., doubling) and tend to arise
when analysis frames are too short (not containing enough information to specify FO
accurately) or too long (ifFO changes rapidly within the frame). Since many systems evaluate
FOindependently for each frame, fairly simple postprocessing can often significantly improve
performance [26].

These examples illustrate the tradeoffs in choosing frame length. As in other window­
ing applications, the best speech parameters are obtained if the signal is stationary during the
frame. Thus the frame must be short, a few pitch periods at most, since FO may change
rapidly. Abrupt spectral changes at phone boundaries can also affect spectral FO estimators.
The frame must nonetheless contain at least two periods to provide periodicity information.
The precision of FO measurement is proportional to the number of samples in the analysis
frame; thus short frames inherently are more vulnerable to fine pitch errors. The single FO
estimate from each analyzed frame provides an average FO value for that frame.

One complication in FO estimation is caused by phase distortion (found in many
transmission media, e.g., telephony) and by phase differences among harmonics. Since
speech spectral phase has a shift of 1800 near each formant, the harmonics in the 200-900 Hz
range of F1 have phase differences that complicate the waveform and can obscure periodicity
for time-domain FO estimators. One solution is to eliminate phase effects by peak-picking, not
directly on the filtered speech signal, but on its short-time autocorrelation lj>(k) [98]. Recall
that l/J(k) is the inverse Fourier transform of the energy spectrum (i.e., IX(e}W)1 2) and thus sets
the phase of each squared harmonic to zero. Although a time-domain signal, lj>(k) cannot
locate pitch epochs because of phase loss in the short-time analysis.

Since FO estimation, and not faithful reproduction of the power spectrum, is the
objective here, the speech signal is often distorted during preprocessing before autocorrela­
tion to reduce calculation and to enhance periodicity parameters. Center clipping s(n) (Figure
6.20), in which low-amplitude samples are set to zero and the magnitude of high-amplitude
samples is reduced, is sometimes used to improve FO estimation [99]. (Such clipping may,
however, hurt FO detection in noisy speech [100].) A variable clipping threshold, typically
30% of the maximum Is(n)l, must be used to adapt to different speech intensities. Infinitepeak
clipping, which reduces s(n) to a zero-crossing signal, also yields good FOestimation through
autocorrelation and significantly reduces calculation, since all multiplications involve only
zeros and ones. As an alternative to clipping, the signal can be raised to a high power (while
preserving the algebraic sign of each speech sample) in order to highlight peaks in s(n).

Estimating FO directly by trying to locate the fundamental spectral peak is often
unreliable because the speech signal may have been bandpass filtered (e.g., in the telephone
network) or the fundamental may have low energy if Fl is high. The harmonic structure
(spectral peaks at multiples of FO) is a more reliable indicator of FO; the frequency of the
greatest common divisor of the harmonics provides a good FO estimate. Female speech, with
its widely spaced harmonics, often yields more reliable FO estimates than male speech
(sometimes female speech is so dominated by one harmonic as to appear almost sinusoidal).
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Figure 6.20 An example showing how center clipping affects two pitch periods. (After
Sondhi [99] ,r: IEEE.)

One approach measures the separation of adjacent harmonics; an alternative is to compress
the spectrum by integer factors (i.e., compress the frequency scale by factors of two, three,
four, etc.): a sum of these spectra has its strongest peak at FO due to reinforcement of
harmonics shifted down [26, 101].

Another variation is the harmonic-sieve FO estimator. Rather than shift the speech
spectrum, a spectral "sieve" with equally spaced holes is aligned with the spectrum; the
frequency spacing at which the most harmonics line up with holes of the sieve is considered
to be FO. One implementation [102] processes narrowband DFT spectra to simulate the ear's
frequency and temporal resolution in identifying harmonics.

Maximum-likelihood methods provide another FO estimator, which behaves especially
well for noisy speech [103]. One way to determine the period of s(n) in background noise is
to add a delayed version, s(n - D), to the original. When D = l/FO, s(n) + sin - D) is
strong, while the noise (out of phase due to the delay) tends to cancel. Finally, a recent FO
estimator with good results (especially for noisy speech) is based on auditory models [104].

Spectral FO detectors give more accurate estimates than time-domain methods but
require about 10 times more calculation due to the spectral transformation. The transforma­
tion focuses information about speech periodicity in ways that time-domain analysis cannot.
Assuming that voicing determination is part of FO detection, the performance of different
systems can be rated objectively in terms of four types of errors: gross FO errors (e.g.,
doubling), fine FO errors, mistaking a voiced speech frame for unvoiced, and vice versa. No
algorithm is superior in all four categories [93]. Alternatively, the detectors can be evaluated
perceptually by using them in speech vocoders that represent excitation in terms of FO and
voicing decisions. No one type of objective FO error correlates well with the subjective quality
of coded speech, but voiced-to-unvoiced errors appear to be the most objectionable since they
lead to harsh, noisy sounds where periodic sounds are expected [105]. While subjective and
objective measures of FO performance are not well correlated, there does not seem to be a
large range of variation in coded speech quality using different major FO algorithms. A good
choice is probably the computationally simple AMDF (see Section 6.3), which ranks high in
subjective tests, both for speech coders that crucially rely on voicing decisions and for those
more concerned with FO errors [100].
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A speech signal contains information from multiple sources: speaker, recording environment,
and transmission channel. We are usually interested in extracting information about what is
being said (for speech coding or recognition) or who is saying it (for speaker recognition).
Most analysis methods, however, cannot easily distinguish the desired speaker signal from the
unwanted effects of background noise, competing speakers, and the channel. Many analysis
methods degrade as noise increases (e.g., LPC; FO estimation [98]). Chapter 8 will examine
ways to enhance speech signals and Chapter 10 will deal with recognition of noisy signals.
Here we briefly discuss some analysis methods to suppress undesired components in speech
signals.

Some of the "noise" in speech concerns variability on the speaker's part and must be
handled on a stochastic basis, examining much "training" speech to obtain reliable models of
speakers' voices (see Chapter 10). Distortions due to the communication channel and
recording medium usually vary slowly compared to the dynamics of speech. Background
noise (e.g., clicks, pops), on the other hand, often varies more rapidly than vocal tract
movements. Suppressing spectral components of a speech signal that vary more quickly or
slowing than the desired speech can improve the quality of speech analysis.

Often a mean spectrum or cepstrum is subtracted from that of each speech frame (e.g.,
blind deconvolution), to eliminate channel effects. The mean may require a long-term average
for efficiency, which is difficult for real-time applications. Alternatively, the mean is estimated
from a prior section of the input signal thought to be silent; this requires a speech detector and
assumes that pauses occur regularly in the speech signal. If the channel changes with time, the
mean must be updated periodically.

The RASTA (RelAtive SpecTrAl) method of speech processing has been successfully
applied to enhancement and recognition. It bandpasses spectral parameter signals to eliminate
steady or slowly varying components (including environmental effects and speaker char­
acteristics) and rapid noise events. The bandpass range is typically I-10Hz, with a sharp zero
at OHz and a time constant of about 160ms [57, 106]. Events changing more slowly than
once a second (e.g., most channel effects) are thus eliminated by the highpass filtering. The
lowpass cutoff is more gradual, smoothing parameter tracks over about 40 ms, to preserve
most phonetic events, while suppressing impulse noise. When speech is degraded by
convolutional noise, the J-RASTA method replaces the logarithm operation with
Yj = 10g(I + JX;), where j is a critical band index, J depends on the noise level, and X
and Yare the input and output [106].

Another recent analysis method with application to speech recognition is the dynamic
cepstrum [107], which does a two-dimensional (time-frequency) smoothing to incorporate a
forward masking, enhance rapid formant transitions, and suppress slowly varying properties
(e.g., channel effects; speaker...dependent global spectral shape). Thus it is similar to RASTA
in emphasizing spectral change, but unlike RASTA also includes time-frequency interaction
and does not completely eliminate static spectral components. There are other recent time­
frequency analysis methods (with application to coding and recognition) [108, 109].

6.10 REDUCTION OF INFORMATION

In both coding and recognition applications, a major objective of speech analysis is to
efficiently represent information in the signal while retaining parameters enough to recon...
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struct or identify the speech. In coding we wish to reduce the storage or transmission rate of
speech while maximizing the quality of reconstructed speech in terms of intelligibility,
naturalness, and speaker identifiability. Thus an economical representation of the crucial
aspects of the speech signal is paramount. In recognitioin systems, the storage question is
secondary to recognition accuracy. Nonetheless, recognizers perform faster when the network
information or stored templates occupy less memory. Furthermore, small, efficient templates
often yield better results, e.g., templates of sampled speech waveforms require much storage
but give much worse accuracy than spectral templates.

In analysis, eliminating redundant information in the speech signal is important.
Whether information is superfluous depends on the application: speaker-dependent aspects
of speech are clearly relevant for speaker identification, but those aspects are often super­
fluous for identification of the textual message in automatic speech recognition. It is not
always clear which speech aspects can be sacrificed. Acceptable speech can be synthesized
with rates under 600 bit/s (100 times lower than that for a simple digital representation).
However, as bit rate is reduced, distortion is gradually introduced into the reconstructed
speech; e.g., signal aspects relating to speaker identity tend to be lost at low storage rates.
Synthesis models emphasize spectral and timing aspects of speech that preserve intelligibility,
often at the expense of naturalness.

6.10.1 Taking Advantage of Gradual Vocal Tract Motion

Viewing speech as a sequence of phones linked via intonation patterns, most speech
analysis attempts to extract parameters related to the spectral and timing patterns that
distinguish individual phonemes. Speech is often transformed into a set of parameter signals
that are closely related to movements of the vocal tract articulators. These signals may follow
one particular articulator (e.g., the FO "parameter" follows vocal cord vibration) or may result
from several articulators acting together; e.g., the output from a bandpass filter or a DFT
spectral sample relates to formant position and amplitude, which in tum are specified by the
overall vocal tract configuration.

The vocal tract moves slowly compared to most speech sampling rates; e.g., typical
phonetic events last more than 50 ms (although some, like stop bursts, are shorter), while
speech may be sampled every 0.1 ms. Thus, speech parameters usually vary slowly and allow
decimation; e.g., the short-time DFT (examined at a fixed frequency) is a time signal of
bandwidth equal to that of the window used in the spectral analysis. Without loss of
information, it may be decimated to a rate of twice the window's bandwidth; e.g., for
wideband spectra, the 300 Hz window allows 600 samples/so Since window bandwidth is not
strictly limited in practical applications, small amounts of distortion are introduced in the
decimation.

For the vast majority of speech samples, events are slowly varying. Rapid spectral
changes are limited to stop onsets and releases or to phone boundaries involving a change in
manner of articulation (i.e., when speech switches among the classes of fricatives, nasals,
sonorants, and silence). In terms of the total number of analysis frames at a typical 10 ms
update rate, only a very small fraction involve sudden changes. Thus, it is inefficient to output
spectral parameters at rates up to 600 samples/so Practical coding and recognition algorithms
use parameters at about 25-200 samples/s, depending on the application. This sacrifices
accuracy during rapid spectral changes; performance is not greatly degraded (e.g., smoothing
rapid changes may not be perceptually noticeable in the reconstructed speech), while
parameter storage is greatly reduced.
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6.10.2 Smoothing: Linear and Nonlinear

To be able to subsample parameter signals at rates as low as 25/s, the signals should
first be lowpass filtered to obey the Nyquist rate. In some cases, an analysis produces an
appropriate signal for decimation (e.g., one can choose the window bandwidth in the short­
time OFT to match the desired parameter sampling rate Ps ) . Occasionally, however, a slowly
varying parameter is interrupted by rapid fluctuations. In yet other situations, small fine
temporal variation may be superimposed on a slowly varying base pattern. Assuming that the
slowly varying contour is the desired component for storage, transmission, or further analysis,
smoothing is necessary so that subsampling does not give spurious results.

The basic approach is linear lowpass filtering to eliminate energy in the parameter
signal above half the desired Ps . This has the advantage of smoothing rapid parameter
transitions, e.g., which can be of use in phone segmentation for speech recognizers. If the
parameter is simply to be subsampled at a fixed rate, then linear filtering may be best.
However, other ways to represent parameter signals in a reduced-data format are often more
successful with nonlinear smoothing. Linear filtering is particularly inappropriate for FO
patterns, in which FO is traditionally considered to be zero during unvoiced sections of
speech. Voiced-unvoiced transitions are abrupt, and linear smoothing yields poor FO values.
Linear filters are also suboptimal for signals with discrete values (e.g., unlike continuous
parameters such as energy, discrete parameters classify speech into one of a finite set of states,
such as phonemes).
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Figure 6.21 Example of smoothing applied to a zero-erossing parameter signal.
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Another difficulty with linear filtering is its behavior when mistakes occur in parameter
extraction. Formant and FO estimators are notorious for producing erroneous isolated
estimates or outliers, deviating from the rest of the parameter contour. Such mistakes
should be corrected in postprocessing, but some errors may persist in the output. Linear
filters give equal weight to all signal samples, propagating the effect of a mistake into adjacent
parts of the smoothed output parameter contour.

One alternative to linear filtering is median smoothing [110], which preserves sharp
signal discontinuities while eliminating fine irregularities and outliers. Most smoothers
operate on a finite time window of the input signal, but linear smoothers linearly combine
the windowed samples to produce the smoothed output sample, whereas median smoothing
chooses a single value from among the window samples. In each set of windowed data, the
samples are ordered in amplitude without regard to timing within the window. The output
sample is the median, i.e., the «N + I )/2)nd of N ordered samples (for odd N). Sudden
discontinuities are preserved because no averaging occurs. Up to (N - 1)/2 outlier samples,
above or below the main contour, do not affect the output (Figure 6.21).

Median smoothers do well in eliminating outliers and in global smoothing, but do not
provide very smooth outputs when dealing with noisy signals. Thus they are often combined
with elementary linear smoothers to yield a compromise smoothed output, with sharp
transitions better preserved than with only linear filtering and with a smoother output
signal than would be possible with only median smoothing.

6.11 SUMMARY

This chapter presented an introduction to speech analysis methods, from the viewpoint of
transforming the speech signal into a set of parameters that more economically represent its
pertinent information. Time-domain analysis yields simple speech parameters, especially
suitable for energy and segmentation, whereas spectral analysis provides the more common
approach to an efficient representation of speech information.

Since most speech applications use LPC and/or cepstral parameters, let us finish with a
summary of the most common steps in speech analysis. After A/D conversion to s(n) with
typically 16 bits/sample at Fs samples/s, preemphasis (Equation (6.15» may be applied (e.g.,
x(n) = s(n) - O.95s(n - 1». The x(n) samples are then buffered into frames ofN samples at a
time (e.g., 25 ms units, overlapped and updated every IOrns) and multiplied by a Hamming
window) (Equation (6.2». For each weighted frame, an autocorrelation matrix is calculated,
and then the LPC reflection coefficients are computed (Equation (6.24». At this point, most
coders have the required spectral parameters for their synthesis filters.

For speech recognition, the cepstral coefficients require more computation. They can be
obtained directly from the LP parameters, but this way does not include the popular mel-scale
mapping. For that, we instead use an FFT on the speech frame (skipping LP analysis), getting
X(k) (Eq. (6.14», then the take the log-magnitude log X(k), multiply by the critical-band
triangular filters (Eq. (6.63», and take the inverse FFT (Eq. (2.17». The low-order 10-16
parameters are the static mel-scale cepstral coefficients, from which the delta parameters are
simply differenced values between two neighboring frames. These cepstral parameters are
often weighted by a raised-sine pulse (to de-emphasize low-order values that may relate to
channel conditions, as well as high-order values that correspond to less relevant fine spectral
detail-see Chapter 10).
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PROBLEMS

P6.1. Consider time windows for speech analysis.
(a) What are the advantages and disadvantages of short and long windows?
(b) To what type of filter should the spectrum of a window correspond?
(c) Explain how the bandwidth of an analysis window affects spectrographic estimation

of formants and FO.
(d) How is placement of a window on the speech signal important?

P6.2. Consider a pitch detection scheme that lowpass filters the speech to 900 Hz and then
calculates an autocorrelation function.
(a) Why is the speech first lowpass filtered?
(b) How is the autocorrelation function used to generate a pitch estimate?
(c) How is an LPC residual useful to find pitch?

P6.3. Consider a steady vowel with formants at 500, 1500, 2500, ... Hz, lowpass filtered to
4000 Hz, and then sampled at the Nyquist rate.
(a) Draw a detailed block diagram of a system to generate a good version of this (already

sampled) signal at 10,000 sample/s,
(b) Within the range Iwl < 'It, at which "digital" frequencies Wk would the formants be

for the 10,000 sample/s signal?

P6.4. "Time windowing" is a basic operation in speech analysis.
(a) Explain how the durations of the window affects the output of the analysis for the

discrete Fourier transform (e.g., spectrograms).
(b) Instead of multiplying speech by a window, we may convolve the two signals. How is

this useful? What features should the window have?

P6.5. A simple FIR filter has one tap (with multiplier coefficient a).
(a) For what values of a does the filter act as a simple time window for speech analysis?

Explain.
(b) Is this window useful for wideband or narrowband spectrograms?
(c) What advantages would there be to use a longer time window?

P6.6. One measure of a speech signal is its zero-crossing rate. What information about the
speech spectrum is available from this measure? Specifically, what information concern­
ing formants and manner of articulation can be found in the zero-crossing rate?

P6.7. A vowel has formants at 500, 1500,2,500, ... Hz, etc., and FO= 200 Hz.
(a) Which harmonic has the highest amplitude? Explain.
(b) Suppose the time waveform of the vowel is sharply lowpass filtered so that no energy

remains above 4 kHz. Then the waveform is sampled at 6000 sample/s, If the speech
is played back now through a digital-to-analog (D/ A) converter, how would the signal
be different from that before the sampling? Have the formants changed? Explain.

(c) Suppose instead that the waveform had been properly sampled at the Nyquist rate.
Describe in detail a way to change the sampling rate to 6000 sarnple/s without
corrupting the signal.

P6.8. Consider x(n) = sin(wn), where w is a fixed frequency, and suppose x(n) is input to a 3­
level center clipper whose output is

yen) =I~
-1

for x(n) > C,
for Ix(n)1 ~ C,
for x(n) < -c.

(a) Sketch y(n) for C = 0.5 and C = -J3/2.
(b) Sketch the autocorrelation function cjJ(k) for the two waveforms in part (a).
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(c) How would a simple pitch detector determine an FOestimate ofx(n) based on ¢(k) in
part (b)?

P6.9. With all-pole LPC analysis:
(a) How many poles are needed in the synthesizer to model well speech of 3 kHz

bandwidth?
(b) Why does the analysis window have to be larger when the analysis is done without a

pitch detector?

P6.10. In LPC analysis, we can vary the order p of the model (p = number of poles), the length
M of the analysis frame window, and the time L between parameter updates.
(a) If N = 2 with LPC coefficients at and a2, explain how the coefficients would vary for

different speech sounds (e.g., a vowel and a fricative).
(b) Explain the criteria for choosing the window size M; what are the advantages and

disadvantages of using a large M?
(c) Explain the criteria for choosing the update interval L.
(d) For which set of phonemes is the LPC residual error signal large?

P6.1 I. Explain the advantages and disadvantages of using wavelets for speech analysis, instead
of a Fourier transform.

P6.12. How can pre-emphasis help speech analysis?



Speech Enhancement

8.1 INTRODUCTION

People use speech to communicate messages. When speaker and listener are near each other
in a quiet environment, communication is generally easy and accurate. However, at a distance
or in a noisy background, the listener's ability to understand suffers. Speech can also be sent
electrically; the conversion media (microphone, loudspeaker, earphones), as well as the
transmission media (telephone, radio), typically introduce distortions, yielding a noisy speech
signal. Such degradation can lower the intelligibility and/or quality of speech. This chapter
examines speech enhancement (SE), i.e., ways that a speech signal, subject to certain
degradations (e.g., additive noise, interfering talkers, bandlimiting), can be processed to
increase its intelligibility (the likelihood of being correctly understood) and/or its quality
(naturalness and freedom from distortion, as well as ease for listening) (Figure 8.1).

Enhancement of degraded speech is useful in aircraft, mobile, military and commercial
communication, and in aids for the handicapped. Applications include speech over noisy
transmission channels (e.g., cellular telephony, pagers) and speech produced in noisy
environments (e.g., in vehicles or telephone booths). The objectives of SE vary widely:
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Figure 8.1 Block diagram noting common sources of speech degradation.
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reduction of noise level, increased intelligibility, reduction of auditory fatigue, etc. For
communication systems, two general objectives depend on the nature of the noise, and often
on the signal-to-noise ratio (SNR) of the distorted speech. With medium-to-high SNR (e.g.,
> 5 dB), reducing the noise level can produce a subjectively natural speech signal at a
receiver (e.g., over a telephone line) or can obtain reliable transmission (e.g., in a tandem
vocoder application). For low SNR, the objective could be to decrease the noise level, while
retaining or increasing the intelligibility and reducing the fatigue caused by heavy noise (e.g.,
motor or street noise).

The following are often important: (1) the need to detect intervals in a noisy signal
where speech is absent (in order to estimate aspects of the noise alone), (2) the difficulty of
enhancing weak, unvoiced speech, (3) the difficulty of reducing nonstationary interfering
noise, (4) the frequent need to function in real-time, and (5) reducing computation. SE can be
used to improve speech signals: (1) for human listening, (2) as a pre- or post-processor in
speech coding systems, or (3) as a pre-processor for speech recognizers. The methods can
vary depending on the application; for human listening, SE should aim for high quality as
well as intelligibility, whereas quality (per se) is largely irrelevant if the enhanced speech
serves as input to a recognizer. For coders or recognizers, speech could actually be
"enhanced" in such a way as to sound worse, as long as the analysis process eventually
yields a high-quality output; i.e., if the "enhanced" input allows more efficient parameter
estimation in a coder (or higher accuracy in a recognizer), it serves its overall purpose [1]. For
example, pre-emphasizing the speech (to balance relative amplitudes across frequency) in
anticipation of broadband channel noise (which may distort many frequencies) does not
enhance the speech as such, but allows easier noise removal later (via de-emphasis).

As with synthesizers or low-rate coders, SE often requires costly subjective tests to
evaluate performance (i.e., neither quality nor intelligibility can be measured well mathema­
tically), although measuring the effect of SE in recognition of noisy speech is much easier
(see Chapter 10). Either objective measures or listening tests can help establish termination
criteria in iterative SE methods, where the output speech is refined over several iterations,
following a steepest gradient method.

Most SE techniques improve speech "quality" (naturalness and ease of listening)
without increasing intelligibility; indeed, some reduce intelligibility [2]. SNR, as an easily
computed objective measure of success, is often reported; it reflects quality, not intelligibility.
There are many more applications for systems that increase intelligibility than for those that
only improve quality. Aspects of quality are of course important in reproducing music and
song, and high speech quality is a worthwhile general objective. However, when speech is
subject to distortions, it is usually more important to render it intelligible than merely more
pleasing.

8.2 BACKGROUND

Considerable research recently has examined ways to enhance speech [3,4], mostly related to
speech distorted by background noise (occurring at the source or in transmission)-both
wideband (and usually stationary) noise and (less often) narrowband noise, clicks, and other
nonstationary interferences. Most cases assume noise whose pertinent features change slowly
(i.e., locally stationary over analysis frames of interest), so that it can be characterized in
terms of mean and variance (i.e., second-order statistics), either during nonspeech intervals of
the input signal [5] or via a second microphone receiving little speech input.
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Except when inputs from multiple microphones are available, it has been very difficult
for SE systems to improve intelligibility. Thus most SE methods raise quality, while
minimizing any loss in intelligibility. As Chapter 5 noted, certain aspects of speech are
more perceptually important than others. The auditory system is more sensitive to the
presence than absence of energy, and tends to ignore many aspects of phase. Thus speech
coding and enhancement algorithms often focus on accurate modeling of peaks in the speech
amplitude spectrum, rather than on phase relationships or on energy at weaker frequencies.
Voiced speech, with its high amplitude and concentration of energy at low frequency, is more
perceptually important than unvoiced speech for preserving quality. Hence, SE usually
emphasizes improving the periodic portions of speech. Good representation of spectral
amplitudes at harmonic frequencies and especially in the first three formant regions is
paramount for high speech quality.

Weaker,unvoiced energy is important for intelligibility, but obstruents are often the first
to be lost in noise and the most difficult to recover. Some perceptual studies claim that such
sounds are less important than strong voiced sounds (e.g., replacing the former by noise of
corresponding levels causes little decrease in intelligibility [6]). In general, however, for good
intelligibility, sections of speech (both voiced and unvoiced) undergoing spectral transitions
(which correspond to vocal tract movements) are very important.

SE often attempts to take advantage of knowledge beyond simple estimates of SNR in
different frequency bands. Some systems combine SE and automatic speech recognition
(ASR), and adapt the SE methods to the estimated phonetic segments produced by the ASR
component. Since ASR of noisy speech is often less reliable, simpler ASR of broad phonetic
classes is more robust, yet allows improved SE [7]. In certain applications (e.g., enhancing
emergency calls and black-box recordings), estimates of the corresponding text (based on
human listening) can assist SE [8]. Finally, SE is sometimes used to improve the speech of
handicapped speakers [9].

8.3 NATURE OF INTERFERING SOUNDS

Different types of interference may need different suppression techniques. Noise may be
continuous, impulsive, or periodic, and its amplitude may vary across frequency (occupying
broad or narrow spectral ranges); e.g., background or transmission noise is often continuous
and broadband (sometimes modeled as "white noise"-uncorrelated time samples, with a flat
spectrum). Other distortions may be abrupt and strong, but of very brief duration (e.g., radio
static, fading). Hum noise from machinery or from AC power lines may be continuous, but
present only at a few frequencies. Noise which is not additive (e.g., multiplicative or
convolutional) can be handled by applying a logarithmic transformation to the noisy
signal, either in the time domain (for multiplicative noise) or in the frequency domain (for
convolutional noise), which converts the distortion to an additive one (allowing basic SE
methods to be applied).

Interfering speakers present a different problem for SEe When people hear several
sound sources, they can often direct their attention to one specific source and perceptually
exclude others. This "cocktail party effect" is facilitated by the stereo reception via a listener's
two ears [10,1 1]. In binaural sound reception, the waves arriving at each ear are slightly
different (e.g., in time delays and amplitudes); one can often localize the position of the
source and attend to that source, suppressing perception of other sounds. (How the brain
suppresses such interference, however, is poorly understood.) Monaural listening (e.g., via a
telephone handset) has no directional cues, and the listener must rely on the desired sound



326 Chapter 8 • Speech Enhancement

source being stronger (or having major energy at different frequencies) than competing
sources. When a desired source can be monitored by several microphones, techniques can
exploit the distance between microphones [10,12]. However, most practical SE applications
involve monaural listening, with input from one microphone. (Directional and head-mounted
noise-cancelling microphones can often minimize the effects of echo and background noise.)

The speech of interfering speakers occupies the same overall frequency range as that of
a desired speaker, but such voiced speech usually has FO and harmonics at different
frequencies (Figure 8.2). Thus some SE methods attempt to identify the strong frequencies
either of the desired speaker or of the unwanted source, and to separate their spectral
components to the extent that the components do not overlap. Interfering music has properties
similar to speech, allowing the possibility of its suppression via similar methods (except that
some musical chords have more than one FO, thus spreading energy to more frequencies than
speech does).
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Figure 8.2 (a) Brief portions of voiced speech signals from a male speaker (top) and a
female speaker (bottom); (b) corresponding amplitude spectra for the two
signals and their sum. Note the simple harmonic structure of the first two
spectra (with different fundamentals for the two speakers), compared to the
third case where the two speakers interfere.
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8.4 SPEECH ENHANCEMENT (SE) TECHNIQUES
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There are four classes of SE methods, each with its own advantages and limitations:
subtraction of interfering sounds, filtering out such sounds, suppression of nonhannonic
frequencies, and resynthesis using a vocoder. The first and most popular method simply
estimates either: (1) the important, speech-related components of the distorted input signal
(and then retains them, eliminating other components), or (2) the corrupting portions of the
signal (and then subtracts them from the input). The suppression of distortion components in
the first two methods can be done in the time or frequency domain, and involve filtering or
other forms of subtraction. The third method works only for voiced speech, requires an FO
estimate, and suppresses spectral energy between desired harmonics. (The assumption here is
that major improvements for noisy speech signals are most feasible on strong periodic sounds,
and that unvoiced speech is either irretrievably lost in many noisy environments or is too
difficult to enhance.) The fourth method adopts a specific speech production model (e.g.,
from low-rate coding), and reconstructs a clean speech signal based on the model, using
parameter estimates from the noisy speech.

8.4.1 Spectral Subtraction and Filtering

If an interfering sound can also be captured apart from the desired speech (i.e., in multi­
microphone applications), the latter is usually enhanced by subtracting out a version of the
former. Best results usually require a second microphone placed closer to the noise source
than the primary microphone recording the desired speech. The second recording provides a
noise reference, which after processing is subtracted from the primary recording.

In single-microphone applications, signal analysis during pauses can furnish an
estimate of the noise; then an adaptive filter modeling that noise, updated (if feasible) at
detected pauses, can suppress the noise (especially periodic noise) [13]. This latter approach
usually employs an average spectral model of the noise, and gives much less enhancement
than a two-microphone method, because it can only identify the spectral distribution of the
noise and not its time variation. Frequencies where noise energy is high can be suppressed in
the signal, but this distorts the desired speech at these frequencies. Furthermore, the one­
microphone subtraction method is of little use for variable noise, since it assumes that noise
during a pause is representative of noise during ensuing speech.

8.4.2 Harmonic Filtering

The harmonic SE method attempts to identify the FO (and hence harmonics) either of
the desired speech or of interfering sources. If the desired sound is the strongest component in
the signal, its frequencies can be identified and other frequencies may then be suppressed;
otherwise a strong interfering sound's frequencies can be identified and suppressed, with the
remaining frequencies presumably retaining some of the desired speech source. Such simple
Wiener filtering (suppressing wideband noise between harmonics) improves SNR but has
little effect on intelligibility.

8.4.3 Parametric Resynthesis

The last SE method improves speech signals by parametric estimation and speech
resynthesis. Speech synthesizers generate noise-free speech from parametric representations
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of either a vocal tract model or previously analyzed speech. Most synthesizers employ
separate representations for vocal tract shape and excitation information, coding the former
with about 10 spectral parameters (modeling the equivalent of formant frequencies and
bandwidths) and coding the latter with estimates of intensity and periodicity (e.g., FO).
Standard methods (e.g., LPC) do not replicate the spectral envelope precisely, but usually
preserve enough information to yield good output speech. Such synthesis suffers from the
same mechanical quality as found in low-rate speech coding and from degraded parameter
estimation (due to the noise), but can be free of direct noise interference, if the parameters
model the original speech accurately.

8.5 SPECTRAL SUBTRACTION (55)

One common and intuitive SE method is applicable to speech with (at least locally) stationary
noise. It transforms both a primary signal (the noisy speech p(n») and an estimate of the
interference i(n) into Fourier transforms P(w) and I(w), respectively. Their magnitudes are
subtracted, yielding

IP(w)I - (X1/(w)l, (8.1)

which is then combined with the original phase of P(w), and transformed back into a time
signal; the noise overestimation factor (X 2: 1 (typically (X = 1.5) helps minimize some
distortion effects [14] (Figure 8.3). Any negative values in Equation (8.1) are reset to zero,
on the assumption that such noisy frequencies cannot be recovered. This basic spectral
subtraction (which is linear, except for the floor of zero amplitude) corresponds to maximum
likelihood (ML) estimation of the noisy speech signal [15].

In cases of negative signal-to-noise ratio (SNR) (i.e., more energy in the interference
than in the desired speech), this method works well for both general noise [16] and interfering
speakers [17], although musical tone or noise artifacts often occur at frame boundaries in such
reconstructed speech. The tones are due to the random appearance of narrowband residual
noises at frequencies where the SS method yields a negative spectral amplitude (and the
algorithm thus arbitrarily assigns a zero output). Much effort has gone toward reducing the
annoying effect of these extraneous tones in the otherwise simple and effective SS technique
(e.g., raising (X (or allowing it to vary in time or frequency) [18], putting a floor on the filter
and smoothing over frequency [19, 20]). Time smoothing helps, but introduces echoes. SS
generally reduces noise power (improving quality), but often reduces intelligibility (especially
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Figure 8.3 Spectral subtraction when two microphones are available.
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in low SNR situations), due to suppression of weak portions of speech (e.g., high-frequency
formants and unvoiced speech).

There are many variants of the basic SS method [21], often replacing Equation (8.1)
with IIP(w)12

- II(w)I%11/:x. Basic SS uses a. = I, and power spectral subtraction uses (J. == 2.
An advantage of the latter is that time-domain methods involving autocorrelation signals are
feasible. Sometimes, the first component in Equation (8.1) (the noisy speech spectrum) is
replaced by an average over a few frames (which reinforces the consistent speech compo­
nents, especially harmonics, at the expense of random noise components); this smooths out
speech transitions, however, leading to slurring effects. In all cases, the output phase is that of
the input noisy speech, since experiments with other "cleaned" phase estimates have yielded
little perceptual improvement [16].

8.6 FILTERING AND ADAPTIVE NOISE CANCELLATION

8.6.1 Filtering

Suppressing unwanted aspects of a distorted speech signal depends largely on either
characterizing those undesired components or modeling the desired speech components. Such
modeling is often done spectrally, e.g., estimating the spectral amplitude of a section of the
noisy input signal which is estimated to be free of speech (and then subtracting this noise
spectrum from the whole signal). This requires a voice-activity detector to reliably detect
speech in a noisy signal, which is increasingly difficult at lower SNR. It also assumes that the
noise characteristics stay roughly the same until the next pause (the noise statistics are then re­
estimated). (Some recent methods avoid this requirement [22].)

A similar SE method uses orthogonalization to reduce each frame of speech to a small
set of parameters, which allows suppression of most dimensions as largely noise components.
For example, the KLT (see Chapter 6) characterizes speech efficiently; for a vowel, in a signal
vector of high dimension (e.g., a frame of 100 samples), only a few basis signals
corresponding to the damped sinusoids of formants will have large eigenvalues. Using a
subspace projection onto those dimensions eliminates most noise components in other
dimensions, and masking will help reduce the perceptual effect of the remaining noise
components. The disadvantage of such a method is the cost of the KLT [23].

The SE methods in this section are mostly variants of classical Wiener filtering, where a
simple filter for the noisy speech is designed spectrally via the estimated ratio of the energy in
the clean speech to that of the noisy speech. The amount of noise suppression is sometimes
controlled by a factor;' (i.. = I in the classical case, yielding a linear filter, which is optimal in
minimizing mean-square energy). (Thus, spectral subtraction follows maximum likelihood,
while Wiener filters use a minimum mean-square-error (MMSE) criterion.) Given a vector s
of noisy spectral samples, the kth component of the filtered output (i.e., the enhanced speech)
is:

" Psk
Sk = si,

Psk + 2Pnk

where Psk is the kth parameter of the mean power spectrum of s, and Pnk corresponds to the
estimated power spectrum of the noise. (As in SS, phase is not enhanced.) Thus, at any given
frequency, if the noise is estimated to be relatively weak, the filter has little effect; however, if
the noise dominates, Sk is heavily attenuated. This spectrally varying attenuation accommo­
dates nonwhite noise, and can be updated at any desired frame rate to handle nonstationary
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noise. A major problem with this approach is estimating Pnk , which often needs portions of
the input signal estimated not to contain speech.

A Wiener filter with an adjustable input noise level appears optimal for SE [23]. One
way is to decompose noisy speech into two subspaces via KLT (using an eigendecomposition
of the covariance matrix of the input speech), and do linear estimation after the noise
subspace is eliminated. However, the KLT is more costly than the DFT commonly used in SSe

For speech under stationary noise, one successful SE method uses an HMM (see
Chapter 10) of clean speech (before the noise degradation) and one of the noise alone (again
usually based on analysis of the noisy speech signal at times estimated not to contain speech).
The Viterbi path from HMM speech recognition specifies a Wiener filter for each state [24].
This approach can use LPC models [25], filter-bank spectra [26] or cepstra [27].

While Wiener filtering and SS are the most common filtering methods, Kalman filtering
has also been used for SE [28], especially when faced with colored noise [29]. Recently, Hex>
filtering has been shown to overcome some of the inappropriate assumptions of the Wiener
and Kalman methods (e.g., that the statistics of speech and noise are known in advance) [30].

8.6.2 MUlti-Microphone Adaptive Noise Cancellation (ANC)

When more than one microphone is available to furnish pertinent signals, speech
degraded by many types of noise can be handled. A processed version of a second
"reference" signal r(n) (containing mostly or exclusively interference noise) is directly
subtracted in time from the primary noisy speech signal pen). This ANC method relies on
the microphones being sufficiently apart or on having an acoustic barrier between them [31­
33]. (ANC is related to, but not the same as, active noise cancellation, where noise is fed back
acoustically into a limited environment (e.g., a cockpit), to physically cancel the noise waves
[34].) For audioconference applications, the ANC method can be extended to an array of
microphones (mounted at a convenient location in a room), which electronically focuses on
one voice at a time via beamforming [35, 36]; in this case, a larger number of microphones
limits the need for isolating the desired speech source from other sounds.

While other SE filtering methods get good results with a dynamic filter that adapts over
time to estimated changes in the distortion, such adaptation is essential in ANC. Since there
will be a delay (perhaps variable) between the times the interference reaches different
microphones and since the microphones may pick up different versions of the noise (e.g.,
the noise at the primary microphone may be subject to echoes and/or spectrally variable
attenuation), a secondary signal must be filtered so that it closely resembles the noise present
in the primary signal. The ANC method is less successful when the secondary signal contains
speech components from the primary source, or when there are several or distributed sources
[37]; its performance depends on locations of sound sources and microphones, reverberation,
and filter length and updating [38]. ANC does best when the microphones are separated
enough so that no speech appears in secondary signals, but close enough so that the noise
affecting the main signal is also strong in the secondary signals.

ANC closely resembles echo cancellation in long-distance telephone links. At the
hybrid-transformer interface between a two-wire telephone line (local subscriber loop) and a
long-distance four-wire trunk line, a version of the original speech is often fed back to the
handsets at variable amounts of delay, both near-end echo of very short delay (back to the
original speaker), and far-end echo (either to the speaker or listener) (where the delays depend
on the length of the four-wire line, or its equivalent in radio links) [39, 40]. For the talker,
short delays of a few ms with reasonable attenuation (e.g., 6 dB) are no problem (these
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correspond to typical small-room echoes, or to the "sideline" found in telephone handsets),
but delays over 40 ms can interfere with speech production unless the echo is largely
attenuated. For the listener, short delays are annoying; e.g., alms echo causes nulls in the
received speech spectrum every 1kHz (see Section 8.7).

Both echo cancellation and SE in two-microphone situations involve subtracting out
attenuated, delayed versions of one signal from another. There are several ways to obtain the
filter coefficients, of which the most attractive is the least-mean-squares (LMS) method via
steepest descent [32], due to its simplicity and accuracy (Figure 8.4). More computationally
expensive exact least-squares (LS) methods typically yield only marginal gains over the faster
stochastic-gradient LMS method; the latter is also useful for enhancement of one-microphone
speech degraded by additive noise [41, 42]. In addition to removing noise from degraded
speech, the LMS method has been applied to reducing the presence in a signal of an
interfering speaker with some success [43].

Filter coefficients are chosen so that the energy in the difference or residual error signal
e(n) (i.e., the primary signal p(n) minus a filtered version v(n) of the reference r(n») is
minimized. Thus, one selects coefficients h(k) so that the energy in

L

e(n) == p(n) - v(n) == p(n) - L h(k)r(n - k)
k=1

(8.2)

is minimized; p(n) is the sum of the desired speech signal s(n) and a transformed version of
r(n) (or where p(n) is a signal with echo (containing both desired speech s(n) from the far end,
plus undesired echo r(n) from the near end) to be processed and v(n) is a filtered version of
r(n) (i.e., r(n) is the 4-wire input and e(n) is the output). As long as the two microphone
signals (r(n) and p(n» are uncorrelated, minimizing e2(n) (a "least mean squares" approach)
over time should yield a filter that models the transformed reference, which can thus be
subtracted from p(n) to provide enhanced speech, which is actually the minimized residual
e(n). Correlation between r(n) and p(n) is undesirable because then the h(k) values are
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Figure 8.4 Adaptive filtering where the filter coefficients Wi are updated to minimize the
least mean square of the difference (error) signal.
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affected by the speech and v(n) will partly contain speech rather than only transformed noise,
and part of the desired speech will be suppressed. If a correlation does exist, the filter
coefficients h(k) should only be updated during pauses in s(n). Solving Equation (8.2) can
exploit LS or LPC methods, or simpler LMS techniques which do not require calculating
correlation matrices or inverting them. The latter uses a steepest-gradient iteration [44].

Below are details of the two basic methods. The LS approach minimizes the energy in
the residual signal e(n). While e(n) contains both the desired (far-end) speech and the echo
noise, minimizing its energy is appropriate for choosing the coefficients h(n) of the filter,
because the input r(n) to the filter contains none of the speech desired at the output. The FIR
filter coefficient vector h, (i.e., h(O), h(I), h(2), ... h(L - I) (assuming L taps» is updated
with each sample in time n as:

hn+1 = h, + arne(n),

where the reference signal is r, = [r(n), r(n - 1), r(n - 2), ... r(n - L + I)]T.
In the LS method, the error is attenuated by an exponentially decreasing weight, to fade

out the effects of older data and to simplify computation:
n

D(n) = E e2(k)w(n - k),
k=-oo

where weights could be w(n) = (I - A)n, A controlling the rate of convergence. Taking
aD(n)jah(n) = 0 yields

h(n + I) = h(n) + AR-1(n)r(n)e(n) (8.3)

etc. The LS method converges quickly for any input, but needs costly matrix inversion
(although fast Kalman methods can simplify this approach) and is sensitive to numerical error
accumulation.

The alternative LMS method uses a steepest descent technique to get

h;(n + 1) = h;(n) + 2jJe(n)r(n - i),

where a large value for jJ speeds up convergence, but may lead to stability problems. It is
much simpler than the LS method (the main difference lies in replacing the covariance matrix
R of Equation (8.3) with a simple scalar parameter jJ). A modified version with better stability
is often used, but may need a pre-whitening filter for fast convergence when faced with
nonwhite input such as speech [40]:

(

N - I )
hj(n + I) = hj(n) + ae(n)r(n - i)j k~ ?(n - k) ,

with control factor 0 < a < 2.
The order L of the filter is usually a function of the separation of the two sound sources

as well as of any offset delay in synchronization between the two (or, equivalently, a function
of the echo delay in telephony). In many cases, delays of 10-60 ms lead to fewer than 500 taps
(at 8000 samples/s), and an LMS algorithm is feasible on a single chip. Unless the delay is
directly estimated, L must be large enough to account for the maximum possible delay, which
may lead to as many as 1500 taps when the two microphones are separated by a few meters
[45] (or even exceeding 4000 taps in cases of acoustic echo cancellation in rooms). Such long
filter responses can lead to convergence problems as well as to reverberation in the output
speech [46]. The echo can be minimized by reducing the adaptation step size (a in Equation
(8.4), which changes the filter coefficients each iteration), at the cost of increased settling time
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for the filter. For large delays, versions of ANC operating in the frequency domain may be
more efficient [47], e.g., sub-band systems [40].

ANC works for full-duplex data modems (as in CCITT V32), although the far-end echo
can be very long if satellite links occur, thus requiring an echo canceller for each type of echo.
One difference between data and speech signals is that small distortions are more tolerable
with speech. The use of a linear ANC filter is adequate for speech, even though some
distortions (e.g., in A-D and D-A conversions) may be better modeled nonlinearly (which
leads to much more complex filters).

In many practical environments where ANC might be useful for hearing aid design, the
existence of echo and multiple noise sources significantly reduces the theoretical gains of
ANC; e.g., while ANC can completely cancel one noise source in an anechoic situation (and
the human binaural system or directional microphones give about 12dB gains), gains of only
2-3 dB in SNR often occur in practice [48]. A recent nonreal-time system exploiting models
of auditory modulation processing reported small increases in intelligibility with a two­
channel modulation spectrogram [48]. In two-microphone cases where significant crosstalk
reduces ANC's utility, a Wiener filtering approach with auditory constraints may be effective
[49].

Removal of room reverberation follows similar techniques to those for telephone-line
echo, although the former type of echo can be much more variable. Where multiple
microphones are available, beamforming methods work well [50, 51]. In teleconferencing
applications, stereo sound can give a more realistic presence, but requires more complex echo
cancellation [52, 53].

8.7 METHODS INVOLVING FUNDAMENTAL FREQUENCY TRACKING

When a major component of the audio signal to be enhanced is periodic, its harmonic
frequencies may be identified for the purposes of either preservation or suppression. Comb
filtering is a basic method where a dynamic filter is designed to sift or "comb" through the
spectrum, modifying energy at equally spaced frequencies: attenuating harmonics (to reject
an undesired periodic signal) or amplifying them (to enhance a desired periodic signal)
(Figure 8.5) [3]. The frequency response of the filter resembles a comb, i.e., with large values
at a specified FO and its multiples, and low values between these harmonics, The filter is
usually implemented in the time domain as

M

y(n) == L h(k)x(n - kL),
k=-M

(8.5)

where L is the fundamental period (in samples), M is a small number (1, 2, 3), x(n) is the
input, and y( n) is the output. The coefficients h(k) are positive and typically vary inversely
with Ikl; they may also vary with the degree of periodicity of the signal being measured (e.g.,
in cases where the signal is estimated to be unvoiced, comb filtering has no use; setting
h(k) == 0 (except h(O) == 1) causes the filter to have no effect).

y(n) is simply an average of delayed and weighted versions of x(n). If the delay L
corresponds to the period of a major component in x(n), then the averaging operation
reinforces that component and tends to cancel out other components (those having no period,
or a period different from the major component). In this manner, interfering sounds are
suppressed. The operation depends crucially on an accurate estimate of the desired signal's
period, and its performance is best when this signal is stationary (i.e., its period and spectrum
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Figure 8.5 (a) Two periods of a typical voiced speech signal; (b) the same signal after
adding white noise; (c) amplitude spectra (from top to bottom): of plot (a), of
the comb-filtered output speech, of the comb filter, and of plot (b).

not changing over 2LM samples). Unfortunately, FO estimation can be difficult and speech
signals can change rapidly, both in harmonics and in spectral envelope. In the case of a
spectral change (but constant FO) during the comb filter's window, the filter spreads out the
change over the duration of the window; thus a rapid change (e.g., the release of a stop
consonant) could be smeared out in time.

A more difficult problem arises when FO changes during the course of the window [54].
If the durations of successive periods are known, Equation (8.5) can be modified to be

M
y(n) = E h(k)x(n - kL + Ck ) ,

k::=-M

(8.6)

where the Ck are adjustments to properly align periods. In general, however, simplicity would
keep Ck = 0, and the reinforcement of periods in y(n) may be severely reduced. Thus, most
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comb filters work best only during sections of speech where FO is not changing rapidly. This
problem can be minimized by choosing M == 1 in Equation (8.5) (i.e., averaging only 3
periods); however, the degree of signal reinforcement (thus, SE) is proportional to M.
Spectrally, M is inversely proportional to the bandwidth of the comb harmonics, Larger
values of M lead to narrow harmonics in the comb filter response, which more effectively
suppress energy outside the corresponding harmonics in x(n), but which also smooth desired
abrupt phonetic changes more over time. .

Instead of direct comb filtering in the time domain, the speech could be Fourier
transformed, and harmonically spaced strong frequency components then identified. The
spectral components at such frequencies can be extracted, and an inverse Fourier transform
can yield enhanced speech [55].

Comb filtering can suppress a wide range of types of noise, but has often been used to
suppress an interfering voice [56]. In one experiment, the intelligibility of words in a weak
voice under interference of a stronger voice (SNR = -12 dB) was raised from 540/0 to 630/0
[57]; at -6 dB SNR, the improvement was from 78% to 82%, and comb filtering gave little
improvement at positive SNRs. Of course, improvement is most needed at low SNR;
intelligibility degrades rapidly below 0 dB SNR [58].

A major problem for comb filtering speech of multiple voices is that tracking one
speaker's fundamental in the presence of another is difficult. Speech reconstruction based
only on the harmonics of a target speaker which do not overlap those of an interfering speaker
leaves too many spectral gaps. One method separates the overlapping harmonics of two
speakers by exploiting the shape of harmonic peaks when voicing is both present and mostly
uniform over a time window [59]. It works well when speech is voiced, but fails for normal
conversation which switches often between voiced and unvoiced speech.

A related FO-based SE method is simple "cut-and-splice" time expansion, where
individual pitch periods are duplicated (as in TDHS-see Chapter 7). This is usually done for
time expansion/compression (for speech rate modifications), but since listeners often find
slowed-down speech more intelligible, it can be viewed as an SE method [60].

An SE method related to comb filtering uses a dual excitation model, where a voicing
decision separates noisy speech into periodic and aperiodic components, allowing different
enhancement techniques (weak harmonic suppression in the voiced portions; standard
filtering techniques for the unvoiced parts) [2]. It requires a pitch detector, but claims to
reduce slurring and tonal artifacts found in many other SE filtering methods [61]. Another
recent method combines MMSE estimation and HMMs with a sinusoidal approach (but
without comb filtering) in a way to avoid some difficulties of FO estimation and also handle
nonstationary noise [62]. Such techniques normally do not suffer from the musical tones of
SS speech, and can better suppress residual noise between harmonics (especially when widely
spaced, as in female voices).

8.8 ENHANCEMENT BY RESYNTHESIS

In some SE cases, low-rate speech coding methods (e.g., LPC) can be directly applied. In the
typical low-dimensional production model, speech is assumed to come from passing an
excitation signal with a flat spectrum through an all-pole vocal tract model filter, and to have a
z-transfonn response

(8.7)
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where G is a gain factor and the LPC (spectral) coefficients ak are directly related to the pole
locations (which are a function primarily of formant frequencies and bandwidths), with
p ~10-12. LPC works best when the coefficients are estimated from noise-free speech, and
the system tends to degrade badly on noisy speech [63]. Non-causal Wiener filtering based on
the LPC all-pole model attempts to solve for the ML estimate of speech in additive noise; it
tends to output speech with overly narrow bandwidths and large frame-to-frame fluctuations
(since Wiener filtering treats each frame separately). However, spectral constraints based on
redundancies in the human speech production process and on aspects of perception can
overcome this flaw and raise speech quality [64, 65], as well as accelerate convergence in
iterative Wiener filtering [66].

The LPC synthesis filter (Equation (8.7) is usually excited by either a periodic (typically
impulsive) source or a noise source, depending on whether the analyzed speech is estimated
to be voiced or not. Speech quality improves if some aspects of phase are preserved in the
voiced excitation, rather than being discarded (as is often done in LPC). Phase can be retained
by direct modeling of both the amplitude and phase of the original speech harmonics, or by
modeling a version of the inverse-filtered speech. The use of direct harmonic modeling in
LPC resynthesis of speech degraded by an interfering speaker has not been successful in
raising intelligibility, although "quality" may be increased [67]. In general, resynthesis is the
least common of the SE techniques, due to the difficulty of estimating model parameters from
distorted speech and due to the inherent flaws in most speech models (see Chapter 9 for a
discussion of model-based synthesis). It nonetheless has application in certain cases (e.g.,
improving the speech of some handicapped speakers [68]). Related SE methods can remove
impulsive noise (often found in telephony and with analog storage) as well as stationary noise,
without degrading speech quality [69].

8.9 SUMMARY

Most SE methods claim to reduce noise or other interfering sounds in a speech signal, thus
improving speech quality. However, single-microphone systems rarely succeed in raising the
intelligibility of words in the degraded speech signal. Speech intelligibility is a complicated
function of many aspects of the speech signal; some aspects (e.g., voicing, pitch, loudness)
are robust to interference and likely are in less need of SE techniques, while others (e.g.,
phonemic place of articulation; rapid spectral transitions at some phoneme boundaries) may
be brief or have weak energy and thus be difficult to recover in noisy conditions. SE works
best when an interfering sound is sufficiently strong to mask the perception of some key
speech aspects, yet can be correctly identified both in time and in frequency to facilitate its
removal. Stationary interference is relatively easy to remove, but time-varying interference
causes great problems, unless a separate reference is available to permit monitoring the
dynamics of the interference.

Significant advances in SE will likely await better understanding of human speech
perception and production. The basic SE methods (spectral subtraction, Wiener filtering,
comb filtering, resynthesis) have existed for decades. They are largely based on simple ideas
such as masking (e.g., suppressing noise at frequencies where the speech harmonics are weak)
or on simple speech production models (which lead to cleaner speech, but of still poor
quality). Multi-microphone SE using the ANC method performs well where conditions are
appropriate (proper separation between microphones, and simple noise sources). Recent
system improvements have largely occurred in terms of efficiency (e.g., real-time; faster
convergence; less computation).



Speech Synthesis

9.1 INTRODUCTION

Text-to-speech synthesis (TTS) is the automatic generation of a speech signal, starting from a
normal textual input and using previously analyzed digital speech data [1-6]. Before special­
purpose DSP (digital signal processing) chips were introduced in 1978, synthetic speech was
generated primarily on large computers, sometimes interfaced with an analog vocal tract
model. Such synthesizers have since become widely available for several languages, in forms
ranging from inexpensive packages for personal computers to standalone systems. The former
produce mostly intelligible (but often highly unnatural) speech, while the latter can yield very
intelligible (but still unnatural) speech. We are far from having synthetic speech which
listeners cannot distinguish from human speech. Of course, natural speech output is possible
if the desired vocabulary is very limited, and the system merely concatenates lengthy stored
speech units (i.e., outputs a sequence of previously spoken words or phrases, stored in
memory as coded speech). We distinguish here true TTS systems which accept any input text
in the chosen language (including new words and typographical errors) versus voice response
systems of very limited vocabulary, which are essentially voice coders of much simpler
complexity, but also inflexible and very limited in applications. The recent increase of
commercial synthesizers is due to both advances in computer technology and improvements
in the methodology of speech synthesis. This chapter discusses technical aspects of synthetic
speech devices, as well as their applications and limitations, and notes where improvements
are needed.

The critical issues for current synthesizers concern trade-offs among the conflicting
demands of maximizing speech quality, while minimizing memory space, algorithmic
complexity, and computational speed. While simple TTS is possible in real time with low­
cost hardware, there is a trend toward using more complex programs (tens of thousands of
lines of code; megabytes of storage). Special DSP chips are necessary for use with slower
computers (under 10 million instructions/s) or for applications that require several output
channels. TTS systems constructively synthesize speech from text using linguistic processing
and concatenating small speech units (e.g., phonemes). Real-time TTS produces speech that
is generally intelligible, but lacks naturalness. Quality inferior to that of human speech is
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usually due to inadequate modeling of three aspects of human speech production: coarticula­
tion, intonation, and vocal tract excitation.

Most synthesizers reproduce speech either for ranges of 300-3000 Hz (e.g., for
telephone applications) or 100-5000 Hz (for higher quality). Omitting frequencies above
3 kHz still allows good vowel perception since vowels are adequately specified by formants
FI-F3. The perception of some consonants, however, is slightly impaired if energy in the 3­
5 kHz range is omitted. Frequencies above 5 kHz are useful to improve speech clarity and
naturalness, but do little to aid speech intelligibility. If we assume that the synthesizer
reproduces speech up to 4 kHz, a rate of 8000 samples/s is needed. Since linear PCM requires
12 b/sample for toll-quality speech, storage rates near 100 kbjs result, which are prohibitive
except for synthesizers with very small vocabularies.

The memory requirement for a simple synthesizer is often proportional to its
vocabulary size. As memory costs continue to decrease with advances in computer
technology, it is less imperative to minimize memory than complexity. Nonetheless, storing
all possible speech waveforms (even with efficient coding) for synthesis purposes is
impractical for TfS. The sacrifices usually made to reduce complexity and memory for
large-vocabulary synthesizers involve simplistic modeling of spectral dynamics, vocal tract
excitation, and intonation. Such modeling yields quality limitations that are the primary
problems for current TTS research.

9.2 PRINCIPLES OF SPEECH SYNTHESIS

Speech synthesis involves the conversion of an input text (consisting of sentences or simply
words) into speech waveforms, using algorithms and some form of previously coded speech
data. The text might be entered by keyboard or optical character recognition or obtained from
a stored database (Figure 9.1). Speech synthesizers can be characterized by the size of the
speech units they concatenate to yield the output speech, as well as by the method used to
code, store, and synthesize the speech. Using large speech units (e.g., phrases and sentences)
can give high-quality output speech but requires much memory. Efficient coding methods
reduce memory needs but often degrade speech quality.

Figure 9.1 Block diagram of the steps in speech synthesis.
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Speech synthesizers are available commercially for two different applications, which
affect the choices of speech unit size and method of synthesis. Voice-response systems handle
input text of limited vocabulary and syntax, while TTS systems accept all input text. TTS
systems construct speech from text using small stored speech units and extensive linguistic
processing, while voice-response systems reproduce speech directly from large units of coded
speech, using signal processing techniques primarily. Voice-response systems are basically
speech coders that store their bit streams in computer memory for later playback through a
decoder when synthetic speech is needed.

9.2.1 Types of Stored Speech Units to Concatenate

The simplest synthesis concatenates stored phrases (groups of one or more words). This
approach can yield high-quality speech but is limited by the need to store in (read-only)
memory all the phrases to be synthesized, after they have been spoken either in isolation or in
context sentences. For the most natural-sounding synthetic speech, each phrase must
originally be pronounced with timing and intonation appropriate for all sentences in which
it could be used. Thus if a word could occur in several syntactic contexts, its pronunciation
should be recorded and stored using sentences simulating the various contexts. Merely
concatenating words originally spoken in isolation usually leads to lower intelligibility and
naturalness. The duration and other aspects of stored units must be adjusted during
concatenation since such unit features vary in sentential context (especially for units of
words or smaller).

For synthesis of unrestricted text, advanced systems generate speech from sequences of
basic sounds, which can substantially reduce memory requirements since most languages
have only 3Q-40 phonemes. However, the spectral features of these short concatenated sounds
(50-200 ms) must at least be smoothed at their boundaries to avoid jumpy, discontinuous
speech. The problem is that the pronunciation of a phoneme in a phrase is heavily dependent
on its phonetic context (e.g., on neighboring phonemes, intonation, and speaking rate) via
coarticulation. The smoothing and adjustment process, as well as the need to calculate an
appropriate intonation for each context, results in complex synthesizers with less natural
output speech.

While commercial synthesizers have been primarily based on word or phone conca­
tenation, other possibilities link intermediate-sized units of stored speech such as syllables
[7], demisyllables [8, 9], diphones [10, 11], or even subphonemic units [12]. A syllable
consists of a nucleus (either a vowel or diphthong) plus optional neighboring consonants
(sometimes the syllable boundary is uncertain, as in nesting, where a linguistic decomposition
suggests nest-ing, but pronunciation is often nes-ting; see Section 3.3). Demisyllables are
speech units obtained by dividing syllables in half, with the cut in the middle of the vowel,
where the effects of coarticulation are minimal (as opposed to the often rapid transitions at
phone boundaries) (Figure 9.2). Diphones are obtained by dividing a speech waveform into
phone-sized units, with a cut in the middle of each phone (thus preserving in each diphone the
transition between adjacent phones). When demisyllables or diphones are concatenated in
proper sequence (so that spectra on both sides of a boundary match), smooth speech usually
results because the adjoining sounds at the boundaries are spectrally similar. For example, to
synthesize the word straight, the six-diphone sequence /#s-st-tr-re-et-t#/ or two-demisyllable
sequence /#stre-et#/ would be used (# denotes silence).

Smoothing of spectral parameters at the boundaries between units is most important for
short units (e.g., phones) and decreases in importance as concatenation units increase in size,
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Figure 9.2 Waveform and wideband spectrogram of the word canoe. The division of the
word into phones, dernisyllables, and diphones is noted.

because of the decrease in frequency of boundaries in the synthesized speech. Smoothing is
much simpler when the joined units approximately match spectra at the boundaries. Since
diphone boundaries interface spectra from similar sections of two realizations of the same
phoneme, their smoothing rules are simple. Systems that link phones, however, must use
complex smoothing rules to represent coarticulation in the vocal tract. Not enough is
understood about coarticulation to establish a complete set of rules to describe how the
spectral parameters for each phone are modified by its neighbors. Diphone synthesizers try to
circumvent this problem by storing the parameter transitions from one phone to the next since
coarticulation primarily influences the immediately adjacent phones. However, coarticulation
often extends over several phones; using only average diphones or those from a neutral
context leads to lower-quality synthetic speech [13]. Improved quality is possible by using
multiple diphones dependent on context, effectively storing "triphones" of longer duration
(which may substantially increase memory requirements); e.g., in the word strew, rounded lips
necessary for the lui cause anticipatory rounding during the preceding three consonants lsI, It!,
and Ir/. Some coarticulation effects can be approximated by simple rules, e.g., lowering all
resonant frequencies during lip rounding, but others such as the undershoot ofphoneme target
positions (which occurs in virtually all speech) are much harder to model accurately.

For concatenative synthesizers employing hundreds or thousands of speech units, it is
efficient to have automatic methods of extracting such units from natural speech [14, 15].
Unlike speech recognition, where automatic segmentation of the speech signal into reliable
and pertinent units is difficult, TTS often has access to the text of training utterances, and can
align the text well with the speech automatically (e.g., boundaries to within 2G-30ms) [16] to
locate the desired units. Nonetheless, proper choice of which units to record can be crucial to
TTS quality [17].
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The modifications needed in concatenating speech units for synthesis are very similar to
those found in time expansion/compression, in applications wishing to slow down or
accelerate utterances. Such speech-rate modifications are often as simple as "cut-and­
splice" methods, where individual pitch periods are duplicated or deleted periodically. For
more natural-sounding time- and pitch-scale modifications, more elaborate methods using
DFTs or sine-wave models can be employed [18, 19].

9.2.2 Memory Size

A synthesizer consists of (a) a memory storage of speech parameters, obtained from
natural speech and organized in terms of speech units, and (b) a program of rules to
concatenate these units, smoothing the parameters to create time trajectories where necessary.
While it is difficult to quantify program or calculation complexity for different synthesis
approaches, the amount of memory needed for the speech units is simpler to determine. The
following inventory estimates assume an English TfS system [20]. Since English has more
phonemes than most languages and has a wide range of possible syllable structures, the
memory required for TTS in other languages is likely to be less. English has 22 consonants
and 15 vowels/diphthongs; storing phone units would thus require at least 37 parameter
vectors (the diphthongs would actually need more than one vector each to describe their
transient behavior). Each vector would typically include a spectral representation of the vocal
tract (e.g., LPC coefficients, or formants and their bandwidths) and excitation information
(amplitude(s) for voicing, aspiration, voiced-unvoiced, etc.). Assuming each vector has 10-20
elements, several hundred stored parameters would suffice to generate all speech. However,
such stored vectors represent only target parameter values, derived from pronunciation in
isolation or in a neutral context. Phone-concatenation synthesis trades off minimal storage for
a complex program to interpolate the target vectors to simulate natural coarticulation.

A way to improve the quality of phone-concatenated speech is to store and use a larger
set of context-dependent phones. Such allophone synthesis follows phone synthesis methods
except that it employs up to perhaps 250 stored variants of phones to reduce the complexity of
the interpolation algorithm by trading off increased memory for less program space. (Some
recent approaches extend the definition of context to include prosody, thus increasing the
number of allophones into the thousands.) The allophones incorporate directly some of the
complex phonetic variation and coarticulation due to context which phone synthesis must
model explicitly in its smoothing program. The allophones differ according to phonetic
context; e.g., IkJ might be represented by two allophones, one corresponding to its
pronunciation before a front vowel, the other before a back vowel (key vs coo) [21, 22].
Allophone synthesis usually represents a compromise between phoneme and diphone
synthesis; they concatenate short speech units without yielding jumpy speech, while using
a small inventory of units.

Theoretically, English needs 38 x 38 = 1444 diphones (all pairwise combinations of
the 37 phonemes and silence), but some combinations are not used (e.g., /h/+ a consonant).
Substantial further reduction is possible by exploiting the symmetry of spectral patterns in
many diphones (except for diphones containing stop bursts); e.g., patterns for fial and fail are
close to mirror images of each other. Each diphone representation needs at least two vectors,
for the two phonemic states at the start and end of the diphone, but many require 3-5 vectors
to accurately model the parametric trajectories. Whenever a diphone contains a spectral
discontinuity (e.g., at voiced-unvoiced boundaries), simple interpolation of two terminal
vectors cannot adequately describe the parametric behavior during the diphone. About 1400-
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3000 diphone vectors are needed to generate high-quality synthetic speech in English, French,
or German [23]. Diphone synthesis requires more memory and is less flexible in varying
speaking rate or speaker style than rule-based synthesis, but tends to yield more natural
spectral patterns.

There are more demisyllables in English than diphones. Theoretically, each of about
100 initial-consonant clusters could combine with 15 syllabic nuclei (vowels and diphthongs)
to yield 1500 initial demisyllables, while about 200 final clusters would generate 3000 final
demisyllables. A very large English vocabulary, however, can be produced from fewer than
2000 demisyllables. Unlike diphones, with demisyllables there is a risk that words (e.g.,
proper names) will be encountered for synthesis for which the corresponding demisyllables
did not occur in training (diphone training is often done for all possible legal words, whereas
demisyllables are drawn from actual dictionaries, to reduce memory). Since demisyllables
consist of 0.5--4.5 phones (half of the syllable's vowel plus up to four adjacent consonants),
more vectors must be stored (per speech unit) for demisyllables than for a diphone memory.
Perhaps 6000-7000 vectors might be necessary for basic demisyllable synthesis. A more
practical system might strip certain consonants from the larger demisyllables for separate
storage (e.g., the final /s/ in demisyllables with consonant clusters ending in /s/), assuming
that certain consonant sequences tolerate phone concatenation better than sequences invol­
ving vowels [7]. Coarticulation needs more modeling precision near the syllabic nuclei than at
the ends of the syllable because vowels are more important for high-quality synthesis; e.g., a
basic German demisyllable inventory needs about 5400 elements, but exploiting differences
in coarticulation importance allowed one system to function well with 1650 elements [9].

If we treat syllables as the units of concatenation, about 4400 are sufficient to describe
virtually all English words, while the most frequent 1370 syllables are used 93% of the time
[20]. If all English words are included, perhaps 20,000 syllables can be found [24]. Assuming
4000 syllables and about six vectors/syllable, on the order of25,000 vectors would be needed
for large-vocabulary syllable synthesis. A method storing all syllables would be tedious for a
speaker to utter and require about 10Mb using a complex waveform technique (e.g.,
ADPCM) or about 2 Mb using parametric methods (e.g., LPC).

Finally, English has well over 300,000 words, although only 50,000 can be considered
common [25] (and most people only use about 5000 [6]). These words can be generated more
efficiently using about 12,000 morphemes, the basic meaningful elements that make up words
[3]; e.g., the word antidisestablishmentarianism consists of the root morpheme establish
plus two prefix and four suffix morphemes. Perhaps 80,000 vectors would be needed for a
morpheme memory, whereas a word memory could exceed one million entries. Limited­
vocabulary synthesizers that concatenate syllables or words would reduce the memory figures
above, according to the size of their vocabularies. If the speech unit is smaller than a syllable,
however, little memory savings are gained by limiting vocabulary; e.g., 2000 diphones can
generate many thousands of words, but a much smaller vocabulary of 1000 words would still
require 1000 demisyllables or diphones.

While most synthesizers use concatenative speech units of uniform size, a recent trend
uses units of longer length where appropriate [26]. A German synthesizer uses 1086 initial
demisyllables, 577 final demisyllables, 88 obstruent suffixes, 234 diphones (across syllable
boundaries) and 197 syllables (to handle monosyllabic function words better) [27]. A
nonuniform unit selection scheme could automatically choose speech units using objective
measures such as a contextual spectral difference, a prototypicality of each segment for its
context, the spectral gap between adjacent phonemes, and local spectral discontinuity [28]. At
one extreme, we could store more than 100,000 phone units, from many different phonetic
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contexts, but the uncompressed memory for the spoken speech in one such case was
360 Mbytes [29]. With such large-database synthesis, significant computation is needed to
locate the appropriate units for concatenation, to match the desired prosodies needed in the
textual context [14].

For large-memory TTS, a serious issue is speaker fatigue, since each speaker whose
voice is simulated must utter all speech units as uniformly as possible. Speakers usually find
this very arduous for more than a few thousand short phrases at a time, and the longer the
time span of recording, the more likely nonunifonnity is present. After concatenation, uneven
units lead to rough-sounding speech.

9.2.3 Synthesis Method

Synthesizers are classified both by speech unit size and by how they parameterize the
speech for storage and synthesis. Very-high-quality synthetic speech requires waveform
coders and large memories. More efficient but lower-quality systems use vocoders. Vocoder
synthesizers are considered terminal-analog synthesizers because they model the speech
output of the vocal tract without explicitly accounting for articulator movements. A third way
to generate speech is by articulatory synthesis, which represents vocal tract shapes directly,
using data derived from X-ray or CT analysis of speech production [30-32]. Due to the
difficulty of obtaining accurate three-dimensional vocal tract representations and of modeling
the system with a small set of parameters, this last method has yielded lower-quality speech
and has not had commercial application.

The choice of synthesis method is influenced by the size of the vocabulary. Because
they must model all possible utterances, unlimited-text systems are generally more complex
and yield lower-quality speech than voice-response systems. Until recently, waveform
methods have been used only with small vocabularies (e.g., a few minutes of speech).
Advances in memory technology are increasing the vocabulary of low-cost waveform
synthesizers, but for greater flexibility, parametric methods are necessary.

Parametric synthesis normally produces only synthetic-quality speech because of
inadequate modeling of natural speech production. Unlimited-text parametric synthesizers
use small speech units (e.g., phones or diphones) since speech quality does not increase
sufficiently with larger units to justify the much larger memory needed. Coding each of about
1200 diphones in English with 2-3 frames of parameters requires storage of about 200 kb.
More common are phone synthesizers, which normally store one or two sets of amplitude and
spectral parameters for each of the 37 phonemes in as few as 2 kb.

9.2.4 Limited-Text (Voice-Response) Systems

Much synthetic speech (e.g., automatic announcements over the telephone) comes from
systems that encode speech (e.g., with an efficient storage method such as LPC) and play
back the speech with simple concatenation. The output is limited to combinations of the
speech units, usually with their original intonations. This is adequate for many applications
such as speaking toys, warning systems, and automatic telephone directory assistance.
However, if a standard voice and vocabulary are insufficient for a given application, the
synthesis manufacturer must process speech spoken by a user to establish a custom
vocabulary. While parts of the analysis procedure are automatic (e.g., the basic LPC
algorithm), major additional memory savings come only through human interaction: listening
to synthetic speech for sections that can tolerate a more efficient representation than others



344 Chapter 9 • Speech Synthesis

without perceptual degradation and modifying speech parameters in places where imperfect
automatic processing leads to poor synthetic speech. Such manual ad hoc processing, which
is not possible in real-time vocoders, can give very compact representations.

9.2.5 Unrestricted-Text (TTS) Systems

A significant task for synthesizers that accept general text is the need for a linguistic
processor to convert the text into a form suitable for accessing and concatenating the stored
speech units (see Figure 9.1). Such processing involves: (1) translating the input sentences
into a sequence of linguistic codes to fetch the appropriate stored units, then (2) determining
intonation parameters from the text, to vary FO and duration properly [6]. The first problem
can often be handled by a set of language-dependent rules for converting a sequence of letters
into one of phonemes [33, 34]. These letter-to-phoneme rules (also called letter-to-sound
rules) examine the context ofeach letter to determine how it is pronounced; e.g., the letter p in
English is pronounced /p/, except before the letter h (e.g., telephone). English is a Germanic
language but has borrowed heavily from Romance languages and needs hundreds of such
rules to correctly translate 90% ofthe words in unlimited text situations [35]. Many frequently
used words (e.g., of, the) violate basic pronunciation rules and require a list of exceptions. For
complex languages such as English, TTS often uses a dictionary or lexicon for simple, direct
look-up of most pronunciations, with rules as a back-up procedure to handle new words
(since even lexicons with many tens of thousands of words cannot anticipate all possible
words to synthesize).

Languages where spelling follows phonetics more closely (e.g., Spanish) can be
modeled with very few rules since each letter has normally only one pronunciation [36].
Letter-to-phoneme rules developed manually for many languages are capable of very high
precision, especially when combined with a dictionary to handle exceptional cases. Errors in
phonetic transcription with such advanced systems are almost always due to proper nouns
(e.g., names) or foreign words [37, 38]. Such words are often capitalized (or italicized) and
may obey nonEnglish letter-to-phoneme rules. They can be analyzed for letter sequences
unlikely in English words; then a small set of pronunciation rules (based on an estimate of the
identity of the foreign language) could be applied to these words [39, 40].

Letter-to-phoneme rule sets produced via neural networks have been much less
successful than rule sets developed by hand [5]. Neural nets have found greater success in
speech recognition, where the number of possible utterances and acoustic variation is vast,
compared to the number of words in a language (i.e., despite the thousands of words found in
most languages, it is still easier and more accurate to develop transcription rules manually
than to rely on broad automatic statistical methods).

The pronunciation rules used in the MITalk synthesizer (one of the first complete TTS
systems) [3,41] are preceded by a word decomposition algorithm, which tries to strip prefixes
and suffixes from each word. Since there are only a few dozen such affixes in English, and
since they can affect pronunciation (e.g., the third vowel in algebra vs algebraic), the
decomposition procedure increases the power of the system at the expense of extra
computation. MITalk also has a dictionary of morphemes (the basic lexical units that
constitute words), which contains not only phoneme pronunciations but also syntactic
"parts of speech." Such syntactic information from a word or morpheme dictionary,
combined with a parser to determine linguistic structures in the input text, allows specification
of intonation by rule, locating FO and duration effects to simulate natural intonation. Many
synthesizers forgo parsers and large dictionaries as too complex, and rely on simplistic
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intonation rules or leave FO for the user to specify directly (e.g., using special symbols
inserted manually in the input text). Poor handling of intonation is a major reason why much
unlimited text synthesis sounds unnatural [42].

Much of the computation necessary for ITS can be viewed as modular [43], i.e., a
series of passes through the text, in which each pass transforms its input into a string ofoutput
parameters; e.g., a first pass converts abbreviations, digit sequences, and special punctuation
symbols (e.g., $, %, &) into words. This "preprocessor" addresses cases such as "$3.40"~

"three dollars and forty cents," "St. Mark St."~ "Saint Mark Street," and" 1998"~ "nine­
teen ninety-eight." A second pass would typically output a string of phonemes, punctuation,
and word boundaries, with perhaps parts of speech indicated for some or all words. A system
such as MITalk also indicates morpheme boundaries for decomposed words. A third pass
assigns durations and FO to each phoneme, using primarily punctuation and syntactic
information to estimate an appropriate intonation. Finally, a fourth pass determines the
parameter trajectories for the vocal tract model.

Most of the processing in these passes involves applying context-sensitive rules of the
if then type, where variables are assigned or modified only if certain phonetic or linguistic
conditions are met. Since the conditions can often be expressed in terms of phonetic features,
efficient specialized computer languages have been developed. Rule-based systems using
these languages can facilitate the linguistic processing of translating an input text into
synthesizer parameters [8, 44, 45]. The rules are commonly expressed in the form

A ~ B [C __ D],

which reads as 'A is transformed into B, if the current input string matches A in the sequence
C-A-D.' For letter-to-phoneme rules, C-A-D could be a series of text letters and/or symbols,
while B could consist of phonemes or phonetic codes; for later stages of synthesis, A ... D
could contain feature information, When many rules have common elements for left context
C or right context D, classes of elements could be defined to simplify the rules and reduce
their number; e.g., the English rule for final s voicing could be expressed as

s ~ /sl
s ~ IIz/
s ~ Izl

[U - #] (e.g., cats, chiefs)

[F - #] (e.g., cashes, buzzes)

[V - #] (e.g., dogs, pies),

where # is a word boundary and three phoneme classes are described by U, F, and J( U
represents the unvoiced obstruents /f,O,p,t,kJ and F the strident fricatives /s,f,z,3/, while V has
the remaining voiced phonemes. If the rules are ordered, the third rule need not have a left
context test since the union of the three left contexts is the universal set.

Most TTS applications allow any text input and thus require general linguistic
processing, which is unnecessary in voice-response systems. Certain interactive human­
machine applications, however, may permit an intermediate class of synthesis. In synthesis
from concept, the synthesizer's input is a concept, not a text [46], that is transformed into
words using a limited vocabulary and a restricted syntax. Intonation patterns can be specified
in advance in terms of the permitted set of syntactic structures. Phonemic pronunciation and
parts of speech are stored in the vocabulary lexicon. In essence, synthesis from concept is a
flexible voice-response system that can be useful for interrogating databases. Normally,
database information is stored in textual form, but in cases where the information is not
simple text but rather involves tables or structures, speech output usually requires a
conversion to text before applying a TTS system. If the database uses a restricted vocabulary,
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the process can be simplified and higher-quality speech obtained by designing a synthesis­
from-concept synthesizer to match the database. Instead of converting database information
to text, it is transformed into a "concept" suitable to the system. To adapt to other databases,
the system's vocabulary and the permitted syntactic output structures would have to be
modified.

9.3 SYNTHESIZER METHODS

This section discusses in detail how different synthesis methods function. The four main
techniques of articulatory, formant, LPC and waveform synthesis are explained. Two
subsections deal with the specification and updating of parameters for these systems. Finally,
the problems of generating a natural excitation source, including intonation, are discussed.

9.3.1 Articulatory Synthesis (t)

Although speech generation via modeling of vocal tract movements has been less
successful than terminal-analog synthesis, articulatory synthesis (AS) is discussed first since
it is simpler in concept, if not in implementation. In addition, articulatory models are useful to
study the physics of speech production. Directly modeling articulatory motion avoids some of
the complexities of acoustic-phonetics: acoustic cues for various sounds are complicated
functions of phonemic information, speaking rate, prosodies, etc. Coarticulation effects, in
particular, must be specified by rule in terminal-analog systems, but follow more directly in
AS. AS may be divided into three classes, distinguished by the level at which they receive
input in the speech production process: neuromotor command, articulator, and vocal tract
shape [47].

To speak, a person thinks of a message and sends commands to the vocal tract muscles,
which cause articulators to move, changing the shape of the vocal tract. The most basic AS
transforms an input phoneme sequence into a set of neuromotor muscle commands, following
a model based on data from electromyographic studies [48]. It also needs a model relating
muscle commands to articulator motion and an algorithm to convert the set of articulator
positions into vocal tract shapes or area functions (sets of cross-sectional areas Am (for
m = 1, ... , N) for N short sections constituting the vocal tract) (Figure 9.3a). A sequence of
such area functions in time Am(n) could specify a time-varying lattice filter whose reflection
coefficients are determined by the ratios of adjacent areas. Alternatively, formant frequencies
and bandwidths could be derived from Am for use in a formant synthesizer [49].

While neuromotor synthesis is the most theoretically pleasing approach, in that
phonemes relate directly to muscle commands, it is also the most complex to implement.
Commands for a speech gesture (e.g., tongue-tip raising) tend to be similar across different
phonemes that use the same gesture, but the relationships between commands and gestures
are complex. A synthesizer that directly maps phonemes into articulator positions and
motions avoids this step but must explicitly account for vocal tract behavior that might
more easily be described at the muscle level. Since experimental data are more widely
available for articulatory movement than for muscle commands, there have been more
attempts at articulator synthesis than neuromotor synthesis. Typical systems assume that 7­
II parameters can adequately describe articulatory behavior (Figure 9.4): e.g., one parameter
for velum opening, one each for lip protrusion and closure, and two each for the tongue body
and tip (each having both vertical and horizontal degrees of freedom) [47, 49]. Other
suggested parameters are jaw height, pharynx width, and larynx height [51, 52].
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Figure 9.3 An articulatory synthesizer. (a) Schematic diagram of the vocal tract, including
a coupled two-mass vocal cord model. Subglottal pressure P, and volume
velocities U are indicated, as well as the glottal waveform of period T. (b)
Network representation of the system, with time-varying input parameters
indicated. (After Flanagan and Ishizaka [50] r£) IEEE.)

Target values for these parameters are stored for each phoneme, and the actual time
sequence of parameter values is obtained by interpolating between the targets, using
coarticulation constraints and different time constants for the various articulators (Figure
9.5); e.g., the small, flexible tongue tip is allowed fast movement, whereas the jaw moves
more slowly. Each phoneme can be viewed as having both crucial and unimportant target
parameters, where the crucial ones are more resistant to coarticulation; e.g., in producing /p/,
lip and velum closures are crucial, while the tongue configuration has little importance.

The model for articulator motion usually is derived from X-ray data of the vocal tract
during simple utterances. However, most X-rays show only two dimensions of the three­
dimensional vocal tract, and little data are available due to the danger of X-ray exposure. In
addition, the actual vocal tract shape is only roughly approximated by the simplified model
using 7-11 parameters. Synthetic speech from AS, based on generalizations from limited
data, yields lower-quality speech than does terminal-analog synthesis.

Another approach to AS concerns vocal-tract-shape systems, where phonemes are
represented by area functions rather than articulator positions. This approach obviates the
need to model articulator behavior, but it loses the efficiency of the more compact articulator
model (since more than II cross-sectional areas are typically used) and it also forfeits an easy
description of coarticulation (since the concept of crucial and unimportant parameters is less
easily expressed in terms of a set of area values). Coarticulation rules are less precise for vocal
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Figure 9.4 An articulatory model, with labeled arrows indicating controllable degrees of
freedom and dashed lines showing relationships among parameters. (After
Coker et al. [53] © IEEE.)
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Figure 9.5 Parameter trajectories for the model of Figure 9.4 for the utterance "Try once
more from the beginning." Critical points in each contour are labeled with the
phonemes causing the relevant articulation. (After Flanagan et al. [54] ©
IEEE.)
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tract shapes than for articulators, e.g., an unstressed vowel might use a target shape
intermediate between its stressed shape and that of a schwa vowel. Phonemes that involve
rapid transitions (e.g., obstruents or nasals) might be assigned linear transitions between
target shapes, while slower motion might be exponential in time to reflect gradual articulator
movement. One system uses parameter trajectories that follow the first half-period of a cosine
wave (cos(nt/T), 0 ~ t ~ T, where T is the transition duration) to go from one phoneme's
target to the next [51].

One advantage of AS is that vocal tract area models allow accurate modeling of
transients due to abrupt area changes, as well as automatically generating turbulence
excitation for narrow constrictions, where aerodynamic conditions warrant. In such synthesis,
one can observe pressure waves up and down the vocal tract in the time domain, whereas
terminal-analog synthesizers model only spectral behavior. Recent research has explored
using neural nets for articulatory synthesis [55].

9.3.2 Formant Synthesis

Many synthesizers (both commercial and research) employ formant synthesizers, using
a model similar to that shown in Figure 9.6. The system in Figure 9.7 shows a specific
implementation that forms the basis of two advanced synthesizers, of cascade and parallel
structures. The excitation is generally a periodic train of impulses (for voiced speech),
pseudo-random noise (for unvoiced speech), or periodically shaped noise (for voiced
fricatives). The vocal tract is usually modeled as a cascade of second-order digital resonators,
each representing either a formant or the spectral shape of the excitation source. (Higher-order
filters require more bits per coefficient for the same spectral accuracy [56], so second-order
filters are computationally efficient and provide good physical models for individual
fonnants.) The cascade filter structure approximates the speech spectrum well for vowels
and can be controlled with one amplitude parameter. Advanced synthesizers allow the lowest
four formant frequencies and three corresponding bandwidths to vary as a function of time
(variation in higher formants has little perceptual effect); e.g., the Klatt synthesizer [57] has
19 control parameters that vary from frame to frame, and the GLOVE synthesizer uses 37
[58]. Simpler systems sacrifice speech quality, varying only FI-F3, with all bandwidths fixed;
e.g., one system keeps bandwidths for FI, F2, and F3 at 60, 100, and 120 Hz, respectively,
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and 1 antiresonator

Parallel bank of resonators,
each Amplitude-controlled

-OR-
Cascade of 1-2 resonators

It 1 antiresonator

Voice Amplitude

Aspiration amplitude

.......,-------.cx..------'
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Figure 9.6 Simplified block diagram of a formant synthesizer.
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Parallel vocal tract transfer function

Figure 9.7 Block diagram ofa cascade-parallel formant synthesizer. Digital resonators are
indicated by the prefix R and amplitude controls by the prefix A. Each
resonator R; has associated resonant frequency and bandwidth control para­
meters. (After Klatt [57].)

except during nasals where Fl 's bandwidth increases to 150 Hz [59]. Lack of time variation in
the bandwidths yields a degradation that is most noticeable in nasal sounds. Recent research
has examined how to control formant synthesis parameters efficiently, primarily for excitation
(e.g., parameters to control glottal and constriction areas, and the efficiency of turbulence
noise generation) [60, 61].

9.3.2.1 Simulation offrication <t). Given a vocal tract model providing the envelope
of a desired speech spectrum, to simulate natural speech, the noise excitation for unvoiced
sounds should have a flat spectrum, and its amplitude distribution should be roughly
Gaussian. The output of a pseudo-random number generator has a flat spectrum but a
uniform amplitude distribution. Summing several (e.g., 16) of these random numbers
approximates a Gaussian (following the central limit theorem of probability, adding
independent identical random variables) [57]. Since the signals in most formant synthesizers
represent volume velocity, the noise pressure source for fricatives must be converted, which
involves estimating the vocal tract impedance at the location of the noise source. A reasonable
approximation integrates the pressure signal (most valid at the lips, where the radiation
impedance is inductive) and can be modeled by a simple lowpass filter. The -6 dB/oct skirt
of this filter cancels the +6 dB/oct radiation effect at the lips, leaving a net flat spectral trend
for unvoiced sounds, unlike the -6 dB net falloff found in voiced sounds.

The noise source for unvoiced sounds within the mouth cavity excites the vocal tract
primarily between the source and the lips. With this shortened acoustic tube, most speech
energy is at higher frequency than for the vowels, e.g., vel)' little energy is present in FI-F2.
Simulation of obstruents sometimes uses a simple pole-zero network to model the variable
cutoff frequency for the highpass frication noise [58]; alternatively, a parallel bank of
resonators suffices, so that each filter resonance is individually controlled for amplitude
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(Figure 9.7). Recently, use of an inverse-filtered speech waveform as excitation for consonants
has increased quality [62]. Hybrid formant/waveform synthesis appears to yield better
transitions between voiced and unvoiced sounds [63].

9.3.2.2 Parallel synthesizers. A parallel bank of filters may be used to generate both
vowels and consonants (Figure 9.8), but, compared with the cascade approach, parallel
synthesis requires calculation of each formant amplitude as well as an extra amplitude
multiplication per formant in the synthesizer [64]. Special attention must be given to
modeling the frequency region below FI in an all-parallel approach because listeners are
sensitive to the considerable energy present there in natural speech and because varying
formant positions normally changes the gain below F I in parallel synthesis. An advantage of
an all-parallel method is a simpler synthesizer structure, since only one set of resonators
suffices for all sounds. Switching between signal paths in the cascade-parallel approach
(which occurs at boundaries involving obstruents and vowels) sometimes leads to the
perception of separate sound streams; i.e., the output may resemble hissing noises super­
imposed on the main voice stream of vowels and sonorants, rather than an integrated single
voice [65]. High-quality simulations of singing voices and musical instruments have also
been demonstrated using parallel synthesis [66]. Adding the outputs of parallel branches can
introduce unwanted spectral zeros and phase effects into the synthetic speech, but recent
research has alleviated some of these problems [67]. Whenever formants are added in parallel,
they should alternate in sign, i.e., Al - A2 + A3 - A4 ... , to account for 1800 phase shifts
in the vocal tract transfer function at each formant frequency.

To simulate voiced frication, many formant synthesizers excite a parallel set of
resonators with a noise source modulated by a waveform with period l/FO. While such a
noise excitation corresponds well to the pulsating airflow through the oral tract constriction, a
simpler mix of periodic and noise excitation suffices perceptually [68]. Typically, F 1 has clear
harmonic structure in voiced frication, while formants above F2-F3 are fully unvoiced.

Unvoiced
excitation

Voidn
contro

Voiced
excitation

......--....... Fixed filter with ...----­
3 resonators

for upper band

Figure 9.8 Block diagram of an all-parallel formant synthesizer. Variable center frequen­
cies F;, amplitudes Ai' and voicing mix are specified for each resonator. (After
Holmes [64].).
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Providing each formant in a parallel synthesizer with its own control for mixing periodic and
noise excitation is one approach [64]. Alternatively in cascade-parallel synthesis, noise
(perhaps periodically modulated) can excite a parallel set of resonators, while a lowpass­
filtered version of the normal glottal signal excites a cascade set of resonators [57].

9.3.2.3 Simulation of nasals (t). Synthesis of nasals usually requires one more
resonator than for vowels because the acoustic path including the nasal cavity is longer than
the oral vocal tract, which increases the number of resonances in the speech bandwidth.
Frequency spacing between formants decreases about 15%, i.e., one extra formant in a 5 kHz
bandwidth. To model the spectral zeros that occur in nasals, a second-order antiresonator is
often used for the zero having the lowest frequency (higher-frequency zeros have less
perceptual importance). (Obstruents, on the other hand, have more numerous low-frequency
zeros due to the large side branch of the vocal tract below the noise source. These zeros are
more efficiently modeled via parallel synthesis, where variations in the amplitudes and
bandwidths of the resonators can simulate the effects of the zeros.) For efficient implementa­
tion ofnasals in a cascade synthesizer, the extra resonator and antiresonator can be considered
as a complex-conjugate pole-zero pair with equal bandwidths, whose effects cancel except
when nasals are to be simulated. A pair could be located at a fixed low value (e.g., 270 Hz), so
that F I combines with the nasal formant and antifonnant to yield a broadened-bandwidth
region of low-frequency energy typical of nasals [57], although better quality results with two
such pairs. In an all-parallel synthesizer, the extra nasal formant is treated like other formants,
except that it is excited only during nasals.

9.3.2.4 Implementation aspects <t). In synthesis implementations using fixed-point
arithmetic, e.g., in synthesizer chips and most microprocessors, quantization noise can be a
significant problem. When the dynamic range of waveforms varies at different points in the
synthesizer, which is especially true in the cascade approach since formant bandwidths are
variable, signal levels must be adjusted between filters to fully utilize the available bits in each
register. Since dynamic range problems are exacerbated by the -12 dB/oct falloff for voiced
glottal waveforms, many synthesizers use the second derivative of the desired glottal
waveform instead as input to the vocal tract filters. In this way, the excitation spectrum is
relatively flat, which reduces dynamic range. Instead of applying a +6 dB/oct radiation effect
after the vocal tract filters, an equalization causes the output spectrum to have the desired
-6 dB/oct trend.

Another way to reduce dynamic range problems in a cascade of resonators is to position
the widest-bandwidth filters first so that when the signal reaches the filters with narrow
bandwidths (and hence widest gain range), it has been attenuated at the resonant frequencies
of these last filters. A common ordering employs decreasing formant frequencies since
formant bandwidths tend to increase with frequency [69]. It may also be desirable to interlace
the resonators (e.g., R4, R2, R5, R3, RI) to avoid large intermediate spectral gains at
frequencies that are near two proximate formants.

9.3.3 Linear Predictive Coding (LPC) Synthesis

To avoid the need to manually develop the complex set of coarticulation rules for
formant synthesis, the automatic method of LPC synthesis has become popular [28, 70]. It
has a simpler structure than formant synthesis because all spectral properties of speech
(except intensity and periodicity) are included in the LPC coefficients, which are calculated
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automatically in the analysis of natural speech. A lattice filter is often used for synthesis
because the filter coefficients can be linearly interpolated between frames without yielding an
unstable filter. The excitation is specified by a gain parameter, a voiced-unvoiced bit, and (if
voiced) an FO value. For simplicity, most LPC systems do not allow mixed excitation for
voiced fricatives.

The choice between formant and LPC synthesis is governed by tradeoffs. LPC has a
simpler and fully automatic analysis procedure and a simpler synthesis structure than the
formant approach. On the other hand, our understanding of formant behavior facilitates
parameter interpolation at segment boundaries in formant synthesis, whereas interpolation of
LPC reflection coefficients is usually limited because each coefficient affects a wide range of
speech frequencies in a complex fashion (LSFs, being related to formants, are easier to
interpolate). In addition, formant synthesis is more flexible in allowing simple transforma­
tions to simulate several voices. Shifting formant frequencies in formant synthesis can easily
alter speaker-related aspects of voice, whereas the LPC reflection coefficients have to be
converted into pole locations to allow such modification. Because spectral valleys are
modeled more poorly than peaks in LPC analysis, formant bandwidths are often improperly
estimated, whereas direct (albeit difficult) bandwidth determination from DFT spectra in the
formant approach can yield better estimates. The all-pole assumption of standard LPC leads
to less accurate spectral estimation for nasal sounds than for other phones, whereas
antiresonators in formant synthesis permit direct modeling of the most important spectral
zeros in nasals. In large measure, the LPC vs formant choice trades off the simple, automatic
analysis of LPC against the higher speech quality possible with more complex formant
synthesis.

9.3.4 Specifying Parameter Trajectories (r)

Many synthesizers can generate high-quality speech if appropriate input parameters are
supplied. Signals indistinguishable from natural human speech can be produced with parallel
formant synthesizers that allow time variation of F I-F3 and their bandwidths and that permit
mixed excitation for unvoiced fricatives. Parallel-cascade synthesizers can do the same if a
nasal antiresonator is included with the formant resonators. With the possible exception of
nasals and voiced fricatives, conventional LPC synthesizers can likely also generate such
natural speech. The major difficulty in all cases, however, is that such high-quality speech has
not been possible automatically by rule, but only semi-automatically if algorithmically
selected parameters are modified frame by frame to match human speech patterns ("synthesis
by art") [71]. Synthesis models are oversimplified in general, and smoothed parameter tracks
obtained from speech analysis (or by rule) must be adjusted to closely match natural speech.
The frame-by-frame parameter values that lead to the best speech often exhibit seemingly
random discontinuities that are difficult to predict by rule.

The challenge in synthesis research is to accurately model the parameter variations
found in natural speech so that they can be generated by rule from an input text. The basic
approach in phonemic formant synthesis has been to store target parameters for each
phoneme and to interpolate parameter trajectories between target sets simulating coarticula­
tion effects [72]. To avoid contextual effects, the targets for continuant phonemes such as
vowels and fricatives are often based on data from isolated utterances of individual phonemes
(see tables II and III in [57]). Transient phonemes (e.g., plosives) require adjacent phonemes,
and their targets can be derived from utterances with neutral adjacent phonemes (e.g., schwa
vowels) or from averaged data using different contexts. Allophonic synthesis involves an
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extension of this basic approach in which targets are stored for each allophone, directly
incorporating contextual effects into the stored parameters.

Linear interpolation provides the simplest way to generate a parameter track using
targets from two successive sounds. Linear transitions involving amplitudes (e.g., the
intensity of voicing or of frication) are frequently adequate. To model natural formant
frequency curves, however, smoother parameter interpolation is often used to avoid slope
discontinuities at boundaries or update times. For example, the solution to a critically damped
second-degree differential equation yields exponential time curves that provide good fits to
the formant motion in natural speech. The motion from an initial parameter value Ai toward a
target At can be expressed as

a(t) = At + [Vi! + (Ai - At)(l + tj-r)]e- t
/
r

, (9.1)

where Vi represents the initial parameter velocity (which in general is nonzero if the
parameter is not at steady state at the initial time t = 0) and r is a time constant that reflects
the duration of the transition [59]. Typically, a function of both phonemes involved in the
transition, r reflects the mass and speed of the articulators employed to produce the phones.

Although natural speech has smooth formant tracks (except at obstruent and nasal
boundaries), perceptual experiments have not clearly demonstrated the need to replicate this
aspect of natural speech in synthesis. Simplicity often dictates linear interpolation of formant
targets [6], which leaves slope discontinuities in the middle of phones [73]. Undershoot of
target values can be accomplished either by target modification (based on phoneme context)
before interpolation or by updating the interpolation factors (e.g., new values for At) before
the parameter reaches a steady state. Durations may be specified for each phone, and
transition times for each pair of phones or for each diphone [47]. An unstressed vowel may be
shorter than the sum of the proposed transition durations (i.e., transition from the prior
phone + transition toward the next), in which case the vowel would not attain steady state and
the target could be significantly undershot.

In transitions between acoustic segments (e.g., phones or parts of phones), each
segment is specified by context-independent targets for spectral parameters that are modified
by the context effects of coarticulation. Vowel-to-vowel transitions are good examples where
spectral parameters smoothly move from values dominated by the first vowel to values
dominated by the second. Whereas the primary cues for vowels are likely to occur in the
spectra toward the middle of their durations, plosives rely on parameter transitions near
closure onset and release (i.e., at the ends of neighboring phones) to cue place of articulation
and voicing. Linear interpolation of targets between segments is generally inappropriate to
model sudden acoustic changes such as voiced-unvoiced switches, amplitude changes
between obstruents and sonorants, or spectral jumps at nasal or plosive onsets and releases.
If, however, parameter values are specified for segment boundaries as a function of the
manners of articulation of the phonetic segments involved, piecewise-linear parameter
contours (one from the middle of the first segment to the boundary and another from the
boundary to the middle of the next segment) may suffice [73]. Phones can be ranked in
increasing order of abruptness, e.g., vowels, semivowels, liquids, fricatives, nasals, and
plosives, in terms of how important transitions are to their identification. Such a ranking can
then specify parameter values at segment boundaries involving different phones, where
phones with higher abruptness would dominate the transition.

If the synthesizer concatenates phonetic units whose spectra are very different at the
joining boundary, substantial smoothing is necessary to avoid discontinuous speech. Accep­
table speech is possible by concatenating large stored units (e.g., words) with a limited
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amount of smoothing, because most of the phone boundaries are correctly modeled within
each word. One approach to word concatenation linearly interpolates stored parameter tracks
within a time window of 40-100 ms straddling the boundary between the words. It is
inadequate to simply discard the stored parameter trajectories within this smoothing interval
and connect the interval endpoints because substantial parameter variation often occurs at the
edges of phonetic units [11]. Smoothing over a fixed number of frames at each boundary can
lead to overcoarticulated speech (and to perception of two voices) [6].

The parameter interpolation can be weighted in favor of the word with the more rapidly
changing parameter, e.g.,

(9.2)(
_ b(n)(N - n)B + c(n)nC

a n) - (N _ n)B + nC '

where b(n) and c(n) are the parameter tracks for the end of the first word and the start of the
next word, respectively, a(n) is the smoothed output track, N is the duration of the smoothing
interval, and Band C are spectral derivatives of b(n) and c(n) [74]. Rapid spectral change at
the beginning or end of a word is often crucial to accurate perception, whereas a steady
formant at a word boundary can often be modified over a short time window with little quality
loss. By weighting the interpolation spectrally, a rapidly changing formant will dominate the
smoothing interval and most of its transition will be preserved.

A more general way to handle coarticulatory influences on parameter targets and their
timing is to assign to each target value a weighting function that grows in time, possibly has a
steady state, and then finally decays [75]. A parameter's trajectory would be specified by the
sum of all phoneme target values, each multiplied by its weighting function, which attains a
maximum during the middle of its phone. This allows contextual effects over a broad time
domain and thus could be superior to approaches that arbitrarily limit parameter smoothing in
time.

9.3.5 Intraframe Parameter Updating (t)

(9.3)for 0 .s j ~ M / L.

For terminal-analog synthesis, spectral and excitation parameters are fetched from
stored speech units, either periodically (every frame of 10-30 ms) or whenever the synthesis
program indicates there should be a significant change in the parameters. (With the latter
procedure, a duration must be specified for each stored frame.) Often the parameters are
linearly interpolated during a frame to allow more frequent updates to the synthesizer; i.e., if
Q;(n) and Q;(n + M) (for 1 ~ i ~ N) represent N synthesis parameters for frames of speech at
times nand n + M, respectively (M + 1 samples/frame), then the parameters used in the
synthesis filter at times n + jL would be

(M - jL)Q;(n) + jLQ;(n + M)

M

If the update interval L is short (e.g., less than 10 ms), some undesired discontinuities in the
speech signal at update times can be avoided, even with long intervals M between frames. The
corresponding parameters in natural speech do not in general change linearly over the course
of a frame, but, given storage or transmission limitations that often specify a minimum frame
duration, linear interpolation is simple and typically improves synthesis quality by helping
avoid signal discontinuities inconsistent with the physical articulatory motion. Many
synthesizers that interpolate within a frame smooth only parameters that do not change
abruptly across frames because large interframe changes often signal abrupt vocal tract
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motion (e.g., closure-opening of the oral or nasal tract), where the ear expects a sudden
acoustic change.

To avoid instabilities, spectral parameters such as formant frequencies or reflection
coefficients are interpolated. Since synthesis filters are time varying, keeping their poles
inside the unit circle is not always sufficient to avoid instabilities. Even if the spectral poles
for both the previous and current frames lay inside the unit circle, instabilities can arise
because the contents of the N filter registers (e.g., for an N -pole LPC synthesizer) are based
on the prior frame's parameters while the post-update filter coefficients reflect the new
parameters. The problem is especially severe when sudden large spectral changes involve
narrow-bandwidth formants, e.g., at boundaries involving a nasal and a high vowel, where the
bandwidth of F1 is small. Clicks in the speech can be avoided by setting the filter memory to
zero when the coefficients are changed, but this leaves unnatural gaps in the output, which
appear at the frame rate. One compromise is to clear the filter memory only when large
changes between parameters occur, assuming that the large spectral change will mask the
brief energy dip. Another possibility is to always use a clear-memory filter on each parameter
update and to output the sum of the time responses of all filters, each delayed by the correct
number of frames; however, this increases computation by a factor equal to the ratio of the
longest impulse response to the frame duration since that number of filters must operate in
parallel [76]. More simply, for voiced speech in all types ofvocoder synthesis, the parameters
of the time-varying vocal tract filter should be updated just before the start of a pitch pulse
excitation. At this point the speech signal and synthesis filter registers have decayed to their
lowest energy values, and any temporary filter instabilities have limited effects. The problem
is much less critical for unvoiced phones since their excitation is more uniform over time, and
the excited formants in frication have relatively large bandwidths.

9.3.6 Excitation Modeling (t)

With either LPC or formant synthesis, many systems use a simple model for most
voiced excitation, Le., waveforms repeated periodically at the FO rate, often just a unit-sample
train. This assumes that the vocal tract is excited once per pitch period and that the filtering
action of the vocal cords (to create the puffs of air just above the glottis that resemble a
rectified sine wave in time) is stationary throughout the analysis frame and can be well
modeled by a few poles or zeros. The effects of glottal zeros in all-pole LPC appear in
modifications to the positions of some poles, whereas formant synthesis may directly combine
poles and zeros in a specific glottal filter.

Since using a unit-sample train as excitation assigns all harmonics the same zero phase,
which leads to a more "peaky" waveform than natural speech, some synthesizers employ
excitation signals e(n) more complex than impulses (e.g., approaching a glottal pulse, or the
actual LPC residual). Alternative all-pass e(n) have the same flat spectral magnitude envelope
as a unit-sample train but allow phase variation that can yield a less peaky speech signal
[77, 78].

Since voicing and aspiration originate at the glottis, articulatory synthesizers introduce
such excitation at the location in the model representing the vocal cords. Natural frication, on
the other hand, is generated just forward of a narrow constriction in the vocal tract, and thus a
random noise source can be automatically inserted into the model anterior to the cross-section
of minimum area. For typical frication, intensity is inversely proportional to the square of the
constriction diameter and can be directly calculated as a function of vocal tract cross-sectional
areas; however, the areas are rarely known with sufficient precision to yield accurate models.



Section 9.3 • Synthesizer Methods 357

Simple periodic waveforms can be used for voiced excitation [52], or laryngeal articulation
can be simulated more precisely with the coupled two-mass model of Figure 9.3 [50]. Instead
of specifying amplitudes for voicing, aspiration, and frication separately, such a comprehen­
sive model would specify articulatory parameters such as subglottal pressure, vocal cord
tension, and a neutral or rest area for the glottis.

9.3.6.1 Filtered excitation for voicing. The excitation for voiced speech is similar in
formant and LPC synthesis. A typical formant approach assumes that the glottal signal e(n)

can be modeled as 1 impulse/period exciting 1-3 second-order lowpass filters (where one
filter may be an antiresonator). The output of a critically damped resonator (one whose
bandwidth exceeds its center frequency) closely resembles a time-reversed glottal pulse if the
resonator bandwidth is chosen near 50 Hz so that the pulse duration is about 4 ms, which is
suitable for FO near 100 Hz (Figure 9.9). (A wider bandwidth, and hence shorter glottal pulse,
is needed for female voices.) The time reversal affects only the spectral phase of the pulse, not
its magnitude, and the resulting group delay distortion appears to be perceptually insignificant
[64].

To simulate the periodic component in voiced obstruents, a separate excitation can
create voice bars, whose energy is at vel)' low frequencies [57]. In addition to the fixed
lowpass filter just discussed, a second one with similar bandwidth can be cascaded to create a
combined - 24 dB/oct falloff above about 100Hz. After such filtering, only the fundamental
and some of the next harmonic remain, which combine to produce the quasi-sinusoidal voice
bar.

Normally, synthesis models assume a clear separation between excitation source and
vocal tract response, and model each independently. While LPC includes glottal effects in its
overall spectral model, the remaining aspects of excitation are still determined separately.
Formant synthesis allows the flexibility to inject a certain degree of interaction between
excitation and the vocal tract. The quality of formant-based voiced speech can be slightly
improved if formant bandwidths are allowed to vary rapidly with vocal cord aperture. When
the glottis is open, formant bandwidths (for FI especially) increase relative to their values
with a closed glottis. The losses due to interaction with the subglottal vocal tract primari ly
affect frequencies below 1 kHz, but their effects can be perceptually significant [71]. Speech

o 1 2 3 456
Time (ms)

7 8

Figure 9.9 Impulse response of a simple second-order lowpass filter. suitable as a glottal
waveshape in voiced speech. (After Holmes [64].)
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sounds more natural when the bandwidth ofFI oscillates pitch-synchronously between values
of about 50 Hz and 200 Hz, corresponding to a closed and open glottis, respectively, than
when Fl has a fixed average bandwidth [64]. Compared to vowels, aspiration employs an
even wider glottis, with a recommended Fl bandwidth near 300 Hz [57]. Modeling some
nonlinear interactions between the glottis and the vocal tract seems to improve synthetic
quality [79].

One excitation for formant synthesis is a simple stored e(n) that matches the general
time-domain characteristics of a glottal pulse. Here, e(n) may be represented by a small set of
parameters determining the relative timing of the rise and fall of the glottal pulse, which can
be adjusted for different speech intensities and pitches. Waveforms with discontinuities, such
as sawtooth or rectangular pulses, are inappropriate because they have -6 dB/oct decay rates.
The desired -12 dB/oct falloff is accomplished through a discontinuity in slope at the time
of vocal cord closure, which is abrupt (the gradual opening of the vocal cords, on the other
hand, causes no slope discontinuity).

One problem with using a filtered impulse to simulate a glottal pulse is that the filter
output achieves a maximum at a fixed time after the impulse input, whereas natural glottal
pulses tend to peak at a fixed percentage of the pitch period, reflecting roughly proportional
open and closed glottal phases. In practice, the filter characteristics are chosen so that the
synthetic and natural glottal signals match for an average value of FO. If FO deviates
significantly from this average, the speech may change quality, corresponding to the
differences between soft speech and shouting. Shouting, besides raising speech amplitude,
causes the glottal closed phase to be a relatively longer part of the pitch period. The glottal
excitation is often described in terms of an open quotient (OQ), i.e., the ratio of the open
glottal interval to the closed glottal interval, as a percentage of the fundamental period
(To = liFO). By varying OQ and a skew measure (a measure of the symmetry of the glottal
pulse, which tends to rise more slowly than it falls--due to the more rapid closure of the vocal
cords), researchers have recently produced more natural-sounding synthetic speech [80-83].
In particular, a 4-parameter ("LF") model is popular [84, 85].

We can also use versions of actual LPC residual waveforms for e(n). Exciting the LPC
synthesis filter with its corresponding residual signal (as in ADPCM) reconstructs exactly the
original speech (except for quantization noise). RELP exploits this fact by storing a lowpass
version of the residual and then using nonlinear techniques to approximate the residual for
synthesis. Such bit-saving economy is less important for many synthesis applications. Instead,
the problems in synthesis concern how many residual patterns to store and how to modify
them under changes in duration and FO; e.g., excellent speech can result if, for each
combination of LPC coefficients and desired FO, the corresponding residual excites the
appropriate filter. Given thousands of possible LPC vectors (corresponding to perceptuaJly
different speech sounds) and perhaps 100 perceivable pitches, the number of residuals to store
and then access in real time could lead to memory exceeding 8 Mb, even with an efficient
multipulse representation. (This memory estimate ignores the fact that residuals also vary in a
complex fashion with amplitude.) Some memory reduction can be done by using a multipulse
version of e(n) [86], rather than full residuals.

FO variation causes some difficulty with these approaches, since the e(n) signal must be
truncated, overlapped, or otherwise shortened when the pitch period becomes less than the
duration of the stored e(n) [87]. To minimize spectral distortion due to truncation, most of the
energy in e(n) should be concentrated in the first 2-3 ms (since virtually aJl pitch periods are
longer), or e(n) could be an "embedded" all-pass signal where truncation does not seriously
affect its magnitude spectrum. Unfortunately, exciting the synthesis filter with a fixed
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waveform e(n) improves speech quality only marginally, compared with speech using a zero­
phase impulsive excitation. There is sufficient variability in the natural glottal waveform to
make any completely periodic excitation a significant simplification, which is a major cause
of the lack of naturalness in speech from parametric synthesis. Fundamentally, we do not
understand how to precisely model the excitation to fit different vocal tract responses and
pitch periods, and the resulting synthetic speech suffers in naturalness. Another difficulty is
that the basic speech production model most commonly used in TTS assumes strict
separability and independence of the excitation and vocal tract filter effects; another
simplifying assumption is that there is only plane wave acoustic propagation in the vocal
tract; neither of these assumptions are completely valid, but removing them renders speech
modeling much more complex.

9.3.7 Waveform Concatenation

Many synthesizers have adopted the spectral approach, where the units are described in
terms of formants, Fourier amplitudes, or LPC coefficients, due to the more efficient coding
of speech spectrally and the flexibility to modify the stored units under changes in prosody or
speaker. As an alternative to spectral-based synthesis, waveform synthesis can yield very
good synthetic speech, at the cost of increased memory and speaker inflexibility. While
concatenating speech units using stored waveforms has been difficult when trying to smooth
transitions or to otherwise modify the units depending on context, it can yield good results
with appropriate adjustment and smoothing at the unit boundaries.

Recently, very good synthesis quality has been obtained with such a concatentation
method called PSOLA (pitch-synchronous overlap-and-add): it overlaps and sums small
waveform units, using typically units of two adjacent pitch periods [88]. As in TDHS
(Chapter 7), a smooth time window of one period's duration (centered on the maximum
amplitude of the period) gradually fades in and out successive pitch periods for concatenation.
Like other waveform or diphone synthesis methods, PSOLA cannot be easily modified to
simulate voices other than that of the training speaker. As an example of PSOLA, a German
system employs 2310 diphones and 440 additional special units containing glottal stops [27].
A French system has 1290 diphones, plus 751 triphones and 288 quadphones (the latter
involving sonorant consonants); use of triphones reduces intelligibility errors by 20% [89].
An automatic segmentation using hidden Markov model recognition techniques provided unit
boundaries which differed from the phonetician's markings by less than 30 ms in 90% of the
cases.

Since one voice suffices for many TTS applications, PSOLA provides a useful
alternative to spectral-based TTS. The original time-domain TD-PSOLA suffered from: (1)
the need to manually mark pitch periods (for optimal performance) in the original speech
analysis, (2) problems in spectral and prosodic smoothing at unit boundaries, and (3)
requiring a large memory for the stored units (e.g., 80 kb/s). Recent modifications have
lessened some drawbacks, while retaining low computation at synthesis time (7 opera­
tions/sample). In particular, the MBROLA (multiband resynthesis) method [6] resynthesizes
(once) the entire diphone database at a constant average pitch period, which allows simple
linear time interpolation at synthesis time, permitting smooth spectral matching across unit
boundaries. It appears that PSOLA can yield quality similar to LPC synthesis using residual
excitation (i.e., truncated or expanded residuals of actual pitch periods) [87]. PSOLA speech
tends to have a perceived roughness when the prosody is modified significantly [90].
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A related method is called analysis-by-synthesis/overlap-add (ABS/OLA) [91, 92].
This hybrid method uses the sinusoidal modeling of Chapter 7 [18] to overlap frames
containing a small number of sinusoidal harmonics via inverse FFTs. Being frame-based, it
does not require pitch-period markers as in PSOLA. A related hybrid harmonic/stochastic
model, mixing Gaussian noise components with harmonics, is superior to basic LPC
synthesis in quality and superior to PSOLA methods in simulating different speaking
styles, although it appears more breathy than PSOLA in quality [6, 93]. Another hybrid
model combines LPC for unvoiced sounds with a sum of sinusoids for voiced speech [94].

9.4 SYNTHESIS OF INTONATION

A major difficulty in synthesizing speech is that of determining a natural intonation
corresponding to the input text. When the stored synthesis units are large (e.g., phrases),
FO and intensity are usually stored explicitly with the spectral parameters in LPC and formant
synthesizers or implicitly in the residual signals of most waveform synthesizers. When
concatenating small units (e.g., words or phones), unnatural speech occurs unless the
intonation stored for each unit is adjusted for context (except for word concatenation when
generating simple lists of words). Each language has its own intonation rules, and they can be
discovered only by comprehensive analysis of much natural speech. While some attempts
have been made to automate this analysis, i.e., via statistical methods [43], the discussion
below describes traditional methods.

The domain and method of variation are different for the three prosodies: FO, duration,
and intensity. (In addition, spectral tilt is sometimes included as a prosodic and affects
intensity perception.) The primary variations in intensity are phoneme-dependent, and so
intensity parameters are usually stored as part of the synthesis units. Stressed syllables,
however, tend to be more intense, and sentence-final syllables less intense, than average. Thus
intensity should be modified at the syllable and sentence level when employing smaller
synthesis units. For example, in word concatenation, the stored intensity parameters for each
word reflect lexical stress, but each word's intensity should be adjusted for sentential stress. In
diphone concatenation, intensity should be modified for both lexical and sentential stress.

Duration is usually encoded implicitly in stored speech data. In parametric synthesizers,
the parameters are evaluated once per frame. Variable-frame-rate systems take advantage of
the tendency for some speech sounds to attain a steady state for several frames; the frame size
is adjusted using some measure of spectral continuity between consecutive frames. For
diphone and phone concatenation synthesis, however, durations must be determined explicitly
(from analyses of the input text) since diphones and phones are stored with arbitrary
durations.

It is of little use to store FO for units smaller than a word, since natural FO patterns are
determined primarily at the level of words and phrases: FO undergoes major changes on the
lexically stressed syllables of emphasized words, with FO rises and falls marking the starts and
ends of syntactic phrases, respectively. Even at the word level, substantially different FO
contours can occur depending on the word's position in a sentence. Thus small-vocabulary
synthesizers should record each word or phrase in sentence positions appropriate for all
possible output contexts. FO-by-rule algorithms [46, 95-97] often operate on a sentence-by­
sentence basis, assigning a basic falling pattern following the declination effect, with
superimposed FO excursions above (and sometimes below) the declination line. FO may be
specified either in terms of explicit contours or simply via targets, whose values then must be
interpolated to yield contours. In one approach, two falling declination lines, a high topline
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and a low baseline (the latter with less slope), gradually converge toward the end of each
sentential utterance [98, 99]. If stressed syllables and major phrasal boundaries can be
identified in the input text, FO can be assigned to follow one of the declination lines except
during stressed syllables, where it switches levels, rising at the start of a phrase and falling at
its end [100]. This is a reasonable first-order FO model in many cases, especially for Germanic
languages, including English. While the reality of declination lines in conversational speech is
still controversial, at least the baseline is found in most FO algorithms.

An alternative approach, based on models of reaction times for vocal cord muscles that
control FO, views an FO contour as the filtered sum of two components: word-level accent
commands, and clause-level utterance commands (Figure 9.10) [101,102]. FO is assumed to
be controlled by discrete commands, each of which starts at a certain time, maintains a fixed
level for a certain duration, and then switches off. These rectangular command signals excite
critically damped, second-order lowpass filters that model the way vocal cord muscles might
react to such commands. Good fits to actual FO contours occur if a step change of amplitude A
at time T in the accent command contributes AW(t - T) to the overall log FO curve (to
normalize across male and female FO ranges, a logarithmic scale for FO is often used), where

W(t) = [1 - (1 + {Jt)e-{J']u(t) (9.4)

and p is the inverse of a small time constant (about 22 S-I) representing fast FO changes
during stressed syllables. More gradual FO changes are reflected in the response to the
utterance commands, by which a similar step change contributes AC(t - T), where

(9.5)

and =x is the inverse of a large time constant (about 3.3 S-I). The time constants might be
expected to vary across speakers, depending on the size and shape of vocal cord muscles.
While this model is reasonable, it remains to be seen whether the timing and amplitudes of the
FO commands can be automatically determined from an analysis of the input text.

Another model views the FO contour as a series of high and low target values connected
by transitional functions [103]. To model the tendency of English FO to fall in a rough
exponential fashion after many stressed syllables, this model assumes that FO "sags" between
consecutive high targets (Figure 9.11). If the duration between targets exceeds 800 ms, FO
sags to the baseline; shorter times lead to undershoot. A recent detailed study of one person's
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Figure 9.10 Model to generate FO for a short utterance. (After Fujisaki et al. [101] if)
IEEE.)
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FO patterns suggests that a single, underlying contour (modified by segmental effects) can
explain much of FO's variability [104].

Although both accurate duration and FO modeling are important in synthetic speech
quality, more FO models have been proposed than have comprehensive duration models.
Compared to FO, duration is more tightly coupled to phonemics and can be roughly specified
by a few simple rules. Vowels are generally longer than consonants, fricatives longer than
stops, unvoiced consonants longer than voiced ones, stressed syllables longer than unstressed
ones, and consonants shorter in clusters [53]. Context affects duration too: vowels are longer
before voiced consonants than before unvoiced ones, syllables lengthen at the end of major
phrases, etc. When speaking rate varies, vowels tend to expand or compress more than
consonants do, leading to the theory that sounds may have a certain minimum duration
beyond which they may not be compressed without loss of speech quality [105]. Given the
multitude of factors (syntactic, semantic, phonetic, phonological) that affect duration, there
has been controversy over the best way to combine effects in calculating durations for speech
synthesis [106, 107]; e.g., the different incremental effects might add to or multiply a base
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duration, or they could be modeled as fixed durational increments or percentages of a
phoneme's duration.

A major problem for generating natural intonation is the lack of reliable markers in
most input text to indicate intonational boundaries, which are usually affiliated with the ends
of major syntactical phrases [6]. Sentence- and clause-final punctuation (.?!:;) are reliable
places for pauses (lengthening of the final syllables, resetting of the FO declination lines, FO
rises in yes/no questions, etc.). However, between such punctuation marks in most sentences,
we often find a sequence of dozens of words with only (highly unreliable) commas to help
locate breaks. For most European languages, a good heuristic places a potential break at the
juncture of a content word followed by a function word, because most syntactic phrases start
with (low-information-content) function words and end on the more important content words.
Highlighting the final word in such sequences (with a durational lengthening and FO rise) is
appropriate in general. (For English, viewing object pronouns as content words and tensed
verbs as function words here leads to a better intonation algorithm [38].) A potential break
would be typically realized with an actual intonational boundary if the phrase is sufficiently
long (perhaps a dozen or so syllables, thus warranting a pause). This could also be a function
of speaking rate, since speakers pause more often in slow speech.

9.5 SPEECH SYNTHESIS FOR DIFFERENT SPEAKERS

One view of TTS has been to design a synthesizer capable of producing one good synthetic
voice (usually of an adult male), on the assumption that listeners do not need a choice of
synthetic voices. However, the ability to modify speech to simulate another voice (voice
conversion) is useful [108]. Large-memory, waveform-based TTS needs a separate database
for each voice. Good quality is achieved at significant cost and time, although ability to vary
emotions in such synthetic speech is unclear.

Parametric TTS is more flexible, and recent synthesis products are capable of several
voices, male and female, young and old [109]. Since female and child voices are not simply
interpolated versions of adult male voices, however, more research is needed to bring the
synthetic quality of female and child voices to the level of adult male synthetic speech.

While there is little evidence that human female speech is less intelligible than male
speech, coders and synthesizers have not modeled female speech well. The most obvious
differences concern the shorter vocal tract and smaller vocal cords of women (with their yet
smaller vocal apparatus, children's speech is even more problematic). This leads to fewer
resonances in a given bandwidth (e.g., over the telephone) and to more widely spaced
harmonics, with correspondingly less clear definition of formants when using traditional
spectral analysis methods. Higher FO causes greater interaction between the glottal source and
the vocal tract than for males. Also, the glottal excitation that women use appears to be more
symmetric and breathy (the latter causing more randomness in their speech waveforms) than
for men [110]. Addressing these differences recently, researchers have obtained a more
natural synthesis of female speech [80, 111, 112]. In particular, they adjusted the glottal puff
excitation to have a shorter closed phase for female speech and adjusted the positions of vocal
tract poles and zeros to better correspond to differences in shorter vocal tracts. Traditionally,
researchers have simply doubled the FO and modeled female vocal tracts as 17 em male vocal
tracts scaled down by 10-15%

, which is a reasonable first-order approximation, but ignores
the fact that male-female differences do not occur uniformly along the vocal tract; e.g., it is
mostly in the lower pharyngeal area that the major difference occurs in length.
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When simulating different voices or speaking styles, both intonation and segmentals
must be changed. For example, compared to normal speech, a reading style is typically slower
(e.g., by 10%) with often much longer pauses and with a lower and less dynamic FO, while an
animated speaking style is faster with higher and wide-ranging FO. It is often overlooked that
formants also shift with speaking style, by up to 20% [113]. Simulating different emotions
synthetically requires many adjustments to prosody and segmentals [114].

In certain applications (e.g., multimedia output from textual databases), synthetic
speech can be augmented visually by a computer-graphic version of a 'talking head' [115­
117]. Just as lip reading can help speech understanding in noisy conditions, watching a
synthetic face in synchrony with a synthetic voice can lead to higher intelligibility.

9.6 SPEECH SYNTHESIS IN OTHER LANGUAGES

Voice-response systems work equally well for all languages since they play back previously
stored speech units, which can be of any language. Indeed, if the signals are stored using
elementary waveform coders, sounds other than speech can be easily integrated into such
systems. PCM, log PCM, APCM, and even DPCM exploit only simple properties of speech
signals, which may well apply to other sounds without serious SNR degradation. For TTS
synthesis, on the other hand, major portions of the systems are highly language-dependent
and must be reprogrammed for each language. Such modifications have been documented for
Chinese [118], Dutch [119], French [120-122], Icelandic [123], Gaelic [124], German [27],
Hindi [125], Italian [126], Japanese [127], Korean [128], Portuguese [129], Russian [43],
Slovenian [130], Spanish [131], Swedish [132], and Welsh [133]. The front end of TTS
systems, dealing with letter-to-phoneme rules, the relationship between text and intonation,
and different sets of phonemes, is language dependent. The back end, representing simulation
of the vocal tract via digital filters, is relatively invariant across languages. The models in
Figures 9.7 and 9.8 are sufficiently general to handle all major languages; even trilled Irl's
(Le., rapid alternations of brief frication and vowel sounds via vibration of part of the tongue
against the roof of the mouth: alveolar in Italian or Spanish, velar in French) are feasible
[134]. Languages with sounds (e.g., clicks) other than pulmonic egressives would require
some simple modifications to the synthesizer architecture.

The structure of the front end is often flexible enough to support many languages. For
example, the rule-based approach to speech synthesis [44] should work well if the actual rules
are modified for each language; i.e., each language has its own phonemes, letter-to-phoneme
rules, and rules to signal information via intonation, but a general synthesis structure often
suffices. Only the detailed rules need to be adapted for each new language [43]. Places of
articulation often differ in varying degrees, and some phonemes may be absent in any given
language (e.g., the th sounds of English are relatively rare in other languages, while English
does not have velar fricatives). English does not contrastively utilize nasalization of vowels or
rounding of front vowels, unlike French, whereas English has diphthongs and affricates,
which are absent in French. Even some detailed rules are often similar across languages; e.g,
most languages use the point vowels li,rx,u/ as well as voiced and unvoiced obstruents.

9.7 EVALUATION OF TTS SYSTEMS

Formally evaluating synthetic speech is difficult. Automatic objective measures are desirable
for consistent results and for ease of calculation, just as signal-to-noise ratio serves as a
reliable and simple measure for wideband speech coders. However, there are many complex
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factors that enter into the quality of speech signals, dealing with intelligibility and naturalness,
as well as flexibility to simulate different voices and rates of speaking. In speech coding, we
can compare the output and input speech signals, e.g., sample-by-sample in their waveforms
for a signal-to-noise ratio, or frame-by-frame for spectral comparisons (coders are usually
evaluated by comparing the input and output speech signals). However, in TfS, we do not
have access to ideal speech waveforms or spectra for comparison, in the wide range of
possibilities for different utterances and speaking styles. Thus evaluating synthetic speech is
almost exclusively a subjective process. However, it is not clear what texts to synthesize, nor
what questions to ask listeners. We wish to have highly intelligible speech and a signal that
sounds like normal human speech. To evaluate intelligibility, subjects are usually asked to
transcribe words or sentences when listening to synthetic speech, either without the aid of a
list of choices or from a closed list of textual possibilities. In the past, tests have been
designed to evaluate specific phones, often in terms of their phonetic features, to discover how
well a synthesizer conveys these features. For example, the Dynamic Rhyme Test examines
consonants (e.g., a choice between "foot" and "put" would test how well a synthesizer
handles the fricative-stop distinction).

A flaw in such procedures is that they test very selectively only certain phonetic
distinctions and in very limited environments, which are not realistic for practical applica­
tions. Recently, new evaluation procedures have been proposed [135, 136]. They seek to
examine the performance of TTS systems in terms of both the individual components of the
systems, as well as their overall synergy. They differ from earlier methods by including the
examination of consonant clusters, longer units than words (e.g., sentences and paragraphs),
and intonation. Recent work [137] looks at paradigms that detect concatenative speech units
that cause the worst synthesizer performance, that judge transcription of proper names, and
that use the mean-opinion-score for more global evaluation.

9.8 PRACTICAL SPEECH SYNTHESIS

Commercial synthesizers are widely available for about a dozen of the world's languages, and
more are added each year. They generally combine software, memory, and a processing chip,
along with a controlling microprocessor, to provide quality ranging from expensive, close-to­
natural speech to inexpensive add-ons for personal computers (whose intelligibility is often
acceptable, but whose naturalness needs improvement).

General DSP chips are widely used for TTS, but other chips have been dedicated to
formant synthesis and other synthesis methods. LPC or formant synthesizers require digital
filters of typically 10-12 taps. At sampling rates of 8000 samples/s, this requires about
80,000 multiply-adds/so Current microprocessors can easily handle such speeds, and indeed
synthesizers exist entirely in software. Many systems, however, use nsp chips to simulate the
vocal tract, calculate the excitation waveform, and do other repetitive chores, such as
interpolating spectral parameters between frame updates.

9.9 CONCLUSION

Speech synthesis is increasingly popular, as the cost and size of computer memory decreases.
Limited-vocabulary voice-response systems yield the highest-quality speech and suffice for
many applications. Nonetheless, the large number of applications for TTS will lead to quality
improvements that will increase its use. These improvements will come from further research
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into better models of intonation and vocal tract excitation as well as a clearer understanding of
the speech production dynamics of the vocal tract and the processes of speech perception.

Recent trends have taken advantage of cheaper memory by using very large inventories
of speech units, to overcome some coarticulation and intonation problems. This trend may
well be an indication of the immediate future for TTS; indeed it follows closely that of recent
automatic speech recognition (ASR) methods. The most widely accepted ASR method is via
hidden Markov models (with neural networks becoming the second most used technique).
Both of these stochastic methods involve quite simple network models, but require massive
amounts of training and memory to accommodate the large amount of variability in the way
speakers talk. While TTS need not model such speaker variability (e.g., modeling one speaker
well can suffice for many TTS applications), it must handle well the large amount of
variability (even within one speaker's voice) across the many different phonetic contexts met
in normal speech. Thus we will likely see more lTS research that uses automatic training.
Eventually, however, increased understanding of how humans produce and perceive speech
will yield more efficient lTS, and some combination of stochastic and knowledge-based
methods will approach synthetic speech quite similar to that of humans.

PROBLEMS

P9.1. Consider an unlimited text-to-speech synthesizer that reconstructs speech from a set of
diphones.
(a) What is a diphone? What information is stored for each diphone?
(b) What are the advantages of using diphones rather than phones or words as the units of

synthesis?

P9.2. Most synthesis-by-rule systems concatenate basic speech units.
(a) Is it feasible to store spoken phones using ADPCM and then concatenate them to

produce acceptable synthetic speech? Explain.
(b) Does better-quality speech result when using LPC-coded diphones instead of stored

phones in the concatenation procedure? Explain.
(c) What are the major problems with concatenating stored spoken words to form

sentences of speech?

P9.3. For text-to-speech synthesis, the input is not a string of phonemes, but an actual text. What
information does the text contain (that a string of phonemes would not have) that would be
useful in speech synthesis algorithms? Give some examples of how this information would
be used.

P9.4. (a) Explain some of the advantages and disadvantages of concatenating small speech units
(e.g., phones) instead of large units (e.g., phrases).

(b) If phone concatenation is used, would sub-band coders or channel vocoders provide
better speech synthesis? Explain.

(c) If word concatenation with LPC is used instead, note some of the ways the stored units
must be modified to create natural-sounding synthetic speech.

P9.5. Give examples of how FOand duration are used in speech to signal syntactic information,
semantic (stress) information, and phonemic features.

P9.6. What are the major differences between articulatory and terminal-analog synthesizers?

P9.7. Why do formant synthesizers often have both a parallel path and a series path of
resonators? Why do the parallel resonators alternate in polarity?

P9.8. Why does speech quality improve as the size of the concatentation unit increases? What
limits the use of very large units?
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10.1 INTRODUCTION

Vocal communication between a person and a computer comprises text-to-speech (TTS)
synthesis and automatic speech recognition (ASR), i.e., understanding speech, or conversion
of speech to text. The design of algorithms to perform these two tasks has been more
successful for TTS than for ASR due to asymmetries in producing and interpreting speech. It
may ultimately prove as difficult to design an unrestricted TfS system whose speech is
indistinguishable from that of human speakers as to design a system that approaches human
speech recognition performance (humans have error rates currently about 2-10 times lower
than ASR [1]). However, among current commercial speech products, we find acceptable
(albeit unnatural-sounding) unrestricted synthesizers, while recognition products suffer from
significant limitations (e.g., number of speakers allowed, what words can be used, whether a
pause is required after each word, and how much training is needed). This chapter examines
the methods of converting speech into text, based on the input speech and on prior acoustic
and textual analyses. We usually assume a unimodal input of one (sometimes noisy) speech
channel, although some applications may allow multiple microphones or exploit visual
information (e.g., lipreading [2]).

10.1.1 ASR Search: Vast and Expensive

In theory, ASR could be as simple as a large dictionary where each entry (e.g., word or
sentence utterance) is a digitized stored waveform labeled with a text pronunciation. Given an
input utterance, the system would just search the dictionary for the closest match (using some
distance or correlation metric) and find the corresponding text from a look-up table. An
inverted version of such a memory would suffice for TTS as well, where text is input and the
waveform is output. Indeed, simple voice response systems are often so organized, using
efficient speech coding to save space.

367
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For ASR, however, this approach is utterly impractical because of the immense
memory, training, and search calculation required for even the simplest applications. As an
example, consider brief one-syllable utterances of about 0.5 s (e.g., the words yes vs no),
coded at a low 2 kb/s (e.g., with LPC), which yields theoretically 21000 patterns to consider­
an immense number. If longer utterances are allowed, the computation and memory increase
exponentially (and more efficient coding, e.g., VQ, is not much help here). Even for a simple
task of distinguishing between yes and no, the number of waveforms that could be produced
(even by a single speaker) is enormous, While the two words in this small vocabulary only
correspond to a very small portion of the 21000 patterns, there is no clear way to partition these
patterns into separate word classes, without applying more complex pattern recognition
methods as noted below. Indeed it is hard to identify which patterns would sound like
legitimate speech (vs nonspeech sounds). Thus much more efficient procedures are necessary.

Another way of viewing the ASR task is in terms of a large acoustic space of N
dimensions, where each utterance corresponds to a point in the space with N parameters (or
features) in the speech spectral representation. Even for short words, N can easily exceed 100
(e.g., 8 spectral coefficients every 10ms frame). If the parameters are well chosen, contiguous
regions in the space would correspond to different words (or sentences), and the ASR problem
would reduce to partitioning the space appropriately, so that each unknown input utterance
would be labeled with the text corresponding to the region in which its spectral representation
fell. While this approach is closer to the actual methods used for ASR, there are major
problems with this simple technique: (1) how to determine the decision boundaries between
regions (as vocabulary grows, the boundaries are very complex), and (2) how to handle larger
values of N for longer utterances.

Properly characterizing the regions in an ASR acoustic space requires much training
data (i.e., utterances), usually corresponding to possible texts to be recognized. While it is
impossible to have a table for all possible utterances (even for small sets of words), one can
hope to model the space well (given enough training data). Even for large-vocabulary
recognition (LVR) applications (where the space becomes more densely packed, with similar
words near each other), we could expect clear boundaries between the regions for different
words. However, different pronunciations of words can lead to ambiguous boundaries. Indeed,
many utterances do not have clear textual interpretations.

A common problem is insufficient training data to characterize the regions adequately
(current databases can train models having up to about 107 parameters [3]). Given the
variability of speakers and a finite amount of training, a probabilistic approach is usually
adopted. The two most common ways to do this are: averaging representations of repetitions
of the same text, or estimating a probability density function (PDF) for each text based on the
repetitions. In the first case, training yields representative average points in N-dimensional
space for each text; during recognition, the space is searched for the closest match (taking into
account contributions of differing weights in different dimensions) among these reference
points to the point corresponding to the input utterance. In the second case, each PDF is
evaluated using the input point to find the PDF yielding the highest likelihood.

How to optimize the ASR representation and memory and to search for the best
match or highest likelihood are major topics of this chapter. One simplification is to restrict
the vocabulary a speaker may use, which limits the search. Second, in speaker-dependent
ASR, the search is limited to patterns for a single speaker. Third, ASR normally uses
efficient spectral representations of speech units, rather than waveform samples. Later
sections discuss in detail how the theoretically infinite ASR search space is reduced to
practical applications.
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10.1.2 Variability in Speech Signals

369

There are so many possibilities to examine in an ASR search because of the many
sources of variability in speech. A major difference between TTS and ASR concerns
adaptation to such variability. When hearing synthetic speech, human listeners modify
their expectations and usually accept it as they do speech from a strange dialect or with a
foreign accent. In ASR, however, the computer must adapt to the different voices used as
input. Producing one synthetic voice to which human listeners adapt is easier than designing
ASR that can accept the many ways different speakers pronounce the same sentence or can
interpret the variations that a single speaker uses in pronouncing the same sentence at
different times. Human listeners are more flexible in adapting to a machine's accent than a
computer is in deciphering human accents.

Most commercial ASR is speaker-dependent (SO), accepting only speakers who have
previously trained the system. Such systems "adapt" to new users by requiring them to enter
their speech patterns into the ASR memory. Since memory and training time in such systems
grow linearly with the number of speakers, less accurate speaker-independent (SI) recognizers
are useful if a large population must be served. Among the billions of speakers in the world
each has a different vocal tract and a different style of speaking (independent of choice of
language). This creates inter-speaker variability, a major cause of complexity for SI systems.
Such systems are trained on the speech of many speakers, in an attempt to examine as many
contexts (speakers, texts, styles, etc.) for speech as possible. Many systems adapt in time via
learning procedures as speakers enter speech; the input speech modifies patterns stored in
memory, refining SD models or instead allowing SI models to evolve into speaker-adaptive
(SA) models.

SI systems often have different models for certain groups of speakers, e.g., male and
female models, if identifiable groups have significantly different acoustics. In particular,
children's speech has often been poorly recognized when using only adult models [4]. An
ASR system could use 2-3 models in parallel, choosing the best output.

Differences among speakers is just one source of speech variation. Intra-speaker
variability refers to differences within each speaker's utterances, i.e., humans never say
exactly the same thing twice. Recording and transmission conditions also significantly affect
the quality of speech input to ASR systems. Inter- and intra-speaker variability, along with
background and channel distortions, massively increases the number of possible utterances an
ASR system must handle, quite apart from issues of size of allowed vocabulary. Under­
standing such variability is key to solving the search problem in ASR.

10.1.3 Segmenting Speech into Smaller Units

The complexity of the search task increases with utterance length; so ASR cannot
accept arbitrarily long utterances as input. In practice, to simplify the search, many systems
require speakers to modify their speech, e.g., by pausing after each word or by speaking
clearly and slowly. To illustrate one of the major difficulties of ASR, consider the problem of
segmentation. For both synthesis and recognition, input is often divided up for efficient
processing, typically into segments of some linguistic relevance. In TTS, the input text
(symbols or ASCII characters) is easily automatically separated into words and letters.

For ASR, however, it is very hard to segment the speech input reliably into useful
smaller units, e.g., phones. Sudden large changes in speech spectrum or amplitude help to
estimate unit boundaries, but these cues are often unreliable due to coarticulation [5]. Syllable
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units can often be located roughly via intensity changes, but exact boundary positions are
elusive in many languages which allow successive vowels or consonants (e.g., English). Word
boundaries are even harder to find than phone or syllable boundaries (in languages having
polysyllabic words). Essentially, finding boundaries for units bigger than phones combines
the difficulties of detecting phone edges and of deciding which phones group to form the
bigger units. Segmenting utterances into smaller units for ASR simplifies computation and
often aids accuracy by reducing the search space, but only if the partitioning is correct.

Pauses play an important role in segmenting speech, but silence periods in natural
speech are unreliable cues. Short silences often correspond to stop closures, but not all
silences under 100 ms represent phonemes. Speakers normally pause only after several words,
and sometimes pause within words.

Many commercial recognizers require speakers to adopt an artificial style of talking,
pausing briefly after each word, to facilitate segmentation. In order of increasing ASR
difficulty, four styles of speech can be distinguished: isolated-word or discrete-utterance
speech, connected-word speech, continuously read speech, and spontaneous (normal conver­
sational) speech. Requiring a pause for at least 100-250 ms between words in isolated-word
recognition (IWR) is unnatural for speakers and forces a slower rate of speech (e.g., 20-100
words/min), but it simplifies locating words in the input speech [6]. Such pauses between
words are long enough to avoid being confused with long plosives and to allow the recognizer
to compare words rather than longer utterances; this reduces computation and memory, and
raises accuracy. Some systems accept very brief 20-30 ms pauses, but then special allowances
must be made for words with plosives.

The other three speaking styles comprise continuous speech recognition (CSR) [7],
which requires little or no imposition of an artificial speaking style on system users. CSR
allows more rapid input (e.g., 150-250 words/min), but is more difficult to recognize.
Connected-word speech represents a compromise between awkward isolated-word speech and
(often rapid) spontaneous speech; the speaker need not pause, but must pronounce and stress
each word clearly (e.g., for a series of digits or letters, as in postal codes, telephone numbers,
or spelled-out words). Clear pronunciation of each word reduces some effects of coarticula­
tion, and renders each word in a test utterance closer in form to word utterances in reference
patterns.

10.1.4 Performance Evaluation

Most ASR systems use accuracy or error rates (e.g., the percentage of words not
correctly recognized of those spoken) to measure performance, Cost, speed, and the
likelihood of an input being rejected are other important factors. These measures vary with
applications and depend on (a) recording environment (e.g., head-mounted, noise-canceling
microphone in a quiet room vs a noisy telephone booth); (b) the number and confusability of
words the system accepts (i.e., its vocabulary); (c) speaker dependence; and (d) the style of
speech (e.g., IWR or CSR).

Because performance is so dependent on the choice of vocabulary, several word sets are
commonly used as standards, e.g., the digit vocabulary of the first ten digits (zero or oh, one,
two,. . . , nine) and the A-Z alphabet vocabulary of the 26 letters (ay, bee, see,. . . , zee*) [8].
The 36-word combined alphadigit vocabulary contains highly confusable subsets which share
a vowel: e.g., the E-set (B-C-D-E-G-P-T-V-Z-3), the A-set (A-H-J-K-8), and the Eh-set (F-L­
M-N-S-X). The best accuracy for ASR on separately spoken letters is about 95% [1]. For

* z is pronounced ~ zed' in some countries.
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connected speech, a 91% accuracy is typical [9], although continuously spoken digits well
exceed 99°/0 [1]. For large vocabularies (> 1000 words), accuracy often exceeds 990/0 for SD
IWR, but falls to 90-950/0 for SI CSR. (As a minimal baseline performance, simply guessing
among N vocabulary words in IWR would yield 100/NO/o accuracy.) Alternative performance
measures (besides error rate) have been proposed to directly account for vocabulary
complexity [10] (e.g., one measure employs statistics of confusions in human speech
perception [1 1]), but simple error rate continues to be the most widely used.

While most ASR uses word or sentence error rate to evaluate performance, speech
understanding systems [12, 13] measure comprehension of aspects of the speech message.
The mean word-error rate (WER) does not reflect the varying communicative importance of
words in an utterance. If ASR replaces keyboards for input of text to computers (to enter data,
ASR is faster than typing), then WER is a good performance measure. However, for
performing actions (e.g., control a wheelchair; get information from a database), errors can
be tolerated if they do not cause a misunderstanding. In applications where sentences are
subject to strong syntactic constraints, poor recognition of function words (e.g., mistaking a
for the) might be irrelevant to message comprehension; e.g., in one study, only 63% of
sentences were error-free, but 780/0 were nonetheless understood correctly [14]. Some systems
use word-spotting: the user may say anything, but only key words recognized as part of the
system vocabulary cause action to be taken.

The performance error rate measures the likelihood of misinterpreting a word, but not
the rate at which rejections are made; such no-decision outputs are not strictly errors but
degrade performance, The additional problem of false acceptances is often overlooked:
recognizers may incorrectly respond to coughs and other extraneous noises, interpreting them
as words. A simple error figure does not account for the differing costs of erroneous
substitutions, deletions, and insertions of words, rejections, and false acceptances, and it may
not provide information on the distribution of errors (e.g., if certain words are more likely
than others to be input, errors on those words are more problematic). To simplify matters in
the face of different evaluation criteria, we will mostly employ WER, because it is a simple
measure and is the one most often cited.

10.1.5 Databases for Speech Recognition

Evaluation of ASR performance requires databases of speech labelled with textual
transcriptions. Ideally, databases would align each speech signal with its words and phones, so
that word-based and phone-based models could be trained automatically. Unfortunately, few
databases are so labelled. The TIMIT database of 630 speakers, each uttering ten sentences, is
one of the few noting the timing of each phone. Most speech databases simply give the
corresponding text with no time alignment (or only word boundaries).

Databases used in many ASR studies include: Resource Management, Wall Street
Journal (WSJ) (and its extension, North American Business news), Air Travel Information
System (ATIS), Radio Broadcast News (BN), and Switchboard (SWB) [15, 16]. The first
three contain read speech, and the others have a spontaneous style. (Read speech normally has
fewer disfluencies than spontaneous speech.) SWB was recorded over telephone lines, while
the others used microphones (BN, so-called 'found speech' in commercial broadcasts, has
both styles). Both style and channel heavily affect ASR accuracy. The SWB and CallHome
databases are currently the most difficult recognition tasks, with WERs of 40-50°/0. (Read
versions of the texts of SWB conversations are easier: 29% WER [1].) Other typical WERs
are: 2% for the 2000 word ATIS task, 8% for 64,000 word WSJ and 27°/0 for BN.
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The late 1980s saw a major effort to develop ASR for conversational speech. In Europe,
the Esprit SUNDIAL (Speech UNderstanding and DIALog) project examined database access
for train and air travel in English, French, German and Italian [17]. A German version is
available to the public via telephone [18]. The US DARPA project attained 91% under­
standing of ATIS inquiries (with 2.3% word error rates) [14]. Other recent dialog systems
handle requests for Swedish ferries [19], California restaurants [20], and Massachusetts tours
[14]. MIT has developed several dialog systems, including a real implementation of ATIS, an
Internet (WWW) interface for accessing yellow-page information, and a telephone-only
access to weather forecasts (using TTS) [14].

10.2 BASIC PATTERN RECOGNITION APPROACH

ASR is a pattern recognition task, for which standard techniques are often employed, as in
robotics (image identification) or data communications (converting analog signals to digital
information at a receiving modem). Ignoring speech understanding for now, ASR requires a
mapping between speech and text so that each possible input signal is identified with (an
estimate of) its corresponding text. Like all pattern recognition tasks, ASR has two phases:
training and recognition (testing). The training phase establishes a reference memory or
model, in the form of a dictionary of speech patterns or a network of information, where the
patterns, states, or network outputs are assigned text labels. In SI systems, training is
performed o.ffline (i.e., nonreal-time) during system development and may combine manual
and automatic methods, whereas commercial SD recognizers are trained online by customers.
The automatic (and often real-time) recognition phase assigns each input speech signal a text
label.

10.2.1 Pattern Recognition Methods

In general, ASR involves several steps: normalization, parameterization and feature
estimation, a similarity evaluation, and a decision (Figure 10.1). The first two steps constitute
the ASRfront end (speech analysis) [21]: information reduction or elimination of redundan­
cies in the input data sequence, as done for lower bit rates for speech coders. Since the ASR
goal is to get a text message (and not to preserve sufficient information to reproduce the
speech), data reduction can eliminate many speech aspects that affect naturalness but not
intelligibility. Speech coders try to preserve both aspects, but ASR needs only speech traits
that aid in sound discrimination; e.g., low-bit-rate coding via LPC (omitting the residual
signal) is practical for ASR, because it reduces memory usage while preserving virtually all of
the speech information dealing with the text message. (What is primarily lost in discarding the
LPC residual is the speech naturalness.)

Figure 10.1 Traditional pattern recognition model for speech recognition.
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Data reduction is essential to make the ASR task computationally feasible. The
objective is to find a proper compromise between the conflicting constraints of minimizing
cost and assuring that the reduction omits little useful information.

The initial normalization step tries to reduce variability in the input speech due to
environment (e.g., background noise, recording level, communication channel). Variability
due to the speaker (e.g., changes in speaker, or in speaking rate and intensity) may be handled
by a later speaker normalization step or by incorporating speaker characteristics directly into
the ASR models. (This normalization step is not needed for coders.) ASR requires a
comparison between test and reference patterns, for which the evaluation should concentrate
on the relevant aspects of speech to distinguish vocal tract shapes. Eliminating variability
between patterns due to factors other than vocal tract shape (or its acoustic correlate-spectral
envelope) increases ASR accuracy. In coding however, the objective is to reproduce the
speech faithfully; thus normalization is unnecessary.

Most data reduction occurs in converting speech into parameters and features. Acoustic
parameters for ASR are mostly those of standard analysis (e.g., LPC coefficients, amplitudes
of filter bank outputs, cepstra), while features denote the outputs of further data reduction.
Thus parameterization closely follows speech coding methods. Feature estimation is not
found in coders and is optional for ASR (e.g., commercial systems rarely use features), due to
its complexity and lower reliability.

The focus of ASR and the major concentration of this chapter (indeed most current
ASR research) concerns how to compare templates (patterns) or models based on parametric
(or feature) representations of both test (unknown) and reference (training) speech. The
comparison or evaluation involves finding the best match in terms of a weighted distance (or a
correlation) between templates or deciding which reference model is the most likely. The
reference templates or stochastic models are derived during a training phase prior to any
actual recognition. At recognition time, the test template or model T (a parametric
representation derived from the test speech) is compared with some or all of the stored
reference templates or models Rj • The memory may be partitioned for an efficient search
(e.g., in SD ASR, only the models for one speaker are examined). The evaluation determines
how similar T and R, are, or how well R; models T. Based on T and the trained models, the
most likely R; is chosen, i.e., the R, best modeling or matching T, yielding a text output
corresponding to that reference. However, if the best match is nonetheless poor or if other R,
provide similar matches, ASR may postpone a decision and ask the speaker to repeat the
utterance.

10.2.2 Different Viewpoints Toward ASR

One can view ASR from either a cognitive or an information-theoretic perspective [22].
In the cognitive, knowledge or expert system view, phoneticians, linguists, and engineers
observe the relationships between speech signals and their corresponding text messages, and
postulate phonetic rules to explain the phenomena [23]. Aspects of human speech production
and spectrograms are typically examined to develop techniques (including feature extraction)
to segment and label speech. Capturing the complex interrelationships of speech redundan­
cies manually in one comprehensive model, however, is very difficult [24].

The information-theoretic approach (preferred by mathematicians and computer scien­
tists) views speech as a signal about which information is derived through statistical analysis.
Speech properties are exploited as part of a general framework (often using networks).
Spectral parameters (e.g., cepstral coefficients) derived from the input speech are used in a
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statistical model that maximizes the likelihood (or minimizes the average cost) of choosing
the correct symbols (e.g., text) corresponding to the input. The models are trained on many
speech signals, and may use general comparison techniques involving templates and standard
distance measures. They also use language models, which contain statistics of word
sequences in relevant texts. This information-theoretic approach has dominated commercial
applications, using either a parametric method (e.g., Markov models) that yields relatively fast
recognition at the cost of lengthy training, or a nonparametric method (e.g., dynamic time
warping) which is easy to train but is computationally expensive in the recognition phase.

Another major choice in ASR approach concerns whether recognition is best served
starting from the speech signal or from the possible text outputs. Speech comprises a
linguistic hierarchy of units (in order of decreasing size): sentences, words, syllables, phones,
and acoustic segments. Following this structure, ASR uses two basic approaches: bottom-up
and top-down. This distinction was noted in Chapter 5 for human speech perception, where
humans analyze speech via perceptual features (bottom-up) that can be interpreted by higher­
level cognitive processes suggesting possible meanings (top-down). Data reduction, convert­
ing a waveform to parameters, (possibly) features, and eventually words and sentences,
follows the bottom-up approach (Figure 10.1), where decisions are made going up the
hierarchy. Such a simple approach works best for small-vocabulary IWR applications. The
increasing difficulty as vocabulary grows and pauses are eliminated between words requires a
more complex approach to ASR in general, including feedback for low-level acoustic
decisions using high-level linguistic information, The top-down method is more generative
than analytical and attempts recognition through analysis-by-synthesis. In its simplest form,
all possible sentences following a system's grammar and vocabulary are generated, synthe­
sized (in some sense), and compared against each input utterance. Many systems employ both
approaches (Figure 10.2): bottom-up analysis to obtain reduced data representations, and top­
down methods to generate hypotheses for evaluation. Verification of hypotheses is simpler
and less prone to error (but usually takes more computation) than bottom-up methods. A
hybrid system may be best: applying acoustic analysis as far as reliable decisions can be made
(e.g., to cepstral parameters) and then evaluating the analysis output with top-down
hypotheses. The following sections explore the ASR process in more detail.

Text output

Speech

Bottom-up hypotheses ---. ..- Top-down hypotheses

Figure 10.2 Typical model for continuous speech recognition, employing both top-down
and bottom-up methods. (After Smith and Sambur [25].)
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10.3 PREPROCESSING
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Aspects of the input speech that reflect the recording environment and communications
channel (as well as variations in speaking style) normally hinder the ASR task of identifying
the spoken text. The signal may be partly cleaned up or normalized in a preprocessing stage
prior to parameterization, to reduce extraneous factors that may distort ensuing ASR
processing. If the environmental conditions are stationary or their variations can be
determined, such effects may be removable from the signal. The simplest normalization
adjusts maximum signal amplitude to a standard level to account for variations in recording
level, distance from the microphone [26], original speech intensity, and loss in transmission.
Such variations are assumed to be constant or slowly changing, which permits updating the
amplitude scaling factor (by which the received signal is multiplied) at long intervals,
corresponding typically to utterances bounded by easily identifiable pauses.

Automatic gain control (AGC), as in radio receivers, may be used with a long time
constant so that gain is not adjusted too rapidly; rapid AGe might obscure prosodic
information (i.e., amplitude variations relevant to discriminating phonemes) [27, 28].
Amplitude is often normalized separately for each short analysis frame (5-20 ms); e.g., the
fullband average speech energy is subtracted from each of the outputs of bandpass filters,
LPC coefficients are used without the LPC gain factor, or the first cepstral coefficient is
ignored. Such local normalization preserves the relative spectral differences within each
frame but destroys interframe amplitude information [29]. The difference in energy between
successive frames (delta energy) is used for ASR more often than energy itself.

Analyzing the speech signal during presumed pauses (where the amplitude is weak) can
yield a spectral estimate of the combined background and transmission noise. With a
corresponding inverse filter, the stationary portion of such noise can be reduced in the
received speech. Since noise is random, however, the benefits of this approach are limited,
unless a separate measurement can be taken of the noise simultaneously with the speech (or
multiple microphones are used to record the speech [30]).

Similarly, if the transmission medium between speaker and recognizer acts as a filter
(e.g., a bandpass filter in dialed-up telephone lines), the received signal can be compensated
by raising amplitudes at frequencies where the signal has been attenuated (Chapter 8). Yet
other speech variations are due to different styles among speakers and changes in speaking
rate [31]. Normalization for these variations is best handled after parameterization; it may
involve questions of SD templates and nonlinear time warping.

10.4 PARAMETRIC REPRESENTATION

To parameterize speech for efficient data reduction without losing information relevant for
ASR, most recognizers follow the speech model exploited in vocoding (Chapters 6 and 7),
which separates excitation and vocal tract response. Despite clear correlations between
successive speech frames, virtually all ASR systems parameterize each frame separately, to
simplify computation (i.e., prefer to examine separate vectors of frame-based spectral
parameters, vs a larger evolving matrix of parameters indexed on both time and frequency).
Dynamic (delta) parameters (i.e., the differences between parameter values over successive
frames) are often included in each frame's vector to accommodate some temporal infonna­
tion.

In a speech frame, excitation is typically represented for vocoders by a voicing decision,
amplitude, and an FO estimate. These excitation parameters are usually ignored (and therefore
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not computed) in ASR, on the assumption that enough information for ASR resides in the
spectral envelope. The voicing and FO features, which require extra calculation beyond basic
LPC or DFT analysis, are subject to error and are often difficult to interpret for phonetic
decisions. Amplitude and FO are more influenced by higher-level linguistic phenomena (e.g.,
syntax and semantic structure) than by phonemics (e.g., FO is only weakly related to
phonemic identity). As in coding, spectral phase is rarely used for ASR because of its
relative paucity of phonemic information.

Thus, the spectral envelope provides the primary ASR parameters. Most recognizers
calculate about 8-14 coefficients, derived from a Fourier transform, LPC analysis, or bank of
bandpass filters. (Some recognizers use as few as 5 or as many as 80 parameters/frame [32].)
The most common ASR parameters are mel-based cepstral coefficients, but LPC coefficients
ai, LSFs, energies from a channel vocoder, reduced forms of DFT, and zero-crossing rates in
bandpass channels are other examples (Figure 10.3). They all attempt to capture in about 10
parameters enough spectral information to identify spoken phones.

To model the short-time spectral envelope (including the first 3-4 formants) for ASR,
8-14 coefficients are considered sufficient and efficient. While spectral detail at frequencies
above F4 contains phonemic information (e.g., high energy there suggests frication, and its
distribution helps identify place of articulation), it is often efficient to restrict the analyzed
speech bandwidth to about 4 kHz. If wider bandwidth is available (not true for telephone
speech), using frequencies up to about 6.4 kHz can improve consonant recognition. Extra
bandwidth, however, may actually deteriorate ASR performance [33]; e.g., LPC parameters
weight spectral peaks equally across frequency, whereas most acoustic detail useful for ASR
is below 4 kHz. To benefit, higher-frequency information is better in a form more suited to its
importance (e.g., using the mel scale) than simply extending analysis bandwidth.

The advantages of sub-band coding (Chapter 7) are starting to be applied in ASR.
Multi-band ASR can be more accurate in noise than other methods, by combining likelihoods
from different frequency bands [34]. Partitioning the speech spectrum into separate bands
does not seem to lose phonetic information, and can exploit differences in timing across
bands [35].

The ease with which vocal tract parameters can be converted into a frequency response
and then a synthetic speech signal (e.g., in an articulatory synthesizer) suggests looking for an
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Figure 10.3 Filter bank (channel vocoder) model for parameterization. M bandpass filters
BPF; (i = 1, 2, ... , M) cover the input speech bandwidth range. Their
outputs are usually converted to slowly varying estimates of channel
energies via a nonlinear distortion (e.g., rectification), lowpass filtering, and
decimation.
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acoustic-to-articulatory inversion mapping, whereby speech would be directly converted to a
set of vocal tract area functions, from which corresponding phonemes could be identified. If
energy loss were localized to one part of the vocal tract, such a mapping would be possible
[36]. This has been very difficult in practice [37], but recent speech production experiments
with electromagnetics and small coils placed on the tongue suggest better success in the
future [38].

10.4.1 Parameters Used in Recognition

The most widely used parameters are the MFCCs (mel-frequency cepstral coefficients)
(see Chapter 6), obtained from DFT or LPC spectra. LPC coefficients and their transforma­
tions (e.g., reflection coefficients, LSFs) model the spectral envelope well and are widely used
in ASR [39]. Since questions of LPC synthesis filter stability under parameter quantization or
interpolation are irrelevant for ASR purposes (unlike in coding or synthesis applications), the
direct ak coefficients can be used, rather than reflection coefficients or log area ratios.

As with MFCCs, ASR using bandpass filter-bank output energies usually approximates
the auditory system by spacing the filters linearly until about 1kHz and then logarithmically
above 1 kHz, i.e., filter bandwidths of about 100Hz in the F1 region and up to 500-1000 Hz
at high frequencies [21]. This mel-scale frequency-warping improves performance vs ASR
that linearly weights contributions from all frequencies [40-42], and reflects the nonuniform
distribution in frequency of phonemic information. The bandpass filters can be as simple as
two-pole Butterworth filters or as complex as FIR filters with several hundred taps [43]. As in
channel vocoders, the filter outputs are rectified and lowpass filtered before decimation.

Typical rates for parameters are 40-60 samplesjs (i.e., lowpass filter cutoffs of 20­
30 Hz). Higher rates can better analyze speech transients (e.g., stop releases), but may lead to
pitch interference in (vocal tract) parameter tracks (e.g., filter cutoffs above 100 Hz allow the
fundamental in male voices to introduce oscillation into the tracks, mixing undesired FO with
vocal tract information); 3-4 bits/filter output seem to be adequate for recognition [44].

ASR may pre-emphasize the speech signal (i.e., raise the generally weaker amplitude of
high frequencies) before parameterization, so that high and low frequencies receive more
equal weight. This follows human perceptual emphasis of the 1-3 kHz range, and is especially
useful for accurate consonant recognition [43], where most of the spectral detail distinguish­
ing place of articulation occurs above 1kHz. Pre-emphasis can result in slightly poorer
accuracy for vowels, however [45].

ASR rarely models the nonlinear dynamics of the inner ear that affect human speech
perception. Efforts that have applied such effects in calculating parameters for ASR have
demonstrated only limited success in improving recognition accuracy [46-48], although
interest continues in exploring auditory models for ASR [49-51]. One popular method is
perceptual linear prediction (PLP) that combines LPC with several aspects of auditory
models [52]. To accommodate noisy channels, RASTA (from 'RetAtive SpecTrA') methods
can filter time trajectories of speech parameters [53]. Its very broad bandpass filtering
eliminates very-slowly-varying distortions (much like cepstral mean subtraction-see below).

10.4.2 Feature Extraction

Most recognizers pass directly from parameterization to evaluation, without further data
reduction or phonetic interpretation. Some, however, prefer to reduce a parametric repre­
sentation to features. Such features may be subdivided into acoustic and phonetic features,
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depending on the degree of data reduction. Phonetic features have a discrete range and assign
sounds to linguistic categories, e.g., voiced or fricative; they represent major data reduction
toward a phonemic decision. Acoustic features (e.g., formants, FO) [54, 55] represent an
intermediate step between parameters and phonetic features (and phonemes). Features are
fewer in number than parameters and therefore potentially more efficient for ASR; they are
speech-specific and require classifications that can be erroneous. Feature extraction is most
common in expert systems.

Parameterization is straightforward, whereas the choice and estimation of features are
highly dependent on the approach followed in the remaining ASR steps. For example,
estimating most spectral parameters (e.g., LPC coefficients) is automatic, and errors are
usually limited to the precision of the model used (e.g., the degree to which the LPC spectrum
matches the original speech spectrum), whereas relying on formant tracking for ASR can lead
to serious errors when a formant is missed [56]. While ASR rarely uses features today, LVR
systems may well use them in the future to get higher ASR accuracy [54].

10.5 EVALUATING THE SIMILARITY OF SPEECH PATTERNS

At the heart of ASR lies the measurement of similarity between two localized (windowed)
speech patterns, i.e., the representation of a frame of the input speech and one from a set of
reference patterns or models (obtained during training). Each parametric (or feature) pattern
for a frame of speech can be viewed as an N-dimensional vector (or point in N-dimensional
space, or N-space for short), having N parameters/frame (Figure 10.4). (Features are often
associated with groups of frames, but this section will ignore timing considerations, and thus
parameters will not need to be distinguished from features here). If the parameters are well
chosen (i.e., have similar values for different renditions of the same phonetic segment and
have distinct values for segments differing phonetically), then separate regions can be
established in the N-space for each segment. (As a simple example, using FI and F2 as
features could partition vowels along the vowel triangle in two dimensions.)

A memory of reference models, each characterized by an N-dimensional feature vector,
is established during training in which a speaker (or several) usually utters a controlled
vocabulary, and acoustic segments are parameterized and automatically labeled with phonetic
codes corresponding to the training texts. For segments corresponding to short speech frames,
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Figure 10.4 Illustration of clustering of tokens in two dimensions. Three multitoken
clusters C are shown, along with two unitoken clusters 1 and 2 (outliers).
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the codes involve phonetic segments (e.g., phonemes). Generalizing to longer speech
segments (syllables, words, or even phrases) requires expanding N to include several
frames and thus time variation in the parameters. For word-based ASR, templates of words
are M-dimensional vectors or L x N matrices, where M = LN and the L vectors of dimension
N are extracted at uniformly spaced intervals for each word in the system vocabulary. A fixed
value of L for all words is assumed here, which implies linear time normalization. (The
problems of time normalization and aligning models are examined later.) In discussing
evaluation measures, this section assumes that a single N- or M-dimensional vector
adequately describes an utterance. Later sections deal with the unequal distribution of
speech information over time and frequency.

10.5.1 Frame-Based Distance Measures

The similarity between two patterns is often expressed via a distance or distortion,
measuring how close the patterns are in N-space (possibly accounting for correlations among
dimensions and unequal weighting of dimensions) [57]. Sometimes a correlation between
patterns replaces this distance measure. Another popular method is statistical, where the
reference models store PDFs and similarity is judged in terms of the likelihood of the test
pattern for each PDF. To handle multiframe utterances (i.e., all practical cases), local (frame)
distance measures typically sum to yield a global (utterance) distance, or probabilities are
multiplied to yield a joint likelihood (assuming independence between frames). The reference
pattern yielding the smallest distance or highest probability is usually chosen for the ASR
output.

The patterns used for ASR are typically vectors representing the spectral envelope of
speech frames. Since the distortion measure should represent perceptual similarity (to exploit
information that speakers implicitly use in speech production), some aspects of the envelope
should be emphasized and others ignored; e.g., a good ASR measure focuses on similarities
in formant positions (primarily) and bandwidths (secondarily), largely ignores spectral tilt,
deemphasizes the higher frequencies (e.g., uses the bark scale), and ignores low-amplitude
details (often noisy).

10.5.1.1 Euclidean and Mahalanobis distances. In ASR involving templates, each
unknown test utterance is converted to an N-parameter test template, to be compared against
reference templates to find the closest match. (For an L-frame utterance, this process is usually
repeated periodically L times, summing local distances, but one could envision a single match
with templates of NL dimensions.) The similarity of two templates is inversely proportional to
the distance in N-space between points corresponding to the templates. A distance measure
d(x, y) between templates x and y is called a metric if it satisfies three conditions: positive
definiteness (d 2: 0, and d = 0 only when x = y), symmetry (d(x, y) = d(y, xj), and the
triangle inequality (d(x, z) ~ d(x, y) + d(y, zj). For ASR the two most important aspects ofa
distance measure are its subjective significance (following perceptual similarity) and
mathematical tractability. Metrics ensure tractability, but several common ASR distance
measures are not metrics; those satisfying only the first condition above are distortion
measures.
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The most common metric is the Euclidean distance (or L2-nonn),

d2(x, y) = J(x - y)\x - y) = (10.1)

(10.2)

which is the normal interpretation of distance between two points in N-space. In the family of
distances called t., norms,

d/x, y) = (f;; IXi - YiIP) liP,

d2 is the most popular, but d, (the Chebyshev or city-block distance) is simpler to compute.
The latter trades decreased recognition performance for fast (no multiply) computation: one
sums separately the distances along each dimension: Dc(x, y) == L~==l IXn - ynl. As p
increases, dp increasingly concentrates on peak distortion (rather than average distortion
across all parameters), i.e., it emphasizes dimensions with the largest distortions. Such a
weighting can often be justified perceptually; e.g., listeners tend to focus on differences in the
strongest formant peaks.

Another common speech metric is the Mahalanobis or covariance-weighted distance,
which for two templates x and y is

d(x, y) = J(x - Ylw-I(x - y), (10.3)

where W is a positive-definite matrix that allows different weighting for individual parameters
depending on their utility in identifying the speech segments in N-space. The Euclidean
distance sets W (and W- I

) to be the identity matrix I, whereas the more general Mahalanobis
distance sets W to be the autocovariance matrix corresponding to the reference vector.

For the Mahalanobis distance, the elements along the main diagonal of W reflect the
intra-parameter variances, with small W values for more useful ASR parameters. For less
useful parameters (i.e., those having highly variable patterns for the same phone or word),
large matrix values discount their weighting in calculating an overall distance. Calculation
is simplified considerably if the features are orthogonal (allowing a diagonal W- l

) or
orthonormal (allowing W- 1 = I). However, a principal components or Karhunen-Loeve
transformation on the parameters (to achieve orthogonality) significantly increases calculation
in forming the test template. Nonetheless, as the numbers of models and parameters grow in
many ASR applications, distance or likelihood computations dominate computation, which
suggests the utility of reducing templates to a small set of independent features.

Despite the advantages of the Mahalanobis distance in weighting properly, ASR often
uses the Euclidean distance (e.g., with cepstral parameters) or an LPC distance, because: (I) it
is difficult to reliably estimate W from limited training data, and (2) the latter two distances
require only N multiplications for an N-dimensional parameter vector vs N 2 multiplications
with the Mahalanobis distance.

Representation of parameter vectors whose elements are highly correlated is a problem
for many pattern recognizers. Full covariance matrices are needed to account for cross­
parameter correlation, which leads to a large number of parameters to estimate. In the
common case of many parameters and limited training data (called undertraining), robust
estimation is difficult. Hence, diagonal covariance matrices are often assumed, which trades
the poor assumption of independence across dimensions (e.g., ignoring the obvious correla­
tion between static and delta parameters) for faster computation.
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10.5.1.2 Stochastic similarity measures. The Mahalanobis distance has origins in
statistical decision theory. If each utterance of a word (or other unit) represents a point in N­
space, the many possible pronunciations of that word describe a multivariate PDF in N-space.
Assuming ASR among equally likely words and maximum likelihood (ML) as the decision
criterion, Bayes' rule specifies choosing the word whose PDF is most likely to match the test
utterance. Because of the difficulty of estimating accurate PDFs from a small amount of
training data, many systems assume a parametric form of PDF, e.g., a Gaussian, which can be
simply and fully described by a mean vector J1 and a covariance matrix W. Since ASR
parameters often have unimodal distributions resembling Gaussians, the assumption can be
reasonable. A simpler alternative, the Laplacian or symmetric exponential, can also be used
[58]; it corresponds to the city-block distance (i.e., Gaussians use d2 distance measures,
emphasizing the importance of large distance components, while Laplacians use d).
Laplacians are sometimes better at approximating the tails of speech PDFs.

The Gaussian PDF of an N-dimensional parameter vector x for word i is

( 10.4)

where IW;I is the determinant of Wi and J1; is the mean vector for word i. Most ASR systems
use a fixed W matrix (vs a different W; for each word) because (a) it is difficult to obtain
accurate estimates for many W; from limited training data, (b) using one W matrix saves
memory, and (c) Wi matrices are often similar for different words. (The use of individual w,
also causes the Mahalanobis distance not to be a metric.) Given a test vector x for recognition,
word j is selected if

for all words i in the vocabulary. ( 10.5)

Applying a (monotonic) logarithmic transformation and eliminating terms that are constant
across words (i.e., a common IWI), Equations (10.4) and (10.5) reduce to minimizing the
Mahalanobis distance of Equation (10.3), using J1; in place of y. The simpler Euclidean
distance, setting W- 1 == I, trades ASR accuracy for fewer calculations; it is optimal only in
the unusual case that the N parameters are mutually independent and have equal variances
(i.e., contribute equally to the distortion). A better alternative could be an approximate full
matrix, split into two elements, one full and one diagonal, tied at separate levels (see
discussion on tying later). Typically the full elements are extensively tied, resulting in only a
small increase in the number of parameters compared to the diagonal case [59].

Ideally, repetitions of the same speech segment (e.g., pronunciations of a phoneme at
different times, by different speakers or in different linguistic contexts) would yield consistent
parameter values and therefore small clusters or regions in the N-space. In addition, different
speech segments would provide distinct measurements and hence widely separated points in
the space (Figure 10.4). The best parameters would show little intrasegment variance and
large intersegment variances, and they would be independent of each other and with equal
importance. In practice, however, ASR parameters share speech information and some are
much more relevant than others. Not accounting for their interdependence and their unequal
importance lowers ASR accuracy.

The reliability of the training data is often an issue, especially with unsupervised
training or with poorly segmented or transcribed data. With standard averaging, outliers can
drastically affect models. If reliable, such outliers (Figure 10.4) can be exploited in
discriminatve training; otherwise, selective training could deemphasize their use [60].
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10.5.1.3 LPC distance measures (t). The measures in the previous sections are
general and can be used with many sets of parameters. Given that the focus in ASR is the
speech spectral envelope and that LPC parameterizes that envelope efficiently, distances exist
that exploit aspects of LPC for efficiency and ASR accuracy. Two such related distance
measures are the ltakura-Saito (IS) distance and the log-likelihood ratio (LLR) [61, 62]. They
exploit the mathematics of LPC modeling to weight the effects of the different coefficients
without requiring orthogonalization. In its simplest and most common form, the IS distance
between two templates represented by a test LPC vector aT and one of L reference vectors
a, (i = 1, 2, ... '. L) is

(10.6)

where VT is the autocorrelation matrix of the test utterance, and (JT and (Jj are the LPC gain
parameters for the test and reference templates, respectively. The LLR is a gain-normalized
version of the IS distance:

(10.7)

(10.8)

Just as cepstral Co is often ignored, the LLR assumes that amplitude is irrelevant for ASR
(e.g., the same word may be uttered loudly or softly; speaker distance from the microphone
and the transmission channel also affect amplitude). Temporal amplitude variations are useful
to distinguish utterances longer than a single word, but gain normalization is common for
templates of words or smaller units.

In computing these LPC distances, the test frame of speech is in effect passed through
the inverse LPC filter for each reference template to yield a scalar residual error energy
(aTVraj). This error is normalized by the actual residual error for the test template (a~VTaT).

In the case where the two templates correspond to similar acoustic segments, the inverse filter
provides a good match to the test speech, and the two errors are small and similar. With a
perfect match, the errors are identical and Equation (10.7) appropriately yields a zero
distance. (The IS distance is based on the error ratio and the ratio of the gains of the
individual LPC vectors.) For mismatched templates, the residual (resulting from inverse
filtering the test speech by a different LPC analysis filter) is large, and the distances in
Equations (10.6) and (10.7) become large.

Expanding vector operations in Equation (10.7), we obtain for the LLR distance [60]

dLLR; = log [EVT(k)Ra(k)l
where N is the vector dimension and LPC model order, VT is the autocorrelation vector of the
test utterance normalized by its LPC error (i.e., the first N + 1 values of the autocorrelation
function, starting with the test utterance energy as the first element, divided by the LPC error;
all values are obtained during LPC analysis of the test utterance), and R, is the autocorrela­
tion vector of the extended LPC coefficient vector (I, -aI' -a2' ... , -aN)T. Equation
(10.8) requires only N + 1 multiplications per reference template, making the LPC distances
comparable in computation to the Euclidean distance.

The LPC distances are asymmetric (i.e., not metrics): filtering the test utterance by a
reference inverse LPC filter is not the same as passing a reference utterance through the test
inverse filter, although similar values usually occur. The asymmetry is often largest for large
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(10.9)

distortions, and may be justified on perceptual terms (e.g., it is easier to perceive noise in a
masking tone, than to hear a tone in noise) [63]. Equations (10.6) and (10.7) yield high ASR
performance while minimizing both distance calculation and memory for the reference
templates. LPC analysis must be performed on each test utterance, yielding the autocorrela­
tion vector and LPC error, although the test LPC coefficients as such are not needed. For each
reference template, only the autocorrelation vector based on the LPC coefficients of the
reference utterances need be stored (N + 1 values/template).

While it is difficult to compare ASR experiments under different conditions, the LLR
distance seems superior when using LPC-based templates [64], but see 65], but the Euclidean
distance with MFCCs is generally preferred over LPC measures [40, 66]. Mel-scale frequency
warping appears to raise ASR performance for cepstra but not for LPC recognizers.

The LLR distance applies in non-LPC ASR as well, where LR = P(OIA)/P(OIB)
compares two stochastic models A and B to see which better models a speech observation
vector O. Here the LLR can be defined as

LLR = [logP(OIA) - logP(OlB)]/d,

where d is the duration (in frames) of O. For utterance verification or keyword spotting (i.e.,
estimating whether key speech has been properly identified), where discrimination of similar
words is important, A could be a keyword model and B an anti-model from clustering of
highly confusing alternative words (units smaller than words can also be used) [67].

10.5.1.4 Cepstral distance measure. When comparing speech frames using cepstral
parameters Cn' a simple Euclidean distance is common, which reflects the uncorrelated nature
of Cn. Since the logarithmic power spectrum log S(w) of speech is the Fourier transform of its
cepstrum, Parseval's theorem can be used to equate a Euclidean cepstral distance to the RMS
log-spectral distance:

x In
d~l?p = n='5;xir, - tn)2 = (21lr' OJ=-lt IlogR(w) - log T(W)!2 do),

where r n and t; are the c; for reference and test utterances, respectively. Under certain regular
conditions [66], c; (except for energy co) have zero means and have variances that vary
approximately as the inverse of n2. (en generally decays in amplitude with n, and so the
number of terms in the summation above can be truncated, to about 10-30 [63].) If we
normalize the cepstral distance to account for the decreasing spread of higher order
coefficients (i.e., d;cep == L::_:>e(nrn - ntn)2), this distance compares the spectral slopes of
the speech power spectra (since multiplying in the time domain by n corresponds to a
derivative in the frequency domain). This deemphasis of low-order coefficients has some
foundation in speech production, where the broadest spectral effects (those changing slowly
with frequency) are more due to excitation factors (e.g., spectral tilt) than to vocal tract factors
(the latter being more important for ASR). They are also deemphasized because they vary
significantly with transmission factors (e.g., bandpass filtering in telephone channels) and
speaker characteristics, which are irrelevant for phonetic decisions.

Cepstral analysis is often done on the smooth LPC spectrum rather than on the OFT, to
eliminate aspects of the OFT in the c; that are irrelevant to ASR (e.g., excitation effects, such
as FO). Weighting this LPC cepstrum by n yields the sum of the roots of the LPC polynomial
A(z) with increasing powers [63]: nCn = L:f=1 ik· (The LPC cepstrum is a flawed spectral
measure, however, known to model sounds like nasals and obstruents less well [9].) d ncep is
called the root-power sum (RPS) distance; it emphasizes movements of sharp spectral peaks
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(e.g., formants) more than other LPC measures. Using the fact that perceived loudness
follows the cube root of speech power, a method called root spectral compression improves
modeling of spectral zeros [3].

A more common procedure is to weight en with a raised cosine function 1 +
(Lj2) sin(nnjL) (a finite-length window for n = 1, 2, ... , L). A distance with this weighting
deemphasizes both low- and high-order en' on the assumption that, as n increases, LPC-based
c; are more influenced by artifacts of the LPC analysis [63]. Comparing both regions of
deemphasis, attenuating the low-order c; seems more useful for ASR [68].

10.5.1.5 Other distance measures. In the case of noisy speech, ASR accuracy can be
improved by weighting more heavily the components of the distance measure that correspond
to frequencies of higher energy (e.g., during vowels, the first 2-3 formants) [69]. The
diversity of distance measures used in ASR reflects the difficulty of finding one that is
sensitive to fine phonetic distinctions, yet insensitive to irrelevant spectral variation; e.g., most
measures are not invariant to FO changes, even though FO has little effect on segmentals [70].
Other distance measures are discussed in [63, 64, 71, 72].

10.5.2 Making ASR Decisions

Given a speech input s (i.e., a set of samples from a speech signal), the objective of
ASR is usually to output the most likely estimated text t from the set of all texts t (often
constrained by the choice of language, vocabulary, and sometimes syntax). This maximum
likelihood (ML) estimation approach is used for most ASR tasks. Stochastic methods of ASR
(e.g., Markov models) explicitly address this probabilistic approach. For deterministic ASR
methods using template-matching, however, there is an implicit assumption that different
versions of utterances are equally likely. Typically, representations of repeated utterances for
training reference templates are simply averaged. More realistic (non-uniform) PDFs are hard
to use with templates.

In a scheme where each possible text corresponds to many points in N-space and where
ASR searches for the closest match, we first assume that the set of points for each text
describes a uniform PDF. In this case, the best match is equivalent to a maximum a posteriori
(MAP) probability (i.e., the conditional probability P(tls»). Since factors other than a spectral
distance measure (e.g., language models) are often used in ASR, since all such factors can
often be modelled stochastically, and since template matching methods can also be interpreted
stochastically, we will unify our discussion here in terms of maximizing probability.

We have no direct way of estimating posterior probabilities P(tls), since it is impossible
to examine all possible speech signals s (or even a reasonable subset) during training. Using
Bayes' rule, we thus choose i so that

" P(t)P(sJt)
P(tls) = m;u'P(tls) = m;u' P(s) ;

i.e., the conditional probability for a given s is maximized over all t. Since the denominator
P(s) does not depend on the chosen t in the maximization operation, the recognition problem
reduces to choosing t so that P(t)P(slt) is maximized. In some ASR systems, either all texts t
are equally likely or their a priori (prior) probabilities P(t) are unknown (i.e., no language
model is used); then the problem further reduces to maximizing likelihood P(slt), i.e.,
choosing the text for which the input speech signal is most likely. Thus Bayes' rule converts
the ASR problem from the very difficult one of estimating posterior probabilities (P(tls» into
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the computationally easier task of estimating separate prior likelihoods for acoustics (P(slt»
and text (P(t)).

While the denominator P(s) in Equation (10.10) can be ignored at recognition time, it
affects training methods. The standard ML training method is poor at discriminating similar
acoustic classes because it does not take account of alternative hypotheses in adjusting model
parameters.

Many speech phenomena are more accurately modeled on time spans much larger than
frames, e.g., intonation, choice of speaker, transmission channel, and noise effects. While
many recognizers use delta coefficients to account for some dynamic effects, their range is
typically 3-5 frames, much less than one's short-term memory (ranges of 160-200 ms have
been suggested for optimal processing [3]). All these important issues are discussed later, in
the context of handling timing variability.

10.5.2.1 Alternative success criteria. Other performance measures are possible (e.g.,
if costs can be associated with different types of ASR errors, we could minimize average
cost). Basic ML estimation is used for most ASR tasks, but is often inadequate for confusable
vocabularies (e.g., the alphabet: A, B, ... , Z). Training ASR systems to directly minimize
error rates (minimum classification error-MCE) instead has been often difficult [42, 73, 74],
in part because we have no metric to measure the ordering of output hypotheses [75]. A
criterion emphasizing model discrimination (e.g., maximum mutual information estimation)
can raise accuracy, but with increased cost [76, 77] and some convergence problems [60].
Discrimination can also be improved via divergence measures (see Chapter 11) [78].

Many alternative methods rely on gradient descent optimization, which often find local
minima. Deterministic annealing is a method that minimizes a randomized MCE cost subject
to a constraint of a gradually relaxing entropy. It recognizes spoken letters well in background
noise [79].

Linear discriminant analysis (LDA) is a common method for pattern recognition to
improve the discrimination between classes (e.g., spoken digits) in a high-dimensional vector
space [80]. The original parameter space is linearly transformed by an eigenvector decom­
position of the product of two covariance matrices, an interclass matrix and the inverse of an
average intraclass one. Thus it emphasizes dimensions which spread out different sound
classes, while minimizing the divergence within each class. Applying LDA to acoustic states
of an ASR model with a single transformation (once per speech frame), rather than individual
state mappings (applied to each of many models), minimizes computation [58]. Such methods
are robust in noise, but need knowledge of SNR for good results [81].

10.5.2.2 Multiple outputs (nearest neighbors). The desired output for ASR is
usually the single best text corresponding to the input speech; e.g., t corresponds to the
reference template with the closest match to, or smallest distance from, the test template.
Following this nearest-neighbor (NN) rule, ASR calculates distances d, for i = 1, 2, .,., L
(for L models in the system) and returns index i for dmin, the minimum d, (or equivalently the
MAP likelihood). If there are several models for each text (corresponding to pronunciations
of the text by several speakers, or several repetitions of the word by one speaker), a version of
the K-nearest neighbor (KNN) rule may be applied. The original KNN rule finds the nearest
K neighbors (among all models) to the unknown and chooses the text with the maximum
number of entries among the K best matches (the NN rule breaks ties) [82]. In an alternative
KNN rule (which requires more computation for a given K) [83], the selected output
corresponds to the text that minimizes the average distance between the test template and
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the best K matches for each vocabulary word; i.e., ASR finds the K reference templates
closest to the test template among the P templates representing each word and chooses the
word with the smallest average distance. When enough models represent each word (e.g.,
P ~ 6), as in many SI systems, improved ASR accuracy results with the KNN rule for K =
2-3, compared with the NN rule [83]. For systems having over 100 templates/word, accuracy
improves with even higher values of K (e.g., 7 in [82]), but computation increases as well.

10.5.2.3 Decision thresholds. Thresholds may be used as part of a decision rule to
reduce ASR errors, at the cost of delaying the output response. If the smallest distance
between the test template and all reference templates exceeds a chosen threshold (or the best
MAP probability across reference models is too low), the speaker can be asked to repeat an
utterance because the best text candidate for the first utterance is nonetheless a poor match.
Such a rejection is feasible only for interactive ASR, where the speaker expects immediate
feedback. Based on experiments, the rejection threshold can be set to balance the ASR error
rate and the false rejection rate: a high (or no) threshold leads to few (or no) rejections but
risks more wrong identifications, while a low threshold minimizes incorrect recognitions but
increases the likelihood of a rejection when the best match is indeed correct. A second
threshold may further reduce errors: a decision can be refused if the two best matches have
very similar distances (or probabilities), because an error is more likely if one candidate must
be selected from a set of similar matches than if one candidate is clearly superior [84]. The
balance points are specified by the relative costs of ASR errors and rejections [85]. Rejection
delays can frustrate system users, but errors can have a highly variable cost.

In cases where a final decision is delayed, a preliminary ordered set of candidates may
be output consisting of the most likely matches, e.g., the best M matches in order. Certainty
factors (derived from the evaluation measures) may be linked to each candidate, indicating its
likelihood of being correct; e.g., if two reference templates had similar small distances from
the test template, they would be assigned similar high factors.

10.6 ACCOMMODATING BOTH SPECTRAL AND TEMPORAL
VARIABILITY

Most of our discussion so far has assumed a comparison of individual sounds, where a single
representation of each utterance (e.g., from an average of all frames) suffices. This evaluation
procedure suffices only in the very limited circumstances of stationary speech (i.e., where the
vocal tract is kept constant). In virtually all ASR, however, vocabulary entries (i.e., output
texts) involve sequences of acoustic events. Even in simple cases (e.g., digit or A-Z
vocabularies), almost all words contain multiple sounds (e.g., among the letters, only A, E,
/ and 0 involve single phonemes). A single average spectral feature set would suffice only for
very restricted vocabularies, where the words are short and have very distinct sounds; e.g., for
yes/no (a two-word vocabulary), energy in yes is concentrated at higher frequencies than for
no, so the frequency of the mean spectral peak (averaged over each word) could distinguish
these two words.

In almost all practical situations, utterances are subdivided in time, yielding sequences
of parameter vectors. As in speech coders, speech is divided into equal-duration frames of
10-30 ms, each producing a parameter vector. (The frames are often overlapping in time by a
fixed percentage, to account for nonuniform weighting via windows; e.g., 25 ms Hamming­
weighted frames, evaluated every 10ms.) Speech could be segmented into longer multiframe
sections (homogeneous in some sense) (e.g., syllables [86, 87]) before parameterization, but
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here we will assume that each utterance is transformed into a parameter matrix M or pattern
of parameter vectors. A parameter (or feature) vector F(i) for frame i consists of Qparameters
It (i), h(i) . . . . . IQ(i) (Q ~ 8-30 typically, e.g., including static and delta cepstral coeffi­
cients). For a total of L frames in an utterance, the pattern M consists of

F( 1), F(2), ... , F(L). (10.11 )

Ideally, if a segmenter could reliably divide each utterance into acoustic units (e.g.,
phones or words), the frame size could be variable and correspond to each unit (hence L such
units per utterance). This would minimize storage and comparison computation, and
guarantee that when a test pattern is compared to a reference pattern for the same "word,"
corresponding acoustic segments would align properly, yielding a good match.

Since reliable segmentation is difficult, most ASR compares templates (or evaluates
probabilities) frame-by-frame instead, which leads to alignment problems. Utterances are
spoken at different speaking rates, even for individual speakers repeating a single word; thus,
test and reference utterances usually have different durations (i.e., an unequal number of
frames). One (suboptimal) way to facilitate frame-by-frame comparison is to normalize frame
lengths so that all templates share a common number of frames; e.g., if a typical word lasts
400 ms and a sampling of 20 frames/word is estimated to be needed for accurate ASR, the
frame intervals would exceed 20 ms for words longer than 400 ms and be proportionately less
for shorter words. Such linear time normalization or warping can be done either through
frame adjustment before parameterization or through decimation/interpolation of the para­
meter sequence.

Accurate time alignment of templates is crucial for ASR performance. Linear warping
is rarely sufficient to align all speech events properly because the effects of speaking-rate
change are nonlinear and widespread; e.g., vowels and stressed syllables tend to expand and
contract more than consonants and unstressed syllables. Thus linear warping of two
utterances of the same text often aligns frames from different phones. For example, the
main difference between long and short versions of the word sues usually occurs in the /ul
duration; linearly compressing the long version to the same number of frames as the short one
would align some frames at the start and end of lui in the long version with frames from /s/
and Iv in the short version; a large distance in comparing these two versions of the same word
then would result for these frames, since vowels and fricatives are very different spectrally. If
enough frames are misaligned, the overall ASR distance is often large enough to cause a
rejection or to output a different word. (For simple monosyllabic words, ASR improves with a
procedure that appends silence to the ends of the shorter of the test and reference templates,
and aligns energy peaks so that the vowels are correctly compared [40, 88].)

By its very nature, any time warping will hinder the exploitation of durational
information in ASR. Duration helps cue phonemes in speech perception, e.g., long vowels
suggest an ensuing voiced consonant, and frieation duration helps distinguish stops and
fricatives. Time warping obscures many of these cues. Few current ASR systems directly
exploit durational cues, but future systems will.

10.6.1 Segmenting Speech into Smaller Units

Determining time boundaries for acoustic segments in a test utterance is a significant
problem for all ASR tasks. (For training, segmenting reference utterances may be assisted
manually, which is tedious but straightforward-except for ASR products that need automatic
SO training.) In most ASR, either acoustic unit boundaries are found implicitly as part of the
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model evaluation or the problem is bypassed. For expert-system ASR, however, segmenting
speech is a major explicit task, and for most ASR, at least the start and end (endpoints) of
each utterance must be found. For IWR, this estimation is needed for each word.

10.6.1.1 Endpoint detection. Proper estimation of the start and end of speech (vs
silence or background noise) leads to efficient computation (i.e., not wasting ASR evaluations
on preceding or ensuing silence) and, more importantly, to accurate recognition. Misplaced
endpoints cause poor alignment for template comparison; e.g., weak speech (stops or /f,(J1) at
misaligned boundaries may be incorrectly compared to background noise. In one isolated­
digit experiment [61], the ASR error rate was 70/0 with correct endpoints; small endpoint
errors (±60 ms) led to 10% ASR errors, and larger endpoint deviations caused severe
degradation (e.g., missing the first 130ms led to 300~ errors).

In a signal free of noise, finding where speech starts and ends is simple: speech vs zero­
valued silence samples. Noise comes from speakers (lip smacks, heavy breaths, mouth
clicks), environment (stationary: fans, machines, traffic, wind, rain; nonstationary: music,
shuffling paper, door slams), and transmission (channel noise, crosstalk). The variability of
durations and amplitudes for different sounds makes reliable speech detection difficult; strong
vowels are easy to find, but boundaries between weak obstruents and background noise are
often poorly estimated.

Most endpoint detectors rely on functions of signal amplitude or energy to separate
nonspeech from speech [89]. The method shown in Figure 10.5 locates energy pulses
(typically syllables or words), by comparing energy in decibels against four thresholds
k l , k2 , k3 , k4 [90, 91]. Time Al notes when energy exceeds the lowest threshold kl (3 dB
above background noise). If it rises above k2 (lOdB) before falling below k" a pulse is
considered detected starting at A 1 (unless duration A 2 - A 1 exceeds 75 ms, where A2 is then
viewed as the start time and the signal preceding A 2 as breath noise). The end time is similarly
found using thresholds k2 and k3 (5 dB) (A4 is the end time unless A4 - A 3 > 75 ms). Such a
pulse is rejected, however, if it is too short (e.g., < 75 ms) or too weak (its peak lies below k4 ) .

Successive energy pulses may be considered part of one unit if the delay between pulses is
less than 150 ms (the longest possible stop closure).

k2
k

3 k1 ~_~'---_.¥.L.""" I...-Ioo--'-~_---";;;:=----_~ Time

Figure 10.5 Example illustrating the use of energy thresholds to find start and end frames
of possible speech units. (After Lamel et al. [90] © IEEE.)
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When the available speech bandwidth exceeds 3 kHz (e.g., nontelephone speech),
spectral information at high frequencies is sufficient to refine energy-determined boundaries
with simple spectral measures [92]; e.g., zero-crossing rate (ZCR) provides a basic estimate of
the frequency of major energy concentration. Background noise often has a flat or broad
lowpass spectrum, and thus its ZCR corresponds roughly to a frequency in the middle-to-Iow
range of the signal bandwidth. For speech obstruents, on the other hand, the ZCR is either
high (corresponding to the high-frequency concentration of energy in fricatives and stop
bursts) or very low (if a voicebar dominates). Weak fricatives, which cause the most detection
difficulties, have high ZCRs.

The endpoint detection problem can be viewed as a subset of the problem of
voiced/unvoiced/silence classification of speech, discussed briefly in Chapter 6 for pitch
detectors. Endpoint detection can be done by combining a silence detector [93] with a
postprocessor that heuristically eliminates short "silences" (i.e., stop closures) amid longer
nonsilences.

10.6.1.2 Segmentation ofspeech into words (t). While endpoint detection (speech­
nonspeech discrimination) often allows a straightforward solution, finding relevant unit
boundaries within speech segments is much more difficult. It is often implicitly and
incorrectly assumed that speech is linear (a 1: 1 correspondence between phonemes and
nonoverlapping acoustic segments) and invariant (a 1: 1 mapping between phonemes and
acoustic features) [94]. In IWR, the use of word models avoids accounting for the effects of
coarticulation, which obviates these assumptions. When segmenting continuous speech,
however, coarticulation cannot be ignored. Direct segmentation of normal speech into
words is in general very difficult.

Segmentation is simplified if each word is clearly spoken and the vocabulary is severely
limited (e.g., connected-word speech). For example, an SI statistical approach can be applied
to word strings of arbitrary length. Successful word segmentation can then be followed by
IWR on the separated words. A linear or quadratic estimator (Figure 10.6) is designed via
training on all pairs of words that may occur in a test utterance [95]. Frames of energy features
(e.g., outputs of a bank of bandpass filters), orthogonalized into principal components via a
Karhunen-Loeve process to minimize the number of dimensions, provide a parameter vector
x for every analysis window. The window is about 450 ms long to ensure that at most one
word boundary may lie within it. Defining a target value z equal to 1 if the window contains a
boundary and zero otherwise, a linear estimator d = E(x) = a . x minimizes the mean value
of (z - d)2. From the Wiener-Hopf equation, the estimator vector is

a = {xxT)-t . (z· x). (10.12)

Using a 26-component x, word boundaries in sequences of digits were located with an
average 32 ms error [95].

10.6.2 Dynamic Time Warping

This section deals with a major method for comparing two speech template patterns,
which was vel)' popular in the 1980s and is still used today. It specifically addresses the
problem of time alignment, by nonlinearly stretching (warping) one template in an attempt to
synchronize similar acoustic segments in the test and reference templates. This dynamic time
warping (DTW) procedure combines alignment and distance computation in one dynamic
programming procedure [60, 96-98]. DTW finds an optimal path through a network of
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Figure 10.6 Example of segment boundary estimation: (a) a window is periodically shifted
along the time axis of a speech parameter, (b) an estimator calculates a value
d, whose maximum indicates the chosen boundary time. (After Zelinski and
Class [95] © IEEE.)

possibilities in comparing two multiframe templates, using the Bellman optimality principle
[99]. Linear time alignment is a special case of DT~ where only a single path comparing
synchronous frames between templates is considered. In DTW, small deviations from this
linear frame-by-frame comparison are allowed if the distance for a frame pair slightly off the
main path is smaller than other local frame comparisons. Phonetic segmentation (other than
endpointing) is not usually done on the test template (cf. segmentation difficulty above). Thus
DTW aligns it as a whole with each reference template by finding a time warping that
minimizes the total distance measure, which sums the individual frame distances in the
template comparison, i.e., sums the measures of successive frame-to-frame matchings.

Basic DTWassumes that (1) global variations in speaking rate for a person uttering the
same word at different times can be handled by linear time normalization; (2) local rate
variations within each utterance (which make linear normalization inadequate) are small and
can be handled using distance penalties called local continuity constraints; (3) each frame of
the test utterance contributes equally to ASR; and (4) a single distance measure applied
uniformly across all frames is adequate. The first two assumptions seem reasonable, but the
latter two are less so and have led to refinements of the basic DTW method. With many
vocabularies, ASR decisions can be based on specific parts of words (e.g., in the E-set,
examination of the vowels is irrelevant), which invalidates the third assumption above. As for
the fourth assumption, a single spectral measure (e.g., an LPC distance) may be efficient for
comparing vowels, but not for analyzing speech transients [100]. Despite these flaws, DTW is
an efficient method for some ASR. DTW has few advantages for monosyllabic utterances
(where linear normalization often suffices), but substantial increases in accuracy occur for
DTW in matching polysyllabic utterances [101].

DTW finds use also in training recognizers. Extracting training data or reference
templates for short acoustic segments reliably from continuous or connected speech can
require tedious hand segmenting and labeling. By relaxing local continuity constraints, DTW
has been used to align phones in unlabeled natural utterances with both synthetic and
previously labeled natural utterances [102]. Labeled utterances permit automatic extraction of
phone models from continuous speech.
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10.6.2.1 Details of DTW operation. Consider two patterns Rand T (as in Equation
(10.11)) of Rand T frames each, corresponding to the reference template and test template,
respectively. DTW finds a warping function m = \oven), which maps the principal time axis n
of T into the time axis In of R (Figure 10.7). Frame-by-frame through T, DTW searches for
the best frame in R (subject to certain constraints) against which to compare each test frame.
Since T is compared against many reference templates, the test axis is usually treated as the
domain and the reference axis as the range. (Switching the two axes degrades ASR
performance only slightly [103], even though w may not be invertible. If the templates
under comparison are unequal in duration, it may be better to use the longer one on the
horizontal axis, i.e., warp the shorter to the longer [28].) The warping curve derives from the
solution of an optimization problem

D = min[t d(T(n), R(w(n)))] ,
w(n) n=1

(10.13)

where each d term is a frame distance between the nth test frame and the w(n)th reference
frame. D is the minimum distance measure corresponding to the best path w(n) through a grid
of T x R points (Figure 10.8a).

In theory, TR frame distances must be calculated for each template comparison,
matching each test frame against every reference frame. In practice, continuity constraints
restrict the search space, so that typically only about 300/0 of the matches are performed.
Nonetheless, computation increases significantly: a linear frame-by-frame comparison for a
typical 25 frame template requires only 25 distance calculations, while DTW needs about
150-200 distances (~0.3 x 252) . Since DTW calculation usually increases as r2 (vs T for a
linear path), computation is heavy for long templates involving several words at a time.
Computation may be limited by restricting the warp path to stay within a window of ± W
frames of the linear path, which leads to about 2WT distance calculations (see Figure 10.9b).
However, W must often be expanded for good recognition of longer utterances.

m m
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R R

1 1
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Figure 10.7 Example of nonlinear time alignment of a test T(n) pattern and reference
R(m) pattern. (After Rabiner et al. [104] © IEEE.)
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Figure 10.8 (a) Typical DTW plot, illustrating the optimal warp path w(n) mapping the test
time axis n into the reference time axis m. If the template endpoints are forced
to match and the warping is restricted to lie within slopes of! and 2, the shaded
area shows the subset of points that is considered. (b) Permitted transitions to
the grid point (n, m). Since two horizontal transitions are not allowed, the step
marked x is illegal.

One way to decrease computation, at the cost of a small decrease in ASR accuracy, is to
determine the warp path before calculating distances. Normally, the path is simultaneously
specified as the local distances are computed, with the minimum accumulated distance
determining the path. Few differences, however, exist among paths using distance measures of
varying complexity (e.g., paths determined from Euclidean distances involving 1, 2, 4, 8, or
16 mel-cepstral coefficients are quite similar [105]). Rather than using costly distance
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Figure 10.9 Variants on the DTWalgorithm: (a) the UE2-1 (unconstrained endpoints, 2: 1
slope constraints) method allows the omission from consideration of up to b
frames at the start and end of the reference template (similar allowance could
also be made for the test template), and (b) the UELM (unconstrained
endpoints, local minimum) method restricts the search area to a limited
range around the locally optimum path. (After Rabiner et al. [104] © IEEE.)
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measures just to find the warp path, intricate distances need be applied only after a path is
found via simple measures. (The computational savings apply mostly to general-purpose
hardware, e.g., microprocessors, where multiplications cost more than logical operations such
as comparisons. With advances in computer technology, however, mathematical operations
approach the speed of logical operations, raising the utility of mathematically intensive
methods and eliminating the need for such shortcuts.)

10.6.2.2 Efficiency via search space reduction (t). For a point (n, m) in the grid, the
minimum accumulated distance Da{n, m) from the start point (1,1) can be recursively defined:

Da(n, m) == d{T(n), Rim] + min [Da(n - 1, k)p(n - 1, k»),
k~m

(10.14)

where p represents a penalty for deviating from the linear path or for violating continuity
constraints, and d is the frame distance at point (n, m). Some systems use a binary penalty
function (e.g., p == 1 for an acceptable path or p == 00 for an unacceptable one [106]), while
others allow p to follow the deviation of the path from the linear ideal [40]. Limiting the
search to the range k ~ m reflects the reasonable assumption that the warp path should be
monotonic (i.e., no temporal backtracking). DTW limits the range further by continuity
constraints, e.g., those in Figure IO.8(b), which require the reference index m to advance at
least one frame for every two test frames and to skip no more than one reference frame for
each test frame. This effectively makes the reasonable assumption that speaking rate changes
by no more than 2: I within a template utterance. Extrapolating these local slope constraints
to the global grid in Figure 10.8(a), minimum and maximum slopes of! and 2, respectively,
restrict the set of grid points to be examined. Since these standard constraints lead to
an asymmetric distance, symmetric versions have been proposed [88, 96]. Overall ASR
performance, however, seems to vary little whether the standard constraints or other
possibilities are used [103].

Figure 10.8(a) illustrates the constrained endpoints (CE) DTW algorithm. In the
original approach, ASR accuracy is highly dependent on good endpoint detection of each
unit (e.g., word) in the input test utterance, because no freedom is permitted in matching the
first and last template frames. The two alternatives of Figure 10.9 are used in cases where
endpoints are unreliable. A UE2-1 variant (unconstrained endpoints, 2: 1 slope constraints) of
DTW permits relaxing the local constraints by up to b frames, but only for the first and last
test frames. A similar procedure could eliminate the first or last few test frames from the total
distance measure, relaxing the test axis as well as (or instead of) relaxing the reference axis at
the endpoints. In either case, when comparing templates corresponding to the same "word"
but with misaligned endpoints, the total distance remains low, unlike in the CE case. A further
variant to UE2-1 extends each pattern with a few frames from a silence template [107].

One way to relax the endpoints (to raise ASR accuracy) yet reduce the search space
(and hence calculation) is the unconstrained endpoints, local minimum (UELM) method of
Figure lO.9(b). UELM follows the locally optimum path at time n, discarding paths that
deviate more than a few reference frames from the best path up to that time. The CE method
discards a path only if Do exceeds a threshold, indicating that even if the remaining match
were perfect, the total distance would be unacceptable (Figure 10.10). UELM allows more
paths at the start (not rejecting a possibly good match due to poor alignment), but prunes
other paths that the CE method would evaluate (thus a smaller search space). As Figure
10.9(b) shows, the final endpoint constraint is also dropped, which makes UELM especially
suitable to applications where the final endpoint is unknown, e.g., in continuous speech
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Figure 10.10 Plots of accumulated distance DQ as a function of frame number in the test
template, corresponding to the letter Q in the A-Z vocabulary. Comparing
the test Q against two reference templates each for all 26 letter utterances
yields 52 paths. Only the letters Q and U have DTW paths that remain under
the "discard" (rejection) threshold throughout the utterance duration. A
typical threshold is specified by a slope (0.7 here) and a starting offset Tmin.

Some systems specify a number of "backup frames" NBU at the end of the
test template, which may be discarded if Da rises suddenly at word's end, on
the assumption that breath noise may be included via poor endpoint
detection. (After Rabiner et al. [83] © IEEE.)

recognition or when searching for a keyword in continuous speech (word spotting). In one test
on an alphadigit vocabulary, the CE method was superior for most utterances, but UELM
performed best on words that were unusually long or short [83].

10.6.2.3 Problems with DTJJ: Apart from the major difficulty of adequately repre­
senting each speech unit with just one (averaged) reference template, DTW has some specific
drawbacks, including: (1) still heavy computational load (vs a linear template match), and (2)
treatment of durational variations as noise to be eliminated via time normalization.
Furthermore, basic DTW does not allow weighting different parts of an utterance by their
information contribution to ASR. For example, in the A-Z vocabulary, recognizing conso­
nants is much more important than vowel identification in determining which of26 letters was
spoken; nonetheless, all frames of the test template contribute equally in basic DTW, and most
frames pertain to vowels since they tend to be longer than consonants [108].

Some of these difficulties can be overcome by modifications to OTW: (a) nonlinear
sampling in time, where frame intervals in both test and reference templates are nonuniform,
can allow more speech representation during transients than during steady states (cf. variable­
frame-rate speech coding [109]); (b) omitting highly correlated frames when producing
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templates (e.g., keeping only every second or third frame during the middle of continuant
phones) apparently causes little loss in ASR accuracy, with reductions of up to 50% in
memory (and hence of 75% in distance calculations) [110]. These modifications have
drawbacks: the added complexity of aligning such warped templates and the extra computa­
tion to determine which frames to delete (both for the reference templates and for each test
template). One (less effective) alternative uses longer (and fewer) frames, interpolating extra
template frames (from neighboring frames) only during speech transients where the inter­
frame distance exceeds a threshold [28].

A related approach [Ill] emphasizes spectral transients: the spectral distances between
successive pairs of equal-length frames in a template are summed to obtain a measure of how
much total spectral change occurs during the template, and the template utterance is
reanalyzed at unequal time intervals so that the spectral change is uniformly distributed
among the frames. Compared with standard DTW, error rate and computation decrease for
this trace segmentation approach, but the savings depend on many factors such as vocabulary
composition, distance measures, and hardware implementation. One difficulty with this
technique is that steady-state segments may be compressed so much that some sounds are
missed (e.g., the stop closure in X /sks/, which distinguishes it from S IESI).

Basic DTW compensates for time variability in utterances. DTW can also usefrequency
lvarping so that small spectral deviations are allowed while using a simple distance measure
[112]. Accommodating slight deviations in formant positions could be done by designing
better distance measures, but it is easier to modify the calculation of Equation (10.14) to
include a simple frequency deviation measure in addition to the usual spectral distance.

10.6.2.4 Applying DTW to continuous speech (t). Basic DTW succeeds best for
relatively short utterances, e.g., words of a few syllables. Performance decreases with
template length, due to computation (increasing as the square of utterance duration) and
poorer ASR accuracy. In long utterances, speaking rate changes tend to affect word
components differently, and simple local continuity DTW constraints become less valid.
As template length increases, there is more chance that the optimal grid path may be
discarded due to a locally large distance early in the warp. These mistakes can be avoided by
relaxing the discard threshold or the continuity constraints, but only at the cost of increased
computation due to more and longer paths examined.

With small vocabularies (e.g., < 100 words) in IWR, the task is small enough to permit
an exhaustive search, i.e., one simply compares each test template against all reference
models. Also, with corresponding small memory size, it is unnecessary to heavily compress
frame representations to save space. However, ifCSR is desired and if vocabulary increases to
the thousands of words needed to handle general conversation, both memory and the time
needed to search it become large enough to warrant more efficient procedures than exhaustive
model evaluations. This section examines ways to reduce memory and search time while
preserving ASR accuracy.

In CSR, reference templates corresponding to words are concatenated to form
utterance-length templates, which are then compared with the test template (Figure 10.11).
Word endpoints are not known within the test utterance, and so constrained-endpoint DTW
can be used only for the start of the first word and the end of the last word. Elsewhere a form
of UELM is applied, allowing utterance-internal word boundaries freedom, subject to the
global constraints of the DTW search space. The simplest procedure does DTW for all
possible combinations of words in the vocabulary. In the absence of linguistic restrictions
(i.e., without a language model), a ~word vocabulary allowing utterances of up to W words in
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Figure 10.11 DTW plot applying a test template on the horizontal axis against a series of
word reference templates on the vertical axis. This example assumes that the
test utterance consists of four words. For a vocabulary of [A, B] and a test
utterance BAAB, the local word paths ending at different times for each
reference level are labeled A or B, depending on which reference template
gave the smallest word distance. The ending times of the path with the least
total accumulated distance to each reference level are noted as e.. (After
Myers and Rabiner [113] © IEEE.)

sequence has more than VW word combinations, each requmng a template comparison.
Language constraints for a given application reduce the number of comparisons (e.g., in
spelled-out words, certain letter sequences are illegal in English). However, the large number
of possibilities, combined with the fact that DTW calculation increases as the square of
template duration, makes this exhaustive approach impractical for utterances of more than a
few words.

A major problem for most CSR systems is the lack of adequate coarticulation
modeling. Applying DTW to concatenated templates of isolated words works well at slow
speaking rates for connected words, i.e., about 100-130 (usually monosyllabic) words/min.
However, the use of polysyllabic words and more typical conversational rates (180-300
words/min) causes substantial accuracy loss.

10.6.2.5 Level building (t). Several methods have been proposed to reduce the
calculation of DTW for CSR. One is the two-level approach, which compares templates in
two steps, one for individual words and one for the entire phrase [114]. An alternative method
called level building (LB), however, is significantly more efficient [113]. Recognition is
performed level by level, where each word reference template R,. represents a level. At the
first level, the LB method applies DTW to compare R; for each word that may appear in initial
position in a test utterance against the initial portion of the test template T. For each
comparison, distance scores are stored for all allowed endpoints in T, subject to the normal
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continuity constraints. At level 2, R; for all possible second-position words are compared
against T, with paths starting from the endpoints of the previous level and proceeding to
allowed endpoints for the second word. This procedure continues until all levels have been
processed.

If we know the number of words in the test utterance (i.e., the number of levels), we
may normalize T to match the number of frames in R; (i.e., if each R; has L frames and the
test utterance has W words, T could be adjusted to LW frames for good DTW results). If,
however, we only know the maximum test utterance length (e.g., less than 8 words), the local
continuity constraints must be relaxed and normalization of T is less feasible; more
comparisons must be made on the grid since each R; could correspond either to all or part
ofT.

While the number of local distance calculations is much less for LB than for the
exhaustive approach, more information must be passed from level to level and fewer paths
may be discarded than in standard DTW. In the example above, the number of local distances
needed for LB DTW is proportional to V (or approximately 2V, if continuity constraints are
heavily relaxed), compared with V W in the exhaustive case. However, at each level boundary,
the distances for each R; and for each allowed endpoint must be linked with the path distances
for the next level to determine the minimal distances (and the identity of the best matching R;)
to pass on to the next level. In addition to the usual template storage of IWR systems,
backtracking information must be stored to determine the sequence of words in the test
utterance. At each of W levels, LB employs three backtracking arrays of length T (if T has T
frames): minimum accumulated distance, best template, and starting time in T from the
previous level, all for each test frame (three W x T matrices). After the time warp, the output
text is found by backtracking through the third (start time) matrix, picking up the text codes in
the second matrix in backward order. The average number of local distance comparisons is
about VRWT/3, where the factor ~ represents the savings by applying local continuity
constraints and R is the average number of frames in each reference template. The test
template of T frames could be viewed as being warped against a composite reference template
of WR frames, V times corresponding to each word in the vocabulary. In practice, the warping
is performed level by level against reference templates of R frames each, with the same
amount of calculation.

ASR accuracy can be increased at the cost of more complexity by allowing endpoint
freedom at level boundaries, as illustrated in Figure 10.12. For each word reference template,
the first JR, frames and last bR~ frames can be treated as optional, i.e., the local word paths
need not include them in their distance calculation. No frames in the test template may be
skipped (as usual in DTW), but allowance is made at level boundaries to compare a test frame
against either a final reference frame from the previous level or an initial frame in the current
level. Calculation may be limited, with little risk of decreased accuracy, by constraining both
Mr- a multiplier restricting the range of possible starting frames at each level, and E, the
UELM width [106].

Approaches to CSR that require prior segmentation suffer from inevitable errors in
boundary placement, whereas nonsegmenting DTW methods (e.g., LB) insert short, spurious
words into the output transcription. One hybrid approach, using the best of both methods,
raises ASR performance by first dividing test utterances into segments approximating
syllables and then allowing a UELM-type DTW to modify boundary locations to match
the best warp paths [116]. Insertion of spurious segments is minimized by applying quadratic
penalties to paths with high slope compression (i.e., big deviation from the linear warp path)
or with large values for the average distance per frame.
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Figure 10.12 Illustration of level-building parameters ~RI' ~R2' ~end' Mr, and E. A test
template of M frames is compared with up to Lmax word reference templates.
Typical values are e = 15, bend = 4, bR, = 0-4, bRz = 3-6, Mr = 1.4
[113,115]. (After Myers and Rabiner [113] © IEEE.)

10.6.2.6 The one-stage approach (t). A method related to LB, called the one-stage
approach, requires much less warping memory and, for long utterances (12 or so words),
significantly less computation than the LB approach [117, 118]. The three LB backtracking
matrices are replaced by two smaller (V x R) matrices and two J:.dimensional arrays. For the
minimum accumulated distance matrix D(k, m, n), which notes the best distance up to time n
in the test template for frame m in the kth reference template, the LB method stores values for
all test frames and all levels. The new approach stores the values of D for all frames of all
reference templates and updates this matrix for each test frame. Since T averages about WR
frames, the new D storage is less if W2 > V (i.e., if the square of the maximum number of
words in an utterance exceeds the vocabulary size). Similar arguments hold for the back­
pointer matrices. The "best template" matrix of the LB method is replaced with two arrays
indexed along the test template time axis, one keeping track of potential word boundaries and
the other following recognition decisions. Memory savings for this last matrix replacement
occur for utterance lengths of more than two words.

The one-stage method evaluates local distance measures once for each test frame
against each reference frame in memory and applies continuity constraints only in summing
up the distances; i.e., the one-stage dynamic programming does not limit which distances are
to be calculated in the search space as standard DTW does. Thus VRT distances are needed.
Dynamic programming is used to find the optimal path through the search space after having
computed all local distances. If W/3 > 1 (the 1continuity factor again), fewer distances are
needed in the one-stage approach than in level-building. Using a reduced LB approach, which
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limits the search space to deviations of only ±R frames from the linear warp path, can make
the distance calculations of the two methods comparable. Since the best path may deviate
beyond R frames, the reduced LB method cannot guarantee the optimal path that the one­
stage method does.

10.6.2.7 Hybrid segmentation-D'FW recognition (t). A comparison ofDTW with an
alternative approach of segmenting speech into small acoustic units and then labeling them
shows that DTW has the advantage of better accuracy for IWR at the cost of higher
computation. To exploit the efficiency of the segment/label approach over DTW, while
avoiding accuracy loss due to the former's segmentation errors, a hybrid segmentation-DTW
technique may be fruitful. The typical segmenting recognizer often misses short acoustic
segments and subdivides homogeneous segments, but DTW can (to a limited degree) bypass
short spurious segments, overlook missing segments, and merge successive similar segments.
In hybrid recognizers, the segmenter may propose either many segment boundaries, including
many spurious ones (i.e., not phone boundaries), or just a few very reliable boundaries, e.g.,
voicing transitions. In the first approach, the number of template frames is reduced by
merging frames between boundaries to yield average frames. If the number of proposed
segments is significantly fewer than the original number of frames, computation and memory
are decreased [119]. As in the trace segmentation method, however, this approach may
overemphasize speech transients at the expense of the longer continuant phones.

The second hybrid method of few reliable boundaries allows restricting the scope of
DTW to within major segments (thus shortening the durations of templates involved) or, in
the case of certain vocabularies, even eliminating DTW for some segments [120]. Consider
the A-Z vocabulary, where each word (except W) consists of a vowel, preceded or followed
by 0-2 consonants. Comparing low-frequency energy in the 100-800 Hz region against total
energy provides a reliable segmenter to isolate the vocalic portion of each word since
consonants usually have most energy at higher frequencies. By partitioning the vocabulary
into subclasses (cohorts) depending on whether the words have initial or final consonants,
only a fraction of the reference templates must be examined for any test utterance [120].

10.6.3 Applying Vector Quantization to ASR

Vector quantization (VQ) is often applied to ASR for the same reason it was useful for
speech coders, i.e., efficient data reduction. Since transmission rate is not a major issue for
ASR, the utility of VQ here lies in the efficiency of using compact codebooks for reference
models and codebook searches in place of more costly evaluation methods. For IWR, each
vocabulary word gets its own VQ codebook, based on a training sequence of several
repetitions of the word. The test speech is evaluated by all codebooks, and ASR chooses
the word whose codebook yields the lowest distance measure (the sum of the frame
distances). In basic VQ, codebooks have no explicit time information (e.g., the temporal
order of phonetic segments in each word and their relative durations are ignored), since
codebook entries are not ordered and can come from any part of the training words. However,
some indirect durational cues are preserved because the codebook entries are chosen to
minimize average distance across all training frames, and frames corresponding to longer
acoustic segments (e.g., vowels) are more frequent in the training data. Such segments are
thus more likely to specify codewords than less frequent consonant frames, especially with
small codebooks. Codewords nonetheless exist for consonant frames because such frames
would otherwise contribute large frame distances to the codebook. Often a few codewords
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suffice to represent many frames during relatively steady sections of vowels, thus allowing
more codewords to represent short, dynamic portions of the words. This relative emphasis that
VQ puts on speech transients can be an advantage over other ASR comparison methods for
vocabularies of similar words.

10.6.3.1 Incorporating timing information into VQ ASR <t). VQ's major weakness
for ASR is its poor use of timing information. One way to directly incorporate temporal cues
into VQ ASR uses multiple codebooks for each word, dividing it into equal-duration
segments (usually eight or fewer), with separate codebooks for each segment [121]. Ideally,
each word would be divided into distinct acoustic segments (e.g., phones), where very small
codebooks would suffice to accurately describe each segment. Even when using equal-length
segments (which avoids difficult phone segmentation), small codebooks suffice because each
section has only a fraction of the acoustic variation during the word. Template memory is
larger for multiple (vs single) codebooks because similar codewords are repeated in code­
books for adjacent word segments. The advantage of this approach lies in its direct (albeit
coarse) utilization of timing information.

An alternative procedure exploits timing detail more precisely by using likelihood
functions for each codeword [122]. Assuming I frames in each word template, a probability
function Pk(i) specifies how often the kth codeword appears at frame i (1 ::s i ::s I) in the
training data. During ASR, each local distance measure sums the usual "spectral" distance
(which can also include other information, e.g., energy) and a "temporal" distance
(-log[Pk(i)]). Roughly equal weighting between the two gives the best results. One drawback
here is a large increase in memory to store the Pk(i): typical codewords have about 8-10
parameters (e.g., LPC coefficients), compared to I probability values (e.g., I = 40 frames/
word). On the other hand, ASR performance for the VQ approach is comparable to that of
DT~ with less computation compared to DTW with multiple templates per word (e.g.,
speaker-independent systems). DTW with Q reference templates/word requires about QI2/3

frame distances/word, compared to LI VQ distances/word if each codebook has L entries.
VQ recognition can be up to 20 times more efficient in cases where small codebooks suffice
(e.g., Q = 12 and L = 8 [122]).

10.6.3.2 VQ codebook and search techniques <t). VQ can also be used to reduce
distance computation in the case of LVR systems. Assume that a large codebook can handle
all speech sounds for a given speaker (in SD systems) or all speakers (for SI ASR). Such
codebooks ofabout 1024 entries are typical in speech coding and can also be applied to ASR,
which may not need as much representation accuracy as coding does. So most VQ ASR uses
64-, 128-, or 256-entry codebooks, i.e., 6-8b/codeword (Figure 10.13). Smaller codebooks
for specific words could be subsets of a large universal codebook; however, some optimality
might be sacrificed this way, rather than locating codewords independently for each vocabulary
word. Since each test frame need be compared only once against each codeword in the
universal set, ASR using a universal codebook eliminates duplicating distance calculations for
the same codewords in separate codebooks. If the ASR vocabulary has sufficiently diverse
sounds, which is typical for vocabularies of more than 20 words, a universal codebook often
yields performance comparable to systems using separate codebooks.

Most VQ ASR has used full-search algorithms to find the optimal codeword.
Computation could be reduced by applying a binary tree search and/or using a table look­
up for the distances. In the latter approach, all possible N2 distances between codewords in a
codebook of N entries would be stored in a table, and the only distance computations during
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Figure 10.13 Plots of locations of the first three resonances (formants) of 64 codebook
vectors: (a) as a function of codebook index, (b) in the FI-F2 plane (as in
the vowel triangle), (c) in the FI-F3 plane, (d) in the F2-F3 plane. (After
Rabiner et al. [123]. Reprinted with permission from the Bell System
Technical Journal J;' 1983, AT&T.)
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ASR would be those of the codebook searches of the test frames. The disadvantage is that the
stored distances include two distortions rather than one: the use of a codebook for the
reference frames introduces the first distortion, and quantizing the test frame before distance
evaluation introduces the second. ASR accuracy usually suffers from the extra distortion.
Thus it is preferable not to vector-quantize the test frame unless accuracy must be sacrificed
for decreased computation.

10.6.3.3 Levenshtein distance. Limiting the representation for speech frames to a
small set of possible spectra, as VQ does, allows the use of an efficient alternative to standard
DTW called the Levenshtein distance (LD) [124]. Comparing two strings of textual ASR
output (or templates as symbol strings of feature vectors, each represented by a VQ index),
the LD is the minimum number of symbols needed to convert one string to the other, via
deletion, insertion, or substitution (e.g., the string ABBC can be changed into ABCCC by
substituting a C for one B and inserting another C; hence LO = 2). Most ASR systems try to
minimize the word error rate, often using the LD as an error measure, which is not the same
as maximizing P(tls).
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By weighting insertions and deletions equally (for symmetry) and heavily (vs
substitutions), a weighted LD (WLD) can be efficiently implemented through dynamic
programming as an alternative to DTW (e.g., 950/0 accuracy for isolated digits with 16
codewords [124]). If one string is L symbols longer than the other, time normalization is
accomplished by subtracting from the WLD a weight equal to L times the weight of a
deletion.

The application of VQ to ASR is an example of clustering. Designing a codebook by
choosing codeword vectors so that the average distance of all templates to their nearest
codewords is minimized can be time-consuming in the training phase but yield good
performance in the recognition phase. Normally, an initial codebook estimate is refined
iteratively, e.g., via the splitting techniques of Chapter 7, until the mean distance falls below a
threshold or remains stable for two iterations. Simpler codebook generation appears to suffice
for ASR applications, however. In the covering approach [125], the first frame of training data
provides the initial codeword, and each subsequent training frame is added to the codebook
only if its distance to all previous codeword vectors exceeds a threshold. The resulting
codebook may be pruned, without apparent loss of accuracy, by discarding up to about 30%
of the least-used codewords.

10.7 NETWORKS FOR SPEECH RECOGNITION

Networks are used in many ASR systems to represent information about acoustic events in
speech [126, 127]. For example, knowledge about syntactic and semantic constraints on
allowable sequences of words may be efficiently coded in terms of a network whose states are
the vocabulary words. Transitions between states are allowed only if the resulting string of
words produces a legal sentence following the system's grammar. Such networks can be
generalized to other ASR applications if the states represent acoustic segments or frames of
speech data.

Networks in ASR employ a statistical, rather than rule-based, representation of acoustic
information. Let's first apply networks to IWR: model each word with a succession of
phonetic states i (corresponding roughly to phones), linked by transitions specified by
likelihoods aij. This probability of a phonetic segment j following segment i governs the
transition between the states representing those two sounds. Consider pass as an example
word, where states for Ipl closure (silence), Ipl burst, Iprel aspiration, lre/, and lsI might be
chosen via coarse segmentation, VQ, or some other technique. To allow for the chance that
the Ipl burst and/or aspiration may be missing (or overlooked in the analysis of some training
samples), the Qij may vary considerably; they typically correspond to the frequency of actual
transitions in the training data.

For IWR, each input word utterance is evaluated by each word network, to find the
network most likely to have generated the word. Instead of searching a DTW space for a path
of minimal distance, each network is searched for the path maximizing the product of all
transition probabilities between states corresponding to the test utterance. In practice, log
likelihoods are used so that probability values may be summed, instead of multiplied, for
faster computation.

10.7.1 Hidden Markov Models (HMMs)

The most common network for ASR is the first-order Markov process or chain, where
the likelihood of being in a given state depends only on the immediately prior state (and not
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on earlier states) [128-131] (Figure 10.14). To exploit the temporal order of events in speech,
only left-to-right transitions are allowed. Thus the model states are ordered, with initial,
middle and final states, respectively, corresponding to the beginning, middle and end of an
utterance being modeled. The networks are often called hidden Markov models (HMMs)
[132] because the models must be inferred through observations of speech outputs, not from
any internal representation of speech production. States may be viewed as corresponding
roughly to acoustic events; in a word model, the first few states represent word-initial phones
and the last states model the final phones. Thus, unlike normal Markov models, the
underlying speech production of HMMs is not directly observable. However, we can align
observed speech frames and the states of an HMM probabilistically.

To better understand Markov models, consider a simple nonhidden case of two people
A and B alternating turns according to some probabilistic event (e.g., tossing a 6-sided die)
every cycle (corresponding to a time frame). When A tosses the die, suppose A retains it if the
result is 1, 2, 3 or 4; if B has the die, it is passed back to A if 6 is thrown. In this case, the
transition probabilities are thus: all = 2/3, al2 = 1/3, a21 = 1/6, a22 = 5/6. An observa­
tion sequence here is just a listing of the turns, e.g., AABBAB... if A held the die two turns
then passed it to B, etc. Someone analyzing a long enough sequence would easily be able to
estimate the aij from simple statistics, if it was known to be a first-order model. (If the passing
rule were more complex, involving past history (e.g., A passes if a 6 is thrown and A has kept
it for 3 cycles), higher-order Markov models would be needed, requiring more analysis.) The
observations are usually associated with states (i.e., they appear on each cycle depending on
the state used); this is called a Moore finite-state machine. (We will ignore the alternative
Mealy machine, which associates an observation to each transition [99].)

For HMMs, each state k is also characterized by a probabilistic event bk , e.g., flipping a
coin. Suppose person A in state 1 flips a dime weighted so that a head occurs 70% of the time,
while B flips a normal penny (50% heads, 50% tails, i.e., b2 = 1/2 each for Hand T). Every
cycle, either A or B flips their coin and records the result (heads H or tails T) with an observer
(e.g., a listener). From the observation sequence (e.g., HHTTHTTHHH), an analysis may

Figure 10.14 Five-state Markov model with Bakis restrictions on transitions. With each
state j is associated an observation vector bj , whose elements indicate the
likelihood of observing different speech spectra in that state and a set of
transitions, each denoted by an arc with probability aij of arriving in that
state from state i. (After Rabiner et al. [133]. Reprinted with permission
from the AT&T Bell Laboratories Technical Journal © 1984, AT&T.)
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estimate both the state and transition probabilities. There is no single solution for HMMs, but
ML or MAP methods described later make reasonable estimates.

10.7.1.1 Speech HMMs. Generalizing now to speech HMMs, the number of states
for an HMM modeling a phone, word, or larger speech unit is usually more than two (roughly
corresponding to the number of distinct acoustic segments in a typical utterance being
modeled). The outputs are not just H or T, but come from a much larger alphabet (e.g., a VQ
codebook with hundreds of speech spectra).

A phone HMM might use three states to represent, in order, an initial transition
spectrum from a prior phone, a spectrum from the phone's presumed steady state, and a final
transition spectrum to an ensuing phone. To account for variability (from coarticulation,
speaking rate, different speakers, etc.), each state is represented by a PDF of spectra rather
than a fixed spectrum; e.g., the middle state of a model for lui would have high state
probabilities b for spectra with F1 near 300 Hz and F2 near 900 Hz. In comparing an unknown
phone to this HMM, the likelihood of a match is reflected in the b values. Formally, the
correspondence between model states and acoustic segments is described by an observation
probability matrix B whose elements bj(k) are the likelihoods of observing symbol k
(columns) in state j (rows). Symbols normally correspond to spectra of acoustic segments,
represented by 8-14 parameters; thus B is a matrix of multivariate probability distributions.
These column distributions are often discrete, e.g., 64-256 spectra chosen by VQ. Continuous
B functions, e.g., a weighted sum of five Gaussian densities [61], however, provide better
ASR performance than discrete functions [123]. Many ASR systems model each state PDF as
a sum or weighted mixture (combination) of several Gaussian PDFs, because: (1) PDF's
modeling variability across different speakers and phonetic contexts often have complex
shapes, and (2) Gaussian PDF's are simple to model. (One ASR system uses the maximum of
a set of Gaussian PDF's, rather than a weighted sum, to save computation [58].)

In the Balds model of Markov chains [134] (Figure 10.14), three transitions are allowed
from each state: (1) a self-loop transition back to the same state i (representing the insertion or
continuation of an acoustic segment), (2) a transition to the next state i + 1 (a substitution or
new segment), and (3) a skip transition to the following state i + 2 (corresponding to the
deletion of the acoustic segment for the skipped state). More general HMMs allowing
transitions to any succeeding state j > i (rather than only states i, i + 1, i + 2) increase
computation but not ASR accuracy. The state transition matrix A of probabilities aij is zero
below the main diagonal for the standard left-to-right case. For the Sakis model, only three
diagonals of A are nonzero. (A simplified Bakis model allowing only single jumps has just
two nonzero diagonals.)

The time-ordered association of each state with successive acoustic segments is only an
approximation that depends on how many states are used to model each word or phoneme.
Since efficiency suggests minimizing the number of states, some cases may not use enough
states to permit clear sound-state association. The utility of timing information is reflected in
the number of states needed to handle different vocabularies. For example, the 0-9
vocabulary in English can almost be discriminated based on just the vowels of the digits
(only five and nine present a possible confusion); beyond three states per model, there is only
a weak relationship between ASR accuracy and an increasing number of states [123]. A more
confusable vocabulary involving longer words having similar vowels exhibits the more
expected relationship of increasing accuracy with more states [133]. The type of errors that an
HMM sometimes allows (e.g., between in and evening) suggests that the Markov structure
may not fully exploit temporal cues unless sufficient states are employed.
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10.7.1.2 Training Markov models. We now tum to the major tasks for speech
HMMs: their training and evaluation. The training of the parameters in each HMM involves
an initial estimation of the A and B matrices and then their iterative reestimation. A standard
method is the expectation-maximization (E-M) algorithm [135], a procedure similar to that of
designing VQ codebooks, where a good initial guess both accelerates the codebook evolution
and raises the likelihood of achieving a good model. As in VQ design, the training iterations
using a gradient or hill-climbing method guarantee only a locally optimum model. If training
is not done in real time, several HMMs could be developed for each word, starting from
different initial estimates [123]. Training can accomplish speaker adaptation and can be
modified to handle noisy or stressed speech conditions [136].

Some systems rely on random initial parameter estimates, although performance can
vary significantly for HMMs based on different initial values (e.g., ± 1% variations on an
average 4% error rate [123]). More realistic starting values can be obtained by examining
repeated training utterances to yield many redundant states (those with similar spectra) for
each acoustic segment. Merging such states (or averaging all frames within segments
identified by coarse segmentation) yields a more efficient initial HMM. Among the training
tokens (utterances) examined, the network with the most states (after merging) can be selected
as the prototype. States corresponding to many mergers (and thus to long acoustic segments)
may be split into two successive states to ensure that phones are not skipped by deletion
transitions (of the Bakis model) during recognition.

In reestimation, the initial prototype acoustic vector for each state (however obtained)
evolves iteratively to a full PDF, through an averaging or clustering procedure involving the
rest of the training data. Typically the initial vector provides the first estimate of the mean of
the PDF. Similarly, each transition probability, possibly assigned an initial likelihood of 1/L
(where L is the number of transitions from each state), evolves in response to how often that
transition appears in the training set. The most common averaging procedures are variations
of the Viterbi algorithm [134, 137, 138] (e.g., the gradient method), the Baum-Welch
algorithm [139], or the forward-backward (F-B) algorithm [32, 140].

Consider an observation matrix 0 of spectral vectors from T training utterances; the
elements Ok) could be pth-order vectors of LPC coefficients, where k == 1, 2, ... , F (F
frames/utterance) and j == 1, 2, ... , T. The probability of 0 being generated by an N-state
HMM with parameter matrices A and 8 is

T
P = n '"' b, (Ol·)a· . b· (°2 ,) , .• a, . b, (OF'). ..£...J. " ) "'2'2 J '(F-I)'F 'F ')'

)=1 'I' ,~. ·· .. 'F

(10.15)

i.e., the joint probability (over T training tokens) of the sum of the path probabilities for all
possible paths through the model (each index i ranges over all N states). Each path probability
is the product of F probabilities b (functions of the observation 0 and corresponding to the F
frames of each token) and F-l transition probabilities a (representing the F-l transitions
among states for F frames). The objective of HMM training is to choose the A and 8 matrix
parameters to maximize P, a classical problem in constrained optimization ("constrained"
because each matrix row or column is a set of probabilities and must sum to 1).

In the F-B method, a forward joint probability (Xt(i) for each N-state HMM is defined
for being in state j (1 ~ j ~ N) and observing the data up to time t (i.e., 0 1, °2 , •. " Ot). The
final probability for each model over T frames is P == L~l (XT(i), calculated inductively
starting initially as rJ.l(j) = 1tj bj (O l ), with induction step CXt+l(j) == (L~l (Xt(i)aij)bj(Ot+I)·
While theoretically NT paths must be examined, this method notes that, in calculating P, the
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local probability (X,t(i) at each state t needs no more than the product of the next observation
likelihood bj(Ot+l) and the N weighted likelihoods from the previous time t (from the
previous N (X,t(i». A similar backward probability /3t (i) for the remaining speech data (from t
to T frames), starting from state i, is also used. The total calculation is reduced from 2TNT

calculations to N 2T.
In the popular Baum-Welch approach [140], each parameter is reestimated as follows

(with Qij as an example):

(10.16)

In terms of the forward and backward probabilities,

T

L (Xt-I (i)/3,(i)
1=1

T

L (Xt-I (i)aijbj ( 0t)P,(})
, t=1

aij = --------

The reestimation cycle continues until P no longer increases between two iterations (or, to
minimize computation, the iteration can be truncated after a few cycles). (The algorithm is
robust but slow [141]). Initial parameter estimates should not be zero (other than structurally
constrained elements of matrix A) because any parameter initially estimated as zero remains
so during reestimation. If, after reestimation completes, some bj(k) values are zero (because
the kth spectrum was not observed during the}th state in the training data), they should either
be interpolated from neighboring values [32] or be assigned an arbitrary small probability
(and the other values rescaled) [123]. Assuming L training frames for the model, one often
assigns a minimum probability ofapproximately l/L to each b parameter (for a VQ codebook
with M « L entries), on the assumption that a further training token might have exhibited the
missing spectrum.

One of the problems for HMM ASR is the considerable training needed to reasonably
specify a large number of model parameters. For a typical 5-state, 64-spectrum VQ HMM
(Figure 10.15), the A matrix does not present any difficulty because it has only 52 = 25
entries, many of which are null by definition (i.e., the Bakis model). The B matrix, however,
has 5 x 64 = 320 parameters to estimate. Assuming a typical 40 frames/word utterance, even
100 training tokens for each vocabulary word are barely adequate to estimate the b values.
Many systems assume a multivariate Gaussian PDF for the b vector in each HMM state [61];
e.g., instead of a 64-element discrete PDF for VQ with 64 codewords, training results in a
smooth PDF in L dimensions for frames of L ~ 10 spectral parameters. Since accurately
determining the mean vector and covariance matrix for a general ten-dimension Gaussian
requires much training data, the covariance matrix is often assumed to be diagonal, reducing
the number of parameters per frame to 20.

The b vectors can be taken to be nonparametric instead of Gaussian, where the number
of elements in each b vector corresponds to the spectral sampling resolution. VQ is popular
for HMMs because it clusters the training spectra into a relatively small number of
possibilities. (When VQ is used, one might think that training tokens yielding large distortion
measures should be discarded when estimating the HMM parameters, but such tokens are
useful [123].) While codebooks of 64 entries provide adequate spectral resolution in many
cases, ASR performance improves with well-trained, larger codebooks. To accurately estimate
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Figure 10.lS Block diagram of HMM-VQ recognition. (Reprinted with permission from
the Bell System Technical Journal. © 1983, AT&T [123].)

the B matrix for large codebooks presents a significant training problem, especially for SO
systems, where each user may be asked to utter thousands of training words. Although more
training is required for SI than for SO applications, the task of SI training can be spread
among many speakers.

Given an HMM structure and a choice of acoustic parameters, training methods such as
the Baum-Welch algorithm estimate appropriate values for the models. However, the
structure and parameters must be chosen a priori, and so far their selection has been
suboptimal, since we do not know what model is best.

10.7.1.3 Classification via HMMs. After training, the major ASR task for HMMs is
evaluation or classification of test utterances. Equations (10.15) and (10.16) can be used, by
calculating P for the corresponding test observation 0 with all trained HMMs. The ASR
output corresponds to the model yielding the highest P. (Since each time there is only a single
test observation matrix 0, as opposed to multiple training tokens, the second subscript for 0
in Equation (10.15) is dropped here.) A version of the Viterbi algorithm [123, 133] yields
similar results while considerably reducing calculation. This method defines frame probabil­
ities }j(i), for i = 1, 2, ... , N; j = 1, 2, ... , F, as the likelihood that the jth test frame is
in state i for each of the N HMM states. To minimize further computation, logarithms of
probabilities are used. Assuming a left-to-right HMM, the first frame must be in state I (more
general cases allow an initial probability vector noting explicitly the likelihoods for each state
at the start); thus

fi (i) = 10g[O] == -00,

fi(1) = log[b 1(01) ]

for i =I 1,
(10.17)

notes the likelihood that the first test frame 0. could have come only from the first state of the
HMM under examination. The algorithm then proceeds recursively (j = I, 2, ... , F)
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through the F frames, maximizing frame values, which at each frame involve the prior frame's
value, the transition probabilities, and the observation probabilities:

for 1 ~ k ~ N, (10.18)

where the maximization is over states i that have transitions into state k. The final probability
P for the HMM is exp fF(N), that of the last frame that must represent the final state.

This simpler Viterbi search is much faster than the F-B method because it locates only
the one best path in the HMM, rather than calculating the sum of probabilities of all paths.
When log probabilities are used, no multiplications are needed; e.g., if dit, i) is the minimum
"distance" (in terms of summed log likelihoods) to state i at time t, then in a recursion

d(t, i) = m~n{d(t - 1,j) - log[ajJ - 10g[b;(O;)]},
J

where d(l, i) = - Iog[n;] - Iog[bi(O, )]. For backtracking to know the states along the
optimal path, we define the best last state ending at state i at time t as s(t t i) =
minj{d(t - l,j) -Iog[aj;]}, where s(l, i) = 0, all for 1 ~ (i,j) ~ N. The Viterbi search is
especially useful in training because the best path provides a direct segmentation of each
utterance, specifying which frames correspond to each of the states of the HMM, via use of a
backpointer during the search. There is no explicit segmentation in the F-B method since all
paths are examined and contribute equally.

10.7.1.4 Sub-word models. The crucial question of what speech unit size is best for
ASR leads us to explore units smaller than the word, and bigger than phones, to capture
coarticulation effects well. We saw the same tradeoffs in speech synthesis, where voice
response systems had more vocabulary flexibility and smaller memory requirements for
smaller stored speech units. However, for much the same reasons as in synthesis, ASR
accuracy deteriorates with shorter units. For LVR, diphone or tied-phone models represent a
reasonable compromise, avoiding both huge memories for word models and poor ASR
accuracy with CI phone models. If the input speech contains unstressed syllables (i.e., any
application except monosyllabic IWR), accuracy improves significantly when reference
models are stored for both stressed and unstressed versions of the sub-word units employed
[108].

Assuming that about 1000 diphones suffice to represent a language and that each model
has about 20 frames, such a sub-syllable template memory could handle unlimited vocabulary
and still only require memory comparable to that of 500 word templates at 40 frames/word
[142]. When using sub-word speech units, the reference memory must also contain a
dictionary mapping each word into its sequence of these units, e.g., the sequence of diphones
constituting each vocabulary word. This additional dictionary is nonetheless small compared
with the template memory, e.g., needing only about 10b/diphone for an average of 6
diphones/word [142]. Diphone ASR often requires a hand-segmented database, however.

Replacing word models with sub-word models reduces ASR accuracy [142]. The major
difficulties are that (1) coarticulation and stress effects extend beyond immediately adjacent
phones, and (2) constructing word models by concatenating smaller units requires significant
modifications to the merged units (e.g., at each unit boundary, smoothing template frames or
merging HMM states). In addition to spectral smoothing at boundaries, some units should be
shortened when forming polysyllabic models, because word duration does not increase
linearly with the number of syllables in a word.

Because constructing sub-word dictionaries (for either ASR or TT8 applications) can
be tedious, automatic procedures have been developed [143]. If a phonetician establishes a set
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of sub-word reference models for one speaker, sets for other speakers may be automatically
obtained by applying DTW between the speech of new speakers and reference templates of
the original set. Sub-word models can be applied to CSR in different ways. The complexities
of combining short models to form word models can be avoided if speech is first segmented
into sub-word units; e.g., date-time sentences (e.g., "September third at 3 p.m.") of 4-16
syllables were recognized with 940/0 accuracy in a SD task using DTWon syllable templates
[88].

10.7.1.5 Context-dependent acoustic models. To simplify the ASR search, many
systems use context-independent (CI) acoustic models, where each model unit (e.g., word or
phone) is trained independently of its neighbors, ignoring their coarticulation effects. With
small amounts of training data, this minimizes undertraining problems, where model
parameters are often poorly estimated (for lack of enough data) when using more numerous
context-dependent (CD) models.

CD models are typically triphone HMMs representing N phonemes each with N 2

models; e.g., /p/ has a separate model for each combination of all possible left and right
neighbors (/ipi,ipu,upa ... f). CD models capture most coarticulatory effects, but at the cost of
developing and searching N 3 models (e.g., with N ~ 3Q-40 phones). In many cases, there are
insufficient resources (e.g., memory and training data) to support a full set of such models.
Undertrained CD models have low ASR accuracy. Sometimes N 2 biphone models are used,
conditioned on either right or left context, as a compromise between undertraining and
memory. Similarly, diphone models, modeling phone-to-phone transitions (as in TTS), can
also be used.

10.7.1.6 Tying sub-word speech models. One important way to reduce undertraining
is to share or tie parameters across models, using the same values in all models pertinent to a
given context. Having separate triphone CD models for all sequences of three phones is
inefficient, since many phone contexts have similar coarticulatory effects; e.g., the effects of
labial /f.v.p.b.m/ on an adjacent vowel are very similar. Tied models share the same parameter
values to reduce the total number of parameters to train; CD models are tied where their
contexts are viewed to have similar phonetic effects (Figure 10.16). Tying can be automatic
(e.g., with unsupervised, data-driven decision trees [144]), or guided by linguistic properties
(e.g., grouping contexts with labels such as labial, velar, fricative, etc.). When tying involves
Gaussian PDFs, the models are called semi-continuous HMMs. Related allophone clustering
also reduces the number of models, while retaining the power of CD models and improving
their accuracy [145]; e.g., one study raised keyword accuracy by 150/0 while reducing model
memory by 400/0 [146].

When two or more word-network models share sub-word sections (or when their
parameters are tied), memory for the reference models and ASR computation are both
reduced.' Sharing can be applied at many levels: word, syllable, diphone, phone, frame
ifenonic) [147, 148] or parameter.

Even with tied states, use of continuous Gaussian mixtures in HMMs is expensive in
computation and memory [149]. Some ASR ties parameters, e.g., using a single set of
Gaussian PDFs; then, each HMM state is characterized just by its mixture weights. We
assume that a few hundred PDFs suffice to model all acoustic space (much like a lOb VQ
dictionary works for speech coders). The training problem for each state then reduces to
estimating these weights, rather than finding all parameters for mixtures of Gaussian PDFs
separately (especially expensive if each frame vector has dozens of parameters and a full
covariance is used).
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Figure 10.16 View of state tying for HMMs.

10.7.1.7 Comparing HMMs and DT~ As in DTW, HMMs use a form of dynamic
programming to find the best match between a test utterance and different reference models.
Viterbi HMM determines the sequence of states ii' i2 , ". , iF that maximizes P, while DTW
finds a warp path to minimize an accumulated distance (Figure 10.17). Unlike most DTW
methods, no multiplications are required for Viterbi HMM. Furthermore, in IWR, the number
ofHMM states to examine is usually much less than the number of frames in DTW (e.g., 3-8
states vs 25-40 frames). One major advantage of HMM over DTW is reduced calculation in
the recognition phase. DTW is a nonparametric speech model, which codes temporal and

1 234
State index

5

Figure 10.17 Interpretation of an HMM as a trellis.
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speaker variability in a brute-force approach of storing many templates, each having many
frames of data. The distance measure and warping constraints attempt to account for some
variability, but at the cost of much computation for each reference template.

HMMs, on the other hand, incorporate more structure than DTW and capture much
speaking variability in the matrices A and B during the (often off-line) training phase. The
recognition phase is relatively rapid, needing no expensive distance calculations and only
summing path probabilities for a network whose size is usually less than the number of frames
in templates. Where DTW applies a fixed penalty to temporal distortions (e.g., the 2: I
assumption), HMMs are more flexible in modeling temporal and spectral variability. In
addition to the vast decrease in computation for HMMs compared with DTW, HMM-VQ
requires about ten times fewer storage locations than standard DTW.

10.7.1.8 Modeling durations in HMMs. Merging successive, acoustically similar
utterance frames for a phone into 1-2 HMM states decreases memory and computation, but
yields an inaccurate model of temporal information. The objective of both DTWand HMM is
efficient frame comparison, with sufficient temporal flexibility to normalize the different ways
a word may be pronounced. DTW constrains the temporal freedom via local and global
continuity constraints. Durational information for a first-order HMM lies in the probability of
a loop transition au for state i. The likelihood of remaining in state i for n frames is
a~-I (1 - a;;). This geometric (exponential) distribution is a poor model for speech durations,
which follow Poisson distributions more closely (a most likely state exit after only one frame
(n = 1) is, in particular, a bad assumption). Thus, generalizing the basic HMM to allow
nongeometric models for duration [150, 151] raises ASR accuracy, but at the cost of added
complexity [61, 152]. Most systems concentrate instead on modeling the state probabilities,
which in practice dominate ASR decisions [3].

HMMs have been applied to CSR, where the models can be both fewer and smaller in
size than for large-vocabulary IWR with word HMMs [153]. HMMs to model phones appear
to need only about three states (corresponding to the initial transition, steady state, and final
transition of the phone), and about 30-40 such CI HMMs suffice for all words in a given
language. This represents a significant memory and computation saving when compared with
IWR using a 5-8-state HMM for each vocabulary word. One added complication, of course,
for continuous speech is that of segmentation, determining when to start and stop applying
each HMM to the long sequence of test frames. A simple, but expensive, way to avoid the
segmentation problem is to build large HMM networks, stringing together word HMMs for all
possible word sequences, with one-state HMMs representing silence as options between
words (in case the speaker pauses between words) [I 13].

HMMs require much data to obtain robust parameters and are inflexible in terms of
exploiting some acoustic-phonetic cues useful in ASR (e.g., durational and spectral transient
cues). DTW works better with little training data, but is poor at modeling spectral variability.
The current techniques of DTW and HMMs, while yielding good performance in limited
applications, are both too rigidly formulated with structures that exclude many acoustic
factors known to affect human speech perception. By themselves, neither DTW nor HMMs
are likely to solve the general problem of CSR. Improved accuracy will derive from efforts
combining the best aspects of different ASR methods.

10.7.1.9 Improving HMMs. A major difficulty with HMMs is the frame-indepen­
dence assumption from the use of first-order Markov models. ASR usually processes speech
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in frames of 10 ms, and assumes independence of successive HMM states. The use of delta
coefficients to include timing information over several frames (e.g., 50 ms) is helpful but
inefficient. Future ASR must exploit timing better. One recent method identifies local spectral
peaks in each frame, and groups neighboring peaks into dynamic trajectories [154]. Other
recent attempts to better model speech include stochastic trajectory models [155]. Smoother
trajectories have been found when using formants (vs cepstra), although ASR accuracy has
not improved much so far [156]. Trended HMMs [157, 158] and linear trajectory HMMs
[159] are other examples.

Generalizing the basic HMM to allow Markov models of order higher than one raises
ASR accuracy (by exploiting restrictions on how speech frames occur in sequence). However,
the computational complexity of such models has hindered their application in ASR, but
limited ways of exploiting interframe dependence have been recently explored [158, 160].

We must find ways to incorporate into the HMM architecture more information about
speech production and perception, i.e., the sort of knowledge that expert systems exploit. One
preliminary example is a phonetic property HMM [161]; another possibility is integrating
articulatory features directly into HMMs [162].

10.8 ADAPTING TO VARIABILITY IN SPEECH

The ASR methods discussed above all try to accommodate aspects of the variability in
speech. In this section, we examine in more detail the sources of this variability (intraspeaker,
interspeaker, and environment) and how major methods (e.g., HMMs) explicitly handle them.

10.8.1 Intraspeaker Variability (Speaker Freedom)

People cannot repeat utterances exactly. Even the same speaker saying the same words
will exhibit at least small differences. Very often, large variations appear due to speaking rate
[163] and emotional changes. As part of their basic models, most ASR techniques handle well
some of the ways each individual varies pronunciations; e.g., Gaussian PDFs in HMMs are
good models for many inherent intraspeaker variations, and OTW is specifically designed to
handle speaking rate changes. Intraspeaker variability is usually less than that across speakers
(this is a basis of speaker identification-e-Chapter 11). Some of the larger variations within a
speaker's voice however are similar to interspeaker variations.

10.8.2 Interspeaker Variability (Everybody's Different)

ASR requires a training phase before actual recognition may occur. In speaker­
dependent (SO) systems, each user trains the system to "learn" that voice, and only reference
models for that speaker are examined at recognition time. The simplest SD DTW systems
employ casual training, in which each speaker utters every vocabulary word one or more
times, and a reference model R; is stored for each token (word utterance). To handle
intraspeaker variability, training often uses many repeated tokens; this increases the likelihood
that each test token will match one of the training utterances. Since both memory for the R;
and the number of distance computations for recognition are proportional to the number of
templates, however, efficiency decreases with more R; per word. Trading off accuracy and
efficiency, most SO systems use 1-3 templates/word, while SI ASR often uses 10-12 [83].
Accuracy is higher in SD systems because fewer templates need be examined than in SI
systems (i.e., fewer potential confusions) and because the templates match the user's voice.
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The lesser variability in a small set of speaker-specific templates (vs a large set of multiple­
speaker templates) leads to better separability among templates of different words.

10.8.2.1 Clustering of reference templates. Storing a template for each training
utterance to account for speaking variation is simple but inefficient. Furthermore, casual
tokens may not be robust (reliable), which can be judged only through ASR experiments.
Efficiency increases when the number of templates per lexical item is reduced by clustering
(e.g., averaging) them into a smaller set. If done properly, ASR accuracy need not suffer.
Simply averaging all tokens for a word into one reference model risks creating an
unrepresentative pattern if the tokens differ substantially, which can occur both in SD
systems and (especially) when averaging across speakers for SI ASR.

A practical compromise for SO systems, which combines limited training with better
ASR accuracy than casual training: (1) has each speaker repeating every word (suitably
separated in time, to generate independent tokens) until a pair of the tokens for each word is
sufficiently similar (i.e., the distance between their templates falls below a threshold), and
then (2) averages the two templates along a warp path specified via DTW (since the distance
measure may be asymmetric and there is no reason to distinguish among the pair, the average
of two DTWs is used, reversing the axes of the DTWeach time) [164]. ASR accuracy on an
alphadigit task was comparable between this one-template/word approach and a casually
trained system with two templates/word. Thus, using an averaged template halves memory
and computation, but needs more training (typically four word repetitions vs two in the casual
method).

For good ASR accuracy in SI systems, at least 100 speakers must provide multiple
training tokens for each word; thus efficiency requires substantial clustering to merge the
tokens into a representative set of typically 10-12 templates. The two most common
clustering techniques for SI ASR are the k-means [165] and unsupervised without averaging
(UWA) [166] methods. The k-means approach iteratively merges N templates into M clusters:
( I) M training templates chosen randomly act as the initial cluster centers; (2) using the
nearest-neighbor rule, the other templates are assigned to the M clusters; (3) within each
cluster, a new center is chosen to be the minimax center token, such that the maximum
distance between that token and all tokens in that cluster is minimized; and (4) steps 2 and 3
are iterated until the cluster centers converge to a stable set.

The UWA method specifies one cluster at a time, employing a distance threshold T as
the maximal "radius n of each cluster, until all tokens are assigned to clusters (T is adjusted to
obtain the desired number M of clusters). The original formulation of UWA [166] was: (I)
specify a minimax center for all unclustered tokens; (2) create a new cluster having all tokens
within T of the center; (3) calculate a new minimax center for these tokens; (4) iterate steps 2
and 3 until convergence; (5) repeat steps 1-4 to generate other clusters until all tokens are
clustered; and (6) replace each minimax cluster center by a template of parameters averaged
over the tokens of that cluster. An improved version of UWA [167] modifies step 1 so that a
cluster center is the unclustered token with the maximum number of unclustered tokens within
distance T; this guarantees clusters of decreasing size as the iteration proceeds and improves
performance. A third method called complete-link clustering, based on a graph coloring
problem, gives yet better recognition accuracy than UWA [167].

10.8.2.2 Speaker accommodation in HMMs. Accommodating different speakers is
more economical with HMMs. Rather than have large numbers of models, many systems
simply have one model per speech unit (e.g., phone or word), trained on multiple speakers. It
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is assumed that the PDFs properly incorporate interspeaker variability directly. In practice, the
state PDFs broaden significantly when including multiple speakers in one model, causing
reduced discrimination between unit classes. The only clear way to avoid this loss of
discrimination is to have several models for different groups of speakers. Often, such
models are developed for clearly-identifiable classes of speakers (e.g., men vs women,
different dialects). Numerous systems have reported better ASR by testing on separate male
and female models. Usually this doubles computation, since all speech is run through both
models in parallel, where the final output is chosen from the model with the best match (since
automatic gender estimation from speech is not 100% accurate). This approach can extend to
background environments and transmission channels. One current ASR task (BN) consists of
music, speech, and other sounds on commercial radio (sometimes with telephone quality); a
common approach is to classify the sound input first and then apply the appropriate model
[168].

10.8.2.3 Speaker-adaptive systems. A common approach to ASR starts with an SI
system, trained on large amounts of data from many speakers, and then adapts the HMM
parameters to each new individual user's voice [169-171]. This works best when the system is
informed when the speaker changes (thus not as useful in audioconferences). Such speaker­
adaptive (SA) systems can achieve the accuracy of SO systems with about six times as much
training data (not counting the original SI data); e.g., 400 s of data can reduce word errors by
7%. Indeed, even short amounts of adaptation data are useful (e.g., 9% improvement with a
single 3 s utterance [172]). This adaptation is especially useful for foreign speakers (whose
error rates with SI ASR are up to three times as high as for native speakers) (e.g.,
improvements up to 50% [173]).

If an initial SI system has models for different cohorts or classes of speakers, SA may
identify (from limited speech of each new speaker) which cohort is most appropriate, and then
modify or transform that cohort model for use with the new speech [174].

MAP adaptation [175, 176] often requires much training data (e.g., several minutes) to
have significantly better accuracy, because only those models corresponding to sounds in the
adaptation speech are modified. A related method for inputs with widely varying speakers,
channels and background conditions is Maximum Likelihood Linear Regression (MLLR)
[177, 178], which calculates transforms of speaker space using unsupervised adaptation data,
grouped automatically into similar data sets.

Vector-fie/d smoothing adapts parameters across models incrementally and therefore
rapidly, achieving good results with only a few words of adaptation [179]. Tree-structure
speaker clustering can improve accuracy with as little as 5 s of adaptation [180]. Principal
components analysis of SD model parameter sets can extract a small number K ~ 5 of
"eigenvoices," which then allows modeling each new speaker in the spanning K space,
lowering error rates with as few as four brief words of adaptation speech [181].

Inverse transform speaker-adaptive training is based on removing the differences
between speakers before training, rather than modeling them during training. This method
uses a linear transformation of model parameter means, is faster, requires less disk space, and
is more accurate than other adaptation methods [182]. Commercial systems often do speaker
adaptation on-line during use, assuming that any output text left uncorrected by each user is
correct.

One method for SA is via vocal-tract-length normalization (VTLN), where one
estimates each speaker's tract length from the current input speech (e.g., by estimating an
average F3 [183]) and then transforms SI models accordingly [184]. Some approaches use



Section 10.8 • Adapting to Variability in Speech 415

frequency warping via a scale-cepstrum, that provides better separability between vowels and
is robust to noise [185, 186]. Exploiting approximate formant positions can raise accuracy
and lower computation in such warping [187]. Another way is via a scale transform [188].

Generally, SI ASR accuracy is proportional to the amount of training data and to the
complexity of the algorithm. However, this rule does not apply to performance on foreign
speakers, when the SI system is largely trained on native voices; indeed, more compact
models allow faster adaptation in SA systems [173].

10.8.3 Environmental Variability (Noise Robustness)

The last (and perhaps most difficult) variability that ASR must handle is that due to
background and channel noise and other distortions that may appear in a speech signal [189].
While variation due to speakers can be modeled reasonably by appropriate prior training, it is
difficult to anticipate many signal distortions, which by their nature are often beyond speaker
control. Environmental noise enters the speech signal additively at the microphone, and
transmission channels often have convolutional noise. Basic spectral subtraction techniques
(Chapter 8) help with additive noise, while cepstral methods (which convert multiplication in
the spectral domain to cepstral addition) help suppress convolutional noise.

Many speech enhancement methods in Chapter 8 are used as preprocessors for
recognition of noisy speech. The focus should be on highlighting the high-amplitude parts
of the input signal spectrum, on the reasonable assumption that such frequencies have mostly
strong speech formants, are the most relevant for speech perception, and are relatively less
corrupted by noise [41]. The analysis methods for ASR are similar to those for low-rate
coding, and they give less accurate parameters as distortion in the input speech signal
increases. Unlike in high-rate coding (where performance gradually degrades with more
noise), ASR accuracy can fall abruptly once input SNR decreases below a certain level, due to
a breakdown in the analysis model's reliability in adverse conditions. To handle distorted
speech, two methods are normally used: robust parameterization or model transformation.
The former seeks analysis parameters that are resistant to noise, or employs speech
enhancement methods. The latter adapts the ASR models to accommodate the distortion.

As with speech coders, acoustic noise and other speech distortions (e.g., Lombard effect
[190]) reduce performance in ASR [81, 191-194], and much more so for machines than for
humans. One study showed error rate increasing from 7% to 130/0 as SNR dropped to 10dB
even with noise compensation (without compensation, it was 40%), while humans maintained
a 1% rate [1]. While random omission of spectral channels in ASR does not always hurt ASR
rates [195], the type of loss of information found with typical noise often has serious effects
on ASR (e.g., in automobiles, motor and road surface noise is dominant below 500 Hz, with
wind noise above 1kHz). While an array of microphones can compensate for noise and echo
when speakers are distant [195-198], most ASR uses a single microphone input.

The cepstrum is often viewed as being a robust parameterization (e.g., more resistant to
noise than DFT analysis) [199], although the low-order MFCCs are often de-weighted as
being too linked to channel conditions. Similarly, pre-emphasis (sometimes used in ASR)
hinders accuracy in noisy speech since it boosts the noise at high frequencies where speech is
weak [199]. Thus a cepstral lifter emphasizing the mid-range MFCCs is best. A cepstral
projection distance appears better than the Euclidean distance for noisy ASR [200].

Transitional information, in the form of delta coefficients over a 50-100 ms window,
usually increases accuracy, especially in cases of channel mismatch between testing and
training. Cepstral mean subtraction (CMS), like RASTA processing [53], eliminates very
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slowly varying signal aspects (presumed to be mostly from channel distortion). The mean
value for each parameter over time (typically for periods exceeding 250 ms) is subtracted
from each frame's parameter, thus minimizing environmental and intraspeaker effects. Other
blind equalization ways of removing channel effects include signal bias removal [201].
Channel noise is often assumed to be constant over an utterance, but portable telephones
suffer fading channel effects which require more frequent estimations [202].

eMS removes not only convolutional channel effects, but also some speaker-dependent
aspects, and does not help with additive channel noise and nonlinearities. Long-term average
subtraction is inappropriate for short utterances, where much speaker-dependent information
would be removed. More general filtering of parameter sequences has found it best to
emphasize speech modulations around 3 Hz (i.e., the syllable rate of speech) [203].

We saw in Chapter 8 that comb filtering was too complex for practical enhancement,
but the idea of exploiting speech periodicity (vs incoherent noise) is used in ASR methods
that do all-pole modeling of the autocorrelation of speech (rather than of the speech itself, as
in normal LPC) [204].

Some robust ASR systems use a spectral mapping between a noisy speech space and a
set of VQ codebooks trained on clean speech; e.g., the mapping could involve fuzzy
clustering and piecewise-linear transformations [205]. Another example of a model transfor­
mation to improve ASR accuracy in conditions of either additive or convolutional noise is
Parallel Model Combination (PMC) [206] (Figure 10.18). First, HMMs are built for both
clean speech and noise, using standard cepstral methods, then state parameters are converted
back into linear spectra and added for different levels of noise; finally, the summed parameters
are converted back to the cepstral domain. For stationary noise, a simple one-state HMM
suffices as a noise model; nonstationary noise requires more complex models. Since, in
practice, input speech may have any noise level, such PMC systems must try various
combinations of noise modeling to find appropriate matches, which increases computation.

Different handsets (especially the difference between carbon-button and electret
microphones) are a major source of training mismatch over the telephone, leading to major

Clean speech HMM Noise HMM

log-Spectral domain
--...-.-......

C- 1

Corrupted speech HMM

Figure 10.18 Operation of parallel model combination.
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increases in error rates. One ASR study had 6.6% errors with a close-talking microphone and
23.9% errors with an electret one (while humans had only 0.4-0.8% errors) [I]. Commercial
ASR often uses headset-mounted, pressure-gradient microphones to isolate the speech of a
user (vs background noise), thus maximizing input SNR.

10.9 LANGUAGE MODELS (LMs)

Early ASR systems only used acoustic information to evaluate text hypotheses. The speech
signal was assumed to have all information needed to convert speech to text. In the early
1980s, incorporating knowledge about the text being spoken was found to significantly raise
ASR accuracy, by exploiting textual redundancies. Most speech corresponds to texts which
follow linguistic rules (e.g., syntax and semantics). Exploiting these rules is as crucial for
ASR performance as exploiting periodicity and slow-moving vocal tracts is for speech coding
[207, 208].

Sometimes people utter (apparently) random sequences of words (e.g., digits in a
telephone number). Such cases have no text redundancies; each word in the small vocabulary
may follow any other. Normally, however, given a history of prior (recognized) words in an
utterance, the number of words P that one (either a listener or ASR) must consider as possibly
coming next is much smaller than the vocabulary size ~ (For simple digit sequences, however,
V == P == 10.) P is called the perplexity or average branching factor (ABF) of a language
model (LM). LMs are stochastic descriptions of text, usually involving the likelihoods of
local sequences of N consecutive words in training texts (typically N == 1,2,3). Integrating a
LM with the normal acoustic HMMs is now common in most ASR systems.

10.9.1 Grammars in ASR

Without a LM, ASR usually outputs a sequence of symbols representing phonemes or
phonetic segments, corresponding to the proposed recognized text. The sequence may involve
sets of possibilities, e.g., a weighted list of boundary locations and phone candidates for each
segment, often in the form ofa lattice. Due to the difficulty of locating word (or even syllable)
boundaries, segmenting the sequence into words can be left to a postprocessor that compares
the symbol string or lattice against the set of vocabulary words to optimally partition the
sequence into words for the output text [209]. The grammar or structure of permitted
phoneme sequences raises ASR accuracy by eliminating candidate phone sequences not legal
under the grammar [21OJ.

Grammars can be applied equally well to sequences of words from the output of an
IWR system and to phone sequences from CSR analysis [22]. Traditionally, grammars refer to
syntactic rules through which sentences are parsed into component words and phrases [211].
Since natural language (e.g., unrestricted English) has a very complex grammar, some CSR
systems impose restrictions on users so that test utterances follow simpler grammars. Usually,
the grammar rules pertain to how words from different syntax classes (e.g., nouns, verbs,
prepositions) may combine to form legal sentences. Some systems use a slot-frame grammar,
where slots in frame sentences may be filled from sets of words; e.g., a date-time grammar
might have the frame (month-date-at-hour-minutes-p.m. or a.m.), where the month slot can be
filled by one of 12 words, the date slot by one of 31 numbers, etc. Such methods fit well with
keyword spotting [212].

Markov models are a form of finite-state grammar, which is not powerful enough to
generate all and only legal English sentences [94]. Context-free and context-sensitive
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grammars have also been used in ASR and have been generalized to include other aspects of
speech communication that have regular structure, e.g., semantics and phonetics. Some
systems even employ a pragmatic component, which aids ASR by keeping track of discourse
structure [213]: since words tend to repeat in discourse, previously recognized words (via a
cache memory) should have their prior probabilities raised when evaluating ensuing words
[214].

The use of HMMs to describe the sequence of acoustic segments in words from a
vocabulary is an example of a phonetic grammar. Grammars for ASR are often efficiently
represented by networks, where each network state represents an acoustic event (e.g., phone
or word) and transitions between states denote the permitted order of events according to the
vocabulary and grammar. Sentence networks can handle semantic and syntactic constraints
through an augmented transition network (ATN), which modifies the standard Markov model
to allow linguistic information to be popped and pushed to and from stacks on each transition
[12, 215]. In word networks, states commonly represent short acoustic segments, and
transitions are usually weighted by probabilities determined from training data. Similar
transition probabilities could be specified for sentence networks where states represent
"words"; e.g., in an IWR application for spelled-out words using an alphadigit vocabulary,
the likelihood of one letter following another can be determined by a statistical evaluation of
the vocabulary of words (e.g., the sequence K-X is rare in English words).

Some ASR tasks have no grammar at certain levels; e.g., the connected-digit task has no
sentence-level grammar. The same is true in general for certain languages such as Russian,
where word inflection instead cues syntactic structure. Since the phonemic composition of
words in most languages is highly restricted (e.g., the sequences ltv and Isdl are illegal in
English syllables), each language has a word-level grammar, which can often be simplified for
applications whose vocabulary is a small subset of the language's words. ABF or perplexity P
is one measure of a grammar's restrictiveness, that specifies how many possibilities may
follow a current element of the grammar in an average utterance. In tenus of networks, P is
the mean number of transitions leaving a node. Typically, P « V (number of vocabulary
words)--often an order of magnitude smaller due to the constraints of syntax alone, and
another factor of 10-30 for semantics [12]. P rarely exceeds 200 for most common databases
having V in the tens of thousands [16]. As a measure of the difficulty of a particular ASR task,
P is better than the more commonly noted J.: Perplexity can be related to the concept of
entropy to characterize task difficulty [32, 216]. Given a PDF p(t) for a text t of n words from
a vocabulary of V words, the entropy per word is

H == lim - (lin) LP(t) log2P(t).
n-rco t

Thus H ~ 10g2 V (reaching maximum for texts where the word sequence is fully random).
Not using a grammar in ASR is like using nonsense utterances, where any word may follow
another; using a vocabulary of 1000 words with no grammar, one study showed I7% ASR
errors and 2% human perception errors [1]. This shows the importance ofLMs, as well as the
continuing gap between human and machine performance,

10.9.2 Integrating Language Models into ASR

Most LVR uses Markov models to represent both language statistics and speech
acoustics [217]. Acoustically, HMMs account for speech signal variability. For text, simpler
LMs capture the redundancy of sequences of words, in terms of the probabilities of



Section 10.9 • Language Models (LMs) 419

occurrence for each word in the ASR vocabulary. Typically, N-gram models estimate the
likelihood of each word, given the context of the preceding N-l words, e.g., bigram models
use statistics of word pairs and trigrams model word triplets [216, 218]. Unigrams are simply
prior likelihoods for each word, independent of context. These probabilities are determined by
analysis of much text, and are incorporated into a Markov language model. LMs capture both
syntactic and semantic redundancies in text. They are not HMMs because each text word is
directly observable, and not modeled by a PDF.

As vocabulary (V words) increases for practical ASR, the size of an LM (VN ) grows
exponentially with ~ This problem is most serious for highly-inflected languages (e.g.,
Estonian, Finnish), where each lexical word (i.e., basic dictionary entry) has many forms with
different suffixes. (In English, a lexical entry such as cat has only cats as an inflected form,
and eat has only eats, ate, eaten and eating; on the other hand, French has typically 39
different words for each lexical verb.) Large lexicons lead to seriously undertrained LMs,
inadequate appropriate texts for training, increased memory needs, and lack of enough
computation power to search all textual possibilities.

In practice, most ASR has employed unigrarn, bigram and trigram statistics. Current
text databases are adequate for such modeling for up to 60,000 words [3]. N-grams for N > 3
(when used) are highly selective. Since many longer word sequences are rarely found (if at
all) in the available training texts (e.g., 600/0 of trigrams found in Switchboard test data do not
occur in 2 million training words-150 h of speech), some way must be found to estimate
their likelihood. Back-offmethods fall back on lower-order statistics when higher N-grams are
not found [219]. Usually, the LM contributes the following likelihood to the ASR evaluation:

~lP(Wl) + Ct2P(WIIW2) + Ct3P(WIIW2' W3),

where ty.j are i-gram weights for the likelihood of current word WI' given preceding words
W2 , ••• , Wi' When the trigram W3W2WI has not occurred in training, Ct3 = 0 and the other
weights are raised to compensate (similarly, if no W2 WI' then Ct2 = 0). Finally, if WI has not
been seen either, it is an out-of-vocabulary (OOV) word. Instead of simple back-otT methods,
some systems smooth the statistics after training, to give small, nonzero probabilities to
unseen N-grams. Deleted interpolation is one such method [220].

How to combine LMs with acoustic HMMs is not clear. HMMs operate on 10 ms
speech frames, while the domain of LMs is the word. To date, most ASR simply adds the two
log likelihoods from the numerator of Equation (10.10) to obtain a total probability:

f3log P(t) + log P(slt),

where fJ is an empirical weighting factor to balance the two contributions. This factor is
needed due to the imbalance between the low values for the acoustical joint probability of
many frames and the higher values for word sequences in LMs.

The most successful ASR uses domain-specific LMs, i.e., ones trained specifically for
an immediate task at hand, rather than a general LM to handle all speech. Thus we see LMs
designed for doctors, lawyers, business, etc., each trained on restricted databases of texts for
these applications. It is becoming common to train acoustic HMMs broadly across many
speakers, but to specialize LMs. As increasing amounts of on-line texts become available
(e.g., transcribed television scripts, web-based sources), LMs for many specific ASR tasks are
feasible. Combining such LMs for more general applications usually involves back-otT
methods as above [221].

LMs as noted work well for English, but often need modifications to handle other
languages [222] (e.g., the many compound words of German or the many homophones of
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French [223]). Text normalization and proper handling of capital letters is critical for many
cases [224].

In an attempt to increase the power of N-gram LMs, one can use classes of words
(rather than individual words) as lexical units. Training and using statistics of L classes (e.g.,
nouns, verbs) is much easier than for V » L words. The classes can be partly semantic as
well as syntactic, and can be automatically determined via clustering (rather than follow
traditional linguistic guidelines) [225]. While more efficient than normal N-gram LMs
however, class-based LMs give lower performance [222].

LMs are intended to exploit various constraints that are present in texts. Local
constraints are captured well via N-gram language modeling, but global constraints are
much more difficult to capture efficiently [226]. Future LMs must remain efficient while
integrating global contexts, e.g., phrase-based LMs [227] and latent semantic analysis [228].
Languages such as German with agreement between widely spaced verbs in a sentence need
wide-range LMs.

10.10 SEARCH DESIGN

It is clear that current ASR methods are suboptimal, given the variance between human and
ASR performance. Many compromises have been made to accommodate computational
efficiency, including limiting LMs to trigrams and using first-order HMMs with tied states
and diagonal covariances. Earlier ASR methods used the expert-system approach, but had
great difficulty integrating the many knowledge sources (KSs) that humans exploit in speech
perception. One early form of CSR (e.g., Harpy [12]) integrated all speech knowledge in the
form of a large network of acoustic segment states, which resulted from replacing word states
in a sentence network (incorporating syntax and semantic constraints) by word networks of
phone states. Coarticulation and phonological effects were handled within and between word
networks (Figure 10.19). As networks grew with vocabulary size, computational efficiency
suffered (due to exponential growth) in much the same way as occurs when matching
templates of many frames.

Efficient dynamic programming procedures can combine two sources of information
for ASR grammar networks and phone or word lattices from the acoustic analysis stage of
ASR [106]. One powerful control structure to handle information relevant to ASR from
different KSs employs a blackboard (Figure 10.20). An acoustic analyzer "writes" its output
(a segment string) on the blackboard, which then is available to other KSs (word hypothesizer,
intonation analyzer, syntax and semantic modules, etc.), each of which refines the string until
a text sentence is ready as output. Future ASR systems are likely to incorporate different
aspects from several ASR approaches [229]; e.g., the proposed system in Figure 10.21
exploits networks, hypothesis verification, phonological rules, and diphone templates.

10.10.1 Efficient Searches

The Viterbi method (a breadth-first approach) is efficient in searching a network for the
best path, but large ASR networks still need much calculation. A best-first or depth-first
approach follows the most likely transitions from state to state (e.g., a stack or A* search), and
backtracks to examine a number of alternative paths once a path spanning the sentence
network has been found. A beam-search approach [230] comes closest to DTW, in examining
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t------~egi

Figure 10.19 Block diagram of the Harpy CSR system, showing a small (hypothetical)
fragment of the state transition network, including paths accepted for
sentences starting with "Give me .i ." To handle the 10II word vocabulary,
many paths may leave each of the 15,000 nodes. (After Klatt [12].)

a narrow beam of likely alternatives around the locally best path through the network [231].
Assuming a beam width l5 around the likelihood L of the current most likely partial hypothesis
in a network, one removes (i.e., prunes) all hypotheses whose probability is below L - l5
[232]. Beam searches have been successfully applied to phoneme-level networks (e.g., Harpy)
and syllable-level networks [88] for CSR, as well as to word-level networks in DTW-based
IWR systems [119]. Search strategies may include fuzzy approaches [215, 233].

Phone look-ahead is a common method to prune hypotheses, thus reducing computa­
tion. Each time a hypothesis crosses a phone boundary, the model is examined to see if the
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Figure 10.20 Block diagram of the Hearsay-II CSR
system. (After Klatt [12].)
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Figure 10.21 A proposed future speech recognition system, with both bottom-up analysis
and top-down hypotheses. The ASR memory combines diphone templates
with phonological rules. Networks are used as models for high-level
hypothesis generation and for low-level acoustic segment analysis. (After
Klatt [12].)

ensuing few frames reasonably match it; if not, that hypothesis is abandoned in favor of other
more promising paths.

Examining the search space for LVR often needs large computational resources, in both
time and memory. Some systems employ a multi-pass strategy for efficiency. A first pass uses
simpler models (less expensive in memory and computation) to do a coarse recognition,
pruning away unlikely hypotheses. With simple acoustic and language models (or using
coarse segmentation and labeling via robust features), the number of word candidates to
consider during a more detailed second analysis pass is reduced [234]. A second pass then
examines the remaining possibilities, often in the form of a word-lattice or a word- or
transcription-graph [235]. As long as few correct hypotheses are incorrectly discarded early
(i.e., a high first-pass inclusion rate is maintained), this method eliminates detailed
examination of many useless paths [236]. The second pass may compare the test data only
against reference models in the subset or cohort specified by the first pass; e.g., for the A-Z
vocabulary, first-pass recognition of a test letter as containing Iii would allow the second-pass
search to be limited to the initial portions of models for the E set [237]. The second-pass
measure could also be weighted for each reference frame according to its importance in
discriminating words within the subclass; e.g., heavier weights for the louder frames [105] or
for the initial consonant frames in the E set [238]. The second pass is often viewed as a re­
scoring of N hypotheses furnished by the first pass (e.g., finding which of the initial N-best
hypotheses should be the final output).
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Some applications do not require recognition of all words uttered, but of only a few
keywords; e.g., searching for a few words of interest (as one locates a word in a text­
processing editor) [239]. When asked to utter one of a small set of keywords in telephone­
answering services, users often (about a third of the time) respond with extraneous words
(e.g., make it collect please, rather than just collect) [240]. Word spotting ASR allows
speakers unrestricted use of words and phrasing, while the system tries to recognize only
certain keywords from a limited vocabulary, assuming that the spoken message can be
deciphered based on ASR of these keywords. This approach avoids a major difficulty of most
systems, which try to recognize every spoken word; if a spoken word is not in their
vocabulary (aaV), either they request that the speaker repeat or they erroneously output a
word from the vocabulary. By allowing any words between crucial words, word-spotting ASR
allows great flexibility while retaining good accuracy (e.g., 95% for five keywords [240]).

10.10.2.1 Word spotting. Basic word spotting applies word models or templates for
each keyword to the entire test utterance, effectively shifting the test time axis a few frames at
a time for each new analysis [240, 241]. If the match for a keyword at any start frame exceeds
a threshold (or a total distance is small enough), that word is deemed to have been spotted
there. Dynamic programming may be used in a second stage of processing to eliminate poor­
scoring matches, using models of both keywords and nonkeyword speech. Sub-word models
(i.e., units smaller than words) can be efficient here [193]. Computation can be minimized by
using larger frame shifts, but this could require a higher distance threshold before abandoning
an unlikely comparison. Short words with voiced obstruents are the most difficult words to
spot, especially if they are phonologically reduced in continuous speech [94].

Keyword ASR can be incorporated into CSR by designing filler or garbage models to
handle the non-keyword speech [242]; e.g., short words (such as the, of. for, at, to, andlronl)
commonly used in speech could function as filler models, e.g., along with a set of syllable
models obtained by vector quantization on syllables from a wide range of speech. More
commonly, the filler models are less complex than keyword models (e.g., fewer HMM states);
how many models and how they are chosen are empirical issues [193]. Accuracy usually
increases in proportion to the detail of filler models. At one extreme, full LVR can be used,
recognizing all words, with a final lexical search among the output word list to locate the
keywords; this method yields the highest keyword performance, but at high cost. Phone-based
phonetic filler models, along with word models for all keywords, can yield similar
performance, with much less computation [243].

Keyword spotting can require almost as much computation as full CSR. For faster
performance, at some loss of accuracy, a phone lattice can be obtained from the speech, to
which many keywords could be examined with a fast lexical search [244]. For audio indexing
or document retrieval, such a fast spotter, missing a few keywords, would be preferred over a
more precise but slower system. A simple word-pair language model can also help in keyword
spotting [146]. Word spotting with HMM methods requires significant amounts of training
data, which is sometimes difficult for small sets of keywords. Thus, DTW is still useful,
especially for SD applications [193].

Good keyword ASR means locating as many keywords as possible, while minimizing
false alarms (i.e., speech incorrectly identified as keywords). One performance measure is the
keyword detection rate for a given false alarm rate (e.g., typically 10 false alarms/h). A
figure-of-merit (FOM) can be calculated as the average score ofPi' where Pi is the percentage



424 Chapter 10 • Automatic Speech Recognition

of keywords found before the ith false alarm [193]. The FOM is more stable than most other
measures.

10.10.3 Out-af-Vocabulary Words

Extending keyword spotting to longer phrases refers to utterance verification, accepting
keyword strings and rejecting out-of-vocabulary (OaV) words as irrelevant [66, 245].
Confidence measures can be associated with the likelihood that a word is aav [213]. The
usage of words beyond a known vocabulary is a major problem for many ASR systems.
Unlike TTS synthesis (which is often truly unlimited in vocabulary in the sense that it accepts
any textual input), ASR has no easy response to spoken words not in its active vocabulary.
Such aav words (i.e., those not occurring in the training data) appear often because users
rarely limit themselves to restrictive lists of words. Even in simple applications requesting just
a yes-or-no answer or a list of digits, many users insert extraneous words (e.g., OK, sure, uh).
For vocabularies beyond a few dozen words, many utterances contain illegal words.

Many limited-domain ASR applications (e.g., ATIS) have vocabularies of about 1000
words. If such systems are trained on only 10,000 words, aav rates exceed 10% (i.e., more
than one word in every ten is not found in the dictionary) [14]. aav rates typically fall in
proportion to training size. A 20,000 word WSJ dictionary may require tens of millions of
training words to achieve oav rates below 1% (the WSJ database has over 200 million
words).

In one sense, aov words present a converse task to keyword spotting. In a keyword
application, most words are aaVand the system searches for occurrences of a few keywords.
In normal ASR, most words are in the legal vocabulary, and only a few are OO~ Keyword
ASR simply ignores the aov words as irrelevant, but normal ASR must explicitly handle
aav words. If no allowance is made for aov words, ASR will incorrectly output a word
from its dictionary for each aav occurrence.

Some ASR systems use generic or trash word models as fillers to locate DaV words,
while others simply accept lower accuracy rates when DaV words occur. Yetothers attempt to
detect such words, notifying the user that specific sections of speech are unidentifiable. If the
ASR is interactive, users could then be asked to augment the dictionary by perhaps spelling
out and defining each new word. This is especially useful for proper names, since few training
databases are exhaustive with names.

10.11 ARTIFICIAL NEURAL NETWORKS

In the late 1980s, a new ASR paradigm appeared, using artificial neural networks (ANNs),
based on simple simulations of groups of nerve cells in the human central nervous system.
Each real biological neuron has many protrusions (dendrites) which receive inputs from
nearby neurons. If a weighted sum of a neuron's inputs exceeds a threshold, its axon emits an
electrical firing (see Chapter 4), sending its output to other neurons. In humans, billions of
neurons are interconnected in a highly complex network.

Simulating simple versions of such a network, ANNs can accomplish useful pattern
recognition tasks, including aspects of ASR. An individual node simulating a neuron can
make a binary classification (via the presence or absence of a firing), based on a set (frame) of
M input data samples (e.g., M spectral parameters from a frame of speech). A group ofN such
nodes all receiving the same M inputs can thus classify speech frames into one of L ~ 2N

classes. Usually, such a basic ANN is configured so that only one of the N nodes should emit
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a firing for each frame (i.e., L = N). Such a single-layer ANN or perceptron (one set of
nodes, all receiving the same inputs) is a linear classifier that partitions an acoustic space of M
dimensions into N hyperellipsoids or classes.

Such simple classifiers do not solve most ASR problems; e.g., deciding to which of N
phonemes an M-dimensional speech frame belongs. In the M-space for most speech
parameters (e.g., LPC, cepstra), phonemes often have very complex shapes, requiring
complicated decision surfaces (and not the simple hyperplanes of perceptrons). Allowing
one layer of M} neurons to feed into a second layer of M2 neurons creates a two-layer
connectionist ANN, capable of distinguishing among many convex surfaces in acoustic space.
In practice, ASR often uses a third layer, so that the original set of M1 speech parameters
feeds into a hidden layer of M2 nodes, in tum feeding another hidden layer of M) nodes,
finally yielding a set of N outputs (Figure 10.22). While M1 and N correspond to the number
of parameters in each input frame and the number of output classes (e.g., phonemes),
respectively, the sizes of the hidden layers (M2 and M) are empirically chosen in a
compromise between complexity and classification accuracy.

Each node in an ANN emits a value of 1 (i.e., a neural firing) when a weighted sum of
its inputs Xi exceeds a threshold 0, i.e., when

M

Ew;x; > 0.
;=1

(10.19)

Many ANNs go beyond the original biological idea of a binary output, and allow a sigmoid
output, which monotonically ranges from 0 to 1 as the sum in Equation (10.19) increases.

10.11.1 Training ANNs

The power of an ANN lies in its weights Wi' which must be chosen to perform proper
classification, often based on a labelled corpus of speech data (supervised training). The
renaissance of ANNs began with the discovery of an efficient method to estimate these ANN
weights. The back propagation learning (BPL) algorithm [246] is a stochastic gradient­
descent method. We view the difference between the desired and actual ANN outputs
(weighted in some fashion) as an error measure of an ANN. The error, as a function of all
K = M) + M 2 + M) weights, describes an error surface in K dimensions. By iteratively
modifying the "'; values, starting from initial estimates, the BPL method descends along the
surface, to create an ANN where error is small. Like any gradient method, BPL risks finding a

Figure 10.22 Example of a three-level ANN.
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local minimum if the initial point is poorly chosen or the surface is complex (the latter is often
true due to simplistic choices of input parameters). Another problem is determining a
stopping criterion; normally, we continue until the error changes little between iterations (or
reaches a computation threshold), but this may overtrain the ANN to fit the training data too
closely. Some cross-validation measure is needed to avoid this [247].

Consider an L-Iayer ANN with Nk nodes at the kth layer. The activation value (or
output) of the ith node in that layer is

x;(k + 1) = f[~ wij(k)x/k) - (Jj(k)] ,
J=l

where f(u) is a monotonic mapping, with output ranging from 0 to 1 as u increases. The
original ANNs used a simple (binary) step function for

f(u) = {O for u < 0,
1 for u ~ 0

following the example of natural neurons which fire once the threshold ();(k) is exceeded.
Experiments have since shown that a smooth sigmoid function (e.g., f(u) == 1/(1 + e-U

)

gives better ASR results. The value of an ANN lies primarily in its weights wij(k), which are
obtained by a BPL algorithm that iteratively modifies them to minimize the mean-squared
error (MSE) (as in LPC modeling) between the desired outputs and the actual outputs of the
ANN:

aR
Wjk +- wij(k) - 1'/ awlk) ,

where 11 controls the learning rate of the network. This procedure is sometimes modified for
radial basis functions, which are faster to train [248]. Sometimes relative entopy replaces the
MSE in training.

For simple ASR tasks, ANNs can provide high accuracy, even for difficult vocabularies,
e.g., 75% accuracy for phonemes in TIMIT [249]. Due to their difficulties handling timing
issues, ANNs have not replaced HMMs as the standard ASR method. However, ANNs are
increasingly used in efficient training of HMM probabilites [232]. Such hybrid ANN/HMM
systems keep the basic HMM structure and recognition process, but estimate their PDF's via
ANNs in training, where timing issues are of lesser importance. For this application, the final
ANN layer outputs nonbinary probability estimates [247, 248].

10.11.2 Accommodating Timing in ANNs

Time-delay neural networks (TDNN) [250] have been proposed to accommodate the
fact that simple time shifts severely hamper basic ANN ASR, but have little effect on speech
perception and other methods of ASR (e.g., DTW was designed to handle timing variations,
and HMMs explicitly model state transitions). By feeding back information from each current
speech frame to ANN input nodes corresponding to earlier frames, TDNNs can better handle
simple delays and speaking rate variations. However, such recurrent networks require many
more weights to be estimated (i.e., for all feedback paths), rendering such systems complex.

Despite the basic simplicity of ANNs, they have several advantages over HMM
methods: (1) no need for detailed assumptions about the underlying stochastic distributions
of speech, (2) easily accommodate discriminative training, (3) including several frames as
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inputs to an ANN automatically handles context dependence across frames, and (4) modeling
boundaries between speech classes (rather than class distributions) is more efficient. For LVR,
hybrid ANN/HMM systems often have far fewer parameters than standard HMM recognizers
[3]. Recursive estimation MAP methods (REMAP) for smoothing transition probabilities
have shown promise in discriminant HMMs [3].

10.12 EXPERT-SYSTEM APPROACH TO ASR

Until the late 1970s, ASR was dominated by the expert-system (ES) approach. Generally
using a bottom-up method, speech was reduced to parameters (usually a DFT) and then
features (usually formant-based). Complex sets of phonetic rules, designed by phoneticians
looking at spectrograms, then made phonemic decisions. Since statistics were not employed
well (if at all), decision surfaces in acoustic space were often arbitrarily defined, based on
limited information, and often did not generalize well to SI applications. However, this
method was neither suitable for SD cases because of the manual nature of the training
procedure. We nonetheless review below some of the major issues for this approach,
highlighting its strengths and weaknesses. Given different weaknesses in the HMM approach,
optimal ASR may well need to integrate ideas from both approaches.

10.12.1 Segmenting Speech into Syllables

Unlike stochastic ASR methods, expert-system ASR cannot easily postpone segmenta­
tion decisions until all speech information is considered. ES basically has a choice: segment
each test utterance into small units, and then label them phonetically, or label each frame first,
then group similar frames together. We describe here the difficulties of reliable speech
segmentation into small units. For languages with few syllables (e.g., 131 in Japanese, 408 in
Chinese), an accurate division into syllables can be a major ASR step.

In general, segmenting continuous speech into words, based on acoustic analysis alone,
is impossible. There are few reliable acoustic cues to distinguish word boundaries without
using linguistic information, e.g., a dictionary and a language model. Acoustically segment­
ing speech into syllable-sized units, however, is feasible, independent of the vocabulary, since
each syllable has a strong vowel center, usually easily distinguished from its weaker
consonant neighbors (especially in the many languages with a strict consonant-l-vowel
structure for each syllable). There is however a problem of context dependence: the
significance of an energy dip for segmentation depends on the energy in surrounding
segments.

The convex hull method provides one simple segmentation approach [251]. After
isolating speech segments between pauses (here defined as silences> 200 ms), a convex hull
is determined from the speech loudness function (a perceptually weighted energy vs time plot,
lowpassed to eliminate pitch period effects) (Figure 10.23). This hull exhibits minimal
magnitude, monotonically nondecreasing until the loudness peak, and monotonically nonin­
creasing thereafter. The depth of each loudness valley under the hull indicates the likelihood
of a boundary there. If the maximum depth exceeds 2 dB, a boundary is declared and the
process repeated with new hulls on both sides of the boundary. Since loudness change is more
abrupt at syllable onset than offset, syllable-initial boundaries are more accurately located
than syllable-final ones. Located boundaries do not always correspond to standard syllable
units because intervocalic consonants may be assigned to the "wrong" vowel (e.g., to which
syllable does the It! in beating belong?). Some postprocessing is also necessary to merge short
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Figure 10.23 Example of segmenting a speech loudness function into syllables: hi (I) is
the first convex hull for the full speech segment a - b - c; if the valley
depth d, exceeds a threshold, c' is marked as a boundary; the new convex
hull h2(t) for segment c' - b - c leads only to small valleys such as d2, so
no further boundaries are marked. (After Mermelstein [251).)

segments with their neighbors, since fricatives are often separated from the vowels of their
syllables by weaker obstruents (e.g., the word stops may produce three segments correspond­
ing to /s/-/ta.p/-/sl). Durational constraints could also help merge short segments with their
longer neighbors if intervening valleys are short enough.

A segmentation method similar to the convex hull approach has been applied to large­
vocabulary IWR using demisyllable templates [252]. Unlike the demisyllable method
described earlier, where short templates were merged to form word templates, each isolated
word here was segmented into syllables and then each syllable was further divided, so that
demisyllables were directly compared. For vocabularies of more than 500 words, the
demisyllable+segmentation approach showed better ASR accuracy than systems using
isolated-word templates.

10.12.2 Segmentation of Continuous Speech into Phones

While segmenting speech into approximate syllable units is often easy and sometimes
useful, reliably locating phones in continuous speech is one of the most desired but difficult
tasks in ASR. Most systems avoid such explicit segmentation, doing simultaneous phone
boundary location and labeling in one process. In this section, we nonetheless examine the
problem and propose solutions (e.g., for expert systems) to appreciate its difficulty. Explicitly
segmenting and labeling continuous speech is closely linked to artificial intelligence [253].
The procedures described below were derived by analyzing the ways speech experts "read"
spectrograms [23].

A good phone segmentation facilitates an ensuing ASR step of labelling phone units.
Typical speech parameters and features are useful both for segmenting speech and for labeling
acoustic segments. The sequence of segmenting and labeling is a controversial issue;
segmenting first is more efficient because typical phone units contain several frames and
labeling a phone often requires examination of dynamic spectral behavior over the course of
the phone's frames. Many approaches nonetheless label each frame independently before
segmentation, despite the higher computation load [254, 255]. More often, a coarse
segmentation is provided first and then boundary positions are refined during the labeling
phase. The preliminary segmentation usually goes beyond the syllable division described
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above to smaller units (e.g., fricatives, stops, and vowels) that can be reliably located with
robust and simple tests involving bandpass energies, zero-crossing rates, and durations.
Dynamic programming can be used to overcome label/segment errors by aligning phonetic
labels with estimated boundaries.

Even though expert-system ASR has typically used formants for labeling, coarse
segmentation employs more reliable features [256-258]. The speech spectrum may be divided
into four regions, some of which correspond roughly to formant ranges, but errors such as
missed formants are avoided by using broad energy measures in each frequency range: (a) a
voice range of about 80-250 Hz (used to identify voiced sounds, for speech not subject to
telephone bandpassing); (b) a low range of30G-lOOOHz (noting the presence of Fl ); (c) a
middle range of70{}-2500 Hz (for F2); and (d) a high range above 2500 Hz. (These ranges are
typical, but values differ considerably among systems.) Recognizers may employ zero­
crossing rates within some bands as crude formant detectors to help segmentation. Others use
coarse spectral measures, e.g., the first autocorrelation coefficient or normalized LPC error
(which helps separate vowels from frication) and/or parameters of a one-formant approxima­
tion to the speech spectrum (obtained using centroids, moments, or a two-pole LPC analysis).

Several systems use a four-category initial segmentation: vowels, silences, fricatives,
and dips (the following rules are from one such system [256]). Silences can be identified by
segments longer than 10 ms whose energy above 300 Hz falls below a threshold (typically
about 3 dB above background noise level); if the voice range is excluded, obstruents with
voice bars are included in this category. The vowel category includes sonorant consonants and
identifies voiced segments (using a voicing detector or simply high energy in the voice range)
longer than 25 ms with more energy at low than at high frequencies. The frames after a silence
can be examined to detect a possible stop burst, looking for very brief energy in the high
range: such an unvoiced segment exceeding 70 ms would be called a fricative, one less than
25 ms would be a stop burst, otherwise it would be stop aspiration. Voiced energy dips (drops
of more than 60% relative to adjacent energy peaks) between vowels often indicate
obstruents, as long as such a segmentation does not propose adjacent vowels of less than
25 ms. Nasals, in particular, are well identified by dips in the mid-range. Since phones are
rarely shorter than 40 ms, dip detectors usually smooth the energy parameters over a few
frames before attempting segmentation.

These four broad categories are further subdivided during segmentation by some
systems [258, 259]; e.g., the silence category is easily split into voiced and unvoiced versions
(to distinguish stop voicing via voicebar detection); frication may be subdivided to include
fricatives and aspiration (using duration and energy tests); sonorant consonants may be
separated from vowels. Such systems typically report 4-7% of actual boundaries missed and
5-100/0 extraneous boundaries proposed. Systems attempting (more ambitious) segmentation
into actual phones tend to have more errors (e.g., 22% extra segments in [255]).

Recognizers often utilize spectral derivatives to propose boundary locations (land­
marks), due to a high correlation between sudden acoustic change and segment edges [257,
260]. Sudden changes in speech amplitude or voiced-unvoiced changes are often the most
reliable phone boundary cues, but many such boundaries exhibit neither. Sudden spectral
changes (e.g., formant jumps) can help divide long sections of voiced speech involving
sonorants. A spectral derivative can be defined as the sum of changes in a set of outputs from
bandpass filters or as the average absolute value of changes at sampled frequencies in the
speech spectrum between adjacent frames. A one-frame peak in a spectral derivative could
indicate a nasal boundary or a boundary in a sequence of fricatives. More difficult to segment
are sequences involving vowels, glides, and liquids, where the spectral derivatives often
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exhibit broad peaks over several frames, corresponding to large but smooth spectral changes.
Coarticulation and undershoot effects in speech [261] often cause segmenters to miss
boundaries or to propose extraneous ones.

10.12.3 Labeling Phones

Identifying an acoustic segment with one or more possible corresponding phoneme
labels can be accomplished by applying distance measure techniques (described above for
IWR) to phone templates. For CSR, however, methods using formant trajectories are more
common, in part because durational considerations are more easily integrated into the labeling
procedure. Most segmenting ASR tries to label acoustic segments corresponding to phonemes
[262, 263], but some do diphone segments using synthesized templates (a form of analysis by
synthesis) [258]. Diphone and statistical ASR approaches appear to yield only about 63%
correct phoneme identification [255], although accuracy is usually improved by postproces­
sing a set of candidates (rather than forcing a decision to one candidate on acoustic
information only). The following discussion describes how the best acoustic-phonetic
analyzer of the ARPA speech understanding project (a major eSR effort during the early
1970s [12, 264]) handled labeling [256].

After coarse segmentation, vowel-like segments are often cve (consonant-vowel­
consonant) syllables because initial and final sonorant consonants are difficult to separate
from the vowel via simple tests. In particular, prevocalic Irl may be very short, causing no
peak in the spectral derivative; it can be identified by a rising F3 close to F2 for more than
35 ms. (Postvocalic Irl in American English is often manifest only by a shift in the vowel
spectrum.) Nasals can be identified by a low Fl and a low ratio of F2 amplitude to Fl
amplitude [265], although postvocalic nasals are often missed because they may be evident
only through nasalization of the vowel [266]; III and Iwl are associated with low F2 and a
large separation between F2 and F3. The diphthongs fuji and f-:Jjl must have initial formant
positions close to those for 10/and I-:JI, respectively, and either be longer than 250 ms or have
large rises in F2 (300 Hz rise for laj/, 750 Hz for I--::Jjl). The requirements for the diphthong I
juJ are a low F1, an initial high falling F2, F2 and F3 close in the middle of the segment, and
initial falling F3.

For the remaining vocalic segments, weak unstressed or reduced vowels are identified
by comparing peak amplitudes with those of adjacent syllables. For segments of sufficient
amplitude whose spectrum is relatively stable, specific vowels are identified by comparing
average values of FI and F2 (and F3, if low enough to indicate a retroflex vowel) in the test
segment to speaker-normalized values for all English vowels. Normalization is typically a
linear scaling of formant values based on how the point vowels /i.a.u/ for the speech under
test deviate from a standard set [267], although more complex forms of normalization exist
[36, 268].

In analyzing the dip category, sonorant consonants are identified via tests as described
above, with some modifications to isolate obstruents. Sonorant dips must exceed 25 IDS;

otherwise a flapped ItJ is output. A dip must have significant F3 energy to be a nasal;
otherwise a voicebar is assumed. Fricatives are classified according to energy, voicing, and the
frequency of major energy concentration. High-frequency fricatives (energy center above
about 3500 Hz) are considered either lsi or Iv (depending on the voicing decision); III and 131
are separated from the other (weak) fricatives by an energy threshold.

Identifying stop place of articulation is a very difficult task because of the variety of
acoustic cues and large coarticulation effects [269]. Complex analyses of burst spectra (for
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CV transitions) and of formant transitions (for CV and VC cases) have led to accuracies
nearing 95%, but only for systems with very complex rules [270].

A better method for detecting nasals in continuous speech than the simple approach
above applies speech energies in three frequency ranges plus a frequency centroid of the 0­
500 Hz range to a multivariate statistical decision method [271]. Sampling the parameters
every 12.8 ms, this method correctly located 91% of the nasal boundaries. Once located,
intervocalic nasals can be partitioned into 1m! and In! categories with 940/0 accuracy [272].
Segment-and-Iabel approaches are not unique to CSR applications; 95% accuracy was
achieved for a 20-word vocabulary in speaker-independent IWR, using simple energy and
zero-crossing rate measurements in four frequency bands [273].

10.12.4 Phonological Rules

Some effects of coarticulation in continuous speech can be accounted for via
phonological rules, which note how the standard phone composition of words can change
due to the context of adjacent words [274, 275]. While phone deletion (i.e., speakers omitting
phones normally uttered) rarely occurs in words pronounced in isolation, acoustic segments
are commonly deleted, inserted, or substituted during conversational speech. English, with its
levels of stress (stressed, unstressed, and reduced syllables), causes more difficult CSR
problems than most other languages (e.g., Italian [276]). Many vowels in unstressed syllables
tend to have spectra closer to the middle of the vowel triangle than respective versions in
stressed syllables.

As one speaks more rapidly, many unstressed English vowels are either reduced to
forms of schwa or disappear completely (e.g., the /IJ in multiply may be evident only in the
unvoiced It! burst). Such vowel reduction/deletion also is manifest in word-final unstressed
syllables containing schwa plus a nasal or IV, which often delete the schwa to form syllabic
sonorants (e.g., bottle). A similar form of reduction occurs in syllables having Irl plus an
unstressed vowel, which revert to syllabic 13-/ (introduction). Few languages have as much
vowel reduction as English and Portuguese.

Stops are often shortened or deleted as well: intervocalic It,d! often reduces to a 10­
30 ms flap before unstressed vowels, and few people articulate the ItJ in mostly (a case of
homorganic stop deletion: when the stop is between two consonants of similar place of
articulation, or preceding an unstressed vowel, it tends to disappear). On the other hand, an
acoustic analyzer might detect a stop after In! in prince, due to an energy dip before the lsi
(homorganic stop insertion). English, which has no nasal vowel phonemes, tends to nasalize
vowels before nasal consonants to such an extent that a separate nasal consonant is often hard
to detect.

Some phonological rules apply across word boundaries: geminate reduction shortens
the duration of successive identical phones ("some meat"); palatalization renders alveolar
consonants palatal when followed by another palatal ("did you" ~ /dlju/); and devoicing
frequently deletes voicing from final voiced consonants when preceding an unvoiced one
("his shoe" ~ /hIsSui). ASR performance can be significantly improved if such phonological
rules appropriate for the language (e.g., English) are incorporated into hypothesis generation.
In the generative form of the rules (as above), they can expand the number of phonemic
sequences assigned to each vocabulary word to handle pronunciation variants; e.g., each word
could have several network models. In an analytic form, the rules could be applied directly to
the output sequence of proposed phones to suggest alternative phone possibilities.
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In an attempt to better recognize unstressed words, some systems treat short sequences
of common words (especially unstressed words) as lexical units, e.g., let me, you know, going
to. Such expressions are often highly reduced in articulation (e.g., /lsmi/, /yno/, /g/\n/\/) and
are poorly recognized using standard techniques.

10.12.5 Using Prosodies to Aid Recognition

Despite the evidence in Chapters 3 and 5 that FO, duration, and energy convey
information in human speech communication, intonation is rarely used in ASR. Other than
including energy as a supplementary parameter to LPC coefficients in template comparisons
[122], most systems assume that spectral cues contain sufficient information for recognition
and that prosodic cues are unreliable. Nonetheless, there is clear evidence that accuracy can
be improved by properly exploiting prosodies, Segments of speech corresponding roughly to
syllables are more accurately identified if they have the acoustic correlates of stress (longer
durations, higher or changing FO, and higher amplitude) [277]. If such stressed syllables can
be detected, they provide islands of reliability in the speech signal, where segmentation and
labeling decisions are likely to be more accurate. While most ASR analyzes speech in
sequential (left-to-right) order, a hybrid middle-out approach can yield superior results at the
cost of extra computation: basically proceeding left to right but delaying analysis of
unstressed syllables until the next stressed one is found [12, 278, 279]. A simple form of
stress detector involving only energy can improve CSR accuracy in DTW and HMM methods
by effectively highlighting stressed syllables [29].

Prosodies can also aid in phone identification and in providing syntactic information
useful for linguistic postprocessing. Tone languages (e.g., Chinese, Thai) require FO to
distinguish the use of tones phonemic ally [280, 281]. The presence and/or identity of
consonants is sometimes cued by intonation [278]: (a) voiced consonants usually cause a dip
in FO of more than 10%; (b) a 10-20% fall in FO at the start of a stressed syllable usually
indicates the presence of a preceding unvoiced consonant; and (c) relatively long vowels
indicate ensuing voiced consonants, etc. Syntactically, an utterance-final FOrise or a relatively
low falloff rate for FO during the utterance can cue a yes/no question. A syllable identified as
stressed is almost always part of a content word (e.g., noun, verb, adjective). Thus stress
identification can rule out certain hypotheses based on spectral analysis; e.g., "Give me fish"
and "Have you fished?" have similar spectral patterns, but an initial unstressed syllable and
rising FO in the second sentence would rule out confusion with the first sentence.

The primary benefit of intonation, however, appears to lie in identifying major syntactic
boundaries: 90% of such boundaries in English are preceded by FO falls of more than 7% and
are followed by rises exceeding 7% [278]. Parenthetical clauses have even more pronounced
(20%) FO dips. Besides FO, the duration between centers of successive stressed syllables,
called an interstress interval, is useful in locating major boundaries; 95% of perceived
boundaries can be detected by a simple test on interstress intervals. Since intervals in
uninterrupted speech average 0.3-0.4 s, a threshold of 0.5 s separates them from typical I s
intervals including clause boundaries and 1.5s intervals for sentence boundaries [278].
However, 23% of the intervals exceeding 0.5 s are not perceived boundaries, although most of
these are syntactic boundaries useful for segmenting an input speech signal.

10.13 COMMERCIAL SYSTEMS

The last few years have seen rapid progress in providing advanced ASR systems at decreasing
cost. Besides improvements in ASR algorithms, the cost of computation and memory has
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declined rapidly. The need for special-purpose hardware (application-specific integrated
circuit chips) has declined as personal computers have become more powerful. Several
software-only products now exist (e.g., from Dragon Systems, IBM, Philips, and Lernout &
Hauspie). In the 1980s, products were limited to IWR. Since then, CSR has been gradually
gaining accuracy and therefore user acceptance. Dictation systems are available for several
major languages (e.g., French, German, Swedish, Italian, Spanish, Arabic, as well as both
American and British English). There is now even a service for ASR via the telephone, where
the output text is sent to the customer via the Internet [276]. Active vocabularies range up to
60,000 words, with back-up dictionaries to 200,000 words. Virtually all manufacturers quote
well in excess of 90% ASR accuracy, but impartial comparative tests are rarely done [259].
Several companies manufacture ASR boards for use with personal computers [58].

10.14 SUMMARY OF CURRENT ASR DESIGN

To summarize the steps used in a typical design of current ASR systems, there is a
development or training step (taking many hours of computation) and then the actual
recognition or testing step (which may be real-time). Training involves automatic analysis
of successive frames of speech (e.g., every lOrns, using 25ms windows), each yielding a
parameter vector (e.g., 10-16 mel-cepstral coefficients, augmented by their delta values).
Phone HMMs (usually context-dependent) are developed via the Baum-Welch algorithm,
using mixtures of Gaussian densities to model each state's PDF. The models are often
bootstrapped from initial coarse models from other speakers or from context-independent
models. Phonetically labeled corpora (e.g., TIMIT) allow such automatic initial model
generation. Later, finer training often involves using a preliminary, coarse recognizer to
determine which models and states are to be updated for each speech frame, thus using
estimates (of phones and boundaries) which are not fully reliable. Iterative training is intended
to refine the estimates.

During recognition, the same speech analysis is done, frame by frame, as for training.
The Viterbi algorithm finds the most likely path through the HMM states, obeying the left-to­
right sequence within each phone model and requiring proper sequencing for successive
triphone models (e.g., a libuJ model for fbi could be followed by an /but! model, but not a
/gut/ one). An empirical weighting combines the acoustic score with a trigram language
model score, to determine the likeliest word sequence, for which the word transcriptions
match the phone sequence.

10.15 CONCLUSION

Speech recognition can provide a practical way to control machines or to input data such as
text to a computer. Even using words separated by pauses, most people can enter data via
speech faster than by typing (up to 150 words/min via speech vs 50 words/min for good
typists and 15 for poor ones) [282]. The fact that error rate increases with vocabulary size
need not be a major difficulty because small vocabularies (e.g., 50 words) are sufficient for
many ASR applications.

Most ASR uses statistical pattern recognition, applying general models (e.g., networks)
as structures to incorporate knowledge about speech in terms of reference models. The
parameters of the models are estimated during a training procedure in which speakers utter
words or sentences, which may be repeated later during actual ASR. Employed primarily in
CSR, the alternative cognitive approach to pattern recognition analyzes speech from the
production point of view [283]. Research on cognitive methods examines speech-specific
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models, rather than general Markov networks, which lead to a better understanding of how
humans generate speech. While such approaches should be more efficient than template­
matching schemes, to date they have been less successful than statistical methods because of
our inadequate knowledge of speech production. (Similar comments would apply when
comparing terminal-analog and articulatory speech synthesizers.)

In one view ofartificial intelligence, better simulations of human processes are found in
better models of how humans function. Thus, improved automatic speech synthesis and
recognition should derive from better understanding of human speech production and
perception, respectively [284]. However, since synthetic speech is intended to be processed
by human ears, it is more likely that improved naturalness in synthetic speech will come from
better models of how the ear transforms the speech signal than from modeling perturbations
in vocal tract motion. Similarly, while parameter transformations following ear nonlinearities
have had some (limited) success in ASR, a better model of how humans produce the speech
that recognizers must process is likely the key to improved recognition performance.

As hardware costs decrease, ASR with vocabularies of thousands of words will become
commonly used. However, practical systems to recognize spontaneous speech will require
more significant progress in natural language understanding. Such future ASR will combine
today's statistical techniques with more advanced expert systems exploiting phonetic feature
extraction [285, 286], rather than simple template matching [3]. In addition to fluent dialog
with machines, advances in ASR and TTS will eventually allow automatic translation
programs allowing two humans to converse, each using one's own language [286].

PROBLEMS

PIO.1. Consider a system that attempts to recognize a sequence of five letters (from the set
A, B, C, ... , Y, Z), spoken without intervening pauses by anyone in your town. The
system uses stored templates for each of the 26 letters in the recognition process.
(a) Divide the set of letters into several classes, within which there would be the most

recognition errors (i.e., the most confusions).
(b) How many templates would there be for each letter? What information would each

template contain? Explain.
(c) What are the advantages and disadvantages of using templates of letters rather than

of "words" (of five letters each)?

PI0.2. (a) Discuss some of the extra problems that arise when doing continuous speech
recognition that do not occur with discrete word recognition.

(b) Discuss some of the differences found between speaker-dependent and speaker­
independent recognition systems.

(c) Recognition systems may use either syllables or phonemes as the units of recogni­
tion. What are some of the advantages and disadvantages of each?

PIO.3. In an isolated-word recognition system, an input test word must be preprocessed or
"normalized" before its features can be compared with those of the stored templates.
Describe two such normalizations. Why are they useful?

PIO.4. (a) Why is a vocabulary of the 26 alphabet letters harder to recognize than a vocabulary
of the names of the 26 largest cities in America?

(b) Besides the problem of locating word boundaries, why is continuous speech more
difficult to recognize than isolated words?

PIO.5. Consider a word recognizer with the following vocabulary: bid, did, bad, dad, bud, dud,
bead, deed.
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(a) What would be the most frequent word confusions with a dynamic programming­
based similarity function?

(b) Suggest methods to reduce these confusions.
(e) What minimal temporal and spectral resolution would be needed to achieve minimal

success? Explain the limitations.
(d) If the vocabulary is reduced to words with initial b, how would your answer to part

(c) change?

PI0.6. Why do some recognizers use a Euclidean distance? Give an example of speech
parameters for which such a distance is appropriate, and one where it is not.

PI 0.7. How does a recognizer based on hidden Markov models handle timing and spectral
variability in speech? How is segmentation effectively accomplished with HMMs?

PIO.8. How can recognizers accommodate variability across speakers?

PIO.9. Segmenting and labeling are two major tasks for recognition. Give advantages for doing
one and then the other, versus a simultaneous approach.

PIO.I0. Give examples of two different vocabularies (with the same size) that could appear in a
practical recognition system, and explain why one may be much easier to recognize.

PI 0.1 1. How does dynamic time warping help in recognition? What are its disadvantages?



11
Speaker Recognition

11.1 INTRODUCTION

Computer analysis of speech has many purposes. Chapters 7 and 10 examined coding and
recognition, the major applications for speech analysis. Other uses include real-time displays
of speech spectra and FO (Chapter 6), which are useful as aids for the handicapped, e.g., in
teaching the deaf to speak. This chapter deals with a final important application of speech
analysis: automatic speaker or voice recognition. In speech recognition (ASR), variation due
to different speakers in speech signals corresponding to the same spoken text was viewed as
"noise" to be either eliminated by speaker normalization or (more commonly) accommodated
through reference models drawn from a large number of speakers. When the task is to identify
who is talking rather than what is said, speech must be processed to extract measures of
speaker variability instead of segmental features [1].

Compared to ASR, there has been less speaker recognition research because fewer
applications exist and less is understood about which speech aspects identify a speaker than
about segmental acoustic-phonetics. There are two main speaker recognition applications: (1)
verifying a person's identity prior to admission to a secure facility or to a transaction over the
telephone, and (2) associating a person with a voice in police work [2] or in audioconferences.
Other applications include identifying the gender [3] or the accent of a speaker [4], and the
language being spoken [5]. While fingerprints or retinal scans are usually more reliable ways
to verify a claimant, voice identification has the convenience of easy data collection over the
telephone. Many companies furnishing limited access to computer databases would like to
provide automatic customer service by telephone. Since personal number codes (typed on a
keypad) or physical keys can be lost, stolen, or forgotten, speaker recognition provides a
viable alternative.

For ASR, much is known about the speech production process linking a text and its
phonemes to the spectra and prosodies of a corresponding speech signal. Phonemes have
specific articulatory targets, and the corresponding acoustic events have been well studied
(but remain not fully understood). For speaker recognition, however, the acoustic aspects of
what characterizes the differences between voices are obscure and difficult to separate from
signal aspects that reflect segment recognition. There are three sources of variation among
speakers: differences in vocal cords and vocal tract shape, differences in speaking style

437
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(including vananons in both target posinons for phonemes and dynamic aspects of
coarticulation such as speaking rate), and differences in what speakers choose to say.
Automatic speaker recognizers exploit only the first two variation sources examining low­
level acoustic features of speech [6] since a speaker's tendency to use certain word and
syntactic structures (the third source) is difficult to quantify and too easy to mimic.

Unlike the clear correlation between phonemes and spectral resonances, there are no
acoustic cues specifically or exclusively related to speaker identity. Most of the parameters
and features in speech analysis (Chapter 6) contain information useful for the identification of
both the speaker and the spoken message. The two types of information, however, are coded
very differently. Unlike ASR, where decisions are made for every phone or word, speaker
recognition usually requires only one decision, based on an entire test utterance (exception:
identifying speakers in a conversation [7, 8]). There is no simple set of acoustic cues that
reliably distinguishes speakers. Speaker recognizers can utilize long-term statistics averaged
over entire utterances or exploit analyses of specific sounds. The latter approach is common in
text-dependent (TD) applications where utterances of the same text are used for training and
testing; statistical average methods are often used in text-independent (TI) cases where
training and testing employ different phrases. While only one decision is made in speaker
recognition, the set of choices can vary. Most practical applications need only a binary
decision (i.e., is the claimant correct?), but some ask which of N stored voices matches a test
input.

11.2 VERIFICATION VS RECOGNITION

There are two related but different types of voice recognition: automatic speaker verification
(ASV) or authentication [9] and automatic speaker identification (ASI) [10]. (For discussions
applying to both ASV and ASI, the abbreviation ASV /1 will be used, reserving ASR as a
common abbreviation for automatic speech recognition.) Both use a stored database of
reference models for N known speakers, and similar analysis and decision techniques are
employed. ASV is the simpler task since it requires only evaluating the test pattern with one
reference model and a binary decision whether the test speech matches the model of the
claimant. In AS~ speakers known to the system are customers, while unregistered speakers
are impostors. ASI, on the other hand, requires choosing which of N known voices best
matches a test voice. Since N comparisons and decisions are often necessary, the error rate
rises with N for ASI, while ASV can have rates independent of N [6] (Figure 11.1).

We distinguish closed-set and open-set experiments; in the first, only customers are
considered; in the second, the voice of the test speaker (claimant) may not be among the N
stored patterns, in which case a "no match" decision should be made. Since most practical
cases require real-time response, another option for both ASI and ASV is to delay a decision
in the case of uncertainty and ask the speaker to furnish more speech. While ASV is much
more common than ASI, ASI is useful in audioconferencing, if registered users in a room
move around, using several microphones (e.g., determining who is talking would allow use of
speaker-dependent speech recognition) [11]. Segmenting conversational speech into speaker
turns is also useful [7]. For reasons of cost, however, most ASV /1 uses single-microphone
input.

While the worst performance for both ASI and ASV is 0% correct, simple guessing
yields 50% for ASV (assuming equal numbers of customers and impostors), but only
100/NOIo for closed-set ASI (assuming the test speaker is known to the system and each
speaker is equally likely). There are two classes of errors: false acceptances (FA or Type I
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Figure 11.1 Expected error rate in simulations
of speaker identification and verification as a
function of the number of speakers known to
the system. The recognition process used m

features, assumed to be Gaussian-distributed.
Performance curves for m = 1. 2, and 4 features
are shown. (After Doddington [6].)

error) and false rejections (FR or Type II error). In FA, the system incorrectly accepts an
impostor during ASVor identifies a wrong person during ASI. In FR, the system rejects a true
claimant in ASV or incorrectly finds "no match" in ASI. The decision to accept or reject
usually depends on a threshold: if the distance between a test and a reference template
exceeds the threshold (or a model likelihood is too low), the system rejects a match.

Depending on the costs of each type of error, systems can be designed to minimize an
overall cost by biasing the decisions in favor of less costly errors. Low thresholds are
generally preferred because FAs are usually more expensive (e.g., admitting an impostor to a
secure facility might be disastrous, while excluding some authorized personnel is usually only
annoying). (In financial transactions authorized by telephone voice, the allowed amount of the
transaction could be set inversely proportional to the likelihood of error.) Many researchers
adjust system parameters so that the two types of error occur equally often (equal error rate
(EER) condition) [12]). Plots of FR vs FA are called receiver operating curves (ROC) and
resemble hyperbolas (since we can trade offFR and FA). On a log FA vs log FR plot, the ROC
approaches a straight line perpendicular to the 45° EER line, with lower ROCs corresponding
to better systems.

Informally, speakers whose speech is easy to recognize (or to code with high quality)
have been called sheep, vs more difficult speakers (goats). In ASI/V this "animal"
classification extends to: goats with high FR rates (sheep have low rates), lambs easy to
impersonate (rams are hard), and wolves with high FA rates (and badgers low) [13]. How such
classes of speakers are distinguished acoustically is far from clear.

11.3 RECOGNITION TECHNIQUES

Analysis techniques are similar for speech and speaker recognition since both involve pattern
recognition of speech signals. Data reduction via parameterization and feature extraction are
important in ASI/V for the same reasons of efficiency as in ASR. While template matching,
distance measures, and stochastic models are common to both applications, the templa­
tes/models may employ different information for speech and speaker recognition; ASI/V
models emphasize speaker characteristics rather than word information, Just as model
memory grows linearly with vocabulary size in ASR, ASI/V memory expands similarly
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with the number of speakers. Memory grows with both vocabulary and population size, but
ASI/Vemploys much smaller vocabularies (e.g., ten digits) than most ASR systems. Thus the
problem of memory expansion is much more serious for speaker-dependent word-based ASR
than for ASI/V Feature-based ASI/V has small memory requirements with no correspon­
dence to vocabulary, but is usually more difficult to implement than template- or model-based
ASI/Y.

11.3.1 Model Evaluation

Since typical speech parameters and features contain information about both phone
segments and the speaker, some ASI/V systems use methods identical to those for ASR,
except that the models are created for speakers rather than for words. In general, such systems
store information for every speaker's utterances, each typically of one or more isolated words.
To minimize memory and computation, simple systems use one model per speaker, clustered
from repetitions of one word during a training period. At increased cost, performance can be
improved by storing models for several words and/or several repetitions of the same word
without clustering.

As in Chapter 10, dynamic time warping can compare test and reference templates, and
a nearest-neighbor (NN) rule (or a KNN rule for multiple templates) [14, 15] can select the
closest reference template, outputting the speaker's identity corresponding to that template in
the case of ASI. For ASV: the test template is compared only against the reference template(s)
for the claimed speaker; if the distance (of the best match, in the case of multiple templates)
falls below a threshold, the speaker is accepted (Figure 11.2). (Thresholds can also be applied
in ASI, if "no match" is an acceptable output.) Similar comments hold for the use of HMMs
in ASI/V: where thresholds would apply to likelihoods rather than distances.

11.3.2 Text Dependence

Evaluating test utterances for speaker identity is much simpler when the underlying text
matches that of a training utterance. The straightforward application of ASR methods to
ASI/V is possible only for cooperative speakers, who train the system and later test it with the
same word(s). This text-dependent (TD) case, using the same text for training and testing,
permits the simple comparison of word models and occurs frequently in ASVapplications but
rarely for ASI. In forensic work, speakers are often uncooperative, training may be done
surreptitiously, and the test and training texts are rarely the same. Having different texts for
training and testing, the text-independent (TI) case can still use model matching, but much
different information must be stored in the models than when test and reference utterances are
simply repetitions of the same word. Error rates for TI recognition are higher than for
comparable TD cases [16]. To achieve good results for TI ASI/~ much more speech data are
usually needed for both training and testing than for TD ASI/V (Figure 11.3); training often
exceeds 30 s per speaker and test utterances are usually longer than 5 s. On the other hand, the
performance of TO systems is highly correlated with the vocabulary that is chosen.
Furthermore, TD ASI/V may have more security problems than TI ASI/V: stolen recordings
of stored models could be used to fool TO systems, whereas a TI system could request
different words on each recognition test (stolen tapes could still fool TI systems that employ
average statistics, but they would be less successful with those examining dynamic features).
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a) Before warp Time

b) After warp Time

Figure 11.2 Time alignment of the amplitude contours for two templates. The contour
from the test utterance (solid curve) is aligned to that of the reference
utterance (dotted curve). (a) The curves after linear warping to align
endpoints; (b) the curves after nonlinear alignment using an amplitude
distance. After alignment. the utterance is divided into 20 equal sections,
where each section contributes to an overall distance measure in proportion to
its usefulness. (After Rosenberg [9J t IEEE.)

11.3.3 Statistical vs Dynamic Features

Since acoustic cues to a speaker's identity occur throughout each utterance, some
systems utilize models of averaged parameters rather than exploit the full-time sequence of
parameters as in ASR. This global approach is most useful in TI cases since the time
sequences of training and test utterances do not correspond. The simplest approach
conceptually (although not computationally) takes long-term averages of speech parameters
over all available data from each speaker to yield one mean vector template. Long-term
spectra can yield good recognition accuracy for normal speech and even for speech spoken
under stress, but not for disguised (impersonation) speech [18]. For example, one study of 17
speakers used a 22-dimensional vector containing the means and standard deviations of FO
and the reflection coefficients in a tenth-order LPC analysis [19]: averaging over 1000 speech
frames or about 39 slspeaker, error rates were 2% for ASI and 4% for (equal error condition)
ASV': With this method, template matching is a simple comparison of two 22-element vectors,
but much calculation is necessary to estimate FO and ten LPC coefficients for 1000 frames. In
place of FO and LPC coefficients, another study used long-term (30 s) averages of spectral
correlations between adjacent frequencies [20]. The long test utterances needed to obtain
long-term averages in these studies usually preclude real-time applications. Furthermore,
long-term spectra are sensitive to speaker effort and to variations in transmission channels
(e.g., the telephone) [6]; they also ignore much speaker-dependent information in the speech
signal.
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Figure 11.3 Recognition accuracy as a function ofspeech duration. Duration refers to how
much of the training/test utterance "May we aU learn a yellow lion roar" was
used in the template matching. Ten female speakers uttered this sentence six
times, yielding five training utterances and one test utterance each. The
templates stored cepstra derived from a 12th order LPC analysis at 40
uniformly spaced frames in the 1.8-2.8 s utterances. Recognition was based
on a single distance measure, the average of 1-40 frame distances (depending
on the duration used). The upper and lower curves correspond to the TD and
independent cases, respectively. "Text independence" was achieved artifi­
cially by randomly ordering the 40 frames, destroying the template synchro­
nization. (After Atal [17].)

Statistical averaging has successfully been applied in TO cases also, to reduce run-time
computation by using templates of few dimensions. Dynamic time warping (DTW) has seen
less use recently in ASR (displaced largely by HMMs), but it is still often used for ASV [21]
In cases where training data are sparse, DTW outperforms both VQ and HMMs [16]. DTW
computation increases as the square of template duration, whereas computation of statistics
(e.g., moments, covariances) typically increases only linearly with utterance length. Further­
more, after determining the spectral parameters, calculation of statistical means requires no
multiplications. Using 40-frame words, one study found similar recognition results with either
DTW template matching or a single distance measure involving a 20-dimension statistical
vector [22]. Among the 20 features were the means of FO and 12 LPC log-area ratios, plus a
group of seven second-order statistics of these FO and LPC parameters.

Since recognition via long-term statistics is often impractical for real-time TI applica­
tions, another approach in such cases involves identifying specific sounds in the test speech
and comparing them with stored sounds for each speaker. Specific phones drawn from each
speaker's training data (segmented manually, if necessary) are stored in reference memory. At
recognition time, each utterance of unknown text and speaker is scanned (phone spotting) to
locate phones corresponding to those in memory. Distance measures between spectral
patterns of each test phone and its corresponding reference are averaged over all the located
phones in the test utterance to yield an overall measure. This measure is then compared
against a threshold in ASVapplications; or the minimal measure over all speakers is sought
for ASI [6].



Section 11.3 • Recognition Techniques

11.3.4 Stochastic Models
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Stochastic approaches have largely replaced the use of templates and long-term
averages in recent ASI/~ The HMM method for ASR has been applied directly to ASI/Y:
replacing Markov models for words or phonemes with those for speakers [23]. Instead of
training HMMs for specific linguistic units and across many speakers, we develop a set of
HMMs for each speaker. The set may use word-based HMMs, if the ASI/V system is text­
dependent, or phone-based otherwise. Tied-mixture (semi-continuous) HMMs usually give
better results than discrete HMMs; with enough training, 1% EER is possible for 7-digit tests
[24].

Recently, single-state stochastic models have become popular for ASI/V Gaussian
mixture models (GMMs) retain the common mixture approach to HMM-based ASR, but omit
the timing information implicit in HMMs. Since ASI/V makes only a single speaker decision,
no distinction is needed across the many frames of each input utterance. In this way, the
GMM method resembles a VQ approach to ASI/V (see next section). Typically, 16 mixtures
using diagonal covariances provide good performance; training on a minute of speech and
testing with 5 s utterances gave good results [25].

11.3.5 Vector Quantization

Since automatic segmentation of continuous speech into phones is difficult, ASV based
on analysis of specific phones is not common. Alternative techniques for TI applications
attempt to compare corresponding test and reference phones without explicitly locating them
in a test utterance. Vector quantization (VQ) is one such technique successfully applied to
both ASR and ASI/~ in similar ways and for similar reasons, e.g., to avoid the segmentation
problem. The data-reduction efficiency of VQ in parameterizing speech was paramount for
speech coding applications and is useful in ASI/V to minimize memory. As for ASR, the
primary advantage of VQ for ASI/V lies in the codebook approach to determining the
similarity between utterances. VQ may also be more robust with one-session training data
than other methods [24].

Chapter 7 noted that codebooks of about 1000 entries appear necessary for good speech
coding, while Chapter 10 said that smaller codebooks suffice for ASR. One ASI/V study
designed a 1000-entry code book so that a speech space using 12 LPC coefficient dimensions
was fully "covered" with relatively fixed separation ("radius") between entries [26]. To
simplify computation, only the most frequently occuring 400 entries, which included 900/0 of
the training speech frames within a radius of an entry, were used to represent the speaker
templates. Training samples 100 s long from each of 11 speakers were used to select 40 of the
400 entries that best represented each speaker. An entry was selected if its average percentage
occurrence in the speaker's training data exceeded the mean appearance in the training data
for all other speakers and if the entry's percentages were stable with increasing amounts of
training data. The basic idea is to find spectra used in the general speech of each speaker and
distinctive to each speaker's voice. The 40 entries for each speaker covered 25-40% of his or
her training data, but only 7-12% of the data for other speakers. During recognition, the
unknown speech was vector quantized with the 400 entries, and the speaker model whose 40
entries most overlapped with the set of entries for the unknown was selected. VQ does no
direct phone comparisons and thus needs no segmentation, but by comparing the 40
distinctive spectra for each speaker with the spectra found in the test utterance, a rough
phone comparison implicitly occurs. Recognition accuracy with test utterances of 10, 5, and
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3 s was 96, 87, and 790/0, respectively, which showed that high performance is possible with
short test utterances in TI applications.

Besides avoiding segmentation and allowing short test utterances, VQ is computation­
ally efficient compared with storing and comparing large amounts of template data in the form
of individual spectra. Thus VQ can be useful for TD as well as TI recognition. One
experiment employed isolated digits (0-9) both for training and testing of 100 speakers with
one codebook per speaker [27]; each test utterance was identified with the speaker whose
codebook yielded the lowest coding distortion. Recognition error decreased substantially as a
function of both codebook size and test utterance duration, with errors below 2% for 10-digit
tests and 64-word codebooks (Figure 11.4). Increasing codebook size raises computation but
decreases errors by reducing the standard deviations of the distortions (Figure 11.5). The
performance increase with duration depends on the degree of correlation among words in the
test utterance: when the test utterance of 10 different digits was replaced by a single digit
repeated 10 times, error increased dramatically. While this study was partially TI (i.e., the
speakers were free to say the digits in any order), true TD recognition allows incorporation of
timing information into the distance measures to reduce errors.

One way to improve word recognition is to use different codebooks for instantaneous
and transitional spectral information [28]. Exploiting timing information via matrix quantiza­
tion (as in Chapter 7) is also useful [29]. Another approach uses multistage codebooks that
compare equal-duration subword templates. Applied to ASI/~ one study designed NW
multistage tenth-order LPC codebooks for each of N speakers saying W different isolated
digits [30]. A classification (reject or accept for ASV; identify for ASI) was based on a
plurality of decisions for all words in the test utterance. Using 8-entry codebooks for each 8­
frame section of every word, test utterances of 10 different digits led to 0.80/0 false rejections
and 1.8% false acceptances with 16 speakers and III impostors.

In summary, ASI/V via VQ can yield high accuracy in both TD and independent cases,
with relatively short test utterances. As in speech recognition, VQ often has the advantage of
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Figure 11.5 Distortion measures during recognition with l-digit tests for codebooks of 8
entries (top row) and 32 entries (bottom row). (a) The average distance or
distortion when coding each of the 100 speakers' test data with that speaker's
codebook ("intraspeaker") and all the other codebooks ("interspeaker"). (b)
The respective standard deviations of the distortions. (c) Histograms of the
distortions, where the likelihood of error is indicated by the overlap of the two
curves. (After Soong et al. [27] ·r IEEE.)

smaller reference memory than word templates in the DTW approach. For example, in the
first study described above, 400 LPC vectors covering all speakers are stored, and each
speaker needs storage of only 40 indexes. The second study requires 64 vectors per speaker.
The third, multistage study needs the most storage, about 400 vectors per speaker (10 digits
x 8 entries/codebook x about 5 stages/word), which is comparable with the storage for
DTW (25--40 frames/word x 10 digits).

A comparison of VQ and HMM methods for ASV/1 noted that HMMs were superior
except when few data are available, and that HMMs with continuous distributions outper­
formed discrete HMMs [16, 31]. Within the HMMs, the state transitions provided little
information for TI applications.

11.3.6 Similarity and Distance Measures

To match templates or calculate VQ distortions, the same distance measures tend to be
used for both speech and speaker recognition [32]. For LPC coefficients, the Itakura distances
described in Chapter 10 are common. When other parameters and features are involved,
Euclidean and Mahalanobis distances have often yielded good results. Other measures such as
correlations [20] and city-block distances are sometimes used but may give inferior results.
Recall that the Mahalanobis distance between two M-dimensional vectors x and y is

d(x, y) = J(X - y{w-I(x - y). (11.1)
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The W matrix allows different weighting for the M vector parameters depending on their
utility in yielding small distances for vectors from the same speaker. (The process ofchoosing
the parameters is the subject of a later section.) The off-diagonal matrix elements represent
correlations between parameters, while the diagonal elements represent the intraspeaker
parameter variances (variability within one speaker's speech). This distance has origins in
statistical decision theory; each utterance may be viewed as a point in M-dimensional space
and the utterances for each speaker describe a multivariate probability density function in that
space. Assuming ASI among equally likely speakers, Bayes' rule specifies choosing the
speaker whose density is most likely to have generated the test utterance. Points of equal
Mahalanobis distance from y form a hyperellipsoid centered at y, whose principal axes and
lengths are the eigenvectors and eigenvalues, respectively, of W- 1 [14].

Because of the difficulty of estimating density functions from a limited amount of
training data [33], most recognizers assume a parametric form of density such as a Gaussian,
which can be simply and fully described by a mean vector J.l and a covariance matrix W. Since
many speech parameters used in ASI/V have unimodal distributions resembling Gaussians,
the assumption is reasonable. (It will be noted later how W may be used to help select
parameters to use for ASI/~) The density of a feature vector x for speaker i would be

(11.2)

where IWil is the determinant of Wi. Most systems use a fixed W matrix averaged over all
speakers, instead of individual Wi because (a) it is difficult to obtain accurate estimates for
Wi from the limited training data of individual speakers, (b) using one W matrix saves
memory, and (c) Wi matrices are similar for different speakers. While recognition accuracy
may increase in some systems by using individual Wi when examining each speaker's density
[19], the improvement must be weighed against increased memory and computation.

Given a test vector x for ASI, speaker j is selected if

for all speakers i =I j. (11.3 )

Applying a (monotonic) logarithm transformation and eliminating terms constant across
speakers (i.e., a common IWI), Equations (11.2) and (11.3) reduce to minimizing the
Mahalanobis distance of Equation (11.1), using J.li in place of y. The simpler Euclidean
distance, which sets W = I trades optimal recognition accuracy for fewer calculations, and is
popular for recognizing speakers [3]. The Euclidean distance is optimal only if the M
parameters are mutually independent and have equal variances (i.e., contribute equally to the
distance measure). One advantage of the Mahalanobis distance is its invariance to nonsingular
linear transformations such as the Fourier transform [10]. Suitable transformations (i.e.,
rotation and scaling) of the M dimensions can render the parameters orthogonal, allowing the
use of a Euclidean distance without loss of optimality. Since orthogonalizing typical speech
parameters usually requires more calculations than is saved with the Euclidean distance, the
Mahalanobis distance is preferred for most ASI/~

Another distance measure used for ASV is the Bhattacharyya distance [34, 35]. For two
speakers i and j, modeled by feature distributions whose means are Jl; and /lj and whose
covariance matrices are W; and Wj , this distance has two terms:
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The first term depends only on the W matrices (i.e., the average shape of the distributions),
while the second resembles a Mahalanobis distance [36].

11.3.7 Cepstral Analysis

Among transformations of LPC parameters (e.g., reflection coefficients, log-area
ratios), the cepstral representation appears to be superior for ASI/V [17) Besides being
invariant to fixed spectral distortions from recording and transmission (e.g., telephone)
environments, cepstral coefficients yield high recognition accuracy. Excellent results have
been demonstrated through template matching patterns of I8-dimensional cepstral vectors
[37]. As an example, the process shown in Figure 11.6 inputs all-voiced sentences of 6-7
short words and calculates ten cepstral coefficients every 10 ms via LPC. (Performance was
similar whether the cepstra were calculated directly with Fourier transforms or with LPC, but
the LPC method was twice as fast.) The mean value for each coefficient over time is
subtracted from each coefficient function (cepstral mean subtraction-eMS), which yields a
signal that minimizes environmental and intraspeaker effects. The coefficients in each 90 ms
section of the utterance are then expanded into orthogonal polynomials so that each
coefficient is represented by the slope of its function, in addition to the coefficient itself.
An I8-element feature vector for each 10 ms frame consists of the 10 cepstral coefficients plus
8 of the 10 polynomial coefficients (inclusion of the extra 8 coefficients cuts error rates by
two-thirds). This study found a weighted city-block distance to be sufficient for good
performance, although other studies prefer the more complex measures noted above. Cepstra
based on LPC and LSPs, combined with a Bhattacharyya distance, are also useful [36].

Transitional information, in the form of delta coefficients over a 50-100 ms window,
usually increase accuracy, especially in cases of channel mismatch between testing and
training [28]. CMS, like RASTA processing [38], eliminates very slowly varying signal
aspects, on the assumption that channel behavior is such (except for portable telephones). It
removes not only convolutional channel effects, but also some speaker-dependent aspects,
and does not help with additive channel noise and nonlinearities. Long-term average
subtraction is inappropriate for short utterances, where much speaker-dependent information
would be removed [23].

ACW (adaptive component weighting) of the cepstrum emphasizes formant structure,
while attenuating broad-bandwidth spectral components of speech [39, 40]. ACW resembles
pre-emphasis in that it increases the amplitude of weak resonances. Pre-emphasis changes the
slope of the spectral envelope, on the assumption that most speech has spectra falling off with
frequency. ACW, on the other hand, makes no such assumptions, and adjusts the level of each
resonance to be roughly equal. By emphasizing formant peaks, other frequency ranges
contribute less to the speaker identification decisions.

11.3.8 Orthogonal LPC Parameters (t)

In the search to isolate speaker-dependent features from speech parameters that also
carry segmental information, LPC coefficients are frequently examined because they are
convenient to calculate and usually model speech spectra well. Besides the standard ASI/V
methods utilizing direct LPC coefficients or cepstral features, another LPC transformation
known as orthogonal linear prediction has demonstrated some success [41, 42]. Orthogonal
transformations are usually intended to concentrate information from a set of p parameters
into a smaller set by rotating and scaling p-dimensional space so that the revised parameters
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Figure 11.6 Block diagram of a TO recognizer using orthogonal polynomials based on
tenth-order LPC cepstra. (After Furui [37] © IEEE.)

become independent and most of the variance (i.e., information) rests in a low-order subset of
the revised parameters. Except for the increase in computation, such an approach can be
useful for speech coding or recognition. For ASI/~ however, it was proposed that, while the
low-order high-variance orthogonal LPC coefficients would reflect phonemic information, the
high-order low-variance ones might contain cues dependent on speakers and on the recording
environment [41]. Using 12th-order LPC on 4kHz speech, the variances of the last seven
orthogonal coefficients were very small compared with those of the first five, indicating that
the latter reflected segmental information (e.g., voicing and the first three formants) that
varied throughout an utterance, whereas the high-order coefficients contained information that
did not change during the utterance. Since the latter parameters were different between
speakers uttering the same sentence, they proved useful for ASI/V
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The procedure was as follows [41]. Given a sequence of J LPC vectors x of p
coefficients each from an utterance of J frames, fonn a p x p covariance matrix R whose
elements are

( 11.4)

where X; is the average value for the ith LPC coefficient over the J frames. The variances or
eigenvalues i.; of the orthogonal parameters <P; are found by solving p simultaneous equations
specified by IR - i.ll = 0, where I is the identity matrix and the p solutions for i .. are the )\,;.
Solving the equations

:s i ~ p, ( 11.5)

yields eigenvectors b.. Finally, the ith orthogonal parameter in the jth frame is

( 11.6)

(A covariance matrix using <Pi) as input would be diagonal, with the diagonal elements being
the i..; values.)

In this case, the Mahalanobis distance reduces (because the parameters are orthogonal)
to

t (lJ j ~ <pi,
;=p, I.;

( 11.7)

where (jJ; is the ith orthogonal coefficient for a given speaker (averaged over all the speaker's
training frames) and 0; is the ith test coefficient from the vector yTb;, where y is the test LPC
vector averaged over all test frames. In practice, p was raised to 14 to allow two extra LPC
poles to model recording and telephone transmission effects, and the four highest-order l/J i

were assumed to represent such effects. Using only the middle six coefficients (<Pi'
5 ~ i ~ 10), recognition of 21 speakers was 94.4% [41]. An increase to 96% was obtained,
at the cost of extra computation, by treating the variances )..; as speaker-dependent parameters
in addition to the <Pi. When the system was trained and tested using different utterances (i.e.,
the TI case), accuracy dropped only to 94%. Subsequent experiments [42] showed that
variations in transmission conditions affected performance, despite the elimination of the
highest four coefficients. Since other recognizers using LPC coefficients have demonstrated
higher accuracy without the need for orthogonal calculations, the orthogonal approach has not
been used recently.

11.3.9 Neural Network Approaches

Neural network (NN) methods have had some success in ASI/V [43]. Instead of simply
training NNs for each speaker (like NN models for words in ASR), the NNs are often
discriminative, trained to model differences among known speakers, which allows a smaller
number of parameters (more efficient to train and test). NN methods are comparable in
complexity and performance to VQ recognizers. The main disadvantage is the need to retrain
the entire network for each new speaker.
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(11.8)

For simplicity, most ASI/V systems use standard speech parameters, e.g., 8-12 LPC
coefficients or 17-20 bandpass filter bank energies [10,32]. Viewing ASI/V as a problem
of separating probability densities in M-dimensional space, however, we can obtain better
results and lower computation by more careful selection of the parameters or features that
make up the space. Ideally, the space should use a few independent features that have similar
small intraspeaker variances and large interspeaker variances, which lead to compact widely
separated clusters for individual speakers [44]. Independent features eliminate calculations for
the off-diagonal elements of W in Equation (11.1), and features of equal weight permit a
Euclidean distance. In practical terms, the features should also be easy to measure, be stable
over time, change little in different environments, and not be susceptible to mimicry [45].
Most systems find it useful to use a parametric speech model (e.g., LPC, HMMs), assuming
some structure or model of speech production, rather than treat acoustic space in an
unstructured fashion. A parametric approach has the advantage of being easier to understand
and of reducing the size of the model (thus minimizing undertraining problems when faced
with limited training and testing data).

One way to select acoustic features for ASI/V is to examine which features correlate
with human perceptions of voice similarity. When multidimensional scaling analysis is
applied to such judgments, the following account for most of the speaker variance: FO,
formants FI-F3 [46], word duration, speaker sex and age [47]. Since sex and age are not
acoustic features, it appears that FO, timing cues, and spectral cues are the most likely
candidates for ASI/Y. Voice individuality is lost if F I-F3 are shifted by 5%, but much larger
variations are tolerated in FO and formant bandwidths [48].

The two sources of speaker variation, physiological and behavioral differences, lead to
two types of useful features. Inherent features are relatively fixed for a speaker and depend on
the anatomy of the speaker's vocal tract. While they can be affected by health conditions (e.g.,
colds that congest the nasal passages), inherent features are less susceptible to the mimicry of
impostors than learned features. The latter refer to the dynamics of vocal tract movement, i.e.,
the way a speaker talks. While learned features can be used to distinguish people with similar
vocal tracts, impostors usually find it easier to fool recognizers that are based on learned
features than those using inherent features [9]. Mimics usually imitate FO (both mean and
variance) and global speaking rate well, but not fine spectral detail. Statistical features based
on long-term averages reflect inherent features more than learned ones and are suitable for TI
recognition [49].

11.4.1 Measures of the Effectiveness of Features for Recognition

One measure of effectiveness for individual features is called the F-ratio [45, 50], which
compares inter- and intraspeaker variances:

variance of speaker means
F = mean intraspeaker variance'

where the numerator is large when values for the speaker-averaged feature are widely spread
for different speakers, and the denominator is small when feature values in utterance
repetitions by the same speaker vary little (the denominator averages intraspeaker variances
over all speakers). The F ratio has been successfully used in the design of ASI/ASV systems.
Although features with higher F ratios do not guarantee fewer errors, the F ratio tends to be
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high for features for which one or two speakers are very different from the rest, which
suggests that F ratios are most useful in eliminating poor features rather than choosing the
best [51].

Generalizing the F ratio to M features and including effects of feature interdependence,
we define a divergence measure as

( 11.9)

where ( )i.j represents averaging over all speakers, I ~ i, j ~ N; J1i is the mean feature vector
for speaker j (averaged over all the speaker's training data); and W is the intraspeaker
covariance matrix. Equation (11.9) can be expressed using the trace function, where Tr is the
sum of the elements along the main diagonal [10], as

(11.10)

using the interspeaker covariance matrix B (with J1 representing (J1i);):

(11.1 1)

The F ratio is a flawed measure, however, because many speaker distributions have
similar means, As a simple example, a feature might give a tight distribution for one speaker
and a wide one for another, but have the same mean. Despite the speaker-discriminating
power of these features, the F ratio would call them useless; similar comments hold for
(common) multimodal distributions. Thus, measures other than the F ratio are preferred [36].

11.4.2 Techniques to Choose Features

A direct way to evaluate the utility of features for ASI/V involves probability-of-error
criteria in a knock-out procedure [50]. Starting with a set of L features, all L possible subsets
of L - 1 features are used in a recognition system to determine which subset yields lowest
error. The feature not used in this best subset is viewed as the least useful feature and is
"knocked out" of consideration. The process is repeated with L - I subsets ofL - 2 features,
etc., leading to a ranking from worst to best features, with the single feature in the last round
being the "best." One study examined a total of 92 features, including formant frequencies
and bandwidths for vowels, resonances during nasals and fricatives, FO statistics and
dynamics, and some timing measurements (e.g., formant trajectory slopes in diphthongs,
voice-onset time for stops) [50]. Among the most useful features were F2 (near I kHz) in In/,
F3 or F4 (1700-2200 Hz) in [in], F2-F4 in vowels, and mean FO. A small test applying the
five best features to recognition of II speakers led to only one recognition error in 320 trials.

For TI applications employing long-term feature averages, a dynamic programming
evaluation procedure [52] can find a set of features having better recognition accuracy than
either a knock-out feature set or a set of LPC reflection or cepstral coefficients (for the same
number of features). A more efficient way to select a set of features than the knock-out
method is the add-on procedure. Initial recognition tests are done with each of L features, one
at a time, selecting the best single feature. Then tests with two features, including the best
one, select the second-best feature. The cycle repeats until the desired number of features has
been chosen or until the recognition error falls below a threshold. Using this procedure, one
study [51] found the following features most useful: minimal F2 and maximal F1 in an /arI
trajectory, minimal F2 during /01 and / :J j/ and minimal F3 in /3-/.
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11.4.3 Spectral Features

Spectral features (e.g., formant center frequencies and bandwidths) in specific sounds
tend to be very useful for ASI/V [3, 44, 53] . In addition to the features noted in the last section,
formants in retroflex vowels [54] and nasals [16, 20] are said to yield good recognition
performance. Vowels, nasals, and fricatives (in decreasing preference) are often recommended
for ASI/V because they are relatively easy to identify in speech signals and their spectra contain
features that reliably distinguish speakers. Nasals have been ofparticular interest because the nasal
cavities of different speakers are distinctive and are not easily modified (except by colds). The
difficulty of locating poles and zeros during nasals has hindered their application to ASI/Y: but
one study found nasal coarticulation between Iml and an ensuing vowel to be more useful than
spectra during nasals themselves [55]. During [tu], the tongue moves in anticipation of the
ensuing vowel and makes a rapid movement that is difficult for speakers to consciously modify.
The difficulties of phone segmentation in TO cases and of phone identification in TI applica­
tions have led many recognizers to avoid examining specific sounds and to use log-term spectral
averages or general spectral distance measures during template matching.

The high-frequency end of speech spectra (3-8 kHz) has been suggested as robust for
ASI/V: less dependent on phonetic information than the lower F I-F3 range, more robust
against echoes, and hard to mimic [56]. However, this range is not preserved over the
telephone and is not robust to noise, due to weaker speech energy at high frequencies. For
telephone speech, including fine structure features of formant amplitude modulation and
glottal pulses appears to help, but requires a formant estimator [57].

11.4.4 Prosodic Features

Both speech and speaker recognition rely primarily on spectral features, but ASI/V has
made more use ofprosodics (FO in particular) than ASR has. Mean FOaveraged over all test data
from an unknown speaker is often used as a simple feature to classify speakers into broad groups
(e.g., male adults, female adults, children). The dynamics ofFO as measured in a contour over
time, however, may be a more powerful feature in TO recognition [45, 58, 59], although some
measures ofFO appear to be highly variable over different recording sessions [50].

One study sampled FO at 40 equal intervals in an all-voiced utterance averaging 2 s
(Figure 11.7) and then compressed those 40 features via a Karhunen-Loeve transformation
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Figure 11.7 Pairs of pitch period
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speakers saying "May we all learn a
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(KLT) into 20, which accounted for 99.5% of the variance [60]. With these 20 features, the
Mahalanobis distance attained 97% recognition for ten speakers, while Euclidean and
correlation measures gave only 68-70%. Using instead the first four moments of the FO
values (statistical, not dynamic, measures) yielded 78% recognition. These results exhibit the
utility of both dynamic FO data and the Mahalanobis distance. To put the utility of FO in
perspective, however, a feature set of 12 cepstral parameters needed only 0.5 s of these 2 s
utterances to achieve 98% accuracy [17l Thus, use of a set of spectral features is more
powerful than prosodic methods for ASI/~ While FO dynamics should be useful, some
studies have found only mean FO to be a reliable speaker cue over time [50]. The use above of
the KLT is not typical for ASI/Y: both in teons of expense and performance (the KLT is
optimal for representing classes with the same mean, but not for class discrimination) [36].

FO and energy provide two TD ASI/V features that are partly independent and simpler
to obtain than spectral features [9]. Recognition rarely exploits the third prosodic, duration,
even though phone durations and speaking rate are distinctive aspects of speakers. Lack of
knowledge of how speakers use durations is evident in poor durational models for speech
synthesis, and it is not surprising that duration is little used in ASI/V One study showed good
recognition by avoiding having to model phone durations, instead simply calculating 40
statistical timing measures dealing with "speech bursts" (times when energy exceeds a
threshold) [61]; for a fixed text, the pattern of such bursts reflects speaking style in terms of
rate and segment durations. Other studies have shown the usefulness of word durations, voice
onset time [45], and formant slope in diphthongs [50] to ASI/V

11.5 SYSTEM DESIGN

In ASR, task difficulty is measured in terms of vocabulary size, perplexity, and confusability
of words based on phonemic similarity. For ASI/Y: however, the "vocabulary" is a set of
speakers, whose characteristics are much more difficult to describe than the phonemic
compositions of words. A vocabulary of yes-no is clearly easier to recognize that one of
B-P, but only unreliable human perceptions of voice similarity can provide a measure of the
inherent difficulty of discriminating two voices. Comparing ASI/V experiments using
different sets of speakers is difficult, since one study may use a homogeneous set of speakers
(e.g., one sex, narrow age range, raised in a small geographical area) while another uses a
heterogeneous set (e.g., males and females of varying ages and dialects); the latter yields
much higher recognition accuracy. Another factor limiting the utility of many ASI/V studies
is that many employ less than 100 speakers [9, 62].

11.5.1 Data Collection

Besides speaker selection, the time span over which training speech is collected is of
crucial importance to ASI/V performance. Speaking style often changes substantially over
the course of a day, from day to day, and over longer periods of time. Experiments using
reference and test data from the same recording session usually yield high recognition
accuracy (e.g., using the TIMIT database), which is misleading since practical applications
often compare test data with reference data that were obtained much earlier. Performance
usually decreases (often dramatically) as the interval between training and testing increases
[22]. Reference data must be updated periodically for best results [37]. Some systems consider
each recognized utterance as new training data, revising the reference templates to reflect
changes in a person's speaking style over time. For people who use an ASV system
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infrequently, each test utterance should revise the reference models, whereas with frequent
users computational constraints might dictate less frequent updating (e.g., once a week). In
one adaptive system, customer rejection is 10% in the first few trials after initial training, but
then quickly drops to 1%, and gradually declines to 0.25% after 10,000 trials [6].

In any pattern recognition task, training and test data should be kept separate. If the
same utterances are used to train and test a recognizer, artificially high accuracy results [63].
With common training and test data, it is difficult to know whether the system has been
designed to take advantage of specific speaker characteristics that may not be reliable for new
data. Given K utterances per speaker as data, a common procedure trains the system using
K - 1 as data and one as test, but repeats the process K times treating each utterance as test
once. Technically, this leave-one-out method designs K different systems, but it verifies
whether the system design is good using a limited amount of data, while avoiding the
problems of common train and test data.

11.5.2 Sequential Decision Strategy

Most ASV applications require real-time processing, where the system responds
immediately to accept or reject a speaker. Many systems employ a sequential decision
procedure in which borderline decisions are postponed pending further test input. Rather than
use a single threshold to accept or reject, two thresholds divide the distance range into three
choices: accept if the distance falls below the lower threshold, reject if it's above the higher
threshold, but ask for more input otherwise. Such an approach allows shorter initial test
utterances and faster response time, while avoiding errors in close cases. One study found
30% and 73% improvement in error rates by delaying decisions in 5% and 100/0 of the test
trials, respectively [37].

For example, the TI system samples utterances of four monosyllables every 10ms
with 14 bandpass filters uniformly spaced from 300 to 3000 Hz [6]. Templates consist of 24
14-dimensional spectral vectors (10.8 kbit/speaker): six from each syllable, spaced at
20 ms intervals centered around the time of maximum energy in each syllable. In one
evaluation of this system using 50 speakers and 70 impostors, the error rate was 1.60/0 with
one test phrase, but it dropped to 0.42% and 0.23% with two and three phrases, respectively
[9]. A sequential decision method averages 1.6 phrases per test; customers are rejected and
impostors accepted with rates under 1% [6].

11.5.3 MUltiple-stage Recognition

In ASI, computation and response time usually increase linearly with population size
(i.e., the number of speakers whose models are stored) because each speaker's model must be
examined. One way to minimize computation is to set up a hierarchy of reference patterns so
that speakers are clustered into groups [64, 65] that can be rapidly identified from a test
utterance; e.g., speakers could be classified according to mean FO so that only a relatively
small subset of speakers whose FO is close to that of the test need be examined further. The
concept is very similar to the idea of cohorts in speech recognition, where reliable coarse
segmentation and feature extraction eliminate most of the vocabulary from consideration and
where finer spectral analyses choose the response from among the remaining alternatives. For
ASI/~ cohorts often contain both similar and dissimilar impostors, using groups well spread
out in acoustic space, to reduce redundancy in the background speaker set. Pooled models
based on speaker similarity seem to be better than individual cohort models [66].
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One ASI study used a two-stage approach where partitioning via mean FO was followed
by a more computationally intensive analysis involving autocorrelation coefficients, without
significant increase in error rate [67]. The multistage method may also help in recognizing
speakers with varying dialects. If speakers can be partitioned by dialect, mean F2 and certain
prosodic features have been shown to be effective in distinguishing accented voices [68].

One method judges speaker similarity by a log likelihood distance

- - (e(XAI;~A) P(XBIAB))
d(/·A , I-B) = log\p(XAli'B) P(XbJ}-A) •

where XA and XB are feature vectors from two speakers A and B, respectively, and AA and AB
are their speaker models [69]. Using a universal background model, trained once for
customers, and 2048 Gaussian mixtures (vs 128 in individual speaker models), this study
found that only the top five mixture components were needed to model each frame.

11.5.4 Effects of Different Communication Channels (t)

Since many ASI/V applications involve telephone speech or speech subject to other
environmental distortions, the effects on recognition accuracy due to environment must be
examined. We noted earlier that cepstral representations have the advantage of being invariant
under linear distortions, suggesting that variation in cepstral coefficients about their means
might be good ASI/V features. Among the distortions that a telephone link introduces is
bandpass filtering, preserving speech only in the 300-3200 Hz range. Successful ASljVon
such limited-spectrum speech has been demonstrated using filtered logarithmic spectra: the
differences of log spectra between successive time frames, smoothed by a lowpass filter to
eliminate the effects of pitch period excitation [42].

Telephone distortions, however, are not limited to bandlimiting, and subsequent studies
using real telephone speech indicate difficulties for ASI/~ A large percentage of calls for
customer service contain competing speech, music, or traffic noise [70]. Typical long-distance
telephone links have signal-to-noise ratios in the range of 19-33 dB (with an average of
27 dB) [14]. A major cause of mismatch is the type of handset, especially carbon vs electret
microphone; one study found large performance gain with a handset normalization procedure
[69].

Because different links demonstrate large variability in quality compared with that
during transmission over one link, it is important for telephone ASIjV to train and test using
different links [63]. One TI study, using ten speakers and cepstral features, found the error rate
increasing from 17% to 560/0 when test data were drawn from a different link than the training
data [14]. Normalizing each feature over a recording session (by subtracting off its mean) to
yield channel-invariant features reduced this degradation but also decreased net performance
because useful speaker information was also eliminated. Multichannel error rate was reduced
to 32% by incorporating a Gaussian model to account for transmission effects.

In addition to handling telephone speech, ASI/V has been attempted on digitally coded
speech, which is becoming popular for voice transmission. One TI study tested several types
of coded 4 kHz speech using 20 speakers and 20-dimensional LPC feature vectors consisting
of 10 reflection coefficients and 10 cepstral coefficients [71]. Compared with a 95% accuracy
for uncoded speech, performance generally fell with bit rate, with 2.4 kbit/s LPC-coded
speech yielding 80%. These results are comparable to human recognition of coded voices
[72]. Waveform-coded speech gave relatively poor results (16 kbit/s CVSD: 800/0; 9.6 kbit/s
APe: 75%) because the quantization noise degradation led to poor LPC modeling. A



456 Chapter 11 • Speaker Recognition

recognition method using features- based on parameters other than LPC might do better on
such speech; e.g., ASV performance using only FO and gain features appears to be unaffected
by either telephone or coding (LPC or ADPCM) distortions [73], which suggests the utility of
prosodies as robust recognition features.

11.6 LANGUAGE AND ACCENT IDENTIFICATION

In addition to recognizing what is being said and who is talking, another application for
speech processing is language identification (LI) [5]. Telephone operators receiving an
emergency call are sometimes confronted with a caller speaking an unknown language.
Finding people knowledgeable in different languages to understand such a speaker is
awkward; hence an automatic estimation of the language, based on several seconds of
speech, can be very useful. Like ASI/~ LI exploits different aspects of speech, including
broad and narrow phonetic and prosodic features, and uses methods ranging from HMMs and
ANNs to expert systems. The OGI telephone corpus is a popular database of more than 11
languages [74]. As a baseline, limited perceptual experiments of humans identifying ten
languages from 6 s excerpts found performance around 70%, but still improving with
experience [74].

LI typically uses HMMs with units of phones or broad phonetic classes (e.g., stop,
nasal), and uses language models based on bigram sequences of such units (phonotactics)
(and not with text-based language models, which are hard to develop for text-independent
LI). Since languages differ in which phonemes they use, parallel use of phone-based HMMs
for several languages, feeding into phoneme-unit language models for II languages had II%
errors, using 45 s utterances [5]. With shorter utterances, error rates increase (e.g., 51o~ with
2 s, 40% with 10 s), although bilingual distinctions (e.g., French vs English) are feasible with
only 2 s (76%) [75]. In addition to phonotactics, use of acoustic-phonetic and prosodic cues
increases accuracy, especially for short utterances [76].

Another application concerns ASR in multilingual countries, where speakers are free to
choose one of two or more languages. Rather than design a universal ASR system to handle
several languages at a time, it may be more efficient to first identify the language being
spoken, and then to apply a language-specific ASR system. However, some systems do the
inverse, i.e., employ language-dependent, phone-based speech recognizers as a first step to LI
[77].

Better ASR accuracy occurs with more specific (e.g., speaker-dependent) models. For
speaker-independent applications, however, it is impossible to precede ASR with ASI (to
permit use of speaker-dependent models). Nonetheless, automatic identification of some
speaker characteristics, e.g., gender [75, 78], accent, and language, that may be reliably
estimated from their speech allow the use of more specific models in ASR (e.g., many ASR
systems use two sets of models trained exclusively by male and female talkers). Using phone­
based likelihoods, 97°~ gender identification is possible with one word of speech (e.g.,
400ms) [75].

One study using strings of 7-8 words classified four different accents of English at 93%
accuracy, allowing use of accent-specific models in ASR, which improved accuracy
substantially [4l This study also noted that the 1500-2500 Hz range (F2-F3) was most
important, and suggested a non-mel-scale frequency mapping. (In general, the mel-scale is
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used less often in ASI/V than ASR.) Accent-estimation algorithms often have accuracy close
to that for humans [79].

11.7 SPEAKER RECOGNITION BY HUMANS

People can reliably identify familiar voices, although error rates often exceed 20% for brief
utterances [80]. About 2-3 s of speech is sufficient to identify a voice, although performance
decreases for unfamiliar voices. Speaker recognition is one area of artificial intelligence
where machine performance can exceed human performance: using short test utterances and a
large number of speakers, ASI/V accuracy often exceeds that of humans. This is especially
true for unfamiliar speakers, where the training time for humans to learn a new voice well is
very long compared with that for machines [81]. Constraints on how many unfamiliar voices a
person can retain in short-term memory usually limit studies of speaker recognition by
humans to about 5-10 speakers. Such small speaker sets lead to large statistical variation from
one set to another because distinctiveness and degree of familiarity of voices often vary
widely across speakers. While perceptually rated scales of distinctiveness (i.e., whether a
voice stands out) appear to have little correlation with ability to recognize a voice, recognition
performance using both uncoded and LPC-coded speech increases dramatically with more
familiarity between listener and speaker [72, 82].

One review of speaker recognition by humans [83] notes that many studies of 8-10
speakers (work colleagues of the listening subjects) yield in excess of 97% accuracy if a
sentence or more of the test speech is heard. Performance falls to about 54% (but still
significantly above chance levels) when duration is short (e.g., less than 1s) and/or distorted
(e.g., severely highpass or lowpass filtered). One study of 29 familiar speakers had 31%, 66%,
and 83% recognition with one word, one sentence, and 30 s of speech, respectively [84).
Performance also falls significantly if training and test utterances are processed through
different transmission systems [73]. A study using voices of 45 famous people in 2 s test
utterances found only 270/0 recognition in an open-choice test, but 700/0 recognition if listeners
could select from six choices [83]; if the utterances were increased to 4 s, but played backward
(which distorts timing and articulatory cues), 57.5% accuracy resulted. Widely varying
performance on this backward task suggested that cues to voice recognition vary from voice
to voice and that voice patterns may consist of a set of acoustic cues from which listeners
select a subset to use in identifying individual voices.

Recognition often falls sharply when speakers attempt to disguise their voices [82] (e.g.,
59-81 % accuracy depending on the disguise vs 92% for normal voices in one study [85]).
This is reflected in ASI/Y: where accuracy decreases when mimics act as impostors [59].
Humans appear to handle mimics better than machines do, easily perceiving when a voice is
being mimicked (e.g. 90% accuracy [86]). If the target (intended) voice is familiar to the
listener, he often associates the mimic voice with it but does not confuse them. Certain voices
are more easily mimicked than others, which lends further evidence to the theory that
different acoustic cues are used to distinguish different voices [83].

The ability to identify speakers via voiceprints (spectrograms of their voices) has been
of legal interest [2]. However, voiceprints cannot reliably identify speakers [6, 87]. Experts
may be able to match reference spectrograms to test spectrograms by the same speaker to a
certain degree, but performance often degrades substantially if speakers use disguise. For
example, one study of 15 speakers used spectrograms of nine different monosyllabic words
excerpted from different sentences: with normal voices, experts achieved 57% accuracy;
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when speakers spoke very slowly, accuracy fell to 43%; when they used free disguise,
recognition was only 220/0 [88]. Furthermore, certain speakers were considerably more
difficult to identify than others.

11.8 CONCLUSION

It is useful to examine the lack of commercial applications (until very recently) for ASljV
compared with the greater success for ASR. Both speech and speaker recognition analyze
speech signals to extract FO and spectral parameters such as LPC or cepstral coefficients.
Furthermore, both often employ similar evaluation methods, distance measures, and decision
procedures. Speech and speaker recognition, however, have different objectives, e.g.,
selecting which of M words was spoken or which of N speakers spoke. Speech analysis
techniques have primarily been developed for phonemic analysis, e.g., to preserve phonemic
content during speech coding or to aid phoneme identification in ASR. Our understanding of
how listeners exploit spectral cues to identify human sounds far exceeds our knowledge of
how we distinguish speakers. For TD ASljV, using template matching methods borrowed
directly from ASR yields good results in limited tests, but performance decreases under
adverse conditions that might be found in practical applications. For example, telephone
distortions, uncooperative speakers, and speaker variability over time often lead to accuracy
levels unacceptable for many applications.

Studies that have suggested phonetic features useful for ASIjV, e.g., specific formants
in certain phones, may eventually result in improved ASIjY, but the problems of phone
spotting have led to few studies exploiting such specific features. As ASR techniques
improve, perhaps ASIjV will adopt them to yield parallel improvements. Even more than
in ASR, statistical methods have dominated ASljV research. High recognition accuracy (e.g.,
1.1o~ error in ASI [36]) comes from gathering a large number of speech features and
evaluating their utility in ASljV via the weighting matrix in a Bhattacharyya or Mahalanobis
distance. These methods yield no insight into the speaker recognition process, but they serve
ASI/V objectives to a certain extent.

Practical recognition applications for ASV now use TD techniques. The more difficult
task of ASI is often impractical because of the tendency of increasing error probability as
population size increases. Even for large populations, current ASV techniques appear to yield
sufficient accuracy for practical applications where high-quality speech is available. For
further reading, there are several good reviews of the ASIjV field [6, 9, 10, 32, 89, 90]. In
particular, see Table 2 in [36] showing progress over 25 years.

PROBLEMS

P11.1. (a) How do recognition methods differ between speech and speaker identifica­
tion?

(b) Why is recognition using statistical features difficult for real-time applications?
(c) Why is the use of the Mahalanobis distance more common in speaker recognition

than in speech recognition?
(d) What advantages do vector quantization methods have for real-time speaker recogni­

tion?

PI 1.2. Why is speaker recognition easier when the same text is used for training and testing?
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P 11.3. (a) Why is speaker identification more difficult than speaker verification?
(b) For both identification and verification, explain how different types oferrors might be

reflected in system performance measures.

P 11.4. (a) Explain the advantages and disadvantages of exploiting either physiological or
behavioral differences between speakers for recognition.

(b) Which acoustic features give the best speaker recognition performance?

P 11.5. Why is it important not to use the same data for training and testing recognizers?

P 11.6. If a recognizer cannot make a reliable decision based on a test utterance, what procedures
may be followed?



Appendix: Computer Sites
for Help on Speech

Communication

The list below notes many internet sites (WWW-World Wide Web) providing information
(and occasionally software) on topics found in this book. This list will be updated periodically
on the site affiliated with this book (www. inrs-telecom. uquebec. ca/users/
spchww/English/persons/dougo/book.html). Grateful acknowledgment is
given to Dr. Philip Rubin (Haskins Laboratories, New Haven, CT) for the original compila­
tion of much of this list (presented at the 136th Meeting of the Acoustical Society of America,
Norfolk, VA, Oct. 1998). Listings with multiple entries per site are abbreviated (e.g.,
www.x-/y-/z means URLs www.x/y and www.x/z).

A1 RESEARCH ORGANIZATIONS

www.haskins.yale.edu/haskins
-/asaper98.htm: Haskins Laboratories (the source of much of this list)
-/heads. html: Talking Heads synthesis

www.speech.cs.cmu.edu
- / comp. speech: Carnegie Mellon University: very useful site for speech information
-/cgi-bin/cmudict: eMU dictionary on the WWW

c. gp. es . emu. edu: 51 03/progIwebs ter: Webster's dictionary online
www.des.shef.ae.uk

-I re sea rehl i lash: University of Sheffield (UK) speech projects and lexical data­
bases

-I researchl groups / spandh/pr / ShATR/ ShATR. h tml: Simultaneous-speaker
corpus

-/---martin: auditory modelling and ASR in noise (Martin Cooke)
www. icp. inpg. fr: Institut de la Communication Paree (Grenoble)
ophale.iep.inpg.fr

461
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-Iex . h tml: ICP Museum of Speech Synthesis
-/esca/esca.html: European Speech Communication Association (ESCA)
-Iesca/labos . h tml: ESCA list of research sites

cris tal. icp. grenet. fr IRela tor Ihomepage. h tml: RELATOR project:
linguistic resources

www. cse. ogi. edu/CSLU: Center for Spoken Language Understanding (Oregon)
-/research/TTS/research/sing. html: Lyricos singing speech synthesis
-/HLTsurvey/HLTsurvey.html

speech. cse. ogi. edu/pub/releases: speech database
- / tools: OGI (Oregon Graduate Institute) Speech Tools

www.Iirnsi.fr/Recherche/TLP: LIMSI ASR(France)
www.tue.nl/ipo

- / s 1 i . h tml: IPO (Institute for Perception Research-Netherlands)
-/hearing/webspeak.htm: very useful site

mambo. ucsc. edu/psl: UCSC Perceptual Science Laboratory (PSL)
- / smu 51 smu 5 • h tml: UCSC PSL Museum of Speech
-/dwm/da.html: McGurk Effect Demo (UCSC PSL)
- / fan. h tml: UCSC PSL Facial Animation
-/psl/speech.htrnl: list of web sites for speech

www. s Ls . lcs. mi t. edu: Spoken Language Systems Group at MIT
www.hip.atr.co.j p: ATR (Japan) human information processing
www-csli.stanford.edu/csli/index.shtml: speech and language at Stanford

University
www.cstr.ed.ac . uk: Center for Speech Technology Research (Edinburgh)
www.speech.kth.se: KTH Department of Speech (Stockholm)
www.media. mi t. edu: MIT MediaLab
rieweb.mit.edu/groups/g-spe.htm: MIT RLE Speech Communications Group
cuneus. ai .mit. edu: 8000/research/miketalk/miketalk. html: Mike Talk
natsci.ucsc.edu/acad/scicom/SciNotes/9601/Speech/OOIntro.html
www.itl.atr.co.jp/cha tr: ATR CHATR Speech Synthesis
www.uni-koeln.de/phil-fak/phonetik/synthese/index_e.html:

Articulatory Synthesis
www.cs.bham.ac.uk/...-.jpi/museum . h tml: John Iles' overview of TTS
ncvs. shc . uiowa . edu: National Center for Voice and Speech
www.psy.uwa.edu.au/uwa_mrc.htm: MRC Psycholinguistic Database
www.fb9-ti.uni-duisburg.de/demos/ speech. h tml: Multi-Lingual
wwwtios. cs. utwente. nl/say: Web-based TTS
www-gth.die.upm.es/research/synthesis/synth-form-concat.html:

Spanish TTS
www.tik.ee.ethz.ch/cgi-bin/w3svox: German TTS
www. icsl . ucla. edu Zr-apap l z'pro j ects/mri . h tml: UCLA speech analysis
www.york.ac . uk/"'-'rpfl/yorktalk. html: YorkTalk (University of York)
www-dsp. rice. edu/ software: programs for Digital Signal Processing (Rice Univer-

sity)
spib. rice. edu 1spiblselect_noise. h tml: NOISEX-92 database

www.isip.msstate.edu
- / software: Discrete HMM demonstration software
- /publica tionsl 19961 speech_recogni tion_short_course: Speech
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Recognition Course Notes
www.cstr.ed.ac . uk: Centre for Speech Technology Research, Edinburgh University
theory.lcs.mit.edu/---fftw: free FFT software
www.cs.tu-berlin.de/---j u t ta/toas t. h trnl: GSM 06.10 Compression
asll. ikp. uni-bonn. de/---tpo/Hadifix. en. html: Hadifix German speech synth­

esis
www.speech.kth.se/NICOI index. h trnl: NICO Artificial Neural Network Toolkit

for ASR

A2 RESEARCH ASSOCIATIONS

www . Ide. upenn . edu: Linguistic Data Consortium (source of many databases)
www.esea-speech. org: ESCA-Speech Communication Association (sponsor of the

biannual Eurospeech conference)
www.humnet.ucla.edu/humnet/linguistics/faciliti/phonlab.htm:
UCLA Phonetics Lab
www.iep.grenet.fr/ELRA/home/h tml: European Language Resources Association
www.avios.com: American Voice Input/Output Society (AVIOS)
www. cs . col umbia. edu: 80/---acl: Association for Computational Linguistics (ACL)
cslab.anu.edu.au/---bruce/assta: ASSTA: Australian Speech Science and Tech-

nology
www . n is t . gov: National Institute of Standards and Technology (NIST).

A3 JOURNALS DEALING WITH SPEECH COMMUNICATION

oj ps . aip. org I journals I docl JASMAN-home/ top. h tml: Journal of the Acous­
tical Society of America

www.elsevier.com/loca tel speeorn: Elsevier Science: Speech Communication
journal

www.apnet.eom: Academic Press Limited: Computer Speech and Language Journal
www.yahoo.eom/Scienee/Cornputer_Seience/Artificial_Intelli­
gence/Na tural_Language_Processing/Speech: Yahoo's speech site

A4 COMMERCIAL SYNTHESIS AND RECOGNITION

www.att.com/aspg: AT&T Advanced Speech Products Group
www.bell-abs.com/proj ectl t ts/voices . h tml: Bell Labs Text-to-Speech

Synthesis
www.entropic.com: Entropic (truetalk and esps/waves)
www.kayelemetrics.com: Kay Elemetrics (Computerized Speech Lab)
www.apple.com/macos/speech: Apple's TTS and ASR
www.sens.com: Sensimetrics TTS
www.voieerecognition.eom: 21st Century Eloquence: ASR
www.acuvoiee.com: Acuvoice, Inc. TTS
www.arteomp.com/speak . h trn: Advanced Recognition Technologies, Inc: smART­

speak
www.altech.com: Applied Language Technologies, Inc.: SpeechWorks
www.arteomp.com: ART: Advanced Recognition Technologies, Inc
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www.artsys.com: Articulate Systems PowerSecretary speech recognition
www.crl.research.digital.com/projects/speech/plan.html:

Cambridge Research Lab.
www.interval.com/...-.malcolm/pubs . h tml: Auditory and signal processing

(Malcolm Slaney)
www.bbn.com/products/speech/recog.htm: BBN(ASR)
www.brite.com: Brite: Computer Telephony Integration & Interactive Voice Response
www.ptt-telecom.nl/cave: CAVE: Caller Verification
www.bestspeech.com/index.html: Berkeley Speech Technologies TTS
wwwtios.cs.utwente.nl/say: TTS
www.surftalk.com: Digital Dreams ASR
www.dragonsys.com: Dragon Systems (ASR)
www.cis.rl.ac . uk/proj /psych/eat/eat: Edinburgh Associative Thesaurus
www.elan.fr: Elan Informatique: ProVerbe Speech Synthesis Engine
www.eloq.com: Eloquent Technology (TfS)
www.entropic.com/htk. h tml: Entropic's KTK (Hidden-Markov Model Toolkit)
www.elis.rug.ac.be

-/t&i: ELlS (Belgium) US
-/ELISgroups/speech/research/eurovocsold.html: Eurovocsspeech
samples

www.software.ibm.com/speech: IBM ASR (ViaVoice)
www.hijinx.com.au: InterFACE from Hijinx
www.icsi.berkeley.edu:lnternationaIComputerScienceInstituteinBerkeley.CA
www.vocaltec.com: Internet Phone from VocalTec
www.keywareusa.com: Keyware Technologies Speaker Verification
www.labs.bt.com/innovate/speech/laureate: TTS
www.lhs.com: Lemout and Hauspie (Belgium: TTS, ASR)
www.islandnet.com/jts/listen2.htm: Listen2 TTS
www.bell-labs.com/project/tts: Lucent Technologies multilingual TTS
www.lowtek.com/macyack: MacYack Pro TTS
www.mathworks.com: Matlab plus Signal Processing Toolbox
tcts. fpms. ac. bel synthesis/mbrola. h tml: M;BROLA speech synthesis
www.research.microsoft.com/research/srg: Microsoft TTS and ASR
www.firstbyte.davd.com: First Byte ASR
www.nortelnetworks.com/products/dirasst: Nortel's ASR for telephone

directory assistance
www.nuance.com: Nuance Communications ASR
www.bellcore.com/ORATOR: Orator from Bellcore: TTS
www.speech.be.philips.com: Philips ASR
www.quadravox.com: Quadravox Speech Processing Products
www.promotor.telia.se/infovox/product.htm: Infovox multilingual TTS
www.voiceautomated.com: SCI VoiceAutomated ASR
www.sensoryinc.com: Sensory Circuits: les for TTS and ASR
agoralang.com/signalyze.html: Signalyze speech analysis from InfoSignal
www.sunlabs.com/research/ speech: Speech Applications at Sun Microsystems

Labs
www.speechtech.com/home / speech tech: Speech Technology Research Ltd.
www.voicecontrol.com/speechid . h tml: Voice Control Systems, Inc.
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www.srapi.com: SRAPI: Speech Recognition API
tcts. fpms. ac. be: TCTS: MBROLA TTS and SPRACH ASR
www.t-netix.com: T-Netix speaker verification for cellular communications
www.dspg.com: TrueSpeech capability for WWW pages
www.verbex.com: Verbex: Listen for Windows speech recognition
www.dfki.uni-sb.de/verbmobil: Verbmobil project home page
www.ti.com: Texas Instruments
www.wildfire.com: Wildfire-an Electronic Assistant
www.pcww.com/index . html: WinSpeech text-to-speech application
www.cogsci.princeton . edu Zr-wn: WordNet home page

A5 SPEECH CODERS
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www.sipro.com
-/acelp.html: ACELP Codecs from Sipro Lab Telecom Inc.
-/g729a.html: G.729 Annex A from Sipro Lab Telecom Inc

www.arl. wus tl . edul """j af I Lpc: LPC- 10 speech coding software
www.itu.ch/i tudocl i tu-tl reel 9 I g700-7 99. h tml: lTV standards for speech

coders (G ... )
adrnii.arl.mil/"""fsbrn/phamdo/speech_demo.html: Speech Coding Demon­

stration

A6 WWW SITES OFFERING SPEECH INFORMATION, DATA AND
PROGRAMS VIA FTP (FILE TRANSFER PROTOCOL)

File downloading is done without WWW access, usually by typing ftp X, where X is an
address below (e.g., as a UNIX command). For logging in, type anonymous as the usemame
and then one's e-mail address as an informal password.
svr-ftp.eng.cam.ac.uk/pub/comp.speech

-/recognition/AbbotDemo: ASR software
-/recogni tion/hmm-l. 03. tar. gz: Hidden Markov Model software
- / recogni tionl recnet-l . 3. tar. z: recurrent neural network ASR software
- I dictionar ies/beep. tar. gz: BEEP pronunciation dictionary
-/dictionaries/homophones-l. 01. txt: Homophone list
- I analys isl f ft-s tuff. tar. gz: FFT Software
- I coding IG711_G7 21_G72 3. tar. z: G711, G721, G723 speech coding software
- I coding I celp_3 . 2a. tar. gz: CELP speech coding software
- / coding I shorten. tar. gz: shorten audio-file compression software
- / s yn thes i s I kla t t . 3 . 04 . tar. gz: Klatt speech synthesis software
-/synthesis/rsynth-2. o. tar. gz: rsynth: speech synthesis software
-/synthesis/english2phoneme. tar.gz: Text to phoneme program
- / in f 01 DIY_SpeechRecogni tion: Do-it-yourself speech recognition
- / in f 0 I SpeechRecogni tionProduc ts: Lists of speech recognition products

wocket. van tage. gtc. com/pub/ standard_dictionary: comprehensive list of
American words

www.cwi.nl/ftp/ audiol adpcm. shar: 32 kbps ADPCM
ftp.cwi.nl/pub/audio/ccitt-adpcm.tar.Z: G.723, G.721, A-law, 1l-1aw and

linear PCM
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ftp. apple. com/pub/malcolm: Auditory Toolbox for Matlab
ftp. cs . j hu , edu/pub/br iII: Brill part-of-speech tagger
ftp. super. org/publ speechlcelp_3. 2a. tar. z: CELP 3.2a and LEC-IO speech

coders
ftp. cs. emu. edu/proj ect/ fgda taldiet: CMU dictionary
magen ta. com/pub/ cyberphone: CyberPhone internet voice communication
sunsite.unc.edu/pub/Linux/apps/sound/speech/ears-O.26.tar.gz:

EARS ASR software
ftp. elan. fr /Voice_products: Elan Infonnatique (TTS-France)
ftp.cstr.ed.ac.uk/pub/festival: Festival Speech Synthesis System
ftp. coas t. net/ simtel/msdos / c/mixfft03. zip: FFT Software
dspsun. eas. asu. edu/pub/ speech/ ldcelp. tgz: G.728 CELP Compression
ftp.cs.tu-berlin.de/pub/local/kbs/tubmik/gsm/gsrn-1.0.7.tar.gz:

GSM 06.10 Compression
ftp.mv. com/pub/ddj 11994 . 12 Igsm-lOS. zip: GSM 06.10 Compression
asll. ikp. uni-bonn. de/pub/hadifix/hadidemo. zip: Hadifix speech synthesis

demo software
ftp. vocal tee. com/pub/phone09. exe: Internet Phone from VocalTec
ftp.informatik.uni-ulm.de/pub/NI/jialong/spkrtool.zip: Speakcr

Recognition
ftp.mrc-apu. cam. ac. uk/pub/aim: John Holdsworth's Auditory Modeller
pi tch. phon. ucl. ac. uk/pub/kpe80. src. tar. z: Klatt Synthesis and Parameter

Editor
ftp.sanpo.t.u-tokyo.ac.jp/pub/nigel/lotec/lotec.tar.Z: Lo~cASR

software
suna.lut.ac.uk/public/hulpo/lutear: Lowel O'Mard's Auditory Modeller
ftp. super. org /pub/ speech/ Ipc10-1. 0 . tar. gz: LPC-I0 speech coding soft­

ware
flp , des. shef . ae. uk/ share

-/ilash/Moby: Moby lexical resources
- / spandh/ShATR: ShATR: A Mulfi-simultaneous-speaker corpus

ftp. tnt. uni-hannover. de/pub/MPEGI audio: MPEG-l and MPEG-2 audio soft­
ware

ftp.ecett.fr/pub/mpeg
-/mpeg2: MPEG-2 audio encoder and decoder at CCETT
-/audio_new: MPEG-l audio layer 1 and 2 decoder and verifier

ftp.iuma.com/audio_utils/converters/source: MPEG-l audio Layer 1 and
2 encoder-decoder

ota. ox. ac. uk/pub/ota/public/dicts/ info: MRC Psycholinguistic Database
and Dictionary

crlftp.nmsu.edu/pub/non-lexical/NL_Software_Registry: Na~r~

Language Software Registry
usc. edu/pub/C-numanal: Numerical analysis software: including FFT
ota.ox.ac.uk/pub/ota/public/dicts/710: Oxford Advanced Leamer's

Dictionary
ftp. islandnet. comm/j ts/pam_en3c. zip: talking personal assistant
ptolemy. berkeley. edu/pub: Ptolemy signal processing software
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ftp.isip.msstate.edu/pub/software/signal_detector/
sigd_v2. 2. tar. gz: End-Point Detection
ftp. coas t. net/SimTel/msdos /voice: SIMTEL speech software
evans.ee.adfa.oz.au/mirrors/tibbs/applications/spchsyn.exe:

Speech synthesis
wilma.cs.brown.edu/pub/speak.tar.Z: TTS
shark. cse. fau. edu/pub/ src/phon. tar. Z: Text-to-phoneme program
ftp. doc. ic. ac. uk/packages/unix-c/utils/phonerne. c. gz: Text-to-

phoneme software
ftp.cs.keio.ac/jp/pub/NeXT/source/TheBigMouthl.O.tar.Z: NeXT

speech synthesizer
ftp. netcom. com/pub/eb/ebohlrnan: Tinytalk shareware screen reader
ftp. coas t. net/ SimTel /rnsdos /voice/vrnll o. zip: Voicemaker speech synth­

esis

A7 OTHER USEFUL LISTS OF SPEECH SITES

www.aist-nara.ac.jp/IS/Shikano-lab/database/internet-resource/
e-www-si te. html: Shikano's extensive list of WWW sites on speech and acoustics
fonsg3.let.uva.nl

- /We 1come. h trnl: Institute of Phonetic Sciences (Amsterdam)
-/IFA-Features.html
-/Other_pages.html

www.linguistlist.org/associations.html
www.tiac.net/users/rwilcox/speech.html:RussWilcox·slist of Commercial

Speech Recognition
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