-?:_— e e " ] -
o 13 | i A I
| - Wl - TRt
4 s | f 3 1 S o
(i 1 =3 i i L
 — T 0. I i b
i T | = L . 0 &
4 o | B LSRG VN W iR 3
[ Ry e o AT S e e

L0, | AGentle Introduction |4




Theory of Computing

A Gentle Introduction



Theory of Computing

A Gentle Introduction

Efim Kinber

Sacred Heart University

Carl Smith

University of Maryland

Prentice

Hall

——

PRENTICE HALL, Upper Saddle River, New Jersey 07458



Library of Congress Cataloging-in-Publication Data

Kinber, Efim
Theory of computing: a gentle introduction / Carl Smith, Efim Kinber,
p. cm.
Includes bibliological references and index.
ISBN: 0-13-027961-7
1. Electronic data processing. 1. Smith, Carl, 1950 April 25 - II. Title.

QA76 K475 2001
004—dc21 00-024617

Acquisition Editor: Petra J. Recter

Editorial Assistant: Sarah Burrows

Vice President and Editorial Director of Engineering and Computer Science: Marcia Horton
Assistant Vice President and Director of Production and Manufacturing, ESM: David W. Riccardi
Editorial/Production Supervision: Barbara A. Till

Managing Editor: David A. George

Executive Managing Editor: Vince O’Brien

Manufacturing Buyer: Pat Brown

Manufacturing Manager: Trudy Pisciotti

Senior Marketing Manager: Jennie Burger

Marketing Assistant: Cynthia Szollose

Creative Director: Paul Belfanti

Art Director: Jayne Conte

Cover Designer: Bruce Kenselaar

Prentice
ren 1“];(,]1 © 2001 by Prentice-Hall, Inc.
———— Upper Saddle River, New Jersey 07458

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness. The author and
publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation
contained in this book. The author and publisher shall not be liable in any event for incidental or consequential
damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Printed in the United States of America

1098765432
0-13-027961-7

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of ndia Private, Limited, New Delhi
Prentice-Hall of Japan, Inc.,Tokyo

Pearson Education Asia Pte, Ltd.

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro



Dedicated to those who created the material herein
and to those who taught it to us.



Contents

Preface

1 Introduction

1.1 Why Study the Theory of Computing? . . . . . ... ... ... ...
1.2 What Is Computation? . . . . . . ... ... ... ... .. ......
1.3 The Contents of This Book . . . ... .. ... .. ... .......
1.4 Mathematical Preliminaries . . . . .. .. ... ... ... ......
Exercises . . . . . . e e

2 Finite Automata

2.1 Deterministic Finite Automata . . . . .. .. ... ... ... ....
2.2 Nondeterministic Finite Automata . . . . . . ... ... .......
2.3 Determinism versus Nondeterminism . . . . . . .. .. .. ... ...
2.4 Regular Expressions . . . . .. ... ... .. ... . ...
2.5 Nomregular Languages . . . . . . . . . . . . ... ..
2.6 Algorithms for Finite Automata . . . . . ... ... ... ... ....
2.7 The State Minimization Problem . . . . .. ... ... ........
Exercises . . . . . . ..

3 Context-Free Languages

3.1 Context-Free Grammars . . . . . . . . .. . ... ... ... .. ...
3.2 Parsing . . .. ... e
3.3 Pushdown Automata . . . . . . .. . . . ... ... ...
3.4 Languages and Automata . . . ... ... ... ... .. L.
3.5 Closure Properties . . . ... .. ... . ... . ... ... .. ...
3.6 Languages That Are Not Context-Free . . . . . ... ... ... ...
3.7 Chomsky Normal Form . ... ...... ... ............
3.8 Determinism . . . . . . . ..o e e e
Exercises . . . . . . . e e

4 Turing Machines
4.1 Definition of a Turing Machine . . . . ... ... ... ... .. ...

xiii

O U= W L=

67
69
76
79
86
91
94
98
105
110

119



viii

4.2 Computations by Turing Machines . . . . ... ..

4.3 Extensions of Turing Machines . . ... ... ...
4.3.1 Multiple Tapes . . . . . .. ... ... ...
4.3.2 MultipleHeads . . . .. ... .. ......
4.3.3 Two-Dimensional Tapes . . . . .. .. ...
4.3.4 Random Access Turing Machines

4.4 Nondeterministic Turing Machines . . . ... ...

4.5 Turing Enumerable Languages . . ... ... ...

Exercises . .. ... ... ... ... ... . . ...

5 Undecidability

5.1 The Church-Turing Thesis . . . . ... ... ...
5.2 Universal Turing Machines . . . . . . ... .. ..
5.3 The Halting Problem . . . . .. ... ... .. ...
5.4 Undecidable Problems . . . . ... ........
Exercises . . ... ... ... ... .. 0 .

6 Computational Complexity

6.1 The Definition and the Class P . . . . .. .. ...
6.2 TheClass NP . . . . . ... . ...
6.3 NP-Completeness . . ... ............
Exercises . . ... ... ... ... . .. ... .. ...

References
List of Symbols

Index

CONTENTS



List of Figures

1.1

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24
2.25
2.26
2.27
2.28
2.29
2.30
2.31

AFunction . .. .. .. ... e 8
A Finite Automaton . . . .. .. ... ... ... ... 15
State Transition Diagram . . . . . .. .. .. .. ... .. ...... 16
Recognizing Two Consecutive a’s . . . . . . . ... ... .. ..... 16
Recognizing the Complement . . . . . .. .. ... ... ....... 17
Mystery Automaton 1 . . . . . ... .. ... ... ... ....... 17
Mystery Automaton 2 . . . . .. ... oL 18
Recognizing an Even Number of a¢’s and Odd Number of &’s . . . . . 19
The Finite State Diagram of a Newspaper Vending Machine . . . . . 20
Combining Two Automata . . . . . . . . .. .. .. ... ... .... 21
Accepting Alla’sor Allb’s . ... . . ... . . . ... 22
Start and End witha b. . . . . . .. .. ... ... .. ... ..... 23
With Extra States . . . . . ... ... ... ... . L. 24
Multiple Possible Transitions . . . . . . .. ... . ... ... .... 24
Replacement Transition . . . ... .. ... ... ... ........ 25
A New Connection . . . .. . . . .. .. .. 25
AneMove . .. ... 26
An e-Move Eliminated . . . . . . .. ... ... ... .. ....... 26
Segment of a Nondeterministic Finite Automaton . . . . . . . .. .. 27
Corresponding Deterministic Segment . . . . . .. .. ... .. ... 27
Untransformed Automaton . . ... ... ... .. ... ........ 28
Transformed Automaton . . . . . . . . ... ... ... . ....... 29
Recognizing Strings Containing abbab . . . . . . . . ... ... ... 30
Deterministic Version of Figure 2.22 . . .. .. ... .. ... .... 30
Automaton A . . . . ... 32
Automaton B . . . . ... e 32
The Unionof Aand B . . . . . .. ... ... . ... . ... . ..., 33
Concatenationof Land M . . . . ... .. ... ... .. ...... 34
Kleene Starof A . . . . . . . . . .. ..., 34
Singleton Automata . . . . . . . . ... Lo 37
Transformation Step 1 of 5 . . . ... . ... ... ... 37
Transformation Step 20of 5 . . . . . . .. ... 0. 37



2.32
2.33
2.34
2.35
2.36
2.37
2.38
2.39
2.40
2.41
2.42
243
2.44
2.45
2.46

2.47

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
412
4.13
4.14
4.15
4.16
4.17

LIST OF FIGURES

Transformation Step 3of 5 . . . . . . . ... o oo 38
Transformation Step4of 5 . . . .. .. ... o000 38
Transformation Step 50f 5 . . . . . ... ... oL 39
An Expression Diagram . . . . ... ... ... ... ... . ... .. 39
Initial Automaton . . . . . . . . . . . . ... 40
Converted Automaton . . . . . . . . . . .. ... ... 40
Automaton with One Accepting State . . . . ... ... ... .... 41
Steps 1,2and 3. . . . . . .. ... 41
Example Input for Algorithm B . . . . .. .. ... ... .. ..... 42
Node 2 Deleted . . . . . . . . . . . . . 42
Node3deleted . . . . . .. . . . . . ... . ... 42
Final Expression Diagram . . . . . . ... .. ... ... .. ..... 43
Automaton with an Unreachable State . . . . . . .. ... ... ... 49
Without the Unreachable State . . . . . ... ... .. .. ...... 50
Distinguishability of 7 and 7’ Related to the Distinguishability of ¢

and ¢ .. 50
A Minimal Deterministic Finite Automaton . . . . . . . . . .. ... 53
Parse Trees for John bought car . . . . . . . . . .. ... ... .... 77
Parse Tree for the First Derivationofaa . . . . . . .. ... .. ... 79
Parse Tree for the Second Derivationofaa . . . . . . . . . . ... .. 80
Pushdown Automaton . . . . . . . .. . ... ... ... ... 32
Operation of the Automaton Accepting abbbaaaabb . . . . . . . . .. 85
Computation of Automaton A on ababbaba . . . . . . . . ... ... 87
Schematic Parse Treefor w . . . . . . . . . .. . ... .. ...... 90
Schematic Parse Tree forw =wvzyz . . . .. ... ... .. .. ... 96
A Turing Machine . . . . .. . . ... L L oo 123
A Sequence of Turing Machines . . . . . . ... ... ... ... ... 126
Branching Turing Machines . . . . . . . . . ... ... ... .. ... 127
ALoop . . . . . 127
Writing bovera . . . . . . .. ... L e 128
Moving Right and Writinga . . . . . .. . .. .. ... .. ... ... 128
Erasing the Input . . . . . . . .. ... .. oL oL 128
Finding the First Blank on the Right . . . . . ... ... .. ... .. 129
The Copying Machine Cp . . . . . . .. .. ... .. ... .... 130
Computing the Function f(w)=wa . . ... ... ... ... .... 131
The Shifting Machine Shl . . . . . . . .. ... .. ... ... ..., 132
Multitape Turing Machine . . . . . . . . .. ... ... ... .. ... 135
A Multitrack Tape . . . . . . . . . . e 136
Simulating k& Tapes by 2k Tracks . . . . . . ... ... ... ... .. 136
Initial Configuration of Tracks . . . . . . .. .. ... ... .. ... 137
Two-Dimensional Tape with Numbered Cells . . . . . ... .. ... 140

Simulation of a Two-Dimensional Tape in One Dimension . . . . . . 140



LIST OF FIGURES xi

4.18
4.19
4.20
4.21

5.1
5.2
5.3

6.1
6.2
6.3
6.4
6.5

Random Access Turing Machine . . .. ... ............. 141
Commands of RAM Machine . . .. ... .. ... ... ....... 142
Dovetailing . . . .. .. .. .. 146
The Tree of Nondeterministic Computations . . . . . . .. ... ... 147
U after Initialization on (M)(w) . . . ... ... ... ... . .... 163
The Diagonal Function . . . . . .. . ... .. ... . ... ...... 164
The Program CONTR . . . . . . . . . . . . .. 165
An Undirected Weighted Graph . . . . . . .. ... ... ....... 180
A Graph with a Hamiltonian Cycle . . . . .. ... .. ... ... .. 184
ACliqueofSized . .. .. .. ... . ... 184
Algorithm A . . . . . . ... 190
The Graph Derived from a Boolean Formula f . . ... ..... .. 193



Preface

The theory of computing provides students with a background in the fundamentals
of computing with which to achieve a deeper understanding of contemporary com-
puting systems. Computers are evolving and developing at a dizzying rate. Yet,
the fundamentals of pattern matching and programming language design and im-
plementation have remained unchanged. In this book, we present a perspective on
computing that will always apply since it addresses only the fundamental issues. In
this way, mastery of the topics in this bock will give the reader a perspective from
which to understand all computers, not just the ones in use today.

We cover the automata and regular languages that serve as the basis for pattern-
matching algorithms, communication protocols, control mechanisms, sequential cir-
cuit design, and a host of other ubiquitous applications. The basic principles behind
the parsing of computer languages are also presented as well as a simple, yet gen-
eral, model of all computation. This leads to some important distinctions. Some
problems of interest turn out to be unsolvable. That is, not only can they not be
solved by today’s computers, but they will also never be solved by any future com-
puter. Some problems that are solvable are nonetheless so difficult that they are
called intractable. These intractable problems cannot be solved efficiently by any
current computer. Furthermore, advances in the design of computers will not make
a significant difference.

The collection of intractable problems includes several that must be solved in
some way every day. The “solutions” to these problems are generally approxima-
tions. Such problems are ubiquitous in everyday life. Consider the shirt you are
wearing. The cloth with which it was made was delivered to the clothing manufac-
turer in a bolt of cloth. The bolt of cloth is a large roll, perhaps two meters wide
and hundreds of meters in length. The manufacturer must cut this cloth into pieces
of different sizes for different size shirts and for other garments that use the same
material. Some of the material will naturally be wasted — scraps will be left over
since the pieces that are cut do not form perfect rectangles, two meters per side.
How to cut this cloth so as to minimize the leftover useless scraps is a provably
intractable problem. Imagine how much cloth could be wasted in an attempt to
find the best solution! Such problems occur frequently in computing. It is vital
for any computer professional to be able to recognize an intractable or unsolvable
problem when confronted with one. Our intent is to impart such knowledge to the

xiii



xiv Preface

student.

All of the above requires some analysis, and hence some mathematics. The
material can become very difficult for students. We soften the material by taking
a more “how to” approach as opposed to a “how come” one. Many Colleges and
Universities choose to cover the material in two or more courses. We have sacrificed
some depth to create a book for a one semester course primarily intended for use
at institutions that have only one upper level course in the theory of computing.
However, this book can be, and has been, used to teach a traditional automata
theory course. For this purpose, the final chapter is omitted, the material on Turing
Machines is abbreviated and the remaining topics are covered in more depth. This
extra depth can be achieved by working through the detailed proofs that we relegate
to the exercises.

For the student, we give dozens of detailed examples, numerous figures, and
hundreds of exercises. The exercises are graded according to difficulty. More
challenging exercises are marked with a € and the most challenging exercises are
marked with @ . Preliminary versions of this text were tested in the classroom
by both authors. Reviewers Diane Cook and Piotr Gmytrasiewicz of the University
of Texas at Arlington and Guo-Qiang Zang of the University of Georgia imporved
the exposition with their comments. We wish to thank our colleagues William
Gasarch, Vincenzo Liberatore, and Raymond Miller for suggesting several changes.
Preliminary versions were tested in the classroom with resultant textual improve-
ments. A web page with the latest news, errata, etc., for the book is maintained at
http://www.cs.umd.edu/~smith/TCGI.html An Instructor’s Manuel, containing
the solutions to all the exercises in the book, is available from the publisher.



Theory of Computing

A Gentle Introduction



Chapter 1

Introduction



Chapter 1

Introduction

1.1 Why Study the Theory of Computing?

Computers are changing our world and the way people think. New models appear
on the market almost every month. Some televisions are taking on the functionality
of what we call computers, blurring the distinction of what is and what is not a
computer. How can you tell the difference?

The consumer is hit with a mind-boggling array of products to choose from.
How do you decide which computer to buy when the salespeople themselves often
don’t really understand the differences between the machines? They usually char-
acterize the machines based on what software they run or confuse the consumer
with buzzwords like 500 megahertz, 16-meg RAM, multipurpose ports, and so on.

While model numbers, and software change, the theory is fixed. It can be
used to recognize computation in all its forms and disguises. For example, the
ubiquitous vending machines that dispense products from canned soft drinks and
juices, to snacks, train tickets, and cash are all really a type of computer called an
automaton. This same type of computer is at the heart of the search engines that
ply the Internet to help Web surfers find new pages to explore.

When you study the theory of computation, you develop an understanding of
what computation is. The viewpoint presented in this book will not vary with
the next new model of computer. A firm knowledge of the theoretical basis for
computation will give you a stable platform from which to observe and understand
the dazzling progress being made in the production of new computers and software.

1.2 What Is Computation?

A simple working definition of computation is that computation is the move-
ment, and perhaps alteration during transit, of data. Let’s work through
some examples. Consider a vending machine dispensing soft drinks. The input to



4 CHAPTER 1. INTRODUCTION

the computation, the original data, is the coins you put in the slot and buttons(s)
you press to select the product. The coins are moved to a holding area and some
electronic impulses are generated. The coins have been altered into electronic im-
pulses that are now moving through wires. The data now contain information about
how many coins you entered and which denominations. These impulses are trans-
formed into signals that trigger the gate that lets the product you selected move
to the area of the machine where it can be collected. So, the impulses encoding
your selection and the coins entered are changed into a product, and perhaps some
change in another area of the machine.

When you use an automatic teller machine, another sequence of events happens
that looks like a computation. You insert your card and then use a keypad to
input more data. Sometimes the keypad is organized around a display and you
must make several selections. As the display changes, so does the meaning of each
button. Nonetheless, you are still inputting data to the machine. After a while,
you get some cash as output and maybe a transaction receipt as well. So, according
to our working definition, a computation has taken place. A more detailed analysis
reveals even more computations. After you have entered all the data, such as pin
codes and transaction type, the bank machine contacts another computer holding
your account information. This connection may be complicated depending on how
far away the bank machine you are using is from the location of the computer
holding the needed information. It is not unusual for such connections to cross
state and even country borders. The computer with the account information does
what is typically considered a computation and sends some information, like an
authorization number, back to the bank machine you are using. Few data are
being transfered between the computer and the bank machine, but the amount of
withdrawal and account number information is transformed into an authorization
to dispense cash.

Another computation that has layers and layers happens every time you use a
computer. At the outermost level, the keystrokes and mouse movements you enter
are transformed into the display on the screen. At the next level, the keystrokes
activate some program which runs on the computer. One level deeper, the program
is meticulously telling the computer to get data from memory and move them into
the processing chip where they are transformed into commands for the display
chip(s). There is another level, what happens inside the chip, but we won't get that
detailed. The basic idea of computation as movement and transformation of data
should be clear.

1.3 The Contents of This Book

In Chapter 2, we study finite automata. These simple devices serve as the basis
for all pattern-matching algorithms. All the World Wide Web search engines use
pattern matching as a host of other applications. Interacting automata, not con-
sidered in this text, are the basis for all communication protocols used in computer



1.4. MATHEMATICAL PRELIMINARIES 5

networks of all kinds.

In Chapter 3 we study context-free languages which are used to describe all
contemporary programming languages. Topics such as parsing are discussed. A
fully general model of computers is presented in Chapter 4. The limitations of this
model are revealed in Chapter 5. Finally, in Chapter 6, we consider the limitations
of feasible computation.

1.4 Mathematical Preliminaries

This is a technical book. We have tried to make the presentation as intuitive as
possible, often deviating from the traditional presentation of iterating definition,
theorem, and proof. However, we must rely on some mathematical notation to
make our presentation clear and precise. We anticipate that every student using
this book will have seen all the concepts in this section before. They are presented
mainly for review and to establish notational conventions.

Computers typically deal with numbers and strings. We will do so as well. The
only numbers that we will consider are the natural numbers, 0, 1, 2, ... which
we denote by N. Actually, the natural numbers can be pulled, more or less, from
thin air by the operation of collection. For example, even though we start with
no numbers, we can still collect what we have. Visually, this collection of nothing
appears as { }. Call this representation zero. Now we have something, so we
can collect our zero: {{ }}. Call this one. Now we have two things to collect:
{{ 1{{ }}} This last collection, call it two, is the collection of two items:

e The collection of nothing, and
e The collection of the collection of nothing.

Now we have three objects to collect and the process continues, defining represen-
tations for all the natural numbers in terms of the operation of collection. Please
note that this definition of natural numbers is an inductive definition. In this
style of definition a base object is specified (in this case, the empty object) and an
operation to produce new objects from previously defined objects is specified (in
this case, collection).

Once we have natural numbers, we can collect those as well forming sets. For
example, the set of prime numbers less than 10 is denoted by {2,3,7}. Set member-
ship is denoted by the symbol “€,” so 2 € {2,3,7}. Nonmembership is denoted by
“¢.” For example, 4 ¢ {2,3,7}. Larger sets, like all the numbers between 1 and 100
are denoted as {1,2,...,100}. If all the elements of one set are contained in some
other set, then we say the first set is a subset of the second set and use the symbol
“C” to denote this. So, for example, {2,3,7} C {1,2,...,100}. For a finite set of
numbers, the largest element in set is called the maz and is denoted by max{...}.
Infinite sets, like the set of even numbers, can be represented as {0,2,...} or in
closed form as {2n|n € N}.



6 CHAPTER 1. INTRODUCTION

A common way to form one set from another is to take away some elements.
The “—” operator is used to denote set difference. For example, N — {0} denotes
the set of positive natural numbers and N — E denotes the set of odd numbers. Sets
can also be formed by joining two existing sets. For example, if you are making
sandwiches for a picnic and you like sandwiches in the set

A = {peanut butter and jelly, tuna fish}
and your friend likes sandwiches in the set
B = {tofu ginger, pastrami}

you would want to pack sandwiches of all four types. Mathematically, you would
take the union of the two sets, written as AU B.
On the other hand, you might be ordering a pizza. If you like the toppings

A = {pepperoni, sausage, peppers, mushrooms, anchovies}
and your friend likes
B = {olives, mushrooms, pineapple, peppers}

and you want to please everyone, you will order a mushroom and pepper pizza.
To decide this, you took all the elements common to both sets of preferred pizza
toppings. Mathematically, you took the intersection of the two sets, written as
ANB.

Another way to form new sets from old sets is to take all the pairs of elements,
one chosen from each set. Formally, given two sets, R and S, the Cartesian product
of R and S, written as R x S, is the set of pairs that includes all combination of
something from R and something from §. So, for example, if R = {0,1,2} and
S = {a, b}, then

R x S ={(0,a),(0,b),(1,a),(1,b),(2,0a),(2,b)}

For example, if S is the set of students at your college, and C is the list of
courses offered, then the set of pairs (s, ¢) such that student s is taking course c is
a subset of the Cartesian product S x C. In symbols we write

{(s,¢)| student s takes course ¢} C S x C

Computers store numbers in a binary representation using only 0’s and 1’s.
Alphabetic symbols are stored in a computer as a fixed-length sequence of 0’s and
1’s. Similarly, words are just sequences of the symbols representing the letters of the
Latin alphabet, a, b, c, ..., z, A, B, ..., Z. Continuing, we find that sentences, like
this one, are just longer sequences of symbols that alternate between the symbols



1.4. MATHEMATICAL PRELIMINARIES 7

for a word and a blank symbol, or some other punctuation symbol, like the period
at the end of a sentence. If we admit symbols that do not appear but cause other
effects, like newline and newpage, we can describe this entire book as a sequence
of symbols. Notice that standard terminology gives up notions of levels. Sequences
of bits form words, sequences of words form sentences, and sequences of sentences
form books. However, this book really is just a sequence of suitable chosen symbols
(about a half million of them). Some of these symbols we haven’t talked about,
they format the mathematical symbols, and the like.

Rather than use a jumble of terminology, we will simply discuss strings which
are just finite sequences of symbols where each symbol is chosen from a fixed alpha-
bet. Sometimes we call strings words. An alphabet is just some finite set of symbols,
like the binary alphabet {0,1} or the lowercase Latin alphabet {a,b,c,...,2}. The
empty word, the unique string with no symbols, is denoted by e. The length of a
word w is the number of symbols in the word and is denoted by |w]|. Since the empty
word has no symbols, [e[ = 0. If w is a word, w” denotes the reverse of w. So, if
w is 011, then w® is 110. A word w such that w = w® is called a palindrome. A
set of words is called a language. These terms are meant to conjure images of their
standard usage. We will use them to discuss the nature of computation, where the
input and output are given as strings of symbols. Even the display on your com-
puter screen is a sequence of symbols (a string) to a particular device (the monitor).

We often have need to manipulate sets of numbers and strings. Here we review
some common operations on sets. If S is a set, then S denotes the complement of
S. The complement of a set is always taken with respect to some larger, often only
implicitly specified, set. For example, if E is the set of even numbers, then E is the
set of all numbers that are not even, that is the odd numbers. If S is a set of words,
then S is the set of all words that can be formed using the same alphabet as was
used to construct S that are not in S. So for example, for the alphabet {a, b}, if S
is the set of words with only a’s, {a, aa, aaa, ...} then S is the set of words with a’s
and at least one b, maybe more.

Often, we need to count and sort things. If you are trying to place n items into
m slots and n > m, then one slot will have more than one item in it, no matter
what you do. This is called the pigeonhole principle.

Relations between objects are often crucial. Mathematically, a relation is rep-
resented as a subset of some Cartesian product. For example, “<” is a relation on
N x N. It contains all the pairs of natural numbers (z,y) such that z < y. The
“less than” relation is so common we have a special symbol for it. In less common
cases, when we have no special symbol, we give the relation explicitly as a subset
of a Cartesian product. Doing this formally with the “<” relation, we would define

R ={(z,y)|lz € N,y € N and z < y}

Then (2,3) € R and (3,2) € R.
There are several common properties that a relation may or may not have. For
example, if R is a relation on S x .9, then R is reflexive if (a,a) € R for each



8 CHAPTER 1. INTRODUCTION

a € S. For example, let S be the set {a,b,c}. Then any subset of S x S is a
relation. Consider R = {(a,a),(a,b), (b,b)}. Then R is NOT a reflexive relation.
However, R U {(c,c)} is reflexive. We say that R is symmetric if (a,b) € R
whenever (b, a) € R. Using the same relation R, we see that it is not symmetric
either, but RU {(b,a)} is. A transitive relation is one such that if (a,b) € R and
(byc) € R, then (a,c) € R. Notice that R is transitive, but R U {(b, )} is not. This
is because (a,b) € RU {(b,c)}, (b,c) € RU{(b,c)}, but (a,¢) € RU{(b,c)}. An
equivalence relation is a reflexive, symmetric, and transitive relation.

Equivalence relations give rise to equivalence classes where each such class
contains all and only the members of the underlying set that relate to each other.
For example, unless you are fortunate to be reading this book outside in a sunny
place, you are using some sort of artificial light source to see the words on this
page. The power of the artificial lights, whether they are incandescent, fluorescent,
or halogen, is usually measured in watts. Define a relation of the set of light bulbs,
of all types, sizes and shapes, by saying that two light bulbs relate to each other if
they are of the same power (wattage). This relation is reflexive, since every bulb
has the same power as itself. It is also symmetric, since if bulb A has the same
wattage as bulb B, then bulb B has the same wattage as bulb A. Finally, this
relation is transitive, since if bulb A has the same wattage as bulb B and bulb B
has the same wattage as bulb C, then bulbs A and C must have the same wattage.
So, equivalence classes arise, where, for example, there is one equivalence clags for
40-watt bulbs. It contains all the 40-watt bulbs of all types, shapes, and sizes, but
no bulbs of any other wattage.

Suppose R is a relation over a set S such that for each a € S there is at most
one b € S such that (a,b) € R. Thus we say that R is a function. We will use
the more familiar notation f: R — § to indicate a function that takes inputs from
the set R and returns elements from the set S. More formally, f C R x S and for
each = € R there is at most one y € S such that f(x) = y, that is, (z,y) is in the
relation. See Figure 1.1.

Domain Range

Figure 1.1 A Function

A function from R to S can be considered as a mapping from R to S, or as a
transformation of elements of R into elements of S. We call the set R the domain
of the function f. When the relation that forms the function f is not explicitly
formalized and we need to talk about its domain, we will write Dom(f). A function
[f is one-to-one, also called a bijection, if for each y there is exactly one x € Dom(f)
such that f(z) = y. Bijective functions have an inverse. Suppose that f is a
bijective function. Then the inverse function, f~!, is such that f~!(y) = z if and



Exercises 9

only if f(z) =y.
Exercises

—— Section 1.4 EEsss——

Exercise 1.1 Give the notation for a set that contains only the page number of
this exercise.

Exercise 1.2 True or false:

a) {2,4,5} C {2n|n € N}

b) {e,i,t,c} C{a,..., 2}

¢) {2n|Jn € N} = {2n +1|n € N}
d) {1,2,3,4,5} ={1,...,5}

Exercise 1.3 Give a representation for the odd natural numbers.

Exercise 1.4 For each of the strings w below, exhibit both |w| and wf:
a) dooGyreV

b) kaerBAekaT

¢) kcanSAevaH

d) ysaEooTslIsihT

Exercise 1.5 Let A ={1,2,...,100} and B = {a,b,c,d}. How large is A x B?
Exercise 1.6 Let R = {a,b,¢,d} and S = {0,1}. What is R x S?

Exercise 1.7 Define a relation R on N x N by
R={(z,y)lr € N,y € N and z + y is even}

Prove or disprove: R is an equivalence relation.



Chapter 2

Finite
Automata



Chapter 2

Finite Automata

2.1 Deterministic Finite Automata

We start by considering two simple problems. Despite their simplicity, these prob-
lems, or ones very similar to them, arise frequently in the everyday practice of
computing.

Problem 2.1.1 Design a computer program that, for any input word, outputs 1 if
the word is of the length dn,n =0,1,2,. .., and outputs 0, otherwise.

Problem 2.1.2 Design a computer program that sorts (in ascending order) and
outputs the result for any input sequence ai,as,...,a,, where n is any number in
N.

Anyone who has ever been exposed to computer programming can probably eas-
ily design many different computer programs solving these two problems. For our
purposes, the choice of programming language does not matter. There is also no
doubt that the second problem requires a more complex program solution than the
first one. How can we measure the complexity of the programs in question (or any
other programs)? A possible way is to measure their running time, which, roughly
speaking, is the number of program instructions being executed before the program
terminates. This measure of program complexity will be addressed in Chapter 6.
Another measure of program complexity is the amount of memory required to exe-
cute the program. Every computer has a small memory in its central processing unit
(registers) and main memory (e.g., RAM on PCs), which is sometimes is referred
to as auxiliary memory. Registers are usually being used for the internal needs
of program execution. Thus, it is natural to measure the amount of main memory
that stores the input, results of computations, and output. From this point of view,
there is an obvious difference between the solutions to Problem 2.1.1 and Problem
2.1.2. Any reasonable program that solves Problem 2.1.1 will use its main memory
to store just the numbers 0 through 3 to memorize the length of the input modulo



14 CHAPTER 2. FINITE AUTOMATA

4; this requires a constant amount of memory regardless of the input length. On
the other hand, any program that solves Problem 2.1.2 must memorize the entire
input list, and that can be of any arbitrary length. Hence, the amount of memory
used by any program that solves Problem 2.1.2 cannot be bound by any constant.

The programs that use a constant amount of auxiliary memory regardless of
the input form the simplest class of programs as far as the amount of auxiliary
memory is concerned. In order to explore the power and limitations of the programs
in this class, we introduce a theoretical model for this kind of program called a
finite automaton. As the programs in question use at most a constant amount of
auxiliary memory, this memory can be moved to the central processing unit. Thus, a
finite automaton is a device that has a processing unit with limited memory capacity
and has no auxiliary (main) memory at all. It receives input on a special input
tape and reads it, one character at a time, using its reading head connected to the
processing unit. Reading a character results in changing the state of the automaton
and moving the head one position to the right; the set of states is its “finite control”
(see Figure 2.1). If the head reaches beyond all the input string (after having read
the last input character), it halts. The automaton has no means to deliver output;
however, some states can be designated as favorable, and if a favorable state is
reached while reading some input word w, this can be regarded as indication of
acceptance of the word w by the device. Thus, even though an automaton does
not produce any physical output, it still can be used as a recognition device.
Sometimes, we will call the favorable states accepting states.

Formally, a Deterministic Finite Automaton (DFA) is denoted by a quin-
tuple A = (Q, %, 9, s, F) where

@ is a finite set of states;

Y is a finite input alphabet;

4 is a transition function from @ x ¥ to Q;
s € @ is the initial state of the automaton;
F C @ is the set of favorable states.

We use the term deterministic in this definition, as every move of a finite
automaton is completely determined by the input and its current state.

A finite automaton can be visualised as a device that gets its input from the
input tape. The input tape is divided into cells; each cell may contain one input
character. The automaton reads the input using its movable reading head. Ini-
tially, the reading head is positioned on the leftmost cell of the input tape containing
the first character of the input word. The main part of the automaton is its finite
control device that at any moment can be in any one of the states ¢ € ). Initially,
the finite control device is in state s. At regular time intervals, the automaton reads
one character from the input tape, moves the reading head one cell to the right,
and changes its state. The new state is defined by the function 4. If the automaton,
being in the state ¢, has read the symbol a € 3, it enters state ¢ = §(q,a). Thus
the new state is completely determined by the content of the cell and the internal
state of the automaton. At some moment the reading head reaches the end of the



2.1. DETERMINISTIC FINITE AUTOMATA 15

input word (the next cell contains a blank). If at this moment the automaton is in
a favorable state ¢ € F, the input word is said to be accepted by the automaton.
Otherwise, the input word is not accepted. The set of all input words accepted by
the automaton A is called the language accepted by A. We denote this language
by L(A).

S @ o7
—re d

Reading Head

Lelvlalololaln].-
Input Tape

Figure 2.1 A Finite Automaton

A convenient way to represent finite automata is a finite state diagram. The
finite state diagram is a directed graph, where nodes represent states and arrows
are labeled with characters from the input alphabet. If in state ¢ and reading input
character a the automaton changes its state to ¢’ [that is, (g, a) = ¢'], the arrow
from state g to the state ¢’ is labeled by a (Figure 2.2). Favorable states are circled,
and the initial state is indicated by >. Thus, the automaton of Figure 2.2 accepts
the language containing all the strings a™b™ forn =0,1,2,... and m = 1,2,....

Example 2.1.1 The automaton in Figure 2.3 accepts all strings that have two
consecutive a’s. While the automaton has not read two consecutive a’s, it returns
back to state s. Once it has reached the accepting state r, it stays there forever, no
matter what suffix the input string has. One might call r a trap state, as there is
no way out of it.

End Example




16 CHAPTER 2. FINITE AUTOMATA

a
s :@ - »{ T
b

Figure 2.2 State Transition Diagram

a
b
Figure 2.3 Recognizing Two Consecutive a’s

Example 2.1.2 Another example of a finite automaton is represented by the dia-
gram of Figure 2.4. The difference between the automata of Figure 2.3 and Figure
2.4 is in the set of favorable states. In Figure 2.4 all the states except the trap one
are favorable states. The automaton accepts the language that complements the
one in the previous example: all the strings that do not contain two consecutive
a’s. This time the trap state can be called a dead state, as from this state no
further input string read by the automaton can bring it to another state. Hence,
the automaton can never reach a favorable state.

End Example |

We suggest that the reader attempt to describe the set of strings recognized by
the automaton of Figure 2.5 (Hint: Run the automaton on strings ababab, ababa,
ababb, ba) and the set of strings recognized by the automaton of Figure 2.6 (Hint:
run the automaton on strings abbaba, baba, bbaa).

Example 2.1.3 This example is an automaton that recognizes the language of
all strings that contain an even number of a’s and an odd number of &’s. This



2.1. DETERMINISTIC FINITE AUTOMATA 17

Figure 2.5 Mystery Automaton 1

automaton has four states (Figure 2.7). The initial state s “memorizes” the fact
that the prefix of the input seen so far has an even number of a’s and an even
number of b’s (in particular, this is the case when the automaton is about to start
its operation). If the number of a’s in the prefix read so far reaches an odd number
and the number of b’s is even, then the automaton enters state ¢. When both
numbers are odd, it enters state r. If the number of b’s in the prefix seen so far
reaches an odd number and the number of a’s is even, the automaton enters state ¢.
The favorable state ¢t “indicates” the fact that the input string satisfies the required
condition.

End Example

Now we are going to formally define what a computation by a deterministic
finite automaton is and what acceptance by a deterministic finite automaton is.
In the center of this definition is the notion of configuration that is a composite
of finite control (state), position of the reading head, and the input to be read.
Suppose, for example, that, having read the prefix aaa of the string aaaabba, a
finite automaton A has reached state ¢q. Since A cannot move the reading head



18 CHAPTER 2. FINITE AUTOMATA
b b

Figure 2.6 Mystery Automaton 2

back, its further processing is fully specified by state ¢ and the suffix abba. We
call the ordered pair (q,abba) a configuration of the automaton A. Formally, a
configuration of an automaton A = (Q,X%,4,s, F) is any element of @ x £*. If,
being in the configuration (g, w), the automaton moves to the configuration (¢’, w’)
(this means that w = ow’ for some symbol o € T and §(q,0) = ¢’), we say that the
configuration (g, w) yields the configuration (¢',w’} in one step. (q,w) yields
(¢',w’) if there exists a sequence of configurations

(qlawl)v (QZ7w2), cey (qkawk)

such that (g1, uw1) = (q,w), (gk, wr) = (¢, ') and every (g;,w;) yields the config-
uration (g;+1,w;+1) in one step. As the finite automaton is deterministic, every
configuration uniquely determines all the configurations that it yields. We say that
a string w is accepted by the automaton A if the initial configuration (s, w) yields
the configuration (g, e) for some favorable state g. In other words, being fed the
string w, the automaton A reaches a favorable state having read the entire input
word. This definition is apparently in compliance with the informal notion of ac-
ceptance that we introduced in the beginning of this section.

An important property of every deterministic finite automaton is that its tran-
sition function § is defined for every state and every input character. In terms of
finite state diagrams this means that for every state s and every character 0 € X
there exists one and only one arrow labeled by o coming out of this state.

As an example of a practical application of finite automata, we now present
the diagram of a finite automaton simulating a newspaper vending machine (see
Figure 2.8). Our machine accepts nickels, dimes, and quarters. When the total of
coins input reaches 25 cents, the machine releases the cover, and the user can pick
a newspaper. If the total exceeds 25 cents, the machine does not return change.



2.1. DETERMINISTIC FINITE AUTOMATA 19

Figure 2.7 Recognizing an Even Number of a’s and Odd Number of b’s

The memory of the machine is represented by a finite number of states. When,
say, 15 cents are entered, the machine “memorizes” this fact by the state that
requires 10 additional cents to unlatch the cover. The accepting state represents
the release of the cover. The following six states fully describe the behavior of the
desired automaton:

s is the initial state (needs 25 cents);
20 is the state after the first nickel has been entered (needs 20 cents);
15 is the state after two nickels or a dime have been entered (needs 15 cents);

10 is the state after three nickels or a dime and a nickel have been entered (needs
10 cents);

5 is the state after four nickels, or a dime and two nickels, or two dimes have been
entered (needs a nickel);

a is the accepting state after the total of at least 25 cents have been input.

The input alphabet X is n (for nickel), d (for dime), and g (for quarter).

We call finite automata a type of program. They hardly look like programs in
any conventional programming language. On the other hand, the reader probably
has no doubt that they can be simulated by software programs. As our vending
machine example shows, they can also be directly implemented on the hardware
level.

At first glance, the finite automata do not seem to deserve serious study. How-
ever, as we have seen, though yet in a rudimentary form, they incorporate all the
major concepts of imperative programming: sequences, branching, and loops. Fur-
thermore, all pattern matching, such as the kind used by World Wide Web search



20 CHAPTER 2. FINITE AUTOMATA

n,d,q

Figure 2.8 The Finite State Diagram of a Newspaper Vending Machine

engines, can be described in terms of finite automata. The advantage of finite au-
tomata is that these concepts and relationships among them can be studied in their
pure form. This results in an elegant, thoroughly developed theory that completely
describes the computational power of this somewhat primitive programming lan-
guage. From this comes a better understanding of how the use of a potentially
unlimited auxiliary memory may enhance computational potential.

While being interesting on their own, finite automata are also used in several
areas of algorithm and software design. A popular example is the lexical analysis
in the process of compilation: The algorithms that perform lexical analysis often
simulate finite automata. Finite state machines, a version of finite automata, are
widely used for software specification and design.

2.2 Nondeterministic Finite Automata

In Section 2.1 we observed an automaton accepting all the strings that had two
consecutive a’s. This automaton can easily be transformed intc an automaton
that accepts all the strings that have two consecutive b's. Now, can we design
a deterministic finite automaton that accepts the union of those two languages,
in other words, all the strings that have two consecutive a’s or two consecutive
b’s? Since we already have the “programs” that solve the problem for aa’s and,
respectively, bb’s, an obvious idea would be to design a “program” that would just
“call” the given programs as “subprograms.” How do we express this idea in the
form of a finite state diagram? A possible solution would be to combine initial
states of the automaton in Figure 2.2 and its counterpart that accepts the strings
containing bb’s (see Figure 2.9).

However, the diagram no longer represents a deterministic finite automaton, as
there is more than one arrow coming out of the initial state with identical labels (say,
a). In the next section we will show that there is a deterministic finite automaton
that accepts the language in question, but we are not going to give up the approach
that has led us to the diagram of Figure 2.9; we will see that this approach results



2.2. NONDETERMINISTIC FINITE AUTOMATA 21

Figure 2.9 Combining Two Automata

”

in a powerful tool for building “programs” from “subprograms.” The diagram of
Figure 2.9 represents an example of a nondeterministic finite automaton, where
several next states can be reached from the combination of a state and input
symbol. A useful interpretation of the automaton’s behavior on any input string w
is as a thread of execution. Different threads can end in different states. We say
that this automaton is nondeterministic, because the device now has a choice: It
can choose where to go from the whole set of next states. What can affect this
choice? We can assume that the automaton “strives” to accept an input word.
Thus, it may try to “guess” which way will lead it to a favorable state. One can
argue that a real computational device cannot “guess.” This argument can hardly
be refuted. However, we will establish two facts that fully justify this variant of
finite automata:

1) Nondeterminism does not increase computational power of finite au-
tomata (that is, deterministic automata do whatever can be done
by nondeterministic ones);

2) Nondeterministic finite automata are much easier to design.
Given these two facts, a “programmer” can proceed as follows: Design a nondeter-

ministic finite automaton, and then, applying a general method, transform it into
a deterministic one.



22 CHAPTER 2. FINITE AUTOMATA

Now we proceed with the formal definition of nondeterministic finite automata.
A Nondeterministic Finite Automaton (NFA) is a quintuple A = (Q, 2, A, s, F),
where

Q is a finite set of states;

¥ is an input alphabet;

s € Q is the initial state;

F C @ is the set of favorable states;

A CQx(XU{e}) x Q is the transition relation.

Every triple (g, a,p) in A is represented by an arrow connecting the states g and p
and labeled a in the state diagram of A. Note that an arrow can be labeled by the
empty string e; this is very different from the deterministic version of an automaton.
To understand the meaning of an arrow from ¢ to p labeled by the empty string,
imagine that the automaton can “jump” from state g to p if it wants to. Another
difference is that some states may have no arrows coming out of them labeled by
some symbols @ € X. For example, Figure 2.10 shows a finite automaton that
accepts the language that contains all strings of a’s and all strings of §’s. While ¥

Figure 2.10 Accepting All a’s or All b’s

contains symbols a and b, there is no arrow labeled by b coming out of state ¢q. If
the automaton enters state ¢ and then next symbol is a b and there are no jumps
out of state ¢ via an arrow labeled with an e, then the automaton is stuck. This
represents a computation that cannot lead to an accepting state. In particular, now
there is no need for a trap state. These new opportunities can significantly simplify
programming as we will see below.

The computation by a nondeterministic finite automaton can be defined very



2.3. DETERMINISM VERSUS NONDETERMINISM 23

similarly to a computation by a deterministic automaton. However, now a con-
figuration (¢, w) can yield many different configurations (¢’,e). The string w is
accepted if ¢ = s, and, among all the configurations (¢’,e) that (s,w) yields, at
least one configuration (¢’, ¢) contains a favorable state ¢'.

An example of a nondeterministic finite automaton is given in Figure 2.11.

a

)4

O b > b @

Figure 2.11 Start and End with a b

This automaton accepts strings over the alphabet {a, b} that begin and end with
the letter b (we assume that every string contains at least 2 b’s). The automaton
of Figure 2.11 naturally implements the specifications. Consider the automaton’s
behavior on the string bbbb. One possible computation is

bb p b (7 b=@

Another possible computation is
b i y—0b ey b b
O——O——O——O0——0O

Still, the string bbbb is accepted, since at least one computation ends in a favorable
state. Compare the nondeterministic automaton of Figure 2.11 with the determinis-
tic automaton of Figure 2.12 that accepts the same language and contains somewhat
redundant states and arrows.

2.3 Determinism versus Nondeterminism

In this section we show that although nondeterministic automata seem to be much
more flexible and versatile, their computational power does not exceed the power of
deterministic automata. Automata A and A’ that accept the same language L are
said to be equivalent. We are going to show that, for every nondeterministic finite
automaton there exists an equivalent deterministic one. Moreover, we will design
an algorithm that carries out conversion from a nondeterministic automaton to its
deterministic equivalent.



24 CHAPTER 2. FINITE AUTOMATA

Figure 2.12 With Extra States

Theorem 2.3.1 For each nondeterministic finite automaton A, there exists a de-
terministic finite automaton A’ equivalent to A.

Proof: (We give just a sketch.) Let A = (@, %, A, s, F) be a nondeterministic
finite automaton. The conversion of A to a deterministic automaton A’ implements
the following idea. From any state g, reading any character a € X, the automaton
A can make a transition to any state ¢; in some set {q1, ¢z, ..,qn}, see Figure 2.13.
We make the whole set {g1,¢2,...,q,} a state of the new automaton A’. Then the

Figure 2.13 Multiple Possible Transitions

set of transitions from Figure 2.13 can be replaced by the single transition of Figure
2.14 which eliminates nondeterminism present in the diagram of Figure 2.13.



2.3. DETERMINISM VERSUS NONDETERMINISM 25

n

q1

q2

.
Figure 2.14 Replacement Transition

An important question is if the new set {q1,q2,...,¢n} should be a favorable
state. If any of the states ¢;,¢s,...,qn is a favorable state of A, then the symbol
a can drive A from the state s to a favorable state. If as in the new diagram
{q1,q2,---,qn} is the only state that can be reached from ¢ by reading a, we have
to make it a favorable state. If no state q1,¢s,...,¢q, is favorable, then naturally
the corresponding state in the new diagram will not be favorable.

More generally, if S and P are two arbitrary subsets of (), we draw an arrow in
the diagram of A’ labeled by a from state S to state P if there is at least one arrow
in A labeled by a that connects a state in ) with a state in P, see Figure 2.15.

(o) o) p

S 51 p1
S2 D2
a
) - L]
L ] L)
* [ ]
Sn Pn

Figure 2.15 A New Connection

In fact, instead of connecting S to an arbitrary P, we can choose the set P(S,a)
that contains all the states that are reachable from all the states in S by reading



26 CHAPTER 2. FINITE AUTOMATA

the symbol a. This way we can eliminate many redundant states in diagram A’.
However, still there is a technical problem that must be resolved. Some arrows
in diagram A may be labeled by the empty symbol e. Such arrows cannot be
permitted in a deterministic diagram. In order to eliminate arrows of this kind, we
will extend the set P(S,a), adding to it the set P'(P(S,a), e) of the states in A that
can be reached from P(S,a) by “reading” one or more symbols e (in fact, merely
by “jumping”); see Figure 2.16. Thus, the arrow labeled by a will connect the state

s (=) 4 W:

89

\ )/

Figure 2.16 An e-Move

S in A’ with the state P(S,a) U P/(P(S,a),¢e); see Figure 2.17. For example, if

S /8—1\ (o) P(S,a) U P'(P(S,a),e)

[ J

S2 [ )
a

Sn [ ]

—

Figure 2.17 An e-Move Eliminated

Figure 2.18 represents a segment of a nondeterministic finite automaton, then it is
converted to the deterministic segment shown in Figure 2.19. To complete diagram
A’ we must make sure that for every symbol a € ¥ there is an arrow labeled by
this symbol that comes out of any state S (some of them could have been missing



2.3. DETERMINISM VERSUS NONDETERMINISM 27

th, e T e T2

ts T4 5

Figure 2.18 Segment of a Nondeterministic Finite Automaton
(1)
t2

a t3
™

T
&,

Figure 2.19 Corresponding Deterministic Segment

in the original nondeterministic diagram A). This can easily be achieved by adding
the trap state T to the diagram and directing all the necessary arrows to this state.
Formally, the trap state is represented by the empty set of states in A.

Thus, given a nondeterministic automaton A, we form the initial state of the
corresponding deterministic automaton using the initial state s of A and all states
81,...,8k in A that can be reached from s just by one or more “jumps” (e-arrows);
thus {s, s1,..., sk} becomes the initial state of the desired determinisitic finite au-
tomaton. Now, we find all states ¢, ...,t; in A that can be reached from s, s1, ..., sk
reading the symbol a and then all the states r,...,r; that can be reached from
t1,...,t; by “jumps”’ (e-arrows); the arrow a connects the initial state s, s1,..., sk
with the state {t1,...,t;,71,...,7;}, and so on.

We leave technical details of the construction to the reader. The formal proof
of the equivalence of A and A’ can be carried out by induction on the length |w| of
any string w € ¥*. It is suggested in Exercise 2.13.

The diagrams of Figures 2.20 and 2.21 present an example of a nondeterministic
automaton and the result of conversion to an equivalent deterministic automaton.
We start building the deterministic automaton with the set containing the initial
state s. Since no state can be reached from s by “jumping” (that is, reading the
empty character), the initial state of our deterministic automaton will be the set
containing just s. Now, from s, reading ¢ and making few “jumps,” we can reach



28 CHAPTER 2. FINITE AUTOMATA

the states ¢,7,t. Thus, the initial state {s} in the deterministic diagram connects
to the state {g,r,t} by the arrow labeled by a. Similarly, the arrow labeled by b
will connect {s} with {r,¢t}. An arrow labeled by a connects r and ¢, and an arrow
labeled by b connects ¢ with itself in the nondeterministic diagram; thus {r,¢} gets
connected with {¢} in the deterministic diagram, as no “jumps” from t are possible.
Other arrows can be obtained similarly. As there is no arrow labeled by a coming
out of t, state {t} connects by an arrow labeled by a to the trap state §. All
the states that contain ¢, the sole accepting state in the nondeterministic diagram,
become accepting states in the deterministic one.

Figure 2.20 Untransformed Automaton

How practical is the conversion algorithm of Theorem 2.3.17 It turns out that
in the worst case it can be very slow: If n is the number of states of the input
nondeterministic finite automaton, the resulting deterministic finite automata may
have 2" states.

Nondeterministic finite automata are useful tools in solving pattern match-
ing, a very important computational problem. This is the problem of taking a
string w € ©* (a pattern) and a string u (a text), and determining if w is a sub-
string of u. Any Internet search engine implements some solution to this problem.
Given key words supplied by a user (the pattern), the engine searches for texts
that contain this pattern. The key issue here is how fast the engine can test if the
pattern is a substring of a text — to be efficient, it must handle this task really
fast. Fortunately, a desired algorithm can be specified by a finite automaton, and,
consequently, implemented as a very efficient computer program.

Let us take a closer look at a finite automaton as vehicles to solve the pattern-
matching problem. Given a pattern, say, abbab, it is very easy to design a nonde-
terministic finite automaton that accepts the language L = {ulu € X*, abbab is a
substring of u} of the texts that contain abbab (see Figure 2.22). However, a non-
deterministic automaton cannot be directly implemented as a computer program.
One must first convert it into a determinisitic one. As mentioned previously, the



2.4. REGULAR EXPRESSIONS 29

Figure 2.21 Transformed Automaton

number of states of the resulting determinisitc finite automaton may increase ex-
ponentially. Fortunately, it is not the case with nondeterministic finite automata
solving pattern-matching problems. The resulting deterministic finite automaton
has the same number of states as the nondeterministic one (see Figure 2.23). More-
over, it has the minimum possible number of states among deterministic finite au-
tomata solving this problem! In practical implementations of the algorithm implicit
in Theorem 2.3.1, there is yet an obstacle. The number of characters in the input
alphabet X~ may be large (tens or even hundreds of characters), which results in too
many aerrows in the diagram, and, consequently, in testing too many cases in the
resulting computer program. This problem can be resolved by a more clever design
of the underlying nondeterministic finite automaton. Every state in the nondeter-
ministic finite automata (except the initial and the favorable ones) has exactly two
arrows coming out of it, one labeled by e. It turns out that the conversion algorithm
applied to such an nondeterministic finite automata produces a deterministic finite
automata, resulting in an efficient computer program.

2.4 Regular Expressions

In the previous sections we observed automata accepting some languages. Although
it was never explicitly stated, we actually implemented the methodology familiar to
every programmer: deriving a program from a specification. The specifications that
we have used so far were written in plain English. It worked well for our simple



30 CHAPTER 2. FINITE AUTOMATA

Figure 2.22 Recognizing Strings Containing abbab

9
@)
9
9
©
9

Figure 2.23 Deterministic Version of Figure 2.22

examples. However, as it usually happens in programming, verbal specifications
have a tendency to get more vague and ambiguous as the complexity of the object
that they specify increases. Qur goal in this section is very ambitious. We intend to
design a language for precise mathematical specifications of the languages acceptable
by finite automata. Furthermore, we are going to show that a finite automaton can
be derived from its specification by a general algorithmic procedure. Moreover, we
will show that a finite automaton can be converted into its specification, and the
conversion can again be carried out by an algorithmic procedure.

In order to design an algorithm that derives a finite automaton from its speci-
fication, we shall develop some technical tools that will allow us to build complex
automata from simple ones. These technical ideas, in various forms, implement
a very important programming idea: simulation. Roughly speaking, simulation
means mimicking the actions of some process by a collection of subprograms.

The more complex automata accept languages that can be obtained from simpler
languages by certain set-theoretical operations. Some of these operations, in par-
ticular, union, intersection, and complementation are familiar to the reader. Now
we introduce two new operations: concatenation and the Kleene star.

We start by fixing an alphabet X. Define the concatenation of two strings
u and v over the alphabet ¥ as the string wv, that is, the string u followed by



2.4. REGULAR EXPRESSIONS 31

v. Given two languages L; and L, their concatenation LiL, is the language
{uvlu € L1,v € Ly}. For example, if L; = {a"|n =0,1,2,...} and Ly = {d™|m =
0,1,2,...} then

LiLy ={a"b™|n=0,1,2,...,m=0,1,2,...}

that is, all strings of a’s followed by all strings of b’s. The definition of concatenation
can be extended naturally to any finite number of languages. For example, if L3 =
{c*|k =0,1,2,...}, then

LiLyLs = {a™b™c*n,m,k =0,1,2,...}

Any language can obviously be concatenated with itself. Moreover, it can be con-
catenated with itself any finite number of times. Let L™ denote a language L
concatenated with itself » — 1 times. For instance, L3 = LLL.

The Kleene star L* of a language L is the infinite union

{eyULUL?UL3...

Note that L* contains the empty word. Actually, L° = {e} by convention and
L! becomes a synonym for L.
An equivalent definition of L*: all strings

WL Wy - . . Wk

where wy,ws, ..., wg € L.

Here are some examples of forming the Kleene star of languages:

(1) L = {a}. Then L* = {e, a, aa, aaqa, aaaa, ...} (in other words, L* is the set
of all a-strings, including the empty string).

(2) L = {a,bb}. Then L* = {e, a, bb, aa, bbbb, abb, bba, aaa, bbbbbb, aabb, abbbb,
bbabb, bbaa, bbbba, ...} (in other words, L* is the set of all finite concatenations of
the strings a and bb, including the empty string).

We intend to show now that if any two languages L and M are acceptable
by finite automata, so are their unions, complements, differences, intersections,
concatenations, and Kleene stars. In other words, languages acceptable by finite
automata are closed under the above set-theoretical operations.

Theorem 2.4.1 If the languages L and M are acceptable by finite automata, so
are the languages

e LUM,

e X* — L (the complement of L),
o« LOM,

o« L-M,

e LM, and



32 CHAPTER 2. FINITE AUTOMATA

o L*.

Moreover, there exists an algorithm that, given the diagrams of the automata ac-
cepting L and M, constructs the automata accepting the languages obtained by the
above set-theoretical operations.

Suppose the languages L and M are accepted by the automata A and B, re-
spectively. The diagrams of A and B are schematically represented in Figures 2.24
and 2.25

> ®
°
®
Figure 2.24 Automaton A
> [ ]
°
®

Figure 2.25 Automaton B

(1) Union. The required algorithm creates a new initial state g and connects
it to the initial states of A and B by arrows labeled by e (Figure 2.26). The new
diagram clearly accepts the language L U M.

(2) Complement. For the complement of L, the algorithm first converts the
automaton for L to a deterministic automaton for L, and then just “flips” the
favorable and nonfavorable states in the diagram of A; that is, favorable states
become nonfavorable ones and vice versa.

(3) Intersection. First, note that LNM can be expressed as the complement of
the set (X*~L)U(X*—M). Thus, the algorithm builds diagrams for the complements
of L and M, then forms their union, and, finally, forms the complement of the union.



2.4. REGULAR EXPRESSIONS 33

Figure 2.26 The Union of A and B

(4) Difference. The difference L — M can be expressed as the intersection of the
languages L and X* — M. The algorithm finds a diagram accepting the complement
of M and then builds the diagram accepting the required intersection.

(5) Concatenation. In this case, the algorithm connects every favorable state
of L to the initial state of M by an arrow labeled by e (Figure 2.27). The favorable
states of B become favorable states of the new automaton.

If the string 2y is in the concatenation LM, the new automaton reads z, “jumps”
to the former initial state of B, reads part y, and reaches a favorable state. If the
string w is not in LM, then either A, reading the initial fragment x, cannot reach
a favorable state of A, or, if for some x such that w = zy for some y, A reaches a
favorable state on x, but B cannot reach a favorable state reading the remainder y
of the string.

(6) Kleene star. In this case, the algorithm utilizes an idea similar to that
used for concatenation. All the favorable states of A are connected to the initial
state by arrows e, making looping possible. However, as the empty word must be
a part of L*, we create a new initial state s, make it the only favorable state, and
connect it to the old initial state by an arrow labeled e (see Figure 2.28).

Our next step is to define the language of formal specifications from which finite



34 CHAPTER 2. FINITE AUTOMATA

Figure 2.28 Kleene Star of A

automata can be derived by application of a formal procedure. Note that specifi-
cations, being finite statements, must be able to describe infinite languages. The
specifications we are going to define are known by the name regular expressions.
A regular langauge is any language that is described by a regular expression.
Now, every regular expression is a string over the alphabet ¥ U {(,), e, 0, U, *}.
The set of regular expressions can be obtained, via an inductive definition, as follows:

e ), e, and each a € ¥ are regular expressions (ground elements).

e If o and 3 are regular expressions, then so are (aUB), (o), and o* {inductive
step).

e No other string over the above alphabet is a regular expression.

Some examples of regular expressions are: {(a*b*) and (a* U ((ab)* U b*)*)*.
Regular expressions are supposed to specify languages. Therefore, we are going



2.4. REGULAR EXPRESSIONS 35

to map every regular expression « to a language L(«a) represented by the regular
expression a. The mapping can be defined as follows:

o L(B) =0, L(e) = {e}, and L(a) = {a} for any a € X.
e If o and 3 are regular expressions, then

— L{(av §)) = L(e) U L(D),
— L((apB)) = L(e)L(B), and
= L{a*) = (L(e))".

Example 2.4.1 Find the language L((ab*)a).
According to our definition,

L((ab*)a) = L((ab"))L(a)
L((ab™)){a}
= L(a)L(b"){a}
{a}(L(b))"{a}
{a}{b}"{a}

w(w 18 of the torm ab"a,n =0,1,2,...
is of the fi b" 0,1,2

It

i

il

LEnd Example J

Example 2.4.2 Find the language for the expression L((a(a Ub)*)). We have

L(a(@aUb)) = L{@)L{(aUb))
= {a}{w|w is any word in ¥*}

{aw|lw € T*}

Il

' End ExampleJ

Example 2.4.3 What is the language represented by the expression (b*a)*?
Any substring of d’s in any word w in this language must be followed by a
nonempty string of a’s. That is, no w in the language can end by b.

| End Example |




36 CHAPTER 2. FINITE AUTOMATA

Example 2.4.4 Now we will describe the language L represented by the expression
(bU (aa)a*)*.

This language obviously does not contain the word a, no word w € L can begin
with ab, end with ba, or have a subword bab.

End Example j

Example 2.4.5 The regular expression we are going to define specifies all identi-
fiers in a C-like programming language. Any such identifier begins with a letter,
which may be followed by a string consisting of letters and numeric digits. Let
expression |a — z| stand for the regular expression (aUbUcU...Uz), [A — Z] stand
for the regular expression (AU BUC...U Z), and [0 — 9] stand for the regular
expression (0U1U2U...U9) (dots stand for missing letters and numbers). Then
the regular expression

(la—2]U[A-Z])(la - 2JU[A - Z]U[0 - 9])"

represents all identifiers.

Some programming languages permit the use of the underscore character
between letters and numeric digits. For example; Ab_55_c, ab_b_5. Every character
_ must be followed by a letter or a numeric digit. The regular expression generating
all such identifiers is

([a-2ufA-2Z)(((la-2]U[A=-Z]U0-9])*(a - 2] U[A - Z]U[0-9])7)"

A part of every compiler is a lexical analyzer, which, in particular, finds all
identifiers in the text of the source program. More specifically, the lexical analyzer
uses a list of regular expressions that are used to determine if strings of characters
are identifiers, that is, if they match at least one of the given expressions. This is
one of multiple applications of regular expressions in programming.

“on

J End Example J

Note that concatenation and union are associative operations. In other words,
(Lng)L3 = Ll(L2L3) and (Ll U L2) U L3 = L1 @] (L2 U L3) This means that we
can omit parentheses in subexpressions of the type {af)y, or, say, o U (8U~). For
example, we can write (abbU abU a)* instead of (((ab)b) U (ab)) U a)*.

Now we are in a position to design an algorithm A that converts any regular
expression « into a diagram of a finite automaton A such that L{a) = L(A). Note
that any regular expression is built up from ground components, for example, the
singletons e, a € ¥ and @, to which operations U, concatenation, and the Kleene
star are being applied. The required algorithm operates as follows.

1. It converts every ground singleton a or e or @ (if any) to an automaton ac-
cepting just this singleton; (see Figure 2.29).



2.4. REGULAR EXPRESSIONS 37

2. Then it applies the algorithm designed in Theorem 2.4.1 to every concatena-
tion, union, and Kleene star present in the expression.

Let us apply algorithm A4 to the regular expression ((a U ab)*ba)*. As the first
step, the algorithm creates automata for the “ground” singletons of Figure 2.29.
Then it carries out the five steps of Figures 2.30—2.34.

Figure 2.31 Transformation Step 2 of 5

Now we will design an algorithm B that converts any finite automaton A into a
regular expression o such that L{A) = L(a).

Our algorithm will carry out conversion step by step, replacing “chunks” of
diagram A by regular expressions. Moreover, it uses the results of intermediate
steps of conversion to build more complex expressions. In order to “visualize” every
step of conversion, we need a way to represent every intermediate result in the form
of a diagram with arrows labeled by the subexpressions obtained so far. A natural
idea is to extend the notion of a state diagram using arbitrary regular expressions
as labels.

Thus, an expression diagram is a labeled directed graph in which the arrows
are labeled by regular expressions. Like a finite state diagram, it has an initial state
and a number of favorable states. An example of such a diagram is presented in
Figure 2.35.



38 CHAPTER 2. FINITE AUTOMATA

Figure 2.33 Transformation Step 4 of 5

We can naturally associate a language with any expression diagram (this is done
in Exercise 2.21). However, in our construction we use an expression diagram merely
as a tool to aid in the conversion of a finite automaton into a regular expression.

Our goal is, given any finite automaton A, to convert it into an expression
diagram that has a single arrow connecting the initial state and the final state and
labeled by the expression representing L(A). For example, we would like to convert
the diagram of a finite automaton of Figure 2.36 into the diagram of Figure 2.37.

However, there is still one obstacle. Finite state diagrams may have more than
one favorable state, while the algorithm we are going to define can be applied only
to finite state diagrams with a single accepting state. The problem can easily be
resolved in two different ways: We can transform the input finite state diagram
into the equivalent one (that is, one accepting the same language) that has a single
favorable state, adding arrows from the favorable states in the original diagram
labeled by the empty string (see Figure 2.38).



24. REGULAR EXPRESSIONS 39

Figure 2.34 Transformation Step 5 of 5

O O——Q() o

Figure 2.35 An Expression Diagram

Or we can apply the algorithm to the copies of the original diagram, each time
choosing a single, different favorable state and then taking the union of the obtained
expressions.

An additional useful assumption we are going to make is that the input state
diagram has no arrows directed to the initial state and no arrows coming out of
the favorable state. If the diagram does not satisfy this condition, it can easily be
transformed into a diagram with this requirement satisfied. For instance, we can
add a “dummy” initial state and connect it with the state in the original diagram
by an arrow labeled by the empty word. A “dummy” favorable state can be added
in the same way.

Now, let us number all nodes in the input finite state diagram, say, from 1 to n.
Without loss of generality, we can assume that the starting state has number 1 and
the favorable state has number n. Let [; ; denote the label of an arrow from the
node i to the node j (if there are many arrows from 7 to 7, we will use a superscript
to distinguish corresponding labels: 1 ;,i2,,...,1%). Algorithm B is defined in
Algorithm 2.4.1.



40 CHAPTER 2. FINITE AUTOMATA

Figure 2.36 Initial Automaton

>C} ab(ab)*b U ba @

Figure 2.37 Converted Automaton

Algorithm 2.4.1
For every pair of nodes j and k (j may be equal k),
if there are arrows from j to k with labels
1,12 i
Gk bk s bk
then replace them by a single arrow from j to & labeled by
yUlZ, v, ulm,
fori=2,3,...n—1do
for every pair of nodes j and k (j may equal k)
in the diagram such that there is an arrow from
j to 7 and there is an arrow from 7 to k.
(1) If there is no arrow from ¢ to 7 then
add an arrow from j to k labeled by
L ili k-
(2) If there is an arrow from ¢ to ¢ then
add an arrow from j to k labeled by
Liillii)* ik
(3) If there are arrows from j to k with
labels I}, 1%,,..., 17,
then replace them by a single arrow
labeled by ljl-,,c U l?,k U... Ul
(4) Remove node i and all the arrows
coming in and out of 7 from the
diagram.

[ End Algorithm




24. REGULAR EXPRESSIONS 41

Figure 2.38 Automaton with One Accepting State

The transfomations of the steps 1, 2 and 3 are illustrated in Figure 2.39.
g l 14l
l .. i - ili g
O——(O——® =O————®
(2)
Ui Li g N balli) i
O —e® = O

(3)

1
lj,k

1 2 Loulm
A:@ BLUB U ol ®

m
ljvk

Figure 2.39 Steps 1, 2 and 3

At first glance, step 3 seems to be somewhat irrelevant to the “activity” resulting
in deletion of node i. However, when a node i is deleted, it may result in creating
new “parallel” arrows from j to k; step 3 takes care of this situation by combining
them into one arrow (see Figure 2.42).

We illustrate algorithm B by applying it to the automaton in Figure 2.40. First,
the algorithm deletes node 2. Note that l3 2 = a and Iy 4 = b. Similarly, [; 2 = a and
l2.4 = b. Finally, notice that l5 » = b and I 4 = b. Hence, according to Algorithm B,
we get three new arrows when we eliminate node 2. Two of these arrows, from node
3 to node 4 and from node 1 to node 4, are labeled ab. The last of these new arrows



42 CHAPTER 2. FINITE AUTOMATA

a b
O——C=0——0
b

Figure 2.40 Example Input for Algorithm B

goes from node 4 to node 4 and is labeled bb. The resulting diagram is presented
in Figure 2.41. Then, after node 3 is deleted, we get the diagram of Figure 2.42.

Figure 2.41 Node 2 Deleted

(bab U bb)

ab I

a
>(D) O ®
Figure 2.42 Node 3 deleted

Note that step 3 has been applied to replace two arrows labeled abb and bb by a
single loop labeled abbU bb. Now, after node 4 is removed, the algorithm terminates
with the resulting diagram given in Figure 2.43.

Thus the desired regular expression is ab(abbUbb)*a. The results obtained above
can be summarized in the following theorem.

Theorem 2.4.2 (Kleene) There exists an algorithm that converts any regular ex-
pression o into an NFA A such that L(a) = L(A). There exists an algorithm that



2.5. NONREGULAR LANGUAGES 43

>® ab(bab U bb)y*a ;@

Figure 2.43 Final Expression Diagram

converts any NFA A into a regular expression o such that L(A) = L(a). That is,
a language is accepted by an NFA if and only if it is regular.

Formal proof of the correctness of algorithm B can be carried out using mathe-
matical induction. This is suggested in Exercise 2.21.

Notice the similarity between regular expressions and the syntax of the query
languages used by search engines on the World Wide Web. This is no accident as
the heart of the pattern-matching algorithm that checks for occurrences of your
pattern on a particular Web page is precisely a finite automaton. Comparing the
operations of building regular expressions and the operations for building search
queries, we see that regular expressions are much more expressive. Search queries
do not generally include anything like the Kleene star. Search queries often include
“wild cards.” These are also easy in the language of regular expressions. For
example, an arbitrary lowercase letter is captured by the regular expression o =
(aUbU...Uz). So to find, for example, all Web pages that contain an occurrence
of “peace” following an instance of “world,” one constructs a finite automaton to
recognize the language worlda*peace. Any page that is accepted by this automaton
will match the search query. Furthermore, every page matching the query will be
accepted by the automaton and any page that doesn’t match the query will not be
accepted.

One of the more useful programs in the UNIX operating system is called grep.
This program takes two arguments; the first, a pattern, and the second, a file. The
program returns all lines of the file that match the pattern. In fact, “grep” is a
mnemonic that stands for “get regular expression.”

2.5 Nonregular Languages

In the previous sections we have developed a variety of techniques for demonstrating
that languages are regular (or, accepted by finite automata). As we pointed out in
the beginning of this chapter, finite automata are programs that use fixed amounts
of memory (represented by states) regardless of the input. One ought to expect
that the power of such programs should be quite limited. Consider, for example,
the language L = {a™b"|n € N}. Suppose that a finite automaton A tries to
recognize strings in this language. Then A must attempt to store the entire prefix
a™ (or, at least, a string of comparable length) before the first b shows up in the
input; otherwise A will not be able to compare the length of the coming string of
b’s with the length of the prefix. This argument shows that probably no such an



44 CHAPTER 2. FINITE AUTOMATA

automaton A exists. We use the word probably, because our argument is not a
mathematical proof of nonexistence of a desired automaton A. In order to be able
to prove nonregularity of certain languages, we have to develop a mathematically
sound technique.

Note first that any nonregular language must be infinite. Many infinite languages
are still regular; we observed numerous examples of infinite regular languages in
previous sections of this chapter. What makes a regular language infinite? It is
obvious that an underlying automaton must contain a loop. If such a language
is represented by a regular expression, this expression must contain a Kleene star.
When we run through the loop few times, it results in a number of repetitions of
some substring in a string belonging to the language. Potentially, we can run the
loop any finite number of times. This way we can generate infinite subsets of strings
in the language based on the same underlying repetitive structure specified by the
loop (or a Kleene star in a regular expression).

The above intuitive argument can be mathematically formalized to prove the
following.

Lemma 2.5.1 (Pumping Lemma) Let L be a regular language. There exists an
integer n > 0 such that any string w € L, with length |w| > n, can be represented
as the concatenation xyz such that,

o The substring y is nonempty,
o |zyl <n, and

o zytz € L for each i > 0.

Proof: If L is finite, then choose any n longer than the longest word in L and the
theorem follows since there are no words of length at least n. Suppose, then, that
L is infinite. Let A be a finite automaton that accepts the language L. Let n be
the number of states of A. Consider any string w = wyws ... w,, € L that has the
length m > n. Consider a computation of A on the initial segment wiws...w, of
the string w. For any k, 0 € k < n, let (gk, Wk+1Wk+2 - - - Wy ) be the configuration of
A after k steps of computation. Since A has only n states, and there are more than
n configurations in the above fragment of computation, by the pigeon hole principle
there exist 7 and j, 0 < r < j < n, such that ¢, = ¢;. This means that the string
Y = Wr41Wr42 ... w; brings the automaton A from state g, back to the same state.
Note that this string is nonempty, since r < j. Now, if we remove string y from the
original string w, or insert y* instead of y for any i, we get a string that will be still
accepted by A. Thus, any string zy'z, where * = wiws ... Wr, ¥ = Wy 1Wrig .. LWy,
and z = W 1Wjq2... Wn, is accepted. Moreover, the total length of the prefix z
and the substring y does not exceed n.

L End Proof 1

The word Pumping reflects the fact that some nonempty string can repeatedly



2.5. NONREGULAR LANGUAGES 45

be inserted (pumped) into the word w without violating acceptability. How can we
apply the pumping lemma to show that a language L is not regular? A possible
application can work as follows.

1. The language L is likely to be nonregular. Thus, we cannot hope to have
a description of L as concise as a regular expression. Still, we usually have some
description (verbal, set-theoretical, graphical, etc.) that fully specifies the language
in question. What we need from this description is the opportunity, given any string
w, to determine if w is in L. For example, L = {a™b"|n € N} definitely provides
such an opportunity since abbb is clearly not in this language.

2. Now we get to the key idea. Assume that the language L is regular. Using
the pumping lemma (Lemma 2.5.1), we may try to generate a string that must be
in the language L; however, it does not satisfy specifications in the description of L.
That is, our assumption that the language L is regular has led us to contradiction.
We now give a specific example of this technique.

Example 2.5.1 Consider the language L = {a*b*|k € N}. Assume that the lan-
guage is regular. Then, according to the pumping lemma, there exists some integer
n such that any word in L of length |w| > n contains a nonempty subword y that
can be pumped in or cut out of the word w. Let us pick the word a™b™. This word
has length 2n > n; thus it can be represented as zyz with |zy| < n, and y can be
pumped in or cut out. Since |ry| < n, y must be a* for some k£ > 0. Now, if we cut
y out of w, the new word a® *b", according to the pumping lemma, must be in L.
However, it is obviously not in the language.

[ End Example

The technique we just applied reveals a potential problem: how to pick a
word that can be used to generate a new “faulty” word. In the Example 2.5.1 we
could have picked the word a™/2b™/2 (assuming that n is even), as it is still not
shorter than n. In this case, y could be any subword a* for any k > 0 or a*p™
for any k + m > 0. The pumping lemma, unfortunately, does not tell which case
takes place. In this situation, we have to consider both possibilities for y. It is not
hard, for if, say, y were a*b™ for k > 0 and m > 0, pumping in a few copies of y
would result in a word with “alternating” a’s and b’s, but there is no such word in
L. However, in our next example, the right choice of a word w plays vital role in
the ability to apply the pumping lemma (Lemma 2.5.1).

Example 2.5.2 Palindromes are the words that are read the same way from
both ends (for example, atoyota). We will show that the language of palindromes
L = {w|lw = w? w € T*} is not regular. Suppose L is regular. Then, as the
pumping lemma states, there exists an n such that every w € L with length |w| > n
can be represented as the concatenation xyz satisfying conditions in the lemma. Let
us pick the palindrome a"ba™. Since the total length of x and y should not exceed



46 CHAPTER 2. FINITE AUTOMATA

n, y is a substring a®,k > 0 in the left subword a™. According to the pumping
lemma, then a® *ba™ € L. However, it is not a palindrome.

l End Example

What if in Example 2.5.2 we chose a different word w, say, ab™a? It is a palin-
drome, and it is long enough. However, if y = b* for some k& > 0 (which is very
possible), then pumping in or cutting out y brings us nowhere, as every new word
of this kind is a palindrome. What this example demonstrates is the fact that every
application of the pumping lemma requires an act of creativity from its user: right
choice of the word w that can be used to generate words beyond the scope of the
language. These words are usually “hard” to recognize by finite automata. a™ba™
is “hard” for a finite automaton, as it must memorize n somehow. On the other
hand, ab™a is “easy.”

Now we give an example of a nonregular language over a unary (one-character)
alphabet.

Example 2.5.3 Consider the language L = {ak2|k =0,1,2,...}. We apply the
pumping lemma to show that this language is not regular. Assume that it is regular.
Then, using the number n, as provided by the lemma, we choose the string w =
a™+D” ¢ L of length (n + 1)2 > n. If it is represented as zyz with |zy| < n, then
y = a' for some 0 < i < n. Thus a™)*~¢ must be in L. Now note that n2, the
square closest to (n + 1)2, is smaller than (n+1)2 —i: (n+1)2 =n?+2n+1 and
i < n; therefore (n +1)2 —i > n? + n+ 1 > n?. Thus, we get a contradiction.

1 End Example

Our next example shows that sometimes closure properties of regular languages
and previously obtained results can be used to establish nonregularity of new lan-
guages.

Example 2.5.4 We are going to show that the language
M = {w € ¥*|w has equal number of a’s and b’s}

is not regular. The intersection of this language with the regular language a*b* is
the language L from Example 2.5.1. If M is regular, so the intersection L should
be. However, we just showed that L is not regular.

L End Example

More examples of nonregular languages can found in the exercises for this sec-
tion.



2.6. ALGORITHMS FOR FINITE AUTOMATA 47

2.6 Algorithms for Finite Automata

In the previous section we found that there is an algorithm that converts finite
automata to regular expressions. This algorithm uses the diagram of a finite au-
tomaton as its input. What else can algorithms do, given the finite state diagram
as the input? In this section we provide few examples of such algorithms.

Algorithm 2.6.1 We are going to design an algorithm that, given a
finite state diagram A and a string w, decides if w € L(A4). We will
call deciding w € L(A) the membership problem. The algorithm
runs the word w using all possible paths in A beginning with the initial
state. If, on some path, w drives A to a favorable state, then w € L.
Note that the length of every path being observed is |w|, that is, only
paths of this length should be examined. If no such path drives A to a
favorable state, the algorithm terminates and gives the answer w ¢ L.

rEnd Algorithm ]

Algorithm 2.6.2 This algorithm determines if the language L(A) is
empty. The language L(A) is empty if there is no path in the diagram
A from the initial state to a favorable state. To determine if there is
such a path, it is obviously sufficient to observe only the paths in the
diagram that do not make full loops. Thus, the required algorithm must
just follow all the paths that do not have repetitions of states. If no such
path contains a favorable state, then L(A) is empty.

| End Algorithm

Algorithm 2.6.3 This algorithm determines if L(A) C L(B) for any
two finite automata A and B. In the previous section we described
how, given the diagrams A and B, to find the automaton C' accepting
the difference L{A) — L(B). Now we can apply Algorithm 2.6.2. If the

language L{C) is empty, then L(A) C L(B).
| End Algorithm |

Algorithm 2.6.4 This algorithm, given two automata A and B, deter-
mines if they are equivalent, that is, if L{A) = L{B). The languages
are equal if and only if L(A) C L(B) and L{B) C L(A). Thus, we can
apply Algorithm 2.6.3.

| End Algorithm




43 CHAPTER 2. FINITE AUTOMATA

2.7 The State Minimization Problem

Applications of finite automata can be found in practically any area of computer
science. One important field where finite automata are being used is hardware
design: Some components of hardware are based on simulation of deterministic
finite automata. An important objective here is to utilize finite automata that have
a minimum possible number of states. During the initial phase of design, we usually
do not care much about the number of states in the automaton solving the problem.
Thus, it is important, given any automaton, to be able to transform it into an
equivalent automaton that has a minimum number of states; the problem of finding
such a minimum deterministic automaton is known as the state minimization
problem.

An immediate question is if for every antomaton A there exists an equivalent
automaton B with the minimum possible number of states. The answer to this
question is obviously positive: If A has n states, then take the minimum m < n
such that there is an automaton B with m states that is equivalent to A. This
argument actually suggests the idea of an algorithm solving our problem. Namely,
note that for any positive integer m, there exists only a finite number of different
automata with n states. We are assuming for the moment that all the states are
drawn from the same set {s1, $2,...,8,}. Moreover, it is not hard to list all these
automata in some order so that all the automata with a fewer number of states
precede automata with a greater number of states. Now, given an automaton A
with n states, we can apply Algorithm 2.6.4 to find the first automaton in the above
list equivalent to A. Obviously, this automaton will have the minimum number of
states among all automata equivalent to A.

Unfortunately, the preceding algorithm is completely impractical, as the total
number of automata with m < n states is exponentially large (see Chapter 6 for
more detailed discussion of the effects of exponential exhaustive search). We intend
now to present an efficient algorithm that converts any deterministic finite automa-
ton into the equivalent deterministic finite automaton with the minimal number of
states.

Before our algorithm starts to work on a diagram, it makes sense to get rid of
the states that cannot be reached from the initial state. Consider, for example, the
diagram of Figure 2.44.

State n cannot possibly be reached from the initial state. Therefore, if we remove
this state together with all arrows coming out of it, the new diagram (Figure 2.45)
will accept the same language.

It is very easy to identify all reachable states: Just follow all possible paths
without repeatedly traversing loops. Once all reachable states have been identified,
remove all unreachable states and all arrows coming in and out of them. Thus, we
can assume that the input diagram does not contain states unreachable from the
initial state.

Consider now states ¢ and p in the diagram of Figure 2.45. The only way to
enter either state is via an a; both ¢ and p are trap states. It is obvious that these



2.7. THE STATE MINIMIZATION PROBLEM 49

Figure 2.44 Automaton with an Unreachable State

two states can be merged. We say that the states ¢ and p are equivalent or, in
other words, indistinguishable. Take any word w, say, abb, and run A from either
state ¢t or p on it. In both cases the word drives A to a favorable state. Now consider
states g and r. These states are also indistinguishable. If we take, say, bb, it drives
the automaton from either g or r to the nonaccepting trap state, and, therefore, A
cannot reach a favorable state on bb from either ¢ or r. That is, any word w drives
the automaton A with the diagram of Figure 2.45 from state ¢ to a favorable state
if and only if it drives A from 7 to a favorable state, or, in other words, no word w
can distinguish ¢ and r as far as acceptance is concerned. Distinguishability does
not depend on how the states ¢ and r can be reached from the initial state. What
matters is how the automaton operates from the states in question.

The above example suggests the following idea: Given a finite automaton A,
identify the minimal set of distinguishable states, and merge every such state with
all the states that cannot be distinguished from it. Our algorithm below (Algorithm
2.7.1) accomplishes this idea; however, details are subtle. First, we formalize the
notion of distinguishability in the following.

Definition 2.7.1 Any states q and r in the diagram of a finite automaton A are
called indistinguishable (written ¢ = r) if the automaton obtained from A by
designating q as the initial state is equivalent to the automaton obtained from A by
designating r as the initial state.

We also say that a word w distinguishes states ¢ and r of an automaton A if,



50 CHAPTER 2. FINITE AUTOMATA

0108

Figure 2.45 Without the Unreachable State

starting from ¢, w drives A to a favorable state, and, starting from r, w drives A
to a nonfavorable state, or vice versa.

It can easily be proved that the relation = is reflexive, transitive, and symmetric.
Therefore, it is an equivalence relation. It divides the set of all states into equiva-
lence classes: Any two states in the same equivalence class are indistinguishable,
any states from different equivalence classes are distinguishable. Now our goal can
be reformulated: Given the diagram of an automaton, to find all equivalence classes
for the relation =, every equivalence class can be represented by a single state in
the desired diagram.

The central part of our algorithm is a routine that reduces the problem of dis-
tinguishability of any two states r and ' to the same problem for the states ¢ and
¢’ that can be reached from r and, respectively, ' by arrows with identical labels
(see Figure 2.46). If distinguishability of ¢ and ¢’ will ever be established, it will

(D——9)

(—+—D
Figure 2.46: Distinguishability of r and ' Related to the Distinguishability of ¢
and ¢
result in distinguishability of r and r’. That is, we can first distinguish all favorable
states from all nonfavorable states and then move “backwards.” To implement this

idea, we introduce the sequence of relations =g, =y,...,=,,... defined as follows:
For any two states ¢ and r, ¢ =; r if these states are not distinguishable by any



2.7. THE STATE MINIMIZATION PROBLEM 51

word w with length |w| < i. One can easily establish that every =; is an equivalence
relation. Any relation =; is obviously weaker than =, because in this case ¢ and r
cannot be distinguished if we consider only words of length at most i.

Note that if ¢ =g r, then ¢ and r are either both favorable, or both nonfavorable.
Now we need to link the relation =, to the relation =,,. Let § be the transition
function of the input automaton A. The desired link is provided by the following
simple lemma.

Lemma 2.7.1 For any two states ¢ and r and any integer n > 0, ¢ =, r if and
only if

1. gq=n_1r and

2. foralla e, 0(q,a) =,—1 8(r,a).

Proof: Suppose ¢ =, r. By definition of the relation =, ¢, and r are indistin-
guishable by words of length up to n. Therefore, they are indistinguishable by the
words of length up to n — 1. Suppose by way of contradiction that it is not the case
that 8(g,a) =_1 8(r,a) for some a € X. Let ¢ = d(g,a) and ' = §(r,a). Since not
q =n_17, ¢, and r’ can be distinguished by some word v of length at most n — 1.
Hence, av, a word of length n, distinguishes ¢ and r, a contradiction.

Suppose ¢ =,—1 7 and §(q,a) =,_1 8(r,a) for all a € . Let v be a word of
length » — 1 and a be a member of X.. Consider the word av. Let ¢ = 6(q,a) and
r’ = é(r,a). Since ¢’ =, 7/, ¢/, and r’ cannot be distinguished by v. Hence, av
cannot distinguish ¢ and r. Since v and a were chosen arbitrarily, ¢ =, r.

| End Proof |

Now, given equivalence classes for any relation =,_;, we can test conditions 1
and 2 of Lemma 2.7.1 for any states ¢ and r to find the equivalence classes for =,,.
Algorithm 2.7.1 is based on this idea. Let ) be the set of all states of A, and F' be
the set of the accepting states.

Algorithm 2.7.1
Initialize the equivalence classes for =g as F' and QQ — F.
Repeat for n =0,1,2,...
Compute the equivalence classes of =,, from
those of =,_1
until =,, is identical to =,,_1.

End Algorithm

Equivalence classes for =,, become states in the resulting automaton. If a class
contains a favorable state of the input automaton, it becomes a favorable state.



52 CHAPTER 2. FINITE AUTOMATA

An arrow labeled by a € ¥ connects an equivalence class {g1,¢2,...,¢n} to an
equivalence class {p1,pz, ..., px} if there is an arrow with the same label connecting
a state from the first class to a state from the second class in the input automaton.

To demonstrate the correctness of our algorithm, we have to establish two facts:

e The loop in the definition of the algorithm terminates;
e The final relation =,, is the desired =.

As for the first fact, just note that if the states cannot be distinguished by
words of length up to n, they are indistinguishable by the words of length up to
n — 1. That is, the longer the words, the more states they distinguish. Hence,
every =, is a refinement of =,_1, that is, some equivalence classes in =,, result
from dividing classes in =,,_;. However, the number of equivalence classes cannot
grow indefinitely: It cannot be greater than the total number of states |Q|. Thus,
our algorithm terminates. The second statement easily follows from Lemma 2.7.1.
Lemma 2.7.1 implies that if =,= =,,41 for some n, then =,= =,11= =, 42= -~
Now, it remains to be noticed that the relation = is the limit of the relations
=,,n=0,1,2,.... Hence, no word of any length can distinguish any two states in
the same final equivalence class. Consequently, the final set of equivalence classes
defines the desired relation.

Now we apply the algorithm to the automaton of Figure 2.45. First, we initialize
two equivalence classes for =¢ as {t,p} and {s,q,r,m}. After the first iteration of
the algorithm, the first class stays the same, but the second class is split into
{s,m} and {¢,7}. This happened because a drives the automaton from states g
and r to a favorable state; while reading the same character from s and m, the
automaton reaches a nonfavorable state. The second iteration splits only the class
{s,m}. The character a drives the automaton from s to a state in the class {q,7};
while reading the same character from state m, the automaton reaches a state in
the class {s,m}. Thus, after the second iteration, we have four different classes:
{s},{m}, {q,r},{t,p}. The third iteration gives us the same classes. The resulting
deterministic finite automaton with the minimum number of states is given in Figure
2.47.

The automaton obviously accepts the language represented by the regular ex-
pression (aa U ba)(a U b)*.

Note that Algorithm 2.7.1 is quite efficient: The number of iterations in the
main loop does not exceed the number of states in the input automaton, and, on
every iteration, it is enough to review the set of transitions (g, a).



2.7. THE STATE MINIMIZATION PROBLEM

Figure 2.47 A Minimal Deterministic Finite Automaton

53



54 CHAPTER 2. FINITE AUTOMATA

Exercises

PE— Section 2.1 EE——

Exercise 2.1 Consider the following finite automaton:

a) Find the sequence of configurations (computation) of the automaton on the
string aaabba and determine if the string is accepted

b) Find the sequence of configurations of the automaton on the string aabaab
and determine if it accepts the string aabbaab.

¢) Describe (informally) the language accepted by the automaton.

Exercise 2.2 Consider the following finite automaton:

a) Find the sequences of configurations (computations) of the automaton on the
strings aababa and bbaababaaa and determine if the strings are accepted.

b) Find the sequences of configurations of the automaton on the strings aabaab
and bbaababb and determine if they are accepted.

¢) Describe (informally) the language accepted by the automaton.



Exercises 55

Exercise 2.3 Construct a finite automaton (in form of a diagram) that accepts all
strings in the alphabet {a,b} of length up to 3.

Exercise 2.4 Construct a finite automaton (in form of a diagram) that accepts all
the strings of length 3n,n =0,1,2,....

Exercise 2.5 Let ¥ = {a,b}. For m,n,z,y € N, let L(m,n,z,y) (for x < m
and y < n) be the set of all words w € X* such that the number of a’s in w is
z mod m and the nunber of b’s in w is y mod n. How many states are needed for
an automaton that accepts the language L(m,n, z,y)?

Exercise 2.6 Consider the finite automaton:

a) Determine if the automaton accepts the strings abab. and aabaab
b} Determine if the automaton accepts the strings abbb and abbaab.

¢) Describe the language accepted by the automaton.

Exercise 2.7 For each of the following languages over the alphabet {a,b}, con-
struct a finite automaton accepting it.

a) All strings, where every occurrence of an a is followed by a b.

b) All strings that contain a substring bbb.



56 CHAPTER 2. FINITE AUTOMATA

Exercise 2.8 ¢ ¢ A deterministic two-tape finite automaton is a computational
device that has two input tapes. It operates on pairs (u#,v+#) of strings, where
u,v € X for some finite alphabet ¥ and # is the end marker not contained in X.
The set of states is divided into two subsets @1 and @Q,. If ¢ € @1, the head of the
first tape reads a symbol and moves to the right; otherwise the head on the second
tape does the same thing. The automaton completes its operation when it reaches
the end markers on both tapes. A pair of (u#,v#) is accepted if the automaton
reaches end markers on both tapes being in a favorable state.

Q1 Q2
S. .T'
i—»oq
[ e?D

[ale ale[pTe el

Lafo]efafafa]s] -

For example, the automaton



Exercises 57

@1 Q2

accepts all pairs of strings (u#, v#) over the alphabet {a,b} of equal length (|u| =

[v]).
For each of the following languages, construct a two-tape deterministic automa-
ton (in the form of a diagram) that accepts it.

a) {(u#,v#)lu,v € {a,b}", |ul = 2Jv[}
b) {(a™b"#,a*b"#)|n,m, k > 0}

c) {(a™d™#,a*b"#)|n,m, k > 0}

EE— Section 2.2 EE—

Exercise 2.9 Determine if the nondeterministic automaton



58 CHAPTER 2. FINITE AUTOMATA

accepts the strings
a) abb

b) abbbb
c) aabb

If the string is accepted, indicate a corresponding sequence of states.

Exercise 2.10 € Consider any nondeterministic automaton A over the unary al-
phabet {a}. Describe the language L(A).

= ] Section 2.3 I——

Exercise 2.11 Transform the following nondeterministic finite automata into de-
terministic finite automata accepting the same languages:

a)




Exercises 59

b)

Exercise 2.12 ¢ Show that the language L = {e,a} cannot be accepted by a
nondeterministic automaton A unless at least one of the following conditions is
met:

a) A contains an arrow labeled by e.

b) A has at least two favorable states.

Exercise 2.13 @ & For the construction in Theorem 2.3.1, prove the following:

Claim: For any string w € ¥*, the automaton A reaches some state r, having read

w, if and only if, having read w, the automaton A’ reaches a state R containing 7.
(Hint: Use induction on the length of the string w.) The claim easily implies

equivalence of the automata A and A’. For any string w, A reaches a favorable
state r on w if and only if A’ reaches a favorable state R (containing r) on w.



60 CHAPTER 2. FINITE AUTOMATA

EEEE—— Section 2.4 [

Exercise 2.14 For each of the following regular expressions, find a shortest string
in the corresponding regular language:

a) a*(bU abb)b*b
b) a*b*b(a U (ab)*)*b*
¢) (aUab)(a* Uab)*b

Exercise 2.15 For each of the following regular expressions «, find a shortest string

w ¢ L(a):
a) a*aabb*
b) a*aa(bV a)*
c) (aa)*(bba)*(bb)*
d) a*(bba)*b*
e) a*(abU ba)*b*

Exercise 2.16 For each of the following languages L C {a,b}*, find a regular
expression representing it:

a) All strings that contain exactly one a.

b) All strings that contain exactly two a’s.

c) All strings that contain at least two a’s.

d) All strings that begin with aa.

e) All strings that begin with aa and end with bb.

f) All strings that do not begin with aa.

g) All strings that contain the substring aaa or the substring bbb.
h) All strings that contain the substring aa and the substring bb.

i) All strings, where every occurrence of a is followed immediately by a b (in
other words, all strings that contain no occurrence of aa).



Exercises 61

Exercise 2.17 Let ¥ = {a, b}. Show that
L = {w|abba is a substring of w}

is regular.

Exercise 2.18 @ @ Let L be a regular language over X* and let w € ¥£*. Show
that L' = {z € L|w is a substring of xz} is a regular language.

Exercise 2.19 Apply algorithm .4 in Section 2.4 to convert each of the following
regular expressions to a finite automaton accepting the corresponding language:

a) (aUb)*ab{abbU a*)*bb*

b) a(aaUb)*(a*bUb)*ab

¢) (abUb)(bU aaa)b*b((a*b)* U b)*
d) ab((bUaa U aab)bb*)*b

e) ((bUab)*b)y*(ba*)*b

Exercise 2.20 € Show that the class of languages accepted by finite automata are
closed under intersection by a direct construction. That is, assume L and M are
accepted by finite automata and construct an automaton A that accepts precisely
LN M. Show that your automaton is correct.

Exercise 2.21 ¢ ¢ Consider expression diagrams as defined in Section 2.4. One
can naturally associate a language L(D) with any such diagram D. A string w is in
L{D) if and only if there exists a sequence of states sp, $1, ..., $, with sg being the
initial state, s, being a favorable state and arrows directed from every s; to s;y1,
i < n such that w € L(egag...an), where o;,7 = 1,2, ...,n are regular expressions
that label arrows connecting s; with s;41 as in the following:

@ DE@ - OO

If the regular expressions «a; are just symbols a € 3, we actually get the definition
of acceptance by simple nondeterministic finite automata. Algorithm B, constructed
in Section 2.4, can obviously be applied to any finite expression diagram D.

Prove the following statement: For any expression diagram D and any string w,
w € L(D) if and only if w € L(«), where « is the regular expression produced by B
on the input D.

(Hint: Use mathematical induction on the number of states in diagram D.) The
assertion of this statement implies correctness of algorithm B.



62 CHAPTER 2. FINITE AUTOMATA

Exercise 2.22 Apply algorithm B from Section 2.4 to convert the following non-
deterministic finite automata into regular expressions:

a)




Exercises 63

Exercise 2.23 € Consider an arbitrary language L over some finite alphabet 3.
We can define the language of prefizes of the strings in L as

Pref(L) = {ulu € ¥* and uv € L for some v € £*}
Similarly, we can define the language of suffizes of the strings in L as
Suf(L) = {ulu € &* and vu € L for some v € £*}
Prove that if the language L is regular, then
a) Pref(L) is regular,
b) Suf(L) is regular.

(Hint: Consider the case when L contains a single string w and try to transform
a simple nondeterministic finite automaton accepting just w to finite automata
accepting Pref({w}) and Suf ({w})).

Exercise 2.24 € Let X and I" be two alphabets. A homomorphism from £*
to I'* is a function h from X* to I'* that satisfies the following conditions:

a) hie) =e;
b) h(w) = h(u)h{v) for any w € * and any strings u,v € £* such that w = uv.
For example, if ¥ =TI" = {a,b}, h(a) = ab, and h(b) = bba, then
h(aabb) = h(aa)h(bb) = h(a)}h(a)h(bb) = h(a)h(a)h(b)h(b) = ababbbabba.

Given any language L C X*, let the image h(L) be the language {w € I™*|w = h(u)
for some w € L}. Show that if a language L C X* is regular, so is the language
h(L).



64 CHAPTER 2. FINITE AUTOMATA

E——— Section 2.5 IEEE——

Exercise 2.25 Prove that the following languages over the alphabet {a, b} are not
regular:

a) L = {a™ba®"|n # 0}

b) L = {a"b™a"|n # 0}

¢) L ={a'b"i,n #0,i=nori=2n}
)

d) L = {ww|w is any string}

Exercise 2.26 Consider languages over a fixed alphabet ¥ with || = 2. Answer
true or false to the following questions. Justify your answers, giving examples of
the languages L, and Lo where appropriate.

a) If Ly is nonregular and L; C Ly then L, is nonregular,
b) If Ly C Ly and L» is nonregular, then L, is nonregular,

)
)
¢) If L is nonregular, then its complement L, is nonregular,
d) If L; is regular, then L | Ls is regular for any language Lo,
)

e) If Ly and Ly are nonregular, then Ly () Lo is nonregular.

Exercise 2.27 @ For each of the following languages over the alphabet {a,b},
determine if it is regular. If the language is regular, find a corresponding regu-

lar expression. If the language is not regular, prove it using the pumping lemma
(Lemma 2.5.1).

a) All strings that contain a substring ww,
b) All strings that contain the substring aa exactly in the middle,

c) All strings that contain the substring aa or the substring bb exactly in the
middle,

d) All strings that end with a palindrome of length 3.

Exercise 2.28 @ Suppose L is a regular language. Show that L = {w®w e L}
is also a regular language.



Exercises 65

EEE— Section 2.6 RS

Exercise 2.29 Describe an algorithm that, given finite automata accepting lan-
guages L and Ly, determines if Ly () Ly = 0.

Exercise 2.30 Describe an algorithm that, given any finite automaton A and any
of its states ¢, determines if there exists a string w such that starting at the state
¢ and having read w, A reaches a favorable state.

Exercise 2.31 Describe an algorithm that, given a finite automaton A and a string
w, determines if any substring of w is accepted by A.

Exercise 2.32 Describe an algorithm that, given a finite automaton A and states
q and p, determines if the states are distinguishable. (The definition of distinguisha-
bility is given in Section 2.7.)

Exercise 2.33 Describe an algorithm that, given a finite automaton A and a string
u, determines if u is a prefix of some string w € L(A) (that is, w = wv for some
string v).

I Section 2.7 I

Exercise 2.34 Given the following finite automata, find the equivalence classes of
states:

a)




66 CHAPTER 2. FINITE AUTOMATA

Exercise 2.35 Find the minimal finite automata for the automata in Exercise 2.34.



Chapter 3

Context-Free
Languages



Chapter 3

Context-Free Languages

3.1 Context-Free Grammars

Finite automata recognize languages. The limits of what they can recognize have
been described in the previous chapter. We have found out that even such a sim-
ple language as {a™b"|n = 0,1,2,...} cannot be recognized by a finite automaton.
What about legal sentences of a human language, say English? Can a finite au-
tomaton make distinction between a legal English statement “The cat sat on the
mat” and a senseless sequence of words “Mat the sat the cat on”? Considering the
complexity of the rules defining legal English statements, one can hardly expect a
positive answer to this question. Another important practical problem is checking
syntactical correctness of statements in programs — the first job of any compiler.
Rules of programming languages are much simpler than those of human languages;
however, even this problem turns out to be too hard for a finite automaton.

Let us take a closer look on how human and/or computer languages are specified.
Here are examples of some rules specifying legal English sentences (a very small
subset, actually):

1. A sentence is a noun phrase followed by a verb phrase,

2. A noun phrase is a proper noun or a determiner followed by a common
noun,

3. A verb phrase is a verb or a verb followed by an adverb.

Noun phrase is not defined in the first rule; however, this term is clarified in the
second rule. We can obviously continue to extend the set or rules to cover all
possible situations.

How do these rules work? We apply them to generate or derive syntactically
correct English sentences. For example, if our set of rules contained in addition

4. Proper noun is John,



70 CHAPTER 3. CONTEXT-FREE LANGUAGES

5. Verb is sings,

we could start with rule 1., substitute noun phrase by proper noun using rule
2., verb phrase by verb using rule 3., and then substitute proper noun by John
and verb by sings using rules 4. and 5., respectively.

Thus, such a set of rules together with a derivation mechanism can be viewed
as a program generating strings rather than recognizing them. That is, we expect
that our program can potentially generate all strings in the language but will never
generate any invalid string (say, sings John in the above example). In this sense
information that we get from such programs about the language in question is
somewhat incomplete: Given an invalid string (that is not in the language), a
program of this type can never positively confirm this fact.

On the other hand, as the above example shows, program generators may pro-
vide an adequate model for describing human languages. However, the class of
context-free languages that we will study is not rich enough to express common hu-
man languages. Many constructs in natural languages are context dependent. For
example, gender-specific constructs in English are hard to model using context-free
production rules.

More importantly, such generating programs are widely being used to specify
and provide the means of syntactical analysis for computer programming languages.
Beyond this practical aspect, a theory has been developed that establishes the
computational power of such programs and relates them to finite automata whose
computational capacity is extended by important data structures.

One can note that regular expressions provide an example of language genera-
tors. Consider, for instance, the expression ba*. It can be interpreted as follows:
“Output b and generate a string of a’s.” How can we represent this description in
form of a rule (or a set of rules)? Suppose we have some character initiator, say, S
to start with (like sentence in our first example). Then we can use the rule

S — bA

to indicate that an output string is going to be a b followed by something (interpret
— as is or can be). Now the second rule

A—ad

being applied a number of times, can generate any number of a’s after the first b.
The character A, similar to noun phrase and verb in our first example, is actually an
intermediate descriptor of substrings that can potentially be generated and become
parts of output strings. Suppose our goal is to generate the string baaa. We can
apply the first rule and the second rule three times to generate the string baaaA.
Now, to get rid of A, we may introduce the rule

A—e

Applying this rule gives us the desired string baaa. (In fact, we also need the latter
rule to cover the case when the output string should be just b.)



3.1. CONTEXT-FREE GRAMMARS 71

The set of rules {S — bA, A — aA, A — e} together with the derivation
mechanism is an example of a context-free grammar. To clarify the meaning
of the word context-free consider strings aa Abb, abAba and the rule A — ¢. The
substrings aa, bb in aaAbb and ab, ba in abAba are called the context of A in the
strings aa Abb and abAba, respectively. For a grammar, being context-free means
that the rule A — ¢ can be applied to the occurrences of A in any of the strings
aaAbb, abAba, regardless of the context surrounding A in those words. For, if the
rule were, say, aAb — acbh, (depending on the context of the descriptor A), it could
be applied to the first string only. Thus, in context-free rules the strings to the left
of — contain exactly one character.

In the above example we used uppercase and lowercase to distinguish between
intermediate descriptors (uppercase) and output characters (lowercase). Characters
of the latter type are called terminals, which reflects the fact that they make up
output strings of the derivation process. Uppercase characters are called, accord-
ingly, nonterminals, as they are never present in the output strings.

Now we are ready to give a formal definition of a context-free grammar.

Definition 3.1.1 A context-free grammar G is a quadruple (X, NT, R, S),
where

e X is an alphabet (of terminals).
e NT is a set (of nonterminals).

R (the set of rules ) is a subset of NT x (XU NT)*.

e S &€ NT is the starting symbol.

Formally, according to our definition, any rule is a pair (A,v), where A € NT
and v is a string over the alphabet ¥ U NT. However, from now on we will use a
more convenient notation A —¢g v for rules (we will often omit G when it is clear
which grammar is being considered).

Thus, on the left from an arrow, we always have a nonterminal. For the strings
v to the right of the arrow, we will use the term sentential forms . This term
reflects the role of these strings: They are intermediate forms for possible legal
sentences (output strings).

Grammars are useless unless there exists an appropriate derivation mecha-
nism. To specify such a mechanism, we will say that a sentential form v is one-step
derivable from a sentential form u in grammar G (written u =>¢ v, or, sometimes
just u = v) if u = zAy and v = zzy for some z,y,z € (CUNT)* and A € NT, and
there is a rule A — z in the set R. Then, we say that v is derivable from u in G
(written u =>¢, v, or sometimes just u =* v), if there exists a sequence of sentential
forms ug, u1,..., U, such that vy = u,u, = v and

Up =G U1, U1 = U, ..., Up—1 = Up

Any sequence of the above form is called a derivation in G.



72 CHAPTER 3. CONTEXT-FREE LANGUAGES

Note that a grammar G can contain rules with the same left part and different
right parts (cf. our examples above). Moreover, a sentential form can contain many
different nonterminals and many occurrences of the same nonterminal. The defini-
tion of derivation does not specify which rule must be applied to which occurrence
of a nonterminal at any step. That is, derivation is a nondeterministic process
(familiar to the reader from Chapter 2). One must look for the “right” derivation.
Sometimes there can be a choice of rules to be applied and a choice of places where
the chosen rule may be applied.

Now we can define the language L(G) generated or derivable in the gram-
mar G as the set {w|w € £*, S = w} of all terminal strings derivable from the
starting nonterminal. If the grammar G is context-free, the language L{G) is called
a context-free language. Here are some examples of context-free grammars,
derivations, and context-free languages.

Example 3.1.1 Let G be the grammar (X, NT, R, S), where NT = {S}, ¥ =
{a,b}, and R = {S — aSh,S — e}. An example of a derivation in this grammar is
S = aSbh = aaSbb = aaaSbbb = aaabbb

We applied the rule S = aSb three times and then the rule § — e. It is quite
obvious that the language L(G) is {a"b"|n =0,1,2,...}.

‘ End Example

Thus, we have an example of a context-free language that is not regular.

Example 3.1.2 Now consider the grammar G with the same terminal and nonter-
minal alphabets and starting symbol as in Example 3.1.1, but with the different set
of rules:

R={S —aS5,5— 5hS5 — e}

An example of a derivation in this grammar is
S = aS = aaS = aaSb = aaSbb = aaaShb = aaabb

The grammar obviously generates the regular language represented by the regular
expression a*b* (note how the nonterminal separates “left” a’s from “right” &’s in
the derivation). We shall show later that every regular language is context-free.

End Example

Now here is yet another example of a nonregular context-free language.



3.1. CONTEXT-FREE GRAMMARS 73

Example 3.1.3 Let G be a grammar with the same terminal and nonterminal
alphabets as in Example 3.1.1 and with the set of rules {S — aSa, S — b3b, S — e}.
An example of a derivation in this grammar is

S = aSa
= aaSaa
= aabSbaa
= aabaSabaa
= aababSbabaa

= aababbabaa

The reader has probably already figured out that the left half of the word is the
“mirror image” of the right half. That is, the grammar generates the language
L(G) = {ww?w € {a,b}*}. Note that some palindromes (of odd length) are not
generated by the given grammar, for example, abbba. Exercise 3.4 suggests how to
alter the grammar to generate all palindromes.

\ End Example J

Our next example generates a small part of English. It is a slight extension of
the example in the beginning of this section.

Example 3.1.4 Let G be the grammar with the nonterminal alphabet NT =
{S, Np, Vp, Ap, N, V, A}, & = { big, stout, John, bought, white, car} and the set
of rules

R={5 - NV
N, —- N
N, — ApN
A, — A A
V, — VN,
N, — e
A, — e
A — big
A —  stout
A — white
N —  John
N — car
V. —  bought}



74 CHAPTER 3. CONTEXT-FREE LANGUAGES

In this grammar, S stands for sentence, N, stands for noun phrase, V,, stands
for verb phrase, A, stands for adjectives, N stands for noun, V stands for verb, and
A stands for adjective. The grammar generates, in particular, the following strings:

John bought car.

John bought big car.

big stout John bought big white car.
Unfortunately, it generates also sentences like

big stout car bought big white car.

End Example j

Example 3.1.5 The first job of every compiler is to check syntactical correctness of
a program. Context-free grammars provide compilers with the opportunity to parse
programs (parsing will be discussed in Section 3.2) in order to check syntactical va-
lidity. Many programs, in one or another form, contain algebraic expressions. Thus,
every grammar specifying a programming language must contain a fragment gen-
erating such expressions. Qur example represents such a fragment (in a simplified
form). The alphabet X of terminals of our grammar G is the set {+,—,/,*,(,), v},
where v stands for a variable. The set NT contains the single nonterminal E (which
is obviously the starting nonterminal; the letter E stands for expression). The set
of rules R contains

E — —(E)

E - (E+E)
E — (ExE)
E — (E/E)
E — (E-EF)
E — v

The grammar obviously generates algebraic expressions over the generic variable v
using addition, subtraction, multiplication, and division. For example, it generates
the expression ((v+ (v *v)) * (v — v)) using the following derivation:

E = (ExE)
= (E+E)*xE)
= ((E+E)x(E-E))
= (E+(ExE))x(E-E))



3.1. CONTEXT-FREE GRAMMARS 75

((v+ (E*E))*(E - E))
(v+ (v*E))*(E - E))
((v+ (vxv)) = (B - E))
((v+ (v*v)) (v — E))
= ((v+(vxv))x(v-10))

ey

The generic identifier v in real grammars specifying programming languages is then
replaced by identifiers or numbers, which, in turn, can be specified by fragments of
a context-free grammar. (See Exercise 3.12.)

LEnd Example J

Example 3.1.6 Adding the following set of rules to those of Example 3.1.5 we can
derive some assignment statements in C or C++. Let I stand for Identifier:

S — I=E

I — u
For example, one can derive the statement
u=(v+v)*v

Now let C stand for Condition and add the rules

S — Swhile(C){S}S;
S — e

¢ —- E>E

E — a

E — b

Using these rules, one can derive whole programs in C/C++ that use assignment
and while statements. In particular, we can derive the following statement in

C/C++:

Swhile(C){S}; S
while(C){S}; S
while(E > E){S}; S
while(a > E){S}; S
while(a > b){S}; 9
while(a > b){I = E; }; S

A



76 CHAPTER 3. CONTEXT-FREE LANGUAGES

while(a > b){u=E;}; S
while(a > b){u=(E+ E); ;S
while(a > b){u=(v+ E); }; S
while(a > b){u=(v+u); ;S
while(a > b){u = (v+u); };

R

| End Example |

3.2 Parsing

As we noted in Section 3.1, any derivation is a nondeterministic process. There are
many factors that contribute to inherent nondeterminism of a derivation process:

(a) An intermediate sentential form can contain many different nonterminals A,
B,C,..

(b) It can have many occurrences of the same nonterminal; and

(c) For any nonterminal A, there exist many rules in the grammar that can be
applied to A.

Thus, a string w € L(G) can potentially have many different derivations. Let us
examine how the above factors influence the derivation process. Recall Example
3.1.4. The sentence John bought car has many different derivations, for example,

S = NV, = NV, = JohnV, = JohnV N, = John boughtN,
= John bought N = John bought car

and

S= NV, = N, VN, = NVN,= NVN = NVcar
= Nbought car => John bought car

At every step, we choose a nonterminal and apply a rule to it. However, the
occurrence of a nonterminal in an intermediate sentential form determines which
rule is to be applied. That is, every application of a rule that occurs in one derivation
occurs in another one. In other words, the only difference between derivations in
our example is in the relative order in which the rules are applied; otherwise both
derivations are identical. We can picture both derivations as in Figure 3.1.

Such a picture is called a parse tree. Each internal node in a parse tree is
labeled by a nonterminal, say, A. A is connected to its children that are labeled
A1, Ag, ... A, where A — AjA;... A, is a rule in the grammar. All leaves are



3.2. PARSING 77

S
Np Vp
N + 1% Np
: + N
John bought
)
car

Figure 3.1 Parse Trees for John bought car

labeled with terminals or e. The concatenation of all the labels forms the string
obtained by any derivation represented by the given parse tree. Every derivation
tree represents a set of derivations that are identical unless two occurrences of the
same nonterminal are replaced by the same rule on two consecutive steps (that is,
nonterminals are replaced by the same strings), but in opposite order.

Parse trees reflect the choice that one may have at any phase of a derivation.
There are a few occurrences of nonterminals, say, A;, Az, ..., A, in a sentential
form. The rules to replace all of them are preselected, and it is only a matter
of choice in which order to replace them. In particular, we can choose to always
replace the leftmost nonterminal in a sentential form. Such derivations are called
leftmost derivations. Our first derivation of the statement John bought car is
an example of a leftmost derivation. Or, we can always replace the rightmost
nonterminal, getting what is called the rightmost derivation. All derivations
that have the same parse tree are called equivalent (one can show that this defines
an equivalence relation—cf. Exercise 3.16). Leftmost (or rightmost) derivations
can be considered canonical derivations of some sort, as we remove one source of
nondeterminism from our derivation process. Still, one can choose which rule to
apply to any given nonterminal. As for the statement John bought car, the reader
can see that no other choice of rules can result in the same statement. However,
changing rules, we can generate different parsing trees for the same string, as the



78 CHAPTER 3. CONTEXT-FREE LANGUAGES

following example shows.

Example 3.2.1 Consider the following grammar G-

S — A
s — B
S — AB
A — aA
B — B
A — e

B — e

that obviously generates the language represented by the regular expression a*b*.
We can generate the string aa using derivation

S=A=ad = aA=aa

or
S = AB = aAB = aaAB = aaB = aa

Note that both derivations are leftmost. The corresponding parse trees are presented
in Figures 3.2 and 3.3.

l End Example

Grammars with strings having two or more distinct parse trees are called am-
biguous. Thus, if a grammar G is ambiguous, a string w € L(G) can have two or
more distinct leftmost derivations.

How does ambiguity relate to the compilation process of programming lan-
guages? When a compiler scans a statement in a program, it tries to form a parse
tree for this statement. In a sense, a parse tree describes the structure of the state-
ment, or rather, its “meaning.” From this point of view, it is clear that ambiguity
may result in different “meanings” of the same statement, which is obviously un-
desirable. A good example of ambiguity is the “dangling else” problem familiar to
every programmer. Consider the expression

if A if B then C; else D;

In an ambiguous grammar, this statement would have two different parsing trees,
one relating else to the first if, the other relating it to the second if (an example
of such a grammar is given in Exercise 3.17). Thus, for programming languages,
we would rather use unambiguous grammars, that is, a grammar, where every
string has at most one parse tree. Can an ambiguous grammar be replaced by an
equivalent (generating the same language) unambiguous grammar? Sometimes it is



3.3. PUSHDOWN AUTOMATA 79

Figure 3.2 Parse Tree for the First Derivation of aa

possible. For instance, the rules S — A and § — B in Example 3.2.1 are obviously
redundant. Removing them, we get the grammar that generates the same languages
and is unambiguous. In this case, the transformation to an unambiguous grammar
was very easy. In other cases, such transformation may be more complex (it may
involve introduction of new nonterminals and transformation of rules). However,
there exist context-free languages that have no unambiguous generating context-
free grammars. Such context-free languages are called inherently ambiguous.
Fortunately, no programming language is inherently ambiguous.

3.3 Pushdown Automata

So far, our approach to computing in this chapter has seemed quite different from
that of Chapter 2. We adopted a grammar as a computing vehicle and a derivation
as the computational process. However, a closer look at finite automata reveals ob-
vious similarities between computations carried out by these simple computational
devices and derivations using rules. In fact, any transition d(a, s) = s’ can be viewed
as a rule s — as’ (with s and s’ as nonterminals), which makes computation by
a finite automaton a sort of derivation. We will formalize this argument later to
show that every finite state diagram A can easily be transformed into a context-free
grammar generating the language L(A). However, as we have seen already, there
exist nonregular context-free languages, and, therefore, some derivation processes
cannot be carried out by finite automata. One “ideological” reason for this seems
to be obvious: If a string w is not in the language generated by a context-free gram-
mar G, no derivation of w will ever terminate, while every computation carried out



80 CHAPTER 3. CONTEXT-FREE LANGUAGES

e
Figure 3.3 Parse Tree for the Second Derivation of aa

by a finite automaton A terminates and gives a definite answer about the status
of w in L(A). Still, is there a more powerful type of computational device that
will terminate on any input w and determine its status? And if yes, what extra
computational resources could one add to finite automata to make them recognize
context-free languages?

Suppose one is to design a program recognizing strings in the context-free lan-
guage L = {a™b"|n € N}. What such a program needs is a “stack,” where it can
store the first half of an input string. Then, when the program starts to read the
second half of the input, it can pop the content of the stack to compare its length
with the length of the suffix . The input can obviously be scanned only once,
from left to right. The reading of the input can be carried out by a finite automa-
ton. Thus, the desired program can be implemented as a combination of a finite
automaton and an auxiliary “data structure,” a stack, where data are pushed onto
and popped from the top.

The role of a stack in dealing with arbitrary context-free languages becomes
transparent if we consider the problem of simulating any rule A — aBb by an
automaton like computational device. As we have already observed, any transition
of a finite automaton can be interpreted as a rule of the type A — aB; obviously,
one can also easily interpret any such rule as a transition of an automaton. However,
the extra b in the rule poses a problem: The device must remember it to preserve
integrity of the computation. A stack turns out to be an appropriate storage for
b. Later, b can be used to match some symbol (or a group of symbols) from the
input, as every b from the stack matched an input symbol a in the above example.
Of course, our informal argument is just a hint. However, we will formalize it later



3.3. PUSHDOWN AUTOMATA 81

to show that any derivation can be carried out by a finite automaton using a stack.

As we have observed, a derivation in a context-free grammar may be a nonde-
terministic process. Thus, one should expect nondeterminism to show up in com-
putational devices that recognize context-free languages. Consider, for instance,
the context-free language L = {ww®w € {a,b}*} of palindromes of even length
(Example 3.1.3). L can be recognized by a simple computer program that stores
the input string v and then scans it, comparing corresponding characters starting
simultaneously from both ends. However, such a program cannot be implemented as
a finite automaton, even if one used a stack to store the input u. When the program
has completed copying u onto the stack, it cannot “jump” back to the first char-
acter on the input tape to start matching u with its “reversed” counterpart on the
stack. Still, we can design a nondeterministic finite automaton with a stack. This
automaton first “pushes” the first half w onto the stack. The end of the first half
is found by nondeterministically “guessing” its end. Then, the automaton matches
the content of the stack against the rest of the input. Formally, an automaton using
a stack as an auxiliary storage can be defined as follows.

Definition 3.3.1 A pushdown automaton A is given by a sextuple
(Q7 27 Fa S0, A, F), where

Q is a finite set of states;

¥ is the input alphabet;

T is the set of stack symbols;

so € Q is the initial state;

A, the transition relation, is a subset of
(Qx (ZU{e}) xI'") x (@ x I'");

F C Q is the set of favorable states.

Similar to a finite automaton, any pushdown automaton A can be visualized as
a device with finite control, one-way reading-only tape, one reading head observing
one input character at a time. In addition, this automaton has a stack with another
head always observing the top of the stack (Figure 3.4).

Now, consider any transition ((s,a,),(q,7v)) € A. If a pushdown automaton
is in state s, its reading head observes the character a on the input tape and the
word § is on the top of the stack, it can then use this transition to move to the
state ¢, its reading head moves one step to the right, and the word 8 on the stack
is replaced by 7. Note that a may be e, in which case the reading head does not
move as no input is being used. We say that A can use the transition, because there
may be a few transitions in A with the same triple (s,a, ). Since our automaton
is nondeterministic, it can “choose” any of them for its next move. In fact, the
automaton can choose any transition that starts with (s, a’, 3'), for o/, a prefix of
a, and either 3, a prefix of 3, or @, a prefix of 3.

When A places a character onto the top of the stack, we say that it pushes a.
If it removes a from the stack, we say that A pops it.



82 CHAPTER 3. CONTEXT-FREE LANGUAGES

S. .T‘
o—ro ¢
t o o P

Reading Head

lelolalololalo]
Input Tape

Figure 3.4 Pushdown Automaton

Now we can formally define computation by a pushdown automaton A. Roughly,
starting with the reading head observing the first character on the input tape, A
moves from configuration to configuration. Any configuration is a “snapshot” of
the automaton’s state, internal “memory” (stack), and the portion of the input yet
to be read. Since the reading head always moves to the right, the input read so far
cannot affect the automaton’s operation starting from the given configuration. An
example of a configuration is a triple (s, abb, abab), where the reading head observes
the character a in abb, the top of the stack is @ and the bottom is b. For any two
configurations C; = (s,u,a) and Cy = (q,v, ), we say that C; yields C; in one
step (denote it Cy = C3) if there is a transition ((s,a,n),(q,7)) € A such that
u = av, o = nf, and B = ~f for some 6 € I'*. That is, applying this transition,
the automaton reads a on the input tape, moves the reading head to the right, and
replaces the “tail” n on the top of the stack by the string v with the first character
of v on the top of the stack (if @ = e, the reading head stays intact). Furthermore,
we say that A accepts a string w if there exists a finite sequence of configurations
(a computation)

(so,w,e) =CoFC1 ... FC, =(p,e,e)

where p is a favorable state. That is, the string w is accepted if A, having read the
input, has the stack empty and is in a favorable state. All the strings w accepted
by A form the language L{A) accepted by A.

Here are some examples of pushdown automata.



3.3. PUSHDOWN AUTOMATA 83

Example 3.3.1 The following pushdown automaton A accepts the language L =
{a"t"|n € N}. Q ={so0,s, f}, Z={a,b}, T = {a}, F = {so, f}, and A is the set

(1) ((s0,0,¢),(s,0))
2) ((s,a,€)(s,a))
3) ((s:b,a),(f,e))
@) ((f,ba),(f )

Note that the state sg is favorable, which causes the automaton to accept the empty
string e. If the input string is nonempty, the automaton first applies transition 1 to
enter the nonaccepting state s. Then, reading a’s, the automaton pushes them onto
the stack, applying transition 2. When the first b shows up in the input, A applies
transition 3 to make the “turn” and then continues popping from the stack, one
character from the stack per one b in the input, using transition 4. If the number
of b’s equals the number of a’s, then, after the input has been read, the automaton
arrives to the favorable state with an empty stack.

What happens if the input string w is not in the language? If, for example, w =
aaabb, then, when the input has been read, A is in the favorable state. However, the
stack is not empty yet, and, furthermore it never empties, as there is no transition
with (f,e,a) as the left triple. If w = aabbbb, or, say, w = aabbab, then A enters
state f with the empty stack; however, it is then unable to complete reading the
rest of the input, as there are no transitions with the left triples (£, a,e) or (f,b,e).
Intuitively, in both cases, A gets “stuck,” being unable either to clear the stack, or
to complete reading the input.

‘ End Example |

Example 3.3.2 Now we design a pushdown automaton A that accepts the lan-
guage L = {ww|w € {a,b}*} of even-length palindromes. For the sake of simplic-
ity, we will define only the set of transitions and assume that f is the only favorable
state and s is the starting state. The rest of the definition will be clear from the
context.

1) ((s,a,¢),(s,a))
(2) ((s,0,¢),(s,0))
3) ((s,e.€),(fre))
4) ((f,a,0),(f,€))
(5) ((£,b,0),(f;€))

The automaton pushes the prefix w onto the stack, then nondeterministically “guesses”
the middle of the input string (chooses transition 3) and starts to compare the con-
tent of the stack, that is, w in the reverse order, with the rest of the input. If, when



84 CHAPTER 3. CONTEXT-FREE LANGUAGES

all the input has been read the stack happens to be empty, A accepts the input
string. If more input characters remain to be input, A gets “stuck” as there is no
transition that can be applied to read the rest of the input.

| End Example

Example 3.3.3 Now we consider the language L = {w|w € {a, b}*, w has the same
number of a’s and b’s}. The pushdown automaton A that recognizes this language
is an “extension” of the automaton in Example 3.3.1. If the number of a’s and b’s
in the input read so far is equal, the stack is empty. If there are more a’s than b’s,
the excess is pushed onto the stack where reading a b from the input results then in
popping one a from the stack. Analogously, if there are more b’s than a’s, it is the
b’s that go on the stack to be popped off against a’s from the input. To implement
this idea, the automaton must be able to recognize when the stack becomes empty
so it can “change its mind” and start to fill the stack by either a’s or b’s all over
again. The empty stack test can be achieved by adding a special marker ¢ € T
that is placed on the bottom of the stack at the very beginning of the automaton’s
operation. The marker c is used only in this situation. Now the automaton is able
to recognize if it has reached the bottom of the stack. As in the previous example,
we assume that s = sg and F = {f}; the set of transitions is

(1) ((s,e,¢),(g,¢))
2) ((g,a,0),(q,ac))
3) ((g,a,a),(q,aa))
4) ((g,a,b),(g,e))
(5) ((g;b,¢),(g,bc))
(6) ((g,b,b), (g, bb))
(7 ((g,b,0),(g,¢))
8) ((g.e,0),(f,e)

Being fed the input abbbaaaabb, the automaton first applies transition 1 to place
the marker on the bottom of the stack. Then it uses transition 2 to push the first
a onto the stack. Then transition 7 is applied to pop the stack. Now the stack is
empty, and the automaton applies transition 5 to push the first b and transition 6
to push the next b onto the stack. Then it applies transition 4 two times to clear the
b’s from the stack. Now A starts to push the rest of the a’s onto the stack, applying
transitions 2 and 3. Then two applications of transition 7 clear the stack of a’s,
and the automaton uses transition 8 to enter the favorable state. This operation is
illustrated in Figure 3.5.

End Example ]




3.3. PUSHDOWN AUTOMATA 85

state | input left | stack | transition
s abbbaaaabb e —
q abbbaaaabb c 1
q bbbaaaabb ac 2
q bbaaaabb c 7
q baaaabb be 5
q aaaabb bbc 6
q aaabb be 4
q aabb c 4
q abb ac 2
q bb aac 3
q b ac 7
q 7
f 8

Figure 3.5 Operation of the Automaton Accepting abbbaaaabb

The last example suggests a different way of accepting the strings in L(A):
just by empty stack. Suppose there is no distinction between favorable and
unfavorable states in some automaton A. Then the fact that the stack is empty when
the entire input string has been read can be used as the criterion for acceptance.
An automaton of this type is a quintuple (rather than a sextuple in the original
- Definition 3.3.1) (S,X,T, 89, A) as the set of favorable states is gone. We say that
such a pushdown automaton accepts an input string w by empty stack if, starting
from the configuration (sp, w, e), it reaches the configuration (s, e, e) for some state
s€S.

It is sometimes useful to accept strings by empty stack as opposed to by favorable
states and empty stack. As the following theorem states, any language accepted
by a pushdown automaton with favorable states can be accepted by a pushdown
automaton using empty stack acceptance.

Theorem 3.3.1 There ezists an algorithm that, given any pushdown automaton
A=(Q,%,T,s,A, F), constructs the pushdown automaton A' = (Q', ¥, T", sy, A")
accepting the language L(A) by empty stack.

Proof: The desired automaton A’ has the same input alphabet ¥’ = ¥ and the
set of states @ = Q U {s;}, where s}, is a new starting state. The stack alphabet
I contains all symbols from I" and a special bottom marker ¢ ¢ I'. The automa-
ton A’ basically simulates A [that is, uses A C A’]. However, before starting the
simulation of A, A’ pushes the marker ¢ onto the stack and enters the state sg, the
initial state of the original automaton A. This is accomplished by using the new
transition ((sf, e, €), (so,c)) € A’. If A reaches a configuration (f,e,c) with f € F,
the automaton A’ pops the “marker” ¢ from the stack and enters the accepting



86 CHAPTER 3. CONTEXT-FREE LANGUAGES

configuration (f,e,e) (that is, uses the transition ((f,e,c),(f,e)) € A'). If the
stack never reaches the “bottom marker” ¢, or A enters the configuration (s,e,c)
for s ¢ F, then the bottom marker c is not removed and the input is not accepted.
The automaton A’ clearly accepts the same language as A.

’j End Proof ]

3.4 Languages and Automata

As we hinted in the beginning of this chapter, pushdown automata are the devices
that recognize context-free languages. In this section we are going to construct
algorithms that translate any context-free grammar into a pushdown automaton
accepting the same language, and vice versa.

Theorem 3.4.1 There exists an algorithm that, given any context-free grammar
G, constructs a pushdown automaton A such that L(A) = L(G).

Proof: (Sketch) Let G be a context-free grammar. The required pushdown au-
tomaton A has two states, the starting state s and the permanent favorable state
f, at which it carries out its entire operation except its first move. It begins with
pushing the starting nonterminal S onto the stack and enters the state f. On every
subsequent step

1. If the topmost symbol on the stack is a nonterminal, say, C, then A picks
some rule C — w in G and replaces C on the top of the stack by w.

2. If the topmost symbol on the stack is a terminal, say, a, then A advances the
head on the input tape to the next symbol, and if it matches a, A pops the
top of the stack.

Here are the transitions of the automaton A with f being the only favorable state:
L ((s,e,€),(f;5))
2. ((f,e,C), (f,w)) for each rule C — w in the grammar G
3. ((f,a,a),(f,e)) for each terminal a

The computation of our pushdown automaton A simulates a leftmost derivation
of the input string. Every step of the derivation is implemented by pushing the right
side of the rule C — w onto the stack. Between derivation steps, the automaton
strips the terminals from the stack, matching them with the input. When the
leftmost nonterminal on the stack is observed by the pushdown head, the automaton
carries out the next derivation step.



3.4. LANGUAGES AND AUTOMATA 87

Example 3.4.1 Consider the grammar G with the rules {S — aSa, S — bSb,
S — e} that generates the language L = {ww®|w € {a,b}*} of palindromes of
even length. The pushdown automaton A accepting L has the following set A of

transitions:

(1) ((s,e,€),(£,9))
(2) ((f,e,9),(f,aSa))
@) ((f,e,9),(f,b5))
4) ((f.e,5),(f.¢€)
(5) ((f,a,a),(f,e))
(6) ((£,5,0),(f,e)

| End ExampleJ

The computation of A on the string ababbaba is presented in Figure 3.6. When
the automaton reaches the middle of the input word, it “guesses” that transition 4
should be applied. Otherwise, its operation is deterministic.

state

S0

S Sk S S Sy Sy Sy Sy Sy S S S ey

input left | stack | transition
ababbaba e —

ababbaba S 1
ababbaba aSa 2
babbaba Sa 5
babbaba bSba 3
abbaba Sha 6
abbaba Sha 6
abbaba aSaba 2
bbaba Saba 5
bbaba bSbaba 3
baba Sbaba 6
baba baba 4
aba aba 6
ba ba )
a a 6
e e 5

Figure 3.6 Computation of Automaton A on ababbaba

To formally prove the theorem, one must show that
(a) f w € L(G), then w € L(A) and
(b) If w € L(A), then w € L(Q).



88 CHAPTER 3. CONTEXT-FREE LANGUAGES

The first statement can be proved by induction on the length of the leftmost deriva-
tion of w. The second statement can be proved by induction on the number of
transitions of the type ((s,e,C)(s,w)) in the computation by automaton A. De-
tailed proofs are suggested in Exercise 3.33.

' End Proof l

Now we will show that every pushdown automaton can be simulated by a
context-free grammar.

Theorem 3.4.2 There exists an algorithm that, given any pushdown automaton
A, constructs a context-free grammar G such that L(G) = L(A).

Proof: (Sketch) We will begin by imposing some constraints on pushdown au-
tomata. As we will see, these constraints do not restrict the class of acceptable
languages. However, pushdown automata satisfying those constraints have a sort
of “standard form” helpful for transforming them into context-free grammars.

First, we will consider pushdown automata that accept by empty stack. As we
showed in Theorem 3.3.1, this condition does not restrict the class of acceptable
languages. Any pushdown automaton accepting by empty stack is called simple
if, for every tramsition ({(s,a,a),(q,8)) it turns out that « € I' (that is, every
transition replaces the top symbol from the stack). We are going to convert any
pushdown automaton M = (Q, %, T, sg, A) accepting by empty stack into a simple
automaton accepting the same language. However, there is one obstacle in the
original definition of the pushdown automaton that prevents such a conversion. In
the beginning of any computation, the stack is assumed to be empty, and, therefore,
the first transition ((sg, @, @), (g, 3)) must have & = e. The problem can easily be
resolved if we change the definition of the pushdown automaton slightly. Namely,
we add to the alphabet I' a new special “bottom marker” < ¢ T' and assume that
this symbol is placed on the bottom of the stack before the computation begins.
Now, every transition ((sg, a, €), (g, 3)) € A is converted to ({(sg, a, <), (g, 8<)), and,
for every state ¢ € @, the transition ((g,e, <), (g, e)) is added to A [that is, if the
automaton M has accepted the input string by entering a configuration (g, e, e),
then the new automaton enters the configuration (g, e, <), erases the marker <
from the bottom of the stack, and enters the same accepting configuration (g, e, €)].
The modified automaton clearly accepts the same language L(A), and, for every
transition ((s,a, @), (g, 3)), |e| > 1.

Thus, we can assume that our pushdown automaton M is a sextuple (S, X, I, sq,
<, A), where <1 € T is the special bottom marker and every transition “consults”
at least one symbol on the top of the stack. Now we can convert it to a simple
automaton accepting the same language. Consider any transition (s, a, @), (g, 3)).
Let o be A1 A;... A, for some n > 1. We can replace this transition by the set of
new transitions that sequentially pop symbols 4;, i < n and replace the last symbol

A, by 3:



3.4. LANGUAGES AND AUTOMATA 89

((37 €, Al)a (8A1 ’ 6))
((5A1 €y A2)7 (5A1A27 6))

((SA1A2~~-A1L—2 = Anfl)v (8A1A2~--An—l ’ e))

(5400412 An), (0,5))
where every 84,4, 4, fori =1,2,...,n — 1 is a new state encoding the fact that
the symbols Aj, As, ..., A; have been popped. It is clear that, replacing each such
transition with the above set, we get a simple pushdown automaton equivalent to
the original automaton M. Thus, we can assume that M is simple.

Now consider any transition ((s,a, A), (g, B1Bs ... B,)) (we have assumed that
A €T). We would like to replace it by a rule & — 3 that will perform one step in a
leftmost derivation of a string accepted by the automaton M. First, we will make
a, a terminal symbol, a prefix of 3. Then the input symbol a will appear as the
leftmost symbol in the substring resulting from the application of this rule. Stack
symbols A and Bs,..., B, should probably represent nonterminals.

However, in implementing this approach directly, we will ignore states whose
role is to “witness” which replacements A — B1 D5 ... B, are valid. For instance, if,
for (s,a, A) and B1B; ... B,, there is no transition ((s,a, A), (g, B1Bz...B,)) € A,
then the replacement A — By Bs... B, cannot be legitimate. Moreover, even if
there were such a transition, the fact that M, performing the replacement A —
B1Bs...B,, moves to state ¢, must be reflected in the rule. A solution to the
problem is to introduce nonterminals [s, A4, p] for every A € I" and all states s,p € Q.
Now, an application of the rule @ — 3 with « being [s, 4, p] and 3 being a~y for
some v will correspond to the execution of the above transition.

Recall that for the transition we are considering, the automaton M from state s,
reads the input symbol a, pops A from the stack, replaces it with B, B; ... B, and
moves to state q. Where does g appear in the rule? From state ¢, the automaton M
replaces B; on the stack and enters another state. At some point in the computation
M will be in some state ¢’ and have By as the leftmost symbol on the stack. M will
then replace it and enter some state, and so on. At some point, M replaces the last
symbol B,, on the stack and enters state p. Hence, the p in [s, A, p] represents the
ultimate result of removing A from the stack. When A is ultimately removed from
the stack, it will be replaced by a substring w of terminals that M has read from
the input while moving from state s to p. In the derivation, accordingly, [s, A, p]
gets replaced at this point by w in the string being derived (Figure 3.7).

The rule @ — (G formalizes the above reasoning. We agreed that our nontermi-
nals are triples [p, C, r] for states p, r, and stack symbols C. Thus, we define the
rule @ — 3 as

[s, A, qr] — alg, B1,q1][q1, B2, @2] - - - [qk—1, Bk, ax]

where ¢1,q2,...,qr are arbitrary states in of M. Why can we take all possible
sequences qi,¢s,.-.,qx? What if M does not actually go through these states
removing (ultimately) By, Ba, ..., B, from the stack? For example, there may be



90 CHAPTER 3. CONTEXT-FREE LANGUAGES

-
w

Figure 3.7 Schematic Parse Tree for w

no transition with the left triple (¢, B1,¢1) in A. Then the rule will never be applied.
That is, some rules we have defined will never be used, but it does not enhance the
set of derivable strings.

Now we can formally define the the grammar G. Let G be the quadruple
(X,NT,R,S), where ¥ is the input alphabet of M, NT = {S} U {[s,A,q]|A €
T',s,q € @}, and S is the special starting nonterminal. The set R contains the
following rules:

1. For every s € @, the rule S — [sg, <, 5], for every s € Q,

2. The rule [s, A,¢] — a, for every s,g € Q, every a € YU {e}, and A € T, if
((s,a,4)(g,e)) € A,

3. The rule
[Sa A’ qk] - a’[q7 Bl? Q1][lI1a B27 CI2] e [qk—h Bk) qk]

for every s,¢q € Q, for every a € X U {e}, if
((s,a,A)(q, B1Bs...Bx)) € A

for some By, Bs,..., By € T, for every sequence q1, g, ..., q; of elements in

Q.



3.5. CLOSURE PROPERTIES 91

The proof of the equality L{M) = L{G) is based on the following characteriza-
tion of all strings derivable from any nonterminal [s, A, p].

Lemma 3.4.3 For any s,p € @, any A € T', and any string w € *, the automaton
M, starting in configuration (s,w, A), enters the configuration (p,e,e) if and only
if w is derivable from the nonterminal [s, A, p| in the grammar G.

The lemma easily implies the equality L{M) = L(A). If w € L(M) then,
according to Lemma 3.4.3, if, starting at configuration (sg,w, <), the automaton
M arrives at (s,e,e) for some s € @, then w is derivable from the nonterminal
[s0, <, 5] in the grammar G. To get a derivation of w from the starting nonterminal
S, it is enough to apply the rule S — [sg, <, s] as the first step of derivation. If
w € L(G), then we can drop the first step of derivation, assume that w is derivable
from [so, <, s], and apply Lemma 3.4.3.

Both parts of the Lemma 3.4.3 can be proved using mathematical induction.
One can show that, for any w € £*,n > 0,s € @, and for any A €T

(a) If M, starting from configuration (s, A, ¢) for some ¢ € Q arrives at the config-
uration (q,e,e) in n steps, then [s, 4,q] =* w in G,

(b) If w is derivable in n steps from the nonterminal [s, A, g] in the grammar G for
some q € 2, then M accepts w, starting from the configuration (s, A, q).

The detailed proofs of parts a and b are suggested in Exercises 3.34 and 3.35.
| End Proof |

Using the established equivalence of context-free grammars and pushdown au-
tomata, we can easily prove the following

Theorem 3.4.4 Every reqular language is context-free.
Proof: Let A be a finite automaton accepting a language L. A can be viewed as a

pushdown automaton that never uses its stack. Thus, L is accepted by a pushdown
automaton, and, therefore, is context-free.

r End Proof

3.5 Closure Properties

In Chapter 2 we found out that regular languages are closed under many set-
theoretical operations. Which of these properties hold for context-free languages?
We will show that context-free languages are closed under union, concatenation, and
the Kleene star. However, the class of context-free languages is not closed under
intersection; this will be shown in Section 3.6.



92 CHAPTER 3. CONTEXT-FREE LANGUAGES

Theorem 3.5.1 Let L and M be any two context-free languages. Then
1. the union LU M is a context-free language;
2. the concatenation LM is a context-free language;

3. L* is a context-free language.

Proof: Let Gy = (X1,NT1, R1,S51) be a context-free grammar that generates L
and G = (X9, NT3, Ry, S3) be context-free grammar that generates M. Without
loss of generality, we can assume that the sets of nonterminals N7, and NT5 are
disjoint, that is, do not intersect. Let S ¢ (NT; U NT3) be a new nonterminal.

Part 1: The grammar G that generates the union L U M is defined as
(21 UXe, NTy UNT, U{S},Rl U Ry U{S—> S1,5 — Sz},S)

Tt easily follows from the definition of G that LUM C L{G). We also have to show
that G does not generate strings w ¢ LU M. Potentially, this could have happened,
if NT1, NT5 had common nonterminals. However, we assumed that this is not the
case. Thus, G generates the union of L and M.

Part 2: For concatenation LM, we will take the grammar

G = (21 U, NT{UNT U {S},Rl U Ry U{S — 5152},5)

Part 3: For the Kleene star we will consider the grammar

G=(%1,NT1,RiU{S1 — ¢,51 — 5151}, 51)

I End Proof J

As already mentioned, the class of all context-free languages will be shown to
be not closed under intersection. However, the intersection is context-free if one of
the languages is regular.

Theorem 3.5.2 The intersection of a context-free language L with a regular lan-
guage M is a context-free language.

Proof: Let A = (Q1,%,I',Ay,$1,F1) be a pushdown automaton accepting L,
and B = (Q2,X,9, s9, F3) is a deterministic finite automaton recognizing M. We
“combine” A and B into a new pushdown automaton C whose states are elements



3.5. CLOSURE PROPERTIES 93

of the Cartesian product of the sets @J; and Q2. C simulates computations of A
and B on any input string w in parallel. Only strings accepted by both A and B
will be accepted by C. Since B does not employ a stack, we still can use one stack
to handle the part of computation performed by A.

Formally, we define the pushdown automaton C = (Q, X, T, A, 3¢, F') as follows:

. @ is the Cartesian product Q; x Q2;

. 2 and T" are the same as in A,

. F:F1XF2;

1
2
3. so = (s1,92);
4
5. A is defined as follows.

(a) For each transition ((¢1,a,a), (p, 3)) € A; with a € X, and for every state
g2 € Q2 of automaton B, the transition (((g1,¢2), a, @), ((p, (g2, a)), B8))
is added to A.

{b) For each transition ((g1,¢,a),(p,8)) € A; and any state g2 € @2, the
transition (((q1,q2),e, @), ((p,q2),0)) is added to A (that is, A makes a
move, but B does not, as it does not read any input).

Suppose w is accepted by both A and B. We will show that w is also accepted
by C. Since w is accepted by A, there is a sequence of configurations, with transi-
tions between them in A: (s1,w,¢€),...,(f1,e,¢€) for fi € Fy. Since w is accepted
by B, there is a sequence of configurations, with transitions between them in B:
(s2,w),...,(f2,€) for fo € F;. Hence, by the construction of C' above, there is a
sequence of configurations, with transitions between them in C: ((s1,2),w,€), ...,
((f1, f2),e,€). Since (f1, f2) € F1 X F» = F, C accepts w.

Now suppose that C' accepts w. We will show that both A and B accept
w. There is a sequence of configurations, with transitions between them in C:
((s1,82),w,€),...,((f1, f2),e,€), for (f1, f2) € F. By the construction above, there
is a computation in A: (s1,w,e€), ..., {f1,e,¢) for fi € F1. Hence, A accepts w. Also
by the construction, there is a computation in B: (s2,w),...,(fs,€) for fo € Fj.

Hence, B accepts w.
L End Proof j

Example 3.5.1 Consider the language L that contains all strings in the context-
free language {a"b"|n = 0,1,2,...} except the string aaabbb. This language is
context-free as it is the intersection of the language from Example 3.3.1 and the

regular language
{a,b}" — {a, b} aaabbb{a,b}"

LEnd Example—l




94 CHAPTER 3. CONTEXT-FREE LANGUAGES

3.6 Languages That Are Not Context-Free

In Chapter 2 we proved the pumping lemma (Lemma 2.5.1) for regular languages
that enabled us to show nonregularity of several languages. This result is based
on the fact that a sufficiently long input string forces a finite automaton to enter
some state more than once. That is, the automaton follows a loop in its diagram,
which corresponds to a number of identical substrings in the input string forming a
contiguous group vv . ..v. Now, if we consider a sufficiently long derivation S =* w
in a context-free grammar G, it must involve some nonterminal A more than once.
That is, the derivation can be divided into the following phases:

S =* uAz =" wAyz =" wryz

This means that A =* z and A =* vAy. The latter part of derivation can obviously
be iterated as many times as we wish:

S =" uAz =* whyz =% wlAy’z =" WAyl =% = whay"z

We will generalize the above argument to show that this kind of “pumping” occurs
in a sufficiently long derivation of any string w € L(G). We will also see that
the strings u,v, x,y, z satisfy conditions similar to those in the pumping lemma for
regular languages (Lemma 2.5.1).

First, we are going to define a number of notions that will give us an opportunity
to obtain a helpful quantitative characteristics of parse trees. Let G be any context-
free grammar. A path in a parse tree of G is either an empty sequence of nodes,
or consists of a node, one of its descendants, and all the nodes between them. The
length of a path is 0 if the path is empty, or the number of all nodes it contains
minus one (which is the number of edges connecting all consecutive nodes in the
path, using standard graphic representation of trees). The height of a parse tree
is the length of its longest path. The fanout of G, denoted f(G), is the greatest
number of symbols on the right side of any rule in G. Note that the string of leaf
nodes of any parse tree is the string derived in G using this parse tree. The following
useful lemma shows that, for any string w € L(G), the parse tree for w contains a
sufficiently long path.

Lemma 3.6.1 If the string of the leaf nodes in a parse tree of G has length greater
than f(G)P, then the height of this tree is greater than h.

Proof: To prove the statement of the lemma, we can prove its contraposition:
The number of leaf nodes of a parse tree of G of height h is at most f(G)*. We
proceed by induction on A.

If h = 1, then the parse tree corresponds to just one rule of the grammar G.
Therefore, the number of its leaf nodes cannot exceed f(G) = f(G)".

Now, suppose the statement is true for parse trees of height up to A > 1. Any
parse tree of height A1 consists of a root connected to at most f(G) parse subtrees



3.6. LANGUAGES THAT ARE NOT CONTEXT-FREE 95

of height at most h. By the induction hypothesis, these subtrees have numbers of
leaf nodes at most f(G)" each. Thus, the total number of leaf nodes in the given

tree is at most f(G)f(G)* = f(G)"+!.

r End Proof J

Now we can prove the pumping lemma for context-free languages.

Lemma 3.6.2 Let G = (X, NT, R, S) be a context-free grammar. Then there exists
a number n such that any string w € L(G) with length |w| > n can be written as
w = yvryz for some strings u,v,x,y,z € L* such that

1. || >0, 0rly >0
2. lvzy| <n
3. for any k > 0,uv*zy*z € L(G).

Proof: Let n= f(G)IN7TI+1. Consider any w € L(G) with length [w| > n. Let T
be a parse tree with the root node S whose leaf nodes form w, and which has the
smallest number of leaves among all parse trees for w (note that some leaves may
be empty symbols e, which means that a parse tree can have any number of leaves
r > |w|). Consider a path P of maximum length in 7. Since |w| > F(G)INT, it
follows from Lemma 3.6.1 that path P has length at least |NT| + 1. The number
of nodes on this path is, accordingly, at least |[NT| + 2. Consider the end portion
P' of P that has exactly |[NT| + 2 nodes. Only one of these nodes (the leaf) is
labeled as a terminal. Thus, there are at least two nodes in the portion P’ labeled
by the same nonterminal A. The paths P, P’, and their results within the tree T
are represented in Figure 3.8.

T’ in Figure 3.8 represents the subtree corresponding to the portion P’ of P. It
is clear that the shaded part can be repeated any number of times, even 0 number
of times. Repeating it k times for any k > 0, we obtain a string uv*zy*z € L(G).
The length of P’ is not greater than |NT| + 1, and as we began with the path P of
maximum length in T, the height of T” is not greater than |[NT|+ 1 (otherwise, we
would find a path consisting of the initial fragment of P and the end portion in 7’
that would be longer than P). Then, according to Lemma 3.6.1, |vzy| < n.

Now we have to show that |v| > 0 or |y| > 0. Suppose |vy| = 0. This means
that v = e and u = e. In this case, excluding the shaded part from the parse tree of
Figure 3.8, we still get a parse tree for w. However, this parse tree would have fewer
leaves than T, which contradicts our assumption that 7" has the smallest number
of leaves among all parse trees for w.

End Proof 4]

Now we can show that a number of languages are not context-free.



96 CHAPTER 3. CONTEXT-FREE LANGUAGES

¥j \

e e
u v T y z

Figure 3.8 Schematic Parse Tree for w = uvzyz

Example 3.6.1 We apply Theorem 3.6.2 to show that the language
L={a*b*cFlk =0,1,2,.. .}

is not context-free.

Suppose L is a context-free language. Then we can apply Lemma 3.6.2. Let
n be a large enough number mentioned in Lemma 3.6.2. Let us pick the string
w = a™b™c" with the length |w| = 3n > n. Let u,v,x,y, z be the substrings of w
satisfying the conditions of Lemma 3.6.2. As |vzy| < n, the string vzy contains at
most two different symbols — a’s and b’s, or b’s and ¢’s. Lemma 3.6.2 does not tell
which case takes place, so we have to consider both possibilities. We will assume
that vzy contains just a’s and b’s (maybe, even only a’s or only b’s). As |vy| > 0,
either v or y contains at least one symbol. Consider the string uv?zy?z. For at
least one of the symbols a and b, the total number of occurrences of this symbol in
the given string is greater than n. However, the number of ¢’s has not increased.
Thus, we got a string not in L, a contradiction. The second case (vay contains only
b’s and ¢’s) is treated similarly.

r End Example —I




3.6. LANGUAGES THAT ARE NOT CONTEXT-FREE 97

Example 3.6.2 Sometimes direct applications of Lemma 3.6.2 can be difficult,
however, we can get the desired result applying set-theoretical operations involving
noncontext-free languages. Consider the language

L' = {wjw € {a,b, c}*, w contains an equal number of a’s, b’s and c’s }

The language L from Example 3.6.1 is obviously the intersection of L’ and the
regular language represented by the expression a*b*c*. If L’ were context-free,
then, according to Theorem 3.5.2, the language L from Example 3.6.1 would be
context-free. Thus, we can conclude that L’ is not context-free.

‘ End Examplr‘

Example 3.6.3 Now consider the language L = {¢t|t € {a,b}*}. This language
seems to be similar to the context-free language of palindromes (of even length).
However, a pushdown automaton is not appropriate for recognition of strings in
this language. Having completed reading the prefix ¢, the machine must match the
first symbol of the coming suffix ¢ with the first symbol of the prefix, but it would
be located on the bottom of the stack. Still, this reasoning is not proof that L is
noncontext-free. To formally establish this fact, we will apply the Pumping Lemma
3.6.2.

Thus, suppose L is context-free. Let n be a large enough number from Lemma
3.6.2. We must now carefully choose a string w to apply Lemma 3.6.2. Our objective
is to “pump in” or “cut out” substrings v and y to get a new string not in L. An
easy way would be to choose w = a®". However, pumping in or cutting out any
even number of a’s would result in a string still in L. What if we considered another
extreme, an arbitrary w = tt for some t? Then we would not have any means to
“control” how pumping or cutting out v and y affected w. It still could be a string
in the language L.

Our choice for w is the string w = a™b"a™b™. Its length is 4n > n, and it is
in L. Let us apply Lemma 3.6.2 to this string and consider the string vxy. As its
length does not exceed n, it may be a substring of either the prefix a™b", or the
“middle” b™a™, or the “tail” a™b™. As Lemma 3.6.2 does not tell which case takes
place, we must consider all three of them. We will pick the tail case and leave other
two cases to the reader. Consider the string uzy obtained from w. As at least one
of v or y is nonempty, uzz can be represented as a™b"a™b*, where m or k (or both
of them) is smaller than n. Now assume that uzz is ss for some s with |s| < 2n.
Then two cases are possible: (1) First, s begins with an a and ends with a b; (2) s
is the prefix a™ (this is the case when both m and k are zeros). In both cases the
second s begins with b, a contradiction.

| End Example—‘




98 CHAPTER 3. CONTEXT-FREE LANGUAGES

Using Example 3.6.1, we can establish the following.

Theorem 3.6.3 The class of context-free languages is not closed under intersection
or complementation.

Proof: The noncontext-free language L in the Example 3.6.1 is the intersection
of context-free languages L; = {a™b"ck|n,k = 0,1,2,...} and Ly = {a*b"c"|k,n =
0,1,2,...} (see Exercise 3.5). Thus, context-free languages are not closed under
intersection. As the intersection L; N Ly of any two languages L1 and L can be

represented as
(@)

context-free languages are not closed under complementation either.
L End Proof

More examples of applications of the pumping lemma for context-free languages
are suggested in the exercises.

3.7 Chomsky Normal Form

In the previous chapter we found a number of algorithms solving important algo-
rithmic problems about finite automata: emptiness (Algorithm 2.6.2), equivalence
(Algorithm 2.6.4), and so on. In this section we will show that some of these prob-
lems can be solved by algorithms for context-free languages.

The Membership Problem “w € L(G)” for any w and any context-free gram-
mar G?

The Emptiness Problem “L(G) = {” for any context-free grammar G?

The Finiteness Problem “Isthe language L(G) finite” for any context-free gram-
mar G?.

We will see that the membership problem is the key for solving the two other
problems. Thus, we first concentrate on an algorithm solving the membership
problem: Given a context-free grammar G and a string w, decide if w € L(G). How
can we attack the problem? We could use a pushdown automaton A accepting L(G).
Just run A on w to find out if it accepts. However, A may be nondeterministic.
Thus, the fact that one computation results in nonacceptance does not mean that
all computations are nonaccepting. Given the rules of G, we may try to generate
all possible derivations. If w € L(G), it will show up eventually among the derived
strings, but what if it is not in L? If, given w, we could bound the length of possible
derivations of w by some number, say, g(w), the problem would be solved by trying



3.7. CHOMSKY NORMAL FORM 99

all derivations of the length up to g{w). If w is not found, then it is not in L(G).
Can we come up with such a bound on the length of the derivations of w? It would
be possible, if every rule in the grammar G increased the length of the sentential
form it was applied to. Then no derivation longer than |w| could possibly generate
w. Accordingly, we could just generate all derivations of length up to |w| and check
if w is among generated strings. However, this idea cannot be applied directly as
a context-free grammar may contain rules such as A - eor A — B or A — a,
which do not increase the length of a string being derived. The rules of the type
A — a cannot increase the length of derivation for w indefinitely. Each application
of such a rule eliminates one nonterminal, replacing it by a symbol in w, so no more
that |w| applications of such rules are possible in any derivation of w. Rules A — e
and A — B are more problematic. A rule A — e decreases the length of a string
being derived, and a rule A — B may be a part of a “loop” A — B...B — A.
In both these cases there is no way to bound the length of derivation in advance.
Fortunately, as we will show below, these specific types of rules can be eliminated,
while preserving the power of context-free grammars. Moreover, the length of the
right-hand side of any rule can be limited by 2.

Definition 3.7.1 A context-free grammar is said to be in Chomsky normal form
if every rule in the grammar s of one of the following two types:

A — BC

A—a

where A, B,C are nonterminals and a is a terminal.

It is easy to see that a language L(G) for a grammar G in Chomsky normal
form cannot contain the empty string. Thus, not every grammar can have an
equivalent Chomsky normal form. However, if we forget about the empty string,
transformation to Chomsky normal form is possible.

Theorem 3.7.1 There exists an algorithm that transforms any context-free gram-
mar G into a context-free grammar G’ in Chomsky normal form such that L(G’) =

L(G) — {e}

Proof: Let G = (X, NT,R,S) be a context-free grammar. Our algorithm will
consist of three “subprograms.” The first one, Algorithm 3.7.1, given any context-
free grammar G, eliminates all rules of the form A — e. The second, Algorithm
3.7.2 eliminates the rules of the form A — B. The third, Algorithm 3.7.3, converts
any rule A — a with |a| > 2 to an equivalent group of rules of the form B — CD.



100

CHAPTER 3. CONTEXT-FREE LANGUAGES

Algorithm 3.7.1 Let us call a nonterminal A erasable if A =* e. It
is easy to see that a nonterminal A is erasable if and only
1. Thereis arule A — e in G, or
2. There is a rule A — B;B;...B, in G, where all nonterminals
By, B,,..., B, are erasable.
Using the above characterization of the erasable nonterminals, apply the
following procedure to find the set E of all erasable nonterminals:

1. Set E := 0.

2. Add to E all nonterminals in the left-hand sides of rules
satisfying 1.

3. While thereisarule A —» B1B;... B, € Rwith B;,B;,...,B, €
Eand A¢ E, add Ato E.

Now, for every rule A — a in G, Algorithm 3.7.1 adds to R all rules
obtained by eliminating one or more erasable nonterminals in «. For
example, if G contains the rule A — BCD and C and D are erasable,
add the rules

A — B
A — BC
A — BD.

Finally, eliminate from R all rules of the type A — e and terminate.

End Algorithm

The result of applying Algorithm 3.7.1 to G is a grammar G that does not

generate e. Other than that, any derivation in G can obviously be simulated by a
derivation in G;. Thus, L(G) — {e} = L(G;).

Algorithm 3.7.2 operates similarly to Algorithm 3.7.1, using nonterminals in-

stead of e.

Algorithm 3.7.2 For any nonterminal A in G, let NT(A) be the set
{B|B € NT,A =* B} of all nonterminals derivable from A. Find the
set NT(A) using a procedure similar to the one used by Algorithm 3.7.1
to find E:

1. Set NT(A) := {A}.
2. While there is a rule B — C with B € NT(A) and C ¢ NT(A),
add C to NT(A).

For every pair (A, B) such that B € NT(A) and every rule B — a with
a ¢ NT, add the rule A — o to R. For example, if G contains the rule
B — CD and NT(A) = {A, B}, then the rule A — CD is added to R.
Finally, eliminate all rules of the type A — B from R and terminate.

End Algorithm




3.7. CHOMSKY NORMAL FORM 101

It is clear that any derivation in G can be simulated by a derivation in the
grammar obtained by application of Algorithm 3.7.2. If G contains the rules A — B
and B — a«, then replacing them by A — o creates the same opportunities as their
combination.

Algorithm 3.7.3 This algorithm converts any rule A — o with |a| > 1
to a group of rules B — (C1Cs, where C; and (s are nonterminals.
Given any rule A — ByB; ... By, where B; € (X|JNT),1 < i <k, the
algorithm converts it to the rules

A — XB,XBB,. B
XB.B,..B. — XB,XB,Bs. B

XB;Bs..Bx — XB,XB,B,..B,

XBy 1By — XBy 1Bk

where XBO, XBU ey XB;C’ XBlB2...Bk7 XBzBa---Bk7 ey XBk_lBk are
new nonterminals. Now, if B; is a nonterminal, then the algorithm uses
just B; instead of Xp,. If B; is a terminal, the algorithm adds the rule
Xp, — B; to the set of rules.

This step is described by the following example. The rule 4 —
BabDBE is replaced by

A — BXupBE
XawwpBe — XoXvDBE
Xeppe — XoXpBE
Xppe — DXpge
XBeg — BE
X, — a
Xy — b

The new nonterminals are used in the above set of rules for A —
BabDBE only. Thus, the new set of rules is equivalent to the given
rule. A string w can be derived from A — BabDBFE if and only if it can
be derived from the set of rules replacing it. The obtained set of rules
satisfies the required condition, so terminate.

| End Algorithm

To complete the proof of the theorem, we consecutively apply Algorithms 3.7.1,
3.7.2, and 3.7.3 to the grammar G. The grammar G; obtained by application of



102

CHAPTER 3. CONTEXT-FREE LANGUAGES

Algorithm 3.7.1 satisfies the condition L(G) — {e} = L(G1). The application of Al-
gorithm 3.7.2 to Gy and Algorithm 3.7.3 to the result preserves equivalence. Thus,
the resulting context-grammar G’ satisfies the required conditions.

| End Proof |

Example 3.7.1 We convert the following grammar G to Chomsky normal form:

QOO WE>u

L A

ABCa
aAbb

e

bB

b

AC
aCa

€.

First we apply Algorithm 3.7.1 to eliminate the rules A — e and C — e. Algo-
rithm 3.7.1 determines that A, B, and C are the erasable nonterminals and adds

the following rules to the grammar:

st thtntin in !0 W

Q

R T T A A A A

BCa
ACa
ABa
Aa

aa

Algorithm 3.7.2 determines that NT'(S) = {S}, NT(A) = {A}, NT(B) =
{B,A,C}, NT(C) = {C}, eliminates the rules B — A, B — C and adds the rules

B — aAbb
B — abb
B — ab



3.7. CHOMSKY NORMAL FORM 103

B — aCa
B — aa

Algorithm 3.7.3 completes the transformation, replacing 17 rules that do not have

exactly two nonterminals on the right-hand side by the following set:

S -
XBCa
XCa

n
L e

O WwAE!nn»n

AXpBca
BXca
CcX,

a

XX abb
AXpy

X Xy

X,B
XoXca
CX,
BXca
AXg,
BX,
AX,
BX,
CX,
XaXpp
XX,
XaXanb
KXo Xpp
XoX,
XoXca

Dnd Example

Now we can design an algorithm that solves the membership problem.

Theorem 3.7.2 There exists an algorithm that, given any context-free grammar G

and any string w, decides if w € L(G).



104 CHAPTER 3. CONTEXT-FREE LANGUAGES

Proof: We consider two cases: (1)w = e and (2)w # e. In the first case we have
S =* e. That is, S is an erasable terminal, as defined in the proof of Theorem
3.7.1. Therefore, to decide if e € L(G), we can apply Algorithm 3.7.1 to determine
if S' is an erasable nonterminal.

Now consider the second case. We can apply Theorem 3.7.1 to convert G into
a grammar G’ in Chomsky normal form. As w # e, obviously w € L(G) if and
only if w € L(G’). Therefore, it remains to determine if w € L(G'). Any derivation
of w in G’ can use at most |w| rules of the type A — BC, as every application of
such a rule increases the length of a string being derived. Then, any derivation of
w can use at most |w| rules of the type A — a; otherwise the derived string would
be longer than w. Thus, to determine if w € L(G"), we can generate all derivations
of the length up to 2|w| and check if w shows up among the derived strings.

|7 End Proof J

Now we can design algorithms solving the emptiness and finiteness problems.
First, we prove a useful lemma.

Lemma 3.7.3 For any context-free grammar G, there exists a number n such that

1. If L(G) # 0, then there exists w € L(G) with the length |w| < n;

2. If L(G), is infinite then there exists w € L(G) with the length n < |w| < 2n.

Proof: We can assume that G is in Chomsky normal form. A simple application
of the pumping lemma (Lemma 3.6.2) proves part 1: If a string w of minimal length
has length |w| > n, then applying the pumping lemma (k = 0 case) we a get a string
w' of a shorter length. If w' is still too long, we can repeat the pumping as needed
to get a string in L(G) with length less than n.

To prove part 2 we can again apply the pumping lemma (Lemma 3.6.2), though
this time its application is more subtle. Assume that L(G) is infinite, n is the con-
stant provided by Lemma 3.6.2, and there are no strings w in the language with
the length n < |w| < 2n. Since the language L(G) is infinite, there exist strings
w € L{G) with length at least 2n (otherwise, the language L(G) would be finite).
Let us choose the string w € L(G) of minimal length among them. As [w| > 2n,
w = wvzyz for some u,v,z,y, z satisfying the conditions of the pumping lemma
(Lemma 3.6.2), then uzxz € L(G). Since the total length of v and y does not exceed
n, the length of uxz must be greater than or equal to n. As, according to our as-
sumption there are no strings in L(G) with the length between n and 2n, we must
conclude that |uzz| > 2n. However, this contradicts our assumption that w has the
minimal length among all strings in L(G) with the length greater or equal 2n.

End Proof |




3.8. DETERMINISM 105

Theorem 3.7.4 There exist algorithms that, given any context-free grammar G,

decide if L(G) = 0 and if L(G) is finite.

Proof: First, we can apply the algorithm guaranteed by Theorem 3.7.2 to deter-
mine if e € L(G). If not, then we can find the grammar G’ in Chomsky normal
form generating the language L(G) — {e}. Let n be the number in Lemma 3.7.3
for G'. For every string w with the length |w| < n, we can test the membership
w € L(G"). I no such w is in L(G"}, then, according to Lemma 3.7.3, the language
L(G’) is empty.

For finiteness, one must test membership for all strings w with the length be-
tween n and 2n. If there is no such string in L{G"), then according to Lemma 3.7.3,
the language L(G’) must be finite.

End Proof

3.8 Determinism

Solving the membership problem discussed in Section 3.7 is an important part of
every compiler. So-called parsers determine if statements in your programs are syn-
tactically correct, that is, if they belong to the programming language generated
by an appropriate context-free grammar. As we have shown, there exists an algo-
rithm that solves the problem of parsing for any context-free language. However,
computer implementations of our algorithm turn out to be impractical as they are
too slow for handling programs containing, sometimes, thousands of instructions.
Many other, much more efficient, parsing algorithms have been developed over the
years, making compilers more and more feasible. Most of these algorithms, in one
way or another, simulate computations by pushdown automata, whose computa-
tional power, as the reader has learned, is equivalent to the computational power
of context-free grammars. The major reason why pushdown automata are sim-
ulated by syntactical analyzers is that they provide a natural data structure for
their computer implementation: the stack. However, some pushdown automata
cannot be simulated efficiently by computer programs since they are nondetermin-
istic. For example, a pushdown automaton recognizing the language of palindromes
{w|w = wf} nondeterministically “guesses” the middle of the input string w to
begin matching the “tail” of the string with the reversed half stored in the stack.
Can we eliminate nondeterminism preserving computational power of pushdown au-
tomata? For finite automata, we found a positive solution. Every nondeterministic
automaton can be transformed to an equivalent deterministic one (Theorem 2.3.1).
Unfortunately, as we will show below, some nondeterministic pushdown automata
do not have deterministic counterparts.

First we are going to formally define what a deterministic pushdown automaton



106 CHAPTER 3. CONTEXT-FREE LANGUAGES

is. What we want is to eliminate the possibility of making a choice. If a pushdown
automaton A were in any configuration C, it should be able to apply at most one
transition to carry out the next step of computation. First we have to eliminate
transitions ((s,e,e),(g,e)) that give pushdown automata an opportunity to just
“jump” from one state to another, without reading anything from input tape or
stack or even changing the content of stack. Now suppose we eliminated such
transitions. Let us call two transitions ((s,a,a),(g,0)) and ((s',d/,d’), (¢, 3"))
compatible if

[ ] S:S,
ea=a ora=ceora =e, and
e either o is a prefix of o/, or o’ is a prefix of .

It is easy to see that, if no two transitions are compatible, then there will never be
a choice of applicable transitions. Thus, we get the following.

Definition 3.8.1 A pushdown automaton A is called deterministic if it has no
distinct compatible transitions and no transitions

((s,e:€),(g:€))

Note that we have not eliminated transitions ((s, e, &), (g, 8)) with 3 nonempty.
Unlike similar transitions in finite automata, these transitions do not make push-
down automata nondeterministic. Their application depends on the content of the
stack and will change only the stack contents.

Consider the language L = {a™b"|n = 0,1,2,...} and the pushdown automa-
ton accepting this language in Example 3.3.1. The pushdown automaton satisfies
Definition 3.8.1. Thus it is deterministic, which is consistent with our intuition
about the language L in that one does not have to make any “guesses” to identify
strings in the language. On the other hand, the automaton in Example 3.3.2 is not
deterministic. The conditions of Definition 3.8.1 are violated on two counts:

e Transition 3 is compatible with both transitions 1 and 2.
o Transition 3 is a “jump” of the type ((s, e, €), (g, €)).

Transition 3 implements the “guess” of the middle of the input string, which is
essentially a nondeterministic step.

We are about to define the class of deterministic context-free languages. How-
ever, there is one problem. Consider Example 3.3.3. Intuitively, the language of all
strings having equal numbers of a’s and b’s is deterministic. However, the machine
in Example 3.3.3 is nondeterministic, since transition 8 is compatible with transition
5. Moreover, there does not seem to exist any obvious way to make the automa-
ton deterministic. The automaton has to “guess” the end of the string to remove
the bottom marker from the stack. One faces a similar problem trying to design



3.8. DETERMINISM 107

a deterministic pushdown automaton for the language a* U {a"b"|n = 0,1,2,...}.
Any such automaton should have a transition ((s, a,€), (s, a)) pushing a’s onto the
stack. However, if no b’s follow a group of a’s, the automaton must apply a tran-
sition of the type ((s,e,a),(f,e)) to begin “cleaning” the stack. Intuitively, this
step is not nondeterministic, since there is nothing depending on the input, and the
transition ((s, a, €), (s, a)) cannot be applied. However, formally the two transitions
are compatible, making the machine nondeterministic. Our examples show that the
problem lies with “sensing” the end of the input string. If transitions of the type
((s, e, ), (g, 3)) were applied just at the end of the program, when all the input had
been read, the problem would be solved. To force the machine to follow this rule, we
must make it “sense” the empty symbol e after the input string. A more convenient
way that does not require a different “interpretation” of transitions depending on
what portion of the input has been read is to assume that every input string is
appended by the special “end marker” §, where $ ¢ X is a new symbol being used
just for the purpose of marking the end of the input. Thus, with every language
L C ©*, we associate the language L$ = {w$|w € L}.

Definition 3.8.2 A language L is called deterministic context-free if the lan-
guage L3 is accepted by some deterministic pushdown automaton.

An obvious observation shows that any deterministic context-free language L is
context-free. A deterministic pushdown automaton A accepting L$ can easily be
transformed into a (nondeterministic) automaton A’ that “guesses” the end of the
string and then simulates the part of A that operates after reading $ (see Example
3.3.3).

We are going to show that the class of deterministic context-free languages is
closed under complement. We will use this fact to show that some context-free
languages are not deterministic.

Theorem 3.8.1 The class of deterministic context-free languages is closed under
complement.

Proof: Consider a language L$ accepted by a deterministic pushdown automaton
A. We can assume that A is simple and accepting by empty store, as defined in
Section 3.4. Then, as in the proof of Theorem 3.4.2, we assume that the initial
configuration contains the bottom marker < on the stack, every transition pops
one symbol from the stack, and the marker < is removed at the end of every com-
putation. We defined simple pushdown automata assuming nondeterminism and
acceptance by empty stack, but it is clear that any deterministic finite automa-
ton accepting by empty stack can easily be transformed into a simple deterministic
pushdown automaton satisfying the above conditions and accepting by empty stack.

The obvious idea seems to reverse accepting by empty stack to accepting by
nonempty stack, similar to flipping the favorable and nonfavorable states in deter-
ministic finite automata (the idea used in the proof of Theorem 2.4.1). That is,



108 CHAPTER 3. CONTEXT-FREE LANGUAGES

the automaton A’ for the complement ¥* — L would have accepted any string w by
empty stack if A had a nonempty stack in the final configuration on w. However,
this idea does not work, at least, directly. A’ must complete reading the input,
and a string w may be rejected (not accepted) by A, because A never completed
reading the input. This situation can occur because of two reasons. First, A may
reach a configuration C, at which no transition can be applied. Secondly, A may
enter a configuration C from which it can apply an infinite sequence of transitions
((s,e, ), (g,0)) that do not read any input. Such configurations C' can be called
dead ends. Being in such a configuration C, a deterministic pushdown automaton
A can neither complete reading the input, nor even reduce the length of data in the
stack.

We are going to show that every simple deterministic pushdown automaton
can be transformed into an equivalent deterministic pushdown automaton without
dead ends. Note that our automaton A is simple: Every move is determined by (1)
current state s, (2) the input symbol to be read a, and (3) the top stack symbol A.
Thus, only this part of any configuration C' determines if the configuration is dead
or not. We can say that the triple (s,a, A) is a dead end if, from any configuration
C, A must apply a transition with left-hand triple (s, a, A) and then it never reaches
either configuration (g, e, ) (that is, it never reaches the end of the input), or a
configuration (g, a,e) (empty stack with some input to be read). Thus, we can
replace whole dead-end configuration C' = (s,u,«) by dead-end triples (s,a, A).
Such triples form a subset DeadEnds of all triples that are left-hand sides of the
transitions in A. Determining which triples are dead ends is a different problem.
We can assume that the set DeadFEnds is given to us. This step of construction
is sort of “existential” in that we claim that the finite set DeadEnds exists, but
we do not describe how to find it. The goal of construction is now clear. We have
to transform A so that when A’ reaches a dead end, it just completes reading the
input and empties the stack (thus, accepting the input string).

Thus suppose (s,a, A) € DeadEnds. First we remove all transitions in A that
are compatible with (s,a, A). This will guarantee that A’ will not get stuck or
enter an indefinite loop when it reaches (s, a, A). Then, we add to A the transition
((s,a,A),(g,e)) that reads a and pops A from the stack. Here, q is a new state.
We add also the transitions ((g,b,¢€), (g,e)) for all b € ¥ and ((q, 8, €), (p,€)) (where
p is a new state) that A’ can apply to complete reading the input. This last step
renders A’ not simple, but this is not a problem. Finally, we add to A the transitions
((p, e, B), (p,€)) for all B € T to complete “cleaning” the stack. To complete the
construction of A’, we must make sure that when A completes reading the input
and empties its stack (removing <1 on its last step), A’ does not “clean” the stack,
and if A completes reading the input, but does not accept it, A’ completes reading
the input and empties the stack (thus, accepting it). Obviously, this can be done,
preserving determinism.

The automaton A’ with the new set of transitions A is clearly deterministic.
If A does not accept a string w$, since it never completes reading the input, A’
obviously accepts w$ as it does not have dead-end configurations, and, therefore,



3.8. DETERMINISM 109

always completes reading the input. For all other cases, acceptance of w$ ¢ L$ and
nonacceptance of w$ € L$ follows from the rest of our construction.
l End Proof |

Theorem 3.8.2 There erist context-free languages that are not deterministic.

Proof: Consider the language L = {a™b™c*|n # m or m # k}. This language is
obviously context-free. We are going to show that it is not deterministic context-
free. For, if it were, then its complement L would be deterministic context-free,
and, therefore, context-free. The intersection of L with the regular language a*b*c*
is the language {a"b"c"|n = 0,1,2,...} that is not context-free. However, accord-
ing to Theorem 3.5.2, it must be context-free. Thus, the language L cannot be
deterministic context-free.

| End Proof |

In many applications context-free grammars specifying programming languages
are converted into deterministic pushdown automata to implement parsers that
check the syntactical correctness of programs.



110 CHAPTER 3. CONTEXT-FREE LANGUAGES

Exercises
— Section 3.1 —

In all grammars below, capital letters are nonterminals, lowercase letters are ter-
minals, and S is the initial nonterminal. Grammars are determined only by giving
the set of rules.

Exercise 3.1 Consider the grammar
G=5—-555—-aS,S—b
a) Give a derivation for the string aabaaabd.

b) Describe the language L(G).

Exercise 3.2 Consider the grammar
G=85—aS55—aSbh5, S —e
a) Give a derivation for the string aaabaab.

b) @ Describe the language L(G).

Exercise 3.3 Counsider the grammar
G=S5S— AB,A— aAa,B — bBbA—¢e,B—e
a) Give a derivation for the string aaaabbbbbb.

b) @ Describe the language L(G).

Exercise 3.4 Alter the grammar in Example 3.1.3 to generate the language L =
{w|w = wF} of all palindromes.

Exercise 3.5 Construct context free-grammars that generate the following lan-
guages:

a) L; = {a"b"c*|n,k =0,1,2,...}
b) Ly = {a"b*cF|n, k =0,1,2,..}



Exercises 111
Exercise 3.6 Consider the grammar G = {S — aSbS, S — bSaS, S — e€}.
a) Give a derivation for the strings aaabbabb and baaaabbabb.

b) @ Describe the language L(G).

Exercise 3.7 Using the grammars from Examples 3.1.5 and 3.1.6, derive the fol-
lowing segment of a program in C/C++:

u=v-—"b
while(a > v){u=a+a; };

Exercise 3.8 Construct a grammar that generates the language L = {a™ulu €
{a,b}*,|u|=n,n=0,1,2,...}.

Exercise 3.9 Construct grammars that generate the following languages:
a) ®L; = {a"b™a™b"|n,m=0,1,2,...}

b) ® Ly = {a"b""™a™|n,m =0,1,2,...}

c) &Ly ={a"t"aPb"|n,m=0,1,2,...,n+m=p+r}

d) L, ={a""|n,m=0,1,2,...,n < 2m}

Exercise 3.10 ¢ Construct a grammar that generates the language of all iden-
tifiers represented by the regular expression [A — Z|([A - Z] U [a — 2] U [0 — 9])*
(cf. Example 2.4.5).

Exercise 3.11 @ Construct a grammar that generates all regular expressions over
the alphabet {a, b}.

Exercise 3.12 Consider the grammar in Example 3.1.5. Suppose parentheses (,)
have been dropped from all rules. Give two different parse trees for the string
v+ vk



112 CHAPTER 3. CONTEXT-FREE LANGUAGES

I Section 3.2 I

Exercise 3.13 Consider the grammar {S — aSb, S — abS, S — e}.

a) Show that the grammar is ambiguous.

b) @ Find an equivalent unambiguous grammar.

Exercise 3.14 Consider the grammar {S — aSb, S — aaSbh, S — e}.

a) Show that the grammar is ambiguous.

b) @ @ Find an equivalent unambiguous grammar.

Exercise 3.15 Consider the grammar {S — ABAB, A — aA, B — bB, A — ¢,
B — ¢€}.

a) Show that the grammar is ambiguous.

b) ® @ Find an equivalent unambiguous grammar.

Exercise 3.16 Let G be a context-free grammar. Show that the relation R(z,y)
= “z and y have the same parse tree” defined for all derivations x = (S =* u),y =
(S =* w) for any u,w € L(G) is an equivalence relation.

Exercise 3.17 Give an ambiguous grammar to generate “if ... then ... else” state-
ments, in which the statement

if @ then if b then c else d

would have two different parse trees.

R Section 3.3 I

Exercise 3.18 Give three different computations of the pushdown automaton from
Example 3.3.2 on the string aabaab.



Exercises 113

Exercise 3.19 Trace the pushdown automaton of Example 3.3.3 on the following
strings:

a) aabbb
b) aabababb

Exercise 3.20 Counsider the following pushdown automaton

L. ((s,a,€), (s,a))
2. ((s:6,0),(f,¢))
3. ((f,b,a),(f,€))
4. ((f,a,0),(f,€)

where s is the initial state and f is the favorable state.

a) Give computations of the pushdown automaton on the strings aaabba, abbaaa,
aabba, and aaaababa. Determine which of the strings are accepted by the
pushdown automaton.

b) Describe the language accepted by the pushdown automaton.

Exercise 3.21 Consider the following pushdown automaton
- ((8,0,€), (s,¢))
- ((5,,€); (s,0))
3. ((s,0,€),(f:€))
4. ((f,a,¢),(f,€))
5. ((f,6,0),(f,€))

where s is the initial state and f is the favorable state.

N =

a) Show that the strings aababaaab and baaabbaab are accepted by the pushdown
automaton. Show that the strings aabbabbaa and abbbabbbb are not accepted.
Show accepting computations for accepted strings and nonaccepting compu-
tations for the strings that are not accepted (you may show one to two nonac-
cepting computations and describe how other computations are similar to
those shown).

b) Describe the language accepted by the pushdown automaton.



114 CHAPTER 3. CONTEXT-FREE LANGUAGES

Exercise 3.22 Consider the language {a™b*"|m = 0,1,2,...}. Construct a push-
down automaton that accepts it.

Exercise 3.23 As defined in Section 3.3, given any string w, let n,(w) denote the
number of occurrences of the symbol a in the string w. Construct a pushdown
automaton that accepts the language {w|w € {a, b}*, ny(w) = 2ny(w)}.

Exercise 3.24 Construct pushdown automata accepting the following languages:
a) Ly = {aFbFci|k,i > 0}
b) L, = {a*bici|k,i > 0}

Exercise 3.25 & Construct a pushdown automaton that accepts the language
{a*bck|i = j or i = k for i > 0}.

Exercise 3.26 € Construct a pushdown automaton that accepts the language
{a*¥ck|i = j or j =k for j > 0}.

Exercise 3.27 € @ Suppose, for some pushdown automaton A, there exists a
constant k such that A never stores more than k elements on the stack. Show that
the language L(A) is regular. (Hint: Show that the pushdown automaton A can be
transformed to a finite automaton accepting the same language.)

Exercise 3.28 & @ Show that if a language L over an alphabet ¥ is accepted by a
pushdown automaton, then the language {u#v|u € L and uv € L} for some symbol
# ¢ 3 is accepted by a pushdown automaton.

S—— Section 3.4 —

Exercise 3.29 For the grammar G in Example 3.4.1, trace the corresponding push-
down automaton accepting L(G) on the string aaabbb. (Create a table similar to
Figure 3.6 without the last column; that is, do not indicate the numbers of the used
transitions.)



FExercises 115

Exercise 3.30 For the grammar G in Example 3.1.5, trace the corresponding push-
down automaton accepting L(G) on the string ((v + v) * (v — v)). (Create a table
similar to Figure 3.6 without the last column.)

Exercise 3.31 @ A grammar G = (X, NT, R, S) is right-linear if every rule in R
is of the form A — « where A € NT and either & € ¥ x NT, a € X, or a = e.
Prove that if G is a right-linear grammar, then L(G) is regular.

Exercise 3.32 € Prove that if L is a regular language then there is a right-linear
grammar G such that L = L(G).

Exercise 3.33 ¢ & For the construction in Theorem 3.4.1, prove that for any
string o € NT(NT|JZ)* U{e} and for any string w € £*,

a) If wa is derivable from S, then starting at configuration (f,w, S), the automaton
A arrives at the configuration (f, e, a) [If & = e, we get that if w € L(G), then
w € L(A).] (Hint: use induction on the length of the leftmost derivation of
wa from S.)

b) If, starting at configuration (f,w, S), the automaton A arrives at the configura-
tion (f,e, ), then wa is derivable from S. (If o = e, we get that if w € L(A)
then w € L(G). This statement together with the one in part a completes the
proof of Theorem 3.4.1.) (Hint: Use induction on the number of transitions
of the type 2 in the computation.)

Exercise 3.34 & @ Prove statement a in the sketch of the proof of Lemma 3.4.3.

Exercise 3.35 € @ Prove statement b in the sketch of the proof of Lemma 3.4.3.

Exercise 3.36 € Transform the pushdown automaton in Example 3.3.2 to an
equivalent simple pushdown automaton.



116 CHAPTER 3. CONTEXT-FREE LANGUAGES

EEEEE—— Section 3.5 —

Exercise 3.37 Use the construction of Theorem 3.5.1 to find context-free gram-
mars for the following languages:

a) {a™b"a™b™|n,m =0,1,2,...}
b) {a™™ck|ln =m or m =k,n,m,k=0,1,2,...}
R

c) {wlw=wu" or w=wua™ n = |u|,uv € {a,b}*}

EE—— Section 3.6 I

Exercise 3.38 4 Prove that the following languages are not context-free:

a) L = {a®*b?*c*|k =0,1,2,...}

b) L, = {10¥10*10%|k = 0,1,2, ...} (Notice that L, is over the alphabet {0,1}.)
c) Ly = {a**t™b*a™b*|k,m =0,1,2,...}

d) Ly = {www|w € {a,b}*} (where the function n, is defined in Exercise 3.23)

EE—— Section 3.7 I

Exercise 3.39 Apply Algorithm 3.7.1 to eliminate all rules of the type H — e
from the following grammars:

a) {§ - ABC,A —»>aA,A—e,B—bB,B—bC —cC,C— A}

b) {S - AB,A — aAa, A—a, B— BC,B—bB,B—e C— DD, D —dDd,
D — e}

c) {S—ABC,S - e, A—aA, A—e¢, B—>bBS,B—SD,B—-bC—CD,
C—¢C,C—D,D—dD, D — e}

Exercise 3.40 For each of the following grammars, apply Algorithm 3.7.2 to elim-
inate all rules of the type £ — H:

a) {§— AB,A—aAb,A—- B,B— BC,B— D,C —cC,D —dDd, D— d}
b) {S - ABC,A—aA,A— B, A—a, B> C,C—cC,C —c}
c) {S—»S4,S—a,A—-aA,A—-B,B—cS,B— S, B— b}



Exercises 117

Exercise 3.41 Find the Chomsky normal forms for the following grammars:
a) {S— 885,85 — (S), S — e} (with the set of terminals ¥ = {(,)})
b) {§ - ABC, S —a, A — adaa, A— e, B— bBbb, B — ¢, C — cCa, C — ¢}

c) {S—aSa, S > AB, S —a, A— CC, A — aaA, A — e, B— bBb, B — ¢,
C — cCe, C — e}

d) {S — ABC, A — Aaa, A — ¢, B— DD, B — bDD, D — ddB, D — e,
C — cCe, C — ¢}

EEEE— Section 3.8 S

Exercise 3.42 Show that the following languages are deterministic context-free:
a) Ly = {a™*c™|m,k=0,1,2,...}

b) Lo = {wcw|w € {a,b}*}

¢) Ly ={a™b*lm #n,m,n=0,1,2,...}

d) Ly = {a™ba™m =0,1,2,...} U {a*ca?|k = 0,1,2,...}

Exercise 3.43 € Show that the class of deterministic context-free languages is
not closed under union.

Exercise 3.44 ® Show that the class of deterministic context-free languages is
not closed under intersection.

Exercise 3.45 @ Show that the class of deterministic context-free languages is
not closed under difference.



Chapter 4

Turing
Machines



Chapter 4

Turing Machines

4.1 Definition of a Turing Machine

We have observed in the last two chapters that neither finite automata nor pushdown
automata are powerful enough to serve as real models of arbitrary algorithms, let
alone modern computers that can run any algorithm. For example, an algorithm
recognizing the language L = {ww|w € {a,b}*} would need a queue to memorize
the first half of the input. However, none of the computational devices we have
observed so far, provides this kind of storage. Even for the language of palindromes
L = {w|w = w'} there does not seem to exist any obvious way to implement a
deterministic pushdown automaton recognizing this language. Any such solution
would probably require memorizing the entire input before the algorithm would
start to carry out the necessary comparisons. Any computer program can easily
store the input, while a pushdown stack does it in a way that makes any reasonable
operation after the input has been read in impossible.

Is it possible to design a formal model of a computational device that would
capture capabilities of any algorithm? About 60 years ago an English mathematician
named Alan Turing made an attempt to formulate an abstract model of a human
computer that would use a pencil and paper to solve some problem. Turing tried
to decompose the operations of such a computer into a number of simple steps. He
came to the conclusion that

1. Any such step would consist of erasing a symbol on the paper “observed” by
the pencil and writing a new one in its place;

2. The decision as to which symbol should be written and which symbol should
be observed next would depend only on the symbol “observed” by the pencil
and the “state of mind” of the computer.

Based on these assumptions, Turing suggested a computational device, known
now as a Turing machine, that was supposed to implement any algorithm carried



122 CHAPTER 4. TURING MACHINES

out by a computer. At the first glance, a Turing machine seems to be a slight
generalization of a finite automaton. It has finite control in the form of states, a
tape, and a head that can read the tape. The only differences are that a Turing
machine can also write on the tape and back up to read symbols it read or wrote
earlier.

However, this latter capability turns out to be of vital importance. A Turing
machine can simulate processing any data structure using three major components
of any imperative programming language — sequence, branching, and loop — at
their full strength, including testing conditions that control branching and loops.
Finite automata are not capable of such testing at all, while pushdown automata can
do this only in the very limited form of testing the emptiness of the single stack.
This informal observation can be supported by formal arguments. Any attempt
to enhance the computational capabilities of a Turing machine — adding tapes,
heads, introducing a random access mode that practically simulates assembly-level
processing by any computer — fail to strengthen computational power. Thus, we
can make a very powerful conclusion, known as the Church-Turing thesis: Every
computer algorithm can be implemented as a Turing machine. This itself has very
important consequences for computer science.

We begin with the definition of a Turing machine. First we describe such a
machine and its operation informally. Like a finite automaton, a Turing machine
consists of finite control, a tape divided into cells, and a head positioned on the
tape. The head, being in any state s, reads the symbol in the cell it observes and
either writes a new symbol in this cell or moves one cell to the right or to the left.
In any case, it enters a new state q.

The tape has a left border and can be extended indefinitely to the right. That
is, if the head wants to move to the right and there is no cell to move to, a new cell
containing a blank symbol . is added . (This is similar to extending random access
memory (RAM) of a computer whenever it is needed.) To prevent the machine
from moving beyond the left border of the tape, we assume it can “sense” it in the
fashion similar to the one used in pushdown automata. That is, the leftmost cell
contains the special marker >, and when the head observes this symbol, it always
moves to the right. This way the machine will never attempt to “fall” from the left
frontier of the tape.

Similar to finite and pushdown automata, the tape of a Turing machine is sup-
plied with the input before the machine starts to operate. The input string is
located in the leftmost cells of the tape right after the marker > (see Figure 4.1).
We can assume there are no cells after the input string, or there are a number of
cells containing the empty symbol . What happens if the head reaches the empty
portion of the tape? It just continues its operation. Thus we assume that the empty
symbol is a (special) tape symbol. An example of a Turing machine is depicted in
Figure 4.1.

Now we are going to make our presentation of a Turing machine a bit more
formal. Let X be a tape alphabet containing t> and blank . As we just discussed,



4.1. DEFINITION OF A TURING MACHINE 123

h ® Y S
Finite
o—re ¢ Control

T @ ° P

Elelelelela[L[o]—

Figure 4.1 A Turing Machine

every transition of a Turing machine is either of the type

((s,0),(q,0))

or of the types
((s,a),(g,—)); ((s,0), (g, <))

where s, q are states, a,b € ¥, — means that the head must move to the right,
and, accordingly, «— means that the head must move to the left. Unlike finite and
pushdown automata, which would terminate operation of the device when reaching
the end of the input tape, a Turing machine can move in both directions, and its
tape is not bounded. Thus, it must have other means to terminate its operation.
Halting is achieved in form of special halting states. If a machine enters a halting
state, it immediately terminates. Note the difference between halting states and
favorable or accepting states as used in finite and pushdown automata. Favorable
states indicate that an input string is accepted. Thus, they are “external” to the
operation of a computational device A. A may enter a favorable state and still
continue its operation; changing favorable states does not change the device. Halting
states are the “internal” means of terminating operation of a device. Eliminating
or even changing halting states changes the device. The question how a Turing
machine accepts the input or what it computes has not been discussed yet. Such
matters are the topic of Section 4.2. In fact, we will relate acceptance to halting,
however, the former comes after the latter. As we will see, acceptance can be defined
in various ways.



124 CHAPTER 4. TURING MACHINES

Now we are ready to define a Turing machine formally.
Definition 4.1.1 A Turing machine is a quintuple (5, X, 4, s, H), where

e S is the set of states;

¥ is an alphabet containing the left end marker >, the blank ., but not
containing arrows — and «;

s € S is the initial state;

e H C S is the set of halting states;

d, the transition function, is a function from (S—H)x X to Sx (ZJ{~,—=1})
such that

1. For any g € S — H, é(q,>>) = (p, —) for some state p;

2. If (p,b) = 6(q,a) for some ¢ € S and a € X, then b is not > (that is, the
machine never introduces another marker ©>).

As we have done before, we will use the notation ((g,a), (p,b)) rather than
(p,b) = 8(q,a) for the transitions of the machine. As it easily follows from the
definition, a Turing machine is a deterministic device (we will define nondetermin-
istic Turing machines later). Note that there is no transition with left-hand pair
(h,a), for any h € H. If a Turing machine reaches a halting state, it terminates its
operation. Even though we have not yet defined how Turing machines compute, it
is worthwhile to consider an example.

Example 4.1.1 The Turing machine that just erases the input string can be de-
fined as follows: M = (S,%,4,s,{h}), where & = {a,t>, 0}, S = {s,q,h}, s is the
initial state, h is the only halting state, and the set § of transitions is

- (8, 0), (hy )
- ((s,0), (g, 1))
3. ((g,0),(s,—)))
4. ((s,1),(s,—))
5. ((g,>),(¢,—))
. ((g,a), (h,a))

Having started with the tape containing aaa right after the marker >, the ma-
chine executes the cycle of using transitions 2 and 3 three times to erase a and move
one step to the right. In the end it applies transition 1 to halt. Note that the last
three transitions are never applied. They are present just because § is the function
that must be defined on the pairs in question.

N =

[=}]



4.1. DEFINITION OF A TURING MACHINE 125

Next, we consider a modification of the above machine. Replace transition 1
with the transition {(s, u), (¢, «)). Then, when M reaches the ., it starts to move
back and forth indefinitely, alternatively applying the modified transition 1 and 3.
Thus, it never terminates — a phenomenon that is familiar to every reader who
ever tried to debug programs containing faulty loops. This type of operation is
very different from how finite or pushdown automata work. In the worst case, a
pushdown would just get stuck.

End Example

Now we can define computation by a Turing machine. First, however, we must
define a configuration. Any configuration obviously must include

{(a) The current state;
(b) The symbol on the tape currently observed by the head;
(¢) The string on the tape to the left of the head;

(d) The string on the tape to the right of the head (in this case we can assume
that it ends with the rightmost nonblank symbol on the tape as otherwise we
would get an infinite string).

An example of a configuration is the quadruple
(g, @, >abb, bbby, Laa)

If g is a halting state, we call a configuration halting. To simplify notation, we will
combine the last three components of a configuration: Instead of (g, a,u,v) we will
write (g, ugv) with the underlined symbol being the one observed by the head.

Now consider a configuration C; = (g, uav). We say that the configuration C
yields a configuration Cy = (p, u1bvy) in one step of computation (written C; - Cs)
if Cs is obtained from C) by application of the transition in § with the left-hand side
pair (g,a), with the assumption that the underlined symbol a is observed by the
head. For example, if C; = (¢,>abuavaa) and the transition ({(q,a), (p,—)) € 4,
then C; F (p,>abuayaa). If the transition was, say, ((¢,a), (p,b)), then C; would
yield (p,>abubuaa).

We say that a configuration C yields a configuration C’ (written C +* C’) if
there exists a sequence of configurations

CotFCi - FC,

such that C = Cy and C’ = C,,. We say that the above sequence is a computation
by Turing machine M, and n is its length.



126 CHAPTER 4. TURING MACHINES

In Example 4.1.1, starting from the configuration (s, >gaa), machine A carries
out the following seven-step computation:

(s,>aaa) + (g,>uaa)
F(s,>uga)
F (g, >uua)
F (s,>uua)
= ((I7[>‘—"—’L‘)
Fo(s,uuuu)

F (h,DuuuH_)

Now we will consider more examples of Turing machines. These machines form
a class of basic machines that can be used to build more complex machines. Thus,
building complex Turing machines, we are going to employ a “modular” approach
familiar to every programmer. More complex machines “call” simple machines as
“subprograms.” It is natural then to use the graphical language of “flowcharts” to
represent machines combined from other machines. Any node in such a flowchart
will be labeled with the name of a Turing machine. When the flow of control is
passed to a node with label A, Turing machine A is started in its initial state with
the current configuration. The operation of A will modify the configuration. When
A halts, the reading head will be observing a cell containing a symbol. Suppose
that symbol is a. If there is an arrow connecting the node with label A to a node
labeled B and that arrow itself is labeled a, then Turing machine B is started in its
initial state with the configuration left by A, and the process continues. See Figure
4.2.

@ -(®

Figure 4.2 A Sequence of Turing Machines

Using this kind of flowchart with labeled arrows, we can design Turing machines
that represent conditional branching and loops. For example, the Turing machine
depicted in Figure 4.3 represents a Turing machine M that starts in its initial
configuration. If M halts and the head observes the symbol a, then A starts to
operate from the given configuration. If M halts and the head observes any other
symbol, then B takes over. Using the conventional branching construct, one can
describe this computation as

M;
if a then A else B



4.1. DEFINITION OF A TURING MACHINE 127

Figure 4.3 Branching Turing Machines

The diagram of the machine in Figure 4.4 represents a machine that starts to

#a :

#a

Figure 4.4 A Loop

operate as A every time the symbol observed by the head in the halting state is not
a. One can represent this computation by the following conventional programming
construct:

while (not(a)) do A4;

The starting “bricks” for building complex Turing machines using the above
constructs could be the machines executing just one basic instruction such as writing
a symbol and halting, or moving one step to the left or right and halting. In both
cases, the machine “memorizes” the symbol being observed by the state it moves
to. We can denote these “atomic” machines as just a (for writing a ), R (for moving



128 CHAPTER 4. TURING MACHINES

to the right), and L (for moving left). Then the machine that writes a symbol b if
the symbol being observed is a, can be represented as in Figure 4.5.

a
—®)
Figure 4.5 Writing b over a

It would also be convenient to denote the “concatenation” of any two machines
A and B (B starts to work from the configuration in which A halted regardless of
the symbol being observed by the head) as AB. For example, R would stand for
the machine that erased any symbol being observed by the head and moved one step
to the right. In many cases our diagrams will contain parallel arrows (connecting
the same nodes), one labeled by each nonblank symbol. All such arrows can be
replaced by one arrow labeled a # ., which is read “any symbol o different from
u.”  As the actual symbol a on the tape can be memorized by the machine, it
can be used in the subsequent “modules.” For instance, the machine of Figure 4.6
memorizes a nonblank character a, moves one cell to the right, and writes a over

a?éu
— (&)

Figure 4.6 Moving Right and Writing a

whatever happens to be in that cell (it halts instantly if the observed symbol is
blank). Sometimes, when we only care that the character being observed is not
some particular symbol, it is convenient to use the shorthand @ to mean any symbol
different from a.

Now we consider some examples of Turing machines.

Example 4.1.2 The diagram of Figure 4.7 represents the machine that erases the

D @

o

Figure 4.7 Erasing the Input

input string consisting of nonblank characters, starting with the head observing the



4.1. DEFINITION OF A TURING MACHINE 129

leftmost character. It halts when it reaches the right end of the string. If the first
character is blank, the machine halts instantly. We can represent this machine also
as

while (not(u)) do LR

End Example J

For our future examples, it is convenient to have Turing machines that find
the first blank or nonblank symbol to the right or to the left of the symbol being
observed. For example, the machine that finds the first blank to the right can be
represented by the diagram of Figure 4.8. Accordingly, it can be represented by the

)

Figure 4.8 Finding the First Blank on the Right

statement
while (not(w)) do R

The shorthand R, will be used to denote the machine of Figure 4.8. Similarly the
shorthand notation L ,, R—, L— will be used for the rest of the above mentioned
machines.

Example 4.1.3 Our next example is the machine Cp that copies any string w
(possibly empty) containing nonblank symbols. That is, it transforms the input
string w, starting with the head observing the leftmost character in w, into the
string wow and halts. This transformation can be implemented by a loop that, on
every iteration

1. Using an internal state, “memorizes” the character a observed by the head in
the input w;

2. “Memorizes” the position of the character a observed by the head, temporarily
“erasing” it (or, rather, marking this position by »);

3. Moves the head to the right until it reaches the second empty cell and copies
the remembered character a; this part can be represented by the concatenation
RR RR_ a. The R’s are needed to make the next R , start from a nonempty
symbol;



130 CHAPTER 4. TURING MACHINES

4. Moves the head to the left until it reaches the second empty cell;
5. Restores the memorized o in the observed cell;

6. Moves ones step to the right and terminates if the observed symbol is blank.

The corresponding machine Cp is presented in Figure 4.9.

a;é [
>————>CRRURRUaLULLua®

a%u

Figure 4.9 The Copying Machine Cp

We could also represent it in the form of the following “program”:
while (a # 0) do

{ o
R;
while () do R;
R;
while (7) do R;
a;
while () do L;
L;
while () do L;
a;
R

}

Note that the machine halts to observe the blank between the input w and its copy.

End Example J

We recommend that the reader work Exercises 4.3, 4.5, and 4.6 that call for the
design of complete sets of transitions for some of the above examples.

4.2 Computations by Turing Machines

So far we have been using Turing machines as simple data processing devices. Now
we are going to show that they perform many important computational tasks, in



4.2. COMPUTATIONS BY TURING MACHINES 131

particular, compute functions and recognize languages. In fact, computing functions
is enough for language recognition, since every language L can be represented by
its characteristic function

_f1 ifwel
n(w) = {0 otherwise

First we define how Turing machines compute functions on strings. It will be
convenient to introduce the following notation for the case when a machine M never
halts on an input w: M(w) 1.

Definition 4.2.1 Let M = (S5,%,4,s, H) be a Turing machine. Let g = ¥ —
{>, .} and let w be a string in the alphabet 3j. Suppose that M, starting to
operate from the initial configuration (s,>w) with the head observing the first
character in w, halts, and its final configuration is (h,>u) for some h € H and
u € X§ [that is, (s,>w) F* (h,>u}]. We denote « by M (w) and call it the output
of machine M on the input w.

Now let f be any function from X to Xf. Let Dom(f) be the domain of the
function f (the set of all w € ¥ on which f is defined). We say that M computes
the function f if M halts on every w € Dom(f) with M(w) = f(w), and M(w) 1
on every w ¢ Dom(f).

Definition 4.2.2 A function f with Dom(f) C X} is called partial Turing com-
putable if there exists a Turing machine M that computes it.

We use the word partial in the definition, since the Turing machine may not halt
on some inputs w [those w that are not in Dom(f)]. This word is dropped in the
following definition that covers the special case when M halts on all inputs w.

Definition 4.2.3 A function is called Turing computable if it is partial Turing
computable and Dom(f) = X§.

Example 4.2.1 Our first example is the Turing computable function f(w) = wa
defined on all strings w € {a,b}*. The Turing machine M computing f moves its
head to the right until the first blank and replaces the blank by a (see Figure 4.10).

-
p S

Figure 4.10 Computing the Function f(w) = wa

Note the function is Turing computable as M obviously terminates on any input

string.
rEnd Example T




132 CHAPTER 4. TURING MACHINES

Example 4.2.2 In Example 4.1.3 we defined a Turing machine that, given the
input w, outputs wow. This machine can be augmented to output ww instead
of wuw. To achieve this, after the original machine terminates, the left-shifting
machine Shl starts to operate. It just shifts the second string one position to the
left. More precisely, Shl starts in the configuration v, w for any v and has one loop.
On every iteration of the loop, it moves to the right, memorizes the symbol being
observed (say, a) if it is nonblank, erases it, moves to the left, writes a, and moves
twice to the right. The diagram of Shl is presented in Figure 4.11.

(17&1_1
®

Figure 4.11 The Shifting Machine Shl

Thus, we have defined a Turing machine that computes the Turing computable
function f(w) = ww.

End Example

As every language L can be represented by its characteristic function we can
define recognition of languages by Turing machines.

Definition 4.2.4 A language L is called Turing computable if its characteristic
function is Turing computable.

We will use the term decidable language as a synonym term for Turing com-
putable language. A Turing machine recognizing such a language decides if a string
is in the language or not.

Definition 4.2.5 A language L is called semidecidable if there exists a Turing
machine M that outputs 1 on any w € L and does not halt on any w ¢ L [in
other words, for the f computed by M, Dom(f) = L and f coincides with the
characteristic function 7z, on its domain].

A Turing machine semidecides a language if it recognizes every string in the language
and does not halt on the strings that are not in the language.

We could define the semidecidability of languages using a slightly different ap-
proach.

Definition 4.2.6 A language L is semidecidable if there exists a Turing machine
M that halts on every string w € L and does not halt on any string w ¢ L.



4.2. COMPUTATIONS BY TURING MACHINES 133

The reader can easily see that both definitions of semidecidability are equivalent.
In some aspects, the latter definition may be regarded as more natural. Qutputting
1 after the machine has halted seems to be somewhat “redundant.” As we will show
later, there are semidecidable languages that are not decidable.

Any deterministic finite automaton can easily be transformed into a Turing
machine recognizing the same language (if an automaton completes reading the
input and enters a favorable state, the Turing machine simulating it erases the
input and writes 1 in the first cell, otherwise it outputs 0). Thus, every regular
language is Turing computable. We will show later that all context-free languages
are Turing computable as well.

Strings in the alphabet {0,1} can be regarded as binary codes of nonnegative
binary numbers. For example, the string w = ajas ... a, represents the number

a2 1+a-2"24 .. . +a,

Thus, with the alphabet ¢ = {0,1}, we can view a Turing machine as computing
a function f: N — N.

Example 4.2.3 In this example we consider a Turing machine that computes the
function f(k) = k+ 1. Starting from the leftmost symbol, the machine first goes to
the right until it reaches a blank. Then it turns left and flips all 1’s to 0’s until it
reaches the first 0. Then it flips it to 1 and halts. If it never finds 0 (which means
that the input string was all 1’s), it writes 1 in the leftmost cell, finds the first blank
on the right, writes over 0, and halts. In Exercise 4.9 the reader is asked to draw a
chart and give a complete set of transitions for this machine.

ﬁEnd Example

Turing machines can be used to compute functions of multiple arguments. Sup-
pose f is a function defined on k-tuples (ny,ng,...,ni) of natural numbers with
range N, and n; is coded by the string w;, 1 <7 < k. A Turing machine computing
this function would start with the input w; LwawL ... LW on the tape and halt with
the output f(ng,ng,...,ng).

Definition 4.2.7 A function f with Dom(f) C NF¥ is called a partial Turing
computable function if it is computable by some Turing machine. Turing com-
putable functions, accordingly, have Dom(f) = NF.

How powerful are Turing machines, or, equivalently, what is the scope of partial
Turing computability? As we have shown, Turing machines can copy and add 1.
At this moment, the reader probably suspects that Turing machines can do much
more than that. We will show later that Turing machines can add and multiply
numbers [that is, compute the functions f(z,y) = z +y and g(z,y) = z - y]. Based
on these two major operations, one can build a Turing machine that computes



134 CHAPTER 4. TURING MACHINES

any conceivable numerical function that involves iterated arithmetical operations.
However, details of programming are quickly becoming more and more subtle. Our
computational devices spend a lot of effort on relatively easy things. Even to add
two numbers, a machine has to move back and forth many times, moving from a bit
in one argument to the corresponding bit in the other one. It could be done much
easier if the machine could use two more tapes having the second argument written
under the first one, and the result written under the arguments. As we will show
later, additional tapes do not enhance the power of Turing machines. However,
they can be used to write more efficient programs for partial Turing computable
functions.

4.3 Extensions of Turing Machines

At first glance, Turing machines are clumsy, wasting a lot of operations on steps
that can be carried out by a modern computer in just one step. On the other hand,
as we have seen, practically any instrument of imperative programming (sequence,
conditional branching, and conditional loops) can be implemented by appropriate
Turing machines. In this section we are going to show that no reasonable attempt to
extend the computational power of Turing machines yields a model of computation
more powerful than standard one-tape one-head Turing machines. We are using
here an informal term computational power. By this we understand what Turing
machines can do, rather than how fast they do it. The latter issue will be discussed
in the Chapter 6. These results indicate that, as clumsy as they seem to be, Turing
machines reach the ultimate computational power of any conceivable computer.
Moreover, since additional (and quite powerful) features do not enhance the power
of our computational devices, we can use them as our programming tools, finding
simple solutions to the computational problems that would otherwise require lots
of redundant head moving, memorization characters, shifting, and so on used by
standard Turing machines (cf. Section 4.2).

4.3.1 Multiple Tapes

Now we consider Turing machines that have several tapes, as in Figure 4.12. Such
a machine has one head for every tape. At any step, it scans the symbols observed
by all the heads. Depending on this set of symbols, and on the current state, it
replaces symbols on some tapes and moves one step to the right or to the left on
the others. (A formal definition of such a machine is suggested in Exercise 4.12.)
We are going to show that any k-tape Turing machine can be simulated by a
standard Turing machine computing the same function. Suppose, a k-tape Turing
machine A computes a function f in the following fashion: Starting to work on
any w € Dom(f) on the first tape, it halts with f(w) on the first tape. The single
tape of a one-tape machine B must contain, in one form or another, all information
stored on multiple tapes of A. Let us assume that we could divide the tape of B



4.3. EXTENSIONS OF TURING MACHINES 135

h ) ® S
Finite
o—e ¢ Control

T @ ™Y t

Topel |>falbfofa]uf -

Tape2 [>lafblafufefo]ofu]

Tape3  [>[b]ofo]ufalb]o]u] -

Figure 4.12 Multitape Turing Machine

into k tracks, each containing the same information as the corresponding tape of A
(Figure 4.13).

This would take care of simulating multiple tapes. The problem of creating
multiple “tracks” within one cell will be handled later. However, B can use only
one head, while A has & heads positioned in different locations on different tapes.
To memorize the positions of £ heads, we need additional & tracks, one for every
head. Thus, the single tape of B is to be divided into 2k tracks. Tracks with odd
numbers are identical to the tapes 1, 2, ...,k of A, tracks with numbers 2, 4, ..., 2k
memorize the positions of the heads. If the head on the tape ¢ is positioned on the
cell n, then the track 2 has 1 in cell n and 0 in all other cells (see Figure 4.14).



136 CHAPTER 4. TURING MACHINES

> a b L [ a
>l b | b|al|ul|b
>lulblalb]|a
LD a s a Q a

Figure 4.13 A Multitrack Tape

Figure 4.14 Simulating k& Tapes by 2k Tracks

>la|blou|blaialhbdb
01]0;110]0),0)0,0
Dbbauaua
>107010]0]0)J0)1)0 o]y
>la|luv|alb|lu]lalu
0j1,0}]0})0}0}010

Now, how do we divide any cell into 2k tracks? Suppose that B could use 2k- “level”
symbols

a1
by
a2
ba

ag
b

Then every “level” would represent the corresponding track. What we can do is just
extend the alphabet of machine B, providing the code for each such “multilevel”
character. To make inputs and outputs of machines A and B compatible, we have to
make sure that the alphabet of B contains the alphabet of A. Thereby, B can start
with the same input as A, then immediately start using “multilevel” characters,
and in the end return the same output as A.

Now we describe how B simulates transitions of machine A. Given the input w
and the head position at the first element (say, a), A first “initializes” the tracks
in the cells originally containing the marker > and the first character a, reflecting
initial positions of all heads on the first cells of the tapes (see Figure 4.15).

To simulate just one transition by the machine A, B must perform many quite
complex actions. Let us assume that before simulating any transition of A, the head
of B is positioned on the right “end” of the data, that is, on the leftmost cell such
that, for any track, all nonblank (for odd track) and 1 (for even track) symbols are
located to the left of this cell. Machine B then



4.3. EXTENSIONS OF TURING MACHINES 137

SjVio|VIioV
Qo=

Figure 4.15 Initial Configuration of Tracks

1. Scans all the cells to the left and returns, memorizing by its internal state
the symbols observed on each of k tracks simulating the tapes of A by the
corresponding heads (represented by 1’s on the tracks below).

2. Moves left and updates each combination

a
010

in accordance with the instructions of A, either replacing a by some b, or
simulating the head move, that is, replacing the whole combination by either

100
or

a
001

3. Returns to the right “end” of the tape.

4. If A halts, B converts the contents of the tapes back to “single-level” format
and halts itself.

We omitted many details in this description. However, the “modules” that we
described just informally are very similar to those of the previous section, and we
hope the reader will believe that they can be implemented as “modules” of standard

Turing machines.
Now we can design a simple three-tape Turing machine that computes the func-

tion & + y, that is, adds two numbers in binary notation.



138 CHAPTER 4. TURING MACHINES

Example 4.3.1 The machine that computes x + y. For the sake of simplicity, we
can assume that x and y are written on the first and second tapes, respectively. The
result will first be computed on the third tape and then copied to the first tape.
The machine executes the following modules in order:

1. Moves the heads on tapes 1 and 2 to the right ends of x and y, respectively,
one move on each tape at a time. Simultaneously, moves the head on the third
tape, making sure that in the end it will be positioned as far to the right as

max(|z, |y]);

2. Move the head on tape 3 one more position to the right (giving additional
“room” to accomodate the result that may have length up to maz(|z|, |y|)+1);

3. Bit by bit, adds « and y and writes the result on tape 3 using the following
iteration:

(a) Reads bits on the first and the second tapes and uses the carry memorized
by the current state from the previous iteration of this loop;

{b) If the sum of all three bits is 0 or 1, writes 0 or 1, respectively on the
third tape;

(c) If the sum is 2 or 3, writes 0 or 1, respectively, on the third tape and
memorizes the carry 1 by its internal state;

{d) Moves all three heads one position to the left.

4. One of the arguments, say,  can be shorter than y; when the machine reaches
the marker > on the first tape, it continues the iteration (formally, it will be
a different loop), using 0’s for the bits on the first tape and not moving the
first head;

5. When the addition is over, it copies the result from the third tape to the first
one (erasing ).

All five “modules” can obviously be implemented using the techniques developed
in the Section 4.2.

[ End Example

4.3.2 Multiple Heads

Now we consider Turing machines that use one tape and k different heads to view
the tape. More specifically, in every state only one head can write or move. Thus,
the set of states is partitioned into @1, @5, ..., Qk, where each set Q; contains the
states for head i.

It is easy to show that these machines can be simulated by standard one-head
one-tape Turing machines. The simulation can be implemented similarly to the case



4.3. EXTENSIONS OF TURING MACHINES 139

of multitape tapes. This time one needs only k additional tracks for memorizing
positions of the heads on the single tape.

We will use a multihead Turing machine to show that there are noncontext-free
languages that can be recognized by Turing machines.

Example 4.3.2 Consider the language L = {a™b"c*|n = 0,1,...}. As we have
shown (Example 3.6.1), this language is not context-free. A three-head Turing
machine that recognizes this language operates as follows. Given an input w, it scans
the block of a’s with the second head and positions it on the first b (if any). Similarly,
the third head scans consecutively the group of a’s and then the group of b’s until it
stops on the first c. Then the machine enters a loop on each iteration, making sure
that the symbols observed by heads 1, 2, and 3 are «a, b, and ¢, respectively, and
moves all three heads to the right. If the third head reaches the end of the input
string w when the first head reaches the first b and the second head reaches the
first ¢, the machine erases the input and writes 1 in the first cell, thus, accepting w.
Otherwise, the machine erases the input and writes 0 in the first cell, rejecting w.

Thus we have shown that there exist noncontext-free Turing computable lan-
guages.

End Example

4.3.3 Two-Dimensional Tapes

In this section we consider Turing machines that use one head on a two-dimensional
“grid” that could potentially expand indefinitely down and to the right. The left-
most column and the uppermost row would be filled by the markers > and v,
indicating the left and the upper frontiers of the tape. The head can move on
such a tape in four different directions. Such a machine A can be simulated by a
multitape Turing machine as follows. Let us number all the cells of machine A as
indicated in Figure 4.16.

Then the first one-dimensional tape of a standard Turing machine B will simu-
late the cells of the original machine in the consecutive order. Now, if, for example,
the head of machine A moves down from cell 8 to cell 13, the head of machine B
on the first tape moves to the right until it reaches cell 13 (see Figure 4.17).

To find out how far to move, machine B can use the second tape to find the
length of the first half of the path: until the first t>. Hence, the second tape is used
as a simple counter to find the part beginning from this > that has the same length.
If A had to move its head to the right, then B would perform just one additional
right move to cell 14. If A moves left or up, machine B accordingly moves its head
on the first tape to the left. An important issue is how machine B would know where
the markers > and V are located on the first tape. To solve this problem, B can use
two tapes simulating counters. When the first counter decreases, the second counter



140 CHAPTER 4. TURING MACHINES

Vv \Y v Vv Vv \Y v Vv
> 1 2 6 7 15 16
> 3 5 8 14 17
>
4 9 13 18

>

10 12 19
g

11 20 23
>

21 22

Figure 4.16 Two-Dimensional Tape with Numbered Cells

Figure 4.17 Simulation of a Two-Dimensional Tape in One Dimension

increases; when the first counter is 0, the second counter indicates the position of &>
(with its next value indicating the position of the next t>). Now the counters change
their roles (the first counter increases and the second one decreases) with the first
counter indicating the locations of the next v. We leave details to the reader.

4.3.4 Random Access Turing Machines

As we have seen, Turing machines become more and more versatile with every
additional feature even though their ultimate computational power does not change.
However, all the models of Turing machines defined so far have one feature that
seems to make them much less powerful than modern computers. To access data
stored in any location, a Turing machine must move a head to reach this location.
That is, it accesses data sequentially, as opposed to modern computers which employ
random access memory where each element of such memory can be accessed in one
single step. To implement random access, a computer must be able to access data
in memory, using only the address of the cell or location holding the data. Then,
it must be able to “jump” from one location to another. This capability can be



4.3. EXTENSIONS OF TURING MACHINES 141

PrC
\
\
\
R1 | AC
Program .
R2 .
. Control
Block
Ri
Tape | TIO] | T(1] | T[2] | T[3] | T[4] | TI5]

Figure 4.18 Random Access Turing Machine

implemented by adding or subtracting arbitrary numbers from the current address,
which, in turn, must be stored in a special register. Thus, a random access Turing
machine or simply RAM machine (see Figure 4.18) has

1. Memory (RAM) in the form of a one-dimensional tape,
2. A finite number of registers, and

3. A program which is a finite sequence of instructions.



142 CHAPTER 4. TURING MACHINES

Instructions are more general than transitions as they implement the commands
presented in Figure 4.19. To figure out which instruction must be used next, the
machine uses the special register called the Program Counter (PrC) that holds the
number of the instruction being executed. After the execution of an instruction
has been completed, the PrC is automatically incremented by 1, unless otherwise
specified by the instruction. For example, a branch instruction would change the
PrC, overriding the increment. The register R1 is used as an accumaulator (AC)
where the machine carries out its logical and arithmetical operations.

Instruction Operand Meaning

read J AC:=T[Rj]

write J T[Rj]:=AC

store J Rj :=AC

load J AC:= Rj

loadC c AC:=c

add 7 AC:=AC+Rj

addC c AC:=AC+c

sub J AC:= max{AC — Rj,0}
subC c AC:= max{AC - ¢, 0}
half AC = |AC/2]

jump S PrC:i=s

jpos s if AC > 0 then PrCi:=s
jzero s if AC =0 then PrCi=s
halt

Note that j stands for a register number; T[i] denotes the current content of tape cell i;
Rj denotes the content of register Rj; c is any natural number (a constant); s denotes any
instruction number in the program. All instructions increment PrC by one, unless stated
otherwise.

Figure 4.19 Commands of RAM Machine

One can assume that a RAM machine has a control device (an analogue of the
central processing unit (CPU) on computers), which contains registers and the pro-
gram, which is a finite sequence of instructions «;, ag,...,a,. Real computers, in
accordance with the principles of the traditional von Neumann architecture, store
the program and the data in the same RAM memory. This approach can be sim-
ulated by machines within the model we have adopted by encoding instructions as
numerical codes, just like real computers. To complete the (informal) description
of the machine, we assume that registers and cells of the RAM may contain any
arbitrary natural number. At first, putting an arbitrarily large number into a single



4.3. EXTENSIONS OF TURING MACHINES 143

storage location appears totally unrealistic. However, the storage hierarchy of a
modern computer (random access memory, hard disk, external disks) is based on
rapidly changing technology and can really store arbitrarily large numbers. Unfor-
tunately, with the current technology, you may have to have a lot of disk cartridges
and a lot of time to change them to manipulate some really huge numbers. The
machine starts to work with the first instruction. If it reaches the instruction halt,
it halts, and the content of the RAM is considered its output.

Standard Turing machines input and output strings over some finite alphabets
¥, while, according to our informal definition, RAM machines write (and read)
natural numbers in their memories. Since we want them to compute functions in
the spirit of standard Turing machines, we will make the following assumption. Let
Y. be some finite alphabet. Let E be some one-to-one function (bijection) from ¥
to the set {0,1,...,|Z] — 1}. We can consider E{a) as the numeric code of the
symbol a € ¥. Now, we will assume that, instead of input string aqas...a, € ¥*,
the RAM machine receives input E(a;)E(ag)...E(a,) in the first n cells of the
tape. Accordingly, we can interpret the output as a string in X, translating numeric
codes E(b) in the cells of the machine back to b € £. Thus RAM machines can be
viewed as computing functions over the same domains and with the same ranges as
standard Turing machines.

As the reader may realize, our machines are practically equivalent to programs
in any assembly language. This, in turn, makes it possible to implement any high-
level programming language on such a machine. On the other hand, one can show
that any random access Turing machine can be simulated by a standard Turing
machine. This implies that the Turing machine, as originally defined in Section 4.1,
is capable of doing anything a modern computer can. We are going to sketch the
main details of this simulation (the details can be found in the book [Lewis and
Papadimitriou]).

Let A be a random access Turing machine with k registers and a program counter
(viewed as the separate register). We will describe a k + 3-tape standard Turing
machine B that simulates A. In other words, B will compute the same partial
Turing computable function as A. The machine B stores the current configuration
of the machine A and, iteratively, carries out the transition from it to the next
configuration.

First we describe how the tapes of machine B are used. On the first tape, B
receives its input in some finite alphabet £ and outputs the result (if it halts) in
the same alphabet. The second tape is used to keep the content of the tape of the
original machine A. Every integer r contained in a cell of A must be considered
together with its address, that is, the number of this cell. Thus, machine B must
actually store pairs (I,r), where [ is the number of a cell and r is the number
stored in this cell. Since B can use only the finite alphabet ¥, we can assume
that ¥ contains additional symbols 0,1, (, ), 9, and A stores pairs (I, 7) in the form
(1010,100), where 1010 and 100 are binary codes of [ and r, respectively. The
pairs representing (I, 7) can be located on the second tape in any order, and can be
separated by an arbitrary number of blanks. This requires a special end-marker,



144 CHAPTER 4. TURING MACHINES

say, © € X, on this tape that helps B figure out where the end of all the pairs ([, r)
is.

The third tape of B is used as an auxiliary working tape. The last k tapes
simulate registers of machine A. They store the values of the register in binary
code. The current value of the program counter is memorized by states of machine
B.

The simulation of machine A consists of three major phases. In the first phase,
machine B translates the input string w = ajag...a, € £* on the first tape to the
sequence of codes of (1,E(a1)), (2,E(az)), ..., (n,E(a,)) on the second tape.

During the second phase B simulates execution of the instructions of A. Every
step of machine A requires a number of steps by B. These steps depend on the spe-
cific instructions of A, which are represented by the values of the program counter.
As we mentioned, these values are represented by states of machine B. This means
that the set of states of the machine B is divided into pairwise distinct sets @;, one
per each instruction «; in the program a1, as,...,a, of A. Now we consider some
examples showing how B simulates various instructions of A.

Suppose that the instruction «; is add 3. This means that the contents of register
3 is added to the accumulator (register 1) and the result is left in the accumulator.
To perform binary addition, B uses the subset of states (); and working tape 3 for
intermediate computations. The final result of the addition is stored on the tape
reserved for the accumulator. If the instruction is, say, subC 20, machine B first
writes the constant 20 on the working tape 3 and then performs subtraction.

Suppose now that the next instruction is jump 10. B copies the number 10 to
the contents of the PrC, making sure that the next instruction of A to be simulated
is a10-

Now suppose that «; is write 3. This instruction is supposed to copy the content
of the accumulator to the cell on the tape of A pointed to by register 3. Suppose
that the accumulator stores the number 5, and the register 3 points to cell 8. The
binary codes of 5 and 8 are 100 and 111, respectively. Machine B writes the string
(111,100) on the second tape: it finds the end marker ©, replaces it by (, then
copies 111 from register 3, 100 from the accumulator, writes the closing parenthesis
), and places the end marker O after the given string. The second tape may contain
another string (111, j), that is, cell 8 of A previously contained some number j. To
preserve the integrity of the data, B scans the second tape backwards looking for
such a string. If it finds one, B erases it.

We hope that we have convinced the reader that other instructions can be simu-
lated similarly. If machine A ever reaches a halt, machine B enters the third phase
of the simulation. In this final phase, B translates the output on the second tape
back to the alphabet ¥ and writes it on the first tape. Thus machine B computes
the same function as A.

As we have shown earlier, multitape Turing machines are as powerful as one-
tape machines. Thus, RAM machines are exactly as powerful as standard one-tape
Turing machines.



4.4. NONDETERMINISTIC TURING MACHINES 145

4.4 Nondeterministic Turing Machines

In Section 4.3 we made several attempts to increase the computational power of Tur-
ing machines. We found out that none of the features considered — multiple tapes,
multidimensional tapes, multiple heads, or random access memory — can increase
the computational power of the basic model. However, all devices we have observed
so far were deterministic. What if we allow Turing machines to use the power of
nondeterminism? We learned in Chapter 2 that nondeterminism does not affect
computational power of finite automata. However, nondeterministic pushdown au-
tomata turned out to be substantially more powerful than deterministic ones. In
this section we are going to show that nondeterminism does not increase the power
of Turing machines. We do this by showing that nondeterministic machines can be
simulated by deterministic ones.

First we have to define nondeterministic Turing machines. As in our pre-
vious definitions of nondeterministic devices, the transition set of such a machine A
can contain multiple transitions ((g,a), (p, a)) with the same left-hand part (g, a).
Being in state ¢ and observing the symbol a on the tape, machine A can apply any
of these transitions. [As in case of pushdown automata, we will also assume that for
some configurations (g, a) there will be no transitions ((g,a), (p,b)); in these cases
a nondeterministic machine crashes and, consequently, does not halt normally.]

It has been quite easy to define nondeterministic Turing machines. However,
it is much more complex to define what they compute. The problem is that if a
computational device is nondeterministic, it can produce multiple outputs, depend-
ing on the choice of transitions at every step. The definition of nondeterministic
computability of functions is therefore somewhat clumsy and not too natural, so we
concentrate on nondeterministic Turing machines deciding languages.

Thus we give the following definition of semidecidability by nondeterministic
Turing machines. A Turing machine M semidecides a language L if, for any
w € L, at least one computation of M on the input w halts, and, for any w ¢ L,
no computation of M on w halts. Note that we do not require all computations on
w € L to halt.

Despite the complexity of the definitions of computing and nondeterminism, as
in the cases of finite and pushdown automata, nondeterminism can be utilized as
a convenient programming tool that in many cases enhances clarity of algorithms
solving complex problems. A popular example of a problem where nondeterminism
can effectively be employed is the composite number recognition problem. A number
is called composite if it is a nonprime greater than 1. In other words, a compos-
ite number can be represented as a product of two numbers greater than 1. For
example, 4, 8, 9, and 24 are composite numbers, while 0, 1, 2, 3, 5, and 23 are not.

The composite number recognition problem is to determine if the number is
composite, for example, can be represented as the product of two factors greater
than 1. In other words, we must show that the composite number recognition
problem is decidable. To do this, we must design a Turing machine that decides
the problem. One way to solve this problem is to try all possible numbers p and ¢



146 CHAPTER 4. TURING MACHINES

smaller than the given number n, multiply them, and test if p x ¢ = n. (Actually,
it is enough to try all p and ¢ that are smaller than the square root of n.) We could
implement this idea in the form of a deterministic Turing machine. However, the
algorithm itself is very slow, and even slower when the Turing machine implements
it. A nondeterministic machine, though, can guess the factors p and ¢ (if any)
and then just multiply them and test that p x ¢ = n, which is relatively easy and
fast. Thus, we can design a relatively efficient nondeterministic Turing machine
that semidecides the set of composite numbers.

Even though a nondeterministic algorithm for semideciding composite numbers
is much more efficient, as previously discussed, one can design a deterministic algo-
rithm solving this problem. In fact, we could directly convert our nondeterministic
algorithm into a deterministic one. It turns out that any nondeterministic machine
can be simulated by a deterministic one.

Theorem 4.4.1 Any nondeterministic Turing machine semideciding a language
can be simulated by a Turing machine semideciding the same language.

Proof: The proof uses a computational technique called Dovetailing. This is a
primitive form of timesharing the execution of several computations. In the first
step, the first program is run for one step. In the second step, the first program
is run for two additional steps and the second program is run for two steps. In
general, at the i*" step, the first i — 1 computations are run for i additional steps
each and the i*" computation is run for 4 steps. This situation can be represented
graphically (see Figure 4.20), where row i lists the new computation to be started
along with all the computations to be run for an additional 7 steps. A picture like
the one of Figure 4.20 reminded someone of the tail of a dove, and the name has
stuck to the technique.

1
12
123
1234
12345
123456
1234567

Figure 4.20 Dovetailing

Let A be a nondeterministic Turing machine semideciding a language L. We
describe a deterministic Turing machine B that also semidecides L. B will be
derived only from the details of A. Given any input string w, machine B will try to
simulate all computations of A on w. If at least one computation of A on w halts,
B halts; otherwise B does not halt on w.



4.4. NONDETERMINISTIC TURING MACHINES 147

It is not a problem to simulate a particular computation of A. However, B
must simulate all computations and must make sure that it halts if at least one
computation of A halts. At any step of any computation, machine A may choose
a transition from a finite subset A’ of the set of all transitions A. Thus, at any
step of computation, the size of the subset A’ is bounded by the same number |A|
that depends only on machine A and does not depend on the chosen computation.
We can represent all possible computations in the form of a tree (see Figure 4.21)
where every node in the tree has at most k = |A| children.

Co
Cu Clg +oese Ciky
Coxk,
Cx Corf o+ cen
Cy is the initial configuration. C1y, Cig, .., Cik,, k1 < |A| are all possible config-

urations obtained after application of one transition.

Figure 4.21 The Tree of Nondeterministic Computations

Machine B dovetails machine A, applying every applicable transition (there are
at most k of them) to any configuration of A and memorizing every obtained con-
figuration. To do this step-by-step, machine B can use two tapes to memorize
configurations obtained on odd and even steps, respectively, of computation of A.
Assume, for instance, that all configurations obtained by the tenth step of compu-
tation are stored on the second tape. Then, for any such nonhalting configuration
C, machine B consecutively applies all applicable configurations from the set of
transitions of A, writes resulting configurations on the first tape, and erases C.
When all configurations on the second tape are erased, the machine B starts to
simulate the eleventh step of the computation of A, using the configurations on the
first tape and writing results on the second tape. Technically, machine B may use
more tapes, for example, one tape to store the set of transitions of A. If, at some
point, A reaches a halting state, B erases the contents of all tapes and halts. If no
computation of A halts, the machine B will never halt as.



148 CHAPTER 4. TURING MACHINES

The above process can be visualized (and actually implemented) as the process
of walking the tree of computations of A on w, visiting every vertex. This can be
done using, for example, the well-known breadth-first search algorithm.

It is clear that machine B semidecides the same language as A. According to
the results of Section 4.3.1, machine B can be transformed into a standard one-tape
Turing machine semideciding the same language.

I End Proof —I

Comparing the ways the one-tape machines simulate more complex machines in
Section 4.3 and the way the deterministic machine B simulates A in the proof of
Theorem 4.4.1, the reader can notice one important difference. Any “subprogram”
of a standard Turing machine in Section 4.3 simulates just one step of a more
complex machine, while one phase of the above construction potentially simulates
any finite number of steps of the underlying machine A. As a result of this, while
the standard machines in the previous sections work approximately as fast as the
machines that they simulate, the number of steps the machine B uses to simulate
n steps of the nondeterministic machine in the above construction expands to an
exponent of n. Could we construct a deterministic machine that would simulate A
more efficiently? Or, maybe, would any deterministic algorithm simulating A be
inefficient? Is inefficiency the price that one has to pay when converting nondeter-
ministic algorithms to deterministic ones? It turns out that this profound question
is open. We discuss this issue further in Chapter 6.

4.5 Turing Enumerable Languages

In Section 4.2 we defined semidecidable and decidable (or Turing computable) lan-
guages. In this section we are going to take a closer look at these languages and their
properties. First we establish the following simple property of decidable languages.

Theorem 4.5.1 If a language L is decidable, then its complement L is decidable.

Proof: Let A be a Turing machine that computes the characteristic function 7.
The machine B computing 7; simulates A. When A outputs 1, B outputs 0, and
vice versa.

L End Proof l

Now, we introduce an equivalent term for semidecidable languages: We will call
them Turing enumerable. A popular definition for Turing enumerable languages
used in the literature is that a language is Turing enumerable if it is Dom(f) for
some partial Turing computable function f (recall Definition 4.2.2). This definition
is clearly equivalent to the following one: A language is Turing enumerable if it



4.5. TURING ENUMERABLE LANGUAGES 149

is Dom(f) for some partial Turing computable function f and f{w) = 1 for any
w € Dom(f). If L = Dom(f) for some f computed by a Turing machine A, we can
easily construct a Turing machine B that outputs 1 on any input w whenever A
outputs f(w).

Still none of the equivalent definitions of Turing enumerable languages we have
introduced so far relate to the word enumerable in the name. We are going to give
yet another definition of Turing enumerable languages that directly connects this
word to the notion.

Definition 4.5.1 A language L is called Turing enumerable if L = {f(i)|i €
Dom(f)} for some partial Turing computable function f. We say that f enumer-
ates the language L (any number i € Dom(f) can be viewed as an index of a string
in L).

We can show that the above definition is equivalent to any of the definitions
we introduced so far. Assume, for example, that we are given a machine A that
halts whenever w € L. Let us fix some natural ordering of all strings in the tape
alphabet ¥ of machine A. For example, we can use the lexicographic ordering of
strings over ¥. For this ordering, the characters a;, as,...,a, in ¥ are numbered,
and any string v = b1by...bg, b; € £,1 < i < k over ¥ precedes another string
v =c1C2...0m, ¢ € 8,1 < j < m if for some r < min(k,m) the number of
b, is smaller than the number of ¢, and for any ¢ < r the numbers of b; and ¢;
are the same. For example, if ¥ = {0,1} and 0 and 1 have numbers 0 and 1,
respectively, then the string 01101 will precede the string 01111. One can easily
design a “successor” Turing machine S that, given any string in ¥, outputs its
successor in the lexicographic ordering.

Now we can construct a Turing machine B that operates as follows. Using the
lexicographical ordering of all strings over X, dovetail the computations of A on
these strings (in the spirit of simulating the nondeterministic machine in Section
4.4). More precisely, make sure that, for any n, when n steps of computation of A on
the first string wy (in the lexicographic ordering) have been simulated, B simulates
n — 1 steps of A on the second string ws, n — 2 steps on the third string ws, ... and
1 step on the string w,. B uses here as a “subprogram” the machine S computing
w;4+1 for every w;. In this way, B ensures that computations on all strings will
eventually be simulated. Consider what happens at some step 4 of the simulation.
If some computation A(w) halts at step ¢, then B writes the string (i, w) on a special
_output tape. We assume that (,),9 are not present in the original alphabet X. If
no computation A(w) halts at step i, B writes (¢, ) on this tape. If two or more
computations of A halt on the same step ¢ of simulation, all of them but one may
be artificially “delayed” for a few steps.

It is clear, that if w € L then a string (i, w) for some number ¢ will eventually
show up on the output tape of B. Machine B operates indefinitely (never halts),
and its output is infinite. However, now we can design another machine M that
will compute the function f enumerating L. To compute f on the input number %,



150 CHAPTER 4. TURING MACHINES

the machine M simulates B until the string (¢, w) shows up on its output tape. If
w = o, M(i) T; otherwise, M outputs w and halts.

Now we have to show that if L = {f(i)|¢ € Dom(f)} for some partial Turing
computable function f, then there exists a Turing machine that halts on any w € L
and does not halt on any w ¢ L. Let A compute f. The required machine B,
given any input w, will dovetail the simulation of machine A on inputs 0, 1, 2, ....
B uses a “subprogram” that for every number in N in binary computes the next
number in sequence. If w = f(¢) for some ¢, machine A will output w eventually,
and, accordingly, machine B will halt; otherwise, B(w) 1.

Thus, being the domain of some partial Turing computable function is equivalent
to being the range of some partial Turing computable function!

Now we are going to find out how decidable languages relate to Turing enu-
merable ones. First, it is easy to show that every decidable language is Turing
enumerable.

Theorem 4.5.2 If a language is decidable, it is Turing enumerable.

Proof: Suppose a Turing machine M computes the characteristic function 7, of
the language L. We can easily transform M so that, instead of outputting 0 (on
w ¢ L), it goes into an infinite loop and never halts. Thus, L is Turing enumerable.

| End Proof ]

As we have already mentioned, it will be shown in Chapter 5 that not all Turing
enumerable languages are decidable. Still, one can prove the following result.

Theorem 4.5.3 (Post’s Theorem) If a language L and its complement are Tur-
ing enumerable, then L is decidable.

Proof: Suppose a Turing machine A semidecides L (halts on w € L and does not
halt on w ¢ L) and B similarly semidecides L. Consider the Turing machine M
that, given any w, simulates A{w) and B{(w). If A halts, then M outputs 1, if B
halts, M outputs 0. Note that A and B can never halt or fail to halt together on
the same w. One can easily see now that M computes 1. Thus, L is decidable.

| End Proof —|




Exercises 151

Exercises

EE———— Section 4.1 EEE——

Exercise 4.1 Consider the following Turing machine:

with the initial state s and the halting state h.

a) Trace the machine when started in the configuration (s, >abbabba).

b) Describe in English what this Turing machine does.

Exercise 4.2 This exercise is from [Lewis and Papadimitriou]. Consider the Turing
machine

5,a),(g; <))
s,10), (s, 1))
>), (s, —))
a), (p,))
), (h, 1))
>), (g, —))
a), (p,a))
L), (s, <))
>), (p,—))
with the initial state s and the halting state h. Let n > 0. Describe carefully what
the machine does when started in the configuration (s, > U a"a).

((
((
((s,
g,
((q,u
(g,
((p,a
((p,
((p,



152 CHAPTER 4. TURING MACHINES

Exercise 4.3
a) Give a complete set of transitions for the Turing machine of Figure 4.6

b) Give a Turing machine that moves its head one cell to the left and writes a (if
the symbol being observed is not the marker [>).

Exercise 4.4 Using primitives L, R, and those of Figures 4.3—4.6, construct a

Turing machine that enters a halting state on the strings from the language L =
{a*¥’|i,5 > 0}.

Exercise 4.5 Give complete sets of transitions for the following Turing machines:

Exercise 4.6 ® Give a complete set of transitions for the Turing machine in the
Example 4.1.3.

EEE— Section 4.2 EES——

Exercise 4.7 Give a complete set of transitions for the Turing machine of Example
4.2.1.

Exercise 4.8

a) Give a complete set of transitions for the machine Shi (described in the Example
4.2.2) that shifts an input string one position to the left (assume that the first
symbol on the input tape is blank).

b) Give a complete set of transitions for the machine Shr that shifts an input string

one position to the right (assume that the first symbol on the input tape is
blank).



Exercises 153

Exercise 4.9 Construct a Turing machine that computes the function f(k) = k+1
(as described in Example 4.2.3).

a) Use primitives R,L, and so on defined in Section 4.1

b) Give a complete set of transitions.

Exercise 4.10 @ Using primitives L, R, and so on defined in Section 4.1, construct
a Turing machine that decides the language {ww?®|w € {a,b}*}.

Exercise 4.11 Using primitives L, R, and so on defined in Section 4.1, construct
a Turing machine that decides the language {a™b™|n > 0}.

E—— Section 4.3 —

Exercise 4.12 Give a formal definition of a multitape Turing machine.

Exercise 4.13 Using primitives L, R, and so on defined in Section 4.1, construct
a two-tape Turing machine that decides the language {a™b™|n > 0}.

Exercise 4.14 Using primitives L, R, and so on defined in Section 4.1, construct
a three-tape Turing machine that decides the language {a™b"c™|n > 0}.

Exercise 4.15 € Using primitives L, R and so on defined in Section 4.1, construct
a three-tape Turing machine that computes the function f(z,y) =z +y.

Exercise 4.16 € Construct a one-tape two-head Turing machine that decides the
language {a™b"|n > 0} in two different ways:

a) Use primitives L, R and so on defined in Section 4.1

b) Give a complete set of transitions.

Exercise 4.17 Using primitives L, R, and so on defined in Section 4.1, construct
a one-tape three-head Turing machine that decides the language {a™b"c"|n > 0}.



154 CHAPTER 4. TURING MACHINES

Exercise 4.18 @ Construct a one-tape two-head Turing machine that decides the
language {ww®w € {a,b}*}:

a) Use primitives L, R, an so on defined in Section 4.1

b) Give a complete set of transitions.

Exercise 4.19 Let L;, Lo be decidable languages. Let M7, Ms be Turing machines
computing their characteristic functions. Prove or disprove

a) Ly U Lo is decidable.
b) L1 N L, is decidable.
c¢) L, is decidable.

d) ®L;L, is decidable.

e) ®(Lq)* is decidable.

EEE— Section 4.4 —

Exercise 4.20 Using primitives R, L, and so on defined in Section 4.1, construct
nondeterministic one-tape one-head Turing machines semideciding the languages
represented by the following regular expressions:

a) a*ab*b
b) aab*bba*

c) ab*ab*

Exercise 4.21 @ Construct a one-head one-tape nondeterministic Turing machine
semideciding the language {ww|w € {a,b}*}.

a) Use primitives L, R, and so on defined in Section 4.1

b) Give a set of transitions.



Exercises 155

I Section 4.5 ——

Exercise 4.22 ® Turing enumerability of languages can be defined slightly dif-
ferently than in Definition 4.5.1: A language L is called Turing enumerable if L is

either empty or {f(¢)[i > 0} for some Turing computable function f. Prove that
this notion of Turing enumerability is equivalent to the one in Definition 4.5.1.

Exercise 4.23 Let L be an infinite Turing enumerable language. Show that the
language can be enumerated without repetitions, that is, L = {f(i)|i > 0} for some
Turing computable function f such that if ¢ # j then f() # f(5).

Exercise 4.24 Show that the class of Turing enumerable languages is closed under
the following operations:

a) Union .
b) Intersection

¢) Concatenation

d) #Kleene star.

Exercise 4.25 € Show that every infinite Turing enumerable language contains
an infinite decidable language.



Chapter 5

Undecidability



Chapter 5

Undecidability

5.1 The Church-Turing Thesis

In Chapter 4 we introduced the Turing machine as a computational device that
was supposed to model any reasonable computational process. We noticed that,
combining Turing machines to build new ones, one could implement practically all
major instruments of conventional programming: sequence, conditional branching,
and conditional loops. Still, in the beginning Turing machines seemed to be too
clumsy to carry out really complex computational tasks. However, we showed that
any attempts to enhance computational capacity of Turing machines would fail.
They can simulate any assembly language programs runnable on modern computers.
Since any program in any high-level programming language can be translated to an
assembly language program, this means, in turn, that any program in high-level
programming language can be simulated by a Turing machine.

This reasoning suggests that, by introducing Turing machines, we have reached
the limit of what a computational device can do. In other words, Turing machines
are able to implement any algorithm viewed as a computational procedure that is a
sequence of simple steps carried out in accordance with a finite set of instructions.
The notion of an algorithm, a finite program solving a computational task, can be
traced back to our ancient ancestors, who often faced problems involving rather
complex computations. The word algorithm itself is a slightly transformed version
of the name of Al-Khoresmi, the great Middle-Asian mathematician who recognized
the importance of special computational procedures solving mathematical problems
in the Middle Ages. However, this notion, which nowadays is intuitively clear even
to many people who are not related to computer science, did not have an adequate
mathematical model until Turing invented his machines. Thus, we adopt the follow-
ing principle: Any algorithmic procedure that can be carried out by a human being
or by a computer can be carried out by a Turing machine. This principle, known
as the Church-Turing thesis, was formulated first by an outstanding American



160 CHAPTER 5. UNDECIDABILITY

logician Alonzo Church in 1936. Since then, the Turing machine has been viewed as
a legitimate mathematical model of algorithms. Note that the thesis is not a math-
ematical result. An algorithmic procedure or an algorithm is an informal notion, a
result of certain understanding between computer scientists. We could rather call
the thesis a philosophical hypothesis. It is conceivable that it can be discarded in
the future if someone can come up with a computational procedure widely accepted
by the computer community as a legitimate algorithm that cannot be implemented
as a Turing machine. The general opinion is that this will never happen.

There are two important practical implications of the Church-Turing thesis.
First, according to this principle, if we have managed to come up with even informal,
say, verbal, description of some computational procedure, this procedure can be
implemented as a Turing machine, and, thus, as a computer program. Thus, to
show that some function is computable (Turing computable) or some language is
decidable, we do not have to write complete set of transitions for a Turing machine.
It is enough to give an exact verbal description of an algorithm understandable by
the computer community.

Another implication of the thesis is probably even more important. A Turing
machine is a mathematically precise model. It opens a possibility to show that some
problems cannot be solved by any algorithm. What we have to show is that there
is no Turing machine that can solve the problem in question.

How can one show that a problem is unsolvable, that is, can be solved by no
algorithm? Turing machines (or rather, sets of transitions representing them) are
finite objects. We will find a way to enumerate all of them. Then, applying a
diagonalization argument, we will show that the set of all functions cannot be
enumerated. This cardinality argument will demonstrate that the set of all possible
algorithms is, in a sense, too small to cover all computational problems.

The diagonalization idea is very powerful, yet does not provide any specific ex-
ample of an unsolvable computational problem. In order to find such examples
for the classes of algorithms represented by finite and pushdown automata, we ap-
plied “pumping” techniques. However, this technique is not applicable for Turing
machines which represent all conceivable algorithms. Thus, we will develop a new
powerful diagonalization technique that exploits the power rather than the limita-
tions of Turing machines. Namely, assuming that Turing machines can compute
anything, we will come to the conclusion that they are capable of recognizing their
own properties. These machines operate on their own codes. Then, applying a
certain diagonalization argument, we will be able to construct a Turing machine
that halts and does not halt on the same input (its own code!). This diagonaliza-
tion technique will expose a large class of nonalgorithmic computational problems:
Algorithms are not capable of recognizing properties of functions computable by al-
gorithms.



5.2. UNIVERSAL TURING MACHINES 161
5.2 Universal Turing Machines

Every Turing machine is a finite “program.” From this point of view the whole class
of Turing machines can be viewed as a programming language. The same is true for
the classes of finite and pushdown automata, though these classes represent much
less powerful programming languages. The main feature of any reasonable program-
ming language is that programs in this language can be interpreted and run on a
computer. We have managed to come up with a mathematical model representing
all programs in our programming language. Now the question is whether we can
build a mathematical model for the desired computer that interprets and simulates
an arbitrary Turing machine. Interpreting and running programs is a computational
task, a hard one, but still manageable by an algorithm. This must be, as our pro-
grams run successfully on computers. Thus, according to the Church-Turing thesis,
there exists a Turing machine that can solve this task. That is, there exists a Turing
machine that can interpret eny arbitrary Turing machine. Such a Turing machine
is called universal. The universal machine exists, but building such a machine is
a rather complex problem. We are going to devote the rest of the section to the
details of this construction.

Our first problem is that the universal machine must be able to input Turing
machines. Turing machines may have arbitrarily large numbers of states, tape
symbols, and instructions, while the alphabet of a universal Turing machine, as
well as any other Turing machine, is finite. Thus, we must find a way to encode any
Turing machine by a string in some fixed finite alphabet. Moreover, the universal
machine must be able to decode the code.

Let A = {a1,02,...,0y,...} and @ = {q1,42,.--,¢n,-..} be infinite sets. We
can assume that tape symbols and states of any Turing machine belong to A and
Q, respectively. Since the sets are infinite, they contain enough tape symbols and,
respectively, states for any Turing machine. What matters for any Turing machine
is the sizes of the state and tape alphabets, rather than the names of the symbols.
Changing the names of the symbols or the states does not change the actual set
of transitions of the Turing machine. Now, we can encode every symbol a; as a1,
where 7 is the binary code of the natural number i. For example, a101 stands for as.
Similarly, gi encodes ¢;. To make decoding easier, we can assume that a; always
stands for the marker >, as always stands for the blank and ¢l is assumed to be
the start state.

Thus, the alphabet ¥ of our universal Turing machine U will contain symbols
a,q,0,1. In addition, it will also contain the symbols (,), —, <, and comma. We
also have to find a way to identify halting states. Hence, we will assume that halting
states are represented by the empty string in the right-hand pairs of transitions. For
instance, applying the transition ((g,a), (,a’)) would mean that a Turing machine
had entered a halting state. This will work out all right, as no more transitions
will be applied after entering a halting state. Now every Turing machine can be
represented as a sequence of codes of transitions ((gi, aj), (gk,t)) with ¢ being some
a7 or t € {—, <} (gk may be empty). For example, a part of the code could be



162 CHAPTER 5. UNDECIDABILITY

({g1100,a1010), (¢101011, —)). We will assume that the sequences of transitions in
these codes are lexicographically ordered. Given any Turing machine M, let (M)
stand for its code as defined as above.

The same method can be used to code any strings in any finite alphabet X'.
Namely, any ¥’ of cardinality ¥ = |¥'| can be considered as the subset {as, a4,
...,0k+2}. We begin with ag since a; and ay are reserved to represent the left
marker and the blank. Thus, any string w over the alphabet ¥’ can be encoded by
the string (w) over the alphabet A.

The universal machine U is supposed to simulate any Turing machine M on any
input string w over the alphabet of M. We will assume that machine U receives its
input as a concatenation (M)(w), halts if and only if M halts on w, and outputs
the value (M(w)). We can use a three-tape version of a machine U since, as we
know, it can be converted into a standard one-tape machine. Machine U gets its
input (M){w) on the first tape. It copies the code (M) to the second tape, where
it consults it whenever it must simulate a next transition of machine M. The code
{(w) is then shifted to the left border of the first tape. The first tape is used to
simulate the data processing performed by M on input w. As the head on this tape
cannot simultaneously observe the whole string ai coding the symbol a;, we will
assume that before simulating any step of M, the head is positioned on the first
symbol of ai, that is, on a. The third tape is used to memorize the code ¢i of the
current state g; of machine M. (see Figure 5.1.) To simulate one step of machine
M, machine U uses the state g; (or, rather, its code qj) of machine M and the code
of symbol a; it observes on the first tape. It then finds the code of a transition with
the left-hand pair (g;,a;) on the second tape and, simulating application of this
transition, performs the necessary transformations (or just moves) on the first tape
and writes the code of a new state on the third tape. This completes the description
of the operation of U.

5.3 The Halting Problem

Consider the class of partial functions f : N — N with a domain aof ny subset
of N. At least some of these functions are computable by Turing machines, or,
equivalently, by algorithms. Is every partial function computable by an algorithm?
We are going to show that the answer to this question is negative. Our proof will
involve a cardinality argument. We will show that all Turing machines can be
enumerated. On the other hand, we will establish using a diagonalization argument
that the partial functions cannot be enumerated.

How can we enumerate all Turing machines? To accomplish this, we will encode
every Turing machine M by a natural number, n(M), so that the machine M can
uniquely be restored from its code. The first part of our coding procedure will,
given a machine M, find its code (M) as defined in Section 5.2. Now consider the
code of some transition, say, ({¢1010,a1110),(q101,—)). Our goal is to code this
string in binary. Indices of states and tape symbols are already in binary. However,



5.3. THE HALTING PROBLEM 163

Input Tape
{w)
+

Input Tape
(M)

Current State
(initial state of M)

Figure 5.1 U after Initialization on (M ){w)

there are seven other symbols that must be coded: (,), —, <, a, ¢, and comma. Let
us code each of these symbols by a 5-bit string as follows: The symbol ( is coded
by 10000, ) is coded by 10001, and successive symbols in the list are numbered by
adding 1 to the prior binary number. Thus, the comma will be coded by 10110.
Now, to differentiate indices from these seven symbols, we encode each 1 by the
5-bit string 11111 and each O by the string 00000. Thus, our transition above will
be encoded as

10000 10000 10101 11111 00000 11111 00000 10110 10100 11111 11111 11111
00000 10001 10110 10000 10101 11111 00000 11111 10110 10010 10001 10001

We separated each 5-bit group by spaces to make the relationship between codes
and what they code more transparent. In fact, the resulting string should not have
any spaces. Now we can consider the binary string obtained this way from code
(M) as the binary representation of the desired natural number n(M). Note that
it always begins with 1 (as the code of ( in the beginning of any set of transitions
is 10000). Moreover, machine M can easily be restored, given its code n(M).

Now let k be any natural number. We can associate a Turing machine 7T}, with
this number using the following agreement: let us fix some Turing machine T that
does not halt on any input; if ¥ = n(M) for some Turing machine M, then T is M,
otherwise Ty is T". Thus, we obtained a numbering of all Turing machines (known
as Goédel numbering). We will use this numbering to prove the following result.

Theorem 5.3.1 There exists a function f : N — N that is not partial Turing
computable.



164 CHAPTER 5. UNDECIDABILITY

Proof: Every partial Turing computable function is computed by some Turing
machine. Let ¢, denote the one-argument function computed by the machine T5.
Some machines Ty may compute functions of multiple arguments; however, we can
always assume that T computes one-argument function if we disregard the commas
separating arguments. Next, consider the diagonal function f defined as follows:

_Joz(x)+1, ifze Dom(py)
f(@)= {0, otherwise

The construction of f is represented in Figure 5.2. Rows in this table represent the
functions ;. Columns represent the arguments. The construction of f is designed
to make f different from each function p, on argument z, for example, along the
diagonal of Figure 5.2.

0 1 2 3 4 5 6 7
wo | f# o
1 f#p
P2 f# o2
P3 [ # w3
P4 [ # o
5 f# s
6 [ # e
7 [ #er

Figure 5.2 The Diagonal Function

Suppose by way of contradiction that f is computed by some machine T;. As
Dom(f) = N, T; halts on the input i. Consider the value f(i) = T;(¢). According
to the definition of f, f(i) = T;(7) + 1, a contradiction.

L End Proof —‘

Theorem 5.3.1 shows that some functions cannot be computed by algorithms.
However, the diagonal function we “constructed” is too “abstract.” We would like to
find more “natural” examples of problems that cannot be computed by algorithms.

Consider the following computational task: Given the text of any program P
(in any programming language, pick your favorite) and any input X, determine if
P halts on X. Can we design an algorithm Halt that solves this problem? The
positive answer to this question would be of utmost importance for designers of
program debuggers. If your program P worked “too long” on some input X, you
could apply the debugging software implementing Halt to determine if P looped on
X, which would imply the presence of a “bug” in your design of P. However, the
answer is negative; No such algorithm Halt exists. If such an algorithm Halt existed,



5.3. THE HALTING PROBLEM 165

it could then be implemented as a program, say, HALT in the same programming
language as any other program P. This program HALT(P,X) would take two
inputs, P and X, and outputs 1 if P halted on X, and 0, otherwise. However,
we can now slightly modify HALT to build another program DIAGONAL(P) that,
given the text of a program P as its input, calls HALT on the input (P, P). The
program DIAGONAL is, in fact, a specific implementation of the diagonal argument
used above to construct a diegonal function computable by no Turing machine.
Finally, based on DIAGONAL, we build another program CONTR(P) that calls
DIAGONAL as a module and does not halt if and only if DIAGONAL(P) = 1 (that
is, HALT determines in this case whether P halts on the input being its own text).
The construction of the program CONTR is presented in Figure 5.3.

CONTR
DIAGONAL

HALT P halts

on P
P P (P, P)
—_— s ——]
P does
not halt
on P
halt

Figure 5.3 The Program CONTR

Now we examine the behavior of the program CONTR using its oun text CONTR
as input. Suppose CONTR(CONTR) halts. Notice that the result of the com-
putation HALT(CONTR, CONTR) = 0, that is, HALT answers that CONTR
does not halt on CONTR. Now suppose that CONTR(CONTR) does not halt.
Then HALT(CONTR, CONTR) = 1, that is, HALT claims that CONTR halts on
CONTR. We have a contradiction. What caused this contradiction was our as-
sumption that the algorithm Halt could be programmed in the same programming



166 CHAPTER 5. UNDECIDABILITY

language as any other program. However, this assumption is a consequence of a
more general Church-Turing thesis stating that some programming languages (say,
Turing machines) are universal mathematical models representing all conceivable
algorithms. Since we have adopted the thesis, we are compelled to acknowledge
that Halt cannot exist.

Our reasoning above was somewhat informal. We used such terms as program-
ming language and text of a program as input that were not defined. Now we will
formalize the above reasoning using the framework of Turing machines.

We agreed to adopt a Turing machine as a mathematical model for a “universal”
programming language. Now, we have to address mathematically the problem of
running Turing machines on their own “texts.” This is where universal Turing
machines come into the picture: They can manipulate other Turing machines given
their codes. Thus, we consider the following Halting Set:

HALT = {{M){w)| Turing machine M halts on the input w}

Note that HALT is semidecidable (or, in other words, Turing enumerable): Given
the code (M){w), the universal Turing machine U can simulate M running on w
and halt if M halts on w. That is, U halts on (M){w) if and only if M halts on w.
Now we are going to prove the following fundamental result.

Theorem 5.3.2 The halting set is not decidable (Turing computable).

Proof: Suppose HALT is Turing computable. Consider then the following set:
Hp = {{M)| Turing machine M halts on the input string (M)}

Hj formalizes the restriction of the “program” HALT(P, X) to the input (P, P) in
the above informal argument. Since HALT is decidable, Hy is clearly decidable as
well. A Turing machine T" deciding HALT can be modified to form the machine Tg
that decides Hy as follows. T converts any input (M) to the “pair” (M)(M) and
then calls the machine 7. According to Theorem 4.5.1, if Hy is decidable, then its
complement Hp is decidable. However, we are going to show that Hp is not even
semidecidable.

Suppose Hp is semidecidable. Then there exists a Turing machine My that
semidecides it. Run My on its own code (Mp). Suppose My halts on (My). This
means that (M) is in Hy. However, then (My) ¢ Hy, that is, My does not halt
on the input (Mp), a contradiction. Now, suppose My does not halt on its code.
This means that (M,) ¢ Hy, that is (M) € Hp. However, then, according to the
definition of Hy, My halts on (Mp) and we get a contradiction again. Thus, no
Turing machine can semidecide Hy.

End Proof J

The above proof actually gives us two more results.



5.4. UNDECIDABLE PROBLEMS 167

Theorem 5.3.3 The class of all Turing enumerable languages is not closed under
complement.

Theorem 5.3.4 There exist languages that are not Turing enumerable.

5.4 Undecidable Problems

The halting set is a formalization of the so-called Halting Problem: to determine
if an arbitrary Turing machine halts on an arbitrary input string. In the previous
section we have shown that this problem cannot be decided by a Turing machine.
Consequently, according to the Church-Turing thesis, no algorithm can decide the
Halting Problem. In this section we will give many other examples of undecidable
problems. In fact, we are going to describe a large class of “natural” undecidable
problems related to properties of programs.

It will be convenient for us in this section to use the word program for a Turing
machine. In any event, according to Church-Turing thesis, any algorithm can be
implemented as a Turing machine. Since languages are just sets of strings, when
considering sets of strings representing the texts of programs, we can call some
languages properties of programs. From this perspective, a program P has the
property defining the language L if (P) € L and does not have this property if
(P) ¢ L. For example, the two languages below obviously represent some properties
of programs:

e L; = {(P) |P outputs 1 on input 0}.

e Ly = {(P) |P terminates (halts) on input 0 in at most two steps}.

Definition 5.4.1 Let, for any function f, Py stand for the set of all programs
computing the function f. A property L of programs is called functional if

1. For any function f, either (P) € L for all programs P € Py, or (P) ¢ L for
all programs P € P¢; and

2. Neither L nor its complement L are empty sets.

Consider the languages L, and Lo defined above. L; clearly represents a func-
tional property since, for any function f, either f(0) = 1, or f(0) # 1. If f(0) =1,
then the codes of all the programs P computing f are in L;. If f(0) # 1, then
no codes for programs P computing f are in L;. Hence, the first condition in the
definition of a functional property is satisfied. The second condition of the defini-
tion of functional property obviously holds as well. There are programs, say, for
the constant 1 function, with codes in L;, and programs, say, for the constant 0
function, with codes not in L;.



168 CHAPTER 5. UNDECIDABILITY

On the other hand, L, is not a functional property. To demonstrate this, consider
programs computing the function f(w) = w. To compute such a function, a program
P may do nothing, or carry out some dummy actions, since the output is not
different from the input. One can easily design a Turing machine computing f that
halts in at most two steps on any input. Likewise, it is easy to design a Turing
machine that does essentially nothing but halts in at least three steps.

As it turns out, functional properties of programs are the ones that are unde-
cidable. To establish this fact, we are going to develop a general mechanism that
relates computational problems to each other — the mechanism of reduction. In-
formally, a computational problem A is reducible to a computational problem B if
a solution to the problem B can be “translated” to a solution to the problem A.
Now, suppose we have established that

a) The problem A is reducible to B;
b) A is undecidable.

Then we must conclude that problem B is undecidable as well, since, if B were
decidable, its algorithmic solution could have been “translated” to a solution for
problem A.

Now we formalize the above reasoning.

Definition 5.4.2 Let L1,Ly C X* be languages. We say that Ly is reducible to
L, if there exists a Turing computable function r : ¥* — 3* such that, for any
x € X*,x € Ly if and only if r(x) € Lo.

The computable function r provides the desired “translation” of the problem to
decide L; to the problem of deciding L,. That is, if you had an algorithm B
deciding Lo and the reduction r (or, rather, an algorithm computing ), then you
could decide if z € L; by the following algorithm A4:

Compute r(z). Apply B to r(z). If r(z) € Lo, then © € Lq; otherwise
z e L.

Suppose you are surfing the Web and searching for a list of places selling some
common item, like pizza, and your search returns thousands of hits. You decide to
look for the cheapest pizza, but the list is too long, you will starve before looking
at all the entries. However, if your search engine has a sort utility, you can sort
the hits according to price and then the task becomes a matter of choosing the first
place on the list. What you have just done is to reduce the problem of testing for
the least cost entry in a list to the problem of testing for the first entry in a list.

Conversely, if L; were undecidable and reducible to Ly, it would imply the
undecidability of Ly. For, otherwise L; would be decidable by the above algorithm
A. Now we will apply this idea to demonstrate the undecidability of any functional
property.

Theorem 5.4.1 (Rice’s Theorem) Any functional property of programs is unde-
cidable.



5.4. UNDECIDABLE PROBLEMS 169

Proof: We begin with the following remark. When we code Turing machines
using the coding (P), some strings w € ¥* may not code any Turing machine. It is
reasonable to assume though that any such w actually codes a Turing machine that
halts on no input [we made a similar assumption about the coding n() in Section
5.3].Now according to this assumption, any string over the underlying alphabet £
is the code of some Turing machine.

Let L be any functional property. Let HALT be the halting set from the previous
section. Let S be a Turing machine that halts on no input. Then either its code
(SYisin L, or it is in L. If (S) € L, we will try to show that HALT is reducible to
L. 1If (S) € L, we can note that since L is a functional property, L is obviously a
functional property as well, and we can similarly show that HALT is reducible to L.
In the first case, it will imply undecidability of L; in the second case, we will thus
demonstrate undecidability of L. Since, obviously L is undecidable if and only if L
is undecidable, in both cases our goal will be achieved. We are going to consider
the second case, that is, (9) € L.

As we have just mentioned, our aim in this case is to reduce the halting set
HALT to the language L. Let f be the function defined on no argument. Machine
S obviously computes this function. Since S € L and L is a functional property,
P; C L. Using the part 2 of the definition of a functional property (Definition
5.4.1), we conclude that there exists at least one program R € L. Let g be the
function computable by program R. Since L is a functional property, P, C L.

We are now ready to define a function r reducing HALT to L. Given any Turing
machine P, consider a Turing machine T that implements the following algorithm
on any input w € ¥*.

Algorithm 5.4.1 Run P on its code (P). If P halts, run R on w and
output R{w).

I End Algorithm

There exists a simple algorithm that translates the code (P) of any Turing
machine P into a code for the above machine T'. According to the Church-Turing
Thesis, this algorithm can be implemented as a Turing machine, say, A. Let r be
the (Turing computable) function computed by A. We are going to show that r is
the desired function reducing HALT to L. That is, we have to show that

(P)y € HALT «— r({P)) e L

Suppose (P) € HALT. Then P halts on its own code, and, according to the
definition of (T") = r({P)), on any input w, T produces the same output as R.
Thus, (T') is in Py, and, consequently, it is in L.

Now suppose that (P) ¢ HALT. Then P never halts on its code. Consequently,
the machine T never halts on any input w. Thus, (T') € Py, and, therefore, (T') ¢ L.



170 CHAPTER 5. UNDECIDABILITY

We have established that HALT is reducible to L. As we argued above, if L were
decidable, it would imply the decidability of HALT. Thus, L must be undecidable.

( End Proof ]

What Rice’s theorem shows is that properties of programs are undecidable if
they are, in fact, “about functions,” rather than “about programs.” It can be
used as a powerful tool to show that a large variety of properties of programs are
undecidable. Here are some examples of such properties:

. = {(P)|P outputs 5 on the input 0 and does not halt on the input 5}.
. = {(P)|P does not halt on the input 5}.

) = {{P)|P halts on every input}.

. = {(P)|P is equivalent to a given program Fp}.

o K5 = {(P)| the number of inputs on which P halts is finite}

e K¢ ={(P)|P(z) = 1if z is even and P does not halt on any odd input}.

We can easily show that all these properties are functional and thus conclude
that all of them are undecidable. Let us show that K3 is a functional property. Let
f be any function. If f is defined on all arguments (that is, Dom(f) = X*) then
Ps C K3. If f is undefined on at least one argument, then obviously no program
P with the code in K3 computes f, that is, Py C K. Since there obviously exist
programs that are in K3 and that are not in K3, the second part of the definition of
a functional property is satisfied as well. Thus, K3 represents a functional property.
According to Rice’s theorem, it is undecidable. Now we show that K is a functional
property (other examples can be found in Exercise 5.4). Let f be any function.
First, let us assume that f(z) = 1 on every even z and f is undefined on every odd
z. Then Py C Ke. If f(x) # 1 for some even z or f(x) is defined for some odd =z,
then Py C Kg. Thus, the first condition of the definition of a functional property
is satisfied. There exist programs that are in Kg and that are not in Kg. Thus, Kg
is a functional property, and, consequently, undecidable.

Now we present some examples of decidable properties of programs:

e M; = {{P)] the program P contains the transition ((g,0), (p,1))}.

o M, = {{P)| there exists a configuration of P that yields a configuration of P
with the given state ¢}.

e M3 = {(P)| starting on the empty tape, the program P reaches the given
state ¢ in at most five steps}.

e M, = {{P)| there exists a configuration of P with the given state p that yields
a configuration with the given state ¢}.



5.4. UNDECIDABLE PROBLEMS 171

One can easily design a decision algorithms for all these properties (Exercise
5.5). In particular, it means that these properties are not functional — for, if they
were, then, according to Rice’s theorem, they would be undecidable. More examples
of decidable and undecidable properties can be found in Exercise 5.6.



172 CHAPTER 5. UNDECIDABILITY

Exercises

I—— Section 5.2 ——

Exercise 5.1 Using the coding system described in Section 5.2, find the codes for
the following transitions:

a) ((g3,a4),(gs,—))
b) ({g2,U), (g3, a4))
¢) ((q1,01),(g3,—))

Exercise 5.2 Using the coding system described in the Section 5.2, find the code
(w) for the following strings w:

a) agza4as
b) azUagaq

¢) >Uasay

E— Section 5.3 ee—

Exercise 5.3 ¢ ® A non-Turing computable function can be built without direct
diagonal construction. Let us define a function g as follows. For every integer n,
g(n) is the largest number & > 0 such that there exists a Turing machine with
the tape alphabet {>,U, a,b} and at most n states which, when started on empty
tape, halts at configuration (h,a*). (Such a function is known as the busy-beaver
function.)

a) Show that the function g is monotone infinitely growing, that is, for all n >
0,g(n) < g(n+ 1) and for infinitely many n, g(n) < g(n +1).

b) Let f be an arbitrary Turing computable function. Let m; be the number of
states of some Turing machine which, for any n > 0, when started on the blank
tape, halts with the output a/(™). Show that, for any n, g(n+m;) > f(n). [In
other words, for every Turing computable function f, one can find a constant
my such that g(n + my) is greater than f(n).]

c¢) Show that the function g is not Turing computable. [Hint: If ¢ is Turing com-

putable, so is f(n) = g(2n). Now apply the statements proved in 2) and 1)
to get a contradiction.]



Exercises 173

—— Section 5.4 ——

Exercise 5.4 Show that the following properties defined in the Section 5.4 are
functional:

a) Ki
b) K,
c) Ky
d) Ks

Exercise 5.5 Briefly describe algorithms deciding the following properties defined
in the Section 5.4

a) M
b) M,
c) M;
d) M

Exercise 5.6 ® Determine which of the following properties of programs are de-
cidable. If a property is decidable, briefly describe an algorithm deciding it. If a
property is undecidable, first show that it is functional.

a) Ry = {(P)|P terminates on all even numbers}.
b) Rz = {{P)|P halts on no input}.

¢) R3 = {{P)|P reaches state ¢, when started on the blank tape, in at most 10
steps, or reaches the state p, when started on input a, in at most 20 steps }.

d) Rs = {{P)|P contains no transition with the left-hand side (g,U)}.
e) Rg = {(P)| state g can be reached from state p in at most three steps }.
f) R7 = {(P)|P has fewer than 100 states and halts on input 0}.



Chapter 6

Computational
Complexity



Chapter 6

Computational Complexity

6.1 The Definition and the Class P

In Chapter 5 we observed numerous examples of problems that cannot be solved by
algorithms. Now we are going to take a closer look at the class of problems that can
be solved by algorithms, that is, the class of decidable problems. A large number of
such problems have been presented in this book, and the reader with any experience
in computer science can probably add many more to this list. While discussing the
algorithmic solutions to some of the decidable problems, we tried to underline the
feasibility of their algorithmic solutions by using the word “efficient.” However,
since this term is not formally (mathematically) defined, it is definitely too vague
to yield a common understanding of what is meant. Now, having a universal model
of algorithms, Turing machines, we are in a position to approach the problem of
efficiency on a formal basis.

How can one naturally quantify efficiency of a computational process? Suppose
a problem has at least two different algorithmic solutions. How can we judge which
one is more efficient? A natural solution seems to compare their running times,
that is, the number of steps they carry out to produce the output. We can define
running time formally based on our mathematical model of algorithms — standard
(one-tape one-head) Turing machines. Given a Turing machine M and an input w,
its running time tps(w) is the number of steps M carries out on w from the initial
configuration to a halting configuration.

Let us consider the running time of some of the algorithms that we have dis-
cussed. Finite automata are like Turing machines except that they do not write and
do not move the head backwards. Hence, finite automata can be considered a type
of Turing machine. Let A be any deterministic finite automaton. When A reads
a character, it just changes its state and moves its head one position to the right.
These actions correspond to the execution of two instructions of a Turing machine.
Thus, the running time t4(w) = 2 - |w| for any A and any input w.



178 CHAPTER 6. COMPUTATIONAL COMPLEXITY

Consider a simple deterministic Turing machine M that recognizes the palin-
dromes w = w?. This machine “memorizes” the leftmost symbol, runs to the right
end, compares it with the rightmost symbol, then “memorizes” the second symbol
from the right, runs back to the second leftmost symbol, compares it with mem-
orized symbol, and so on. In the first phase, M performs |w| + 2 instructions as
“hitting” the right delimiting blank and returning to the rightmost nonblank symbol
requires two additional instructions. In the second phase M performs (Jw|+2) — 2
instructions, and (jw| + 2) — 4 instructions in the third phase, and so on. The total
number of such phases is |w|/2 ([lw]/2] + 1 for a w of odd length). Summing the
above numbers, we find out that ¢ (w) = c¢- |w|? for some constant number c. [The
reader is encouraged to construct the exact expression for ¢ps(w) as requested in
Exercise 6.1.]

In these examples, the running time increases with the length of the input. There
are many examples of computational problems (especially those using graphs), when
the running time of solutions can vary dramatically even for inputs of the same
length. Thus, we have to analyze two different types of running time:

1. Worst-case when we consider the longest running time for all inputs of any
given length;

2. Average-case when we consider the average of all running times for inputs of
a given length.

The following discussion below will address only the worst case analysis. For this
case, we can view the running time of a Turing machine M as a function f : N — N,
where f(n) is the maximum number of steps M uses on any input of the length n.

We are interested in comparing the running times of different Turing machines.
A further consideration is to be able to establish if a running time of f can be
bounded by some other (simpler to express) function g. In this analysis, we are in-
terested in investigating how algorithms (implemented as Turing machines) behave
on a variety of larger and larger inputs. This type of analysis is called asymptotic.
Consider, for example, f(n) = 2n® +2n + 5 and g = 10n? + 3. For the numbers
n <4, f(n) < g(n), however, when n increases, f grows much faster than g. What
defines the rate of growth of g is its highest term n%. Asymptotic analysis disregards
lower terms as well as the constant 2. To express the fact that the rate of growth
of g is not greater than the rate of growth of f, we use the so-called big-O notation:
g(n) = O(f(n)). f(n) itself is O(n?).

How much can we learn about the real complexity of computational problems
from the model of computational complexity we just introduced? As we have shown
in Chapter 4, the computational power of standard Turing machines is the same
as the computational power of, say, random access Turing machines that avoid
moving the head back and forth unnecessarily by using direct memory access. Even
a simple two-head one-tape machine can recognize palindromes faster than the
above machine M. This machine just moves the second head to the right end of
the input string w, of length n and starts moving the two heads toward each other,



6.1. THE DEFINITION AND THE CLASS P 179

comparing the symbols they observe. The running time tx(n) of such a machine
K is ¢ - n for some constant ¢ . Thus, running time depends on the model that we
choose, and the immediate conclusion may be that we learn very little about the
real complexity of a computational problem using running time to measure it.

However, careful examination of the simulations of one model of algorithms by
another developed in Chapter 4 can bring the reader to the following conclusion:
If K is any deterministic Turing machine and M is a fancy Turing machine that
simulates K with running time tp(n), then tx(n) is O(p(tar(n))) for some poly-
nomial p(z). (We refer the reader to any book on computational complexity for
details. For example, [Papadimitriou]). For instance, a two-head Turing machine
K recognizing palindromes runs in time tx(n) = ¢ - n. Simulating it by a standard
one-tape one-head machine M, we get the running time tp;(n) = ¢’ - n%. The poly-
nomial p(x) in this case is d - 2 for some constant number d. In other words, all
formal models of the same algorithm are polynomially related to each other as far
as their computational complexity is concerned. When we translate an algorithm
to a different formalism, its running time can increase, but the rate of growth is
bounded by a polynomial.

How important is this fact for practical computer scientists? To answer this
question, we consider the following class of Turing machines.

Definition 6.1.1 We say that a Turing machine M is polynomially bounded
if there exists a polynomial p(z) such that, for any postive integer n, tapr{n) < p(n).

Based on the above definition we can define the following class of computational
problems.

Definition 6.1.2 A language is called polynomially decidable if there exists a
polynomially bounded Turing machine that decides it.
The class of all polynomially decidable languages is denoted by P.

Examples of languages in P, as we have just observed, are all regular languages
and the language of palindromes.

Consider any language L in P. It is decided by a polynomially bounded standard
(one-head one-tape) Turing machine. In light of our reasoning, this means L can
be decided by a polynomially bounded machine within any formal paradigm of
algorithm.

Can any algorithm be implemented as a polynomially bounded machine? Con-
sider the following computational problem known as the TRAVELING SALESMAN
PROBLEM: Given a weighted undirected graph G and a vertex ap in G (Figure
6.1), find the path of minimum cost that begins and ends in ap and visits every
vertex in G. One can interpret this problem as the task of finding the shortest dis-
tance for a salesman who must visit a number of cities. The cities are represented
by the vertices of the graph and the distances between the cities are represented by
weights assigned to the edges of the graph.

There is a simple algorithmic solution to this problem. Let n be the number of
vertices of G. For every sequence of vertices, a;,, @iy, ..., @i, k < n, determine



180 CHAPTER 6. COMPUTATIONAL COMPLEXITY

a2

ag

W3,4

Gag

Figure 6.1 An Undirected Weighted Graph

if it is a path visiting every vertex, and then find the path that has the minimum
weight. While being formally correct, this algorithm looks somewhat suspicious.
The problem with this algorithm is that there are too many paths to inspect. The
total number of sequences a;,, @i, ---, @i, kK < n is obviously (n — 1)!, and even
for such a small number as n = 11, the algorithm has to inspect 10! = 3,628,800
paths. For a number n such as 50, the task extends far beyond the computational
capabilities of the most powerful computers. It would take billions of billions of
years to inspect all paths in such a graph!

The algorithm for the TRAVELING SALESMAN PROBLEM is obviously infea-
sible from a practical perspective. Any machine implementation of this algorithm
is definitely not polynomially bounded. The number of possible paths to be in-
spected is at least exponential in n. Our last example makes clearer the value of
the class P that has been widely accepted by computer science community: Prob-
lems in P are the ones that may have practically feasible algorithmic solutions. In
a certain sense, this statement can be interpreted as a quantitative version of the
Church-Turing thesis. While all Turing machines solve all potentially solvable com-
putational problems, polynomially bounded Turing machines solve all practically
feasible computational problems.

How sound is this new version of the Church-Turing thesis? Suppose we designed
an algorithm that runs in time z'%%°. One can argue that this algorithm is not
practically feasible at all. Even an algorithm that runs in time 1001°°z2 can hardly



6.1. THE DEFINITION AND THE CLASS P 181

be viewed as practically feasible. However, when a polynomial-time algorithm for
a hard problem is found, it often clears a way to find a practical solution to the
problem. Polynomials that bound the running times of practical algorithms usually
have a very low degree and relatively small constant coefficients. This can be
regarded as a strong empirical argument supporting the quantitative version of the
Church-Turing thesis.

The reader may have noticed that we avoided the question of whether the TRAV-
ELING SALESMAN PROBLEM is in P. The algorithm solving this problem was
definitely not polynomially bounded. However, this does not mean that the problem
is not in P. There may still exist a more efficient polynomially bounded solution
to the problem. As we will discuss in Section 6.2, the question of whether the
TRAVELING SALESMAN PROBLEM is in P is open.

We have still not answered the fundamental question: Do there exist decid-
able languages that are not in P, that is, that cannot be decided by polynomially
bounded algorithms? To demonstrate that there exist undecidable problems, we
exhibited a problem (the halting set) for which no solution could be found by a
Turing machine. A similar idea can be applied to show that there are decidable
problems not in P. To do so, one can define a decidable problem with no polynomi-
ally bounded solution. To formally establish this fact, we need the following simple
property of the class P, which is interesting on its own right.

Theorem 6.1.1 The class P is closed under complement.
Proof: Suppose a Turing machine decides a language L € P. Then, L is decidable

by the polynomially bounded machine M’, which outputs 0 if M outputs 1, and
vice versa.

I End Proof |

Now we can exhibit a decidable language that is not in P. Consider the language
Hp = {{M){w)|M accepts (outputs 1 on) w in at most 2!*! steps}

This language can be viewed as a P “version” of the halting set we observed in
Chapter 5. Hp is easily decidable. Given any (M) and any input (w), the decision
algorithm can simulate machine M on w for at most 2/*! steps and find out if M
outputs 1 on w. On the other hand, we can prove the following.

Theorem 6.1.2 The language Hp is not in P.

Proof: Our proof mimics the proof of undecidability of the halting set H (The-
orem 5.3.2). Only this time we must show that Hp is beyond the reach of the
polynomially bounded rather than all Turing machines.

Suppose Hp € P. Then we can easily transform a polynomially bounded Turing
machine that decides the language Hp to a polynomially bounded Turing machine
that decides the language:



182 CHAPTER 6. COMPUTATIONAL COMPLEXITY

L = {{M)|M accepts (M) within at most 2/*! steps}

According to Theorem 6.1.1, the complement of this language L is in P as well.
Thus, there exists a polynomially bounded machine My that decides the language
L. That is, My accepts all codes of Turing machines M that fail to accept their own
codes (M) within M) steps. Let p(x) be a polynomial that bounds the running
time of machine Mj.

Whatever polynomial p(z) is, its rate of growth is smaller than the rate of growth
of the function 2*. That is, there exists a positive integer zo such that p(z) < 2*
for all z > zy. We can assume that the length of the code (Mp) is at least z. One
can always add dummy instructions to My that do nothing, but just increase the
length of the encoding.

Now, given its own code (Mp) as the input, My must output either 1 or 0. How-
ever, in both cases we will get a contradiction. Suppose My outputs 1 on (Mg). This
means that My does not accept (Mp) within 2/{Mo)| steps. However, the running
time of My on (Mp) is bounded by p(|(Mp)|) < 2/{Me)l. Thus, if My does not accept
its code within 2/{Mo)! steps, it must output 0, a contradiction. Now suppose that
M, outputs 0 on (Mp). Then My accepts (Mp) (within 2/(Mo)l steps, which does
not matter in this case), a contradiction.

‘ End Proof

6.2 The Class NP

In this section we consider many problems about graphs. We briefly review the
terminology related to them. Every graph G is a pair (V, E), where V is a finite set
of vertices, and E C V x V is the set of edges. A path is a sequence of vertices, vy,
Vg, ..., Up such that (v;,v,y1) is an edge of G for each ¢ with 1 < ¢ < n. A cycle
in G is a path that begins and ends with the same vertex. A cycle is simple if it
contains every vertex (except the initial one) at most once. An undirected graph is
called complete if each pair of vertices in it is connected by an edge.

In Section 6.1 we built a decidable analogue of the halting set that was not in P.
Whatever the theoretical importance of this example is, one can hardly agree that
it represents a “real” computational problem. Our claim that class P represents the
practically feasible computational problems will be better justified if we can exhibit
practical computational problems that are not polynomially bounded.

Our first candidate for such a problem is obviously the TRAVELING SALES-
MAN PROBLEM. However, before we try to make a judgment about whether this
problem is in class P, we must make sure that this natural computational problem
can formally be represented in form of a language, that is, a set of strings. The
original formulation of the problem is an example of an optimization problem, since
it requires the finding of the optimal (minimal) solution among many possible ones.
To convert this problem into a language, we will change it stightly, introducing a



6.2. THE CLASS NP 183

bound B and dividing all graphs into two groups:
e Those that have a simple cycle with the total weight not exceeding B, and
e Those that do not have such a cycle.

We will also pay attention to only simple cycles that contain all vertices in G.
We will call such a cycle a tour. Note that it does not matter where the tour
begins and ends. The total weight of a tour does not change if we change the
starting vertex. In order to formulate the language version of the TRAVELING
SALESMAN PROBLEM, we first give a more formal version of the problem:

Given an integer m > 2, the weight matrix (w; ;) of some graph G, and
a bound B > 0, determine whether there is a tour v;,, vi,,...,v;,, with
the total weight Wigiy, + Wigig + oo+ Wiy i < B.

Still, the formulation is not presented as a language. To complete our formal-
ization, we have to represent every input in the form of a string over some finite
alphabet. The input for the given problem consists of a graph G, the weight matrix
(w;,;), and the bound B. The graph G can be encoded by its adjacency matriz of
size n x n, where n = |V]. The adjacency matrix has a 1 in position (4, j) if there is
an edge from v; to v; in G, and 0 otherwise. This matrix can be represented in a lin-
earized form as a string (of length n?). Let ¢(G) stand for this code of G. Similarly,
the weight matrix can be represented as a string of binary codes of w; ;. Let c¢(w; ;)
stand for this code of the weight matrix. Finally, B can be represented by its binary
code ¢(B) as well. Thus, we can consider the concatenation ¢(G)c(w; ;)c(B) as an
input string. Now, the TRAVELING SALESMAN PROBLEM can be represented
as the language

TSP = {c(G)c(w;,;)c(B)| there is a tour v;,,v;,,...,v;,, in G with the total
weight w4, + Wig i + .o+ Wi i < B}

We chose the TRAVELING SALESMAN PROBLEM as a candidate for a com-
putationally complex problem because of its obvious practical value. However, the
formal variant of the problem is not that simple. Thus, to take a closer look at the
nature of the underlying computational complexity of this and other problems, we
will consider a number of other somewhat less “practical” computational problems
that, nevertheless, shed more light on the problem under discussion.

Our next example is a somewhat simplified version of the TRAVELING SALES-
MAN PROBLEM. Let G be any undirected graph (with no weights). We will call
a tour in such a graph a Hamiltonian cycle. (The graph of Figure 6.2 has a
Hamiltonian cycle vy, vq, vg, v3, s, V4, v1.)

The HAMILTONIAN CYCLE PROBLEM is, given a graph G, to determine if
it has a Hamiltonian cycle. More formally, it can be defined as the language

HC = {¢(G)|G has a Hamiltonian cycle}



184 CHAPTER 6. COMPUTATIONAL COMPLEXITY

V4 Us Vs

U1 V2 U3

Figure 6.2 A Graph with a Hamiltonian Cycle

This problem does not look any easier than the TRAVELING SALESMAN
PROBLEM. To solve it, one should probably try all possible paths in G and check
if they form Hamiltonian cycles. However, the total number of different paths in G
may be |V|I.

Now we consider one more computational problem on graphs. A clique in an
undirected graph G is a subset V' C V such that all vertices in V'’ are connected
to all the other vertices in V’. In other words, a clique is a complete subgraph of
G. The size of a clique is the number of vertices in it. The CLIQUE PROBLEM
can be formulated as an optimization problem: Given a graph G, find a clique in
G of maximum size. For example, the maximum size of a clique in the graph of
Figure 6.3 is 4. The language version of the problem, similar to the TRAVELING

U3

_—

X
Vi

Vs

U2
V1 Vs

Figure 6.3 A Clique of Size 4

SALESMAN PROBLEM, requires some bound k on the size of a clique, or rather
its binary code c(k). The language version of the CLIQUE PROBLEM can be
represented as

C = {c(G)c(k)|G has a clique of size k}



6.2. THE CLASS NP 185

An obvious algorithm for solving this problem is to list all the subsets of V of
size k and, for each of them, determine if they form a clique. When k is proportional
to |V, the number of all subsets of size k is a function that grows faster than any
polynomial. The reader will probably agree that it would not be easy to find a

faster algorithm for this problem.

All three hard computational problems observed in this section dealt with graphs.
In fact, problems of similar computational complexity can be found in many other
areas of computer science, mathematics, economics, and so on. Our next example,
the SUBSET-SUM PROBLEM, is an arithmetic problem. Given a set of integers
S and a number t (so-called target), determine if there is a subset S’ C S whose
elements add up to ¢. For example, if S = {15,4,7,3} and ¢ = 11, then the desired
subset S’ is {4,7}. The problem can be represented in the form of the language

SS = {c(ki)e(kz) ... c(kn)c(t)|there exist numbers

k'ilakig’--'7kir [~ {k’l,kg,...,kn}
such that k;, + ki, +... + ki, =t}

As in prior examples, there is a simple algorithm solving this problem. List all
subsets of {k1,...,kn} and check if any of them sums up to ¢. However, the total
number of subsets of the given set is 2". It does not seem to be likely that a more
efficient algorithm could exist.

Our list of computationally complex problems in this section concludes with a
problem concerning formulas of the propositional (Boolean) logic. To formulate
this problem, we first define (somewhat informally) these formulas. A clause is
composed of

e Boolean variables z,xa,.. .;

e Logical (Boolean) connectives: — (applied to variables) and V (applied to
variables z; and their negations —x;).

Examples of clauses are
1V xoVx3ViIy
and
3 VIV s

A Boolean formula in conjunctive normal form (or, simply, a Boolean formula) is
a sequence of clauses in parentheses connected by logical connectives A. Examples
of formulas are

fi: (ﬂ.’L‘l VoV 13) A (£L‘2 V zy V —\.’L‘3) A (—|1}2 A% .’L‘4)

and



186 CHAPTER 6. COMPUTATIONAL COMPLEXITY

fo: (Jlg VgV —\1‘4) A (1‘1 VgV ﬂ.’IZQ)

(Logical connectives V and A in formulas stand for or and and, respectively.) Plug-
ging in (’s or 1’s for variables in the formulas evaluates them to 0 or 1, in accordance
with truth-tables for the logical connectives V, A, and —. If the formula evaluates
to 1, the set of values for the variables z1,xs,... is called a satisfying assignment.
A formula having a satisfying assignment is called a satisfiable formula. For ex-
ample, formula f; is satisfied by the assignment z; = 0,20 = 1,23 = 1,24 = 1.
The SATISFIABILITY problem is, given a formula, to determine if it satisfiable.
Suppose ¢(f) is an appropriate coding of a formula f. Then the problem can be
represented in form of the language

SAT = {c(f)|f is a satisfiable formula}

A simple algorithm deciding this language plugs in all possible assignments for
variables in f and tests if the assignment is satisfying. If the number of variables
in a formula f is n (and the length of f largely depends on this number), then
the total number of assignments to inspect is 2™. As in the prior cases, no faster
algorithm seems to exist.

As we have hinted, it is unlikely that any polynomially bounded solution exists
for any of the above computational problems. This argument is far from being
mathematically correct. It has not been proved yet that polynomially bounded
algorithms do not exist for the above problems. The major reason why such a
proof is hard to find is that all the above computational problems can be solved in
polynomial time by nondeterministic machines. ’

Definition 6.2.1 We say that a nondeterministic Turing machine M is polyno-
mially bounded if there is a polynomial p(x) such that, for any input string w,
at least one computation of M on input w halts in at most p(Jw|) steps.

Recall how a nondeterministic machine M decides a language L. For any w ¢
L, oll computations of M on w must reject it. For any w € L, at least one
computation of M on w accepts it, however, some other computations may reject
w. When it comes to polynomially bounded computations, this way to decide
languages seems very peculiar. One computation accepts a string, another one
rejects it. However, as we will demonstrate, there will be nothing peculiar about
nondeterministic algorithms solving our computational problems.

Note that any of the above complex computational problems can be solved as
follows. Form a finite sequence of strings and for every string in the sequence test
if it satisfies the conditions of the problem. If such a string is found, the input is
accepted; otherwise it is rejected. The testing part in all the algorithms we observed
was fairly easy. In other words, the test could be performed by a polynomially
bounded deterministic algorithm. One can conceive a nondeterministic algorithm
that, given any input string w, operates in two phases:



6.2. THE CLASS NP 187

1. Guess a string u to be tested;

2. Verify that the string u satisfies the conditions of the problem (if the guess
was wrong, u would not satisfy the conditions).

The first part of such an algorithm is obviously nondeterministic. However, the
verification phase for the problems in this section, as we will see, can be carried out
in polynomial time by a deterministic algorithm. Then the combination of the two
phases becomes a polynomial-time nondeterministic algorithm.

Now we concentrate on the verification phase. As our discussion suggests, a
verification algorithm A takes two arguments w and u. The string u is called a
certificate. The language L is said to be verified by a deterministic verification
algorithm A if

L = {w]| there exists a certificate u such thatA(w,u) = 1}

Now we can define a class of languages containing all the problems we have
observed.

Definition 6.2.2 A language L is said to belong to the class N'P if there exists a
deterministic polynomial-time algorithm A and a polynomial q such that

L = {w|there exists a certificate y such that
lyl < q(jwl), and A(w,y) =1}.

In other words, A verifies L in polynomial time (AP stands for nondetermin-
istic polynomial)

Note, that we used the term algorithm rather than a Turing machine in this defi-
nition. As we discussed in the previous section, polynomial time does not depend on
the formal model within which algorithms are formalized. Different formalizations
result just in different polynomial bounds on the running time.

An important technical issue that we have not addressed so far is how the
choice of the coding of the input data can affect polynomial-time algorithms. To
demonstrate the importance of this issue, we can compare the unary and binary
codes for an integer n. The length of n in unary code is n, while the binary code
for n has the length logn, an exponentially shorter value. However, if we choose
representations of data in alphabets that have at least two symbols, it turns out
that they are polynomially related. That is, the length, say, of the binary code of
any data, is a polynomial of the length of the code, of the same data, in base 8, and
vice versa. It is reasonable to consider only encodings of data in base 2 (binary) or
greater. Then the fact that all reasonable encodings are polynomially related implies
that, if a problem is solvable in polynomial time with one encoding of the input data,
it is solvable in polynomial time with any other encoding. In other words, the type
of encoding does not matter as far as polynomial-time computability is concerned.
This observation gives us the opportunity to describe polynomial-time algorithms
in somewhat abstract terms, omitting some coding and decoding technicalities.



188 CHAPTER 6. COMPUTATIONAL COMPLEXITY

Now it is easy to demonstrate that all the problems discussed in this section are
in the class AP. Consider, for example, the SATISFIABILITY problem. Given
any assignment T, = aj, Ty = @2, ..., Tn = Gn, 01, 42, ..., Gp € {0,1} for the
Boolean variables in a formula f, a verification algorithm A just plugs them in and
then, scanning the formula from left to right, determines if every clause contains
at least one 1 (then the whole formula evaluates to 1, otherwise; it evaluates to
0). The running time of this algorithm can be bounded by the polynomial d - |w|,
where w = ¢(f) is the input code of a formula f and d is some constant. Thus,
A, being applied to the inputs c¢(f) and a3, as, ..., an, runs in polynomial time.
The length n of the assignment vector (the certificate) does not exceed the length
of ¢(f) (the number of variables in a formula f is not greater than the length of f).
Thus, SAT € N'P.

The HAMILTONIAN CYCLE PROBLEM is shown to be in AP by exhibiting
a verification algorithm A that, given the input encoding ¢(G) of a graph G and the
code u of a path v;,,v;,,...,0;,, in G, determines if the path forms a simple cycle
containing |V| + 1 vertices. The algorithm can scan the code of the path and, for
each pair (4,,4,41), “consult” the code of G to determine if this pair is an edge in G.
In addition, A must make sure that v;; = v;, and that v;, & {v,,...,v;. ,} for all
r < k. Even if we use a “clumsy” one-head one-tape Turing machine to implement
this algorithm, it will run in time d - (|c(G)] + |u|)?. The length of the certificate
u does not exceed the length of the code ¢(G) (if it does, then it must be rejected,
because a Hamiltonian cycle cannot contain more that |V| + 1 vertices). Thus we
have established HC eNP. The problems TSP, C, and SS are covered in Exercise
6.4.

Note that P C A"P. A polynomial-time algorithm A deciding L € P can easily
be converted to a two-argument polynomial-time verification algorithm A’ that just
ignores the second argument and simulates A.

Now we can address the question we failed to answer so far: Do deterministic
polynomial-time algorithms exist for the problems TSP, HC,C,SS, and SAT? A
more general question is if all problems from NP are in P, or, in other words, if NP
= P. The answer to this question is unknown, and it is one of the most challenging
open problems in computer science. The widely shared opinion among computer
scientists is that the classes P and NP are different. The intuitive reasoning behind
this point of view is that while finding solutions and verifying their correctness can
be done quickly for the problems in P, only the verification part can be performed
quickly for the problems in N'P.

In the next section we will provide another powerful argument to support the
conjecture that P and NP are different. There are many open problems related
to relationships between classes P, NP, and classes that cover decidable problems
even more complicated than in AP. It is not known, for example, if the class NP
is closed under complement.



6.3. NP-COMPLETENESS 189

6.3 NP-Completeness

The reader probably noticed certain similarities among the various nondeterministic
polynomial-time solutions to all five of the problems that we discussed in Section
6.2: A nondeterministic “guess” is followed by a (relatively) simple deterministic
verification algorithm. As we will demonstrate in this section, there is a formal
mathematical basis for this similarity. All five of the problems are polynomial-
time related, that is, a polynomial-time deterministic solution to any of them would
provide polynomial-time deterministic solutions to all of them. In other words, if
any of them were in P, then the rest of them would be in P. In fact, an even
more powerful result is true. If any of these problems had a polynomial-time de-
terministic solution, then any other problem in AP would have a polynomial-time
deterministic solution! Not every problem in AP has this property. Thus, we call
our five problems NP-complete problems. These five problems actually form a very
small portion of thousands of important computational problems in many areas of
computer science, mathematics, economics, manufacturing, communications and so
forth. that are A"P-complete in the above sense.

To formally define the notion of completeness, we must introduce the notion of
polynomial-time reductions between computational problems. The notion of reduc-
tions between languages was introduced in Chapter 5. Polynomial-time reduction
differs from the general type of reduction in one important aspect: The reducing
algorithm must be polynomially bounded. Based on this, we will be able to claim
that if we managed to translate a language L to some language L’ € P, then the
language L itself would be in P. We will play out this property of polynomial-time
reductions to establish completeness of our five (and some other) NP problems.
Now we proceed formally.

Definition 6.3.1 A function f : ¥* — ¥* is called polynomial-time com-
putable if there is a polynomially bounded Turing machine computing it.

Definition 6.3.2 Let L and R C ¥* be two languages. We say that the language L
is polynomial-time reducible to R if there exists a polynomial-time computable
function v such that, for any w € ¥*,w € L if and only if r(w) € R. The function
r is called polynomial-time reduction.

Polynomial-time reductions make possible polynomial-time solutions to compu-
tational problems based on efficient translations of these problems to other problems
whose polynomial-time solutions have already been found. More specifically, sup-
pose we are to design a polynomial-time decision algorithm for the language L,
which is polynomial-time reducible to a language R. Suppose we have an algorithm
B that decides R in polynomial time. Then the following algorithm A decides
L: given any input string w, compute r(w) (in polynomial time), then call the
polynomial-time algorithm to determine whether r(w) € R. If r(w) € R, then
w € L; otherwise w ¢ L (a “flowchart” of A is given in Figure 6.4). Note that since



190 CHAPTER 6. COMPUTATIONAL COMPLEXITY

Algorithm A

no

Y

w r(w) | Algorithm
B

—»- V€S

Figure 6.4 Algorithm A

r(w) is computable in time that is bounded by a polynomial p of |w|, the length of
the result |r(w)| cannot exceed p(jw|) [otherwise, the algorithm computing r would
be unable to complete even writing r{w) on the output tape in time p(Jw|)]. Sup-
pose a polynomial ¢ bounds the running time of algorithm B. Then B’s running
time on the instance r(w) is bounded by ¢(p(|w|)). However, any composition of
two polynomials is a polynomial itself (consider, for example, (22)3 = 2%). Thus,
the running time of A is bounded by a polynomial. In other words, A is a desired
polynomial-time algorithm.

This result can be turned around. Suppose it requires more than polynomial
(say, exponential) time to decide a language L that is polynomial-time reducible to
R. Then it would require at least exponential time to decide R. If R were decidable
in less than exponential time, then the polynomial-time reduction of L to R would
provide us a less than polynomial-time algorithm deciding L (the composition of
a polynomial and a function growing slower than exponential would result in a
function growing slower than exponential), a contradiction. In other words, R is at
least as hard as L.

The five problems we discussed in Section 6.2, among many other important
computational problems in NP, are known to be polynomial-time reducible to each
other. Some of these problems, such as the HAMILTONIAN CYCLE and the
TRAVELING SALESMAN PROBLEM, are very similar to each other and design-
ing a polynomial-time reduction for these problems is relatively easy. However, in
many cases, when problems are very different, designing such a reduction has been
an act of real “algorithmic” creativity. Accordingly, some polynomial-time reduc-
tion algorithms are very complex. In this section we present three polynomial-time
reductions, from HAMILTONIAN CYCLE to TRAVELING SALESMAN PROB-
LEM, from SATISFIABILITY to its restricted version, 3-SATISFIABILITY, where
every clause contains at most three variables or their negations, and finally from
3-SATISFIABILITY to CLIQUE. The first reduction is fairly simple; the second
and the third are relatively sophisticated. Many other polynomial-time reductions



6.3. NP-COMPLETENESS 191

between problems in NP can be found in [Garey and Johnson].

Theorem 6.3.1 HC is polynomial-time reducible to TSP.

Proof: We must design a polynomial-time algorithm that, given any undirected
graph G, constructs an undirected weighted graph G’ and a bound B such that G
has a Hamiltonian cycle if and ouly if there is a tour in G’ with the total weight
bound by B. The desired algorithm operates as follows: Given G = (V, E), choose
the bound B = 0 and define G’ = (V, E’) as the complete graph with the same set
of vertices V and with the following weights assigned to edges

o 0 if(’Ui,Uj)EE
Wij = 1 if (v,-,vj) ¢E

It is quite clear that the algorithm we have described works in polynomial time.
Now we have to show that G has a Hamiltonian cycle if and only if G has a tour with
the total weight 0. First, suppose G has a Hamiltonian cycle. Suppose this cycle is
given by path h. Each edge in h is present in the graph G’ and hence has weight 0.
Thus, h is a tour in G’ with the total weight 0. Conversely, let h be a tour in G’ with
the total weight 0. Then this tour contains only edges from G, for, otherwise, its to-
tal cost would be greater than 0. Thus, & corresponds to a Hamiltonian cycle in G.

’7 End Proof T

Now we consider the problem of reducing SAT to its restricted version, 3-SAT.
In this version, every clause contains at most three variables or negated variables.

Theorem 6.3.2 SAT is polynomial-time reducible to 3-SAT.

Proof: The polynomial-time algorithm A transforming boolean formulas with
clauses of arbitrary length to the formulas with clauses containing at most three vari-
ables or negated variables per clause operates as follows: Let f = C; ACoA...AC,
be a formula in SAT. Let C € {C1,...,C,}. Suppose C =11 Via V...V, where
k > 3. Given C, introduce a new set of boolean variables y,...,yx—3 (a8 new set
for each clause C) and substitute C by the following conjunction of short clauses:

(ll (VAN PRV, yl) A (—|y1 ViV yz) A (ﬂyQ VigV y3) AN (—lykf4 Vig_3V lk)

The new formula, A(f), contains at most three elements per clause. It is easy to
see that the above convertion can be carried out in polynomial time. We have to
show that f is satisfiable if and only if A(f) is satisfiable.

Suppose that some assignment T satisfies the formula f. Note that every clause
C in f must be satisfied by 7. If C is a “short” clause (at most three variables
or negated variables) in f, then it is present in A(f) and is thus satisfied. If
C=1lVigVv...Vigis a “long” clause (k > 3); then let ¢ be the smallest index for
which /; is evaluated to true value by T (such an index must exist since C is evaluated



192 CHAPTER 6. COMPUTATIONAL COMPLEXITY

to true). Now we extend the assignment T to the new variables y1,92,..., k-3
associated with C as follows: If j < i — 2 then y; is set to true; otherwise it is set
to false. Under this new assignment 7”7, (I1 V Iz V y1) and every clause

(myi-1 Vi Vy;)

for j < i—2 evaluates to true since y; is true. Then, (y;_2V{; Vy;—1) is true since [;
is true. Finally, all (—y;_1Vlj41 Vy;) for j > i—2 and (—yg—3 VIlk—1 V) evaluate
to true since all —y;_1, —y;, ..., “yg—3 are true. Thus the whole subformula of A(f)
obtained from C is satisfied.

Now suppose that A(f) is satisfied by some assignment T. We show that T
satisfies every clause C in f. Indeed, every “short” clause (up to three variables or
negated variables) is trivially satisfied. Now, suppose C is a “long” clause and C’
is the corresponding subformula of A(f). Note that C’ is satisfied. We intend to
show that at least one [; in C' must have the value true under the assignment 7.
Indeed, otherwise y; should be true, and, therefore, all yo, ..., yx—3 should be true.
However, then the last clause (—yr_3 V lk—1 V lx) is not satisfied. Since at least one
I; gets the value true under T, it also satisfies the clause C. Thus, T satisfies all
clauses in f.

| End Proof |

Now we show that 3-SAT is polynomial-time reducible to CLIQUE.

Theorem 6.3.3 3-SAT is polynomial-time reducible to C.

Proof: Let f =C; ACy A ... A\NC, be an instance of a formula in 3-SAT with n
clauses C1,Co, ... C,. Given f, we are going to construct a graph G such that f is
satisfiable if and only if G has a clique of size n.

For each clause C, = (I VI V I3} in f, we create a triple v],vj, v} of vertices
in the graph G. Then we connect different vertices v, v by an edge if and only if
the following two conditions hold:

1. vf and v} are in different triples (r # s);
2. I is not the negation of 2 (or vice versa).
(An example of the construction for the formula
f={x1VaaVaz)A(—x1V-z2Vaz)A(-z1 Ve Vaz)

is given in Figure 6.5). The transformation of f to G can obviously be accomplished
in polynomial time. Now we have to show that it is in fact a reduction. Suppose
that, for some assignment of values to variables, f evaluates to 1. Then each clause
C, must contain at least one variable or negated variable I] that has the value 1.
Pick the corresponding vertex v] for each such II. Let V'’ be the set consisting of all
such vertices vj. Note that |V'| = n, since we picked one v! for every clause C;. We



6.3. N'P-COMPLETENESS 193

Ci=z1VIaVas

Co=-x1V-zo Vi3 C3=—-x,VIaVis

Figure 6.5 The Graph Derived from a Boolean Formula f

are going to show that any two vertices v, v; € V! are connected with each other.
Indeed, according to the definition of V', neither of I} or I3 can be the negation of
the other, since both of them get the same value for the same assignment of 0’s and
1’s to variables. Thus, according to the definition of G, they are connected by an
edge. In other words, the subgraph of G with the set of vertices V' is a clique of
size n.

Now suppose that G has a clique G’ of size n with the set of vertices V’. No edges
in G connect vertices in the same triple. As the size of the clique is n = |V'|, V'
must contain exactly one vertex v] per triple. Let us assign 1 to every corresponding
[;. Since no [} in our set can be the negation of another [7 in this set, according to
the definition of the graph G, this will not result in assigning 0 and 1 to the same
variable. The given assignment satisfies every clause, and, therefore, the whole
formula f. The values of variables that are not present in the above set can be set
arbitrarily as they cannot affect the result of evaluation for f.

In the example of Figure 6.5 a clique of size 3 connects the vertices correspond-
ing to x3 from the first clause, —x; from the second clause, and —z; from the third
clause. A corresponding satisfying assignment for f is (z; = 0,22 = 1,23 = 1). We



194 CHAPTER 6. COMPUTATIONAL COMPLEXITY

have chosen to set the value of zz = 1, as this can be chosen arbitrarily without
changing the satisfiability of f.

r End Proof T

Many other examples of polynomial-time reductions between problems in NP
can be found in [Garey and Johnson]. It is suggested that the reader design a few
polynomial-time reductions from Exercises 6.6,6.7, 6.8, 6.9, and 6.10.

The five problems in NP we exhibited have another important property. Any
language in N'P is polynomial-time reducible to any of them.

Definition 6.3.3 A language L is called N'P-complete if L € NP and every
language L' € N'P s polynomial-time reducible to L.

Historically, the language SAT was the first one discovered to be N'P-complete.
Theorem 6.3.4 (Cook’s Theorem). The language SAT is N'P-complete.

Cook’s theorem has been one of the most important discoveries in theoretical com-
puter science. Its proof is based on a meticulous polynomial-time mapping of ac-
cepting Turing machine computations to satisfiable Boolean formulas. The complete
proof of this theorem can be found in [Garey and Johnson, Lewis and Papadim-
itriou].

Since SAT, TSP,HC,C, SS are polynomial-time reducible to each other, all of
them are N'P-complete. Many other important N P-complete problems can be
found in other books on the theory of computation and computational complexity.
Some other N'P-complete problems are presented in Exercise 6.5.

We will mention just one more of them that is relevant to the topics discussed
in this book, the INEQUIVALENCE OF *FREE REGULAR EXPRESSIONS.
A regular expression is called *-free if it does not contain Kleene stars. The IN-
EQUIVALENCE OF *-FREE REGULAR EXPRESSIONS problem is to determine
for two given *-free regular expressions R; and Ry, if L(R;) # L(Rj). It is interest-
ing that it is unknown whether the problems of equivalence of regular expressions
and nondeterministic finite automata (discussed in Chapter 2) are even in N'P.

NP-completeness of many computational problems is considered as a powerful
argument supporting the conjecture that classes P and NP are different.

Designing computer solutions to many NP-complete problems is an important
practical problem. It has been possible to design a variety of such solutions that,
still being formally slow, work in polynomial time on practically important instances
of the problem. More information about this area of theoretical computer science
can be found in [Lewis and Papadimitriou, Papadimitriou].



Exercises 195

Exercises

—— Section 6.1 ——

Exercise 6.1 4 Find the exact polynomial p(z) such that tp;(w) = p(jw!]) for
the Turing machine described in the Section 6.1 that decides the language {w|w =
wk, w € {a,b}}.

Exercise 6.2 Show that the language L = {udu|u € {a,b}} can be decided by a
Turing machine M with the running time ¢ (w) = ¢ - |w|? for some constant c.

Exercise 6.3 Show that the class P is closed under the following operations:
a) Union
b) Intersection

c¢) Concatenation

— Section 6.2 EE—

Exercise 6.4 Show that the following languages defined in Section 6.2 are in N'P:
a) TSP

b) C

c) SS

Exercise 6.5 Formulate every computational problem in this exercise in the form
of a language. For every language, show that it is in NP (briefly describe a
polynomial-time verification algorithm for the language). For every language, briefly
describe a deterministic algorithm deciding it.

a) Given a graph G = (V, E), a subset V' C V is called an independent subset
of vertices if every edge of the graph G is incident to at most one vertex in
V' (in other words, no vertex in V' is connected to any other vertex in V’).
The Independent Set Problem is to find an independent set of vertices of
a given size k.



196 CHAPTER 6. COMPUTATIONAL COMPLEXITY

b) The Partition Problem is: Given a finite set of integers S = {a1, a2, ..., an},
determine if the set can be partitioned into two sets 51, 53 such that the sum
of all elements of the first set equals the sum of all elements of the second set.

¢) The Two-Machine Scheduling Problem is: Given a finite set of integers
S = {a1,02,...,an}, partition it into two subsets S;, Sz such that the sums
of elements in each set do not exceed a given bound D. (The problem relates
to scheduling n tasks on two machines. Both machines have the same speed,
and the order of task execution does not matter. a;,as,...,a, are execution
times of the tasks. The question is, given a deadline D, determine if all tasks
can be distributed between two machines so that all of them can be completed
before the deadline).

d) Let U be a finite set and A = {54, 53,...,5,} be a collection of subsets of U.
The Exact Cover Problem is to determine if there exist disjoint {mutually
nonintersecting) subsets S;,, Si,,...,S;, in the collection A such that their
union is U.

im

e} Let G = (V, E) be an undirected graph. A set V/ C V of nodes is called a cover
of the graph G if every edge in G is incident to at least one vertex in V’. The
Node Cover Problem is, given a graph G and a number k£ > 1, determine
if there exists a cover C of the graph G such that |C] < k.

f) Let A be an m-by-n integer matrix and b be an integer m-vector. The Integer
Programming Problem is, given such a matrix A and a vector b, determine
if there exists a Boolean n-vector = (that is,  contains only 0’s and 1’s) such
that Az <b.

g) The Subgraph Isomorphism Problem is: Given graphs G; and Gz, to de-
termine if GG; is a subgraph of G.

E— Section 6.3 EEEE——

Exercise 6.6 € Show that the language IS representing the INDEPENDENT
SET PROBLEM as defined in Exercise 6.5 is N"P-complete. (Hint: Show that the
language C representing an AN"P-complete CLIQUE PROBLEM defined in Section
6.2 is reducible to IS in polynomial time.)

Exercise 6.7 € Exhibit a polynomial-time reduction from the language P rep-
resenting the PARTITION PROBLEM as defined in Exercise 6.5 to the language
SS representing the SUBSET-SUM PROBLEM defined in Section 6.2 (The PAR-
TITION PROBLEM is known to be N"P-complete. The reduction will show that
the SUBSET-SUM PROBLEM is also N'P-complete.)



Exercises 197

Exercise 6.8 ¢ ¢ Show that the language P representing the PARTITION PROB-
LEM as defined in Exercise 6.5 is N'P-complete. (Hint: Show that the language
SS representing an N"P-complete SUBSET-SUM PROBLEM defined in Section 6.2
can be reduced to P in polynomial time.)

Exercise 6.9 € Exhibit a polynomial-time reduction from the language P rep-
resenting the PARTITION PROBLEM as defined in Exercise 6.5 to the language
TMS representing the TWO-MACHINE SCHEDULING PROBLEM defined in
Exercise 6.5. (The PARTITION PROBLEM is known to be A'P-complete. The
reduction will show that the TWO-MACHINE SCHEDULING PROBLEM is also
NP-complete.)

Exercise 6.10 ® @ Show that the language I P representing the INTEGER PRO-
GRAMMING PROBLEM as defined in Exercise 6.5 is N'P-complete. (Hint: Show
that the N'P-complete language 3 — SAT defined in Section 6.3 is reducible to IP
in polynomial time.)



References

Garey M., and D. Johnson.
Computers and Intractability: A Guide to NP-Completeness.
W. H. Freeman & Co, San Francisco, CA, 1979.

Lewis H., and C. Papadimitriou.
Elements of the Theory of Computation. Prentice Hall, Inc.,
Upper Saddle River, NJ, 1981.

Papadimitriou C.,
Computational Complezity. Addison-Wesley Co., Reading,
MA, 1994.

199



List of Symbols

g g @ DO C m
|Sm§ E INHA™ M =

éxS
Dom(f)

Sty
=
!
=

—

=

B w s MO
=

*

ISE>
L

N

LIyl m=zQn
*Q* 0 Q Q

L OO IJTUDIO Lt v

201

72
81
82
94

100

107

122

122

124

125

128

129

129

131

131

132

133

141

142

142

162

162

163

163

166

166

167

177

178

179

181

186

186

186



202

NP
TSP
SAT
HC

S§S
3-SAT

187
183
186
183
184
185
191

List of Symbols



Index

NP, 187
complete, 189
Polynomial time reducibility, 189,
194
Polynomial-time reduction, 189
NP-complete, 194

accumulator, 142
adjacency matrix, 183
Al-Khoresmi, 159
algorithm, 160
alphabet, 7

tape, 122
asymptotic analysis, 178
automata

equivalent, 23

big-O notation, 178
binary code, 133

Boolean formulas, 185
busy-beaver function, 172

cardinality argument, 160
Cartesian product, 6, 7, 93
certificate, 188
characteristic function, 131
Chomsky normal form, 99, 102, 104,
105
Church, A., 160
Church-Turing Thesis
quantitative version, 180
Church-Turing thesis, 122, 160, 161,
166, 167, 169
Class NP, 187
N'P-completeness, 194

203

complete, 189
Polynomial time reducibility, 189
Polynomial-time reduction, 189
clique, 184
CLIQUE PROBLEM, 184
language, 184
closure, 31
compiler, 69
complexity, 13
running time, 13
time, 177
complier, 105
composite number, 145
recognition, 145
computation, 125, 145
computational complexity
polynomially bounded Turing ma-
chines, 179
polynomially decidable languages,
179
running time, 177
configuration, 17, 125
dead end, 108
conjunctive normal form, 185
context, 71
context-free, 70
context-free grammar, 70, 71
ambiguity, 78
Chomsky normal form, 99, 102,
104
derivation, 71
equivalent derivations, 77
fanout, 94
inherently ambiguous language, 79
leftmost derivation, 77, 86



204

nonterminal, 71
parse tree, 76
rightmost derivation, 77
rule, 70, 71
sentential form, 71
terminal, 71
unambiguous, 79
context-free language, 72
complement, 98, 107
concatenation, 92
deterministic, 107, 109
intersection, 98
intersection with a regular set, 92
Kleene star, 92
membership, 103
not regular, 72
pumping theorem, 95
union, 92
Cook, S., 194

dead state, 16
decidable language, 148, 150
decidablilty, 132

deterministic pushdown automaton, 105

DFA, 14
diagonalization, 160, 162
dovetailing, 146, 149, 150

emptiness problem, 47, 98, 105

empty word, 7

English language, 69, 73

equivalence class, 8

equivalence problem, 48

equivalence relation, 8, 50
refinement, 52

expression diagram, 37

favorable state, 14, 81, 123

finite automata, 14, 122, 177
convert to regular expression, 37
deterministic, 14
indistinguishable, 49
minimization, 48
nondeterministic, 20, 22

INDEX
two-tape, 56
finite automaton, 122
finite control, 14, 81, 122
finite state diagram, 15
finiteness problem, 98, 105
flowchart, 126
function
bijection, 9
characteristic, 131
definition, 9
inverse, 9
partial Turing computable, 131,
133, 162, 163

polynomial-time, 189
Turing computable, 131, 133
functional properties, 167

Godel numbering of Turing Machines,
163
Garey, M., 191, 194, 199
generator, 70, 72
graph, 179, 182, 191
adjacency matrix, 183
complete, 182, 184, 191
cycle, 182
simple, 182
path, 182

Halting Problem, 164, 167
Halting Set, 166, 181, 182
undecidable, 166

halting set, 169, 1381

halting state, 123

Hamiltonian cycle, 183

HAMILTONIAN CYCLE PROBLEM,
183, 188, 191

Homomorphism, 63

inductive definition, 5, 34
initial state, 14, 81
input tape, 14

Johnson, D., 191, 194, 199
Kileene, S., 43



INDEX

language, 7, 15
closure, 31
concatenation, 31
decidable, 132, 148, 150
Kleene star, 31, 43
polynomially decidable, 179
prefix, 63
programming, 36
regular, 34, 133
semidecidable, 132
suffix, 63
Turing computable, 132
Turing enumerable, 148, 150
complement, 167
definition, 149
Lewis, H., 143, 151, 194, 199
lexicographic ordering, 149

max, 5
membership problem, 47, 98, 103, 105
memory, 14, 122

random access, 140

natural number, 5

NFA, 22, 43

nondeterminism, 20, 72, 76, 145
nonterminal symbol, 71

normal form theorem, 99

not Turing enumerable, 167

palindrome, 45, 73, 81, 83, 87, 97,
105, 121, 177-179
definition, 7
palinrome, 110
Papadimitriou, C., 143, 151, 179, 194,
199
parse tree
context-free grammar, 76
height, 94
path, 94
length, 94
partial Turing computable function,
131, 133, 162, 163
pigeonhole principle, 7

205

polynomial-time computable function,
189
polynomially related, 179
polynomially-bounded nondeterminis-
tic Turing machines, 186
Post, E., 150
program counter, 141
pumping lemma, 95
regular language, 44
pushdown automaton, 81, 122
accepting by empty stack, 85, 88
computation, 81, 82
configuration, 81
yields, 82
deterministic, 105, 106
pop, 81
push, 81
simple, 88, 107

RAM, 141
reading head, 14
reduction, 168, 169
polynomial time, 189, 194
regular expression, 34, 35, 70
convert to a finite automaton, 36
regular langauge, 34
defintion, 34
regular language, 43, 72, 91, 92, 179
complement, 31, 32
concatenation, 31, 33
difference, 31, 33
intersection, 31, 32
Kleene star, 31, 33
pumping lemma, 44
union, 31, 32
relation, 7
equivalence, 8
equivalence class, 8
reflexive, 8
symmetric, 8
transitive, 8
Rice’s theorem, 168, 170, 171
Rice, H., 168
right-linear grammar, 115



206

SATISFIABILITY problem, 186, 187,

191
satisfying
assignment, 186
formula, 186
semidecidability, 132, 145
set, 5
Cartesian product, 6
complement, 7
difference, 6
intersection, 6
Turing enumerable, 166
union, 6
simulation, 30
stack, 80
state, 14
accepting, 14
dead, 16
equivalent, 48
favorable, 14, 123
halting, 123, 124
trap, 15, 22, 27, 28, 48, 49
string
prefix, 63
suffix, 63
SUBSET-SUM PROBLEM, 185
symbol
nonterminal, 71
terminal, 71

tape, 122
alphabet, 122
cell, 122
terminal symbol, 71
thread, 20
time complexity, 177
timesharing, 146
transition
compatible, 106
function, 14
relation, 81
trap state, 15, 22, 27, 28, 48, 49

TRAVELING SALESMAN PROBLEM,

179, 180, 182, 191

INDEX

language, 183
Turing computable
function, 131, 133
language, 132
partial function, 131
Turing enumerable
language, 148, 150
complement, 167
not context free, 139
set, 166
not Turing computable, 166
Turing machine, 121-123, 143, 166,
177
atomic, 127
computation, 125, 131
length, 125
concatenation, 128
configuration, 125
halting, 125
yields, 125
decidable language, 132
flowchart, 126
halting state, 124
multiple
heads, 138, 178, 179
tapes, 134
tracks, 135
nondeterministic, 145, 146
computation, 145
semidecidability, 145
polynomially bounded, 179, 186
Random access Turing machine,
141, 143
semidecidable language, 132
semidecidable set, 166
two dimensional tape, 139
Universal Turing machine, 161
Turing, A., 121, 160

Undecidability
Rice’s theorem, 168
Universal Turing machine, 161
alphabet, 161
unsolvable problem, 160



INDEX 207

verification algorithms, 187
certificate, 187

word, 7
empty, 7
length, 7
World Wide Web, 5, 20, 43, 168



A Gentle Introduction

LH KINER - GARL oMITH

Understanding the fundamentals of computation is central to
understanding the rapidly changing practice of computing. In
this text, Kinber and Smith present largely traditional material

in a dynamic “how to” rather than the typical “why for” fashion.
Intuition has been chosen over rigor in an effort to enhance
comprehension by those with less extensive mathematical
training. The authors rely heavily on figures and examples to lead
the reader to insights typically revealed by formal arguments.

Using this approach, Kinber and Smith explain the fundamental
intuitions of computation.

This includes:

e Explanations of the workings of the pattern matchers of
the heart of all search engines and the parsers used by all
programming language compilers.

e Describing the limits of computability itself, and how to
recognize the unsolvable problems.

¢ Explaining why certain tasks are easier and take less time
than others.

Pearson Prentice Hall
i i ISBN 0-13-0279k1-7
Education Upper Saddle River, NJ 0745

90000
— . ‘ ||H|‘ ‘IM H
R 7 501301279613 I —



