

 [image: Second Edition]

 Automating System Administration with Perl

David N. Blank-Edelman

Editor
Tatiana Apandi

Copyright © 2009 O'Reilly Media, Inc.

O’Reilly books may be purchased for educational, business, or sales promotional
 use. Online editions are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
 corporate/institutional sales department: 800-998-9938 or
 corporate@oreilly.com.

O’Reilly and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc.
 Automating System Administration with Perl, the image of
 a sea otter, and related trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to distinguish their
 products are claimed as trademarks. Where those designations appear in this book,
 and O’Reilly Media, Inc. was aware of a trademark claim, the designations have been
 printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
 publisher and author assume no responsibility for errors or omissions, or for
 damages resulting from the use of the information contained herein.

[image:]

O'Reilly Media

Dedication

To Cindy, ever the love of my life, and to Elijah, a true blessing.

Preface

Do you need tools for making your system administration work easier and more
 efficient? You’ve come to the right place.
Perl is a powerful programming language that grew out of the traditional system
 administration toolbox. Over the years it has
 adapted and expanded to meet the challenges of new operating systems and new tasks. If
 you know a little Perl, and you need to perform system administration tasks, this is the
 right book for you. Readers with varying levels of both Perl programming experience and
 system administration experience will all find something of use within these
 pages.
What’s New in This Edition?

A tremendous amount of work went into updating this book so it could be even
 better than the first edition. Here’s some of what has been improved in the second
 edition:
	New title
	My editors and I realized that the material in this book was more
 about how to automate your system administration work in ways that would
 make your working life more efficient and pleasant than it was about
 Perl. While Perl is still the toolshed that makes all this possible, it
 isn’t the main focus of the book.

	New material
	It’s hard to know where to begin on this one. The new edition is four
 chapters and two appendixes bigger (with a total page count that is 50%
 greater) than the last one. Included in this edition are a cornucopia of
 new tools and techniques that you are going to love. I tried to add
 material on the things I wished I had sysadmin-targeted material on,
 including: XML and YAML best practices (using XML::LibXML, XML::Twig, and XPath); dealing with config files; more
 advanced LDAP topics (including
 updated Net::LDAP information);
 email-related topics (including POP3/IMAP, MIME, and spam); new ways of
 dealing with filesystems; more advanced log file creation and parsing
 tools; DHCP; mapping/monitoring a network using Nmap and other tools;
 packet creation and sniffing; information reporting using tools like
 GraphViz, RRDtool, and Timeline; using SHA-2 instead of MD5; SNMPv3; Mac
 OS X; converting VBScript code to Perl; geocoding; MP3 file manipulation; using Google Maps; and
 so on.

	New advice
	Part of the value of this book is the advice you can pick up from an
 experienced system administrator like me who has been doing this stuff
 for a long time and has compared notes with many other seasoned
 veterans. This new edition is packed with more sidebars to explain not
 only the what, but also the
 why behind the material.

	Operating system and software information updates
	All of the text and code has been updated and augmented to work with
 the latest versions of Unix- (including Linux and Mac OS X) and
 Windows-based operating systems.

	Module and code updates/improvements
	The descriptions and code in this book match the latest versions of
 the modules mentioned in the first edition. In cases where a module is
 no longer available or a better alternative has emerged, the appropriate
 replacement modules have been substituted. Also, all example code is now
 “use strict” friendly.

	Errata corrected
	I have attempted to address all of the errata I received from all of
 the printings of the first edition. I appreciate the time readers took
 to report errors to O’Reilly and me so I could fix them at each printing
 and in this edition. Special thanks go to Andreas Karrer, the German
 translator for the first edition. Andi pored over every single byte of
 the original text and submitted almost 200 (mostly layout-related)
 corrections, all with good cheer.

How This Book Is Structured

Each chapter in this book addresses a different system administration domain and
 ends with a list of the Perl modules used in that chapter and references to
 facilitate deeper exploration of the information presented. The chapters are as
 follows:
	
 Chapter 1, Introduction

	This introductory chapter describes the material covered in the book
 in more detail, explaining how it will serve you and what you need to
 get the most from it. The material in this book is powerful and is meant
 to be used by powerful people (e.g., Unix superusers and Windows-based
 operating system administrators). The introduction provides some important guidelines to help
 you write more secure Perl programs.

	
 Chapter 2, Filesystems

	This chapter is about keeping multiplatform filesystems tidy and
 ensuring that they are used properly. We’ll start by looking at the
 salient differences between the native filesystems for each operating
 system. We’ll then explore the process of intelligently walking or
 traversing filesystems from Perl and how that can be useful. Finally,
 we’ll look at manipulating disk quotas from Perl.

	
 Chapter 3, User Accounts

	This chapter discusses how user accounts manifest themselves on two
 different operating systems, including what is stored for each user and
 how to manipulate the information from Perl. That leads into a
 discussion of a rudimentary account system written in Perl. In the
 process of building this system, we’ll examine the mechanisms necessary
 for recording accounts in a simple database, creating these accounts,
 and deleting them.

	
 Chapter 4, User Activity

	Chapter 4 explores ways to automate tasks
 centered around user activity, introducing a number of ways to track and
 control process, file, and network operations initiated by users. This
 chapter also presents various operating system-specific frameworks and tools (e.g.,
 Windows Management Instrumentation, GUI setup tools,
 lsof, etc.) that are helpful for user-oriented
 tasks on different platforms.

	
 Chapter 5, TCP/IP Name and Configuration Services

	Name and configuration services allow hosts on a TCP/IP network to
 communicate with each other amicably and to self-configure. This chapter
 takes a historical perspective by starting with host files, then moving
 on to the Network Information Service (NIS) and finally to the glue of
 the Internet, the Domain Name Service (DNS). Each step of the way, it
 shows how Perl can make professional management of these services
 easier. We’ll also explore how to work with the Dynamic Host
 Configuration Protocol (DHCP) from Perl in this chapter.

	
 Chapter 6, Working with Configuration Files

	Almost every system or software package we touch relies heavily on
 configuration files to be useful in our environment. This chapter
 explores the tools that make writing and reading those files from Perl
 easy. We’ll look at various formats, with special attention paid to XML
 and the current best practices for working with it using Perl.

	
 Chapter 7, SQL Database Administration

	Over time, more uses for relational databases are being found in the
 system administration realm. As a result, system administrators need to
 become familiar with SQL database administration. This chapter explains
 DBI, the preeminent SQL database
 framework for Perl, and provides examples of it in action for database
 administration.

	
 Chapter 8, Email

	This chapter demonstrates how Perl can make better use of email as a
 system administration tool. After discussing sending via SMTP (including
 MIME-based HTML messages), receiving via POP3/IMAP, and parsing via
 Perl, we’ll explore several interesting applications, including tools
 for analyzing unsolicited commercial email (a.k.a. spam) and managing
 tech support emails.

	
 Chapter 9, Directory Services

	As the complexity of the information we deal with increases over time,
 so does the importance of the directory services we use to access that
 information. System administrators are increasingly being called upon
 not only to use these services, but also to build tools for their
 management. This chapter discusses some of the more popular directory
 service protocols/frameworks, such as LDAP and ADSI, and shows you how
 to work with them from Perl.

	
 Chapter 10, Log Files

	System administrators are often awash in a sea of log files. Every
 machine, operating system, and program can (and often does) log
 information. This chapter looks at the logging systems offered by Unix-
 and Windows-based operating systems and discusses approaches for
 analyzing logging information so it can work for you.

	
 Chapter 11, Security

	This chapter heads right into the maelstrom called “security,”
 demonstrating how Perl can make hosts and networks more secure.

	
 Chapter 12, SNMP

	This chapter is devoted to the Simple Network Management Protocol
 (SNMP). It illustrates how to use this protocol to communicate with
 network devices (both to poll and to receive trap information).

	
 Chapter 13, Network Mapping and Monitoring

	Perl offers some excellent tools for the mapping and monitoring of
 networks. In this chapter, we’ll look at several ways to discover the
 hosts on the network and the services they offer. We’ll then explore
 helpful graphical and textual ways to present the information collected,
 including some of the best tools for graphing and charting the data
 (such as GraphViz and RRDtool).

	
 Chapter 14, Experiential Learning

	This is the chapter you don’t want your boss to catch you
 reading.

	Appendixes
	Some of the chapters assume basic knowledge about topics with which
 you may not be familiar. For those who are new to these subjects, this
 book includes several mini-tutorials to bring you up to speed quickly.
 The appendixes provide introductions to the eXtensible Markup Language
 (XML), the XML Path Language (XPath), the Lightweight Directory Access
 Protocol (LDAP), the Structured Query Language (SQL), the Revision
 Control System (RCS), translating VBScript to Perl, and SNMP.

Typographical Conventions

This book uses the following typographical conventions:
	
 Italic

	Used for file- and pathnames, usernames, directories, program names,
 hostnames, URLs, and new terms where they are first introduced.

	
 Constant width

	Used for Perl module and function names, namespaces, libraries,
 commands, methods, and variables, and when showing code and computer
 output.

	
 Constant width bold

	Used to indicate user input and for emphasis in code examples.

	
 Constant width italic

	Used to indicate parts of a command line that are user-replaceable,
 and for code annotations.

Note
This icon signifies a tip, suggestion, or general note.

Warning
This icon indicates a warning or caution.

Operating System Naming Conventions

This book is steadfastly multiplatform in its thinking. However, reading about “a
 Microsoft Vista/Microsoft Windows Server
 2008/Microsoft Windows Server 2003/Microsoft
 XP script” or a “Linux/Solaris/Irix/HPUX/Mac OS X/etc. script” gets old fast. Having
 consulted some style guides, here’s how I’ve chosen to handle discussing the
 operating system collectives:
	When writing about the Microsoft products—Microsoft Vista, Microsoft
 Windows Server 2008, Microsoft Windows Server 2003, and Microsoft XP (on
 which, by and large, all scripts were tested)—I refer to them collectively
 as “Windows-based operating systems,” at least first time they show up in a
 chapter or heading. From that point on in the chapter I shorten this to
 simply “Windows.” If something is particular to a specific Windows-based
 operating system, I will mention it by name.

	When writing about any of the members of the Unix family (in which I
 include both Linux and Mac OS X), I refer to them collectively as just
 “Unix,” “the Unix family,” or sometimes “Unix variants.” If something is
 particular to a specific Unix vendor or release, I will mention it by
 name.

Coding Conventions

There are a few points I want to mention about the code in this book:
	All code examples were written and tested with use strict; as the first line (I highly recommend you do the
 same). However, given the number of examples in this book, the repetition
 would have taken up a significant amount of space, so to save trees and
 wasted bits I did not include that line in any of the examples. Please just
 assume that every example uses this convention.

	Almost all of the code is formatted using Steve Hancock’s fabulous perltidy utility to improve
 readability.

	Although these examples don’t reach anything like that level of
 perfection, much of the code has been rewritten with the advice in Damian
 Conway’s book
 Perl Best
 Practices
 (O’Reilly) in mind. I highly recommend reading Conway’s book to
 improve your code and generally reinvigorate your Perl programming. The
 automated source code analyzer Perl::Critic that Perl Best Practices
 inspired was still in heavy development for much of the writing of this
 book, so I did not use it. You should, though, as it’s another great
 tool.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code
 in this book in your programs and documentation. You do not need to contact us for
 permission unless you’re reproducing a significant portion of the code. For example,
 writing a program that uses several chunks of code from this book does not require
 permission. Selling or distributing a CD-ROM of examples from O’Reilly books
 does require permission. Answering a question by citing
 this book and quoting example code does not require permission. Incorporating a
 significant amount of example code from this book into your product’s documentation
 does require permission.
We appreciate, but do not require, attribution. An attribution usually includes
 the title, author, publisher, and ISBN. For example: “Automating System
 Administration with Perl, Second Edition, by David N. Blank-Edelman.
 Copyright 2009 O’Reilly Media, Inc., 978-0-596-00639-6.”
If you feel your use of code examples falls outside fair use or the permission
 given above, feel free to contact us at
 permissions@oreilly.com.

How to Contact Us

We have tested and verified the information in this book to the best of our
 ability, but you may find that features have changed (or even that we have made
 mistakes!). Please let us know of any errors you find, as well as your suggestions
 for future editions, by writing to:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the U.S. or Canada)
	707-829-0515 (international/local)
	707-829-0104 (fax)

We have a website for the book, where we’ll list examples, errata, and any plans
 for future editions. You can access this page at:
	
 http://www.oreilly.com/catalog/9780596006396/

The author has set up a personal website for this book. Please visit it at:
	
 http://www.otterbook.com

To ask technical questions or comment on the book, send email to:
	
 bookquestions@oreilly.com

For more information about our books, conferences, software, Resource Centers, and
 the O’Reilly Network, see the O’Reilly website:
	
 http://www.oreilly.com

Safari® Books Online

Note
When you see a Safari® Books Online icon on the cover of your favorite
 technology book, that means the book is available online through the O’Reilly
 Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that
 lets you easily search thousands of top tech books, cut and paste code samples,
 download chapters, and find quick answers when you need the most accurate, current
 information. Try it for free at http://my.safaribooksonline.com/.

Acknowledgments from the First Edition

To keep the preface from becoming too much like an Oscar acceptance speech, here’s
 a condensed version of the acknowledgments from the first edition.
Thanks to the Perl Community, especially Larry Wall, Tom Christiansen, and the
 kerjillions of programmers and hackers who poured countless hours and energy into
 the language and then chose to share their work with me and the rest of the Perl
 community.
Thanks to the SysAdmin community: members of Usenix, SAGE, and the people who have
 contributed to the LISA conferences over the years. Thanks to Rémy Evard for being
 such a great influence on my professional and personal understanding of this field
 as a friend, mentor, and role model. He is still one of the system administrators I
 want to be when I grow up.
Thanks to the reviewers of the first edition: Jerry Carter, Toby Everett, Æleen
 Frisch, Joe Johnston, Tom Limoncelli, John A. Montgomery, Jr., Chris Nandor, Michael
 Peppler, Michael Stok, and Nathan
 Torkington.
Thanks to the O’Reilly staff: to Rhon Porter for his illustrations, to Hanna Dyer
 and Lorrie LeJeune for the most amazing cover animal, and to the O’Reilly production
 staff. I am still thankful to Linda Mui, my editor for the first edition, whose
 incredible skill, finesse, and care allowed me to birth this book and raise it in a
 good home.
Thanks to my spiritual community: Havurat Shalom in Somerville. Thank you, M’ kor
 HaChayim, for this book and all of the many blessings in my life.
Thanks to the Shona people of Zimbabwe for their incredible mbira music.
Thanks to my friends (Avner, Ellen, Phil Shapiro, Alex Skovronek, Jon Orwant, and
 Joel Segel), the faculty and staff at the Northeastern University College of
 Computer and Information Science (especially the folks in the CCIS Systems group),
 and my boss Larry Finkelstein, the Dean of the College of Computer Science.
Thanks to my nuclear family (Myra, Jason, and Steven Edelman-Blank), my cats
 Shimmer and Bendir (bye-bye, Bendir, I’ll miss you), and my TCM pit crew (Kristen
 Porter and Thom Donovan).
The first edition was dedicated to Cindy, love of my life.

Acknowledgments for the Second Edition

One of the only things better than having all of these great people and things in
 your life is to have them remain in your life. I’m still thankful for all of the
 above from the first edition. Here are some of the changes and additions:
This edition had a much expanded and tremendous group of technical reviewers. I’m
 very grateful to Æleen Frisch, Aaron Crane, Aleksey Tsalolikhin, Andrew Langmead,
 Bill Cole, Cat Okita, Chaos Golubitsky, Charles Richmond, Chris Grau, Clifton
 Royston, Dan Wilson, Dean Wilson, Denny Allain, Derek J. Balling, Earl Gay, Eric
 Sorenson, Eric Toczek, Federico Lucifredi, Gordon “Fyodor” Lyon, Graham Barr, Grant
 McLean, Hugh Brown, James Keating, Jan Dubois, Jennifer Davis, Jerry Carter, Jesse
 Vincent, Joe Morri, John Levine, John Tsangaris, Josh Roberts, Justin Mason, Mark
 Bergman, Michel Rodriguez, Mike DeGraw-Bertsch, Mike Stok, Neil Neely, Petr Pajas,
 Philip J. Hollenback, Randy Dees, Scott Murphy, Shlomi Fish, Stephen Potter, Steve
 Atkins, Steven Tylock, Terry Zink, Thomas Leyer, Tim Bunce, Tobias Oetiker, Toby
 Ovod-Everett, and Tom Regner for the time and energy they spent on making this book
 better. I continue to be amazed by the generosity and kindness shown by the members
 of the SysAdmin and Perl communities.
The editorial chain was a bit longer than usual on this book, so thanks to
 all of the editors. Starting from the first edition in
 chronological order: Linda Mui, Paula Ferguson, Nathan Torkington, Allison Randal,
 Colleen Gorman, Tatiana Apandi, Isabel Kunkle, and Andy Oram. I’m also thankful to
 the other O’Reilly people who have had a hand in bringing this book to fruition,
 including Mike Hendrickson, Rachel Head, Sarah Schneider, Rob Romano, Sanders
 Kleinfeld, and all the others.
I was taken with sea otters even before the first edition was published with one
 on the front cover, but since then my appreciation for them keeps on growing. They
 are an amazing species in so many ways. Unfortunately, humans historically haven’t
 been particularly kind to the sea otters. They are still classified as an endangered
 species, and some of our activities actively threaten their survival. I believe they
 deserve our protection and our support. One organization that works toward this end
 is Friends of the Sea Otter, based in
 Monterey, California. I’m a member, and I encourage you to join, too.
Mbira kept me sane through the arduous process of writing the first edition of
 this book. For this edition, I have yoga to thank for my current health and sanity.
 I’d like to express my profound gratitude to my teacher, Karin Stephan, and her
 teacher, B.K.S. Iyengar, for sharing such a wonderful union of mind and body with
 me.
I’ve tried to cut down the florid prose of the first edition’s acknowledgments,
 but I hope you’ll indulge me just one more time. The biggest change for me between
 these editions was the birth of our first child, Elijah. He’s been a constant
 blessing to us, both in the noun and verb senses of the word.

Chapter 1. Introduction

In my town, several of our local bus lines are powered by cables strung high above the
 street. One day, when going to an unfamiliar destination, I asked the driver to let me
 know when a particular street was approaching. He said, “I’m sorry, I can’t. I just
 follow the wires.”
These are words you will never hear from good system administrators asked to describe
 their jobs. System administration is a craft. It’s not about following wires. System and
 network administration is about deciding what wires to put in place and where to put
 them, getting them deployed, keeping watch over them, and then eventually ripping them
 out and starting all over again. Good system administration is hardly ever rote,
 especially in multiplatform environments where the challenges come fast and furious. As
 in any other craft, there are better and worse ways to meet these challenges. Whether
 you’re a full-time system administrator or a part-time tinkerer, this book will help you
 along that path.
Automation Is a Must

Any solution that involves fiddling with every one of your machines by hand is
 almost always the wrong one. This book will make that approach a thing of the past
 for you.
Even in the best of economic climates, system administrators always have too much
 to do. This is true both for the people who do this work by choice and for those who
 had a boss walk into their office and say, “Hey, you know about computers. We can’t
 hire anyone else. Why don’t you be in charge of the servers?” When hiring gets
 frozen, existing employees (including those not trained for the task) may well be
 asked to take on added system administration responsibilities.
Automation, when applied intelligently, is one of the few things that can actually
 make a difference under these circumstances. It can help people work more
 efficiently, often freeing up time previously spent on sysadmin scut work for more
 interesting things. This can improve both productivity and morale.
My editors and I changed the title of this edition of the book because we realized
 that the real value of the material was its ability to make your life better through
 automation. In this book, I’ll try very hard to give you the tools you need
 (including the mental ones—new ways to think
 about your problems, for example) to improve your time at work (and, as you’ll see
 in the last chapter, your time at play).
Related Topic: Configuration Management
Before we get started, a quick note about what this book is
 not is in order. It’s not a book about configuration
 management, and it doesn’t cover the popular tools that support configuration
 management, such as cfengine, puppet,
 and bcfg2.
Most environments can benefit both from having the configuration of their
 machines/networks managed and from automating their everyday processes. This
 book focuses strictly on the second topic, but I strongly encourage you to look
 at the tools I mentioned in the first paragraph if you are not already using
 some sort of configuration management system. Once you adopt a configuration
 tool, you can integrate it with the scripts you’ll learn to write using this
 book.

How Perl Can Help You

System administrators should use any and every computer language available when
 appropriate. So why single out Perl for a book?
The answer to this question harks back to the very nature of system
 administration. Rémy Evard, a colleague and friend, once described the job of a system administrator
 as follows:
On one side, you have a set of resources: computers, networks, software, etc.
 On the other side, you have a set of users with needs and projects—people who
 want to get work done. Our job is to bring these two sets together in the most
 optimal way possible, translating between the world of vague human needs and the
 technical world when necessary.

System administration is often a glue job, and Perl is one of the best glue
 languages. Perl was being used for system administration work well before the World
 Wide Web came along with its voracious need for glue mechanisms. Conversations I’ve
 had with numerous system administrators at Large
 Installation System Administration (LISA) conferences and other venues
 have indicated that Perl is still the dominant
 language in use for the field.
Perl has several other things going for it from a system administration
 perspective:
	It has visible origins in the various Unix shells and the C language,
 which are tools many system administrators are comfortable using.

	It is available on almost all modern operating systems and does its best
 to present a consistent interface on each. This is important for
 multiplatform system administration.

	It has excellent tools for text manipulation, database access, and network
 programming, which are three of the mainstays of the profession.

	The core language can easily be extended through a carefully constructed
 module mechanism.

	A large and dedicated community of users has poured countless hours into
 creating modules for virtually every task. Most of these modules are
 collected in an organized fashion (more on these collections in a moment).
 This community support can be very empowering.

	It is just plain fun to program.

In the interest of full disclosure, it is important to note that Perl is not the
 answer to all of the world’s problems. Sometimes it is not even the appropriate tool
 for system administration programming. There are a few things going against
 it:
	Perl has a somewhat dicey object-oriented programming mechanism grafted on
 top of it. Python or Ruby is much better in this regard.

	Perl is not always simple or internally self-consistent and is chock-full
 of arcane invocations. Other languages have far fewer surprises.

	Perl is powerful and esoteric enough to shoot you in the foot.

The moral here is to choose the appropriate tool. More often than not, Perl has
 been that tool for me, and hence it’s the focus of this book.

This Book Will Show You How

In the 1966–68 Batman television show, the dynamic duo wore
 utility belts. If Batman and Robin had to scale a building, Batman would say, “Quick
 Robin, the Bat Grappling Hook!” or “Quick Robin, the Bat Knockout Gas!” and they’d
 both have the right tool at hand to subdue the bad guys. This book aims to equip you
 with the utility belt you need to do good system administration work.
Every chapter attempts to provide you with three things:
	Clear and concise information about a system administration domain
	In each chapter, we discuss in depth one domain of the system
 administration world. The number of possible domains in multiplatform
 system administration is huge; there are far too many to be included in
 a single book. The best survey books on just Unix system administration—
 Essential System
 Administration
 by Æleen Frisch (O’Reilly), and Unix System
 Administration Handbook, by Evi Nemeth, Garth Snyder,
 Scott Seebass, and Trent H. Hein (Prentice Hall)—are two and three
 times, respectively, the size of this book, and we’ll be looking at
 topics related to three different operating systems: Unix (including
 variants like Linux), Windows-based operating systems, and Mac OS X.
The list of topics covered is necessarily incomplete, but I’ve tried
 to put together a good stew of system and network administration
 information for people with varying levels of experience in the field.
 Seasoned veterans and new recruits may come away from this book having
 learned completely different material, but everyone should find
 something of interest to chew on. Each chapter ends with a list of
 references that can help you get deeper into a topic should you so
 choose.
For each domain or topic—especially those that have a considerable
 learning curve—I’ve included
 appendixes that will give you all the information you need to get up to
 speed quickly. Even if you’re familiar with a topic, you may find that
 these appendixes can round out your knowledge (e.g., showing how
 something is implemented on a
 different operating system).

	Perl techniques and approaches that can be used in system
 administration
	To get the most out of this book, you’ll need some initial background
 in Perl. Every chapter is full of Perl code that ranges in complexity
 from beginner to advanced levels. Whenever we encounter an
 intermediate-to-advanced technique, data structure, or idiom, I’ll take
 the time to carefully step through it, piece by piece. In the process,
 you should be able to pick up some interesting Perl techniques to add to
 your programming repertoire. My hope is that Perl programmers of all
 levels will be able to learn something from the examples presented in
 this book. And as your Perl skills improve over time, you should be able
 to come back to the book again and again, learning new things each
 time.
To further enhance the learning experience, I will often present more
 than one way to accomplish the same task using Perl, rather than showing
 a single, limited answer. Remember the Perl motto, “There’s more than one way to do it.” These
 multiple-approach examples are designed to better equip your Perl
 utility belt: the more tools you have at hand, the better the choices
 you can make when approaching a new task.
Sometimes it will be obvious that one technique is superior to the
 others. But this book addresses only a certain subset of situations you
 may find yourself in, and a solution that is woefully crude for one
 problem may be just the ticket for another. So bear with me. For each
 example, I’ll try to show you both the advantages and the drawbacks of
 each approach (and often tell you which method I prefer).

	System administration best practices and deep principles
	As I mentioned at the start of this chapter, there are better and
 worse ways to do system administration. I’ve been a system and network
 administrator for the past 25 years in some pretty demanding
 multiplatform environments. In each chapter I try to bring this
 experience to bear as I offer you some of the best practices I’ve
 learned and the deeper principles behind them. Occasionally I’ll use a
 personal “war story from the front lines” as the starting point for
 these discussions. Hopefully the
 depth of the craft in system administration will become apparent as you
 read along.

What You Need

To get the most out of this book, you will need some technical background and some
 resources at hand. Let’s start with the background first:
	You’ll need to know some Perl
	There isn’t enough room in this book to teach you the basics of the
 Perl language, so you’ll need to seek that information elsewhere before
 working through this material. A book like
 Learning
 Perl
 , by Randal L. Schwartz et al. (O’Reilly), can get you in
 good shape to approach the code in this book.

	You’ll need to know the basics of your operating system(s)
	This book assumes that you have some facility with the operating
 system or systems you plan to administer. You’ll need to know how to get
 around in that OS (run commands, find documentation, etc.). Background
 information on the more complex frameworks built into the OS (e.g., WMI
 on Windows or SNMP) is provided.

	You may need to know the specifics of your operating system(s)
	I’ll attempt to describe the differences between the major operating
 systems as we encounter them, but I can’t cover all of the intra-OS
 differences. In particular, every variant of Unix is a little different.
 As a result, you may need to track down OS-specific information and roll
 with the punches should that information be different from what is
 described here.

For technical resources, you will need just two things:
	Perl
	You will need a copy of Perl installed on or available to every system
 you wish to administer. The downloads section of the Perl website will
 help you find either the source code or the binary distribution for your
 particular operating system. The code in this book was developed and
 tested under Perl 5.8.8 and ActivePerl (5.8.8) 822. See the next section
 for more information about these versions.

	The ability to find and install Perl modules
	A later section of this chapter is devoted to the location and
 installation of Perl modules, an extremely important skill for our
 purposes. This book assumes you have the knowledge and necessary
 permissions to install any modules you need.
At the end of each chapter is a list of the version numbers for all of
 the modules used by the code in that chapter. The version information is
 provided because modules are updated all the time, and not all updates
 retain backward compatibility. If
 you run into problems, this information can help you determine whether
 there has been a module change since this book was published.

Some Notes About the Perl Versions Used for This Book

I chose to develop and test the code in this book under Perl 5.8.8 and ActivePerl
 (5.8.8) 822. These choices might lead you to ask a few questions.
What About Perl 5.10?

The Perl 5 development team has done some fabulous work to produce 5.10.
 They’ve added some great features to the language that I encourage you to
 explore. However, 5.10 wasn’t released until well after this edition was under
 way, and at the time of this writing no major OS distribution has shipped with
 it as its default version of Perl. Because I know the adoption of new versions
 takes a while, I didn’t want to include code in the book that depended on
 features in the language most people couldn’t use out of the box. All of the
 code here should work just fine on Perl 5.10, and in the interest of making this
 code useful to as many readers as possible, I deliberately chose to target the
 previous stable release.

What About Strawberry Perl?

Strawberry Perl is an effort to bring a more “generic” and self-sufficient version of
 Perl to the Win32 platform. ActiveState’s Perl distribution ships with a
 packaging system (PPM) so users don’t have to compile modules or update them via
 the Comprehensive Perl Archive Network (CPAN). Strawberry Perl aims to
 provide an environment where compilation and CPAN use are easy (or at least
 possible) and are the norm.
I think this is an excellent project because it is helping to push some
 portability back into the non-Win32 Perl community. Some great progress has been
 made so far, but the project is still fairly young as of this writing and it
 does not yet have a sufficiently large ecosystem of available modules (e.g.,
 lots of the Win32:: modules are missing).
 That ruled it out for this edition, but it is definitely something to
 watch.

What About Perl 6?

Ah, that’s the big question, isn’t it? I have the pleasure of occasionally
 bumping into Jesse Vincent, the current Perl 6 project manager (and author of
 the fabulous RT trouble ticketing system). Here’s what he had to say when I
 asked about Perl 6:
Perl 5 is a mature, widely deployed, production-ready language. Perl 6 is
 maturing rapidly, but isn’t yet ready
 for production deployment.

There are some Perl 5 modules that let you get a taste of some planned Perl 6
 features (some of which have found their way into Perl 5.10). I encourage you to
 try modules like Perl6::Slurp and Perl6::Form. But at this point in time, there just
 isn’t a language implementation ready for production use, and hence there is no
 Perl 6 in this book. Furthermore, once Perl 6 is ready for widespread use, it
 will take considerable time for the necessary ecosystem of modules to be
 developed to replace the many, many modules we leverage in this book. I look
 forward to that time; perhaps you’ll see a Perl 6 edition of this book some
 day.

Some Notes About Using Vista with the Code in This Book

The code in this book has been tested under Microsoft Vista, but there is one twist you will need to know about if
 you plan to use it on that platform: some of the examples in this book must be run
 using elevated privileges for this to work. Which things require this and which
 don’t is somewhat idiosyncratic. For example, part of the Windows quota example in
 Chapter 2 works without elevated privileges and part (the
 important part) fails with an unhelpful error if it doesn’t have them.
Under Vista’s User Account Control (UAC), it is not enough to be running the code as
 an Administrator; you must have explicitly requested it to run at an elevated
 privilege level. Here are the ways I know to run Perl scripts at that privilege
 level (since you can’t by default right-click and use “Run as administrator”). You
 should choose the method or methods that make the most sense in your
 environment:
	Use the
 runas.exe command-line utility.

	Designate that the
 perl.exe binary itself be run as an Administrator
 (right-click on the binary name, choose Properties, switch to the
 Compatibility tab, and select “Run this program as administrator.”

	Use one of the Elevation Power Toys described at http://technet.microsoft.com/en-us/magazine/2008.06.elevation.aspx and http://technet.microsoft.com/en-us/magazine/2007.06.utilityspotlight.aspx to allow Perl scripts to be Run as administrator.

	Use the command-line utility
 pl2bat to convert your Perl script into a batch file
 and then permit that batch file to run as Administrator. Batch files don’t
 require any special magic (like the previous option) for this to
 happen.

You may be wondering if it is possible to add something to your Perl script to
 have it request elevated privileges as needed. Unfortunately, according to Jan Dubois (one of the top Windows Perl luminaries in the field),
 the answer is no. He notes that there is no way to elevate an already running
 process; it must be created with elevated privileges. The closest you could come
 would be to check whether the process was already running in this fashion (e.g., by
 using the
 Win32 module’s
 IsAdminUser() function), and if not invoke
 another copy of the script using something like
 runas.exe.
One last note in a similar vein: in several of the chapters I recommend using the
 Microsoft Scriptomatic tool to become familiar with WMI. By default this won’t
 run under Vista because it needs elevated privileges to function, but it is an “HTML
 Application” (.hta) file. Like Perl scripts,
 .hta files can’t easily be Run as administrator.
Here’s a recipe for getting around this limitation so you can use this excellent
 tool:
	Right-click on the Internet Explorer icon in the taskbar (the “E”) and
 choose “Run as administrator” to run it using elevated privileges. (Warning:
 don’t use this running copy of IE to browse to any website or load anything
 but the Scriptomatic file, to be on the safe side.)

	Press the Alt key to display the IE File menu. Choose “Open…” and then
 press the “Browse…” button. Change the dialog filter to display “All Files”
 and then browse to the location of the Scriptomatic
 .hta file. Open that file and you should be all
 set.

Locating and Installing Modules

Much of the benefit of using Perl for system administration work comes from all of the free code
 available in module form. The modules mentioned in this book can be found in one of
 three places:
	The Comprehensive Perl Archive Network
	CPAN is a huge archive of Perl source code, documentation,
 scripts, and modules that is replicated at over a hundred sites around
 the world. Information on CPAN can be found at http://www.cpan.org. The easiest way to find the modules in
 CPAN is to use the search engine at http://search.cpan.org. The “CPAN Search” box makes it simple to find the right modules for
 the job.

	Individual repositories for prebuilt packages
	In a moment we’ll encounter the Perl Package Manager (PPM), an especially important tool
 for Win32 Perl users. This tool connects to
 repositories (the most famous one is housed at
 ActiveState) to retrieve prebuilt module packages. A good list of these
 repositories can be found in the wiki at http://win32.perl.org. If a Win32 package we use comes from
 a repository other than ActiveState’s, I’ll be sure to point you to
 it.

	Individual websites
	Some modules are not published to CPAN or any of the PPM repositories.
 I really try to avoid them if possible, but in those rare cases where
 they fill a critical gap, I’ll tell you where to get them.

How do you install one of these modules when you find it? The answer depends on
 the operating system you are running. Perl now ships with documentation on this
 process in a file called perlmodinstall.pod (type perldoc perlmodinstall to read it). The next sections
 provide brief summaries of the steps required for each operating system used in this
 book.
Installing Modules on Unix

In most cases, the process goes like this:
	Download the module and unpack it.

	Run perl Makefile.PL to create the
 necessary Makefile.

	Run make to build the
 package.

	Run make test to run any test
 suites included with the module by the author.

	Run make install to install it in
 the usual place for modules on your system.

If you want to save yourself the trouble of performing all these steps by
 hand, you can use the CPAN module by Andreas
 J. König (shipped with Perl), or the CPANPLUS
 module by Jos Boumans. CPAN allows you to
 perform all of those steps by typing:
% cpan
cpan[1]> install modulename
and CPANPLUS does the same with:
% cpanp
CPAN Terminal> i modulename
Both modules are smart enough to handle module dependencies (i.e., if one
 module requires another module to run, it will install both modules for you
 automatically). They also each have a built-in search function for finding
 related modules and packages. I recommend typing perldoc CPAN or perldoc
 CPANPLUS on your system to find out more about all of the handy
 features of these modules.

Installing Modules on Win32

The process for installing modules on Win32 platforms using the ActiveState
 distribution mirrors that for Unix, with one additional step: the Perl Package Manager (PPM). If you are comfortable installing
 modules by hand using the Unix instructions in the previous section, you can use
 a program like WinZip to unpack a
 distribution and use
 nmake
 instead of make to build and install a
 module.
Some modules require compilation of C files as part of their build process. A
 large portion of the Perl users in the Win32 world do not have the necessary
 software installed on their computers for this compilation, so ActiveState
 created PPM to handle prebuilt module distribution.
The PPM system is similar to that of the
 CPAN module. It uses a Perl program called
 ppm.pl to handle the download and installation of
 special archive files from PPM repositories. You can start the program either by typing ppm or by running ppm-shell from within the Perl bin
 directory:
C:\Perl\bin> ppm-shell
ppm 4.03
ppm> install module-name
PPM, like CPAN, can search the list of
 available and installed modules for you. Type help at the ppm>
 command prompt for more information on how to use these commands.

It’s Not Easy Being Omnipotent

Before we continue with the book, let’s take a few minutes for some cautionary
 words. Programs written for system administration have a twist that makes them
 different from most other programs: on Unix and Windows they are often run with
 elevated privileges (i.e., as root or
 Administrator). With this power comes responsibility. There is an extra onus on us
 as programmers to write secure code. We write code that can and will bypass the
 security restrictions placed on mere mortals. Tiny mistakes can lead to severe
 disruptions for our users or damage to key system files. And, if we are not careful,
 less “ethical” users may use flaws in our code for nefarious purposes. Here are some
 of the issues you should consider when you use Perl under these
 circumstances.
Don’t Do It

By all means, use Perl. But if you can, avoid having your code run in a privileged
 context. Most tasks do not require root or Administrator
 privileges.
For example, your log analysis program probably does not need to run as
 root. Create another, less privileged user for this
 sort of automation. Have a small, dedicated, privileged program hand the data to
 that user if necessary, and then perform the analysis as the unprivileged
 user.

Drop Your Privileges As Soon As Possible

Sometimes you can’t avoid running a script as root or
 Administrator. For instance, a mail delivery program you create may need to be
 able to write to a file as any user on the system. However, programs like these
 should shed their omnipotence as soon as possible during their run.
Perl programs running under Unix can set the $< and $>
 variables:
permanently drops privs
($<,$>) = (getpwnam('nobody'),getpwnam('nobody'));
This sets the real and effective user IDs to nobody,
 which exists on most Unix/Linux systems as an underprivileged user (you can
 create the user yourself if need be). To be even more thorough, you may wish to
 use $(and $) to change the real and effective group IDs as well.
Windows does not have user IDs per se, but there are similar processes for
 dropping privileges, and you can use runas.exe to run
 processes as a different user.

Be Careful When Reading Data

When reading important data like configuration files, test for unsafe
 conditions first. For instance, you may wish to check that the file and all of
 the directories in its path are not writable (since that would make it possible
 for someone to tamper with them). There’s a good recipe for testing this in
 Chapter 8 of the
 Perl Cookbook
 , by Tom Christiansen and Nathan Torkington (O’Reilly).
The other concern is user input. Never trust that input from a user is palatable. Even if
 you explicitly print Please answer Y or N:,
 there is nothing to prevent the users from answering with 2,049 random
 characters (either out of malice or because they stepped away from the computer
 and a two-year-old came over to the keyboard instead).
User input can be the cause of even more subtle trouble. My favorite example
 is the “poison NULL byte” exploit reported in an article on Perl CGI
 problems (cited in the references section at the end of this chapter—be sure to
 read the whole article!). This particular exploit takes advantage of the
 difference between Perl’s handling of a NULL (\000) byte in a string and the handling done by the C libraries
 on a system. To Perl, there is nothing special about this character, but to the
 libraries it indicates the end of a string.
In practical terms, this means it is possible for a user to evade simple
 security tests. One example given in the article is that of a password-changing
 program whose code looks like this:
if ($user ne "root"){ <call the necessary C library routine> }
If a malicious user manages to set $user to
 root\000 (i.e., root followed by a NULL byte), the test will think that the name
 is not root and will allow the Perl script to
 continue. But when that string is passed to the underlying C library, the string
 will be treated as just root, and the user
 will have walked right past the security check. If not caught, this same exploit
 will allow access to random files and other resources on the system. The easiest
 way to avoid being caught by this exploit is to sanitize your input with
 something like this:
$input =~ tr/\000//d;
or better yet, only use valid data that you’ve explicitly extracted from the
 user’s input (e.g., with a regular expression).
Note
This is just one example of how user input can get programs into trouble.
 Because user input can be so problematic, Perl has a security precaution
 called taint mode. See the perlsec manpage that ships with Perl for an excellent
 discussion of “taintedness” and other security precautions.

Be Careful When Writing Data

If your program can write or append to every single file on the local filesystem,
 you need to take special care with how, where, and when it writes data. On Unix
 systems, this is especially important because symbolic links make file switching
 and redirection easy. Unless your program is diligent, it may find itself
 writing to the wrong file or device. There are two classes of programs where
 this concern comes especially into play.
Programs that append data to a file fall into the first class. The steps your
 program should take before appending to a file are:
	Check the file’s attributes before opening it, using stat() and the normal file test operators.
 Make sure that it is not a hard or soft link, that it has the
 appropriate permissions and ownership, etc.

	Open the file for appending.

	stat() the open filehandle.

	Compare the values from steps 1 and 3 to be sure that you have an open
 handle to the file you intended.

The bigbuffy program in Chapter 10
 illustrates this procedure.
Programs that use temporary files or directories are in the second class.
 Chances are you’ve often seen code like this:
open(TEMPFILE,">/tmp/temp.$$") or die "unable to write /tmp/temp.$$:$!\n";
Unfortunately, that’s not sufficiently secure on a multiuser machine. The
 process ID ($$) sequence on most machines is
 easily predictable, which means the next temporary filename your script will use
 is equally predictable. If others can predict that name they may be able to get
 there first, and that’s usually bad news.
The easiest way to avoid this conundrum is to use Tim Jenness’s File::Temp module, which has shipped with Perl
 since version 5.6. Here’s how it is used:
use File::Temp qw(tempfile);

returns both an open filehandle and the name of that file
my ($fh, $filename) = tempfile();
print $fh "Writing to the temp file now...\n";
File::Temp can also remove the temporary
 file for you automatically if desired. See the module’s documentation for more
 details.

Avoid Race Conditions

Whenever possible, avoid writing code that is susceptible to race condition
 exploits. The traditional race condition starts with the assumption that the
 following sequence is valid:
	Your program will amass some data.

	Your program can then act on that data.

Here’s a simple example:
	Your program checks the timestamp on a file of bug submissions to make
 sure nothing has been added since you last read the file.

	Your program modifies the contents of the file.

If users can break into this sequence at a point we’ll call “step 1.5” and
 make some key substitutions, they may cause trouble. If they can get your
 program in step 2 to naively act upon different data from what it found in step
 1, they have effectively exploited a race condition (i.e., their program won the
 race to get at the data in question). Other race conditions occur if you do not
 handle file locking properly.
Race conditions often show up in system administration programs that scan the
 filesystem as a first pass and then change things in a second pass. Nefarious
 users may be able to make changes to the filesystem right after the scanner pass
 so that changes are made to the wrong file. Make sure your code does not leave
 such gaps open.

Enjoy

It is important to remember that system administration is fun. Not all the
 time, and not when you have to deal with the most frustrating of problems, but
 there’s definitely enjoyment to be found. There is a real pleasure in supporting
 other people and building the infrastructures that make users’ lives better.
 When the collection of Perl programs you’ve just written brings other people
 together for a common purpose, there is joy.
So, now that you’re ready, let’s get to work on those wires.

References for More Information

http://www.dwheeler.com/secure-programs/ is a HOWTO document
 written by David A. Wheeler for secure programming under Linux and Unix. The
 concepts and techniques Wheeler describes are applicable to other situations as
 well.
http://nob.cs.ucdavis.edu/bishop/secprog/ contains more good secure
 programming resources from security expert Matt Bishop.
http://www.homeport.org/~adam/review.html lists security code
 review guidelines by Adam Shostack.
http://www.canonical.org/~kragen/security-holes.html is an old but
 good paper on how to find security holes (especially in your own code) by Kragen
 Sitaker.
“Perl CGI Problems,” by rain.forest.puppy (Phrack Magazine,
 1999), describes CGI security vulnerabilities. It can be found online at http://www.insecure.org/news/P55-07.txt or in the
 Phrack archives at http://www.phrack.com/issues.html?issue=55.
Perl
 Cookbook, Second Edition, by Tom Christiansen and Nathan
 Torkington (O’Reilly), contains many good tips on coding securely.

Chapter 2. Filesystems

Perl to the Rescue

Laptops fall in slow motion. Or at least that’s the way it looked when the laptop
 I was using to write the first edition of this book fell off a table onto a hardwood
 floor. The machine was still in one piece and running when I picked it up, but as I
 checked to see whether anything was damaged, it started to run slower and slower.
 Then it began to make sporadic and disturbing humming-buzzing sounds during disk
 access. Figuring the software slowdown was caused by a software problem, I shut down
 the laptop. It did not go gently into the night, refusing to shut down cleanly. This
 was a bad sign.
Even worse was its reluctance to boot again. Each time I tried, it began the
 Windows NT booting process and then failed with a “file not found” error. By now it
 was clear that the fall had caused some serious physical damage to the hard drive.
 The heads had probably skidded over the platter surface, destroying files and
 directory entries in their wake. Now the question was, “Did any of my files survive?
 Did the files for this book survive?”
I first tried booting into Linux, the other operating system installed on the
 laptop. Linux booted fine, an encouraging sign. The files for this book, however,
 resided on the Windows NT NTFS partition that did not boot. Using Martin von Löwis’s Linux NTFS driver, available at http://www.linux-ntfs.org
 (now shipping with the Linux kernels), I mounted the partition and was greeted with
 what looked like all of my files, intact.
My ensuing attempts to copy those files off that partition would proceed fine for
 a while, until I reached a certain file. At that point the drive would make those
 ominous sounds again and the backup would fail. It was clear that if I wanted to
 rescue my data I was going to have to skip all the damaged files on the disk. The
 program I was using to copy the data (gnutar) had the ability to skip a list of files,
 but here was the problem: which files? There were over sixteen
 thousand[1] files on the filesystem at the time of impact. How was I going to figure
 out which files were damaged and which were fine? Clearly running
 gnutar again and again was not a reasonable strategy. This
 was a job for Perl!
I’ll show you the code I used to solve this problem a little later in this
 chapter. For that code to make sense, we’ll first need to place it into context by
 looking at filesystems in general and how we operate on them using Perl.

[1] At the time, 16,000 files seemed like a lot. My current laptop has
 1,096,010 files on it as I write this. I imagine if this story had happened
 today it would have been even more fun.

Filesystem Differences

We’ll start with a quick review of the native filesystems for each of our target
 operating systems. Some of this may be old news to you, especially if you have
 significant experience with a particular operating system. Still, it’s worth your
 while to pay careful attention to the differences between the filesystems
 (especially the ones you don’t know) if you intend to write Perl code that will work
 on multiple platforms.
Unix

All modern Unix variants ship with a native filesystem whose semantics resemble
 those of their common ancestor, the Berkeley Fast File System (FFS). Different vendors have extended
 their filesystem implementations in different ways: some filesystems support
 POSIX access control lists (ACLs) for better security, some support journaling for better recovery,
 others include the ability to set special file-based attributes, and so on.
 We’ll be writing code aimed at the lowest common denominator to allow it to work
 across different Unix platforms.
The top, or root, of a Unix filesystem is indicated by a
 forward slash (/). To uniquely identify a file
 or directory in a Unix filesystem, we construct a path starting with a slash and
 then add directories, separating them with forward slashes, as we descend deeper
 into the filesystem. The final component of this path is the desired directory
 or filename. Directory and filenames in modern Unix variants are case-sensitive.
 Almost all ASCII characters can be used in these names if you are crafty enough,
 but sticking to alphanumeric characters and some limited punctuation will save
 you hassle later.

Windows-Based Operating Systems

All current Windows-based operating systems ship with three supported
 filesystems: File Allocation Table (FAT), NT FileSystem (NTFS), and FAT32 (an improved version of FAT that allows for larger partitions
 and smaller cluster sizes).
The FAT filesystem found in these operating systems uses an extended version
 of the basic FAT filesystems found in DOS. Before we look at the extended
 version, it is important to understand the foibles of the basic FAT filesystem.
 In basic or real-mode FAT filesystems, filenames conform to the 8.3
 specification. This means that file and directory names can consist of a maximum
 of eight characters, followed by a period (or dot as it is
 spoken) and a suffix of up to three characters in length. Unlike in Unix, where
 a period in a filename has no special meaning, in basic FAT filesystems a
 filename can contain only a single period as an enforced separator between the
 name and its extension or suffix.
Real-mode FAT was later enhanced in a version called
 VFAT or protected-mode FAT. This is
 roughly the version that current operating systems support when they say they
 use FAT. VFAT hides all of the name restrictions from the user. Longer filenames
 without separators are supported by a very creative hack: VFAT uses a chain of
 standard file/directory name slots to transparently shoehorn extended filename
 support into the basic FAT filesystem structure. For compatibility, every file
 and directory name can still be accessed using a special 8.3-conforming DOS
 alias. For instance, the directory called Downloaded Program
 Files is also available as DOWNLO~1.
There are four key differences between a VFAT and a Unix filesystem:
	FAT filesystems are case-insensitive. In Unix, an attempt to
 open a file using the wrong case (i.e.,
 MYFAVORITEFILE versus
 myfavoritefile) will fail, but with FAT or
 VFAT, this will succeed with no problem.

	Instead of a forward slash, FAT uses the backward slash (\) as its path
 separator. This has a direct ramification for the Perl programmer,
 because the backslash is a quoting character in Perl. Paths written in
 single quotes with only single separators (e.g., $path='\dir\dir\filename') are just fine.
 However, situations in which you need to place multiple backslashes next
 to each other (e.g., \\server\dir\file) are potential trouble. In those cases,
 you have to be vigilant in doubling any multiple backslashes. Some Perl
 functions and some Perl modules will accept paths with forward slashes,
 but you shouldn’t count on this convention when programming. It is
 better to bite the bullet and write \\\\winnt\\temp\\ than to learn that your code breaks
 because the conversion hasn’t been done for you.

	FAT files and directories have special flags associated with them that
 are called attributes. Example attributes
 include “Read-only” and “System.”

	The root of a FAT filesystem is specified starting with the drive
 letter on which the filesystem resides. For instance, the absolute path
 for a file might be specified as c:\home\cindy\docs\resume\current.doc.

FAT32 and NTFS filesystems have the same semantics as VFAT filesystems.
 They share the same support for long filenames and use the same root designator.
 NTFS is more sophisticated in its name support, however, because it allows these
 names to be specified using Unicode. Unicode is a multibyte character encoding scheme that can
 be used to represent all of the characters of all of the written languages on
 the planet.
NTFS also has some functional differences that distinguish it from the other
 Windows and basic Unix filesystems. Later in this chapter, we will write some
 code to take advantage of some of these differences, such as filesystem quotas.
 NTFS supports ACLs, which provide a fine-grained permission mechanism for file and
 directory access. It also adds some functionality that we won’t touch on,
 including file encryption and file compression. As a related aside, Vista will
 only install on an NTFS-formatted filesystem.
Before we move on to another operating system, it is important to at least
 mention the universal naming convention (UNC). UNC is a convention for locating
 things (files and directories, in our case) in a networked environment. In UNC
 names, the drive letter and colon preceding the absolute path are replaced with
 \\server\sharename. This convention suffers from the
 same Perl backslash syntax clash we saw a moment ago, though, so it is not
 uncommon to see a set of leaning toothpicks like this:
$path = '\\\\server\\sharename\\directory\\file';

Mac OS X

At the time the previous edition of this book was written, OS X had just recently appeared on the horizon. Classic Mac OS used a filesystem (Mac OS
 Hierarchical File System, or HFS) that was a very different beast from any of the filesystems
 described earlier. It had very different file semantics and required special
 handling from Perl. Mac OS 8.1 introduced an improved variant of HFS called
 HFS+, which became the default filesystem format for OS X.[2] New releases of OS X saw continued development of the filesystem and
 its capabilities.
It has taken some time and a number of releases to get to this point, but the
 current HFS+ filesystem semantics don’t look very different from any other Unix
 filesystem at this point. Files and paths are specified the same way, and HFS+
 supports BSD extended attributes in the usual way (e.g., ACLs are available). If
 you stick to the standard Perl mechanisms for interacting with filesystems, you
 can generally treat HFS+ like any other Unix filesystem.
Note
If you do need to muck with an HFS+ filesystem in a nongeneric fashion, as
 I’ve cavalierly suggested here (i.e., if you really need to get your hands
 dirty and twiddle bits that are specific to HFS+), you have at least a
 couple of options:
	Call the Mac OS X command-line utilities directly (e.g., using
 chmod +a..., once
 fsaclctl has been used to turn on
 ACLs).

	Use Dan Kogai’s MacOSX::File modules. These modules will also give
 you access to the “legacy” extended attributes (type, creator, etc.) that played a larger role in pre-OS X
 filesystem use.

There is one important difference between a standard UFS and a standard HFS+
 filesystem. By default,[3] HFS+ is case-insensitive (albeit case-preserving): it will treat
 BillyJoeBob and
 billyJoebob exactly
 the same (i.e., if you try to open() the
 first but the second one is the real name of the file, you will still get a
 filehandle that points at the file’s data). There’s nothing special you have to
 do about this difference from a Perl perspective except be very careful about
 your assumptions. Be especially careful when removing files, because you can
 sometimes wind up targeting the wrong one.

Filesystem Differences Summary

Table 2-1 summarizes all of the differences we
 just discussed, along with a few more items of interest.
Table 2-1. Filesystem comparison
	

 OS and
 filesystem

 	
 Path separator

 	

 Filename
 spec. length

 	

 Absolute
 path format

 	

 Relative
 path format

 	

 Unique
 features

	
 Unix (Berkeley Fast File System and others)

 	
 /

 	
 OS-dependent number of chars

 	

 /dir/file

 	

 dir/file

 	
 OS-variant-dependent
 additions

	
 Mac OS (HFS+)

 	
 /

 	
 255 Unicode chars

 	

 /dir/file

 	

 dir/file

 	
 Mac OS legacy support (e.g., creator/type attributes), BSD extended
 attributes

	
 Windows-based operating systems (NTFS)

 	
 \

 	
 255 Unicode chars

 	

 Drive:\dir\file

 	

 dir\file

 	
 File encryption and compression

	
 DOS (basic FAT)

 	
 \

 	
 8.3

 	

 Drive:\dir\file

 	

 dir\file

 	
 Attributes

Dealing with Filesystem Differences from Perl

Perl can help you write code that takes most of these filesystem quirks into
 account. It ships with a module called File::Spec
 that hides some of the differences between the filesystems. For
 instance, if we pass in the components of a path to the catfile method:
use File::Spec;

my $path = File::Spec->catfile(qw{home cindy docs resume.doc});
$path is set to home\cindy\docs\resume.doc on a Windows system, while on a Unix
 or OS X system it becomes home/cindy/docs/resume.doc,
 and so on. File::Spec also has methods like
 curdir and updir that return the punctuation necessary to describe the
 current and parent directories (e.g., “.” and “..”). The methods in this module
 give you an abstract way to construct and manipulate your path specifications.
 If you would prefer not to have to write
 your code using an object-oriented syntax, the module
 File::Spec::Functions provides a more direct
 route to the methods found in File::Spec.
If you find File::Spec’s interface to be a
 little peculiar (e.g., the name catfile()
 makes sense only if you know enough Unix to understand that the cat command is used to
 concatenate parts of its input together), there’s a much
 nicer wrapper by Ken Williams called
 Path::Class. It doesn’t ship with Perl like
 File::Spec does, but it is probably worth
 the extra installation step. Here’s how it works.
First, you create either a Path::Class::File or a
 Path::Class::Dir object using a natural
 syntax that specifies the path components:
use Path::Class;

my $pcfile = file(qw{home cindy docs resume.doc});
my $pcdir = dir(qw{home cindy docs});
$pcfile and $pcdir are now both magic. If you use them as you would any other
 scalar variable (in a case where you “stringify” them), they turn into a path
 constructed to match the current operating system. For example:
print $pcfile;
print $pcdir;
would yield home/cindy/docs/resume.doc and home/cindy/docs or home\cindy\docs\resume.doc and home\cindy\docs, as we saw earlier with File::Spec.
Even though $pcfile and $pcdir stringify into paths that look like
 strings, they are still objects. And like most other objects, there are methods
 that can be called on them. These methods include those found in File::Spec and more. Here are some
 examples:
my $absfile = $pcfile->absolute; # returns the absolute path for $pcfile
my @contents = $pcfile->slurp; # slurps in the contents of that file
$pcfile->remove(); # actually deletes the file
There are two more tricks Path::Class can
 do that are worth mentioning before we move on. First, it can parse existing
 paths:
use Path::Class;

handing it a full path (a string) instead of components
my $pcfile = file('/home/cindy/docs/resume.doc');

print $pcfile->dir(); # note: this returns a Path::Class::Dir,
 # which we're stringify-ing
print $pcfile->parent(); # same as dir(), but can make code read better
print $pcfile->basename(); # removes the directory part of the name
The second trick comes in handy when you want to write code on one operating
 system that understands the filesystem semantics of another. For example, you
 may need a web application running on your Linux box to be able to instruct its
 users on how to find a file on their local Windows machines. To ask Path::Class to consider the semantics of a different operating system, you
 need to explicitly import two different
 methods: foreign_file() and foreign_dir(). These two methods each take the
 target operating system type as their first argument:
use Path::Class qw(foreign_file foreign_dir);

my $fpcfile = foreign_file('Win32', qw{home cindy docs resume.doc});
my $fpcdir = foreign_dir('Win32', qw{home cindy});
Now, $fpcfile will yield home\cindy\docs\resume.doc even if the code is run
 from a Mac. This probably won’t come up often, but it’s very handy when
 you need it.

[2] As an aside, you can create UFS-formatted filesystems under OS X. Full
 ZFS support is also on the way as of this writing.

[3] It is possible to create a case-sensitive HFS+ volume in current
 versions of OS X, but doing so can be fraught with peril. This practice
 has been known to break (albeit naively written) applications that did
 not expect anything but the default semantics. Don’t do this unless you
 have a really good reason.

Walking or Traversing the Filesystem by Hand

By now, you’re probably itching to get to some practical applications of Perl.
 We’ll begin by examining the process of “walking the filesystem,” one of the most
 common system administration tasks associated with filesystems. Typically this
 entails searching an entire set of directory trees and taking action based on the
 files or directories found. Each OS provides a tool for this task: under Unix it’s
 the find command, under Windows it’s Search, and in Mac OS it’s Spotlight or the search box in the Finder (if you aren’t
 going to run find from a Terminal window). All of
 these are useful for searching, but they lack the power to perform arbitrary and
 complex operations by themselves. In this section we’ll explore how Perl allows us
 to write more sophisticated file-walking code, beginning with the very basics and
 ratcheting up the complexity as we go on.
To get started, let’s take a common scenario that provides a clear problem for us
 to solve. In this scenario, we’re Unix system administrators with overflowing user
 filesystems and empty budgets. (We’re picking on Unix first, but the other operating
 systems will get their turns in a
 moment.)
We can’t add more disk space without money, so we have to make better use of our
 existing resources. Our first step is to remove all the files on our filesystems
 that can be eliminated. Under Unix, good candidates for elimination are the core
 files left around by programs that have died nasty deaths. Most users either do not
 notice these files or just ignore them, leaving large amounts of disk space claimed
 for no reason. We need a way to search through a filesystem and delete these
 varmints.
To walk a filesystem by hand, we start by reading the contents of a single
 directory and work our way down from there. Let’s ease into the process and begin
 with code that examines the contents of the current directory and reports if it
 finds either a core file or another directory to be searched.
First, we open the directory using roughly the same syntax used for opening a
 file. If the open fails, we exit the program and print the error message set by the
 opendir() call ($!):
opendir my $DIR, '.' or die "Can't open the current directory: $!\n";
This provides us with a directory handle, $DIR
 in this case, which we can pass to readdir() to
 get a list of all the files and directories in the current directory. If readdir() can’t read that
 directory, our code prints an error message (which hopefully explains why it failed)
 and the program exits:
read file/directory names in that directory into @names
my @names = readdir $DIR or die "Unable to read current dir:$!\n";
We then close the open directory handle:
closedir $DIR;
Now we can work with those names:
foreach my $name (@names) {
 next if ($name eq '.'); # skip the current directory entry
 next if ($name eq '..'); # skip the parent directory entry

 if (-d $name) { # is this a directory?
 print "found a directory: $name\n";
 next; # can skip to the next name in the for loop
 }
 if ($name eq 'core') { # is this a file named "core"?
 print "found one!\n";
 }
}
That’s all it takes to write some very simple code that scans a single directory.
 This isn’t even “crawling” a filesystem, though, never mind walking it. To walk the
 filesystem we’ll have to enter all of the directories we find in the scan and look
 at their contents as well. If those subdirectories have subdirectories, we’ll need
 to check them out too.
Whenever you have a hierarchy of containers and an operation that gets performed
 the exact same way on every container and subcontainer in that hierarchy, the
 situation calls out for a recursive solution (at least to computer science majors).
 As long as the hierarchy is not too deep and doesn’t loop back on itself (i.e., all
 containers hold only their immediate children and do not reference other parts of
 the hierarchy), recursive solutions tend to make the most sense. This is the case
 with our example; we’re going to be scanning a directory, all of its subdirectories,
 all of their subdirectories, and so on.
If you’ve never seen recursive code (i.e., code that calls itself), you may find it a bit
 strange at first. Writing recursive code is a bit like painting a set of
 matryoshka nesting Russian dolls, the largest of which
 contains a slightly smaller doll of the exact same shape, which contains another
 doll, and so on until you get to a very small doll in the center.
A recipe for painting these dolls might go something like this:
	Examine the doll in front of you. Does it contain a smaller doll? If so,
 remove the contents and set aside the outer doll.

	Repeat step 1 with the contents you just removed until you reach the
 center.

	Paint the center doll. When it is dry, put it back in its container
 doll.

	Repeat step 3 with the next-smallest doll until they’re all back in their
 containers and you’ve painted the last one.

The process is the same every step of the way. If the thing in your hand has
 sub-things, put off dealing with it and deal with the sub-things first. If the thing
 you have in your hand doesn’t have sub-things, do something with it, and then return
 to the last thing you put off and work your way back up the chain.
In coding terms, this process is typically handled by a subroutine that deals with
 containers. The routine first looks to see whether the current container has
 subcontainers. If it does, it calls itself again and again to
 deal with all of these subcontainers. If it doesn’t, it performs some operation and
 returns back to the code that called it. If you’re not familiar with code that calls
 itself, I recommend sitting down with a paper and a pencil and tracing the program
 flow until you are convinced it actually works.
Let’s take a look at some recursive code now. To make our code recursive, we first
 encapsulate the operation of scanning a directory and acting upon its contents in a
 subroutine called ScanDirectory(). ScanDirectory() takes a single argument, the directory
 it is supposed to scan. It figures out the current directory, enters the requested
 directory, and scans it. When it has completed this scan, it returns to the
 directory from which it was called. Here’s the new code:
#!/usr/bin/perl -s

Note the use of -s for switch processing. Under Windows, you will need to
call this script explicitly with -s (i.e., perl -s script) if you do not
have perl file associations in place.
-s is also considered 'retro' - many programmers prefer to load
a separate module (from the Getopt:: family) for switch parsing.

use Cwd; # module for finding the current working directory

This subroutine takes the name of a directory and recursively scans
down the filesystem from that point looking for files named "core"
sub ScanDirectory {
 my $workdir = shift;

 my $startdir = cwd; # keep track of where we began

 chdir $workdir or die "Unable to enter dir $workdir: $!\n";
 opendir my $DIR, '.' or die "Unable to open $workdir: $!\n";
 my @names = readdir $DIR or die "Unable to read $workdir: $!\n";
 closedir $DIR;

 foreach my $name (@names) {
 next if ($name eq '.');
 next if ($name eq '..');

 if (-d $name) { # is this a directory?
 ScanDirectory($name);
 next;
 }
 if ($name eq 'core') { # is this a file named "core"?
 # if -r specified on command line, actually delete the file
 if (defined $r) {
 unlink $name or die "Unable to delete $name: $!\n";
 }
 else {
 print "found one in $workdir!\n";
 }
 }
 }
 chdir $startdir or die "Unable to change to dir $startdir: $!\n";
}

ScanDirectory('.');
The most important change from the previous example is our code’s behavior when it
 finds a subdirectory in the directory it has been requested to scan. If it finds a
 directory, instead of printing “found a directory!” as our previous sample did, it
 recursively calls itself to examine that directory first. Once that entire
 subdirectory has been scanned (i.e., when the call to ScanDirectory() returns), it returns to looking at the rest of the
 contents of the current directory.
To make our code fully functional as a core file-destroyer, we’ve also added file
 deletion functionality to it. Pay attention to how that code is written: it will
 only delete files if the script is started with the command-line switch -r (for remove).
We’re using Perl’s built-in -s switch for
 automatic option parsing as part of the invocation line (#!/usr/bin/perl -s). This is the simplest way to parse command-line
 options;[4] for more sophistication, we’d probably use something from the
 Getopt:: module family. If a command-line switch
 is present (e.g., -r), a global scalar variable
 with the same name (e.g., $r) is set when the
 script is run. In our code, if Perl is not invoked with -r, we revert to the past behavior of just announcing that a core
 file has been found.
Warning
When you write automatic tools, you should make destructive actions harder to
 perform. Take heed: Perl, like most powerful languages, allows you to nuke your filesystem without
 breaking a sweat.

Now, lest any Windows-focused readers among you think the previous example didn’t
 apply to you, let me point out that this code could be made useful for you as well.
 A single line change from:
if ($name eq 'core') {
to:
if ($name eq 'MSCREATE.DIR') {
will create a program that deletes the annoying, hidden zero-length files certain
 Microsoft program installers used to leave behind. Infestation with these files
 isn’t as much of a problem today as it used to be, but I’m sure some other file will
 take their place in the list of annoyances.
With this code under our belt, let’s return to the quandary that started this
 chapter. After my laptop kissed the floor, I found myself in desperate need of a way
 to determine which files could be read off the disk and which were damaged.
Here’s the actual code (or a reasonable facsimile) that I used:
use Cwd; # module for finding the current working directory
$|=1; # turn off I/O buffering

sub ScanDirectory {
 my $workdir = shift;

 my $startdir = cwd; # keep track of where we began

 chdir $workdir or die "Unable to enter dir $workdir: $!\n";

 opendir my $DIR, '.' or die "Unable to open $workdir: $!\n";
 my @names = readdir $DIR;
 closedir $DIR;

 foreach my $name (@names) {
 next if ($name eq '.');
 next if ($name eq '..');

 if (-d $name) { # is this a directory?
 ScanDirectory($name);
 next;
 }
 CheckFile($name)
 or print cwd. '/' . $name . "\n"; # print the bad filename

 }
 chdir $startdir or die "Unable to change to dir $startdir:$!\n";
}

sub CheckFile {
 my $name = shift;

 print STDERR 'Scanning ' . cwd . '/' . $name . "\n";

 # attempt to read the directory entry for this file
 my @stat = stat($name);
 if (!$stat[4] && !$stat[5] && !$stat[6] && !$stat[7] && !$stat[8]) {
 return 0;
 }

 # attempt to open this file
 open my $T, '<', "$name" or return 0;

 # read the file one byte at a time, throw away actual data in $discard
 for (my $i = 0; $i < $stat[7]; $i++) {
 my $r = sysread($T, $discard, 1);
 if ($r != 1) {
 close $T;
 return 0;
 }
 }
 close $T;
 return 1;
}

ScanDirectory('.');
The difference between this code and our last example is the addition of a
 subroutine to check each file encountered. For every file, we use the stat() function to see if we can read that file’s
 directory information (e.g., its size). If we can’t, we know the file is damaged. If
 we can read the directory information, we attempt to open the file. And for a final
 test, we attempt to read every single byte of the file. This doesn’t guarantee that
 the file hasn’t been damaged (the contents could have been modified), but it does at
 least show that the file is readable.
You may wonder why this code uses an esoteric function like sysread() to read the files instead of using < > or read(), Perl’s usual file-reading operator and function. sysread() gives us the ability to
 read the file byte-by-byte without any of the usual buffering. If a file is damaged
 at location X, we don’t want to waste time
 waiting for the standard library routines to attempt to read the bytes at locations
 X+1, X+2,
 X+3, and so on as part of their usual
 pre-fetch; we want the code to quit trying to read the file immediately. In general
 you will want file reads to fetch whole chunks at a time for performance’s sake, but
 here that’s undesirable because it would mean the laptop would spend prolonged
 periods of time making awful noises every time it found a damaged file.
Now that you’ve seen the code I used, let me offer some closure to this story.
 After the script you just saw ran all night long (literally), it found 95 bad files
 out of 16,000 total. Fortunately, none of those files were files from the book you
 are now reading. I backed up the good files to another machine and got back to work;
 Perl saved the day.

[4] -s doesn’t play nicely with use strict by default, so don’t use it for
 anything but the most trivial scripts.

Walking the Filesystem Using the File::Find Module

Now that we’ve explored the basics of filesystem walking, here’s a faster and spiffier way to do it. Perl
 comes with a module called File::Find that allows
 it to emulate the Unix find command. The easiest
 way to begin using this module is to use the find2perl command to generate prototypical Perl code for you.
For instance, let’s say you need some code to search the
 /home directory for files named
 beesknees. The command line that uses the Unix find command is:
% find /home -name beesknees -print
Feed the same options to find2perl:
% find2perl /home -name beesknees -print
and it produces:
#! /usr/bin/perl -w
 eval 'exec /usr/bin/perl -S $0 ${1+"$@"}'
 if 0; #$running_under_some_shell

use strict;
use File::Find ();

Set the variable $File::Find::dont_use_nlink if you're using AFS,
since AFS cheats.

for the convenience of &wanted calls, including -eval statements:
use vars qw/*name *dir *prune/;
*name = *File::Find::name;
*dir = *File::Find::dir;
*prune = *File::Find::prune;

sub wanted;

traverse desired filesystems
File::Find::find({wanted => \&wanted}, '/home');
exit;

sub wanted {
 /^beesknees\z/s &&
 print("$name\n");
}
The find2perl-generated code is fairly straightforward. It
 loads in the necessary Find::File module, sets up
 some variables for convenient use (we’ll take a closer look at these a little
 later), and calls File::Find::find with the name
 of a “wanted” subroutine and the starting directory. We’ll examine this subroutine and
 its purpose in just a second, since it’s where all of the interesting modifications
 we’re about to explore will live.
Before we begin modifying this code, it’s important to note a few things that may
 not be obvious just by looking at the sample output:
	The folks who have worked on the File::Find module have gone to considerable trouble to make
 this module portable across platforms. File::Find’s internal routines work behind the scenes so the
 same Perl code for filesystem walking works for Unix, Mac OS X, Windows,
 VMS, and so on.

	The code generated by find2perl includes the
 obsolete
 use vars pragma, which was replaced by
 the our() function in Perl 5.6. I suspect
 it was left this way for backward compatibility. I just wanted to point this
 out just so you don’t pick up this convention by mistake.

Now let’s talk about the wanted() subroutine
 that we will modify for our own purposes. File::Find::find() calls the wanted() subroutine with the current file or directory name once for
 every file or directory encountered during its filesystem walk. It’s up to the code
 in wanted() to select the “interesting” files or
 directories and operate on them accordingly. In the sample output shown earlier, it
 first checks to see if the file or directory name matches the string beesknees. If the name matches, the && operator causes Perl to execute the
 print statement to print the name of the file
 or directory that was found.
We’ll have to address two practical concerns when we create our own wanted() subroutines. Since wanted() is called once per file or directory name, it is important
 to make the code in this subroutine short and sweet. The sooner we can exit the
 wanted() subroutine, the faster the File::Find::find() routine can proceed with the next
 file or directory, and the speedier the overall program will run. It is also
 important to keep in mind the behind-the-scenes portability concerns we mentioned a
 moment ago. It would be a shame to have a portable File::Find::find() call an OS-specific wanted() subroutine, unless this was unavoidable. Looking at the
 source code for the File::Find module and the
 perlport documentation may offer some hints
 on how to avoid this situation.
For our first use of File::Find, let’s rewrite
 our previous core-destroyer example and then extend it a bit. First we type:
% find2perl -name core -print
which gives us (in excerpt):
use strict;
use File::Find ();

use vars qw/*name *dir *prune/;
*name = *File::Find::name;
*dir = *File::Find::dir;
*prune = *File::Find::prune;

File::Find::find({wanted => \&wanted}, '.');

sub wanted {
 /^core\z/s &&
 print("$name\n");
}
Then we add -s to the Perl invocation line and
 modify the wanted() subroutine:
my $r;
sub wanted {
 /^core$/ && print("$name\n") && defined $r && unlink($name);
}
This gives us the desired deletion functionality when the user invokes the program
 with -r. Here’s a tweak that adds another measure
 of protection to our potentially destructive code:
my $r;
sub wanted {
 /^core$/ && -s $name && print("$name\n") &&
 defined $r && unlink($name);
}
This checks any file called core to see if it is a
 non-zero-length file before printing the name or
 contemplating deletion. Sophisticated users sometimes create a link to
 /dev/null named
 core in their home directories to prevent inadvertent core
 dumps from being stored in those directories. The -s test makes sure we don’t delete links or zero-length files by
 mistake. If we wanted to be even more diligent, we could make two additional
 checks:
	Open and examine the file to confirm that it is an actual core file,
 either from within Perl or by calling the Unix file command.
 Determining whether a file is an authentic core dump file can be tricky when
 you have filesystems remotely mounted over a network by machines of
 different architectures, all with different core file formats.

	Look at the modification date of the file. If someone is actively
 debugging a program, she may not be happy if you delete the core file out
 from under her.

Before we look at any more code, it would probably be helpful to explain those
 mysterious variable aliasing lines:
*name = *File::Find::name;
*dir = *File::Find::dir;
*prune = *File::Find::prune;
Find::File makes a number of variables
 available to the wanted() subroutine as it runs.
 The important ones are listed in Table 2-2.
Table 2-2. File::Find variables
	
 Variable name

 	
 Meaning

	

 $_

 	
 Current filename

	

 $File::Find::dir

 	
 Current directory name

	

 $File::Find::name

 	
 Full path of current filename (e.g., "$File::Find::dir/$_")

We’ll see how these are used in our next code example.
Let’s take a break from the Unix world for a bit and look at a couple of
 Windows-specific examples. We could make a small modification to our previous code
 to have it search the entire filesystem of the current drive for hidden files (i.e.,
 those with the HIDDEN attribute set). This
 example works on both NTFS and FAT filesystems:
use File::Find ();
use Win32::File;

File::Find::find({ wanted => \&wanted }, '\\');

my $attr; # defined globably instead of in wanted() to avoid repeatedly
 # defining a local copy of $attr every time it is called

sub wanted {
 -f $_
 && (Win32::File::GetAttributes($_, $attr))
 && ($attr & HIDDEN)
 && print "$File::Find::name\n";
}
Here’s an NTFS-specific example that will look for all files that have Full Access
 explicitly enabled for the special group
 Everyone and print their names:
use File::Find;
use Win32::FileSecurity;

determine the DACL mask for Full Access
my $fullmask = Win32::FileSecurity::MakeMask(qw(FULL));

File::Find::find({ wanted => \&wanted }, '\\');

sub wanted {
 # this time we're happy to make sure we get a fresh %users each time
 my %users;

 (-f $_)
 && eval {Win32::FileSecurity::Get($_, \%users)}
 && (defined $users{'Everyone'})
 && ($users{'Everyone'} == $fullmask)
 && print "$File::Find::name\n";
}
In this code, we query the access control list for all files, checking whether
 that list includes an entry for the group Everyone. If it does,
 we compare the Everyone entry to the value for Full Access
 (computed by MakeMask()), printing the absolute
 path of the file when we find a match.
Note
You may be curious about the eval() call
 that popped up in the previous code sample. Despite what the documentation says
 about
 Win32::FileSecurity nicely returning errors
 in $!, when it encounters certain situations
 it instead throws a snit fit and exits abruptly. This is listed as a bug in the
 docs, but that’s easy to miss.
Unfortunately, two common things give this module dyspepsia: the presence of a
 paging file it can’t read, and the presence of a null DACL (a discretionary ACL set to null). We use eval() to trap and ignore this antisocial
 behavior.
As a related aside, some parts of the OS (e.g., Explorer) also treat a null
 DACL as giving the same access to Everyone our code tries to find. If we wanted
 to display the files with this condition, we could check $@.

Here is another real-life example of how useful even simple code can be. Many
 moons ago, I was attempting to defragment the NTFS partition on a laptop when the
 software reported a “Metadata Corruption Error.” Perusing the website of the vendor
 who made the defragmentation software, I encountered a tech support note that
 suggested, “This situation can be caused by a long filename which contains more
 characters than is legal under Windows NT.” It then suggested locating this file by
 copying each folder to a new location, comparing the number of files in the copy to
 the original, and then, if the copied folder has fewer files, identifying which
 file(s) in the original folder did not get copied to the new location.
This seemed like a ridiculous suggestion given the number of folders on my NT
 partition and the amount of time it would take. Instead, I whipped up the following
 code (edited to use current-day syntax) in about a minute using the methods we’ve
 been discussing:
use File::Find;

my $max;
my $maxlength;

File::Find::find({ wanted => \&wanted }, '.');

print "max:$max\n";

sub wanted {
 return unless -f $_;
 if (length($_) > $maxlength) {
 $max = $File::Find::name;
 $maxlength = length($_);
 }
 if (length($File::Find::name) > 200) { print $File::Find::name, "\n"; }
}
This printed out the names of all the files with names longer than 200 characters,
 followed by the name of the largest file found. Job done, thanks to Perl.
When Not to Use the File::Find Module
When is the File::Find method we’ve been
 discussing not appropriate? Three situations come to
 mind:
	If the filesystem you are traversing does not follow the normal
 semantics, you can’t use it. For instance, in the bouncing laptop
 scenario described at the beginning of the chapter, the Linux NTFS
 filesystem driver I was using had the strange property of not listing
 “.” or “..” in empty directories. This broke File::Find badly.

	If you need to change the names of the directories in the filesystem
 you are traversing while you are traversing it,
 File::Find gets very unhappy and
 behaves in an unpredictable way.

	If you need to walk a nonnative filesystem mounted on your machine
 (for example, an NFS mount of a Unix filesystem on a Windows machine),
 File::Find will attempt to use the native operating
 system’s filesystem semantics.
It is unlikely that you’ll encounter these situations, but if you do,
 refer to the first filesystem-walking section of this chapter for
 information on how to traverse filesystems by hand.

Let’s return to Unix to close this section with a more complex example. One idea
 that seems to get short shrift in many system administration contexts (but can yield
 tremendous benefit in the end) is the notion of empowering the user. If your users
 can fix their own problems with tools you provide, everybody wins.
Much of this chapter is devoted to dealing with problems that arise from
 filesystems being filled. Often this occurs because users do not know enough about
 their environment, or because it is too cumbersome to perform any basic disk-space
 management. Many a support request starts with “I’m out of disk space in my home
 directory and I don’t know why.” Here’s a bare-bones version of a script called needspace that can help users with this
 problem. All the user has to do is type needspace, and the script attempts to locate items in that user’s home
 directory that could be deleted. It looks for two kinds of files: known core/backup
 files and those that can be recreated automatically. Let’s dive into the
 code:
use File::Find;
use File::Basename;
use strict;

hash of fname extensions and the extensions they can be derived from
my %derivations = (
 '.dvi' => '.tex',
 '.aux' => '.tex',
 '.toc' => '.tex',
 '.o' => '.c',
);

my %types = (
 'emacs' => 'emacs backup files',
 'tex' => 'files that can be recreated by running La/TeX',
 'doto' => 'files that can be recreated by recompiling source',
);

my $targets; # we'll collect the files we find into this hash of hashes
my %baseseen; # for caching base files
We start by loading the libraries we need: our friend File::Find and another useful library called File::Basename. File::Basename
 will come in handy for parsing pathnames. We then initialize a hash
 table with known derivations; for instance, we know that running the
 command
 TeX or LaTeX
 on the file happy.tex can generate the file
 happy.dvi, and that happy.o could
 possibly be created by running a C compiler on happy.c. I say
 “possibly” because sometimes multiple source files are needed to generate a single
 derived file. We can only make simple guesses based on file extensions; generalized
 dependency analysis is a complex problem we won’t attempt to touch here.
Next, we locate the user’s home directory by finding the user ID of the person
 running the script ($<) and feeding it to
 getpwuid(). getpwuid() returns password information in list form (more on this in
 Chapter 3), from which an array index ([7]) selects the home directory element. There are
 shell-specific ways to retrieve this information (e.g., querying the $HOME environment variable), but the code as written
 is more portable.
Once we have the home directory, we enter it and begin scanning using a find() call just like the ones we’ve seen
 before:
my $homedir = (getpwuid($<))[7]; # find the user's home directory

chdir($homedir)
 or die "Unable to change to your homedir $homedir:$!\n";

$| = 1; # print to STDOUT in an unbuffered way

print 'Scanning';
find(\&wanted, '.');
print "done.\n";
Here’s the wanted() subroutine we call. It
 starts by looking for core files and emacs
 backup and autosave files. We assume these files can be deleted without checking for
 their source file (perhaps not a safe assumption). If one of these files is found,
 its size and location is stored in a hash of hashes whose inner key is the path to
 the file with a value that is the size of that file.
The remaining checks for derivable files are very similar. They call the routine
 BaseFileExists() to
 check whether a particular file can be derived from another file in that directory.
 If this routine returns true, we store the
 filename and size info for later retrieval:
sub wanted {

 # print a dot for every dir so the user knows we're doing something
 print '.' if (-d $_);

 # we're only checking files
 return unless -f $_;

 # check for core files
 $_ eq 'core'
 && ($targets->{core}{$File::Find::name} = (stat(_))[7])
 && return;

 # check for emacs backup and autosave files
 (/^#.*#$/ || /~$/)
 && ($targets->{emacs}{$File::Find::name} = (stat(_))[7])
 && return;

 # check for derivable tex files
 (/\.dvi$/ || /\.aux$/ || /\.toc$/)
 && BaseFileExists($File::Find::name)
 && ($targets->{tex}{$File::Find::name} = (stat(_))[7])
 && return;

 # check for derivable .o files
 /\.o$/
 && BaseFileExists($File::Find::name)
 && ($targets->{doto}{$File::Find::name} = (stat(_))[7])
 && return;
}
Here’s the routine that checks whether a particular file can be derived from
 another “base” file in the same directory (i.e., whether
 happy.c exists if we find
 happy.o):
sub BaseFileExists {
 my ($name, $path, $suffix) = File::Basename::fileparse($_[0], '\..*');

 # if we don't know how to derive this type of file
 return 0 unless (defined $derivations{$suffix});

 # easy, we've seen the base file before
 return 1
 if (defined $baseseen{ $path . $name . $derivations{$suffix} });

 # if file (or file to which link points) exists and has non-zero size
 # return success once we have cached the information
 return 1
 if (-s $name . $derivations{$suffix}
 && ++$baseseen{ $path . $name . $derivations{$suffix} });
}
Here’s how this code works:
	File::Basename::fileparse() is used to
 separate the path into a filename, its leading path, and its suffix (e.g.,
 resume.dvi, /home/cindy/docs/, .dvi).

	This file’s suffix is checked to determine if it is one we recognize as
 being derivable. If not, we return 0
 (“false” in a scalar context).

	We check whether we’ve already seen a “base file” for this particular
 file, and if so return true. In some
 situations (TeX/LaTeX in particular), a single base file can yield many
 derived files. This check speeds things up considerably because it saves us
 a trip to the filesystem.

	If we haven’t seen a base file for this file before, we check to see if
 one exists and, if so, that it’s length is non-zero. If so, we cache the
 base file information and return 1
 (“true” in a scalar context).

All that’s left for us to do now is to print out the information we gathered as we
 walked the filesystem:
foreach my $path (keys %{ $targets->{core} }) {
 print 'Found a core file taking up '
 . BytesToMeg($targets->{core}{$path})
 . 'MB in '
 . File::Basename::dirname($path) . ".\n";
}

foreach my $kind (sort keys %types) {
 ReportDerivFiles($kind, $types{$kind});
}

sub ReportDerivFiles {
 my $kind = shift; # kind of file we're reporting on
 my $message = shift; # a message so we can describe it
 my $tempsize = 0;

 return unless exists $targets->{$kind};

 print "\nThe following are most likely $message:\n";

 foreach my $path (keys %{ $targets->{$kind} }) {
 $tempsize += $targets->{$kind}{$path};
 $path =~ s|^\./|~/|; # change the path for prettier output
 print "$path ($targets->{$kind}{$path} bytes)\n";
 }
 print 'These files take up ' . BytesToMeg($tempsize) . "MB total.\n\n";
}

sub BytesToMeg { # convert bytes to X.XXMB
 return sprintf("%.2f", ($_[0] / 1024000));
}
Before I close this section, I should note that we could extend the previous
 example in many ways. The sky’s really the limit with this sort of program. Here are
 a few ideas:
	Search for web browser cache directories (a common source of missing disk
 space).

	Offer to delete files that are found. The operator unlink() and the subroutine rmpath from the File::Path module could be used to perform the deletion
 step.

	Perform more analysis on files instead of making guesses based on
 filenames.

Walking the Filesystem Using the File::Find::Rule Module

File::Find provides an easy and easy-to-understand way to walk filesystems. It has the added
 benefit of shipping with Perl. But after you’ve written a number of File::Find-based scripts, you may notice that you tend
 to write the same kind of code over and over again. At that point you might start to
 wonder if there are any ways to avoid repeating yourself in this fashion besides
 just working from a standard boilerplate you create. If you are not constrained to
 modules that ship with Perl, I’m happy to say there is: File::Find::Rule.
File::Find::Rule is a fabulous module by
 Richard Clamp (actually, potentially a family of modules, as you’ll see
 in a second) that offers two very slick interfaces to File::Find. Once you have the hang of File::Find, I definitely recommend that you check out File::Find::Rule. Let’s take a look at what makes it
 so cool.
First off, Clamp’s module makes writing scripts that collect lists of certain
 files or directories from the filesystem much easier. With File::Find you have to handle both the selection and the accumulation
 tasks by hand, but File::Find::Rule does the work
 for you. You tell it where to begin its file walk and then provide either a series
 of chained methods or a list of arguments that describe the filesystem objects that
 interest you. It then produces either a list of what you were looking for or a way
 of iterating over each item it finds, one at a time. Let’s start with the simplest
 expression and build from there:
use File::Find::Rule;
my @files_or_dirs = File::Find::Rule->in('.');
@files_or_dirs now contains all of the files
 and directories found in the current directory or its subdirectories, as specified
 by the in() method. If we only wanted the files
 and not the directories, we could add file():
my @files = File::Find::Rule->file()->in('.');
Or if we only wanted files that ended with .pl (i.e.,
 probably the Perl files):
my @perl_files = File::Find::Rule->file()->name('*.pl')->in('.');
and so on. As you can see, we are just adding more methods into the chain that
 essentially act as filters. File::Find::Rule also
 offers a procedural interface, so if you’d prefer something that was less
 object-oriented, you would rewrite the previous line of code to say:
my @perl_files = find(file => name => '*.pl', in => '.');
I don’t find that format as easy to read, but some people may prefer it.
Before I show you the second impressive thing about this module, I should mention
 that File::Find::Rule provides an iterator-based
 interface as well. This is handy for those cases where your selection can return a
 large number of items. For instance, if you asked for all of the readable files on
 just my laptop, the resulting array would have more than a million elements in it.
 It addition to that being a pretty sizable chunk of data to keep in memory, it would
 also take a decent amount of time to collect. You may prefer to get operating on the
 files as they are found, rather than twiddling your thumbs until they are all
 returned as a list. This is where an iterator comes in handy. To use this feature,
 we would call start() instead of in() at the beginning (or end, depending on your point
 of view) of the method chain:
my $ffr = File::Find::Rule->file()->name('*.pl')->start('.');
This code returns an object that has a match()
 method. match() will hand you back the very next
 match found (or false if there are none) every
 time you call it:
while (my $perl_file = $ffr->match){
 # do something interesting with $perl_file
}
This allows you to walk the filesystem one matching item at a time (kind of like
 the wanted() subroutine we saw before, but better
 because you’re only handed the things you want).
Now on to the second benefit of using File::Find::Rule. You’ve probably already guessed that you can
 construct some fairly complex chains of filter methods to get back exactly what you
 want. If you want all of the executable Perl files over a certain size owned by a
 particular set of UIDs, for example, that’s no problem at all. That code just looks
 like this:
use File::Find::Rule;

@interesting =
 File::Find::Rule
 ->file()
 ->executable()
 ->size('<1M')
 ->uid(6588, 6070)
 ->name('*.pl')
 ->in('.');
If you’ve already peeked at the File::Find::Rule documentation, you may have noticed that you can
 construct chains held together by not just a Boolean “and” relationship (“true if it
 is this and that and that...”). File::Find::Rule
 lets you use or() and any() to find things that have “this or that or that...” or have “at
 least one of any of these things true.” You may also have noticed that there is a
 grep() method that can look at the contents
 of files found as yet another filter. But that’s still not the coolest part.
Richard Clamp has designed his module so that other people can add filter methods in a seamless fashion. On first blush that may not seem
 all that impressive, but wait until you see some of the filter modules that are
 available. Here’s a small taste:
	File::Find::Rule::VCS
 by Adam Kennedy adds methods that make it easy to ignore the
 administrative files kept around by various source control systems, such as
 CVS, Subversion, and Bazaar.

	File::Find::Rule::PPI
 by the same author lets you search for Perl files that contain
 specific Perl elements (e.g., all of the files that have POD documentation,
 or even those that use subroutines). This isn’t just a simple grep(); it actually parses each of the
 files.

	File::Find::Rule::ImageSize, an add-on by creator Richard Clamp, lets you select or reject
 images based on their size.

	File::Find::Rule::Permissions by
 David Cantrell lets you select files and directories based on a
 given user’s permissions (e.g., “can nobody change any
 files in this directory?”)

	File::Find::Rule::MP3Info by Kake Pugh lets you find MP3 files based on arbitrary MP3 tags
 (e.g., find all songs by a certain artist, or over six minutes in length).
 Really. We’ll see this module again in the last chapter.

There are quite a few more modules in this family. Most of them are a little more
 generic than the ones just listed (e.g., to allow you to search for files with
 various file permissions or ages), but I wanted to give you a sampling so you could
 see how powerful this idiom can be.

Manipulating Disk Quotas

Perl scripts like our core-killers from the last section can offer a way to deal with junk
 files that cause unnecessary disk-full situations. But even when run on a regular
 basis, they are still a reactive approach; the administrator deals with these files
 only after they’ve come into existence and cluttered the filesystem.
There’s another, more proactive approach: filesystem quotas. Filesystem quotas,
 operating system permitting, allow you to constrain the amount of disk space a
 particular user can consume on a filesystem. All of the operating systems in play in
 this book support them in one form or another.
Though proactive, this approach is considerably more heavy-handed than cleanup
 scripts because it applies to all files, not just spurious ones like core dumps.
 Most system administrators find using a combination of automated cleanup scripts and
 quotas to be the best strategy: the former help prevent the latter from being
 necessary.
In this section, we’ll mostly deal with manipulating Unix quotas from Perl (we’ll
 take a quick peek at NTFS quotas at the end of the chapter). Before we get into Unix
 quota scripting, however, we should take a moment to understand how quotas are set
 and queried “by hand.” To enable quotas on a filesystem, a Unix system administrator
 usually adds an entry to the filesystem mount table (e.g.,
 /etc/fstab or /etc/vfstab) and then
 reboots the system or manually invokes the quota enable command (usually quotaon). Here’s an example
 /etc/vfstab from a Solaris box:
#device device mount FS fsck mount mount
#to mount to fsck point type pass at boot options
/dev/dsk/c0t0d0s7 /dev/rdsk/c0d0t0d0s7 /home ufs 2 yes rq
The rq option in the last column enables quotas
 on this filesystem. They are stored on a per-user basis. To view the quota entries
 for a user on all of the mounted filesystems that have quotas enabled, one can
 invoke the
 quota command like so:
$ quota -v sabrams
to produce output similar to this:
Disk quotas for sabrams (uid 670):
Filesystem usage quota limit timeleft files quota limit timeleft
/home/users 228731 250000 253000 0 0 0
For our next few examples, we’re only interested in the first three numeric
 columns of this output. The first number is the current amount of disk space (in
 1,024-byte blocks) being used by the user sabrams on the
 filesystem mounted at /home/users. The second is that user’s
 “soft quota.” The soft quota is the amount after which the OS begins complaining for
 a set period of time, but does not restrict space allocation. The final number is
 the “hard quota,” the absolute upper bound for this user’s space usage. If a program
 attempts to request more storage space on behalf of the user after this limit has
 been reached, the OS will deny this request and return an error message like “disk
 quota exceeded.”
If we wanted to change these quota limits by hand, we’d traditionally use
 the
 edquota command. edquota pops you into your editor of choice (specified by setting
 the
 EDITOR environment variable
 in your shell), preloaded with a small temporary text file containing the pertinent
 quota information. Here’s an example buffer that shows a user’s limits on each of
 the four quota-enabled filesystems. This user most likely has her home directory on
 /exprt/server2, since that’s the only filesystem where she
 has quotas in place:
fs /exprt/server1 blocks (soft = 0, hard = 0) inodes (soft = 0, hard = 0)
fs /exprt/server2 blocks (soft = 250000, hard = 253000) inodes (soft = 0, hard = 0)
fs /exprt/server3 blocks (soft = 0, hard = 0) inodes (soft = 0, hard = 0)
fs /exprt/server4 blocks (soft = 0, hard = 0) inodes (soft = 0, hard = 0)
Using edquota to make changes by hand may be a
 comfy way to edit a single user’s quota limits, but it is not a viable way to deal
 with tens, hundreds, or thousands of user accounts. Still, as you’ll see, it can be
 useful.
One of Unix’s flaws is its lack of command-line tools for editing quota entries.
 Most Unix variants have C library routines for this task, but no Unix variant
 vendors ship common command-line tools that allow for higher-level scripting. True
 to the Perl motto “There’s more than one way to do it” (TMTOWTDI, pronounced “tim-toady”), we are going to look at two very
 different ways of setting quotas from Perl: performing some tricks with edquota and using the Quota module.
The New Tradition?
There’s actually a third way we could try, but I’m not going to demonstrate it
 because it is far less portable. As time has gone on, some Unix variant vendors
 have provided command-line tools for quota editing that can be called from Perl.
 For example, much of the Linux world has a setquota command. However,
 these are not universally available, do not take the same command-line
 arguments, and so on.
There is a package called
 quotatool, written by Mike Glover and maintained by Johan Ekenberg, that attempts to provide a more cross-platform
 utility for quota editing. It can be found at http://quotatool.ekenberg.se.
quotatool is pretty spiffy, but I’m still
 going to show you how to manipulate edquota
 instead, for two reasons: quotatool may not
 be available on the system you are using, and, more importantly, the technique
 used can be a real lifesaver for things other than just quota editing. If you
 learn how to use this technique in this context it will likely serve you well in
 others.

Editing Quotas with edquota Trickery

The first method involves a little trickery on our part. I just described the
 process for manually setting a single user’s quota: the edquota command invokes an editor to allow you to edit a small
 text file and then uses any changes to update the quota entries. There’s nothing
 in this scenario mandating that an actual human has to type at a keyboard to
 make changes in the editor, though. In fact, there’s not even a constraint on
 which editor has to be used. All edquota
 needs is a program it can launch that will properly change a small text file.
 Any valid path (as specified in the
 EDITOR environment variable) to such a
 program will do. Why not point edquota at a
 Perl script? In this next example, we’ll look at just such a script.
Our example script will need to do double duty. First, it has to get some
 command-line arguments from the user, set EDITOR appropriately, and call edquota. edquota will then run
 another copy of our program to do the real work of editing this temporary file.
 Figure 2-1 shows a diagram of
 the action.
The initial program invocation must tell the second copy what to change. How
 it passes this information is less straightforward than one might hope. The
 manual page for edquota says: “The editor
 invoked is vi(1) unless the EDITOR environment variable specifies otherwise.” The idea of
 passing command-line arguments via EDITOR or
 another environment variable is a dicey prospect at best, because we don’t know
 how edquota will react. Instead, we’ll have
 to rely on one of the other interprocess communication methods available in
 Perl. See the sidebar Can We Talk? for some of the
 possibilities.
[image: Changing quotas using a “sleight-of-hand” approach]

Figure 2-1. Changing quotas using a “sleight-of-hand” approach

In our case, we’re going to choose a simple but powerful method to exchange
 information. Since the first process only has to provide the second one with a
 single set of change instructions (what quotas need to be changed and their new
 values), we’re going to set up a standard Unix pipe between the two of
 them.[5] The first process will print a change request to its output, and the
 copy spawned by edquota will read this info
 as its standard input.
Can We Talk?
When you need two processes to exchange information with each other via
 Perl, there are a number of things you can do, including:
	Pass a temporary file between them.

	Create a named pipe and talk over that.

	Pass AppleEvents (under Mac OS X).

	Use mutexes or mutually agreed upon registry keys (under
 Windows).

	Have them meet at a network socket.

	Use a shared memory section.

It’s up to you as the programmer to choose the appropriate communication
 method, though often the data will dictate this for you.
When looking at this data, you’ll want to consider:
	Direction of communication (one- or two-way?)

	Frequency of communication (is this a single message or are there
 multiple chunks of information that need to be passed?)

	Size of data (is it a 10 MB file or 20 characters?)

	Format of data (is it a binary file or just text characters? fixed
 width, or character separated?)

Finally, be conscious of how complicated you want to make your
 script.

Let’s write the program. The first thing the program has to do when it starts
 up is decide what role it’s been asked to play. We can assume that the first
 invocation receives several command-line arguments (i.e., what to change) while
 the second, called by edquota, receives only
 one (the name of the temporary file). The program forces a set of command flags
 to be present if it is called with more than one argument, so we’re pretty safe
 in using this assumption as the basis of our role selection. Here’s the code
 that decides which role the script is being called for (e.g., if it’s being the
 $EDITOR) and handles calling edquota if necessary:
#!/usr/bin/perl

use Getopt::Std;
use File::Temp qw(tempfile);

my $edquota = '/usr/sbin/edquota'; # edquota path
my $autoedq = '/bin/editquota.pl'; # full path for this script
my %opts;

are we the first or second invocation?

if there is more than one argument, we're the first invocation
so parse the arguments and call the edquota binary

if (@ARGV != 1) {

 # colon (:) means this flag takes an argument
 # $opts{u} = user ID, $opts{f} = filesystem name,
 # $opts{s} = soft quota amount, $opts{h} = hard quota amount
 getopt('u:f:s:h:', \%opts);

 die "USAGE: $0 -u <uid> -f <fsystem> -s <softq> -h <hardq>\n"
 unless (exists $opts{u}
 and exists $opts{f}
 and exists $opts{s}
 and exists $opts{h});

 CallEdquota();
}

else - we're the second invocation and will have to perform the edits
else {
 EdQuota();
}
The code to actually call edquota over a
 pipe is pretty simple:
sub CallEdquota {
 $ENV{'EDITOR'} = $autoedq; # set the EDITOR variable to point to us

 open my $EPROCESS, '|-', "$edquota $opts{u}"
 or die "Unable to start $edquota: $!\n";

 # send the changes line to the second script invocation
 print $EPROCESS "$opts{f}|$opts{s}|$opts{h}\n";

 close $EPROCESS;
}
Here’s the second part of the action (the part of the script that edits the
 file edquota hands it):
sub EdQuota {
 my $tfile = $ARGV[0]; # get the name of edquota's temp file

 open my $TEMPFILE, '<', $tfile
 or die "Unable to open temp file $tfile:$!\n";

 my ($SCRATCH_FH, $scratch_filename) = tempfile()
 or die "Unable to open scratch file: $!\n";

 # receive line of input from first invocation and lop off the newline
 chomp(my $change = <STDIN>);
 my ($fs, $soft, $hard) = split(/\|/, $change); # parse the communique

 # Read in a line from the temp file. If it contains the
 # filesystem we wish to modify, change its values. Write the input
 # line (possibly changed) to the scratch file.
 while (my $quotaline = <$TEMPFILE>) {
 if ($quotaline =~ /^fs \Q$fs\E\s+/) {
 $quotaline
 =~ s/(soft\s*=\s*)\d+(, hard\s*=\s*)\d+/1soft2hard/;
 }
 print $SCRATCH_FH $quotaline;
 }
 close $TEMPFILE;
 close $SCRATCH_FH;

 # overwrite the temp file with our modified scratch file so
 # edquota will get the changes
 rename($scratch_filename, $tfile)
 or die "Unable to rename $scratch_filename to $tfile: $!\n";
}
Warning
This code will only work if:
	The script starts with the “shebang” line at the beginning that
 indicates that it should
 call the Perl interpreter (rather than being treated like a shell
 script).

	The file itself is marked as being executable: chmod o+x
 /bin/editquota.pl

The preceding code is bare bones, but it still offers a way to make automated
 quota changes. If you’ve ever had to change many quotas by hand, this should be
 good news. Before putting something like this into production, considerable
 error checking and a mechanism that prevents multiple concurrent changes should
 be added. In any case, you may find this sort of sleight-of-hand technique
 useful in other situations besides quota manipulation.

Editing Quotas Using the Quota Module

Once upon a time, the previous method (to be honest, the previous hack) was the only way
 to automate quota changes. Perl’s XS extension mechanism provides a way to glue
 the C quota library into Perl, however, so it was only a matter of time before
 someone produced a Quota module for Perl.
 Thanks to Tom Zoerner and some other porting help, setting quotas from Perl is
 now much more straightforward—if this module supports your variant of Unix. If
 it doesn’t, the previous method should work fine.
Here’s some sample code that takes the same arguments as our last
 quota-editing example:
use Getopt::Std;
use Quota;

my %opts;
getopt('u:f:s:h:', \%opts);
die "USAGE: $0 -u <uid> -f <fsystem> -s <softq> -h <hardq>\n"
 unless (exists $opts{u}
 and exists $opts{f}
 and exists $opts{s}
 and exists $opts{h});

my $dev = Quota::getqcarg($opts{f})
 or die "Unable to translate path $opts{f}: $!\n";

my ($curblock, $soft, $hard, $btimeo, $curinode, $isoft, $ihard, $itimeo)
 = Quota::query($dev, $opts{u})
 or die "Unable to query quota for $opts{u}: $!\n";

Quota::setqlim($dev, $opts{u}, $opts{s}, $opts{h}, $isoft, $ihard) == undef
 or die 'Unable to set quota: ' . Quota::strerr() . "\n";
After we parse the arguments, there are three simple steps. First, we use
 Quota::getqcarg() to
 get the correct device identifier to feed to the other quota routines. Next, we
 feed this identifier and the user ID to Quota::query() to get the current quota settings, which we need
 in order to avoid perturbing the quota limits we are not interested in changing
 (e.g., the number of files). Finally, we set the quota. That’s all it takes:
 three lines of Perl code.
Remember, the Perl slogan states that “there’s more than one way to do it,”
 not necessarily “several equally good ways.”

[5] Actually, the pipe will be to the edquota
 program, which is kind enough to hook up its input and output streams to
 the Perl script being spawned.

Editing NTFS Quotas Under Windows

There are basically two strata to be considered when you start talking about quotas in the
 current Windows-based operating systems. On the basic level, each NTFS filesystem
 can enforce quotas on a per-user, per-volume basis (i.e., a particular user can use
 only X amount of space on volume Y). The users can either be local to the machine or
 be found in Active Directory. Windows Server 2003R2 enhances this model by offering
 per-volume and per-folder quotas that are not tied to individual users.
The second layer to the quota story comes into play when you’re administering
 quotas for people on a whole set of machines. It would be impractical to set up the
 quotas on each individual machine, so instead group policy objects (GPOs) are used to specify quota policies that can
 be applied to multiple machines in an organizational unit (OU).
In this section we’re only going to look at the first layer, because the creation
 and maintenance of GPOs is a little too far off our current path to really explore
 here. For more info on how to mess with GPOs from Perl, I recommend you check out
 Robbie Allen and Laura Hunter’s excellent
 Active Directory Cookbook
 (O’Reilly). And at the risk of increasing the hand waving to the level
 of a comfortable breeze, the code shown here will come with only a modicum of
 explanation. It uses the Windows Management Instrumentation (WMI), a technology we’ll explore in
 depth in Chapter 4. If you’re not already familiar with WMI,
 I’d recommend bookmarking this page and coming back to it after you’ve had a chance
 to peruse the WMI discussion in Chapter 4.
Here’s some code to create a quota entry for a user named dnb
 who lives in the domain called WINDOWS. The entry gets created
 for the C: volume of the local machine (or, if it already
 exists, its values are set):
use Win32::OLE;

my $wobj = Win32::OLE->GetObject('winmgmts:\\\\.\\root\\cimv2');

next line requires elevated privileges to work under Vista
my $quota
 = $wobj->Get(
 'Win32_DiskQuota.QuotaVolume=\'Win32_LogicalDisk.DeviceID="c:"\','
 . 'User=\'Win32_Account.Domain="WINDOWS",Name="dnb"\'');
$quota->{Limit} = 1024 * 1024 * 100; # 100MB
$quota->{WarningLimit} = 1024 * 1024 * 80; # 80MB
$quota->Put_;
In short, this script first gets an object that references the WMI namespace. It
 then uses that object to retrieve an object representing the quota entry for the
 user (identified by the domain and username) and volume (the volume c:) we care about. With that object in hand, we can
 set the two properties of interest (Limit and
 WarningLimit) and push the changes back via
 Put_ to make them active.[6] If we wanted to just query the existing data, we could read those
 properties instead of setting them and leave off the call to Put_. Note that in order to perform these operations
 under Vista, you will need to run the script with elevated privileges (not just from
 an administrator account); see Chapter 1 for more
 information.

[6] In case you’re curious, to set the disk quota to “no limit,” the Scripting
 Guys at Microsoft say you need to set the value to 18446744073709551615 (seriously). See this column for
 details: http://www.microsoft.com/technet/scriptcenter/resources/qanda/jan08/hey0128.mspx.

Querying Filesystem Usage

We’ve just explored a variety of methods of controlling filesystem usage, and it’s only
 natural to want to keep track of how well they work. Let’s look at a method for
 querying the filesystem usage on each of the operating systems discussed in this
 book.
If we wanted to query filesystem usage on a Windows machine, we could use
 Mike Blazer’s Win32::DriveInfo
 module:
use Win32::DriveInfo;

my ($sectors, $bytessect, $freeclust, $clustnum,
 $userfree, $total, $totalfree
) = Win32::DriveInfo::DriveSpace('c');

if quotas are in effect we can show the amount free from
our user's perspective by printing $userfree instead
print "$totalfree bytes of $total bytes free\n";
Win32::DriveInfo can also provide other
 information, such as which directory letters are active and whether a drive (e.g., a
 CD-ROM) is in use, so it’s handy to have around.
Several Unix modules are also available, including
 Filesys::DiskSpace by Fabien Tassin,
 Filesys::Df by Ian Guthrie, and
 Filesys::DiskFree by Alan R. Barclay. The first
 two of these make use of the Unix system call statvfs(), while the last one actually parses the output of the Unix
 command
 df on all of the systems it supports. Choosing
 between these modules is mostly a matter of personal preference and operating system
 support. I prefer Filesys::Df because it offers a
 rich feature set and does not spawn another process (a potential security risk, as
 discussed in Chapter 1) as part of a query. Here’s one way to
 write code equivalent to the previous example:
use Filesys::Df;

my $fobj = df('/');

print $fobj->{su_bavail}* 1024 . ' bytes of ' .
 $fobj->{su_blocks}* 1024 . " bytes free\n";
We have to do a little bit of arithmetic (i.e., *
 1024) because Filesys::Df returns
 values in terms of blocks, and each block is 1024 bytes on our system. (The df() function for this module can be passed a second
 optional argument for block size if necessary.) Also worth noting about this code
 are the two hash values we’ve requested. su_bavail and su_blocks are the
 values returned by this module for the “real” size and disk usage information. On
 most Unix filesystems, the df command will show a
 value that hides the standard 10% of a disk set aside for superuser overflow. If we
 wanted to see the total amount of space available and the current amount free from a
 normal user’s perspective, we would have used user_blocks and user_bavail
 instead.
Guthrie has also written a related module called
 Filesys::DfPortable, which has very similar
 syntax to Filesys::Df. It adds Windows support
 for essentially the same type of disk usage queries. If you don’t need the
 additional information about your drives that Win32::DriveInfo provides, it may suit your purposes on those
 platforms as well.
With the key pieces of Perl code we’ve just seen, it is possible to build more
 sophisticated disk monitoring and management systems. These filesystem watchdogs
 will help you deal with space problems before they occur.

Module Information for This Chapter

	
 Name

 	
 CPAN ID

 	
 Version

	

 MacOSX::File

 	
 DANKOGA

 	
 0.71

	
 File::Find (ships with
 Perl)

 	 	
 1.12

	
 File::Spec (ships with Perl
 as part of the PathTools
 module)

 	
 KWILLIAMS

 	
 3.2701

	

 Path::Class

 	
 KWILLIAMS

 	
 0.16

	
 Cwd (ships with Perl as
 part of the PathTools
 module)

 	
 KWILLIAMS

 	
 3.2701

	
 Win32::File (ships with
 ActiveState Perl)

 	
 JDB

 	
 0.06

	
 Win32::FileSecurity (ships
 with ActiveState Perl)

 	
 JDB

 	
 1.06

	
 File::Basename (ships with
 Perl)

 	 	
 2.76

	

 File::Find::Rule

 	
 RCLAMP

 	
 0.30

	
 Getopt::Std (ships with
 Perl)

 	 	
	
 File::Temp
 (ships with Perl)

 	
 TJENNESS

 	
 0.20

	

 Quota

 	
 TOMZO

 	
 1.6.2

	
 Win32::OLE (ships with
 ActiveState Perl)

 	
 JDB

 	
 0.1709

	

 Win32::DriveInfo

 	
 MBLAZ

 	
 0.06

	

 Filesys::Df

 	
 IGUTHRIE

 	
 0.92

	

 Filesys::DfPortable

 	
 IGUTHRIE

 	
 0.85

References for More Information

For good information on platform differences for Perl programmers, the
 perlport manual page is invaluable.

 Active Directory Cookbook
 , Second Edition, by Robbie Allen and Laura Hunter, and
 Windows Server Cookbook
 , by Robbie Allen (both from O’Reilly) are excellent collections of
 examples on how to script many of the important Windows-based operating system areas, including
 filesystem-related items. Allen has a website that serves as a repository for the code samples in all of the
 books he has authored or coauthored (and one or two others); on this site you can
 view all of the examples, which are in various languages (including Perl
 translations of all of the VBScript code), and you can buy the books and the
 individual code repositories. It truly is the mother lode of examples—one of the
 single most helpful websites you’ll ever find for this sort of programming. I highly
 recommend supporting this worthy effort by purchasing the code (and the
 books!).

Chapter 3. User Accounts

Here’s a short pop quiz. If it weren’t for users, system administration would
 be:
	More pleasant

	Nonexistent

Despite the comments you may hear from system administrators on their most beleaguered
 days, 2 is the best answer to this question. As I mentioned in the first chapter,
 ultimately system administration is about making it possible for people to use the
 available technology.
Why all the grumbling, then? Users introduce two things that make the systems and
 networks we administer significantly more complex: nondeterminism and individuality.
 We’ll address the nondeterminism issues when we discuss user activity in the next
 chapter; for now, let’s focus on individuality.
In most cases, users want to retain their own separate identities. Not only do they
 want unique names, but they want unique “stuff” too. They want to be able to say, “These
 are my files. I keep them in my directories. I
 print them with my print quota. I make them available from
 my web page.” Modern operating systems keep an account of all
 of these details for each user.
But who keeps track of all of the accounts on a system or network of systems? Who is
 ultimately responsible for creating, protecting, and disposing with these little shells
 for individuals? I’d hazard a guess and say “You, dear reader”—or
 if not you personally, the tools you’ll build to act as your proxy. This chapter is
 designed to help you with that responsibility.
Let’s begin our discussion of users by addressing some of the pieces of information
 that form a user’s identity and how that information is stored on a system. We’ll start
 by looking at Unix and Unix-variant users, and then we’ll address the same issues for
 Windows-based operating system users. Once we’ve covered identity information for both
 types of operating system, we’ll construct a basic account system.
Unix User Identities

When exploring this topic, we’ll have to putter around in a few key files
 that store the persistent definition of a user’s identity. By “persistent
 definition,” I mean those attributes of a user
 that exist during the user’s entire lifespan, persisting even when he is not
 actively using a computer. Another word that we’ll use for this persistent identity
 is account. If you have an account on a system, you can log in
 and become one of that system’s users.
Users come into being on a system when their information is first added to the
 password file (or the directory service that holds the same information). They leave
 the scene when this entry is removed. Let’s dive right in and look at how such a
 user identity is stored.
The Classic Unix Password File

Let’s start off with the classic password file format and then get more
 sophisticated from there. I call this format “classic” because it is the parent
 of all of the other Unix password file formats currently in use. It is still in
 use today in many Unix variants, including Solaris, AIX, and Linux. Usually found on the system as
 /etc/passwd, this file consists of lines of ASCII text,
 each line representing a different account on the system or a link to another
 directory service. A line in this file is composed of several colon-separated
 fields. We’ll take a close look at all of these fields as soon as we see how to
 retrieve them.
Here’s an example line from /etc/passwd:
dnb:fMP.olmno4jGA6:6700:520:David N. Blank-Edelman:/home/dnb:/bin/zsh
There are at least two ways to go about accessing this information from
 Perl:
	We can access it “by hand,” treating this file like any random text
 file and parsing it accordingly:
my $passwd = '/etc/passwd';
open my $PW, '<', $passwd or die "Can't open $passwd:$!\n";

my ($name, $passwd, $uid, $gid, $gcos, $dir, $shell);
while (chomp($_ = <$PW>)) {
 ($name, $passwd, $uid, $gid, $gcos, $dir, $shell) = split(/:/);
 <your code here>;
}
close $PW;

	We can “let the system do it,” in which case Perl makes available some
 of the Unix system library calls that parse this file for us. For
 instance, another way to write that last code snippet is:
my ($name, $passwd, $uid, $gid, $quota, $comment, $gcos, $dir, $shell,
 $expire);
while (
 (
 $name, $passwd, $uid, $gid, $quota,
 $comment, $gcos, $dir, $shell, $expire
)
 = getpwent()
)
{
 <your code here>;
}
endpwent();

Using these calls offers the tremendous advantage of automatically tying in to
 any OS-level name service being used, such as Network Information Service (NIS), the Lightweight Directory Access Protocol (LDAP), Kerberos, or NIS+. We’ll see more of these library call functions in
 a moment (including an easier way to use getpwent()), but for now let’s look at the fields our code
 returns:
	Name
	The login name field holds the short (usually eight characters or
 less), unique nom de la machine for each
 account on the system. The Perl function
 getpwent(), which we saw earlier
 being used in a list context, will return the name field if we call
 it in a scalar context:
$name = getpwent();

	User ID
	On Unix systems, the user ID (UID) is actually more important than the login
 name for most things. Each file on a system is owned by a UID, not a
 login name. If we change the login name associated with UID 2397 in
 /etc/passwd from
 danielr to drinehart,
 danielr’s files instantly show up as being
 owned by drinehart instead. The UID is the
 persistent part of a user’s identity internal to the operating
 system. The Unix kernel and filesystems keep track of UIDs, not
 login names, for ownership and resource allocation, meaning that as
 far as the OS is concerned, multiple accounts with different login
 names but the same UID are actually the same account. A login name
 can be considered to be the part of a user’s identity that is
 external to the core OS; it exists to make
 things easier for humans.
Here’s some simple code to find the next available unique UID in a
 password file. This code looks for the highest UID in use and
 produces the next number:
my $passwd = '/etc/passwd';
open my $PW, '<', $passwd or die "Can't open $passwd:$!\n";
my @fields;
my $highestuid;
while (chomp($_ = <$PW>)) {
 @fields = split(/:/);
 $highestuid = ($highestuid < $fields[2]) ? $fields[2] : $highestuid;
}
close $PW;
print 'The next available UID is ' . ++$highestuid . "\n";
Note
This example is a little too simple for real-world use,
 because operating systems often come with preassigned
 high-numbered accounts (e.g., nobody,
 nfsnobody), and the UID has an upper
 limit. Also, many institutions also have policies about how
 their UIDs are assigned (certain classes of users are assigned
 UIDs from a predetermined range, and so on). All of these things
 have to be taken into account when writing code like
 this.

Table 3-1 lists
 other useful name- and UID-related Perl functions and
 variables.
Table 3-1. Login name- and UID-related variables and functions
	
 Function/variable

 	
 Use

	

 getpwnam($name)

 	
 In a scalar context, returns the UID for
 the specified login name; in a list context,
 returns all of the fields of a password
 entry

	

 getpwuid($uid)

 	
 In a scalar context, returns the login name
 for the specified UID; in a list context, returns
 all of the fields of a password entry

	

 $>

 	
 Holds the effective UID of the currently
 running Perl program

	

 $<

 	
 Holds the real UID of the currently running
 Perl program

	Primary group ID
	On multiuser systems, users often want to share files and other
 resources with a select set of other users. Unix provides a user
 grouping mechanism to assist in this process. An account on a Unix
 system can be part of several groups, but it must be assigned to one
 primary group. The primary group ID (GID) field in the password file lists the
 primary group for that account.
Group names, GIDs, and group members are usually stored in the
 /etc/group file. This file holds a listing
 of secondary groups. To make an account part of several secondary
 groups, you just list that account in several places in the file
 (bearing in mind that some OSs have a hard limit on the number of
 groups an account can join—eight used to be a common restriction).
 Here are a couple of lines from an /etc/group
 file:
bin::2:root,bin,daemon
sys::3:root,bin,sys,adm
The first field is the group name, the second is the password
 (some systems allow people to join a group by entering a password),
 the third is the GID of the group, and the last field is a list of
 the users in this group.
Schemes for group ID assignment are site-specific, because each
 site has its own particular administrative and project boundaries.
 Groups can be created to model certain populations (students,
 salespeople, etc.), roles (backup operators, network administrators,
 etc.), or account purposes (backup accounts, batch processing
 accounts, etc.).
Dealing with group files via Perl is a very similar process to the
 passwd parsing we did earlier. We can
 either treat a group file as a standard text file or use special
 Perl functions to perform the tasks. Table 3-2 lists the
 group-related Perl functions and variables.
Table 3-2. Group name- and GID-related variables and functions
	
 Function/variable

 	
 Use

	

 getgrent()

 	
 In a scalar context, returns the group name; in a
 list context, returns the fields $name, $passwd, $gid, and $members

	

 getgrnam($name)

 	
 In a scalar context, returns the group ID; in a
 list context, returns the same fields mentioned
 for getgrent()[a]

	

 getgrgid($gid)

 	
 In a scalar context, returns the group
 name; in a list context, returns the same fields
 mentioned for getgrent()

	

 $)

 	
 Holds the effective GID of the currently
 running Perl program

	

 $(

 	
 Holds the real GID of the currently running
 Perl program

	[a] If you list the members of a group using
 multiple lines in /etc/group
 (e.g., if there are too many members to fit on one
 line), getgrgid() and getgrnam() may return only first line’s
 information when called in a list context. In that
 case, you will need to manually construct the list
 of members using repeated getgrent() calls.

	The “encrypted” password
	So far we’ve seen three key parts of how a user’s identity is stored
 on a Unix machine. The next field is not part of this identity, but
 it is used to verify that someone should be allowed to assume all of
 the rights, responsibilities, and privileges bestowed upon a
 particular user ID. This is how the computer knows that someone
 presenting himself as mguerre, for example,
 should be allowed to assume the UID associated with that username.
 Other, better forms of authentication now exist (e.g., public key
 cryptography), but this one has been inherited from the early days
 of Unix.
It is common to see a line in a password file with just an
 asterisk (*) for the password.
 Since the standard encryption algorithms won’t generate an asterisk
 as part of the encrypted password, placing that character in the
 password field (by editing the password file) will effectively lock
 the account. This convention is usually used when an administrator
 wants to disable the user from logging into an account without
 removing the account altogether. Simply adding an asterisk to the
 encrypted password string will also lock the account, while making
 it easy to restore access without needing to know the
 password.
Note
You may also see *LK* used
 to lock an account, and *NP*
 or NP used to indicate that
 there is no password in that file (although there might be one
 elsewhere, such as in /etc/shadow; we’ll
 deal with that in a moment).

Dealing with user passwords is a topic unto itself. Chapter 11 of this book addresses this topic.

	GCOS/GECOS field
	The GCOS/GECOS[7] field is the least important field (from the computer’s point of view).
 This field usually contains the full name of the user (e.g., “Roy G.
 Biv”). Often, people put their titles and/or phone extensions in
 this field as well.
System administrators who are concerned about privacy issues on
 behalf of their users (as all should be) need to watch the contents
 of this field. It is a standard source for account-name-to-real-name
 mappings. On most Unix systems, this field is available as part of a
 world-readable /etc/passwd file or directory
 service, and hence the information is available to everyone on the
 system. Many Unix programs, such as mail clients, also consult this
 field when they attach a user’s login name to some piece of
 information. If you have any need to withhold a user’s real name
 from other people (e.g., if that user is a political dissident, a
 federal witness, or a famous person), this is one of the places you
 must monitor.
As a side note, if you maintain a site with a less mature or
 professional user base, it is often a good idea to disable
 mechanisms that allow users to change their GCOS field values to any
 random string (for the same reasons that user-selected login names
 can be problematic). You may not want your password file to contain
 expletives or other
 unprofessional information.

	Home directory
	The next field contains the name of the user’s home
 directory. This is the directory where the user begins his time on the system.
 This is also usually where the files that configure that user’s
 environment live.
It is important for security purposes that an account’s home
 directory be owned and writable by that account only. World-writable
 home directories allow trivial account hacking. There are cases,
 however, where even a user-writable home
 directory is problematic. For example, in restricted shell scenarios
 (where accounts can only log in to perform specific tasks and do not
 have permission to change anything on the system), a user-writable
 home directory is a big no-no because it could let an outsider
 modify the restrictions.
Here’s some Perl code to make sure that every user’s home
 directory is owned by that user and is not world-writable:
use User::pwent;
use File::stat;

note: this code will beat heavily upon any machine using
automounted homedirs
while (my $pwent = getpwent()) {

 # make sure we stat the actual dir, even through layers of symlink
 # indirection
 my $dirinfo = stat($pwent->dir . '/.');
 unless (defined $dirinfo) {
 warn 'Unable to stat ' . $pwent->dir . ": $!\n";
 next;
 }
 warn $pwent->name
 . ''s homedir is not owned by the correct uid ('
 . $dirinfo->uid
 . ' instead '
 . $pwent->uid . ")!\n"
 if ($dirinfo->uid != $pwent->uid);

 # world writable is fine if dir is set "sticky" (i.e., 01000);
 # see the manual page for chmod for more information
 warn $pwent->name . "'s homedir is world-writable!\n"
 if ($dirinfo->mode & 022 and (!$dirinfo->mode & 01000));
}
endpwent();
This code looks a bit different from our previous parsing code
 because it uses two magic modules by Tom Christiansen:
 User::pwent
 and File::stat. These
 modules override the normal getpwent() and stat() functions, causing them to return something
 different from the values mentioned earlier: when User::pwent and File::stat are loaded, these functions
 return objects instead of lists or scalars. Each object has a method
 named after a field that normally would be returned in a list
 context. So, code like this that queries the metadata for a file to
 retrieve its group ID:
$gid = (stat('filename'))[5];
can be written more legibly as:
use File::stat;
my $stat = stat('filename');
my $gid = $stat->gid;
or even:
use File::stat;
my $gid = stat('filename')->gid;

	User shell
	The final field in the classic password file format is
 the user shell field. This field usually contains one of a
 set of standard interactive programs (e.g., sh,
 csh, tcsh,
 ksh, zsh), but it can
 actually be set to the full path of any executable program or script. This field is often set
 to a noninteractive program (e.g., /bin/false
 or /sbin/nologin) in order
 to prevent logins to daemon or locked accounts.
From time to time, people have joked (half-seriously) about
 setting their shells to be the Perl interpreter. Some have also
 contemplated embedding a Perl interpreter in the
 zsh shell (and possibly others), though
 this has yet to happen. However, some serious work has been done to
 create a Perl shell (see http://www.focusresearch.com/gregor/sw/psh/ and http://www.pardus.nl/projects/zoidberg/) and to embed Perl into Emacs, an editor
 that could easily pass for an operating system (http://john-edwin-tobey.org/perlmacs/). Perl has also
 been embedded in most of the recent
 vi editor implementations
 (nvi, vile, and
 Vim).
On occasion, you might have reason to list nonstandard interactive
 programs in this field. For instance, if you wanted to create a
 menu-driven account, you could place the menu program’s name here.
 In these cases, you have to take care to prevent someone using the
 account from reaching a real shell and wreaking havoc. A common
 mistake is including a mail program that allows the user to launch
 an editor or pager for composing and reading mail, as that editor or
 pager could have a shell-escape function built in.
Warning
Caution when using nonstandard interactive programs is
 warranted in all circumstances. For example, if you allow people
 to ssh in and you try to lock their
 accounts using such a program, be sure your SSH server isn’t
 configured to pay attention to their
 .ssh/environment files (off by default
 in OpenSSH). If that file is enabled, the user can play some
 really fun tricks by setting LD_PRELOAD.

A list of standard, acceptable shells on a system is often kept in
 /etc/shells. Most FTP daemons will not
 allow a normal user to connect to a machine if her shell in
 /etc/passwd (or the networked password
 file) is not on that list. On some systems, the
 chsh program also checks that file to
 validate any shell-changing requests from users.
Here’s some Perl code to report accounts that do not have approved
 shells:
use User::pwent;

my $shells = '/etc/shells';
open my $SHELLS, '<', $shells or die "Unable to open $shells:$!\n";

my %okshell;
while (<$SHELLS>) {
 chomp;
 $okshell{$_}++;
}
close $SHELLS;

while (my $pwent = getpwent()) {
 warn $pwent->name . ' has a bad shell (' . $pwent->shell . ")!\n"
 unless (exists $okshell{ $pwent->shell });
}
endpwent();

Changes to the Password File in BSD 4.4 Systems

At the Berkeley Software Distribution (BSD) 4.3 to 4.4 upgrade point, the
 BSD variants added two twists to the classic password file format: additional
 fields were inserted between the GID and GCOS fields, and a binary database
 format was introduced to store account information.
Extra fields in passwd files

The first field BSD 4.4 systems added was the class field, which allows a system
 administrator to partition the accounts on a system into separate classes
 (e.g., different login classes might be given different resource limits,
 such as CPU time restrictions). BSD variants also add
 change and expire fields to
 hold an indication of when a password must be changed and when the account
 will expire. We’ll see fields like these when we get to the next Unix
 password file format as well.
Perl also supports a few other fields (specific to certain operating
 systems) that can be found in password files. Some operating systems provide
 the ability to include additional information about a user, including that
 user’s disk quota and a free-form comment. When compiled under an operating
 system that supports these extra fields, Perl includes the contents of the
 extra fields in the return values of functions like
 getpwent(). This is
 one good reason to use getpwent() in your
 programs instead of split()ing the
 password file entries by hand.

The binary database format

The second twist BSD 4.4 added to the password mechanisms was a database format, rather than plain
 text, for primary storage of password file information. BSD machines keep
 their password file information in DB format, a greatly updated version of
 the older Unix Database Management (DBM) libraries. This change allows the
 systems to quickly look up password information.
The program pwd_mkdb takes the name of a password
 text file as its argument, creates and moves into place two database files,
 and then moves the text file into /etc/master.passwd. The two databases provide a shadow
 password scheme, differing in their read permissions and encrypted password
 field contents. We’ll talk more about this in the next section.
Perl has the ability to work with DB files directly (we’ll work with this
 format later, in Chapter 7), but in
 general I would not recommend editing the databases while the system is in
 use. The issue here is one of locking: it’s very important not to change a
 crucial database like the one storing your passwords without making sure
 that other programs are not similarly
 trying to write to or read from it. Standard operating
 system programs like
 chpasswd and vipw handle this
 locking for you.[8] The sleight-of-hand approach we saw for quotas in Chapter 2, which used the EDITOR variable, can often be used with these utilities as
 well.

Shadow Passwords

Earlier I emphasized the importance of protecting the contents of the GCOS
 field, since this information is publicly available through a number of
 different mechanisms. Another fairly public, yet rather sensitive piece of
 information is the list of encrypted passwords for all of the users on the
 system. Even though the password information is cryptologically hidden, exposing
 it in a world-readable file creates a significant vulnerability, thanks to the
 powerful password crackers available today.[9] Parts of the password file need to be world-readable (e.g., the UID
 and login name mappings), but not all of it. There’s no need to provide a list
 of encrypted passwords to users who may be tempted to run password-cracking
 programs.
One very common alternative to leaving encrypted passwords exposed is to banish the encrypted password
 string for each user to a special file that is only readable by
 root. This second file is known as a “shadow password” file, since it contains lines that shadow the
 entries in the real password file. This mechanism is standard on most modern OS
 distributions.
With this approach, the original password file is left intact, with one small
 change: the encrypted password field contains a special character or characters
 to indicate that password shadowing is in effect. Placing an x in this field is common, though the insecure copy of the BSD database uses an
 asterisk (*).
Note
I’ve heard of some shadow password suites that insert a special,
 normal-looking string of characters in this field. If your password file
 goes awanderin’, this provides a lovely time for the recipient, who will
 attempt to crack a password file
 of random strings that bear no relation to the real passwords.

Most operating systems take advantage of this second shadow password file to
 store more information about the accounts. This additional information resembles
 that in the surplus fields we saw in the BSD files (e.g., account expiration
 data and information on password changing and aging).
In most cases Perl’s normal password functions, such as getpwent(), can handle shadow password files. As
 long as the C libraries shipped with the OS do the right thing, so will Perl.
 Here’s what “do the right thing” means: when your Perl script is run with the
 appropriate privileges (i.e., as root), these routines will
 return the encrypted password. Under all other conditions, that password will
 not be accessible to those routines.
Unfortunately, Perl may not retrieve the additional fields found in the shadow
 file. Eric Estabrooks has written
 Passwd::Solaris and
 Passwd::Linux modules that can help, but only
 if you are running one of those operating systems. If these fields are important
 to you, or you want to play it safe, the sad truth (in conflict with my earlier
 recommendation to use getpwent()) is that it
 is often simpler to open the shadow file by hand and parse it manually.

[7] For some amusing details on the origin of the name of this
 field, see the GCOS entry in the Jargon Dictionary (http://www.jargon.org).

[8] pwd_mkdb may or may not perform this locking
 for you (depending on the BSD flavor and version), so caveat
 implementor.

[9] Not to mention the highly effective technique of using rainbow
 tables.

Windows-Based Operating System User Identities

Now that we’ve explored the pieces of information that Unix systems cobble together to form a
 user’s identity, let’s take a look at the same topic for Windows users. Much of this
 info is conceptually similar, so we’ll dwell mostly on the differences between the
 two operating systems.
One important note before we continue: Windows systems by default store user
 identity information in one of two places: locally (on the machine itself, in a way
 not shared with other machines) or domain-wide (where it most likely lives in Active
 Directory on a domain controller). In the latter case, this information is shared
 with the user’s local machine and stored on that machine for at least the duration
 of the user’s session.
As in our discussion of Unix user identities, we’ll focus here on local accounts.
 For more on how to work with Active Directory or other directory services, see Chapter 9.
Windows User Identity Storage and Access

Windows stores the persistent identity information for a user in a database
 called the
 SAM (Security Accounts Manager), or
 directory, database. The SAM database is part of the
 Windows registry, located at
 %SYSTEMROOT%\system32\config. The files that make up
 the registry are all stored in a binary format, meaning normal Perl text-manipulation idioms cannot be used to read
 from or write changes to this database. It is theoretically possible to use
 Perl’s binary data operators (i.e., pack() and unpack()) with the SAM database, provided you do
 so when Windows is not running, but this way lie madness and misery.
Luckily, there are better ways to access and manipulate this information via
 Perl.
One approach is to call an external binary to interact with the OS for you.
 Every Windows machine has a feature-bloated command called net that you can use to add, delete, and view
 users. The
 net command is quirky and limited, though,
 and is generally the method of last resort.
For example, here’s the net command in
 action on a machine with two accounts:
C:\> net users

User accounts for \\HOTDIGGITYDOG

Administrator Guest
The command completed successfully.
The output of this program could easily be parsed from Perl. There are also
 commercial packages that offer command-line executables to perform similar
 tasks.
Darn That Bitrot
Here’s a sad tale of bitrot that has taken place since the first edition
 of this book was published. In the first edition, I recommended using
 several third-party modules for performing user administration tasks on
 Windows systems:
 Win32::UserAdmin (as described in the
 O’Reilly book
 Windows NT User
 Administration
 , with code distributed from the O’Reilly site), David Roth’s Win32::AdminMisc
 and
 Win32::Perms (distributed from http://www.roth.net/perl/packages/), or Jens Helberg’s Win32::Lanman
 (hidden away in his CPAN directory at http://www.cpan.org/modules/by-authors/id/J/JH/JHELBERG/).
As far as I can tell, no one has touched Win32::UserAdmin in quite some time. David Roth left Perl
 behind when he went off to work for Microsoft back in 1999. When I spoke to
 David in 2005 he indicated that he was happy to continue to make the work he
 had done available, but that he did not have any further time to maintain
 and update his modules. He had hoped someone else would take on their
 maintenance, but that hasn’t happened as of this writing. Similarly, Jens
 Helberg hasn’t really been active in the Perl world since at least
 2003.
It’s a pity these modules have fallen into disrepair, because they were
 some of the handiest Windows modules available. I can’t recommend using
 Win32::Lanman or Win32::AdminMisc/Win32::Perms at this point because their maintenance is so
 dicey, but if you still want to get a copy that can be loaded using ppm in the ActiveState distribution, there was
 a version of Win32::AdminMisc available
 for 5.10 as of this writing at http://www.ramtek.us (Roth’s
 site has a 5.8 version available of both Win32::AdminMisc and Win32::Perms) and a version of Win32::Lanman for Perl 5.8 in the repository described at
 http://www.bribes.org/perl/ppmdir.html.
Instead you’ll find the text in this edition almost exclusively sticks to
 modules like
 Win32API::Net that are part of the
 official libwin32 set of modules
 shepherded by Jan Dubois and plus a few other Windows modules with their own
 active maintainers.

Another approach is to use the Perl module Win32API::Net, which is bundled with the ActiveState Perl
 distribution. Here’s some example code that shows the users on the local machine
 and some details about them. It prints out lines that look similar to the contents of
 /etc/passwd under Unix:
use Win32API::Net qw(:User);

UserEnum('', \my @users);
foreach my $user (@users) {
 # '3' in the following call refers to the "User info level",
 # basically a switch for how much info we want back. Here we
 # ask for one of the more verbose user info levels (3).
 UserGetInfo('', $user, 3, \my %userinfo);
 print join(':',
 $user, '*', $userinfo{userId},
 $userinfo{primaryGroupId},
 '',
 $userinfo{comment},
 $userinfo{fullName},
 $userinfo{homeDir},
 ''),"\n";
}
Finally, you can use the
 Win32::OLE module to access the Active Directory Service Interfaces (ADSI) functionality built into Windows. We’ll go into
 this topic in great detail in Chapter 9, so I won’t
 present an example here.
We’ll look at more Perl code to access and manipulate Windows users later, but
 for the time being let’s return to our exploration of the differences between
 Unix and Windows users.

Windows User ID Numbers

User IDs in Windows are not created by mortals, and they cannot be reused.
 Unlike in Unix, where we can simply pick a UID number out of the air, the OS
 uniquely generates the identifier in Windows when a new user is created: a
 unique user identifier (which Windows calls a relative ID, or RID) is combined with
 machine and domain IDs to create a large ID number called a security
 identifier, or SID, which acts as the user’s UID. An example RID is 500. The RID is part of a longer SID that looks
 like this:
S-1-5-21-2046255566-1111630368-2110791508-500
The RID is the number we get back as part of the UserGetInfo() call shown in the last code snippet. Here’s the
 code necessary to print the RID for a particular user:
use Win32API::Net qw(:User);

UserGetInfo('', $user, 3, \my %userinfo);
print $userinfo{userId},"\n";
You can’t (by normal means) recreate a user after that user has been deleted.
 Even if you create a new user with the same name as the deleted user, the SID
 will not be the same, and the new user will not have access to the predecessor’s
 files and resources.
This is why some Windows books recommend renaming accounts that are due to be
 inherited by another person. That is, if a new employee is supposed to receive
 all of the files and privileges of a departing employee, they suggest renaming
 the existing account to preserve the SID rather than creating a new account,
 transferring the files, and then deleting the old account. I personally find
 this method for account handoffs to be a little uncouth, because it means the
 new employee will inherit all of the corrupted and useless registry settings of
 his predecessor. However, it’s the most expedient method, and sometimes that is
 important.
Part of the rationale for this recommendation comes from the pain associated
 with transferring ownership of files. In Unix, a privileged user can say, “Change the ownership of
 all of these files so that the new user owns them.” In Windows, however, there’s
 no giving of ownership; there’s only taking (i.e., an admin can say, “I own
 these files now”). Luckily, there are two ways to get around this restriction
 and pretend we’re using Unix’s semantics. From Perl, we can:
	Call a separate binary, such as:
	The chown binary from
 the Cygwin distribution found at http://www.cygnus.com (free). If you have a Unix
 background and work on Windows machines, you definitely should
 check out Cygwin. For a commercial version of Unix-like tools
 such as chown, check out
 the
 MKS
 Toolkit.

	The SubInACL binary,
 available for download from the Microsoft Download Center. It has the plus of being
 provided by Microsoft, but it requires a small learning
 curve.

	SetACL
 from http://setacl.sourceforge.net is
 similar to SubInACL but has
 its own twists. If you are considering using SubInACL, be sure to check out
 this program as well because it may be more to your
 liking.

	Use a Perl module such as:
	Win32::Security
 by Toby Ovod-Everett. Here’s an example of using this
 module to change the owner of a single file:
use Win32::Security::NamedObject;
my $nobj = Win32::Security::NamedObject->new('FILE',$filename);
$nobj->ownerTrustee($NewAccountName);
Two asides about Win32::Security. First, it ships with a lovely
 set of utility scripts, including
 PermDump.pl to show inherited and
 noninherited permissions and PermFix.pl to
 fix permission issues such as broken inherited permissions from
 files that have been moved. Second, according to the author, as
 of this writing Win32::Security can have issues with objects that
 have both permit and deny ACLs (if they share the same trustees), so be sure
 to test carefully if you use deny ACLs.

	Win32::OLE
 by Jan Dubois to call WMI functions (see Chapter 4 for an in-depth look at WMI). This
 is a little tricky because it is much easier to take ownership
 of a file (i.e., change a file to be owned by the user running
 the script) than it is to change the ownership of the file to an
 arbitrary user.[10] Taking ownership is performed via the
 TakeOwnership() method of the
 CIM_DataFile object in
 the cimv2 namespace.

	Win32::Perms
 by Dave Roth, located at http://www.roth.net/perl/packages and documented at
 http://www.roth.net/perl/perms. (Be sure to
 read the sidebar Darn That Bitrot before
 depending on this module.) Here’s some sample code using this
 module that will change the owner of a directory and its
 contents, including subdirectories:
use Win32::Perms;

$my acl = new Win32::Perms();
$acl->Owner($NewAccountName);
my $result = $acl->SetRecurse($dir);
$acl->Close();

Windows Passwords Don’t Play Nice with Unix Passwords

The algorithms used to obscure the passwords that protect access to a user’s identity in
 Windows and Unix are cryptologically incompatible. Once it’s been encrypted, you
 cannot transfer password information between these two operating system families
 and expect to use it for password changes or account creations, as you can when
 transferring encrypted passwords between different operating systems (Linux,
 Solaris, Irix, etc.) in the Unix family. As a result, two separate sets of
 passwords have to be used and/or kept in sync. This difference is the bane of
 every system administrator who has to administer a mixed Unix/Windows
 environment. Some administrators get around this by using custom authentication
 modules, commercial or otherwise.
As a Perl programmer, the only thing you can do if you are not using custom
 authentication mechanisms is to create a system whereby users provide their
 passwords in plain text. The plain-text passwords are then used to perform two
 separate password-related operations (changes, etc.), one for each OS.

Windows Groups

So far, I’ve been able to gloss over any distinction between storage of a
 user’s identity on a local machine and storage in some network service, like
 NIS. For the information we’ve encountered, it hasn’t really mattered if that
 information was used on a single system or all of the systems in a network or
 workgroup. But in order to talk cogently about Windows user groups and their
 intersection with Perl, we unfortunately have to move beyond this simplified
 view.
On Windows systems, a user’s identity can be stored in one of two places: in the
 SAM database on a specific machine or in the Active Directory (AD)
 store on a domain controller. This is the distinction between a
 local user, who can only log into a single machine, and
 a
 domain user, who can log in to any of the permitted
 machines that participate in a domain as part of an AD instance. Often, users
 have information stored in both places. For example, this would allow a user to
 log in from any Windows machine in the domain and access his desktop environment
 as stored on a fileserver, or log into his own PC without referring to network
 resources for authentication or file sharing.
There are different kinds of groups in the Windows model. To understand the
 difference between them, we have to consider two things: where a group can be
 used (its scope) and what a group can contain (its
 members). The following list starts with the smallest
 “jurisdiction” and works outward:
	Local groups
	Can be used only on the local machine to control access to
 resources on that machine. Can
 contain local accounts, domain accounts, and global groups.

	Domain local groups
	Can be used to control access to resources in a domain (e.g., a
 shared printer). Can contain accounts, global groups, universal
 groups from any domain, and other domain local groups (from the same
 domain).

	Global groups
	Often used as container groups included in other groups in any
 domain. Can contain accounts and other global groups from the same
 domain where the global group is defined.

	Universal groups
	Can be used across domains and forests (i.e., sets of directory
 trees) in the same AD instance to hold other groups. Can contain
 accounts, global groups, and universal groups from the same forest
 where the universal group is defined

Local groups are machine-specific. People seldom add or remove local groups;
 they mostly just change the membership of the default groups. Given this, let’s
 look instead at how the other kinds of groups get used.
The key to this story is the use of groups nested in other groups. Suppose you
 want to control access to some resource (the classic example is a shared
 printer) that a number of people will share. Instead of listing each person in
 some access list associated with the printer, it is far more convenient to say
 “anyone in a particular domain local group” can print to the printer. The domain
 local group is assigned the access to the printer.
You could just start adding users to that domain local group, and everyone you
 added would happily be able to print, but that approach would start to get old
 once you began to accumulate all the domain local groups that parts of your
 organization get access to as part of their job functions. If every time someone
 is hired into the facilities planning department you have to add them into three
 printer access groups, the plotter access group, plus a few others, it becomes
 unpleasant for you as the administrator. In addition to all of the manual labor
 necessary for granting access, the chance for error is pretty good.
One bad way to solve this problem would be to grant rights for each resource
 to the group that contains the accounts for the facilities planning department
 itself. That idea breaks down as soon as multiple groups need overlapping
 access. Let’s say the facilities planning department runs out of room on its
 floor and needs to use some desks on another floor. The people who are moved to
 the new floor will need to share a printer on that floor. If the right to print
 to that printer is granted to each department on that floor separately, it
 becomes a pain to determine which departments have access (since you have to
 look at each department’s group in turn).
The right way to fix this is to nest global groups (like the group that holds the accounts in the
 facilities planning department) in the domain local groups that control access
 to each printer. When this is done, the users in each global group are
 automatically given the printing rights they deserve. Dealing with situations
 where two departments have to share a resource is easy; you just put both global
 groups into the appropriate domain local group. If you need to know which groups
 have access to a printer, you can look at the membership of the domain local
 group that controls access to the printer. Figure 3-1 shows this nested group idea in a
 pictorial form.
[image: How Windows groups nest]

Figure 3-1. How Windows groups nest

The term “global” is a bit of a misnomer because it sounds like you should be
 able to insert accounts from any domain in your AD tree, but in fact global
 groups can only hold accounts and other groups from within the domain in which
 they were created. This is where universal groups fit in. Universal groups let
 you aggregate global groups from different domains. If you want to have a single
 group for all of your accounts in different domains, you can construct a
 universal group that nests the right global groups from each domain. You can
 subsequently nest this universal group in some other permission-granting group, and all of your
 users will inherit that permission.
This scheme would be even handier if it didn’t complicate our Perl
 programming. We potentially have to, or at least may want to, use different
 modules or different functions based on group type. Here are the choices you
 have:
	If you are working with universal groups, you have no choice but to
 use
 Win32::OLE to perform ADSI
 calls.

	If you are working with local, domain local, or global groups, you can
 use ADSI (via either the WinNT or LDAP providers, depending on the
 group), or you may find it easier to use a module like the one we saw
 before: Win32API::Net. The advantage of using ADSI via Win32::OLE is consistency (you are using it for all group
 operations); the advantage of using Win32API::Net is that it is considerably easier (it has
 built-in functions for the tasks).

Let’s take a quick look at each approach. If we stick to using Win32API::Net, we are immediately faced with a
 choice of group type: local or global? Win32API::Net
 has different functions for each kind of
 group, as listed in Table 3-3.
Table 3-3. Win32API::Net functions for local and global groups
	
 Local functions

 	
 Global functions

	

 LocalGroupAdd()

 	

 GroupAdd()

	

 LocalGroupDel()

 	

 GroupDel()

	

 LocalGroupAddMembers()

 	

 GroupAddUser()

	

 LocalGroupDelMembers()

 	

 GroupDelUser()

	

 LocalGroupGetMembers()

 	

 GroupGetUsers()

	

 LocalGroupGetInfo()

 	

 GroupGetInfo()

	

 LocalGroupSetInfo()

 	

 GroupSetInfo()

	

 LocalGroupEnum()

 	

 GroupEnum()

The functions in the first column let you set local groups (both local to the
 machine and to the domain), while those in the second work strictly with global
 groups. The first argument to all of these functions determines where the change
 is made. For example, to create a group local to the machine, the first argument
 can be empty (''). To create a domain local
 group or a global group, the first argument should be the name of an appropriate
 domain controller. To find the appropriate domain controller, you can
 call
 GetDCName():
$server is the server whose DC you need to find,
$domainname is the domain you need the DC for,
the answer gets placed into $dcname
GetDCName($server, $domainname, $dcname);
This duality means that your code may have to call two functions for the same
 operation. For example, if you need to obtain all of the groups a user may be
 in, you may have to call two functions, one for local groups and the other for
 global groups. The group functions in Table 3-3 are pretty
 self-explanatory.
Here’s a quick example of adding a user to a global group:
use Win32API::Net qw(:Get :Group);

my $domain = 'my-domain';

Win32::FormatMessage converts the numeric error code to something
we can read
GetDCName('' , $domain , my $dc)
 or die Win32::FormatMessage(Win32::GetLastError());

GroupAddUser($dc,'Domain Admins','dnbe')
 or die Win32::FormatMessage(Win32::GetLastError());
Note
Here’s a quick tip found in Roth’s books (listed in the references section
 at the end of the chapter): your program must run with administrative
 privileges to access the list of local groups, but global group names are
 available to all users.

If we wanted to create a universal group using ADSI, we could use code like this (see Chapter 9 for a description of just what is going on
 here):
use Win32::OLE;
$Win32::OLE::Warn = 3; # throw verbose errors

from ADS_GROUP_TYPE_ENUM in the Microsoft ADSI Doc
my %ADSCONSTANTS = (
 ADS_GROUP_TYPE_GLOBAL_GROUP => 0x00000002,
 ADS_GROUP_TYPE_DOMAIN_LOCAL_GROUP => 0x00000004,
 ADS_GROUP_TYPE_LOCAL_GROUP => 0x00000004,
 ADS_GROUP_TYPE_UNIVERSAL_GROUP => 0x00000008,
 ADS_GROUP_TYPE_SECURITY_ENABLED => 0x80000000
);

my $groupname = 'testgroup';
my $descript = 'Test Group';

my $group_OU = 'ou=groups,dc=windows,dc=example,dc=edu';

my $objOU = Win32::OLE->GetObject('LDAP://' . $group_OU);
my $objGroup = $objOU->Create('group', "cn=$groupname");
$objGroup->Put('samAccountName', $groupname);
$objGroup->Put('groupType',
 $ADSCONSTANTS{ADS_GROUP_TYPE_UNIVERSAL_GROUP}
 | $ADSCONSTANTS{ADS_GROUP_TYPE_SECURITY_ENABLED});
$objGroup->Put('description', $descript);
$objGroup->SetInfo;

Windows User Rights

The last difference between Unix and Windows user identities that we’ll address is the concept of a “user right.”
 In the traditional Unix rights schema, the actions a user can take are
 constrained either by file permissions or by the superuser/nonsuperuser
 distinction. Under Windows, the permission scheme is better explained with a
 superhero analogy: users (and groups) can be imbued with special powers that
 become part of their identities.[11] For instance, one can attach the user right Change the System Time to an ordinary user, allowing that user to
 set the system clock on the local machine.
Some people find the user rights concept confusing because they have attempted
 to use the Local Security Policy Editor or Group Policy/Group Policy Object Editor. The list of policies shown
 when you navigate to User Rights Assignment (Figure 3-2) presents the
 information in exactly the opposite manner that most people expect to see it: it
 shows a list of the possible user rights and expects you to add groups or users
 to a list of entities that already have this right.
[image: Assigning user rights via the Local Security Policy Editor]

Figure 3-2. Assigning user rights via the Local Security Policy Editor

A more user-centric UI would offer a way to add user rights to or remove them
 from users, instead of the other way around.[12] This is how we will operate on rights using Perl.
One approach is to call the program ntrights.exe from the
 Microsoft 2000/2003 Resource Kit. The
 resource kit tools for 2003, including ntrights.exe, are
 (as of this writing) available for download for free from Microsoft. If you
 haven’t heard of the resource kits, be sure to read the sidebar about
 them.
The Microsoft Windows Resource Kits
“You must have the Windows {Anything} Resource Kit” is the general
 consensus among serious Windows administrators and the media that covers
 this field. Microsoft Press usually publishes at least one large tome for
 each OS version, full of nitty-gritty operational information. It is not
 this information that makes these books so desirable, though; rather, it is
 the CD-ROMs or sometimes the direct downloads associated with the books that
 make them worth their weight in zlotniks. These add-ons contain a grab bag
 of crucial utilities for Windows administration.
Many of the utilities were contributed by the OS development groups, who
 wrote their own code because they couldn’t find the tools they needed
 anywhere else. For example, there are utilities that add users, change
 filesystem security information, show installed printer drivers, work with
 roaming profiles, help with debugging domain and network browser services,
 and so on.
The tools in the resource kits are provided “as is,” meaning there is virtually
 no support available for them. This no-support policy may sound harsh, but
 it serves the important purpose of allowing Microsoft to put a variety of
 useful code in the hands of administrators without having to pay prohibitive
 support costs. The utilities in the resource kits have a few small bugs, but
 on the whole they work great. Updates that fix bugs in some of these
 utilities have been posted to Microsoft’s website.

Using ntrights.exe is straightforward; just call the
 program from Perl like you would any other (i.e., using backticks or the
 system() function). In this case, we’ll
 call ntrights.exe with a command line of the form:
C:\> ntrights.exe +r <right name> +u <user or group name> [-m \\machinename]
to give a right to a user or group (on an optionally specified machine named
 machinename). To take that right
 away, we use a command line of the form:
C:\> ntrights.exe -r <right name> +u <user or group name> [-m \\machinename]
Unix users will be familiar with the use of the + and - characters (as in
 chmod), in this case used with the
 r switch, to give and take away
 privileges. The list of names of rights that can be assigned (for
 example, SetSystemtimePrivilege to set
 the system time) can be found in the Microsoft resource kit documentation for
 the ntrights
 command. If for some reason you don’t want to use the resource kit
 tools, the Cygwin distribution that was touted earlier also provides an
 editrights utility package that can do similar
 things.
A second, Perl module–based approach entails using the
 Win32::Lanman module by Jens Helberg, which
 can be found in PPM form at http://www.bribes.org/perl/ppmdir.html or in source form in Helberg’s CPAN directory at http://www.cpan.org/modules/by-authors/id/J/JH/JHELBERG/ (this won’t
 be found in a standard CPAN search, so you have to go to that directory
 directly).
Note
So, after all of the angst in the bitrot sidebar about modules like
 Win32::Lanman, why am I still
 describing how to use it here? I’ve searched high and low, and there does
 not appear to be (as of this writing) a reasonable substitute for this
 module in this context. To the best of my knowledge, you can’t do these
 sorts of things via WMI or ADSI. I’d love to be proven wrong!
I believe it would be possible to recreate all of the Win32::Lanman calls via
 Win32::API, since they can both access
 the same underlying Win32 API, but this is beyond the depth of knowledge in
 Windows programming that I’ve ever aspired to acquire. If you do rewrite the
 Win32::Lanman
 functions listed in this section to use Win32::API (and plan to maintain/support your code), I’ll be
 delighted to switch to your module and write about it in future editions of
 this book.

Let’s start by looking at the process of retrieving an account’s user rights. This is a multiple-step process. First, we
 need to load the module:
use Win32::Lanman;
my $server = 'servername';
Then, we need to retrieve the actual SID for the account we wish to query or
 modify. In the following sample, we’ll get the Guest
 account’s SID:
Win32::Lanman::LsaLookupNames($server, ['Guest'], \my @info)
 or die "Unable to lookup SID: " . Win32::Lanman::GetLastError() . "\n";
@info now contains an array of references
 to anonymous hashes: one element for each account we query (in this case, it is
 just a single element for Guest). Each hash contains the
 following keys: domain, domainsid, relativeid, sid, and use. We only care about sid for our next step. Now we can query the rights:
Win32::Lanman::LsaEnumerateAccountRights($server, ${ $info[0] }{sid},
 \my @rights)
 or die "Unable to query rights: " . Win32::Lanman::GetLastError() . "\n";
@rights now contains a set of names
 describing the rights apportioned to Guest.
Figuring out the API name of a user right and what it represents is tricky.
 The easiest way to learn which names correspond to which rights and what each
 right offers is to look at the software development kit (SDK) documentation at
 http://msdn.microsoft.com. This documentation is easy to find
 because Helberg has kept the standard SDK function names for his Perl function
 names. To find the names of the available rights, search the Microsoft’s
 Developer Network site for “LsaEnumerateAccountRights”; you’ll find pointers to them
 quickly.
This information also comes in handy for the modification of user rights. For
 instance, if we wanted to add a user right to allow our
 Guest account to shut down the system, we could
 use:
use Win32::Lanman;
my $server = 'servername';

Win32::Lanman::LsaLookupNames($server, ['Guest'], \my @info)
 or die "Unable to lookup SID: " . Win32::Lanman::GetLastError() . "\n";
Win32::Lanman::LsaAddAccountRights($server, ${ $info[0] }{sid},
 [&SE_SHUTDOWN_NAME])
 or die "Unable to change rights: " . Win32::Lanman::GetLastError() . "\n";
In this case, we found the SE_SHUTDOWN_NAME
 right in the SDK doc and used &SE_SHUTDOWN_NAME (a subroutine defined by Win32::Lanman), which returns the value for this
 SDK constant.
Win32::Lanman::LsaRemoveAccountRights(),
 a function that takes similar arguments to those we used to add
 rights, is used to remove user rights.
Before we move on to other topics, it is worth mentioning that Win32::Lanman also provides a function that works
 just like the Local Security Policy Editor’s broken interface, described
 earlier: instead of matching users to rights, we can match rights to users. If
 we use
 Win32::Lanman::LsaEnumerateAccountsWithUserRight(), we can
 retrieve a list of SIDs that have a specific user right. Enumerating this list
 could be useful in certain situations.

[10] I hunted and hunted for an example of changing
 ownership (versus taking it) via WMI and could not find
 one in any language. I don’t want to claim that it is
 impossible, but color me dubious.

[11] Most modern Unix systems can use access control lists and role-based
 access control (RBAC) to manage user rights in similar detail, but this
 is not commonly done, as it is under Windows.

[12] To their credit, the new interface for this sort of thing, the Group
 Policy Management Console, does improve on the situation by making the
 object that is receiving a policy setting paramount. It also offers the
 ability to script many meta-GPO operations. Unfortunately, the one thing
 you can’t do out of the box (as of this writing) is directly twiddle the
 settings in a GPO from a script. Sigh.

Building an Account System to Manage Users

Now that we’ve had a good look at user identities, we can begin to address the administration
 aspect of user accounts. Rather than just showing you the select Perl subroutines or
 function calls you need for adding and deleting users, I’ll take this topic to the
 next level by showing these operations in a larger context. In the remainder of this
 chapter, we’ll work toward writing a bare-bones[13] account system that starts to manage both Windows and Unix users.
Our account system will be constructed in four parts: user interface, data
 storage, process scripts (Microsoft would call them the “business logic”), and
 low-level library routines. From a process perspective, they work together (see
 Figure 3-3).
Requests come into the system through a user interface and get placed into an “add
 account queue” file for processing. We’ll just call this an “add queue” from here
 on. A process script reads this queue, performs the required account creations, and
 stores information about the created accounts in a separate database. That takes
 care of adding the users to our system.
[image: The structure of a basic account system]

Figure 3-3. The structure of a basic account system

For removing a user, the process is similar. A user interface is used to create a
 “remove queue.” A second process script reads this queue, deletes the indicated
 users from our system, and updates the central database.
We isolate these operations into separate conceptual parts because it gives us the
 maximum possible flexibility should we decide to change things later. For instance,
 if some day we decide to change our database backend, we only need to modify the
 database routines. Similarly, if we want our user addition process to include more
 steps (perhaps cross-checking against another database in human resources), we will
 only need to change the process script in question.
Let’s start by looking at the first component: the user interface used to create
 the initial account queue. For the bare-bones purposes of this book, we’ll use a
 simple text-based user interface to query for account parameters:
sub CollectInformation {
 use Term::Prompt; # we'll move these use statements later
 use Crypt::PasswdMD5;

 # list of fields init'd here for demo purposes - this should
 # really be kept in a central configuration file
 my @fields = qw{login fullname id type password};
 my %record;

 foreach my $field (@fields) {

 # if it is a password field, encrypt it using a random salt before storing
 if ($field eq 'password') {

 # believe it or not, we may regret the decision to store
 # the password in a hashed form like this; we'll talk about
 # this a little later on in this chapter
 $record{$field} = unix_md5_crypt(
 prompt('p', 'Please enter password:', '', ''), undef);
 }
 else {
 $record{$field} = prompt('x', "Please enter $field:", '', '');
 }
 }
 print "\n";
 $record{status} = 'to_be_created';
 $record{modified} = time();
 return \%record;
}
This routine creates a list and populates it with the different fields of an
 account record. As the comment mentions, this list is inlined in the code only for
 brevity’s sake. Good software design suggests the field name list really should be
 read from an additional configuration file. Ideally, that config file would also
 provide better prompts and validation information describing the kinds of input
 allowed for each field (rather than just making a distinction between password and
 nonpassword inputs, as we do here).
Once the list has been created, the routine iterates through it and requests the
 value for each field. Each value is then stored back into the record hash. At the
 end of the question and answer session, a reference to this hash is returned for
 further processing. Our next step will be to write the information to the add
 queue.
Before we get to that code, though, we should talk about data storage and data
 formats for our account system.
The Backend Database

The center of any account system is a database. Some administrators use the
 /etc/passwd file or SAM database/AD store as the only
 record of the users on their system, but this practice is often shortsighted. In
 addition to the pieces of a user’s identity that we’ve already discussed, a
 separate database can be used to store metadata about each account, like its
 creation and expiration date, the account sponsor (if it’s a guest account), the
 user’s phone numbers, etc. And once a database is in place, it can be used for
 more than just basic account management; it can be useful for all sorts of
 niceties, such as automatic mailing list creation.
Why the Really Good System Administrators Create Account Systems
System administrators fall into roughly two categories: mechanics and
 architects. Mechanics spend most of their time in the trenches dealing with
 details. They have amazing amounts of arcane knowledge about the hardware
 and software they administer. If something breaks, they know just the
 command, file, or spanner wrench to wield. Talented mechanics can scare you
 with their ability to diagnose and fix problems even while standing halfway
 across the room from the problem machine.
Architects spend their time surveying the computing landscape from above.
 They think more abstractly about how individual pieces can be put together
 to form larger and more complex systems. Architects are concerned about
 issues of scalability, extensibility, and reusability.
Both types bring important skills to the system administration field. The
 system administrators I respect the most are those who can function as
 mechanics but whose preferred mindset is more closely aligned to that of an
 architect. They fix a problem and then spend time after the repair
 determining which systemic changes can be made to prevent it from occurring
 again. They think about how even small efforts on their part can be
 leveraged for future benefit.
Well-run computing environments require both architects and mechanics
 working in a symbiotic relationship. A mechanic is most useful while working
 in a solid framework constructed by an architect. In the automobile world,
 we need mechanics to fix cars, but mechanics rely on the car designers to
 engineer slow-to-break, easy-to-repair vehicles. They need infrastructure like assembly lines,
 service manuals, and spare-part channels to do their job well. If an
 architect performs her job well, the mechanic’s job is made easier.
How do these roles play out in the context of our discussion? Well, a
 mechanic will probably use the built-in OS tools for user management. He
 might even go so far as to write small scripts to help make individual
 management tasks, like adding users, easier. On the other hand, an architect
 looking at the same tasks will immediately start to construct an account
 system. An architect will think about issues like:
	The repetitive nature of user management and how to automate as
 much of the process as possible.

	The sorts of information an account system collects, and how a
 properly built account system can be leveraged as a foundation for
 other functionality. For instance, LDAP directory services and
 automatic website generation tools could be built on top of an
 account system.

	Protecting the data in an account system (i.e., security).

	Creating a system that will scale if the number of users
 increases.

	Creating a system that other sites might be able to use.

	How other system administration architects have dealt with similar
 problems.

Mentioning the creation of a separate database makes some people nervous. They
 think, “Now I have to buy a really expensive commercial database, invest in
 another machine for it to run on, and hire a database administrator.” If you
 have thousands or tens of thousands of user accounts to manage, yes, you do need
 to do all of those things (though you may be able to get by with a noncommercial
 SQL database such as PostgreSQL or MySQL).
 If this is the case for you, you may want to turn to Chapter 7 for more information on dealing with
 databases like these in Perl.
However, in this chapter when I say “database,” I’m using the term in the
 broadest sense. A flat-file, plain-text database will work fine for smaller
 installations. Windows users could even use an Access database file (e.g.,
 database.mdb).[14]
For portability and simplicity, we’ll use the very cool module
 DBM::Deep by Rob Kinyon. This module provides
 a surprising amount of power. The documentation describes it as follows:
A unique flat-file database module, written in pure perl. True multilevel
 hash/array support (unlike MLDBM, which is faked), hybrid OO / tie()
 interface, cross-platform FTPable files, ACID transactions, and is quite
 fast. Can handle millions of keys and unlimited levels without significant
 slow-down. Written from the ground-up in pure perl—this is NOT a wrapper around a C-based DBM.
 Out-of-the-box compatibility with Unix, Mac OS X, and Windows.

Choosing a Backend Database Format
The first edition of this book used plain-text files in XML format as its
 backend database, so I think I need to clear the air about choosing a
 database format. XML was used as the basis of the backend database in that
 edition because it offered a relatively simple data format with a number of
 pluses. One of those pluses was pedagogical—it was clear to me even back
 before the turn of the millennium that being able to sling XML was going to
 be an important skill for a system administrator. Over time, that prediction
 proved to be true well beyond my guess at the time, and XML settled into
 several niches in the sysadmin world. One of those niches was configuration
 files, so you’ll find expanded and
 improved examples of XML use in Chapter 6. Its use for this kind of
 database and queue modeling isn’t
 all that prevalent, though, so I’ve swapped in a different database format.
So what’s the best format to use for something like this? There’s a
 continuum of options to choose from. In rough order of increasing
 complexity, it goes something like this:
	Flat-file text databases of various flavors (CSV, key/value pairs,
 YAML, XML, etc.)

	DBM databases (ndbm,
 gdbm, BerkeleyDB, DBM::Deep, etc.)

	File-based SQL (e.g., SQLite via DBI using
 DBD::SQLite)

	Server(s)-based SQL (e.g., DBI used with MySQL, PostgreSQL, MS
 SQL, or Oracle)

	Some sort of object-relational mapper, or ORM (DBIx::Class,
 Rose::DB::Object, Jifty::DBI, etc.)

That last item isn’t a format per se, it’s more of a
 way of interacting with your data in a way that can potentially make your
 programming easier (read: you don’t have to sling SQL). Still, it is another
 layer on top of any of the previous items, so I list it later even if it has
 the potential to simplify things.
Which format you choose will ultimately be dictated by your (present and
 future!) needs. I can’t give an easy recipe for choosing the right one
 because there are so many variables (amount of data, amount of concurrent
 read or read/write access, portability, and so on). In this chapter we’re
 going to use the principle of picking the simplest thing that will work (but
 no simpler). If I were to build a system like this for production use, I’d
 no doubt use some sort of SQL-based server (likely wrapped by an ORM). For
 the examples in this chapter we’ll use DBM::Deep because it is highly useful in many contexts and
 allows us to keep on topic without digressions about SQL or DBI (for more on
 those topics, see Chapter 7).

Using DBM::Deep is a walk in the park if
 you’ve ever worked with hash references in Perl. Here’s a little sample:
use DBM::Deep;

my $db = DBM::Deep->new('accounts.db');

imagine we received a hash of hashes constructed from repeated
invocations of CollectInformation()

foreach my $user (keys %users) {

 # could also be written as $db->put($login => $users{$login});
 $db->{$login} = $users{$login};

}

then, later on in the program or in another program...

foreach my $login (keys %{$db}) {
 print $db->{$login}->{fullname}, "\n";
}
The two emphasized lines show that the syntax is just your standard Perl hash
 reference syntax. They also show that it is possible to look up the hash key and
 have the entire hash of a hash stored in the database come back into memory.
 DBM::Deep can also use traditional OOP
 calls, as demonstrated by the comment in the code.
Adding to the account queue

Let’s start by returning to the cliffhanger we left off with in Building an Account System to Manage Users. I mentioned that
 we needed to write the account information we collected with CollectInformation() to our add queue file, but we didn’t actually look at the
 code to perform this task. Let’s see how the record data is written with
 DBM::Deep:
sub AppendAccount {
 use DBM::Deep; # will move this to another place in the script

 # receive the full path to the file
 my $filename = shift;

 # receive a reference to an anonymous record hash
 my $record = shift;

 my $db = DBM::Deep->new($filename);

 $db->{ $record->{login} } = $record;
}
It really is that simple. This subroutine is just a wrapper around the
 addition of another key in the DBM::Deep
 magic hash we’re keeping.
Note
I should fess up about two things:
	This really isn’t a queue in the classic sense of the word,
 because placing the items in the hash isn’t preserving any sort
 of order. If that really bugs you, you could pull the items out
 of the hash and sort them by record modification time (one of
 the fields we added in CollectInformation()) before processing.

	If you passed in two records with the same login field, the
 second would overwrite the first. That may actually be a
 desirable quality in this context. Changing this behavior would
 be pretty simple; all you’d need to do would be to first test
 for the presence of that key in the DBM::Deep data structure using exists(). The example in this
 chapter is intentionally meant to be toy-sized. When you write
 your production system, you’ll be adding in all sorts of error
 checking and business logic appropriate to your
 environment.

Now we can use just one line to collect data and write it to our add queue
 file:
AppendAccount($addqueue, &CollectInformation);
Reading this information back out of the queue files will be as easy as a
 hash lookup, so I’ll pass on showing you the code to do that until we look
 at the final program.

The Low-Level Component Library

Now that we have all the data under control, including how it is acquired,
 written, read, and stored, let’s look at how it is actually used deep in the
 bowels of our account system. We’re going to explore the code that actually
 creates and deletes users. The key to this section is the notion that we are
 building a library of reusable components. The better you are able to
 compartmentalize your account system routines, the easier it will be to change
 only small pieces when it comes time to migrate your system to some other
 operating system or make changes. This may seem like unnecessary caution on our
 part, but the one constant in system administration work is change.
Unix account creation and deletion routines

Let’s begin with the code that handles Unix account creation. Most of this code
 will be pretty trivial, because we’re going to take the easy way out: our
 account creation and deletion routines will call vendor-supplied “add user,”
 “delete user,” and “change password” executables with the right
 arguments.
Why the apparent cop-out? We are using this method because we know the
 OS-specific executable will play nice with the other system components.
 Specifically, this method:
	Handles the locking issues for us (i.e., avoids the data
 corruption problems that two programs simultaneously trying to write
 to the password file can cause).

	Handles the variations in password file formats (including
 password encoding) that we discussed earlier.

	Is likely to be able to handle any OS-specific authentication
 schemes or password distribution mechanisms. For instance, under at
 least one Unix variant I have seen, the external “add user”
 executable can directly add a user to the NIS maps on a master
 server.

Drawbacks of using an external binary to create and remove accounts
 include:
	OS variations
	Each OS has a different set of binaries, located at a
 different place on the system, and those binaries take slightly
 different arguments. In a rare show of compatibility, almost all
 of the major Unix variants (Linux included, BSD variants
 excluded) have mostly compatible add and remove account binaries
 called useradd and
 userdel. The BSD variants use
 adduser and
 rmuser, two programs with similar purposes
 but very different argument names. Such variations tend to
 increase the complexity of our code.[15] There are some efforts (e.g., the POSIX standards)
 to standardize commands like these, but in practice I haven’t
 found things to be homogenous enough to depend on any one
 convention.

	Single machine scope
	Most user command-line tools operate only on the local
 machine. If most of your users are (as is the best practice
 these days) in a centralized authentication store like LDAP,
 these commands seldom know how to create users in that central
 system. Windows’s net command
 is one notable exception to this. It’s pretty common for people
 to write their own user*
 commands (in Perl, even) to perform these functions.

	Security concerns
	The program we call and the arguments passed to it will be
 exposed to users wielding the
 ps command. If accounts are
 created only on a secure machine (say, a master server), this
 reduces the data leakage risk considerably.

	Added dependency
	If the executable changes for some reason or is moved, our
 account system is kaput.

	Loss of control
	We have to treat a portion of the account creation process as
 being atomic; in other words, once we run
 the executable we can’t intervene or interleave any of our own
 operations. Error detection and recovery become more
 difficult.

	These programs rarely do it all
	It’s likely that these programs will not perform all of the
 steps necessary to instantiate an account at your site. If you
 need to add specific user types to specific auxiliary groups,
 place users on a site-wide mailing list, or add users to a
 license file for a commercial package, you’ll have to add some
 more code to handle these specificities. This isn’t a problem
 with the approach itself; it’s more of a heads up that any
 account system you build will probably require more work on your
 part than just calling another executable. This will not
 surprise most system administrators, since system administration
 is very rarely a walk in the park.

For the purposes of our demonstration account system, the positives of
 this approach outweigh the negatives, so let’s take a look at some code that
 uses external executables. To keep things simple, we’ll use show code that
 works under Linux on a local machine only, ignoring complexities like NIS
 and BSD variations. If you’d like to see a more complex example of this
 method in action, you may find the CfgTie
 family of modules by Randy Maas instructive. After the example Linux code,
 we’ll take a quick look at some of the lessons that can be learned from
 other Unix variants that are less friendly to command-line
 administration.
Here’s our basic account creation routine:
these variables should really be set in a central configuration file
Readonly my $useraddex => '/usr/sbin/useradd'; # location of useradd cmd
Readonly my $homeUnixdirs => '/home'; # home directory root dir
Readonly my $skeldir => '/home/skel'; # prototypical home directory
Readonly my $defshell => '/bin/zsh'; # default shell

sub CreateUnixAccount {

 my ($account, $record) = @_;

 ### construct the command line, using:
 # -c = comment field
 # -d = home dir
 # -g = group (assume same as user type)
 # -m = create home dir
 # -k = copy in files from this skeleton dir
 # -p = set the password
 # (could also use -G group, group, group to add to auxiliary groups)
 my @cmd = (
 $useraddex,
 '-c', $record->{fullname},
 '-d', "$homeUnixdirs/$account",
 '-g', $record->{type},
 '-m',
 '-k', $skeldir,
 '-s', $defshell,
 '-p', $record->{password},
 $account
);

 # this gets the return code of the @cmd called, not of system() itself
 my $result = 0xff & system @cmd;

 # the return code is 0 for success, non-0 for failure, so we invert
 return (($result) ? 0 : 1);
}
This adds the appropriate entry to our password file, creates a home
 directory for the account, and copies over some default environment files
 (.profile, .tcshrc, .zshrc, etc.) from a skeleton directory.
For symmetry’s sake, here’s the simpler account deletion code:
this variable should really be set in a central configuration file
Readonly my $userdelex => '/usr/sbin/userdel'; # location of userdel cmd

sub DeleteUnixAccount {

 my ($account, $record) = @_;

 ### construct the command line, using:
 # -r = remove the account's home directory for us
 my @cmd = ($userdelex, '-r', $account);

 my $result = 0xff & system @cmd;

 # the return code is 0 for success, non-0 for failure, so we invert
 return (($result) ? 0 : 1);
}

Unix account creation and deletion routines—a variation

Before we get to the Windows examples, I want to show you one variation on
 the code we just looked at because it is instructive on a number of levels.
 The variation I have in mind not only demonstrates a cool technical trick
 but also brings to sharp relief how one little difference between operating
 systems can cause ripples throughout your code.
Here’s the innocent little detail that is about to bite us:
 Solaris’s
 useradd command does not have a –p switch to set the (hashed) password on a
 new account. It does have a –p switch, but it doesn’t do the same thing as its
 counterpart in Linux. “Ho hum,” you say, “I’ll just change the part of the
 CreateUnixAccount() code that sets
 @cmd to reflect the command-line
 argument that Solaris does use for this purpose.” A quick read of the
 Solaris manpage for useradd, however,
 will send your naiveté packing, as you’ll soon see that Solaris
 doesn’t have a supported way to provide a hashed
 password for a new account. Instead, every account is locked until the
 password is changed for that account.
This impacts the code in a number of ways. First, we have to add something
 to CreateUnixAccount() so it will perform a password change
 after creating an account. That’s easy enough. We can just add something
 like this:
$result = InitUnixPasswd($account, $record->{'password'}));
return 0 if (!$result);
and then write an InitUnixPasswd()
 routine. But that’s not the most important change to the code. The biggest
 change is that now we have to store the plain-text password for the account
 in our queue, since there’s no way to use a one-way-hashed password as input
 into a password changing routine. Remember the ominous comment in the code
 presented at the very beginning of this section, for CollectInformation():
if it is a password field, encrypt it using a random salt before storing
 if ($field eq 'password') {

 # believe it or not, we may regret the decision to store
 # the password in a hashed form like this; we'll talk about
 # this a little later on in this chapter
 $record{$field} = unix_md5_crypt(
 prompt('p', 'Please enter password:', '', ''), undef);
 }
Here’s where we regret that decision. We’ll have a similar regret in a
 moment when we get to create accounts in Windows, because we’ll need the
 plain-text password there too. I’m not going to show an example here, but
 perhaps the best middle ground would be to use a cipher module from the
 Crypt:: namespace to store the
 password in a fashion that can be decrypted later.[16] I point all of this out because it is ripple situations along
 these lines that can make attempts to decouple the parts of your program
 hard at times.
Once you’ve made all of the necessary changes to the password prompting
 and storing code, you then have to sit down and write the password changing
 code. The bucket of cold water gets dumped on your head at the point where
 you realize Solaris doesn’t ship with a noninteractive password-changing
 program.[17] Setting the password requires a little sleight of hand, so we’ll
 encapsulate that step in a separate subroutine to keep the details out of
 our way.
The Solaris manual pages say, “The new login remains locked until the
 passwd(1) command is executed.”
 passwd
 <accountname> will change that
 account’s password, which may sound simple enough. However, there’s a
 problem lurking here. The
 passwd command expects to prompt the user
 for the password, and it takes great pains to make sure it is talking to a
 real user by interacting directly with the user’s terminal device. As a
 result, the following will not work:
this code DOES NOT WORK
open my $PW, "|passwd $account";
print $PW $newpasswd,"\n";
print $PW $newpasswd,"\n";
close $PW;
We have to be craftier than usual; somehow faking passwd into thinking it is dealing with a human rather than
 our Perl code. We can achieve this level of duplicity by using
 Expect, a Perl module by Austin Schutz (now maintained by Roland Giersig) that sets up a
 pseudoterminal (pty) within which another program will run. Expect is heavily based on the famous Tcl
 program Expect by Don Libes. This module is part of the family of bidirectional
 program interaction modules. We’ll see its close relative, Jay Rogers’s
 Net::Telnet, in Chapter 9.
These modules function using the same basic conversational model: wait for
 output from a program, send it some input, wait for a response, send some
 data, and so on. The following code starts up passwd in a pty and waits for it to prompt for the password.
 The discussion we have with passwd should
 be easy to follow:
Readonly my $passwdex => '/usr/bin/passwd'; # location of passwd executable

sub InitUnixPasswd {
 use Expect; # we'll move this later

 my ($account, $passwd) = @_;

 # return a process object
 my $pobj = Expect->spawn($passwdex, $account);
 die "Unable to spawn $passwdex:$!\n" unless (defined $pobj);

 # do not log to stdout (i.e., be silent)
 $pobj->log_stdout(0);

 # wait for password & password re-enter prompts,
 # answering appropriately
 $pobj->expect(10, 'New password: ');

 # Linux sometimes prompts before it is ready for input, so we pause
 sleep 1;
 print $pobj "$passwd\r";
 $pobj->expect(10, 'Re-enter new password: ');
 print $pobj "$passwd\r";

 # did it work?
 $result
 = (defined($pobj->expect(10, 'successfully changed')) ? 1:0);

 # close the process object, waiting up to 15 secs for
 # the process to exit
 $pobj->soft_close();

 return $result;
}
The Expect module meets our meager
 needs well in this routine, but it is worth noting that the module is
 capable of much more complex operations. See the documentation and tutorial
 included with the
 Expect module for more
 information.
Before we move on, I do want to mention one other alternative to using
 Expect. I don’t like this alternative
 because it bypasses the usual password changing code path, but it may serve
 a purpose for you. If you don’t want to script the running of passwd, Eric Estabrook’s
 Passwd::Solaris module, mentioned earlier
 in this chapter, can be used to operate directly on the Solaris
 /etc/passwd and /etc/shadow
 files to change a user’s password. It does accept a hashed password for this
 purpose.
Warning
If you are going to hash your own passwords and then insert them into
 your passwd and shadow files,
 be sure that you have Solaris (9, 12/02, or later) configured for the
 compatible hashing algorithm in
 /etc/security/policy.conf.

Windows account creation and deletion routines

The process of creating and deleting an account under Windows is slightly easier than the
 process under Unix, because standard API calls for these operations exist in
 Windows. As in Unix, we could call an external executable to handle the job
 (e.g., the ubiquitous
 net command with its USERS /ADD switch), but it is easy to use the
 native API calls from a handful of different modules, some of which we’ve
 mentioned earlier. Account creation
 functions exist in
 Win32::NetAdmin, Win32::UserAdmin, Win32API::Net, and Win32::Lanman, to name a few. Active Directory users will
 find the ADSI material in Chapter 9 to be their
 best route.
Picking among these Windows-centric modules is mostly a matter of personal
 preference. To illustrate the differences between them, we’ll take a quick
 look behind the scenes at the native user creation API calls. These calls
 are described in the Network Management SDK documentation on http://msdn.microsoft.com (search for “NetUserAdd” if you have a hard time
 finding it). NetUserAdd() and the other
 calls each take a parameter that specifies the information level of the data
 being submitted. For instance, with information level 1, the C structure
 that is passed in to the user creation call looks like this:
typedef struct _USER_INFO_1 {
 LPWSTR usri1_name;
 LPWSTR usri1_password;
 DWORD usri1_password_age;
 DWORD usri1_priv;
 LPWSTR usri1_home_dir;
 LPWSTR usri1_comment;
 DWORD usri1_flags;
 LPWSTR usri1_script_path;
}
If information level 2 is used, the structure expected is expanded
 considerably:
typedef struct _USER_INFO_2 {
 LPWSTR usri2_name;
 LPWSTR usri2_password;
 DWORD usri2_password_age;
 DWORD usri2_priv;
 LPWSTR usri2_home_dir;
 LPWSTR usri2_comment;
 DWORD usri2_flags;
 LPWSTR usri2_script_path;
 DWORD usri2_auth_flags;
 LPWSTR usri2_full_name;
 LPWSTR usri2_usr_comment;
 LPWSTR usri2_parms;
 LPWSTR usri2_workstations;
 DWORD usri2_last_logon;
 DWORD usri2_last_logoff;
 DWORD usri2_acct_expires;
 DWORD usri2_max_storage;
 DWORD usri2_units_per_week;
 PBYTE usri2_logon_hours;
 DWORD usri2_bad_pw_count;
 DWORD usri2_num_logons;
 LPWSTR usri2_logon_server;
 DWORD usri2_country_code;
 DWORD usri2_code_page;
}
Levels 3 and 4 (4 being the one Microsoft recommends you use[18]) look like this:
typedef struct _USER_INFO_3 {
 LPWSTR usri3_name;
 LPWSTR usri3_password;
 DWORD usri3_password_age;
 DWORD usri3_priv;
 LPWSTR usri3_home_dir;
 LPWSTR usri3_comment;
 DWORD usri3_flags;
 LPWSTR usri3_script_path;
 DWORD usri3_auth_flags;
 LPWSTR usri3_full_name;
 LPWSTR usri3_usr_comment;
 LPWSTR usri3_parms;
 LPWSTR usri3_workstations;
 DWORD usri3_last_logon;
 DWORD usri3_last_logoff;
 DWORD usri3_acct_expires;
 DWORD usri3_max_storage;
 DWORD usri3_units_per_week;
 PBYTE usri3_logon_hours;
 DWORD usri3_bad_pw_count;
 DWORD usri3_num_logons;
 LPWSTR usri3_logon_server;
 DWORD usri3_country_code;
 DWORD usri3_code_page;
 DWORD usri3_user_id;
 DWORD usri3_primary_group_id;
 LPWSTR usri3_profile;
 LPWSTR usri3_home_dir_drive;
 DWORD usri3_password_expired;
}
and:
typedef struct _USER_INFO_4 {
 LPWSTR usri4_name;
 LPWSTR usri4_password;
 DWORD usri4_password_age;
 DWORD usri4_priv;
 LPWSTR usri4_home_dir;
 LPWSTR usri4_comment;
 DWORD usri4_flags;
 LPWSTR usri4_script_path;
 DWORD usri4_auth_flags;
 LPWSTR usri4_full_name;
 LPWSTR usri4_usr_comment;
 LPWSTR usri4_parms;
 LPWSTR usri4_workstations;
 DWORD usri4_last_logon;
 DWORD usri4_last_logoff;
 DWORD usri4_acct_expires;
 DWORD usri4_max_storage;
 DWORD usri4_units_per_week;
 PBYTE usri4_logon_hours;
 DWORD usri4_bad_pw_count;
 DWORD usri4_num_logons;
 LPWSTR usri4_logon_server;
 DWORD usri4_country_code;
 DWORD usri4_code_page;
 PSID usri4_user_sid;
 DWORD usri4_primary_group_id;
 LPWSTR usri4_profile;
 LPWSTR usri4_home_dir_drive;
 DWORD usri4_password_expired;
}
Without knowing anything about these parameters, or even much about C at
 all, you can still tell that a change in level increases the amount of
 information that can and must be specified as part of the user creation
 process. Also, it should be obvious that each subsequent information level
 is a superset of the previous one.
What does this have to do with Perl? Each of the modules I’ve mentioned
 makes two decisions:
	Should the notion of “information level” be exposed to the Perl
 programmer?

	Which information level (i.e., how many parameters) can the
 programmer use?

Win32API::Net
 and Win32::UserAdmin both
 allow the programmer to choose an information level.
 Win32::NetAdmin and Win32::Lanman do not. Of these modules,
 Win32::NetAdmin exposes the least
 number of parameters; for example, you cannot set the full_name field as part of the user creation
 call. If you choose to use Win32::NetAdmin, you will probably have to supplement it with
 calls from another module to set the additional parameters it does not
 expose.
Now you have some idea why the module choice really boils down to personal
 preference. A good strategy might be to first decide which parameters are
 important to you, store the values for each of these parameters in the
 database, and then find a comfortable module that supports them. For our
 demonstration subroutines we’ll use Win32API::Net, to stay consistent with our previous examples.
 Here’s the user creation and deletion code for our account system:
use Win32API::Net qw(:User :LocalGroup); # for account creation
use Win32::Security::NamedObject; # for home directory perms
use Readonly;

each user will get a "data dir" in addition to her home directory
(the OS will create the home dir for us with the right permissions the first
time the user logs in)
Readonly my $homeWindirs => '\\\\homeserver\\home'; # home directory root dir
Readonly my $dataWindirs => '\\\\homeserver\\data'; # data directory root dir

sub CreateWinAccount {

 my ($account, $record) = @_;

 my $error; # used to send back error messages in next call

 # ideally the default values for this sort of add would come out of a database
 my $result = UserAdd(
 '', # create this account on the local machine
 3, # will specify USER_INFO_3 level of detail
 { acctExpires => −1, # no expiration
 authFlags => 0, # read only, no value necessary
 badPwCount => 0, # read only, no value necessary
 codePage => 0, # use default
 comment => '', # didn't ask for this from user
 countryCode => 0, # use default
 # must use these flags for normal acct
 flags => (
 Win32API::Net::UF_SCRIPT() & Win32API::Net::UF_NORMAL_ACCOUNT()
),
 fullName => $record->{fullname},
 homeDir => "$homeWindirs\\$account",
 homeDirDrive => 'H', # we map H: to home dir
 lastLogon => 0, # read only, no value necessary
 lastLogoff => 0, # read only, no value necessary
 logonHours => [], # no login restrictions
 logonServer => '', # read only, no value necessary
 maxStorage => −1, # no quota set
 name => $account,
 numLogons => 0, # read only, no value necessary
 parms => '', # unused
 password => $record->{password}, # plain-text passwd
 passwordAge => 0, # read only
 passwordExpired =>
 0, # don't force user to immediately change passwd
 primaryGroupId => 0x201, # magic value as instructed by doc
 priv => USER_PRIV_USER(), # normal (not admin) user
 profile => '', # don't set one at this time
 scriptPath => '', # no logon script
 unitsPerWeek => 0, # for logonHours, not used here
 usrComment => '', # didn't ask for this from user
 workstations => '', # don't specify specific wkstns
 userId => 0, # read only
 },
 $error
);

 return 0 unless ($result); # could return Win32::GetLastError()

 # add to appropriate LOCAL group
 # we assume the group name is the same as the account type
 $result = LocalGroupAddMembers('', $record->{type}, [$account]);
 return 0 if (!$result);

 # create data directory
 mkdir "$dataWindirs\\$account", 0777
 or (warn "Unable to make datadir:$!" && return 0);

 # change the owner of the directory
 my $datadir = Win32::Security::NamedObject->new('FILE',
 "$dataWindirs\\$account");
 eval { $datadir->ownerTrustee($account) };
 if ($@) {
 warn "can't set owner: $@";
 return 0;
 }

 # we give the user full control of the directory and all of the
 # files that will be created within it
 my $dacl
 = Win32::Security::ACL->new('FILE',
 ['ALLOW', 'FULL_INHERIT', 'FULL', $account],
);

 eval { $datadir->dacl($dacl) };
 if ($@) {
 warn "can't set permissions: $@";
 return 0;
 }
}
The user deletion code looks like this:
use Win32API::Net qw(:User :LocalGroup); # for account deletion
use File::Path 'remove_tree'; # for recursive directory deletion
use Readonly;

sub DeleteWinAccount {

 my ($account, $record) = @_;

 # Remove user from LOCAL groups only. If we wanted to also
 # remove from global groups we could remove the word "Local" from
 # the two Win32API::Net calls (e.g., UserGetGroups/GroupDelUser)
 # also: UserGetGroups can take a flag to search for indirect group
 # membership (for example, if user is in group because that group
 # contains another group that has that user as a member)
 UserGetLocalGroups('', $account, \my @groups);
 foreach my $group (@groups) {
 return 0 if (! LocalGroupDelMembers('', $group, [$account]);
 }

 # delete this account on the local machine
 # (i.e., empty first parameter)
 unless (UserDel('', $account)) {
 warn 'Can't delete user: ' . Win32::GetLastError();
 return 0;
 }

 # delete the home and data directory and its contents
 # remove_tree puts its errors into $err (ref to array of hash references)
 # note: remove_tree() found in File::Path 2.06+; before it was rmtree
 remove_tree("$homeWindirs\\$account", { error => \my $err });
 if (@$err) {
 warn "can't delete $homeWindirs\\$account\n" ;
 return 0;
 }

 remove_tree("$dataWindirs\\$account", { error => \my $err });
 if (@$err) {
 warn "can't delete $dataWindirs\\$account\n" ;
 return 0;
 }
 else {
 return 1;
 }
}
As a quick aside, the preceding code uses the portable
 File::Path module to remove an account’s
 home directory. If we wanted to do something Windows-specific, like move the
 home directory to the Recycle Bin instead, we could use a module
 called
 Win32::FileOp by Jenda Krynicky,
 available at http://jenda.krynicky.cz. In this case, we’d use
 Win32::FileOp and change the rmtree() line to:
will move directories to the Recycle Bin, potentially confirming
the action with the user if our account is set to confirm
Recycle Bin actions
my $result = Recycle("$homeWindirs\\$account");
my $result = Recycle("$dataWindirs\\$account");
This same module also has a Delete()
 function that will perform the same operation as the remove_tree() call, in a less portable
 (although quicker) fashion.

The Process Scripts

Once we have a backend database, we’ll want to write scripts that
 encapsulate the day-to-day and periodic processes that take place for user
 administration. These scripts are based on a low-level component library
 (Account.pm) we’ll create by concatenating all of the
 subroutines we just wrote together into one file. To make it load properly as a
 module, we’ll need to add a 1; at the end.
 The other change we’ll make in this conversion is to move all of the module and
 variable initialization code to an initialization subroutine and remove those
 parts (leaving behind our statements as
 necessary) from the other subroutines. Here’s the initialization subroutine
 we’ll use:
sub InitAccount {

 # we use these modules in both the Linux and Win32 routines
 use DBM::Deep;
 use Readonly;
 use Term::Prompt;

 # we use these global variables for both the Linux and Win32 routines
 Readonly our $record =>
 { fields => ['login', 'fullname', 'id', 'type', 'password'] };
 Readonly our $addqueue => 'add.db'; # name of add account queue file
 Readonly our $delqueue => 'del.db'; # name of del account queue file
 Readonly our $maindata => 'acct.db'; # name of main account database file

 # load the Win32-only modules and set the Win32-only global variables
 if ($^O eq 'MSWin32') {
 require Win32API::Net;
 import Win32API::Net qw(:User :LocalGroup);
 require Win32::Security::NamedObject;
 require File::Path;
 import File::Path 'remove_tree';

 # location of account files
 Readonly our $accountdir => "\\\\server\\accountsystem\\";

 # mail lists, example follows
 Readonly our $maillists => $accountdir . "maillists\\";

 # home directory root
 Readonly our $homeWindirs => "\\\\homeserver\\home";

 # data directory root
 Readonly our $dataWindirs => "\\\\homeserver\\home";

 # name of account add subroutine
 Readonly our $accountadd => \&CreateWinAccount;

 # name of account del subroutine
 Readonly our $accountdel => \&DeleteWinAccount;
 }

 # load the Unix-only modules and set the Unix-only global variables
 else {
 require Expect; # for Solaris password changes
 require Crypt::PasswdMD5;

 # location of account files
 Readonly our $accountdir => '/usr/accountsystem/';

 # mail lists, example follows
 Readonly our $maillists => '$accountdir/maillists/';

 # location of useradd executable
 Readonly our $useraddex => '/usr/sbin/useradd';

 # location of userdel executable
 Readonly our $userdelex => '/usr/sbin/userdel';

 # location of passwd executable
 Readonly our $passwdex => '/usr/bin/passwd';

 # home directory root dir
 Readonly our $homeUnixdirs => '/home';

 # prototypical home directory
 Readonly our $skeldir => '/home/skel';

 # default shell
 Readonly our $defshell => '/bin/zsh';

 # name of account add subroutine
 Readonly our $accountadd => \&CreateUnixAccount;

 # name of account del subroutine
 Readonly our $accountdel => \&DeleteUnixAccount;
 }
}
Let’s look at some sample scripts. Here’s the script that processes the add
 queue:
use Account;

read in our low-level routines
&InitAccount;

read the contents of the add account "queue"
my $queue = ReadAddQueue();

attempt to create all accounts in the queue
ProcessAddQueue($queue);

write account record to main database, or back to queue
if there is a problem
DisposeAddQueue($queue);

read in the add account queue to the $queue data structure
sub ReadAddQueue {

 our ($accountdir, $addqueue);
 my $db = DBM::Deep->new($accountdir . $addqueue);

 my $queue = $db->export();

 return $queue;
}

iterate through the queue structure, attempting to create an account
for each request (i.e., each key) in the structure
sub ProcessAddQueue {
 my $queue = shift;

 our $accountadd;
 foreach my $login (keys %{$queue}) {
 my $result = $accountadd->($login, $queue->{$login});
 if ($result) {
 $queue->{$login}{status} = 'created';
 }
 else {
 $queue->{$login}{status} = 'error';
 }
 }
}

Now iterate through the queue structure again. For each account with
a status of "created," append to main database. All others get written
back to the add queue database, overwriting the record's information.
sub DisposeAddQueue {
 my $queue = shift;

 our ($accountdir, $addqueue, $maindata);

 my $db = DBM::Deep->new($accountdir . $addqueue);

 foreach my $login (keys %{$queue}) {
 if ($queue->{$login}{status} eq 'created') {
 $queue->{$login}{login} = $login;
 $queue->{$login}{creation_date} = time;
 AppendAccount($accountdir . $maindata, $queue->{$login});
 delete $queue->{$login}; # delete from in-memory representation
 delete $db->{$login}; # delete from disk database file
 }
 }

 # all we have left in $queue at this point are the accounts that
 # could not be created

 # merge in the queue info
 my $db = DBM::Deep->new($accountdir . $addqueue);

 my $queue = $db->import($queue);
}
Our “process the delete user queue file” script is almost identical:
use Account;

read in our low-level routines
&InitAccount;

read the contents of the del account "queue"
my $queue = ReadDelQueue();

attempt to delete all accounts in the queue
ProcessDelQueue($queue);

write account record to main database, or back to queue
if there is a problem
DisposeDelQueue($queue);

read in the add account queue to the $queue data structure
sub ReadDelQueue {

 our ($accountdir, $delqueue);
 my $db = DBM::Deep->new($accountdir . $delqueue);

 my $queue = $db->export();

 return $queue;
}

iterate through the queue structure, attempting to create an account
for each request (i.e., each key) in the structure
sub ProcessDelQueue {
 my $queue = shift;

 our $accountdel;
 foreach my $login (keys %{$queue}) {
 my $result = $accountdel->($login, $queue->{$login});
 if (!defined $result) {
 $queue->{$login}{status} = 'deleted';
 }
 else {
 $queue->{$login}{status} = 'error';
 }
 }
}

Now iterate through the queue structure again. For each account with
a status of "deleted," change the main database information. All that
could not get be deleted gets merged back into the del queue file,
updating it.
sub DisposeDelQueue {
 my $queue = shift;

 our ($accountdir, $delqueue, $maindata);

 my $maindata = DBM::Deep->new($accountdir . $maindata);
 my $delqueue = DBM::Deep->new($accountdir . $delqueue);

 foreach my $login (keys %{$queue}) {
 if ($queue->{$login}{status} eq 'deleted') {
 $maintada->{$login}{deletion_date} = time;
 delete $queue->{$login}; # delete from in-memory representation
 delete $delqueue->{$login}; # delete from on disk del queue file
 }
 }

 # All we have left in $queue at this point are the accounts that
 # could not be deleted. We merge these status changes back
 # into the delete queue for future action of some sort.

 $delqueue->import($queue);
}
You can probably imagine writing many other process scripts. For example, we
 could certainly use scripts that perform data export and consistency checking
 tasks (e.g., does the user’s home directory match up with the main database’s
 account type? is that user in the appropriate group?). We don’t have space to
 cover the whole array of possible programs, so let’s end this section with a
 single example of the data export variety. Earlier I mentioned that a site might
 want a separate mailing list for each type of user on the system. The following
 code reads our main database and creates a set of files that contain usernames,
 with one file per user type:
use Account; # just to get the file locations

&InitAccount;

clearly this doesn't work so well on a large data set
my $database = ReadMainDatabase();

WriteFiles($database);

read the main database into a hash of hashes
sub ReadMainDatabase {
 our ($accountdir, $maindata);
 my $db = DBM::Deep->new($accountdir . $maindata);

 my $database = $db->export();

 return $database;
}

Iterate through the keys, compile the list of accounts of a certain
type, and store them in a hash of lists. Then write out the contents of
each key to a different file.
sub WriteFiles {

 my $database = shift;

 our ($accountdir, $maillists);

 my %types;

 foreach my $account (keys %{$database}) {
 next if $database->{$account}{status} eq 'deleted';
 push(@{ $types{ $database->{$account}{type} } }, $account);
 }

 foreach my $type (keys %types) {
 open my $OUT, '>', $maillists . $type
 or die 'Unable to write to ' . $maillists . $type . ": $!\n";
 print $OUT join("\n", sort @{ $types{$type} }) . "\n";
 close $OUT;
 }
}
If we look at the mailing list directory, we see:
> dir
faculty staff
Each of those files contains the appropriate list of user accounts.

Account System Wrap-Up

Now that we’ve explored four components of our account system, let’s wrap up this
 section by talking about what’s missing (besides oodles of
 functionality):
	Error checking
	Our demonstration code has only a modicum of error checking. Any
 self-respecting account system would grow another 40%–50% in code
 size because it would check for data and system interaction problems
 every step of the way.

	Error reporting
	The code is abysmal (for simplicity’s sake) at reporting back
 errors in a way that could help with debugging processes gone wrong.
 The routines pass back a 0 to
 indicate failure, but what they really should be doing is handing
 back exceptions or exception objects that contain more detail. Often
 we can get that detail from the
 system. For example in the case of the Win32API::Net calls in the Windows code, we could return the
 information from Win32::GetLastError() (or Win32::FormatMessage(Win32::GetLastError()) if we
 wanted to be super cool).

	Object orientation
	Even though I readily admit to having come to the land of
 object-oriented programming (OOP) late in life, I recognize that all
 of the global variables floating around this code are icky. The code
 could be much cleaner if it was rewritten to use objects instead,
 but I did not want to assume OOP knowledge just for the sake of this
 example.

	Scalability
	Our code could probably work in a small or mid-sized environment,
 but any time you see “read the entire file into memory,” it should
 set off warning bells. To scale, we would need to change our data
 storage and retrieval techniques, at the very least.

	Security
	This is related to the first item on error checking. In addition
 to a few truck-sized security holes (e.g., storing plain-text
 passwords), we do not perform any security checks in our code. We do
 not confirm that the data sources we use, such as the queue files,
 are trustworthy. Another 20%–30% should be added to the code size to
 take care of this issue.

	Multiuser
	Perhaps the largest flaw in our code as written is that we make no
 provision for multiple users or even multiple scripts running at
 once. In theory DBM::Deep is
 handling locking for us, but the code isn’t explicit enough in this
 regard. This is such an important issue that I’ll take a few moments
 to discuss it before concluding this section.

	Maintenance
	Addressing these weaknesses, even without adding features, would
 dramatically increase the size and complexity of the code. The
 result would be a large, complex, multi-OS program with functions
 that are critical to the business. Does the enterprise have the
 staff and expertise to support ongoing software maintenance, and
 should that responsibility lie with the sysadmin who creates the
 code? These are questions that must be asked (and answered) in each
 environment.

One way to help with the multiuser deficiency is to carefully introduce
 explicit file locking. File locking allows the different scripts to cooperate.
 If a script plans to read or write to a file, it can attempt to lock the file
 first. If it can obtain a lock, it knows it is safe to manipulate the file. If
 it cannot lock the file (because another script is using it), it knows not to
 proceed with an operation that could corrupt data. Of course, there’s
 considerably more complexity involved with locking and multiuser access in
 general than just this simple description reveals, as you’ll see if you consult
 any fundamental operating or distributed systems text. It gets especially tricky
 when dealing with files residing on network filesystems, where there may not be
 a good locking mechanism. DBM::Deep’s
 documentation makes explicit mention of not handling locking on NFS filesystems.
 If you don’t want to trust the built-in locking, here are a few hints that may
 help you when you approach this topic using Perl:
	There are smart ways to cheat. My favorite method is to use the
 lockfile program distributed with the popular
 mail filtering program
 procmail
 . The procmail installation procedure takes
 great pains to determine safe locking strategies for the filesystems you
 are using. lockfile does just what its name
 suggests, hiding most of the complexity in the process.

	If you don’t want to use an external executable, there are a plethora
 of locking modules available: for example, File::Flock by David Muir Sharnoff, File::LockDir from
 the
 Perl
 Cookbook
 by Tom Christiansen and Nathan Torkington (O’Reilly), File::Lock by Kenneth Albanowski, File::Lockf by Paul Henson, and Lockfile::Simple by
 Raphael Manfredi. They differ mostly in terms of their interfaces,
 though Lockfile::Simple attempts to
 perform locking without using Perl’s flock() function. Shop around and pick the best one for
 your needs.

	Locking is easier to get right if you remember to lock before
 attempting to change data (or read data that could change) and unlock
 only after making sure that data has been written
 (e.g., after the file has been closed). For more information on this,
 see the previously mentioned Perl Cookbook, the
 Perl Frequently Asked Questions
 list, and the documentation that comes with Perl on the
 flock() function and the DB_File module.

This ends our look at user account administration and how it can be taken to
 the next level with a bit of an architectural mindset. These
 concepts—particularly the “self-review” of deficiencies in the account
 administration program—can be applied to many projects and can be very helpful
 in architecting system administration tools, rather than just writing
 scripts.
In this chapter we’ve concentrated on the beginning and the end of an
 account’s lifecycle. In the next chapter, we’ll examine what users do in between these two points.

[13] Where “bare-bones” means “toy.” This is really meant to be very simple
 code just to demonstrate the underlying concepts behind the construction of
 a system like this.

[14] But don’t. It will lead to heartbreak and misery. I’ve seen it happen
 too many times not to say, “Friends don’t let friends use Access as a
 multiuser database.”

[15] If you want to get agitated about variations, take a
 look at OS X. It doesn’t (at this time) even have a
 user-account-specific set of commands. Instead, you get
 to learn dscl, a throwback to
 NetInfo. Nostalgic for NeXT cubes, anyone?

[16] This means you’ll have to protect the secret used to
 encrypt/decrypt the account password by either protecting the script
 or the script’s config files at the OS level. This is the digression
 I’m not going to entertain at this point.

[17] If you are willing to use software that doesn’t ship with Solaris
 for this purpose, you could look at changepass,
 part of the cgipaf package at http://www.wagemakers.be/english/programs/cgipaf.

[18] Showing you the user info level 4 structure is a bit of a tease,
 because as of this writing none of the Perl modules support it. It
 won’t be too big of a loss should this still be true when you read
 this (level 3 and level 4 aren’t that different), but I thought you
 should know.

Module Information for This Chapter

	
 Name

 	
 CPAN ID

 	
 Version

	
 User::pwent (ships with
 Perl)

 	 	
 1.00

	
 File::stat (ships with
 Perl)

 	 	
 1.01

	

 Passwd::Solaris

 	
 EESTABROO

 	
 1.2

	

 Passwd::Linux

 	
 EESTABROO

 	
 1.2

	

 Win32API::Net

 	
 JDB

 	
 0.12

	

 Win32::Security(::NamedObject,
 ::ACL)

 	
 TEVERETT

 	
 0.50

	

 Win32::OLE

 	
 JDB

 	
 0.1709

	

 Term::Prompt

 	
 PERSICOM

 	
 1.04

	

 Crypt::PasswdMD5

 	
 LUISMUNOZ

 	
 1.3

	

 DBM::Deep

 	
 RKINYON

 	
 1.0014

	

 Readonly

 	
 ROODE

 	
 1.03

	

 Expect

 	
 RGIERSIG

 	
 1.21

	
 File::Path (ships with
 Perl)

 	
 DLAND

 	
 2.07

	

 Win32::FileOp

 	
 JENDA

 	
 0.14.1

References for More Information

Using a set of central databases from which configuration files are automatically
 generated is a best practice that shows up in a number of places in this book;
 credit for my exposure to this methodology goes to Rémy Evard. Though it is now in
 use at many sites, I first encountered it when I inherited the Tenwen computing
 environment he built (as described in the Tenwen paper at https://www.usenix.org/publications/library/proceedings/lisa94/evard.html). See the section “Implemented the Hosts Database” for one example of this
 methodology in action.
http://www.rpi.edu/~finkej/ contains a number of Jon Finke’s
 published papers on the use of relational databases for system administration. Many
 of his papers were published at the LISA
 conference; see http://www.usenix.org for the archives of past
 proceedings.
Unix Password Files

http://www.freebsd.org/cgi/man.cgi is where the FreeBSD Project provides access to the online manual pages
 for *BSD and other Unix variants. This is a handy way to compare the file
 formats and user administration commands (useradd, etc.) for several operating systems.
Practical Unix & Internet Security, Third
 Edition, by Simson Garfinkel et al. (O’Reilly), is an excellent
 place to start for information about password files.

Windows User Administration

http://Jenda.Krynicky.cz is another site with useful Win32 modules applicable to user
 administration.
http://aspn.activestate.com/ASPN/Mail hosts the
 Perl-Win32-Admin and
 Perl-Win32-Users mailing lists. Both lists and their
 archives are invaluable resources for Windows Perl programmers.
Win32 Perl Programming: The Standard Extensions, Second
 Edition, and Win32 Perl Scripting: The Administrator’s
 Handbook, both by Dave Roth (Sams, 2001 and 2002), are a little
 dated but are still some of the best references for Win32 Perl module
 programming available.
There are a whole slew of superb books that have Robbie Allen as author or
 coauthor, including Active
 Directory, Third Edition (O’Reilly), Active Directory Cookbook, Second Edition
 (O’Reilly), Managing Enterprise AD Services
 (Addison-Wesley),
 Windows Server
 Cookbook
 (O’Reilly), Windows Server 2003 Networking
 Recipes (Apress),
 Windows Server 2003
 Security Cookbook
 (O’Reilly), and
 Windows XP
 Cookbook
 (O’Reilly). All of these are well worth reading, but it’s not the
 books I want to gush about. Allen has a website at http://techtasks.com that makes all of the code samples in all of
 the languages (including Perl translations of all the VBScript code) from all of
 these books available for viewing and for purchase. It truly is the mother lode
 of examples—one of the single most helpful websites for this sort of programming
 that you’ll ever find. Definitely buy the books and the code repository; this
 sort of effort deserves your support.
http://win32.perl.org has a wiki devoted to all things
 Win32-Perl related. The PPM repositories link at that site is especially helpful
 when you are trying to track down more modules for the ActiveState Perl
 distribution.
http://learning.microsoft.com is (as of this writing) the home
 for the Microsoft resource kits. http://www.microsoft.com/downloads/ is (again, as of this writing,
 they love to shuffle URLs in Redmond) a good place to search for the freely
 downloadable utilities from the resource kits (search for “resource
 kit”).

Chapter 4. User Activity

In the previous chapter, we explored the parts of a user’s identity and how to manage
 and store it. Now let’s talk about how to manage users while they are active on our
 systems and networks.
Typical user activities fall into four domains:
	Processes
	Users run processes that can be spawned, killed, paused, and resumed
 on the machines we manage. These processes compete for a computer’s finite
 processing power, adding resource issues to the list of problems a system
 administrator needs to mediate.

	File operations
	Most of the time, operations like writing, reading, creating, deleting, and
 so on take place when a specific user process interacts with files and
 directories in a filesystem. But under Unix, there’s more to this picture.
 Unix uses the filesystem as a gateway to more than just file storage. Device
 control, input/output, and even some process control and network access
 operations are file operations. We dealt with filesystem administration in
 Chapter 2, but in this chapter we’ll approach this
 topic from a user administration perspective.

	Network usage
	Users can send and receive data over network interfaces on our
 machines. There is material elsewhere in this book on networking, but we’ll
 address this issue here from a different perspective.

	OS-specific activities
	This last domain is a catchall for the OS-specific features that users can
 access via different APIs. Included in this list are things like GUI element
 controls, shared memory usage, file-sharing APIs, sound, and so on. This
 category is so diverse that it would be impossible to do it justice in this
 book. I recommend that you track down the OS-specific web sites for
 information on these topics.

Process Management

We’ll begin by looking at ways to deal with the first three of these domains using
 Perl. Because we’re interested in user administration, the focus here will be on
 dealing with processes that other users have started.
Windows-Based Operating System Process Control

We’re going to briefly look at four different ways to deal with process
 control on Windows, because each of these approaches opens up a door to
 interesting functionality outside the scope of our discussion that is likely to
 be helpful to you at some point. We’re primarily going to concentrate on two
 tasks: finding all of the running processes and killing select processes.
Using external binaries

There are a number of programs available to us that display and manipulate
 processes. The first edition of this book used the programs
 pulist.exe and kill.exe from the
 Windows 2000 Resource Kit. Both are still available for download from
 Microsoft as of this writing and seem to work fine on later versions of the
 operating system. Another excellent set of process manipulation tools comes
 from the Sysinternals utility collection, which Mark Russinovich and Bryce Cogswell formerly provided on their
 Sysinternals web site and which is now available through Microsoft (see the
 references section at the end of this chapter). This collection includes a
 suite of utilities called
 PsTools that can do things the standard
 Microsoft-supplied tools can’t handle.
For our first example, we’re going to use two programs Microsoft ships
 with the operating system. The
 programs tasklist.exe
 and taskkill.exe work fine for many tasks
 and are a good choice for scripting in cases where you won’t want to or
 can’t download other programs to a machine.
By default tasklist produces output in
 a very wide table that can sometimes be difficult to read. Adding /FO list provides output like this:
Image Name: System Idle Process
PID: 0
Session Name: Console
Session#: 0
Mem Usage: 16 K
Status: Running
User Name: NT AUTHORITY\SYSTEM
CPU Time: 1:09:06
Window Title: N/A

Image Name: System
PID: 4
Session Name: Console
Session#: 0
Mem Usage: 212 K
Status: Running
User Name: NT AUTHORITY\SYSTEM
CPU Time: 0:00:44
Window Title: N/A

Image Name: smss.exe
PID: 432
Session Name: Console
Session#: 0
Mem Usage: 372 K
Status: Running
User Name: NT AUTHORITY\SYSTEM
CPU Time: 0:00:00
Window Title: N/A

Image Name: csrss.exe
PID: 488
Session Name: Console
Session#: 0
Mem Usage: 3,984 K
Status: Running
User Name: NT AUTHORITY\SYSTEM
CPU Time: 0:00:08
Window Title: N/A

Image Name: winlogon.exe
PID: 512
Session Name: Console
Session#: 0
Mem Usage: 2,120 K
Status: Running
User Name: NT AUTHORITY\SYSTEM
CPU Time: 0:00:08
Window Title: N/A
Another format option for tasklist
 makes using it from Perl pretty trivial:
 CSV (Comma/Character Separated Values).
 We’ll talk more about dealing with CSV files in Chapter 5, but here’s a small
 example that demonstrates how to parse that data:
use Text::CSV_XS;

my $tasklist = "$ENV{'SystemRoot'}\\SYSTEM32\\TASKLIST.EXE";
my $csv = Text::CSV_XS->new();

/v = verbose (includes User Name), /FO CSV = CSV format, /NH - no header
open my $TASKPIPE, '-|', "$tasklist /v /FO CSV /NH"
 or die "Can't run $tasklist: $!\n";

my @columns;
while (<$TASKPIPE>) {
 next if /^$/; # skip blank lines in the input
 $csv->parse($_) or die "Could not parse this line: $_\n";
 @columns = ($csv->fields())[0, 1, 6]; # grab name, PID, and User Name
 print join(':', @columns), "\n";
}

close $TASKPIPE;
tasklist
 can also provide some other interesting information, such as the
 dynamic link libraries (DLLs) used by a particular process. Be sure to run
 it with the /? switch to see its usage
 information.
The other program I mentioned, taskkill.exe, is
 equally easy to use. It takes as an argument a task name (called the “image name”), a process ID,
 or a more complex filter to determine which processes to kill. I recommend
 the process ID format to stay on the safe side, since it is very easy to
 kill the wrong process if you use task names.
taskkill
 offers two different ways to shoot down processes. The first is
 the polite death: taskkill.exe /PID
 <process id> will ask the specified
 process to shut itself down. However, if we add /F to the command line, it forces the issue: taskkill.exe /F /PID
 <process id> works more like the
 native Perl kill() function and
 kills the process with extreme prejudice.

Using the Win32::Process::Info module

The second approach[19] uses the
 Win32::Process::Info module, by Thomas R.
 Wyant. Win32::Process::Info is very easy
 to use. First, create a process info object, like so:
use Win32::Process::Info;
use strict;

the user running this script must be able to use DEBUG level privs
my $pi = Win32::Process::Info->new({ assert_debug_priv => 1 });
The new() method can optionally take a
 reference to a hash containing configuration information. In this case we
 set the config variable assert_debug_priv
 to true because we want our program to
 use debug-level privileges when requesting information. This is necessary if
 getting a list of all of the process owners is important to you. If you
 leave this out, you’ll find that the module (due to the Windows security
 system) will not be able to fetch the owner of some of the processes. There
 are some pretty scary warnings in the module’s documentation regarding this
 setting; I haven’t had any problems with it to date, but you should be sure
 to read the documentation before you follow my lead.
Next, we retrieve the process information for the machine:
my @processinfo = $pi->GetProcInfo();
@processinfo is now an array of
 references to anonymous hashes. Each anonymous hash has a number of keys
 (such as Name, ProcessId, CreationDate,
 and ExecutablePath),
 each with its expected value. To display our process info in the same
 fashion as the example from the last section, we could use the following
 code:
use Win32::Process::Info;

my $pi = Win32::Process::Info->new({ assert_debug_priv => 1 });
my @processinfo = $pi->GetProcInfo();

foreach my $process (@processinfo) {
 print join(':',
 $process->{'Name'}, $process->{'ProcessId'},
 $process->{'Owner'}),
 "\n";
}
Once again, we get output like this:
System Idle Process:0:
System:4:
smss.exe:432:NT AUTHORITY\SYSTEM
csrss.exe:488:NT AUTHORITY\SYSTEM
winlogon.exe:512:NT AUTHORITY\SYSTEM
services.exe:556:NT AUTHORITY\SYSTEM
lsass.exe:568:NT AUTHORITY\SYSTEM
svchost.exe:736:NT AUTHORITY\SYSTEM
svchost.exe:816:NT AUTHORITY\NETWORK SERVICE
svchost.exe:884:NT AUTHORITY\SYSTEM
svchost.exe:960:NT AUTHORITY\SYSTEM
svchost.exe:1044:NT AUTHORITY\NETWORK SERVICE
svchost.exe:1104:NT AUTHORITY\LOCAL SERVICE
ccSetMgr.exe:1172:NT AUTHORITY\SYSTEM
ccEvtMgr.exe:1200:NT AUTHORITY\SYSTEM
spoolsv.exe:1324:NT AUTHORITY\SYSTEM
...
Win32::Process::Info provides more info
 about a process than just these fields (perhaps more than you will ever
 need). It also has one more helpful feature: it can show you the process
 tree for all processes or just a particular process. This allows you to
 display the subprocesses for each process (i.e., the list of processes that
 process spawned) and the subprocesses for those subprocesses, and so
 on.
So, for example, if we wanted to see all of the processes spawned by one
 of the processes just listed, we could write the following:
use Win32::Process::Info;
use Data::Dumper;

my $pi = Win32::Process::Info->new({ assert_debug_priv => 1 });

PID 884 picked for this example because it has a small number of children
my %sp = $pi->Subprocesses(884);

print Dumper (\%sp);
This yields:
$VAR1 = {
 '3320' => [],
 '884' => [
 3320
]
 };
which shows that this instance of svchost.exe (PID
 884) has one child, the process with
 PID 3320. That process does not have any
 children.

Using the GUI control modules (Win32::Setupsup and
 Win32::GuiTest)

Of the approaches we’ll consider, this third approach is probably the most
 fun. In this section we’ll look at a module by Jens Helberg called
 Win32::Setupsup and a module by
 Ernesto Guisado, Jarek Jurasz, and Dennis K. Paulsen
 called
 Win32::GuiTest. They have similar
 functionality but achieve the same goals a little differently. We’ll look
 primarily at Win32::Setupsup, with a few
 choice examples from Win32::GuiTest.
Note
In the interest of full disclosure, it should be mentioned that (as of
 this writing) Win32::Setupsup had not
 been developed since October 2000 and is kind of hard to find (see the
 references at the end of this chapter). It still works well, though, and
 it has features that aren’t found in Win32::GuiTest; hence its inclusion
 here. If its orphan status bothers you, I recommend looking at Win32::GuiTest first to see if it meets
 your needs.

Win32::Setupsup is called “Setupsup”
 because it is primarily designed to supplement software installation (which
 often uses a program called setup.exe).
Some installers can be run in so-called “silent mode” for totally
 automated installation. In this mode they ask no questions and require no
 “OK” buttons to be pushed, freeing the administrator from having to babysit
 the install. Software installation mechanisms that do not offer this mode
 (and there are far too many of them) make a system administrator’s life
 difficult. Win32::Setupsup helps deal
 with these deficiencies: it can find information on running processes and
 manipulate them (or manipulate them dead if you so choose).
Note
For instructions on getting and installing Win32::Setupsup, refer to the section Module Information for This Chapter.

With Win32::Setupsup, getting the list
 of running processes is easy. Here’s an example:
use Win32::Setupsup;
use Perl6::Form;

my $machine = ''; # query the list on the current machine

define the output format for Perl6::Form
my $format = '{<<<<<<<} {<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<}';

my (@processlist, @threadlist);
Win32::Setupsup::GetProcessList($machine, \@processlist, \@threadlist)
 or die 'process list error: ' . Win32::Setupsup::GetLastError() . "\n";

pop(@processlist); # remove the bogus entry always appended to the list

print <<'EOH';
Process ID Process Name
========== ===============================
EOH

foreach my $processlist (@processlist) {
 print form $format, $processlist->{pid}, $processlist->{name};
}
Killing processes is equally easy:
KillProcess($pid, $exitvalue, $systemprocessflag) or
 die 'Unable to kill process: ' . Win32::Setupsup::GetLastError() . "\n";
The last two arguments are optional. The second argument kills the process
 and sets its exit value accordingly (by default, it is set to 0). The third argument allows you to kill
 system-run processes (providing you have the Debug
 Programs user right).
That’s the boring stuff. We can take process manipulation to yet another
 level by interacting with the windows a running process may have open. To
 list all of the windows available on the desktop, we use:
Win32::Setupsup::EnumWindows(\@windowlist) or
 die 'process list error: ' . Win32::Setupsup::GetLastError() . "\n";
@windowlist now contains a list of
 window handles that are converted to look like normal numbers when you print
 them. To learn more about each window, you can use a few different
 functions. For instance, to find the titles of each window, you can use
 GetWindowText() like so:
use Win32::Setupsup;

my @windowlist;
Win32::Setupsup::EnumWindows(\@windowlist)
 or die 'process list error: ' . Win32::Setupsup::GetLastError() . "\n";

my $text;
foreach my $whandle (@windowlist) {
 if (Win32::Setupsup::GetWindowText($whandle, \$text)) {
 print "$whandle: $text", "\n";
 }
 else {
 warn "Can't get text for $whandle"
 . Win32::Setupsup::GetLastError() . "\n";
 }
}
Here’s a little bit of sample output:
66130: chapter04 - Microsoft Word
66184: Style
194905150:
66634: setupsup - WordPad
65716: Fuel
328754: DDE Server Window
66652:
66646:
66632: OleMainThreadWndName
As you can see, some windows have titles, while others do not. Observant
 readers might notice something else interesting about this output. Window
 66130 belongs to a Microsoft Word
 session that is currently running (it is actually the one in which this
 chapter was composed). Window 66184 looks
 vaguely like the name of another window that might be connected to Microsoft
 Word. How can we tell if they are related?
Win32::Setupsup has an
 EnumChildWindows() function that can show
 us the children of any given window. Let’s use it to write something that
 will show us a basic tree of the current window hierarchy:
use Win32::Setupsup;

my @windowlist;
get the list of windows
Win32::Setupsup::EnumWindows(\@windowlist)
 or die 'process list error: ' . Win32::Setupsup::GetLastError() . "\n";

turn window handle list into a hash
NOTE: this conversion populates the hash with plain numbers and
not actual window handles as keys. Some functions, like
GetWindowProperties (which we'll see in a moment), can't use these
converted numbers. Caveat implementor.
my %windowlist;
for (@windowlist) { $windowlist{$_}++; }

check each window for children
my %children;
foreach my $whandle (@windowlist) {
 my @children;
 if (Win32::Setupsup::EnumChildWindows($whandle, \@children)) {

 # keep a sorted list of children for each window
 $children{$whandle} = [sort { $a <=> $b } @children];

 # remove all children from the hash; we won't directly
 # iterate over them
 foreach my $child (@children) {
 delete $windowlist{$child};
 }
 }
}

iterate through the list of windows and recursively print
each window handle and its children (if any)
foreach my $window (sort { $a <=> $b } keys %windowlist) {
 PrintFamily($window, 0, %children);
}

print a given window handle number and its children (recursively)
sub PrintFamily {

 # starting window - how deep in a tree are we?
 my ($startwindow, $level, %children) = @_;

 # print the window handle number at the appropriate indentation
 print((' ' x $level) . "$startwindow\n");

 return unless (exists $children{$startwindow}); # no children, done

 # otherwise, we have to recurse for each child
 $level++;
 foreach my $childwindow (@{ $children{$startwindow} }) {
 PrintFamily($childwindow, $level, %children);
 }
}
There’s one last window property function we should look at before moving
 on: GetWindowProperties(). GetWindowProperties() is basically a catchall for the rest of
 the window properties we haven’t seen yet. For instance, using GetWindowProperties() we can query the process
 ID for the process that created a specific window. This could be combined
 with some of the functionality we just saw for the Win32::Process::Info module.
The Win32::Setupsup
 documentation contains a list of the available properties that
 can be queried. Let’s use one of them to write a very simple program that
 will print the coordinates of a rectangular window on the desktop. GetWindowProperties() takes three arguments: a
 window handle, a reference to an array that contains the names of the
 properties to query, and a reference to a hash where the query results will
 be stored. Here’s the code we need for our task:
use Win32::Setupsup;

Convert window ID into a form that GetWindowProperties can cope with.
Note: 'U' is a pack template that is only available in Perl 5.6+ releases.

my $whandle = unpack 'U', pack 'U', $ARGV[0];
my %info;
Win32::Setupsup::GetWindowProperties($whandle, ['rect'], \%info);

print "\t" . $info{rect}{top} . "\n";
print $info{rect}{left} . ' -' . $whandle . '- ' . $info{rect}{right} . "\n";
print "\t" . $info{rect}{bottom} . "\n";
The output is a bit cutesy. Here’s a sample showing the top, left, right,
 and bottom coordinates of the window with handle 66180:
 154
272 −66180- 903
 595
GetWindowProperties() returns a special
 data structure for only one property, rect. All of the others will simply show up in the referenced
 hash as normal keys and values. If you are uncertain about the properties
 being returned by Perl for a specific window, the windowse utility is often helpful.
Now that we’ve seen how to determine various window properties, wouldn’t
 it be spiffy if we could make changes to some of these properties? For
 instance, it might be useful to change the title of a particular window.
 With this capability, we could create scripts that used the window title as
 a status indicator:
"Prestidigitation In Progress ... 32% complete"
Making this change to a window is as easy as a single function
 call:
Win32::Setupsup::SetWindowText($handle,$text);
We can also set the rect property we
 just saw. This code makes the specified window jump to the position we’ve
 specified:
use Win32::Setupsup;

my %info;
$info{rect}{left} = 0;
$info{rect}{right} = 600;
$info{rect}{top} = 10;
$info{rect}{bottom} = 500;
my $whandle = unpack 'U', pack 'U', $ARGV[0];
Win32::Setupsup::SetWindowProperties($whandle, \%info);
I’ve saved the most impressive function for last. With SendKeys(), it is
 possible to send arbitrary keystrokes to any window on the desktop. For
 example:
use Win32::Setupsup;

my $texttosend = "\\DN\\Low in the gums";
my $whandle = unpack 'U', pack 'U', $ARGV[0];
Win32::Setupsup::SendKeys($whandle, $texttosend, 0 ,0);
This will send a “down cursor key” followed by some text to the specified
 window. The arguments to SendKeys() are
 pretty simple: window handle, text to send, a flag to determine whether a
 window should be activated for each keystroke, and an optional time between
 keystrokes. Special key codes like the down cursor are surrounded by
 backslashes. The list of available keycodes can be found in the module’s
 documentation.
Before we move on to another tremendously useful way to work with user
 processes in the Windows universe, I want to briefly look at a module that
 shares some functionality with Win32::Setupsup but can do even more interesting stuff. Like
 Win32::Setupsup, Win32::GuiTest can return information about
 active windows and send keystrokes to applications. However, it offers even
 more powerful functionality.
Here’s an example slightly modified from the documentation (stripped of
 comments and error checking, be sure to see the original) that demonstrates
 some of this power:
use Win32::GuiTest qw(:ALL);

system("start notepad.exe");
sleep 1;

MenuSelect("F&ormat|&Font");
sleep(1);

my $fontdlg = GetForegroundWindow();

my ($combo) = FindWindowLike($fontdlg, '', 'ComboBox', 0x470);

for (GetComboContents($combo)) {
 print "'$_'" . "\n";
}

SendKeys("{ESC}%{F4}");
This code starts up notepad, asks it to open its font
 settings by choosing the appropriate menu item, and then reads the contents
 of the resulting dialog box and prints what it finds. It then sends the
 necessary keystrokes to dismiss the dialog box and tell notepad to quit. The end result is a
 list of monospaced fonts available on the system that looks something like
 this:
'Arial'
'Arial Black'
'Comic Sans MS'
'Courier'
'Courier New'
'Estrangelo Edessa'
'Fixedsys'
'Franklin Gothic Me
'Gautami'
'Georgia'
'Impact'
'Latha'
'Lucida Console'
'Lucida Sans Unicod
'Mangal'
'Marlett'
'Microsoft Sans Ser
'Modern'
'MS Sans Serif'
Let’s look at one more example (again, adapted from the module’s
 documentation because it offers great example code):
use Win32::GuiTest qw(:ALL);

system 'start notepad';
sleep 1;

my $menu = GetMenu(GetForegroundWindow());
menu_parse($menu);

SendKeys("{ESC}%{F4}");

sub menu_parse {
 my ($menu, $depth) = @_;
 $depth ||= 0;

 foreach my $i (0 .. GetMenuItemCount($menu) - 1) {
 my %h = GetMenuItemInfo($menu, $i);
 print ' ' x $depth;
 print "$i ";
 print $h{text} if $h{type} and $h{type} eq 'string';
 print "------" if $h{type} and $h{type} eq 'separator';
 print "UNKNOWN" if not $h{type};
 print "\n";

 my $submenu = GetSubMenu($menu, $i);
 if ($submenu) {
 menu_parse($submenu, $depth + 1);
 }
 }
}
As in the previous example, we begin by spinning up
 notepad. We can then examine the menus of the
 application in the foreground window, determining the number of top-level
 menu items and then iterating over each item (printing the information and
 looking for submenus of each item as we go). If we find a submenu, we
 recursively call menu_parse() to examine
 it. Once we’ve completed the menu walk, we send the keys to close the
 notepad window and quit the application.
The output looks like this:
0 &File
 0 &New Ctrl+N
 1 &Open... Ctrl+O
 2 &Save Ctrl+S
 3 Save &As...
 4 ------
 5 Page Set&up...
 6 &Print... Ctrl+P
 7 ------
 8 E&xit
1 &Edit
 0 &Undo Ctrl+Z
 1 ------
 2 Cu&t Ctrl+X
 3 &Copy Ctrl+C
 4 &Paste Ctrl+V
 5 De&lete Del
 6 ------
 7 &Find... Ctrl+F
 8 Find &Next F3
 9 &Replace... Ctrl+H
 10 &Go To... Ctrl+G
 11 ------
 12 Select &All Ctrl+A
 13 Time/&Date F5
2 F&ormat
 0 &Word Wrap
 1 &Font...
3 &View
 0 &Status Bar
4 &Help
 0 &Help Topics
 1 ------
 2 &About Notepad
Triggering known menu items from a script is pretty cool, but it’s even
 cooler to have the power to determine which menu items are available. This
 lets us write much more adaptable scripts.
We’ve only touched on a few of Win32::GuiTest’s advanced features here. Some of the other
 impressive features include the ability to read the text context of a window
 using
 WMGetText() and the ability to select
 individual tabs in a window with
 SelectTabItem(). See
 the documentation and the example directory (eg) for
 more details.
With the help of these two modules, we’ve taken process control to an
 entirely new level. Now it is possible to remotely control applications (and
 parts of the OS) without the explicit cooperation of those applications. We
 don’t need them to offer command-line support or a special API; we have the
 ability to essentially script a GUI, which is useful in a myriad of system
 administration contexts.

Using Windows Management Instrumentation (WMI)

Let’s look at one final approach to Windows process control before we switch to
 another operating system. By now you’ve probably figured out that each of
 these approaches is not only good for process control, but also can be
 applied in many different ways to make Windows system administration easier.
 If you had to pick the approach that would yield the most reward in the long
 term to learn, WMI-based scripting is probably it. The first edition of this
 book called Windows Management Instrumentation “Futureland” because it was
 still new to the scene when the book was being written. In the intervening
 time, Microsoft, to its credit, has embraced the WMI framework as its
 primary interface for administration of not just its operating systems, but
 also its other products, such as MS SQL Server and Microsoft
 Exchange.
Unfortunately, WMI is one of those not-for-the-faint-of-heart technologies
 that gets very complex very quickly. It is based on an object-oriented model
 that has the power to represent not only data, but also relationships
 between objects. For instance, it is possible to create an association
 between a web server and the storage device that holds the data for that
 server, so that if the storage device fails, a problem for the web server
 will be reported as well. We don’t have the space to deal with this
 complexity here, so we’re just going to skim the surface of WMI by providing
 a small and simple introduction, followed by a few code samples.
If you want to get a deeper look at this technology, I recommend searching
 for WMI-related content at http://msdn.microsoft.com. You
 should also have a look at the information found at the Distributed Management Task Force’s
 website. In the meantime, here is a brief synopsis to get you
 started.
WMI is the Microsoft implementation and extension of an unfortunately
 named initiative called the Web-Based Enterprise
 Management initiative, or WBEM for short. Though the name conjures up visions of something
 that requires a browser, it has virtually nothing to do with the World Wide
 Web. The companies that were part of the Distributed Management Task Force (DMTF) wanted to create
 something that could make it easier to perform management tasks using
 browsers. Putting the name aside, it is clearer to say that WBEM defines a
 data model for management and instrumentation information. It provides
 specifications for organizing, accessing, and moving this data around. WBEM
 is also meant to offer a cohesive frontend for accessing data provided by
 other management protocols, such as the Simple Network Management Protocol (SNMP), discussed in Chapter 12, and the Common Management Information Protocol (CMIP).
Data in the WBEM world is organized using the Common Information Model (CIM). CIM is the source of the power
 and complexity in WBEM/WMI. It provides an extensible data model that
 contains objects and object classes for any physical or logical entity one
 might want to manage. For instance, there are object classes for entire
 networks, and objects for single slots in specific machines. There are
 objects for hardware settings and objects for software application settings.
 On top of this, CIM allows us to define object classes that describe
 relationships between other objects.
This data model is documented in two parts: the
 CIM Specification and the CIM
 Schema. The former describes the how of
 CIM (how the data will be specified, its connection to prior management
 standards, etc.), while the latter provides the what of
 CIM (the actual objects). This division may remind you of the SNMP SMI and
 MIB relationship (see Appendix G and
 Chapter 12).
In practice, you’ll be consulting the CIM Schema more than the CIM
 Specification once you get the hang of how the data is represented. The
 schema format (called MOF, for Managed Object Format) is fairly easy to read.
The CIM Schema has two layers:
	The core model for objects and classes useful
 in all types of WBEM interaction.

	The common model for generic objects that are
 vendor- and operating system-independent. Within the common model there are
 currently 15 specific areas, including Systems, Devices, Applications, Networks,
 and Physical.

Built on top of these two layers can be any number of extension
 schemas that define objects and classes for vendor- and
 OS-specific information. WMI is one WBEM implementation that makes heavy use
 of this extension mechanism.
A crucial part of WMI that distinguishes it from generic WBEM
 implementations is the Win32 Schema, an extension schema for Win32-specific
 information built on the core and common models. WMI also adds to the
 generic WBEM framework by providing Win32-specific access mechanisms to the
 CIM data.[20] Using this schema extension and set of data access methods, we
 can explore how to perform process control operations using WMI in
 Perl.
WMI offers two different approaches for getting at management data:
 object-oriented and query-based. With the former you specify the specific
 object or container of objects that contains the information you seek, while
 with the latter you construct a SQL-like[21] query that returns a result set of objects containing your
 desired data. We’ll give a simple example of each approach so you can see
 how they work.
The Perl code that follows does not appear to be particularly complex, so
 you may wonder about the earlier “gets very complex very quickly”
 description. The code looks simple because:
	We’re only scratching the surface of WMI. We’re not even going to
 touch on subjects like associations (i.e., relationships between
 objects and object classes).

	The management operations we are performing are simple. Process
 control in this context will consist of querying the running
 processes and being able to terminate them at will. These operations
 are easy in WMI using the Win32 Schema extension.

	Our samples hide the complexity of translating WMI documentation
 and code samples in VBScript/JScript to Perl code. See Appendix F for some
 help with that task.

	Our samples hide the opaqueness of the debugging process. When
 WMI-related Perl code fails (especially code of the object-oriented
 flavor), it provides very little information that would help you
 debug the problem. You may receive error messages, but they never
 say ERROR: YOUR EXACT PROBLEM
 IS.... You’re more likely to get back a message like
 wbemErrFailed 0x8004100 or
 just an empty data structure. To be fair to Perl, most of this
 opaqueness comes from Perl’s role in this process: it is acting as a
 frontend to a set of fairly complex multilayered operations that
 don’t concern themselves with passing back useful feedback when
 something fails.

I know this sounds pretty grim, so let me offer some potentially helpful
 advice before we actually get into the code itself:
	Look at all of the
 Win32::OLE sample code you can
 lay your hands on. The ActiveState Win32-Users
 mailing list archive found at http://aspn.activestate.com/ASPN/Mail is a good source
 for this code. If you compare this sample code to equivalent
 VBScript examples, you’ll start to understand the necessary
 translation idioms. Appendix F and the
 section Active Directory Service Interfaces
 in Chapter 9 may also help.

	Make friends with the Perl debugger, and use it to try out code
 snippets as part of this learning process. There are also several
 REPL[22]-modules available on CPAN, such as
 App::REPL, Devel::REPL, and Shell::Perl, that can make interactive prototyping
 easier. Other integrated development environment (IDE) tools may
 also offer this functionality.

	Keep a copy of the WMI SDK handy. The documentation and the
 VBScript code examples are very helpful.

	Use the WMI object browser in the WMI SDK frequently. It helps you
 get the lay of the land.

Now let’s get to the Perl part of this section. Our initial task will be
 to determine what information we can retrieve about Windows processes and
 how we can interact with that information.
First we need to establish a connection to a WMI
 namespace. A namespace is defined in the WMI SDK as “a unit for grouping
 classes and instances to control their scope and visibility.” In this case,
 we’re interested in connecting to the root of the standard cimv2 namespace, which contains all of the
 data that is interesting to us.
We will also have to set up a connection with the appropriate security
 privileges and impersonation level. Our program will need to be given the
 privilege to debug a process and to impersonate us; in other words, it has
 to run as the user calling the script. After we get this connection, we will
 retrieve a
 Win32_Process object (as defined in the
 Win32 Schema).
There is a hard way and an easy way to create this connection and get the
 object. We’ll look at both in the first example, so you get an idea of what
 the methods entail. Here’s the hard way, with its explanation to
 follow:
use Win32::OLE('in');

my $server = ''; # connect to local machine

get an SWbemLocator object
my $lobj = Win32::OLE->new('WbemScripting.SWbemLocator') or
 die "can't create locator object: ".Win32::OLE->LastError()."\n";

set the impersonation level to "impersonate"
$lobj->{Security_}->{impersonationlevel} = 3;

use it to get an SWbemServices object
my $sobj = $lobj->ConnectServer($server, 'root\cimv2') or
 die "can't create server object: ".Win32::OLE->LastError()."\n";

get the schema object
my $procschm = $sobj->Get('Win32_Process');
The hard way involves:
	Getting a locator object, used to find a connection to a server
 object

	Setting the impersonation level so our program will run with our
 privileges

	Using the locator object to get a server connection to the
 cimv2 WMI namespace

	Using this server connection to retrieve a Win32_Process object

Doing it this way is useful in cases where you need to operate on the
 intermediate objects. However, we can do this all in one step using a COM
 moniker’s display name. According to the WMI SDK, “in Common Object Model
 (COM), a moniker is the standard mechanism for
 encapsulating the location and binding of another COM object. The textual
 representation of a moniker is called a display name.”
 Here’s an easy way to do the same thing as the previous code snippet:
use Win32::OLE('in');

my $procschm = Win32::OLE->GetObject(
 'winmgmts:{impersonationLevel=impersonate}!Win32_Process')
 or die "can't create server object: ".Win32::OLE->LastError()."\n";
Now that we have a
 Win32_Process object in hand, we can use
 it to show us the relevant parts of the schema that represent processes
 under Windows. This includes all of the available Win32_Process properties and methods we can use. The code to
 do this is fairly simple; the only magic is the use of the Win32::OLE in operator. To explain this, we
 need a quick digression.
Our $procschm object has two special
 properties, Properties_ and Methods_. Each holds a special child object,
 known as a collection object in COM parlance. A
 collection object is just a parent container for other objects; in this
 case, they are holding the schema’s property method description objects. The
 in operator just returns an array
 with references to each child object of a container object.[23] Once we have this array, we can iterate through it, returning
 the Name property of each child object as
 we go. Here’s what the code looks like:
use Win32::OLE('in');

connect to namespace, set the impersonation level, and retrieve the
Win32_process object just by using a display name
my $procschm = Win32::OLE->GetObject(
 'winmgmts:{impersonationLevel=impersonate}!Win32_Process')
 or die "can't create server object: ".Win32::OLE->LastError()."\n";

print "--- Properties ---\n";
print join("\n",map {$_->{Name}}(in $procschm->{Properties_}));
print "\n--- Methods ---\n";
print join("\n",map {$_->{Name}}(in $procschm->{Methods_}));
The output (on a Windows XP SP2 machine) looks like this:
--- Properties ---
Caption
CommandLine
CreationClassName
CreationDate
CSCreationClassName
CSName
Description
ExecutablePath
ExecutionState
Handle
HandleCount
InstallDate
KernelModeTime
MaximumWorkingSetSize
MinimumWorkingSetSize
Name
OSCreationClassName
OSName
OtherOperationCount
OtherTransferCount
PageFaults
PageFileUsage
ParentProcessId
PeakPageFileUsage
PeakVirtualSize
PeakWorkingSetSize
Priority
PrivatePageCount
ProcessId
QuotaNonPagedPoolUsage
QuotaPagedPoolUsage
QuotaPeakNonPagedPoolUsage
QuotaPeakPagedPoolUsage
ReadOperationCount
ReadTransferCount
SessionId
Status
TerminationDate
ThreadCount
UserModeTime
VirtualSize
WindowsVersion
WorkingSetSize
WriteOperationCount
WriteTransferCount
--- Methods ---
Create
Terminate
GetOwner
GetOwnerSid
SetPriority
AttachDebugger
Now let’s get down to the business at hand. To retrieve a list of running
 processes, we need to ask for all instances of Win32_Process objects:
use Win32::OLE('in');

perform all of the initial steps in one swell foop

my $sobj = Win32::OLE->GetObject(
 'winmgmts:{impersonationLevel=impersonate}')
 or die "can't create server object: ".Win32::OLE->LastError()."\n";

foreach my $process (in $sobj->InstancesOf("Win32_Process")){
 print $process->{Name}." is pid #".$process->{ProcessId},"\n";
}
Our initial display name did not include a path to a specific object
 (i.e., we left off !Win32_Process). As a result, we receive a server connection
 object. When we call the InstancesOf()
 method, it returns a collection object that holds all of the instances of
 that particular object. Our code visits each object in turn and prints its
 Name and ProcessId properties. This yields a list
 of all the running processes.
If we wanted to be a little less beneficent when iterating over each
 process, we could instead use one of the methods listed earlier:
foreach $process (in $sobj->InstancesOf("Win32_Process")){
 $process->Terminate(1);
}
This will terminate every process running. I do not recommend that you run
 this code as is; customize it for your specific needs by making it more
 selective.
One last note before we move on. Earlier in this section I mentioned that
 there are two ways to query information using WMI: the object-oriented and
 query-based approaches. Up to now we’ve been looking at the fairly
 straightforward object-oriented approach. Here’s a small sample using the
 query-based approach, just to pique your interest. First, let’s recreate the
 output from the preceding sample. The highlighted line is the key change
 here, because it uses WQL instead of InstancesOf() to retrieve all of the process objects:
use Win32::OLE('in');

my $sobj = Win32::OLE->GetObject('winmgmts:{impersonationLevel=impersonate}')
 or die 'can't create server object: ' . Win32::OLE->LastError() . "\n";

my $query = $sobj->ExecQuery('SELECT Name, ProcessId FROM Win32_Process');
foreach my $process (in $query) {
 print $process->{Name} . ' is pid #' . $process->{ProcessId}, "\n";
}
Now we can start throwing in SQL-like syntax in the highlighted query
 string. For example, if we only wanted to see the process IDs of the
 svchost.exe processes running on the system, we
 could write:
use Win32::OLE('in');

my $sobj = Win32::OLE->GetObject('winmgmts:{impersonationLevel=impersonate}')
 or die "can't create server object: " . Win32::OLE->LastError() . "\n";

my $query = $sobj->ExecQuery(
 'SELECT ProcessId FROM Win32_Process WHERE Name = "svchost.exe"');
print "SvcHost processes: "
 . join(' ', map { $_->{ProcessId} } (in $query)), "\n";
WQL can handle queries with other SQL-like stanzas. For example, the
 following is valid WQL to retrieve information on all running processes that
 have names that begin with “svc”:
SELECT * from Win32_Process WHERE Name LIKE "svc%"
If you are SQL-literate (even if the sum of your knowledge comes from
 Appendix D in this book), this may be
 a direction you want to explore.
Now you have the knowledge necessary to begin using WMI for process
 control. WMI has Win32 extensions for many other parts of the operating
 system, including the registry and the event log facility.
This is as far as we’re going to delve into process control on Windows.
 Now let’s turn our attention to another major operating system.

Unix Process Control

Strategies for Unix process control offer another multiple-choice situation.
 Luckily, these choices aren’t nearly as complex as those that Windows offers.
 When we speak of process control under Unix, we’re referring to three
 operations:
	Enumerating the list of running processes on a machine

	Changing their priorities or process groups

	Terminating the processes

For the final two of these operations, there are Perl functions to do the
 job: setpriority(), setpgrp(), and
 kill(). The first one offers us a few
 options. To list running processes, you can:
	Call an external program like ps.

	Take a crack at deciphering /dev/kmem.

	Look through the /proc filesystem (for Unix
 versions that have one).

	Use the Proc::ProcessTable
 module.

Let’s discuss each of these approaches. For the impatient reader, I’ll reveal
 right now that Proc::ProcessTable is my
 preferred technique. You may want to just skip directly to the discussion of
 that module, but I recommend reading about the other techniques anyway, since
 they may come in handy in the future.
Calling an external program

Common to all modern Unix variants is a program called ps, used to list running processes.
 However, ps is found in different places in the
 filesystem on different Unix variants, and the command-line switches it
 takes are also not consistent across variants. Therein lies one problem with
 this option: it lacks portability.
An even more annoying problem is the difficulty in parsing the output
 (which also varies from variant to variant). Here’s a snippet of output from
 ps on an ancient SunOS machine:
USER PID %CPU %MEM SZ RSS TT STAT START TIME COMMAND
dnb 385 0.0 0.0 268 0 p4 IW Jul 2 0:00 /bin/zsh
dnb 24103 0.0 2.610504 1092 p3 S Aug 10 35:49 emacs
dnb 389 0.0 2.5 3604 1044 p4 S Jul 2 60:16 emacs
remy 15396 0.0 0.0 252 0 p9 IW Jul 7 0:01 -zsh (zsh)
sys 393 0.0 0.0 28 0 ? IW Jul 2 0:02 in.identd
dnb 29488 0.0 0.0 68 0 p5 IW 20:15 0:00 screen
dnb 29544 0.0 0.4 24 148 p7 R 20:39 0:00 less
dnb 5707 0.0 0.0 260 0 p6 IW Jul 24 0:00 -zsh (zsh)
root 28766 0.0 0.0 244 0 ? IW 13:20 0:00 -:0 (xdm)
Notice the third line. Two of the columns have run together, making
 parsing this output an annoying task. It’s not impossible, just vexing. Some
 Unix variants are kinder than others in this regard (for example, later
 operating systems from Sun don’t have this problem), but it is something you
 may have to take into account.
The Perl code required for this option is straightforward: use open() to run ps,
 while(<FH>){...} to
 read the output, and
 split(), unpack(), or substr() to
 parse it. You can find a recipe for this in the
 Perl
 Cookbook
 , by Tom Christiansen and Nathan Torkington (O’Reilly).

Examining the kernel process structures

I only mention this option for completeness’s sake. It is possible to write code
 that opens up a device like /dev/kmem and accesses the
 current running kernel’s memory structures. With this access, you can track
 down the current process table in memory and read it. However, given the
 pain involved (taking apart complex binary structures by hand), and its
 extreme nonportability (a version difference within the same operating
 system is likely to break your program), I’d strongly recommend against
 using this option.[24]
If you decide not to heed this advice, you should begin by memorizing the
 Perl documentation for
 pack(), unpack(), and the header files for your kernel. Open the
 kernel memory file (often /dev/kmem), then
 read() and unpack() to your heart’s content. You may find it instructive
 to look at the source for programs like
 top
 that perform this task using a great deal of C code. Our next
 option offers a slightly better version of this method.

Using the /proc filesystem

One of the more interesting additions to Unix found in most of the current
 variants is the /proc filesystem. This is a magical
 filesystem that has nothing to do with data storage. Instead, it provides a
 file-based interface for the running process table of a machine. A
 “directory” named after the process ID appears in this filesystem for each
 running process. In this directory are a set of “files” that provide
 information about that process. One of these files can be written to, thus
 allowing control of the process.
It’s a really clever concept, and that’s the good news. The bad news is
 that each Unix vendor/developer team decided to take this clever concept and
 run with it in a different direction. As a result, the files found in a
 /proc directory are often variant-specific, both in
 name and format. For a description of which files are available and what
 they contain, you will need to consult the manual pages (usually found in
 sections 4, 5, or 8) for procfs or mount_
 procfs on your system.
The one fairly portable use of the /proc filesystem
 is the enumeration of running processes. If we want to list just the process
 IDs and their owners, we can use Perl’s directory and
 lstat() operators:
opendir my $PROC, '/proc' or die "Unable to open /proc:$!\n";

only stat the items in /proc that look like PIDs
for my $process (grep /^\d+$/, readdir($PROC)){
 print "$process\t". getpwuid((lstat "/proc/$process")[4])."\n";
}

closedir $PROC;
If you are interested in more information about a process, you will have
 to open and unpack() the appropriate
 binary file in the /proc directories. Common names for
 this file are status and psinfo.
 The manual pages cited a moment ago should provide details about the C
 structure found in this file, or at least a pointer to a C include file that
 documents this structure. Because these are operating system-specific (and
 OS version-specific) formats, you’re
 still going to run into the problem of program fragility mentioned in the
 discussion of the previous option.
You may be feeling discouraged at this point because all of our options so
 far look like they require code with lots of special cases (one for each
 version of each operating system we wish to support). Luckily, we have one
 more option up our sleeve that may help in this regard.

Using the Proc::ProcessTable module

Daniel J. Urist (with the help of some volunteers) has been kind enough to write
 a module called Proc::ProcessTable
 that offers a consistent interface to the process table for the
 major Unix variants. It hides the vagaries of the different
 /proc or kmem implementations
 for you, allowing you to write relatively portable code.
Simply load the module, create a Proc::ProcessTable::Process object, and run methods from that
 object:
use Proc::ProcessTable;

my $tobj = new Proc::ProcessTable;
This object uses Perl’s tied variable functionality to present a real-time
 view of the system. You do not need to call a special function to refresh
 the object; each time you access it, it re-reads the process table.
To get at this information, you call the object method
 table():
my $proctable = $tobj->table();
table() returns a reference to an array
 with members that are references to individual process objects. Each of
 these objects has its own set of methods that returns information about that
 process. For instance, here’s how you would get a listing of the process IDs
 and owners:
use Proc::ProcessTable;

my $tobj = new Proc::ProcessTable;

my $proctable = $tobj->table();

foreach my $process (@$proctable) {
 print $process->pid . "\t" . getpwuid($process->uid) . "\n";
}
If you want to know which process methods are available on your Unix
 variant, the fields() method of your
 Proc::ProcessTable object ($tobj in the preceding code) will return a
 list for you.
Proc::ProcessTable also adds three
 other methods to each process object—kill(), priority(), and
 pgrp()—which are just frontends to
 the built-in Perl function we mentioned at the beginning of this
 section.
To bring us back to the big picture, let’s look at some of the uses of
 these process control techniques. We started to examine process control in
 the context of user actions, so let’s look at a few teeny scripts that focus
 on these actions. We will use the Proc::ProcessTable module on Unix for
 these examples, but these ideas are not operating system-specific.
The first example is slightly modified from the documentation for Proc::ProcessTable:
use Proc::ProcessTable;

my $t = new Proc::ProcessTable;

foreach my $p (@{$t->table}){
 if ($p->pctmem > 95){
 $p->kill(9);
 }
}
When run on the Unix variants that provide the
 pctmem() method (most do), this code will
 shoot down any process consuming 95% of the machine’s memory. As it stands,
 it’s probably too ruthless to be used in real life. It would be much more
 reasonable to add something like this before the kill() command:
print 'about to nuke '.$p->pid."\t". getpwuid($p->uid)."\n";
print 'proceed? (yes/no) ';
chomp($ans = <>);
next unless ($ans eq 'yes');
There’s a bit of a race condition here: it is possible that the system
 state will change during the delay induced by prompting the user. Given that
 we are only prompting for huge processes, though, and huge processes are
 those least likely to change state in a short amount of time, we’re probably
 fine coding this way. If you wanted to be pedantic, you would probably
 collect the list of processes to be killed first, prompt for input, and then
 recheck the state of the process table before actually killing the desired
 processes. This doesn’t remove the race condition, but it does make it much
 less likely to occur.
There are times when death is too good for a process. Sometimes it is
 important to notice that a process is running while it is running so that
 some real-life action (like “user attitude correction”) can be taken. For
 example, at our site we have a policy against the use of Internet Relay Chat (IRC) bots. Bots are daemon processes that connect to an IRC network of chat
 servers and perform automated actions. Though bots can be used for
 constructive purposes, these days they play a mostly antisocial role on IRC.
 We’ve also had security breaches come to our attention because the first
 (and often only) thing the intruder has done is put up an IRC bot of some
 sort. As a result, noting their presence on our system without killing them
 is important to us.
The most common bot by far is called
 eggdrop. If we wanted to look for this process name
 being run on our system, we could use code like this:
use Proc::ProcessTable;

my $logfile = 'eggdrops';
open my $LOG, '>>', $logfile or die "Can't open logfile for append:$!\n";

my $t = new Proc::ProcessTable;

foreach my $p (@{ $t->table }) {
 if ($p->fname() =~ /eggdrop/i) {
 print $LOG time . "\t"
 . getpwuid($p->uid) . "\t"
 . $p->fname() . "\n";
 }
}
close $LOG;
If you’re thinking, “This code isn’t good enough! All someone has to do is
 rename the eggdrop executable to evade its check,”
 you’re absolutely right. We’ll take a stab at writing some less naïve
 bot-check code in the very last section of this chapter.
In the meantime, let’s take a look at one more example where Perl assists
 us in managing user processes. So far all of our examples have been fairly
 negative, focusing on dealing with resource-hungry and naughty processes.
 Let’s look at something with a sunnier disposition.
There are times when a system administrator needs to know which
 (legitimate) programs users on a system are using. Sometimes this is
 necessary in the context of software metering, where there are legal
 concerns about the number of users running a program concurrently. In those
 cases there is usually a licensing mechanism in place to handle the bean
 counting. Another situation where this knowledge comes in handy is that of
 machine migration. If you are migrating a user population from one
 architecture to another, you’ll want to make sure all the programs used on
 the previous architecture are available on the new one.
One approach to solving this problem involves replacing every non-OS
 binary available to users with a wrapper that first records that a
 particular binary has been run and then actually runs it. This can be
 difficult to implement if there are a large number of binaries. It also has
 the unpleasant side effect of slowing down every program invocation.
If precision is not important and a rough estimate of which binaries are
 in use will suffice, we can use Proc::ProcessTable to solve this problem. Here’s some code
 that wakes up every five minutes and surveys the current process landscape.
 It keeps a simple count of all of the process names it finds, and it’s smart
 enough not to count processes it saw during its last period of wakefulness.
 Every hour it prints its findings and starts collecting again. We wait five
 minutes between each run because walking the process table is usually a
 resource-intensive operation, and we’d prefer this program to add as little
 load to the system as possible:
use Proc::ProcessTable;

my $interval = 300; # sleep interval of 5 minutes
my $partofhour = 0; # keep track of where in the hour we are

my $tobj = new Proc::ProcessTable; # create new process object

my %last; # to keep track of info from the previous run
my %current; # to keep track of data from the current run
my %collection; # to keep track of info over the entire hour

forever loop, collecting stats every $interval secs
and dumping them once an hour
while (1) {
 foreach my $process (@{ $tobj->table }) {

 # we should ignore ourselves
 next if ($process->pid() == $$);

 # save this process info for our next run
 # (note: this assumes that your PIDs won't recycle between runs,
 # but on a very busy system that may not be the case)
 $current{ $process->pid() } = $process->fname();

 # ignore this process if we saw it during the last iteration
 next if ($last{ $process->pid() } eq $process->fname());

 # else, remember it
 $collection{ $process->fname() }++;
 }

 $partofhour += $interval;
 %last = %current;
 %current = ();
 if ($partofhour >= 3600) {
 print scalar localtime(time) . ('-' x 50) . "\n";
 print "Name\t\tCount\n";
 print "--------------\t\t-----\n";
 foreach my $name (sort reverse_value_sort keys %collection) {
 print "$name\t\t$collection{$name}\n";
 }
 %collection = ();
 $partofhour = 0;
 }
 sleep($interval);
}

(reverse) sort by values in %collection and by key name
sub reverse_value_sort {
 return $collection{$b} <=> $collection{$a} || $a cmp $b;
}
There are many ways this program could be enhanced. It could track
 processes on a per-user basis (i.e., only recording one instance of a
 program launch per user), collect daily stats, present its information as a
 nice bar graph, and so on. It’s up to you where you might want to take it.

[19] In the first edition of this book, this section was called “Using
 the Win32::IProc module.” Win32::IProc shared the fate of the module I describe
 in the sidebar The Ephemeral Nature of Modules.

[20] As much as Microsoft would like to see these data access
 mechanisms become ubiquitous, the likelihood of finding them in a
 non-Win32 environment is slight. This is why I refer to them as
 “Win32-specific.”

[21] Microsoft provides WQL, a scaled-down query language based on SQL
 syntax, for this purpose. Once upon a time it also provided
 ODBC-based access to the data, but that approach has been deprecated
 in more recent OS releases.

[22] REPL stands for Read-Eval-Print Loop, a term from the LISP
 (LISt Processing) world. A REPL lets you type code into a
 prompt, have it be executed by the language’s interpreter,
 and then review the results.

[23] See the section Active Directory Service Interfaces for details
 on another prominent use of in.

[24] Later, we’ll look at a module called Proc::ProcessTable that can do this for you without
 you having to write the code.

File and Network Operations

For the last section of this chapter, we’re going to lump two of the user action
 domains together. The processes we’ve just spent so much time controlling do more
 than just suck up CPU and memory resources; they also perform operations on
 filesystems and communicate on a network on behalf of users. User administration
 requires that we deal with these second-order effects as well.
Our focus in this section will be fairly narrow. We’re only interested in looking
 at file and network operations that other users are performing
 on a system. We’re also only going to focus on those operations that we can track
 back to a specific user (or a specific process run by a specific user). With these
 blinders in mind, let’s go forth.
Tracking File Operations on Windows

If we want to track other users’ open files, the closest we can come involves
 using a former third-party command-line program called
 handle, written by Mark Russinovich (formerly of Sysinternals). See the references
 section at the end of this chapter for information on where to get it.
 handle can show us all of the open handles on a
 particular system. Here’s an excerpt from some sample output:
System pid: 4 NT AUTHORITY\SYSTEM
 7C: File (-W-) C:\pagefile.sys
 5DC: File (---) C:\Documents and Settings\LocalService\Local Settings\
 Application Data\Microsoft\Windows\UsrClass.dat
 5E0: File (---) C:\WINDOWS\system32\config\SAM.LOG
 5E4: File (---) C:\Documents and Settings\LocalService\NTUSER.DAT
 5E8: File (---) C:\WINDOWS\system32\config\system
 5EC: File (---) C:\WINDOWS\system32\config\software.LOG
 5F0: File (---) C:\WINDOWS\system32\config\software
 5F8: File (---) C:\WINDOWS\system32\config\SECURITY
 5FC: File (---) C:\WINDOWS\system32\config\default
 600: File (---) C:\WINDOWS\system32\config\SECURITY.LOG
 604: File (---) C:\WINDOWS\system32\config\default.LOG
 60C: File (---) C:\WINDOWS\system32\config\SAM
 610: File (---) C:\WINDOWS\system32\config\system.LOG
 614: File (---) C:\Documents and Settings\NetworkService\NTUSER.DAT
 8E0: File (---) C:\Documents and Settings\dNb\Local Settings\Application
 Data\Microsoft\Windows\UsrClass.dat.LOG
 8E4: File (---) C:\Documents and Settings\dNb\Local Settings\Application
 Data\Microsoft\Windows\UsrClass.dat
 8E8: File (---) C:\Documents and Settings\dNb\NTUSER.DAT.LOG
 8EC: File (---) C:\Documents and Settings\dNb\NTUSER.DAT
 B08: File (RW-) C:\Program Files\Symantec AntiVirus\SAVRT
 B3C: File (R--) C:\System Volume Information_restore{96B84597-8A49-41EE-
 8303-02D3AD2B3BA4}\RP80\change.log
 B78: File (R--) C:\Program Files\Symantec AntiVirus\SAVRT\0608NAV~.TMP
--
smss.exe pid: 436 NT AUTHORITY\SYSTEM
 8: File (RW-) C:\WINDOWS
 1C: File (RW-) C:\WINDOWS\system32
You can also request information on specific files or directories:
> handle.exe c:\WINDOWS\system32\config

Handle v3.3
Copyright (C) 1997-2007 Mark Russinovich
Sysinternals - www.sysinternals.com

System pid: 4 5E0: C:\WINDOWS\system32\config\SAM.LOG
System pid: 4 5E8: C:\WINDOWS\system32\config\system
System pid: 4 5EC: C:\WINDOWS\system32\config\software.LOG
System pid: 4 5F0: C:\WINDOWS\system32\config\software
System pid: 4 5F8: C:\WINDOWS\system32\config\SECURITY
System pid: 4 5FC: C:\WINDOWS\system32\config\default
System pid: 4 600: C:\WINDOWS\system32\config\SECURITY.LOG
System pid: 4 604: C:\WINDOWS\system32\config\default.LOG
System pid: 4 60C: C:\WINDOWS\system32\config\SAM
System pid: 4 610: C:\WINDOWS\system32\config\system.LOG
services.exe pid: 552 2A4: C:\WINDOWS\system32\config\AppEvent.Evt
services.exe pid: 552 2B4: C:\WINDOWS\system32\config\Internet.evt
services.exe pid: 552 2C4: C:\WINDOWS\system32\config\SecEvent.Evt
services.exe pid: 552 2D4: C:\WINDOWS\system32\config\SysEvent.Evt
svchost.exe pid: 848 17DC: C:\WINDOWS\system32\config\systemprofile\
Application Data\Microsoft\SystemCertificates\My
ccSetMgr.exe pid: 1172 2EC: C:\WINDOWS\system32\config\systemprofile\
Application Data\Microsoft\SystemCertificates\My
ccEvtMgr.exe pid: 1200 23C: C:\WINDOWS\system32\config\systemprofile\
Application Data\Microsoft\SystemCertificates\My
Rtvscan.exe pid: 1560 454: C:\WINDOWS\system32\config\systemprofile\
Application Data\Microsoft\SystemCertificates\My
handle can provide this information for a specific
 process name using the -p
 switch.
Using this executable from Perl is straightforward, so we won’t provide any
 sample code. Instead, let’s look at a related and more interesting operation:
 auditing.
Windows allows us to efficiently watch a file, directory, or hierarchy of
 directories for changes. You could imagine repeatedly performing stat()s on the desired object or objects, but that
 would be highly CPU-intensive. Under Windows, we can ask the operating system to
 keep watch for us.
There is a specialized Perl module that makes this job relatively painless for
 us:
 Win32::ChangeNotify by Christopher J. Madsen.
 There is also a related helper module:
 Win32::FileNotify by Renee Baecker.
The Ephemeral Nature of Modules
In the first edition of this book, this section described how to use the
 module
 Win32::AdvNotify by
 Amine Moulay Ramdane for filesystem auditing. It was a great module; one of
 several superb Windows modules by the same author, it did everything
 Win32::ChangeNotify could do and
 considerably more.
Unfortunately, Ramdane was inexplicably strict about the distribution
 terms for his modules. He did not allow this module to be hosted on any
 website other than his own, and he did not want that site mirrored
 elsewhere. Source code was never released.
According to the
 Wayback Machine, by
 April 2002 the contents of that website had disappeared, and for all
 practical purposes, so had the author of all those great modules. I started
 getting email shortly after that date from readers of the first edition
 looking to follow the examples in my book using Ramdane’s modules. All I
 could do was try to suggest some alternatives. I’ve removed all of the
 demonstration code for those modules in this edition, even though most of
 Ramdane’s modules can still be
 found on the Net if you’re willing to hunt hard enough. The total lack of
 support for the modules (and the lack of potential even for someone else to
 support them) means it is too risky to use them at this point. Grrr.

Win32::ChangeNotify is pretty easy to use,
 but it does have one gotcha. The module uses the Win32 APIs to ask the OS to let
 you know if something changes in a directory. You can even specify what kind of
 change to look for (last write time, file or directory names/sizes, etc.). The
 problem is that if you ask it to watch a directory for changes, it can tell you
 when something changes, but not what has changed. It’s up
 to the program author to determine that with some separate code. That’s where
 Win32::FileNotify comes in. If you just
 need to watch a single file, Win32::FileNotify will go the extra step of double-checking
 whether the change the OS reported is in the file being audited.
Because they’re so small, we’ll look at examples of both modules. We’ll start
 with the specific case of watching to see if a file has changed:
use Win32::FileNotify;

my $file = 'c:\windows\temp\importantfile';

my $fnot = Win32::FileNotify->new($file);

$fnot->wait(); # at this point, our program blocks until $file changes

... # go do something about the file change
And here’s some code to look for changes in a directory (specifically, files
 coming and going):
use Win32::ChangeNotify;

my $dir = 'c:\importantdir';

watch this directory (second argument says don't watch for changes
to subdirectories) for changes in the filenames found there
my $cnot = Win32::ChangeNotify->new($dir, 0, 'FILE_NAME');

while (1) {

 # blocks for 10 secs (10,000 milliseconds) or until a change takes place
 my $waitresult = $cnot->wait(10000);

 if ($waitresult == 1) {

 ... # call or include some other code here to figure out what changed

 # reset the ChangeNotification object so we can continue monitoring
 $cnot->reset;
 }
 elsif ($waitresult == 0) {
 print "no changes to $dir in the last 10 seconds\n";
 }
 elsif ($waitresult == −1) {
 print "something went blooey in the monitoring\n";
 last;
 }
}

Tracking Network Operations on Windows

That was filesystem monitoring. What about network access monitoring? There
 are two fairly easy ways to track network operations under Windows. Ideally, as
 an administrator you’d like to know which process (and therefore which user) has
 opened a network port. While I know of no Perl module that can perform this
 task, there are at least two command-line tools that provide the information in
 a way that could be consumed by a Perl program. The first,
 netstat, actually ships with the system, but
 very few people know it can do this (I certainly didn’t for a long time). Here’s
 some sample output:
> netstat -ano

Active Connections

 Proto Local Address Foreign Address State PID
 TCP 0.0.0.0:135 0.0.0.0:0 LISTENING 932
 TCP 0.0.0.0:445 0.0.0.0:0 LISTENING 4
 TCP 127.0.0.1:1028 0.0.0.0:0 LISTENING 1216
 TCP 192.168.16.129:139 0.0.0.0:0 LISTENING 4
 UDP 0.0.0.0:445 *:* 4
 UDP 0.0.0.0:500 *:* 680
 UDP 0.0.0.0:1036 *:* 1068
 UDP 0.0.0.0:1263 *:* 1068
 UDP 0.0.0.0:4500 *:* 680
 UDP 127.0.0.1:123 *:* 1024
 UDP 127.0.0.1:1900 *:* 1108
 UDP 192.168.16.129:123 *:* 1024
 UDP 192.168.16.129:137 *:* 4
 UDP 192.168.16.129:138 *:* 4
 UDP 192.168.16.129:1900 *:* 1108
The second is another tool from Mark Russinovich, formerly of Sysinternals: TcpView (or more precisely, the tcpvcon utility that comes
 in that package). It has the nice property of being able to output the
 information in CSV form, like so:
> tcpvcon -anc

TCPView v2.51 - TCP/UDP endpoint viewer
Copyright (C) 1998-2007 Mark Russinovich
Sysinternals - www.sysinternals.com

TCP,alg.exe,1216,LISTENING,127.0.0.1:1028,0.0.0.0:0
TCP,System,4,LISTENING,0.0.0.0:445,0.0.0.0:0
TCP,svchost.exe,932,LISTENING,0.0.0.0:135,0.0.0.0:0
TCP,System,4,LISTENING,192.168.16.129:139,0.0.0.0:0
UDP,svchost.exe,1024,*,192.168.16.129:123,*:*
UDP,lsass.exe,680,*,0.0.0.0:500,*:*
UDP,svchost.exe,1068,*,0.0.0.0:1036,*:*
UDP,svchost.exe,1108,*,192.168.16.129:1900,*:*
UDP,svchost.exe,1024,*,127.0.0.1:123,*:*
UDP,System,4,*,192.168.16.129:137,*:*
UDP,svchost.exe,1108,*,127.0.0.1:1900,*:*
UDP,lsass.exe,680,*,0.0.0.0:4500,*:*
UDP,System,4,*,192.168.16.129:138,*:*
UDP,svchost.exe,1068,*,0.0.0.0:1263,*:*
UDP,System,4,*,0.0.0.0:445,*:*
This would be trivial to parse with something like
 Text::CSV::Simple or Text::CSV_XS.
Let’s see how we’d perform the same tasks within the Unix world.

Tracking File and Network Operations in Unix

To handle the tracking of both file and network operations in Unix, we can use a
 single approach.[25] This is one of few times in this book where calling a separate
 executable is clearly the superior method. Vic Abell has given an amazing gift to the system administration world by
 writing and maintaining a program called
 lsof (LiSt Open Files) that can be found at ftp://vic.cc.purdue.edu/pub/tools/unix/lsof.
 lsof can show in detail all of the currently open files
 and network connections on a Unix machine. One of the things that makes it truly
 amazing is its portability. The latest version as of this writing runs on at
 least nine flavors of Unix (the previous version supported an even wider variety
 of Unix flavors) and supports several OS versions for each flavor.
Here’s a snippet of lsof’s output, showing an excerpt of
 the output for one of the processes I am running. lsof
 tends to output very long lines, so I’ve inserted a blank line between each line
 of output to make the distinctions clear:
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
firefox-b 27189 dnb cwd VDIR 318,16168 36864 25760428 /home/dnb

firefox-b 27189 dnb txt VREG 318,37181 177864 6320643
 /net/csw (fileserver:/vol/systems/csw)

firefox-b 27189 dnb txt VREG 136,0 56874 3680
 /usr/openwin/lib/X11/fonts/Type1/outline/Helvetica-Bold.pfa

firefox-b 27189 dnb txt VREG 318,37181 16524 563516
 /net/csw (fileserver:/vol/systems/csw)

firefox-b 27189 dnb 0u unix 105,43 0t0 3352
 /devices/pseudo/tl@0:ticots->(socketpair: 0x1409) (0x300034a1010)

firefox-b 27189 dnb 2u unix 105,45 0t0 3352
 /devices/pseudo/tl@0:ticots->(socketpair: 0x140b) (0x300034a01d0)

firefox-b 27189 dnb 4u IPv6 0x3000349cde0 0t2121076
 TCP localhost:32887->localhost:6010 (ESTABLISHED)

firefox-b 27189 dnb 6u FIFO 0x30003726ee8 0t0 2105883
 (fifofs) ->0x30003726de0

firefox-b 27189 dnb 24r VREG 318,37181 332618
 85700 /net/csw (fileserver:/vol/systems/csw)

firefox-b 27189 dnb 29u unix 105,46 0t1742
 3352 /devices/pseudo/tl@0:ticots->/var/tmp/orbit-dnb/linc
-6a37-0-47776fee636a2 (0x30003cc1900->0x300045731f8)

firefox-b 27189 dnb 31u unix 105,50 0t0
 3352 /devices/pseudo/tl@0:ticots->/var/tmp/orbit-dnb/linc
-6a35-0-47772fb086240 (0x300034a13a0)

firefox-b 27189 dnb 43u IPv4 0x30742eb79b0 0t42210
 TCP desktop.example.edu:32897->images.slashdot.org:www (ESTABLISHED)
This output demonstrates some of the power of this command. It shows the
 current working directory (VDIR), regular
 files (VREG), pipes (FIFO), and network connections (IPv4/IPv6) opened by this process.
The easiest way to use lsof from Perl is to invoke its
 special “field” mode (-F). In this mode, its
 output is broken up into specially labeled and delimited fields, instead of the
 ps-like columns just shown. This makes parsing the
 output a cinch.
There is one quirk to the field mode output. It is organized into what the
 author calls “process sets” and “file sets.” A process set is a set of field
 entries referring to a single process, and a file set is a similar set for a
 file. This all makes more sense if we turn on field mode with the 0 option. Fields are then delimited with NUL (ASCII 0) characters, and sets with NL (ASCII 12) characters. Here’s a similar group
 of lines to those in the preceding output, this time in field mode (NUL is represented as ^@). I’ve added spaces between the lines again to make it easier
 to read:
p27189^@g27155^@R27183^@cfirefox-bin^@u6070^@Ldnb^@
fcwd^@a ^@l

^@tVDIR^@N0x30001b7b1d8^@D0x13e00003f28^@s36864^@i25760428^@k90^@n/home/dnb^@
ftxt^@a ^@l

^@tVREG^@N0x3000224a0f0^@D0x13e0000913d^@s177864^@i6320
643^@k1^@n/net/csw (fileserver:/vol/systems/csw)^@
ftxt^@a ^@l

^@tVREG^@N0x30001714950^@D0x8800000000^@s35064^@i2800^@k1^@n/usr/lib/nss_files.so.1

^@tVREG^@N0x300036226c0^@D0x8800000000^@s56874^@i3680^@k1^@n/usr/
openwin/lib/X11/fonts/Type1/outline/Helvetica-Bold.pfa^@
ftxt^@a ^@l

^@tunix^@F0x3000328c550^@C6^@G0x3;0x0^@N0x300034a1010^@D0x8800
000000^@o0t0^@i3352^@n/devices/pseudo/tl@0:ticots->(socketpair:
 0x1409) (0x300034a1010)^@
f1^@au^@l

^@tDOOR^@F0x3000328cf98^@C1^@G0x2001;0x1^@N0x3000178b300^@D0x13
c00000000^@o0t0^@i54^@k27^@n/var/run (swap) (door to nscd[240])^@
f4^@au^@l

^@tIPv6^@F0x300037258f0^@C1^@G0x83;0x1^@N0x300034ace50^@d0x3000349
cde0^@o0t3919884^@PTCP^@nlocalhost:32887->localhost:6010^@TST=
ESTABLISHED^@TQR=0^@TQS=8191^@TWR=49152^@TWW=13264^@
f5^@au^@l

^@tFIFO^@F0x30003724f50^@C1^@G0x3;0x0^@N0x30003726de0^@d0x30003726
de0^@o0t0^@i2105883^@n(fifofs) ->0x30003726ee8^@
f6^@au^@l

^@tFIFO^@F0x30003725420^@C1^@G0x3;0x0^@N0x30003726ee8^@d0x30003726
ee8^@o0t0^@i2105883^@n(fifofs) ->0x30003726de0^@
f7^@aw^@lW^@tVREG^@F0x30003724c40^@C1^@G0x302;0x0^@N0x30001eadbf8^
@D0x13e00003f28^@s0^@i1539532^@k1^@n/home/dnb (fileserver:/vol/homedirs/systems/dnb)^@
f8^@au^@l

^@tIPv4^@F0x30003724ce8^@C1^@G0x83;0x0^@N0x300034ac010^@d0x
300040604f0^@o0t4094^@PTCP^@ndesktop.example.edu:32931->web
-vip.srv.jobthread.com:www^@TST=CLOSE_WAIT^@TQR=0^@TQS=0^@TWR=49640^@TWW=6960^@
f44^@au^@l

^@tVREG^@F0x3000328c5c0^@C1^@G0x2103;0x0^@N0x300051cd3f8^@
D0x13e00003f28^@s276^@i16547341^@k1^@n/home/dnb (fileserver:/vol/
homedirs/systems/dnb)^@
f45^@au^@l

^@tVREG^@F0x30003725f80^@C1^@G0x3;0x0^@N0x300026ad920^@D0x
13e00003f28^@s8468^@i21298675^@k1^@n/home/dnb (fileserver:/vol/homedirs/systems/dnb)^@
f46^@au^@l

^@tIPv4^@F0x30003724a10^@C1^@G0x83;0x0^@N0x309ab62b578^@d0x30742
eb76b0^@o0t20726^@PTCP^@ndesktop.example.edu:32934->216.66.26.
161:www^@TST=ESTABLISHED^@TQR=0^@TQS=0^@TWR=49640^@TWW=6432^@
f47^@au^@l

^@tVREG^@F0x3000328c080^@C1^@G0x2103;0x0^@N0x30002186098^@D0x
13e00003f28^@s66560^@i16547342^@k1^@n/home/dnb (fileserver:/vol/
homedirs/systems/dnb)^@
f48^@au^@l
Let’s deconstruct this output. The first line is a process set (we can tell
 because it begins with the letter p):
p27189^@g27155^@R27183^@cfirefox-bin^@u6070^@Ldnb^@
fcwd^@a ^@l
Each field begins with a letter identifying the field’s contents (p for pid,
 c for command, u for uid, and L for
 login) and ends with a delimiter
 character. Together the fields on this line make up a process set. All of the
 lines that follow, up until the next process set, describe the open
 files/network connections of the process described by this process set.
Let’s put this mode to use. If we wanted to show all of the open files on a
 system and the PIDs that are using them, we could use code like this:[26]
use Text::Wrap;

my $lsofexec = '/usr/local/bin/lsof'; # location of lsof executable

(F)ield mode, NUL (0) delim, show (L)ogin, file (t)ype and file (n)ame
my $lsofflag = '-FL0tn';

open my $LSOFPIPE, '-|', "$lsofexec $lsofflag"
 or die "Unable to start $lsofexec: $!\n";

my $pid; # pid as returned by lsof
my $pathname; # pathname as returned by lsof
my $login; # login name as returned by lsof
my $type; # type of open file as returned by lsof
my %seen; # for a pathname cache
my %paths; # collect the paths as we go

while (my $lsof = <$LSOFPIPE>) {

 # deal with a process set
 if (substr($lsof, 0, 1) eq 'p') {
 ($pid, $login) = split(/\0/, $lsof);
 $pid = substr($pid, 1, length($pid));
 }

 # deal with a file set; note: we are only interested
 # in "regular" files (as per Solaris and Linux, lsof on other
 # systems may mark files and directories differently)
 if (substr($lsof, 0, 5) eq 'tVREG' or # Solaris
 substr($lsof, 0, 4) eq 'tREG') { # Linux
 ($type, $pathname) = split(/\0/, $lsof);

 # a process may have the same pathname open twice;
 # these two lines make sure we only record it once
 next if ($seen{$pathname} eq $pid);
 $seen{$pathname} = $pid;

 $pathname = substr($pathname, 1, length($pathname));
 push(@{ $paths{$pathname} }, $pid);
 }
}

close $LSOFPIPE;

foreach my $path (sort keys %paths) {
 print "$path:\n";
 print wrap("\t", "\t", join(" ", @{ $paths{$path} })), "\n";
}
This code instructs lsof to show only a few of its
 possible fields. We iterate through its output, collecting filenames and PIDs in
 a hash of lists. When we’ve received all of the output, we print the filenames
 in a nicely formatted PID list (thanks to David Muir Sharnoff’s
 Text::Wrap module):
/home/dnb (fileserver:/vol/homedirs/systems/dnb):
 12777 12933 27293 28223
/usr/lib/ld.so.1:
 10613 12777 12933 27217 27219 27293 28147 28149 28223 28352 28353
 28361
/usr/lib/libaio.so.1:
 27217 28147 28352 28353 28361
/usr/lib/libc.so.1:
 10613 12777 12933 27217 27219 27293 28147 28149 28223 28352 28353
 28361
/usr/lib/libmd5.so.1:
 10613 27217 28147 28352 28353 28361
/usr/lib/libmp.so.2:
 10613 27217 27219 28147 28149 28352 28353 28361
/usr/lib/libnsl.so.1:
 10613 27217 27219 28147 28149 28352 28353 28361
/usr/lib/libsocket.so.1:
 10613 27217 27219 28147 28149 28352 28353 28361
/usr/lib/sparcv9/libnsl.so.1:
 28362 28365
/usr/lib/sparcv9/libsocket.so.1:
 28362 28365
/usr/platform/sun4u-us3/lib/libc_psr.so.1:
 10613 12777 12933 27217 27219 27293 28147 28149 28223 28352 28353
 28361
/usr/platform/sun4u-us3/lib/sparcv9/libc_psr.so.1:
 28362 28365
...
For our last example of tracking Unix file and network operations, let’s
 return to an earlier example, where we attempted to find IRC bots running on a
 system. There are more reliable ways to find network daemons like bots than
 looking at the process table. A user may be able to hide the name of a bot by
 renaming the executable, but he’ll have to work a lot harder to hide the open
 network connection. More often than not, this connection is to a server running
 on TCP ports 6660–7000. lsof makes looking for these
 processes easy:
my $lsofexec = '/usr/local/bin/lsof'; # location of lsof executable
my $lsofflag = '-FL0c -iTCP:6660-7000'; # specify ports and other lsof flags

This is a hash slice being used to preload a hash table, the
existence of whose keys we'll check later. Usually this gets written
like this:
%approvedclients = ('ircII' => undef, 'xirc' => undef, ...);
(but this is a cool idiom popularized by Mark-Jason Dominus)
my %approvedclients;
@approvedclients{ 'ircII', 'xirc', 'pirc' } = ();

open my $LSOFPIPE, "$lsofexec $lsofflag|"
 or die "Unable to start $lsofexec:$!\n";

my $pid;
my $command;
my $login;
while (my $lsof = <$LSOFPIPE>) {
 ($pid, $command, $login) =
 $lsof =~ /p(\d+)\000
 c(.+)\000
 L(\w+)\000/x;
 warn "$login using an unapproved client called $command (pid $pid)!\n"
 unless (exists $approvedclients{$command});
}

close $LSOFPIPE;
This is the simplest check we can make. It will catch users who rename
 eggdrop to something like pine or
 -tcsh, as well as those users who don’t even attempt to
 hide their bots. However, it suffers from a similar flaw to our other approach.
 If a user is smart enough, she may rename her bot to something on our “approved
 clients” list. To continue our hunt, we could take at least two more
 steps:
	Use lsof to check that the file opened for that
 executable really is the file we expect it to be, and not some random
 binary in a user filesystem.

	Use our process control methods to check that the user is running this
 program from an existing shell. If this is the only process running for
 a user (i.e., if the user has logged off but left it running), it is
 probably a daemon and hence a bot.

This cat-and-mouse game brings us to a point that will help wrap up the
 chapter. In Chapter 3, we mentioned that users are
 fundamentally unpredictable. They do things system administrators don’t
 anticipate. There is an old saying: “Nothing is foolproof because fools are so
 ingenious.” It is important to come to grips with this fact as you program Perl
 for user administration. You’ll write more robust programs as a result, and when
 one of your programs goes “blooey” because a user did something unexpected,
 you’ll be able to sit back calmly and admire the ingenuity.

[25] This is the best approach for portability. Various OSs have their own
 mechanisms (inotify, dnotify,
 etc.), and frameworks like DTrace are very cool. Mac OS X 10.5+ has a
 similar auditing facility to the one we saw with Windows (Mac::FSEvents gives you easy access to
 it). However, none of these options is as portable as the approach
 described here.

[26] If you don’t want to parse lsof’s field mode by
 hand Marc Beyer’s Unix::Lsof will
 handle the work for you.

Module Information for This Chapter

	
 Module

 	
 CPAN ID

 	
 Version

	

 Text::CSV_XS

 	
 HMBRAND

 	
 0.32

	

 Win32::Process::Info

 	
 WYANT

 	
 1.011

	

 Win32::Setupsup

 	
 JHELBERG

 	
 1.0.1.0

	

 Win32::GuiTest

 	
 KARASIK

 	
 1.54

	
 Win32::OLE (ships with
 ActiveState Perl)

 	
 JDB

 	
 0.1703

	

 Proc::ProcessTable

 	
 DURIST

 	
 0.41

	
 Data::Dumper (ships with
 Perl)

 	
 GSAR

 	
 2.121

	

 Win32::ChangeNotify

 	
 JDB

 	
 1.05

	

 Win32::FileNotify

 	
 RENEEB

 	
 0.1

	
 Text::Wrap (ships with
 Perl)

 	
 MUIR

 	
 2006.1117

Installing Win32::Setupsup

If you want to install Win32::Setupsup, you’ll
 need to get it from a different PPM repository than the default one configured
 when you first installed ActiveState Perl. It can be found (as of this writing)
 in the very handy supplementary repository maintained by Randy Kobes at the University of Winnipeg. I’d recommend adding this
 repository even if you don’t plan to use Win32::Setupsup. The easiest way to do this is from the command
 line, like so:
$ ppm repo add uwinnipeg http://theoryx5.uwinnipeg.ca/ppms/
or, if using Perl 5.10:
$ ppm repo add uwinnipeg http://cpan.uwinnipeg.ca/PPMPackages/10xx/
You can also add it to the GUI version of PPM4 by choosing Preferences in the
 Edit menu and selecting the Repositories tab. More info about this repository
 can be found at http://theoryx5.uwinnipeg.ca/ppms/.

References for More Information

http://aspn.activestate.com/ASPN/Mail/ hosts the Perl-Win32-Admin and
 Perl-Win32-Users mailing lists. Both lists and their
 archives are invaluable resources for Win32 programmers.
http://www.microsoft.com/whdc/system/pnppwr/wmi/default.mspx is the
 current home for WMI at Microsoft.com. This address has changed a few times since the
 first edition, so doing a web search for “WMI” may be a better way to locate the WMI
 URL
 du jour at Microsoft.
http://technet.microsoft.com/sysinternals/ is the home (as of this
 writing) of the handle program and many other valuable Windows
 utilities that Microsoft acquired when it bought Sysinternals and hired its
 principals. http://sysinternals.com still exists as of this writing
 and redirects to the correct Microsoft URL. If you can’t find these utilities in any
 of Microsoft’s websites, perhaps going to that URL will point you at the current
 location.
http://www.dmtf.org is the home of the Distributed Management Task Force and a good source for WBEM
 information.
If you haven’t yet, you must download the Microsoft Scriptomatic tool (version 2 as of this writing) from http://www.microsoft.com/technet/scriptcenter/tools/scripto2.mspx. This
 Windows tool from “the Microsoft Scripting Guys” lets you poke around the WMI
 namespaces on your machine. When you find something you might be interested in
 using, it can write a script to use it for you. Really. But even better than that,
 it can write the script for you in VBScript, JScript, Perl, or Python. I’m raving
 about this tool both here and in the other chapters that mention WMI because I like
 it so much. If you want to use it under Vista, though, be sure to read the section
 on Vista in Chapter 1.

Chapter 5. TCP/IP Name and Configuration Services

The majority of the conversations between computers these days take place using
 the Transmission Control
 Protocol running over a lower layer called the
 Internet
 Protocol.[27] These two protocols are commonly lumped together into the acronym
 TCP/IP. Every machine that participates in a TCP/IP network
 must be assigned at least one unique numeric identifier, called an IP
 address. IP addresses are usually written using the form
 N.N.N.N (e.g., 192.168.1.9).
While machines are content to address each other using strings of dot-separated
 numbers, most people are less enamored of this idea. TCP/IP would have fallen flat on
 its face as a protocol if users had to remember unique 12-digit sequences for every
 machine they wanted to contact. Mechanisms had to be invented to manage and distribute
 IP addresses to human-friendly name mappings. Also needed was a way to let a machine
 automatically determine its own TCP/IP configuration (i.e., IP address) without requiring a human to drop by and type in the
 information by hand.
This chapter describes the evolution of the network name services that allow us to
 access data at www.oog.org instead of at 192.168.1.9, and what
 takes place behind the scenes. We’ll also look at the most prevalent configuration
 service that allows a machine to retrieve its TCP/IP configuration information from a
 central server. Along the way we’ll combine a dash of history with a healthy serving of
 practical advice on how Perl can help us manage these crucial parts of any networking
 infrastructure.
Host Files

The first approach used to solve the problem of mapping IP addresses to names was
 the most obvious and simple one: creating a standard file to hold a table of IP
 addresses and their corresponding computer names. This file exists as
 /etc/hosts on Unix and OS
 X systems and
 %SystemRoot%\System32\Drivers\Etc\hosts on machines running
 Windows-based operating systems. Here’s an example Unix-style host file:
127.0.0.1 localhost
192.168.1.1 everest.oog.org everest
192.168.1.2 rivendell.oog.org rivendell
The limitations of this approach become clear very quickly. If
 oog.org’s network manager has two machines on a TCP/IP
 network that communicate with each other, and she wants to add a third, she has to
 edit the correct file on all of her machines. If oog.org then
 buys yet another machine, there will be four separate host files to be maintained
 (one on each machine).
As untenable as this may seem, this is what actually happened during the early
 days of the Internet/ARPAnet. As new sites were connected, every site on the net
 that wished to talk with the new site needed to update its host files. The central
 host repository, known as the Network Information Center (NIC)—or more precisely, the SRI-NIC, since
 it was housed at the Stanford Research Institute at the time—updated and published a host
 file for the entire network called HOSTS.TXT. To remain
 up-to-date, system administrators anonymously FTP’d this file from SRI-NIC’s
 NETINFO directory on a regular basis.
Host files are still in use today, despite their limitations and the availability
 of the replacements we’ll be talking about later in this chapter. On a small
 network, having an up-to-date host file that includes all of the hosts on that
 network is useful. It doesn’t even have to reside on each machine in the network to
 be helpful (since the other mechanisms we’ll describe later do a much better job of
 distributing this information). Just having one around to consult is handy for quick
 manual lookups and address allocation purposes.
Strangely enough, host files have made a bit of a comeback in recent years. They
 provide an easy way to override other network name services, which is useful in
 cases where you want to prevent connections to specific hosts. For example, if you
 find that you want to block connections to a certain web banner or web
 habit-tracking site, you can place its hostname in your host file with a bogus IP
 address. Unfortunately, virus writers have also used the same trick to break
 auto-update features of antivirus packages.
Host Files? Get a Horse!
Now that network name services like the Domain Name Service (DNS) and configuration services like
 the Dynamic Host Configuration Protocol (DHCP) are the norm and
 twiddling host files has become the exception, why bother talking about these
 files at all?
Host files are really simple. The syntax and semantics are immediately
 understandable to anyone who glances at such a file. That’s not necessarily true
 for the other services we’ll be exploring later in this chapter. This simplicity
 means that we can look at ways of manipulating such files without getting
 distracted by the details of a specific service’s implementation, configuration
 file syntax, etc.
The techniques we’re about to explore can be applied to any of the network
 name and configuration services that use plain-text configuration files. We’re
 going to initially show them in the context of manipulating host files, because
 that is the fastest way to demonstrate methods you’ll use time and time again.
 Later in the chapter you’ll see some of the same ideas demonstrated with other
 services without all of the explanation.
So, if reading about host files makes you feel like an old-timer, read for the
 “how” and not the “what.”[28]

Perl and host files are a natural match, given Perl’s predilection for text file
 processing. We’re going to use the simple host file as a springboard for a number of
 different explorations.
To start, let’s look at the parsing of host files. Parsing a host file can be as simple as this:
open(my $HOSTS, '<', '/etc/hosts') or die "Unable to open host file:$!\n";
my %addrs;
my %names;
while (defined($_ = <$HOSTS>)) {
 next if /^#/; # skip comments lines
 next if /^\s*$/; # skip empty lines
 s/\s*#.*$//; # delete in-line comments and preceding whitespace
 chomp;
 my ($ip, @names) = split;
 die "The IP address $ip already seen!\n" if (exists $addrs{$ip});
 $addrs{$ip} = [@names];
 for (@names) {
 die "The host name $_ already seen!\n" if (exists $names{lc $_});
 $names{lc $_} = $ip;
 }
}
close $HOSTS;
The previous code walks through an /etc/hosts file (skipping
 blank lines and comments), creating two data structures for later use. The first
 data structure is a hash of lists of hostnames keyed by the IP address. It looks
 something like this:
$addrs{'127.0.0.1'} = ['localhost'];
$addrs{'192.168.1.2'} = ['rivendell.oog.org','rivendell'];
$addrs{'192.168.1.1'} = ['everest.oog.org','everest'];
The second is a hash table of hostnames, keyed by name. For the same file, the
 %names hash would look like this:
$names{'localhost'} = '127.0.0.1'
$names{'everest'} = '192.168.1.1'
$names{'everest.oog.org'} = '192.168.1.1'
$names{'rivendell'} = '192.168.1.2'
$names{'rivendell.oog.org'} = '192.168.1.2'
Note that in the simple process of parsing this file, we’ve also added some
 functionality. Our code checks for duplicate hostnames and IP addresses (which are
 bad news on a TCP/IP network unless you really mean them to be there, for virtual
 hosts, multihomed machines, high availability, etc.). When dealing with
 network-related data, use every opportunity possible to check for errors and bad
 information. It is always better to catch problems early in the game than to have
 them bite you once the data has been propagated to your entire network. Because it
 is so important, I’ll return to this topic later in the chapter.
Generating Host Files

Now we’ll turn to the more interesting topic of generating host files. Let’s assume we
 have the following host database file for the hosts on our network:
name: shimmer
address: 192.168.1.11
aliases: shim shimmy shimmydoodles
owner: David Davis
department: software
building: main
room: 909
manufacturer: Sun
model: M4000
-=-
name: bendir
address: 192.168.1.3
aliases: ben bendoodles
owner: Cindy Coltrane
department: IT
building: west
room: 143
manufacturer: Apple
model: Mac Pro
-=-
name: sulawesi
address: 192.168.1.12
aliases: sula su-lee
owner: Ellen Monk
department: design
building: main
room: 1116
manufacturer: Apple
model: Mac Pro
-=-
name: sander
address: 192.168.1.55
aliases: sandy micky mickydoo
owner: Alex Rollins
department: IT
building: main
room: 1101
manufacturer: Dell
model: Optiplex 740
-=-
The format is simple: fieldname:
 value, with -=-
 used as a separator between records. You might find that you need other fields
 than those listed here, or that you have too many records to make it practical
 to keep them in a single flat file. Though we are using a single flat file here,
 the concepts we’ll show in this chapter are not backend-specific; for example,
 they could be generated from an LDAP directory (more on those in Chapter 9).
Here’s some code that will parse a file like this to generate a host
 file:
my $datafile = 'database';
my $recordsep = "-=-\n";

open my $DATAFILE, '<', "$datafile" or die "Unable to open datafile:$!\n";

{
 local $/ =
 $recordsep; # prepare to read in database file one record at a time

 print "#\n# host file - GENERATED BY $0\n# DO NOT EDIT BY HAND!\n#\n";

 my %record;
 while (<$DATAFILE>) {
 chomp; # remove the record separator

 # split into key1,value1,...bingo, hash of record
 %record = split /:\s*|\n/;
 print "$record{address}\t$record{name} $record{aliases}\n";
 }
 close $DATAFILE;
}
Here’s the output:
#
host file - GENERATED BY createhosts
DO NOT EDIT BY HAND!
#
192.168.1.11 shimmer shim shimmy shimmydoodles
192.168.1.3 bendir ben bendoodles
192.168.1.12 sulawesi sula su-lee
192.168.1.55 sander sandy micky mickydoo.
Got “System Administration Database” Religion Yet?
In Chapter 3, I made an impassioned plea for the use
 of a separate administrative database to track account information. The same
 arguments are doubly true for network host data. In this chapter we’re going
 to demonstrate how even a simple flat-file host database can be manipulated
 to produce impressive output that drives each of the services we’ll be
 discussing. For larger sites, a “real” database would serve well. If you’d
 like to see an example of this output, take a quick glance ahead at the
 output at the end of the section Improving the Host File Output.
The host database approach is beautiful for a number of reasons. First,
 changes need to be made only to a single file or data source. Make the
 changes, run some scripts, and presto!, we’ve generated
 the configuration files needed for a number of services. These configuration
 files are significantly less likely to contain small syntax errors (like
 missing semicolons or comment characters), because they haven’t been touched
 by human hands. If we write our code correctly, we can catch most of the
 other possible errors during the parsing stage.
If you haven’t seen the wisdom of this “best practice” yet, you will by
 the end of the chapter.

Let’s look at a few of the more interesting Perl techniques demonstrated in
 this small code sample. The first unusual thing we do is set $/ from within a small code block (delimited by
 the braces). In this little code block, Perl treats each chunk of text that ends
 in -=-\n as a single record. This means the
 while statement will read in an entire
 record at a time and assign it to $_. We
 place the local statement within the block so
 our changes to $/ don’t affect any other code
 we might write in the future that uses this code sample.
The second interesting tidbit is the split() assignment technique. Our goal is to get each record into
 a hash with a key as the field name and its value as the field value. You’ll see
 later why we go to this trouble, as we develop this example further. The first
 step is to break $_ into component parts
 using
 split(). The array we get back from split() is shown in Table 5-1.
Table 5-1. The array returned by split()
	
 Element

 	
 Value

	

 0

 	

 name

	

 1

 	

 shimmer

	

 2

 	

 address

	

 3

 	

 192.168.1.11

	

 4

 	

 Aliases

	

 5

 	

 shim shimmy shimmydoodles

	

 6

 	

 Owner

	

 7

 	

 David Davis

	

 8

 	

 Department

	

 9

 	

 Software

	

 10

 	

 Building

	

 11

 	

 Main

	

 12

 	

 Room

	

 13

 	

 909

	

 14

 	

 Manufacturer

	

 15

 	

 Sun

	

 16

 	

 Model

	

 17

 	

 M4000

Take a good look at the contents of this list. Starting with the first element
 (element 0), we have a key/value pair list (i.e., key=Name, value=shimmer,
 key=Address, value=192.168.1.11...) that we can assign to populate a
 hash. Once this hash is created, we can print the parts we need.

Error-Checking the Host File Generation Process

Printing a bare host file is just the beginning of what we can do. One very
 large benefit of using a separate database that gets converted into another form
 is the ability to insert error-checking into the conversion process. As
 mentioned earlier, this can prevent simple typos from becoming a problem
 before they get a chance to propagate or be put into
 production use. Here’s the previous code with some simple additions to check for
 typos:
my $datafile = 'database';
my $recordsep = "-=-\n";

open my $DATAFILE, '<', "$datafile" or die "Unable to open datafile:$!\n";

{
 local $/ =
 $recordsep; # prepare to read in database file one record at a time

 print "#\n# host file - GENERATED BY $0\n# DO NOT EDIT BY HAND!\n#\n";

 my %record;
 my %addrs;
 while (<$DATAFILE>) {
 chomp; # remove the record separator

 # split into key1,value1,... bingo, hash of record
 %record = split /:\s*|\n/;

 # check for bad hostnames
 if ($record{name} =~ /[^-.a-zA-Z0-9]/) {
 warn "!!!! $record{name} has illegal host name characters, "
 . "skipping...\n";
 next;
 }

 # check for bad aliases
 if ($record{aliases} =~ /[^-.a-zA-Z0-9\s]/) {
 warn "!!!! $record{name} has illegal alias name characters, "
 . "skipping...\n";
 next;
 }

 # check for missing address
 if (!$record{address}) {
 warn "!!!! $record{name} does not have an IP address, "
 . "skipping...\n";
 next;
 }

 # check for duplicate address
 if (defined $addrs{ $record{address} }) {
 warn "!!!! Duplicate IP addr: $record{name} &
 $addrs{$record{address}}, skipping...\n";
 next;
 }
 else {
 $addrs{ $record{address} } = $record{name};
 }

 print "$record{address}\t$record{name} $record{aliases}\n";
 }
 close $DATAFILE;
}

Improving the Host File Output

Let’s borrow from Chapter 10 on logs and add some analysis to the conversion process. We can
 automatically add useful headers, comments, and separators to the data. Here’s
 some example output using the exact same database:
#
host file - GENERATED BY createhosts3
DO NOT EDIT BY HAND!
#
Converted by David N. Blank-Edelman (dnb) on Sun Jun 8 00:43:24 2008
#
number of hosts in the design department: 1.
number of hosts in the software department: 1.
number of hosts in the IT department: 2.
total number of hosts: 4
#

Owned by Cindy Coltrane (IT): west/143
192.168.1.3 bendir ben bendoodles

Owned by Alex Rollins (IT): main/1101
192.168.1.55 sander sandy micky mickydoo

Owned by Ellen Monk (design): main/1116
192.168.1.12 sulawesi sula su-lee

Owned by David Davis (software: main/909
192.168.1.11 shimmer shim shimmy shimmydoodles
Here’s the code that produced that output, followed by some commentary:
my $datafile = 'database';
my $recordsep = "-=-\n";

get username on either Windows or Unix
my $user =
 ($^O eq 'MSWin32') ? $ENV{USERNAME} :
 (getpwuid($<))[6] . ' (' . (getpwuid($<))[0] . ')';

open my $DATAFILE, '<', "$datafile" or die "Unable to open datafile:$!\n";

my %addrs;
my %entries;
{
 local $/ = $recordsep; # read in database file one record at a time

 while (<$DATAFILE>) {
 chomp; # remove the record separator
 # split into key1,value1
 my @record = split /:\s*|\n/;

 my $record = {}; # create a reference to empty hash
 %{$record} = @record; # populate that hash with @record

 # check for bad hostname
 if ($record->{name} =~ /[^-.a-zA-Z0-9]/) {
 warn '!!!! '
 . $record->{name}
 . " has illegal host name characters, skipping...\n";
 next;
 }

 # check for bad aliases
 if ($record->{aliases} =~ /[^-.a-zA-Z0-9\s]/) {
 warn '!!!! '
 . $record->{name}
 . " has illegal alias name characters, skipping...\n";
 next;
 }

 # check for missing address
 if (!$record->{address}) {
 warn '!!!! '
 . $record->{name}
 . " does not have an IP address, skipping...\n";
 next;
 }

 # check for duplicate address
 if (defined $addrs{ $record->{address} }) {
 warn '!!!! Duplicate IP addr:'
 . $record->{name} . ' & '
 . $addrs{ $record->{address} }
 . ", skipping...\n";
 next;
 }
 else {
 $addrs{ $record->{address} } = $record->{name};
 }

 $entries{ $record->{name} } = $record; # add this to a hash of hashes
 }
 close $DATAFILE;
}

print a nice header
print "#\n# host file - GENERATED BY $0\n# DO NOT EDIT BY HAND!\n#\n";
print "# Converted by $user on " . scalar(localtime) . "\n#\n";

count the number of entries in each department and then report on it
my %depts;
foreach my $entry (keys %entries) {
 $depts{ $entries{$entry}->{department} }++;
}
foreach my $dept (keys %depts) {
 print "# number of hosts in the $dept department: $depts{$dept}.\n";
}
print '# total number of hosts: ' . scalar(keys %entries) . "\n#\n\n";

iterate through the hosts, printing a nice comment and the entry itself
foreach my $entry (keys %entries) {
 print '# Owned by ', $entries{$entry}->{owner}, ' (',
 $entries{$entry}->{department}, "): ", $entries{$entry}->{building}, '/',
 $entries{$entry}->{room}, "\n";
 print $entries{$entry}->{address}, "\t", $entries{$entry}->{name}, ' ',
 $entries{$entry}->{aliases}, "\n\n";
}
The most significant difference between this code example and the previous one
 is the data representation. Because there was no need in the previous example to
 retain the information from a record after it had been printed, we could use the
 single hash %record. But for this code, we
 chose to read the file into a slightly more complex data structure (a hash of
 hashes) so we could do some simple analysis of the data before printing
 it.
We could have kept a separate hash table for each field (similar to our
 needspace
 example in Chapter 2),
 but the beauty of this approach is its maintainability. If we decide later to
 add a serial_number field to the database, we
 do not need to change our program’s parsing code; it will just magically appear
 as $record->{serial_number}.
The downside is that Perl’s syntax probably makes our code look more complex
 than it is.
Here’s an easy way to look at it: we’re parsing the file in precisely the same
 way we did in the last example. The difference is this time we are storing each
 record in a newly created anonymous hash. Anonymous hashes are just like normal
 hash variables except they are accessed through a reference, instead of a
 name.
To create our larger data structure (a hash of hashes), we link this new
 anonymous hash back into the main hash table, %entries. When we are done, %entries has a key for each machine name. Each key has a value
 that is a reference to a separate new hash table containing all of the fields
 associated with that machine (IP address, room, etc.).
Perhaps you’d prefer to see the output sorted by IP address? No problem, just
 include a custom sort routine by changing this line:
foreach my $entry (keys %entries) {
to:
foreach my $entry (sort byaddress keys %entries) {
and adding:
sub byaddress {
 my @a = split(/\./,$entries{$a}->{address});
 my @b = split(/\./,$entries{$b}->{address});
 ($a[0]<=>$b[0]) ||
 ($a[1]<=>$b[1]) ||
 ($a[2]<=>$b[2]) ||
 ($a[3]<=>$b[3]);
}
Note
This is one of the easiest to understand ways to sort IP addresses, but it
 is also one of the least efficient because of all of the split() operations that have to take place. A
 far better way to do this is to compare packed sort keys, a technique first
 proposed in a paper by Uri Guttman and Larry Rosler (http://www.sysarch.com/Perl/sort_paper.html). Guttman’s Sort::Maker module can assist you with
 implementing that method. The Sort::Key
 module by Salvador Fandiño García offers another easy way to perform highly
 efficient sorting in Perl. If you don’t want to install a separate module
 just to set up a sort, search for “sort ip address perl” on the Web and
 you’ll find other, more efficient suggestions.

Here’s the relevant portion of the output, now nicely sorted:
Owned by Cindy Coltrane (IT): west/143
192.168.1.3 bendir ben bendoodles

Owned by David Davis (software): main/909
192.168.1.11 shimmer shim shimmy shimmydoodles

Owned by Ellen Monk (design): main/1116
192.168.1.12 sulawesi sula su-lee

Owned by Alex Rollins (IT): main/1101
192.168.1.55 sander sandy micky mickydoo
Make the output look good to you. Let Perl support your professional
 and aesthetic endeavors.

Incorporating a Source Code Control System

In a moment we’re going to move on to the next approach to the IP
 address-to-name mapping problem. But before we do, we’ll want to add another
 twist to our host file creation process, because that single file is about to
 take on network-wide importance. A mistake in this file will affect an entire
 network of machines. To give us a safety net, we’ll want a way to back out of
 bad changes, essentially going back in time to a prior configuration
 state.
The most elegant way to build a time machine like this is to add a source
 control system to the process. Source control systems are typically used by
 developers to:
	Keep a record of all changes to important files.

	Prevent multiple people from changing the same file (or parts of a
 file) at the same time, inadvertently undoing each other’s
 efforts.

	Allow us to revert to a previous version of a file, thus backing out
 of problems.

This functionality is extremely useful to a system administrator. The
 error-checking code we added to the conversion process in Error-Checking the Host File Generation Process can help with certain
 kinds of typos and syntax errors, but it does not offer any protection against
 semantic errors (e.g., deleting an important hostname, assigning the wrong IP
 address to a host, or misspelling a hostname). You could add semantic error
 checks into the conversion process, but you probably wouldn’t catch all of the
 possible errors. As I’ve quoted before, nothing is foolproof, since fools are so
 ingenious.
You might think it would be better to apply source control system
 functionality to the initial database editing process, but there are two good
 reasons why it is also important to apply it to the resultant output:
	Time
	For large data sets, the conversion process might take some time.
 If your network is flaking out and you need to revert to a previous
 revision, it’s discouraging to have to stare at a Perl process
 chugging away to generate the file you need (presuming you can even
 get to Perl at that point).

	Absence of database change control
	If you choose to use a real database engine for your data storage
 (and often this is the right choice), there may not be a convenient
 way to apply a source control mechanism like this. You’ll probably
 have to write your own change control mechanisms for the database
 editing process.

My source control system of choice[29] is the Revision Control System (RCS). RCS has some Perl- and system
 administration-friendly features:
	It is multiplatform. There are ports of GNU RCS 5.7 to most Unix
 systems, Windows, Mac OS X, etc.

	It has a well-defined command-line interface. All functions can be
 performed from the command line, even on GUI-centric operating
 systems.

	It is easy to use. There’s a small command set for basic operations
 that can be learned in five minutes (see Appendix E).

	It has keywords. Magic strings can be embedded in the text of files
 under RCS that are automatically expanded. For instance, any occurrence
 of $ Date:$ in a file will be
 replaced with the date the file was last entered into the RCS
 system.

	It’s free.

The source code for the GNU version of RCS is freely redistributable, and
 binaries for most systems are also available. A copy of the source can be found
 at ftp://ftp.gnu.org/gnu/rcs. If you’ve never dealt with RCS
 before, please take a moment to read Appendix E before going any further. The rest
 of this section assumes a cursory knowledge of the RCS command set.
Craig Freter has written an object-oriented module called Rcs that makes using RCS
 from Perl easy. The steps are:
	Load the module.

	Tell the module where your RCS command-line binaries are
 located.

	Create a new Rcs object, and
 configure it with the name of the file you are using.

	Call the necessary object methods (named after their corresponding RCS
 commands).

Let’s add this to our host file generation code so you can see how the module
 works. Besides the Rcs module code, we’ve
 also changed things so the output is sent to a specific file and not STDOUT, as in our previous versions. Only the code
 that has changed is shown. Refer to the previous example for the omitted lines
 represented by “...”:
my $outputfile = "hosts.$$"; # temporary output file
my $target = 'hosts'; # where we want the converted data stored
...
open my $OUTPUT, '>', "$outputfile" or
 die "Unable to write to $outputfile:$!\n";

print $OUTPUT "#\n# host file - GENERATED BY $0\n# DO NOT EDIT BY HAND!\n#\n";
print $OUTPUT "# Converted by $user on " . scalar(localtime) . "\n#\n";

...
foreach my $dept (keys %depts) {
 print $OUTPUT "# number of hosts in the $dept department: $depts{$dept}.\n";
}
print $OUTPUT '# total number of hosts: ' . scalar(keys %entries) . "\n#\n\n";

iterate through the hosts, printing a nice comment and the entry itself
foreach my $entry (keys %entries) {
 print $OUTPUT '# Owned by ', $entries{$entry}->{owner}, ' (',
 $entries{$entry}->{department}, '): ', $entries{$entry}->{building}, '/',
 $entries{$entry}->{room}, "\n";
 print $OUTPUT $entries{$entry}->{address}, "\t", $entries{$entry}->{name},
 ' ', $entries{$entry}->{aliases}, "\n\n";
}

close $OUTPUT;

use Rcs;
Rcs->bindir('/arch/gnu/bin');

my $rcsobj = Rcs->new;
$rcsobj->file($target);
$rcsobj->co('-l');
rename($outputfile, $target)
 or die "Unable to rename $outputfile to $target:$!\n";
$rcsobj->ci('-u',
 '-m'
 . 'Converted by '
 . (getpwuid($<))[6] . ' ('
 . (getpwuid($<))[0] . ') on '
 . scalar localtime);
This code assumes the target file has been checked in at least once
 already.
To see the effect of this code addition, we can look at three entries
 excerpted from the output of rlog
 hosts:
revision 1.5
date: 2007/05/19 23:34:16; author: dnb; state: Exp; lines: +1 −1
Converted by David N. Blank-Edelman (dnb) on Tue May 19 19:34:16 2007

revision 1.4
date: 2007/05/19 23:34:05; author: eviltwin; state: Exp; lines: +1 −1
Converted by Divad Knalb-Namlede (eviltwin) on Tue May 19 19:34:05 2007

revision 1.3
date: 2007/05/19 23:33:35; author: dnb; state: Exp; lines: +20 −0
Converted by David N. Blank-Edelman (dnb) on Tue May 19 19:33:16 2007
This example doesn’t show much of a difference between file versions (see the
 lines: part of the entries), but you can
 see that we are tracking the changes every time the file gets created. If we
 needed to, we could use the
 rcsdiff command to see exactly what has
 changed. Under dire circumstances, if one of these changes had wreaked
 unexpected havoc on the network, we would be able to revert to a previous
 version.
Before we move on, let’s do a quick review of the three techniques we have
 learned so far so we can be sure to bring them forward when we look at other
 name services:
	Generating a configuration file from an external database of some sort
 is a big win.

	Checking for simple errors in the data during the process, well before
 they can have a serious impact on the network, is a good thing.

	Incorporating a source control system into the process gives you a
 good way to recover from more complex errors and a way of tracking
 changes.

[27] This chapter will be discussing IPv4, the current (deployed) standard. IPv6
 (the next generation of IP) will potentially replace it in due course.

[28] Plus, a real Ol’ Timer would probably point out to you that he still
 adds the critical machines to his hosts file and
 uses it as a backup (via nsswitch.conf) when he’s
 concerned about things breaking should DNS go south.

[29] At least in this context. If you’d like to know
 why I recommend RCS over other, much spiffier source control systems
 (SVN, git, etc.) here, see Appendix E.

NIS, NIS+, and WINS

Developers at Sun Microsystems realized that the “edit one file per machine” approach
 endemic to host files didn’t scale, so they invented Yellow
 Pages (YP), which was designed to distribute all the network-wide configuration file
 information found in files like /etc/hosts,
 /etc/passwd, /etc/services, and so on.
 In this chapter, we’ll concentrate on its use as a network name service to
 distribute machine name-to-IP address mapping information.
YP was renamed the Network Information Service (NIS) in 1990,
 shortly after British Telecom asserted (with lawyers) that it held the trademark for
 “Yellow Pages” in the U.K. The ghost of the name “Yellow Pages” still haunts many a
 Unix box today in the names used for NIS commands and library calls (e.g.,
 ypcat, ypmatch,
 yppush).
All modern Unix variants support NIS. Mac OS X makes it easy to client off of existing NIS servers through (at
 least in Tiger and later releases) the Directory Access utility, found in
 /Applications/Utilities (check the box next to “BSD Flat
 File and NIS” and click Apply). OS X also ships with the right files
 (/usr/libexec/ypserv, /var/yp/*, etc.)
 to serve NIS, though I’ve never seen it done.
The NIS and Windows story is a bit more complex. Once upon a time, back in the days
 of the first edition of this book, it was possible to replace one of the Windows
 authentication libraries with custom code that would talk to NIS servers instead of
 doing domain-based authentication. This was the NISGINA solution.
If you need to have a Windows machine use NIS-sourced data, your best bet at this
 point is to use
 Samba as a bridge between the two worlds.
 On the NIS-server front, Microsoft has also built into its Windows 2003 R2 product
 an NIS server that allows it to serve Active Directory-based information to NIS
 clients. This works well if you decide to make Active Directory the center of your authentication universe but still
 need to serve NIS to other, non-Windows clients. To save you some hunting, Microsoft
 now calls this component “Identity Management for Unix” (IdMU). You’ll need to add it to your
 installation by hand, via Add or Remove Programs→Add/Remove Windows
 Components→Active Directory Services [Details].
In NIS, an administrator designates one or more machines as servers from which
 other machines will receive client services. One server is the
 master server, and the others are
 slave servers. The master server holds the master copies of the actual text files all
 machines normally use (e.g., /etc/hosts or
 /etc/passwd). Changes to these files take place on the
 master and are then propagated to the slave servers.
Any machine on the network that needs hostname-to-IP address mapping information can query a server
 instead of keeping a local copy of that information. A client can request this
 information from either the master or any of the slave servers. Client queries are
 looked up in the
 NIS maps (another name for the master’s data files after
 they’ve been converted to the Unix DBM database format and propagated to the slave
 servers). The details of this conversion process (which involves
 makedbm and some other random munging) can be found in the
 Makefile located in /var/yp on most
 machines. A collection of NIS servers and clients that share the same maps is called
 an
 NIS domain.
With NIS, network administration becomes considerably easier. For instance, if
 oog.org purchases more machines for its network, it is no
 problem to integrate them into the network. The network manager simply edits the
 host file on the master NIS server and pushes the new version out to the slave
 servers. Every client in the NIS domain now “knows” about the new machine. NIS
 offers one-touch administration ease coupled with some redundancy (if one server
 goes down, a client can ask another) and load sharing (not all of the clients in a
 network have to rely on a single server).
With this theory in mind, let’s see how Perl can help us with NIS-related tasks.
 We can start with the process of getting data into NIS. You may be surprised to know
 that we’ve already done the work for this task. We can import the host files we
 created in the previous section into NIS by just dropping them into place in the NIS
 master server’s source file directory and activating the usual push mechanisms
 (usually by typing make in
 /var/yp). By default, the Makefile in
 /var/yp uses the contents of the master server’s
 configuration files as the source for the NIS maps.
Note
It is usually a good idea to set up a separate directory for your NIS map
 source files, changing the Makefile accordingly. This
 allows you to keep separate data for your NIS master server and other members of
 your NIS domain. For example, you might not want to have the
 /etc/passwd file for your NIS master as the password
 map for the entire domain, and vice versa.

A more interesting task is getting data out of NIS by querying an NIS server. The
 easiest way to do this is via Rik Harris’s Net::NIS module (now
 maintained by Ed Santiago).
Here’s an example of how to grab and print the entire contents of the host map
 with a single function call using Net::NIS,
 similar to the NIS command ypcat:
use Net::NIS;

get our default NIS domain name
my $domain = Net::NIS::yp_get_default_domain();

grab the map
my ($status, $info) = Net::NIS::yp_all($domain, 'hosts.byname');
foreach my $name (sort keys %{$info}) {
 print "$name => $info->{$name}\n";
}
First we query the local host for its default domain name. With this info, we can
 call
 Net::NIS::yp_all() to retrieve the entire host
 map. The function call returns a status variable and a reference to a hash table
 containing the contents of that map. We print this information using Perl’s usual
 dereference syntax.
If we want to look up the IP address of a single host, it is more efficient to
 query the server specifically for that value:
use Net::NIS;

my $hostname = 'olaf.oog.org';

my $domain = Net::NIS::yp_get_default_domain();
my ($status, $info) =
 Net::NIS::yp_match($domain, 'hosts.byname', $hostname);

print "$info\n";
Net::NIS::yp_match()
 returns a status variable and the appropriate value (as a scalar) for
 the info being queried.
If the Net::NIS module does not compile or work
 for you, there’s always the “call an external program” method. For example:
@hosts=`<path to>/ypcat hosts`
or:
open my $YPCAT, '-|', '<path to>/ypcat hosts');
while (<YPCAT>){...}
Let’s wind up this section with a useful example of both this technique and
 Net::NIS in action. This small but handy
 piece of code will query NIS for the list of NIS servers currently running and then
 query each of them in turn using the yppoll program. If any of
 the servers fails to respond, it complains loudly:
use Net::NIS;

my $yppollex = '/usr/sbin/yppoll'; # full path to the yppoll executable

my $domain = Net::NIS::yp_get_default_domain(); # our NIS domain

my ($status, $info) = Net::NIS::yp_all($domain, 'ypservers');

foreach my $server (sort keys %{$info}) {
 my $answer = `$yppollex -h $server hosts.byname`;
 if ($answer !~ /has order number/) {
 print STDERR "$server is not responding properly!\n";
 }
}
There are a number of ways we could improve upon this code (e.g., we could check
 if the order number returned matched amongst the servers), but that’s left as an
 exercise for you-know-who.
NIS+

Sun included the next version of NIS, called NIS+, with the Solaris operating system. NIS+ addresses many of the most serious
 problems of NIS, such as security. Unfortunately (or fortunately, since NIS+ can
 be a bit difficult to administer), NIS+ has not caught on in the Unix world
 nearly as well NIS did. Until recently, there was virtually no support for it on
 machines not manufactured by Sun. Thorsten Kukuk’s work to bring it to Linux has
 ceased, and even Sun has abandoned it for LDAP. Given its marginal status, we’re
 not going to look at NIS+ in this book. If you do need to work with NIS+ from
 Perl, Harris has a Net::NISPlus module that’s up to the task.

Windows Internet Name Server (WINS)

Let’s look at one more dying protocol, for historical reasons. When Microsoft began to run
 its proprietary networking protocol NetBIOS over TCP/IP (NetBT), it also found a need to handle the
 name-to–IP address mapping question. The first shot was the
 lmhosts file, modeled after the standard host file. This
 was quickly supplemented with an NIS-like mechanism. Since NT version 3.5,
 Microsoft has offered a centralized scheme called the Windows Internet Name
 Server (WINS). WINS differs in several ways from NIS:
	WINS is specialized for the distribution of host-to-IP address
 mappings. Unlike NIS, it is not used to centralize distribution of other
 information (e.g., passwords, networks, port mappings, and user
 groups).

	WINS servers receive most of the information they distribute from
 preconfigured client registrations (they can be preloaded with
 information). Once they’ve received an IP address either manually or via
 DHCP, WINS clients are responsible for registering and re-registering
 their information. This is different from NIS in that client machines
 ask the server for information that has been preloaded and, with only
 one exception (passwords), do not update the information on that
 server.

WINS, like NIS, offers the ability to have multiple servers available for
 reliability and load sharing through the use of a push/pull partner model. As of
 Windows 2000, WINS was deprecated (read “killed off”) in favor of the Dynamic Domain Name Service (DDNS), an extension to the basic DNS
 system we’re just about to discuss.
Given that WINS, like NIS+, is about to go to the Great Protocol Graveyard to
 die, we’re not going to explore Perl code to work with it. There is currently
 very little support for working directly with WINS from Perl (I know of no Perl
 modules designed specifically to interact with WINS). If you need to do this,
 your best bet may be to call some of the command-line utilities found in the
 Windows resource kits, such as WINSCHK and
 WINSCL.

Domain Name Service (DNS)

As useful as they may be, NIS and WINS suffer from flaws that make them unsuitable for
 “entire-Internet” uses. There are two main issues:
	Scale
	Even though these schemes allow for multiple servers, each server must
 have a complete copy of the entire network topology.[30] This topology must be duplicated to every other server,
 which can become a time-consuming process. WINS also suffers because of
 its dynamic registration model: a sufficient number of WINS clients
 could melt down any set of Internet-wide WINS servers with registration
 requests.

	Administrative control
	We’ve been talking about strictly technical issues up until now, but
 that’s not the only side of administration. NIS, in particular, requires
 a single point of administration; whoever controls the master server
 controls the entire NIS domain led by that machine, and any changes to
 the network namespace must pass through that administrative gatekeeper.
 This doesn’t work for a namespace the size of the Internet.

The Domain Name Service (DNS) was invented to deal with the flaws inherent in
 maintaining host files or NIS/NIS+/WINS-like systems. Under DNS, the network
 namespace is partitioned into a set of somewhat arbitrary “top-level domains.” Each
 top-level domain can then be subdivided into smaller domains, each of which can in
 turn be partitioned, and so on. At each dividing point it is possible to designate a
 different party to retain authoritative control over that portion of the namespace.
 This handles our administrative control concern.
Network clients that reside in the individual parts of this hierarchy consult the
 name server closest to them in the hierarchy. If the information the client is
 looking for can be found on that local server, it is returned to the client. On most
 networks, the majority of name-to-IP address queries are for machines on that
 network, so the local servers handle most of the local traffic. This satisfies the
 scale problem. Multiple DNS servers (also known as secondary or
 slave servers) can be set up for redundancy and load-balancing purposes.
If a DNS server is asked about a part of the namespace that it does not control or know about, it can either instruct
 the client to look elsewhere (usually higher up in the tree) or fetch the required
 information on behalf of the client by contacting other DNS servers.
In this scheme, no single server needs to know the entire network topology, most
 queries are handled locally, local administrators retain local control, and
 everybody is happy. DNS offers such an advantage compared to other systems that most
 other systems, including NIS and WINS, offer a way to integrate DNS. For instance,
 a Solaris NIS server can be instructed to perform a DNS query if a
 client asks it for a host it does not know. The results of this query are returned
 as a standard NIS query reply, so the client has no knowledge that any magic has
 been performed on its behalf. Microsoft DNS servers have similar functionality: if a
 client asks a Microsoft DNS server for the address of a local machine that it does
 not know about, the server can be configured to consult a WINS server on the
 client’s behalf.
Generating DNS (BIND) Configuration Files

Production of DNS configuration files for the popular
 BIND DNS server follows
 the same procedure that we used to generate host and NIS source files:
	We store data in a separate database (the same database can and
 probably should be the source for all of the files we’ve been
 discussing).

	We convert data to the output format of our choice, checking for
 errors as we go.

	We use RCS (or an equivalent source control system) to store old
 revisions of files.

For DNS, we have to expand the second step because the conversion process is
 more complicated. As we launch into these complications, you may find it handy
 to have
 DNS and BIND
 by Paul Albitz and Cricket Liu (O’Reilly) on hand for information on the DNS
 configuration files we’ll be creating.
Creating the administrative header

DNS configuration files begin with an administrative header that provides
 information about the server and the data it is serving. The most important
 part of this header is the Start of Authority (SOA) resource record. The SOA
 contains:
	The name of the administrative domain served by this DNS
 server

	The name of the primary DNS server for that domain

	Contact info for the DNS administrator(s)

	The serial number of the configuration file (more on this in a
 moment)

	Refresh and retry values for secondary servers (i.e., when they
 synchronize with the primary server)

	Time to Live (TTL) settings for the data being served (i.e., how long the
 information being provided can safely be cached)

Here’s an example header:
@ IN SOA dns.oog.org. hostmaster.oog.org. (
 2007052900 ; serial
 10800 ; refresh
 3600 ; retry
 604800 ; expire
 43200) ; TTL

@ IN NS dns.oog.org.
Most of this information is just tacked on the front of a DNS
 configuration file verbatim each time it is generated. The one piece we need
 to worry about is the serial number. Once every X
 seconds (where X is determined by the refresh value),
 secondary name servers contact their primary servers looking for updates to
 their DNS data. Modern secondary DNS servers (like BIND v8+ or Microsoft
 DNS) can also be told by their master servers to check for updates when the
 master data has changed. In both cases, each secondary server queries the
 primary server for its SOA record. If the SOA record contains a serial
 number higher than that server’s current serial number, a zone transfer is
 initiated (that is, the secondary downloads a new data set). Consequently,
 it is important to increment this number each time a new DNS configuration
 file is created. Many DNS problems are caused by failures to update the
 serial number.
There are at least two ways to make sure the serial number is always
 incremented:
	Read the previous configuration file and increment the value found
 there.

	Compute a new value based on an external number source
 “guaranteed” to increment over time (like the system clock or the
 RCS version number of the file).

Here’s some example code that uses a combination of these two methods to
 generate a valid header for a DNS zone file. It creates a serial number
 formatted as recommended in Albitz and Liu’s book (YYYYMMDDXX, where
 YYYY=year, MM=month, DD=day, and XX=a two-digit counter to allow for more
 than one change per day):
get today's date in the form of YYYYMMDD
my @localtime = localtime;
my $today = sprintf("%04d%02d%02d",
 $localtime[5] + 1900,
 $localtime[4] + 1,
 $localtime[3]);

get username on either Windows or Unix
my $user =
 ($^O eq 'MSWin32')
 ? $ENV{USERNAME}
 : (getpwuid($<))[6] . ' (' . (getpwuid($<))[0] . ')';

sub GenerateHeader {
 my ($olddate,$count);

 # open old file if possible and read in serial number
 # (assumes the format of the old file)
 if (open(my $OLDZONE, '<', $target)) {
 while (<$OLDZONE>) {
 last if ($olddate, $count) = /(\d{8})(\d{2}).*serial/;
 }
 close $OLDZONE;
 }

 # If $count is defined, we did find an old serial number.
 # If the old serial number was for today, increment last 2 digits;
 # else start a new number for today.
 my $count = (defined $count and $olddate eq $today) ? $count + 1 : 0;
 my $serial = sprintf("%8d%02d", $today, $count);

 # begin the header
 my $header = "; dns zone file - GENERATED BY $0\n";
 $header .= "; DO NOT EDIT BY HAND!\n;\n";
 $header .= "; Converted by $user on " . scalar((localtime)) . "\n;\n";

 # count the number of entries in each department and then report
 foreach my $entry (keys %entries) {
 $depts{ $entries{$entry}->{department} }++;
 }
 foreach my $dept (keys %depts) {
 $header .=
 "; number of hosts in the $dept department: " . "$depts{$dept}.\n";
 }
 $header .=
 '; total number of hosts: ' . scalar(keys %entries) . "\n;\n\n";

 $header .= <<"EOH";

@ IN SOA dns.oog.org. hostmaster.oog.org. (
 $serial ; serial
 10800 ; refresh
 3600 ; retry
 604800 ; expire
 43200) ; TTL

@ IN NS dns.oog.org.

EOH

 return $header;
}
Our code attempts to read in the previous DNS configuration file to
 determine the last serial number in use. This number then gets split into
 date and counter fields. If the date we’ve read is the same as the current
 date, we need to increment the counter. If not, we create a serial number
 based on the current date with a counter value of 00. Once we have our serial number, the rest of the code
 concerns itself with writing out a pretty header in the proper form.

Generating multiple configuration files

Now that we’ve covered the process of writing a correct header for our DNS
 configuration files, there is one more complication we need to address. A
 well-configured DNS server has both forward (name-to-IP address) and reverse
 (IP address-to-name) mapping information available for every domain, or zone, it
 controls. Thus, two configuration files are required per zone. The best way
 to keep these synchronized is to create them both at the same time.
This is the last file-generation script we’ll see in this chapter, so
 let’s put together everything we’ve
 done so far. Our script will take a simple database file and generate the
 necessary DNS zone configuration files.
To keep this script simple, I’ve made a few assumptions about the data,
 the most important of which has to do with the topology of the network and
 namespace. This script assumes that the network consists of a single class-C
 subnet with a single DNS zone. As a result, we only create a single forward
 mapping file and its reverse mapping sibling file. Code to handle multiple
 subnets and zones (with separate files for each) would be a worthwhile
 addition.
Here’s a quick walkthrough of what we’ll do in this code:
	Read the database file into a hash of hashes, checking the data as
 we go.

	Generate a header.

	Write out the forward mapping (name-to-IP address) file and check
 it into RCS.

	Write out the reverse mapping (IP address-to-name) file and check
 it into RCS.

Here is the code and its output:
use Rcs;

my $datafile = 'database'; # our host database
my $outputfile = "zone.$$"; # our temporary output file
my $target = 'zone.db'; # our target output
my $revtarget = 'rev.db'; # our target output for the reverse mapping
my $defzone = '.oog.org'; # the default zone being created
my $rcsbin = '/usr/local/bin'; # location of our RCS binaries
my $recordsep = "-=-\n";

get today's date in the form YYYYMMDD
my @localtime = localtime;
my $today = sprintf("%04d%02d%02d",
 $localtime[5] + 1900,
 $localtime[4] + 1,
 $localtime[3]);

get username on either Windows or Unix
my $user =
 ($^O eq 'MSWin32')
 ? $ENV{USERNAME}
 : (getpwuid($<))[6] . ' (' . (getpwuid($<))[0] . ')';

read in the database file
open my $DATAFILE, '<', "$datafile" or die "Unable to open datafile:$!\n";

my %addrs;
my %entries;
{
 local $/ = $recordsep; # read in the database file one record at a time

 while (<$DATAFILE>) {
 chomp; # remove the record separator
 # split into key1,value1
 my @record = split /:\s*|\n/;

 my $record = {}; # create a reference to empty hash
 %{$record} = @record; # populate that hash with @record

 # check for bad hostname
 if ($record->{name} =~ /[^-.a-zA-Z0-9]/) {
 warn '!!!! '
 . $record->{name}
 . " has illegal host name characters, skipping...\n";
 next;
 }

 # check for bad aliases
 if ($record->{aliases} =~ /[^-.a-zA-Z0-9\s]/) {
 warn '!!!! '
 . $record->{name}
 . " has illegal alias name characters, skipping...\n";
 next;
 }

 # check for missing address
 if (!$record->{address}) {
 warn '!!!! '
 . $record->{name}
 . " does not have an IP address, skipping...\n";
 next;
 }

 # check for duplicate address
 if (defined $addrs{ $record->{address} }) {
 warn '!!!! Duplicate IP addr:'
 . $record->{name} . ' & '
 . $addrs{ $record->{address} }
 . ", skipping...\n";
 next;
 }
 else {
 $addrs{ $record->{address} } = $record->{name};
 }

 $entries{ $record->{name} } = $record; # add this to a hash of hashes
 }
 close $DATAFILE;
}

my $header = GenerateHeader();

create the forward mapping file
open my $OUTPUT, '>', "$outputfile"
 or die "Unable to write to $outputfile:$!\n";
print $OUTPUT $header;

foreach my $entry (sort byaddress keys %entries) {
 print $OUTPUT "; Owned by ", $entries{$entry}->{owner}, ' (',
 $entries{$entry}->{department}, "): ", $entries{$entry}->{building}, '/',
 $entries{$entry}->{room}, "\n";

 # print A record
 printf $OUTPUT "%-20s\tIN A %s\n", $entries{$entry}->{name},
 $entries{$entry}->{address};

 # print any CNAMES (aliases)
 if (defined $entries{$entry}->{aliases}) {
 foreach my $alias (split(' ', $entries{$entry}->{aliases})) {
 printf $OUTPUT "%-20s\tIN CNAME %s\n", $alias,
 $entries{$entry}->{name};
 }
 }
 print $OUTPUT "\n";
}

close $OUTPUT;

Rcs->bindir($rcsbin);
my $rcsobj = Rcs->new;
$rcsobj->file($target);
$rcsobj->co('-l');
rename($outputfile, $target)
 or die "Unable to rename $outputfile to $target:$!\n";
$rcsobj->ci('-u', '-m' . "Converted by $user on " . scalar(localtime));

now create the reverse mapping file
open my $OUTPUT, '>', "$outputfile"
 or die "Unable to write to $outputfile:$!\n";
print $OUTPUT $header;
foreach my $entry (sort byaddress keys %entries) {
 print $OUTPUT '; Owned by ', $entries{$entry}->{owner}, ' (',
 $entries{$entry}->{department}, '): ', $entries{$entry}->{building}, '/',
 $entries{$entry}->{room}, "\n";

 # this uses the default zone we defined at the start of the script
 printf $OUTPUT "%-3d\tIN PTR %s$defzone.\n\n",
 (split /\./, $entries{$entry}->{address})[3], $entries{$entry}->{name};

}

close $OUTPUT;
$rcsobj->file($revtarget);
$rcsobj->co('-l'); # assumes target has been checked out at least once
rename($outputfile, $revtarget)
 or die "Unable to rename $outputfile to $revtarget:$!\n";
$rcsobj->ci("-u", "-m" . "Converted by $user on " . scalar(localtime));

sub GenerateHeader {
 my ($olddate, $count);

 # open old file if possible and read in serial number
 # (assumes the format of the old file)
 if (open(my $OLDZONE, '<', $target)) {
 while (<$OLDZONE>) {
 last if ($olddate, $count) = /(\d{8})(\d{2}).*serial/;
 }
 close $OLDZONE;
 }

 # If $count is defined, we did find an old serial number.
 # If the old serial number was for today, increment last 2 digits;
 # else start a new number for today.
 my $count = (defined $count and $olddate eq $today) ? $count + 1 : 0;
 my $serial = sprintf("%8d%02d", $today, $count);

 # begin the header
 my $header = "; dns zone file - GENERATED BY $0\n";
 $header .= "; DO NOT EDIT BY HAND!\n;\n";
 $header .= "; Converted by $user on " . scalar((localtime)) . "\n;\n";

 # count the number of entries in each department and then report
 my %depts;
 foreach my $entry (keys %entries) {
 $depts{ $entries{$entry}->{department} }++;
 }
 foreach my $dept (keys %depts) {
 $header .=
 "; number of hosts in the $dept department: " . "$depts{$dept}.\n";
 }
 $header .=
 '; total number of hosts: ' . scalar(keys %entries) . "\n;\n\n";

 $header .= <<"EOH";

@ IN SOA dns.oog.org. hostmaster.oog.org. (
 $serial ; serial
 10800 ; refresh
 3600 ; retry
 604800 ; expire
 43200) ; TTL

@ IN NS dns.oog.org.

EOH

 return $header;
}

sub byaddress {
 my @a = split(/\./, $entries{$a}->{address});
 my @b = split(/\./, $entries{$b}->{address});
 ($a[0] <=> $b[0])
 || ($a[1] <=> $b[1])
 || ($a[2] <=> $b[2])
 || ($a[3] <=> $b[3]);
}
Here’s the forward mapping file (zone.db) that gets
 created:
; dns zone file - GENERATED BY createdns
; DO NOT EDIT BY HAND!
;
; Converted by David N. Blank-Edelman (dnb); on Fri May 29 15:46:46 2007
;
; number of hosts in the design department: 1.
; number of hosts in the softwaredepartment: 1.
; number of hosts in the IT department: 2.
; total number of hosts: 4
;

@ IN SOA dns.oog.org. hostmaster.oog.org. (
 2007052900 ; serial
 10800 ; refresh
 3600 ; retry
 604800 ; expire
 43200) ; TTL

@ IN NS dns.oog.org.

; Owned by Cindy Coltrane (marketing): west/143
bendir IN A 192.168.1.3
ben IN CNAME bendir
bendoodles IN CNAME bendir

; Owned by David Davis (software): main/909
shimmer IN A 192.168.1.11
shim IN CNAME shimmer
shimmy IN CNAME shimmer
shimmydoodles IN CNAME shimmer

; Owned by Ellen Monk (design): main/1116
sulawesi IN A 192.168.1.12
sula IN CNAME sulawesi
su-lee IN CNAME sulawesi

; Owned by Alex Rollins (IT): main/1101
sander IN A 192.168.1.55
sandy IN CNAME sander
micky IN CNAME sander
mickydoo IN CNAME sander
And here’s the reverse mapping file (rev.db):
; dns zone file - GENERATED BY createdns
; DO NOT EDIT BY HAND!
;
; Converted by David N. Blank-Edelman (dnb); on Fri May 29 15:46:46 2007
;
; number of hosts in the design department: 1.
; number of hosts in the softwaredepartment: 1.
; number of hosts in the IT department: 2.
; total number of hosts: 4
;

@ IN SOA dns.oog.org. hostmaster.oog.org. (
 2007052900 ; serial
 10800 ; refresh
 3600 ; retry
 604800 ; expire
 43200) ; TTL

@ IN NS dns.oog.org.

; Owned by Cindy Coltrane (marketing): west/143
3 IN PTR bendir.oog.org.

; Owned by David Davis (software): main/909
11 IN PTR shimmer.oog.org.

; Owned by Ellen Monk (design): main/1116
12 IN PTR sulawesi.oog.org.

; Owned by Alex Rollins (IT): main/1101
55 IN PTR sander.oog.org.
This method of creating files opens up many more possibilities. Up to now,
 we’ve generated files using content from a single text-file database. We
 read a record from the database and wrote it out to our file, perhaps with a
 dash of nice formatting. Only data that appeared in the database found its
 way into the files we created.
Sometimes, however, it is useful to have the script itself add content
 during the conversion process. For instance, in the case of DNS
 configuration file generation, you may wish to embellish the conversion
 script so it inserts MX (Mail eXchange) records pointing to a central mail server
 for every host in your database. A trivial code change from:
print A record
printf $OUTPUT "%-20s\tIN A %s\n",
 $entries{$entry}->{name},$entries{$entry}->{address};
to:
print A record
printf $OUTPUT "%-20s\tIN A %s\n",
 $entries{$entry}->{name},$entries{$entry}->{address};

print MX record
print $OUTPUT " IN MX 10 $mailserver\n";
will configure DNS so that mail destined for any host in the domain is
 received by the machine $mailserver
 instead. If that machine is configured to handle mail for its domain, you’ve
 activated a really useful infrastructure component (i.e., centralized mail
 handling) with just a single line of Perl code.

DNS Checking: An Iterative Approach

We’ve spent considerable time in this chapter on the creation of the
 configuration information to be served by network name services, but that’s only
 one side of the coin for system and network administrators. Keeping a network
 healthy also entails checking these services once they’re up and running to make
 sure they are behaving in a correct and consistent manner.
For instance, for a system/network administrator, a great deal rides on the
 question, “Are all of my DNS servers up?” In a troubleshooting situation, it’s
 equally valuable to ask yourself “Are they all serving the same information?”
 or, more specifically, “Are the servers responding to the same queries with the
 same responses? Are they in sync as intended?” We’ll put these questions to good
 use in this section.
In Chapter 2 we saw an example of the Perl motto “There’s
 more than one way to do it” in action. Perl’s TMTOWTDI-ness makes it an excellent prototype language in which to
 do “iterative development.” Iterative development is one way of describing the
 evolutionary process that takes place when writing system administration (and
 other) programs to handle particular tasks. With Perl, it’s all too easy to bang
 out a quick-and-dirty hack that gets a job done. Later, you may return to that
 script and rewrite it so it’s more elegant. There’s even likely to be yet a
 third iteration of the same code, this time taking a different approach to
 solving the problem.
In this section, we’ll look at three different approaches to the same problem
 of DNS consistency checking. These approaches will be presented in the order you
 might realistically follow while trying to solve the problem and refine your
 solution. This ordering reflects one view on how a solution to a problem can
 evolve in Perl; your take on this may differ. The third approach, using
 the
 Net::DNS module, is probably the easiest and
 most error-proof of the bunch, but Net::DNS
 may not address every situation, so we’re going to walk through some “roll your
 own” approaches first. Be sure to note the pros and cons listed after each
 solution has been presented.
Here’s the task: write a Perl script that takes a hostname and checks a list
 of DNS servers to see if they all return the same information when queried about
 this host. To make this task simpler, we’re going to assume that the host has a
 single, static IP address (i.e., does not have multiple interfaces or addresses
 associated with it).
Before we look at each approach in turn, let me show you the “driver” code
 we’re going to use:
use Data::Dumper;

my $hostname = $ARGV[0];
my @servers = qw(nameserver1 nameserver2 nameserver3); # name servers

my %results;
foreach my $server (@servers) {
 $results{$server}
 = LookupAddress($hostname, $server); # populates %results
}

my %inv = reverse %results; # invert the result hash
if (scalar keys %inv > 1) { # see how many elements it has
 print "There is a discrepancy between DNS servers:\n";
 print Data::Dumper->Dump([\%results], ['results']), "\n";
}
For each of the DNS servers listed in the @servers list, we call the LookupAddress() subroutine. LookupAddress() queries a specific DNS server for the IP address
 of a given hostname and returns the result so it can be stored in a hash called
 %results. Each DNS server has a key in
 %results with the IP address returned by
 that server as its value.
There are many ways to determine if all of the values in %results are the same (i.e., if all the DNS
 servers returned the same thing in response to our query). Here, we choose to
 invert %results into another hash table,
 making all of the keys into values, and vice versa. If all values in %results are the same, there should be exactly one
 key in the inverted hash. If not, we know we’ve got a situation on our hands, so
 we call
 Data::Dumper->Dump() to nicely display
 the contents of %results for the system
 administrator to puzzle over.
Here’s a sample of what the output looks like when something goes
 wrong:
There is a discrepancy between DNS servers:
$results = {
 nameserver1 => '192.168.1.2',
 nameserver2 => '192.168.1.5',
 nameserver3 => '192.168.1.2',
 };
Let’s take a look at the contestants for the LookupAddress() subroutine.
Using nslookup

If your background is in Unix, or you’ve done some programming in other
 scripting languages besides Perl, your first attempt might look a great deal
 like a shell script. An external program called from the Perl script does
 the hard work in the following code:
use Data::Dumper;

my $hostname = $ARGV[0];

my @servers = qw(nameserver1 nameserver2 nameserver3 nameserver4);

my $nslookup = '/usr/bin/nslookup';

my %results;
foreach my $server (@servers) {
 $results{$server}
 = LookupAddress($hostname, $server); # populates %results
}

my %inv = reverse %results; # invert the result hash
if (scalar keys %inv > 1) { # see how many elements it has
 print "There is a discrepency between DNS servers:\n";
 print Data::Dumper->Dump([\%results], ['results']), "\n";
}

sub LookupAddress {
 my ($hostname, $server) = @_;
 my @results;

 open my $NSLOOK, '-|', "$nslookup $hostname $server"
 or die "Unable to start nslookup:$!\n";

 while (<$NSLOOK>) {
 next until (/^Name:/); # ignore until we hit "Name: "
 chomp($result = <$NSLOOK>); # next line is Address: response
 $result =~ s/Address(es)?:\s+//; # remove the label
 push(@results, $result);
 }
 close $NSLOOK;
 return join(', ', sort @results);
}
The benefits of this approach are:
	It’s a short, quick program to write (perhaps even translated line
 by line from a real shell script).

	We didn’t have to write any messy network code.

	It takes the Unix approach of using a general-purpose language to
 glue together other smaller, specialized programs to get a job done,
 rather than creating a single monolithic program.

	It may be the only approach for times when you can’t code the
 client/server communication in Perl; for instance, when you have to
 talk with a server that requires a special client and there’s no
 alternative.

The drawbacks of this approach are:
	It’s dependent on another program outside the script. What if this
 program is not available, or its output format changes?

	It’s slower, because it has to start up another process each time
 it wants to make a query. We could reduce this overhead by opening a
 two-way pipe to an nslookup process that stays
 running while we need it. This would take a little more coding
 skill, but it would be the right thing to do if we were going to
 continue down this path and further enhance this code.

	We have less control. We’re at the external program’s mercy for
 implementation details. For instance, here
 nslookup (more specifically, the resolver
 library nslookup is using) is handling server
 timeouts, query retries, and appending a domain search list for us.

Working with raw network sockets

If you are a “power sysadmin,” you may decide calling another program is not acceptable. You might
 want to implement the DNS queries using nothing but Perl. This entails
 constructing network packets by hand, shipping them out on the wire, and
 then parsing the results returned from the server.
The code in this section is probably the most complicated code you’ll find
 in this entire book; it was written by looking at the reference sources
 described later, along with several examples of existing networking code
 (including the module by Michael Fuhr/Olaf Kolkman described in the next section).
 Here is a rough overview of what is going on in this approach: we query a
 DNS server by constructing a specific network packet header and packet
 contents, sending the packet to a DNS server, and then receiving and parsing
 the response from that server.[31]
Each and every DNS packet (of the sort we are interested in) can have up
 to five distinct sections:
	Header
	Contains flags and counters pertaining to the query or answer
 (always present).

	Question
	Contains the question being asked of the server (present for a
 query and echoed in a response).

	Answer
	Contains all the data for the answer to a DNS query (present
 in a DNS response packet).

	Authority
	Contains information on the location from which an
 authoritative response may be retrieved.

	Additional
	Contains any information the server wishes to return in
 addition to the direct answer to a query.

Our program will concern itself strictly with the first three of these
 sections. We’ll be using a set of pack()
 commands to create the necessary data structure for a DNS packet header and
 packet contents. We’ll pass this data structure to the IO::Socket module that handles sending this data out as a packet. The same module
 will also listen for a response on our behalf and return data for us to
 parse (using unpack()). Conceptually,
 this process is not very difficult.
There’s one twist to this process that should be noted before we look at
 the code. RFC 1035[32] (Section 4.1.4) defines two ways of representing domain names in
 DNS packets: uncompressed and compressed. The uncompressed representation
 places the full domain name (for example, host.oog.org)
 in the packet, and is nothing special. However, if the same domain name is
 found more than once in a packet, it is likely that a compressed
 representation will be used for all but the first mention. A compressed
 representation replaces the domain information (or part of it) with a
 two-byte pointer back to the first uncompressed representation. This allows
 a packet to mention host1, host2,
 and host3 in
 longsubdomain.longsubdomain.oog.org, without having
 to include the bytes for
 longsubdomain.longsubdomain.oog.org each time. We
 have to handle both representations in our code, hence the decompress() routine.
Without further fanfare, here’s the code:
use IO::Socket;
use Data::Dumper;

my $hostname = $ARGV[0];
my @servers = qw(nameserver1 nameserver2 nameserver3); # name of the name servers
my $defdomain = '.oog.org'; # default domain if not present

my %results;
foreach my $server (@servers) {
 $results{$server}
 = LookupAddress($hostname, $server); # populates %results
}

my %inv = reverse %results; # invert the result hash
if (scalar keys %inv > 1) { # see how many elements it has
 print "There is a discrepency between DNS servers:\n";
 print Data::Dumper->Dump([\%results], ['results']), "\n";
}

sub LookupAddress {
 my ($hostname, $server) = @_;
 my $id = 0;
 my ($lformat, @labels, $count, $buf);

 ###
 ### Construct the packet header
 ###
 my $header = pack(
 'n C2 n4',
 ++$id, # query id
 1, # qr, opcode, aa, tc, rd fields (only rd set)
 0, # ra, z, rcode
 1, # one question (qdcount)
 0, # no answers (ancount)
 0, # no ns records in authority section (nscount)
 0
); # no additional rr's (arcount)

 # if we do not have any separators in the name of the host,
 # append the default domain
 if (index($hostname, '.') == −1) {
 $hostname .= $defdomain;
 }

 # construct the qname section of a packet (domain name in question)
 for (split(/\./, $hostname)) {
 $lformat .= 'C a* ';
 $labels[$count++] = length;
 $labels[$count++] = $_;
 }

 ###
 ### construct the packet question section
 ###
 my $question = pack(
 $lformat . 'C n2',
 @labels,
 0, # end of labels
 1, # qtype of A
 1
); # qclass of IN

 ###
 ### send the packet to the server and read the response
 ###
 my $sock = new IO::Socket::INET(
 PeerAddr => $server,
 PeerPort => 'domain',
 Proto => 'udp'
);

 $sock->send($header . $question);

 # we know the max packet size
 $sock->recv($buf, 512);
 close($sock);

 ###
 ### unpack the header section
 ###
 my ($id, $qr_opcode_aa_tc_rd, $ra_z_rcode, $qdcount, $ancount, $nscount,
 $arcount)
 = unpack('n C2 n4', $buf);

 if (!$ancount) {
 warn "Unable to lookup data for $hostname from $server!\n";
 return;
 }

 ###
 ### unpack the question section
 ###
 # question section starts 12 bytes in
 my ($position, $qname) = decompress($buf, 12);
 my ($qtype, $qclass) = unpack('@' . $position . 'n2', $buf);

 # move us forward in the packet to end of question section
 $position += 4;

 ###
 ### unpack all of the resource record sections
 ###
 my ($rtype, $rclass, $rttl, $rdlength, $rname, @results);
 for (; $ancount; $ancount--) {
 ($position, $rname) = decompress($buf, $position);
 ($rtype, $rclass, $rttl, $rdlength)
 = unpack('@' . $position . 'n2 N n', $buf);
 $position += 10;

 # this next line could be changed to use a more sophisticated
 # data structure - it currently concatenates all of the answers
 push(@results,
 join('.', unpack('@' . $position . 'C' . $rdlength, $buf)));
 $position += $rdlength;
 }

 # we sort results to deal with round-robin DNS responses
 #
 # we probably should use a custom sort routine to sort
 # them semantically, but in this case we're just looking for
 # the presence of different results from each DNS server
 return join(', ', sort @results);
}

handle domain information that is "compressed" as per RFC 1035
#
we take in the starting position of our packet parse and return
the place in the packet we left off at the end of the domain name
(after dealing with the compressed format pointer) and the name we found
sub decompress {
 my ($buf, $start) = @_;
 my ($domain, $i, $lenoct);

 # get the size of the response, since we're going to have to keep track of
 # where we are in that data
 my $respsize = length($buf);

 for ($i = $start; $i <= $respsize;) {
 $lenoct = unpack('@' . $i . 'C', $buf); # get length of label

 if (!$lenoct) { # 0 signals we are done with this section
 $i++;
 last;
 }

 if ($lenoct == 192) { # we've been handed a pointer, so recurse
 $domain .= (
 decompress(
 $buf, (unpack('@' . $i . 'n', $buf) & 1023)
)
)[1];
 $i += 2;
 last;
 }
 else { # otherwise, we have a plain label
 $domain .= unpack('@' . ++$i . 'a' . $lenoct, $buf) . '.';
 $i += $lenoct;
 }
 }
 return ($i, $domain);
}
Note that this code is not precisely equivalent to that from the previous
 example, because we’re not trying to emulate all of the nuances of
 nslookup’s behavior (timeouts, retries, searchlists,
 etc.). When looking at the three approaches discussed here, be sure to keep
 a critical eye out for these subtle differences.
The benefits of this approach are:
	It isn’t dependent on any other programs. You don’t need to know
 the particulars of another programmer’s work.

	It may be as fast as or faster than calling an external
 program.

	It is easier to tweak the parameters of the situation (timeouts,
 etc.).

The drawbacks of this approach are:
	It’s likely to take longer to write and is more complex than the
 previous approach.

	It requires more knowledge external to the direct problem at hand
 (i.e., you may have to learn how to put together DNS packets by
 hand, something we did not need to know when we called nslookup).

	Our code does not deal with truncated DNS replies (if the reply is
 too large, most implementations fail over to giving a TCP
 response).

	You may have to handle OS-specific issues yourself (these are
 hidden in the previous approach by the work already done by the
 external program’s author).

Using Net::DNS

As mentioned in Chapter 1, one of Perl’s real strengths
 is the support of a large community of developers who churn out code for
 others to reuse. If there’s something you need to do in Perl that seems
 universal, chances are good that someone else has already written a module
 to handle it. In our case, we can make use of Michael Fuhr’s excellent Net::DNS module (now maintained by Olaf Kolkman) to make our
 job simpler. For this task, we simply have to create a new DNS resolver
 object, configure it with the name of the DNS server we wish to use, ask it
 to send a query, and then use the supplied methods to parse the
 response:
use Net::DNS;

my $hostname = $ARGV[0];

my @servers = qw(nameserver1 nameserver2 nameserver3 nameserver4);

my %results;
foreach my $server (@servers) {
 $results{$server}
 = LookupAddress($hostname, $server); # populates %results
}

my %inv = reverse %results; # invert the result hash
if (scalar keys %inv > 1) { # see how many elements it has
 print "There is a discrepency between DNS servers:\n";
 use Data::Dumper;
 print Data::Dumper->Dump([\%results], ['results']), "\n";
}

only slightly modified from the example in the Net::DNS manpage
sub LookupAddress {
 my ($hostname, $server) = @_;

 my $res = new Net::DNS::Resolver;

 $res->nameservers($server);

 my $packet = $res->query($hostname);

 if (!$packet) {
 warn "Unable to lookup data for $hostname from $server!\n";
 return;
 }
 my (@results);
 foreach my $rr ($packet->answer) {
 push(@results, $rr->address);
 }
 return join(', ', sort @results);
}
The benefits of this approach are:
	The code is legible.

	It is often faster to write.

	Depending on how the module you use is implemented (is it pure
 Perl or is it glue to a set of C or C++ library calls?), the code
 you write using this module may be just as fast as calling an
 external compiled program.

	It is potentially portable, depending on how much work the author
 of the module has done for you. Any place this module can be
 installed, your program can run.

	As in the first approach we looked at, writing code can be quick
 and easy if someone else has done the behind-the-scenes work for
 you. You don’t have to know how the module works; you just need to
 know how to use it.

	Code reuse. You are not reinventing the wheel each time.

The drawbacks of this approach are:
	You’re back in the dependency game. You need to make sure the
 module will be available for your program to run, and you need to
 trust that the module writer has done a decent job.

	If there is a bug in the module and the original author goes
 missing, you may wind up becoming the maintainer of the
 module.

	There may not be a module to do what you need, or it may not run
 on your operating system of choice.

More often than not, using a prewritten module is my preferred approach.
 However, any of the approaches discussed here will get the job done.
 TMTOWTDI, so go forth and do it!

[30] NIS+ offered mechanisms for a client to search for information
 outside of the local domain, but they were not as flexible as
 those in DNS.

[31] For the nitty-gritty details, I highly recommend that you open RFC
 1035 to the section entitled “Messages” and read along.

[32] RFC 1035 has been updated by RFC 1101, but not in a way that
 impacts this discussion.

DHCP

The Dynamic Host Configuration Protocol isn’t a TCP/IP name service, but it
 is enough of a kissing cousin that it belongs in this chapter next to DNS. DNS lets
 us find the IP address associated with a hostname (or hostname associated with an IP address, in the case of a
 reverse lookup). DHCP lets a machine dynamically retrieve its network configuration
 information (including its IP address) given its Ethernet address. It is a more
 general and robust successor to the BOOTP and RARP protocols that used to serve a
 similar purpose in a more limited way.
I glossed over the complex parts of how DNS works in the previous section,[33] but I’m not going to be able to hand wave past the slightly more
 involved interaction that takes place between a DHCP server and a DHCP client. Let’s
 get that out of the way right now, before we even think about bringing Perl into the
 picture.
In the previous section, we could pretty much say, “DNS client asks a DNS server a
 question and gets an answer. Done.” The worst-case scenario for the sort of queries
 we did might have been “DNS client asks a question, gets an answer, then has to ask
 another server the same question.” The DHCP dance is more interesting. Here’s
 roughly the conversation that goes on:
	DHCP Client (to everyone): Hey, is anyone
 out there? I need an address and some other configuration information.
	DHCP Server directly to DHCP Client:
 Request acknowledged by server at IP address {blah}. I can let you use the
 following IP address and other information: {blah, blah, blah}.
	DHCP Client (to everyone): OK, I’d like
 to use the IP address and other information that the server at IP address {blah}
 offered.
	DHCP Server to DHCP Client: OK,
 acknowledged. You are welcome to use that configuration for {some amount of
 time}.
	[half that amount of time passes]
	DHCP Client to Server: Hi, I’m using this
 IP address and configuration information: <blah, blah>. Can I
 continue to use it?
	DHCP Server to Client: OK, acknowledged.
 You are welcome to use that configuration for {some amount of time}.
	[client prepares to leave the network]
	(optionally) DHCP Client to Server: OK,
 done with this IP address and configuration.

There are a few variations on this conversation. For example, a client can
 remember its last address and lease duration (the amount of time the server said it
 could use the information) and ask to use it again in a broadcasted version of the
 third step. In that case, the server can quickly acknowledge the request, and the
 client is off and running with its previous address. Other variations occur when
 either the server or the client isn’t in as sunny a mood as in the example
 conversation. Sometimes either side will decline a request or an offer, and then a
 new negotiation round occurs. For all of the gripping details, you should read the
 clearly written DHCP RFC (2131 as of this writing) or the The DHCP
 Handbook mentioned at the end of this chapter.
The interaction between a DHCP server and a DCHP client differs from our previous
 name server examples in a number of ways. Besides the number of steps, we also see
 the signs of:
	A negotiated handshake. The server and client have to agree that they are
 going to talk to each other and then agree on the configuration the client
 will use. Both sides need to let each other know that they agree.

	Persistent state. Once the handshake has taken place, the server keeps
 track of the agreement for the duration of the server-specified time (the
 client’s lease). Halfway into the lease, the client will (under most
 circumstances) attempt to renew it.

Note
Of the protocols mentioned in this chapter, only WINS has a similar notion.
 Clients register with a WINS server and are required to re-register periodically so the server can
 maintain correct mapping information for them. DHCP is used for more than just
 name-to-address mapping and the rules of
 interaction are a little different, but DHCP and WINS are pretty similar in this
 regard.

These two factors make our decisions around the programming of DHCP scripts a
 little more interesting. Most of these decisions come down to questions of how
 “nice” or compliant we want our scripts to be.
Let’s look at two example tasks so you can see what I mean.
Active Probing for Rogue DHCP Servers

In Chapter 13 we will work on a passive detector for rogue (i.e.,
 unofficial/unwanted) DCHP servers using network sniffing. We’ll construct
 something similar here, using a more active approach. The key to this approach
 is the first part of the sample DHCP conversation outlined previously. The first
 step for a client that wishes to obtain configuration information is a “hey,
 anybody out there?” broadcast. Any DHCP server that can hear this request is
 supposed to respond with a DHCP offer for the information it is configured to
 provide.
Note
Before we go much further with this example, I have to jump in with a
 qualification about servers being “supposed to respond” with certain
 information. DHCP servers—at least the good ones—are highly configurable.
 They can be told to respond to broadcasts only from known Ethernet
 addresses, network subnets, vendor classes (more on those later), and so on.
 All other requests are ignored, with maybe just a note left in the log
 file.
The code we’re about to see is designed to catch servers that
 aren’t configured properly. We’re looking for the
 servers that will answer requests indiscriminately (because after all, they
 are the ones that can cause the most trouble). These are the rogue servers
 likely to still have bad default settings.
Though this code is probably too blunt to catch more subtle configuration
 errors, you could certainly sharpen it so it could find the more specific
 problems in almost-properly-configured severs as well.

For this task we’re just interested in who answers our
 broadcast. We mostly don’t care what they say, though that information can be
 helpful when tracking down the host in question. I mention this because some of
 the information we may send (like a fake Ethernet address) will obviously be
 bogus.
Given how little we care about the contents of the query we make or the
 response we receive, you can probably guess that we’re going to be equally
 laissez-faire about having the script comply with the rest of the DHCP protocol.
 We’re not going to bother to continue negotiating for a lease with the server
 that responds, because we don’t need one. All we want to do is provoke a
 response from any server willing to talk to us. As a side goal, we’re also going
 to attempt to avoid gumming any legitimate DHCP servers we run, because denial
 of service (DOS) attacks are seldom a good idea.
Now let’s get to the code. The code we need is quick to write, thanks to
 the
 Net::DHCP::Packet module by Stephan Hadinger. This module lets us construct and deconstruct DHCP
 packets using an easy OOP syntax. We’ll also be using the
 IO::Socket::INET module by Graham Barr to make the UDP sending and receiving code simpler (with
 one gotcha that I’ll point out later). Here’s our code, with explication to
 follow:
use IO::Socket::INET;
use Net::DHCP::Packet;
use Net::DHCP::Constants;

my $br_addr = sockaddr_in('67', inet_aton('255.255.255.255'));
my $xid = int(rand(0xFFFFFFFF));
my $chaddr = '0016cbb7c882';

my $socket = IO::Socket::INET->new(
 Proto => 'udp',
 Broadcast => 1,
 LocalPort => '68',
) or die "Can't create socket: $@\n";

my $discover_packet = Net::DHCP::Packet->new(
 Xid => $xid,
 Chaddr => $chaddr,
 Flags => 0x8000,
 DHO_DHCP_MESSAGE_TYPE() => DHCPDISCOVER(),
 DHO_HOST_NAME() => 'Perl Test Client',
 DHO_VENDOR_CLASS_IDENTIFIER() => 'perl',

);

$socket->send($discover_packet->serialize(), 0, $br_addr)
 or die "Error sending:$!\n";

my $buf = '';
$socket->recv($buf, 4096) or die "recvfrom() failed:$!";
my $resp = new Net::DHCP::Packet($buf);

print "Received response from: " . $socket->peerhost() . "\n";
print "Details:\n" . $resp->toString();

close($socket);
Let’s take a quick walk through the code. We start by defining the destination
 for our packets (a broadcast address[34]), and a couple of other constants I’ll mention in a moment. We then create the socket we’ll be
 using to send and receive packets. This socket definition specifies the
 protocol, the source port, and a request to set the broadcast flag on that socket. You’ll note that it doesn’t specify
 the destination for the packets ($br_addr)
 defined earlier in the constructor. You can’t use connect() to receive a broadcast response, as detailed in the
 sidebar , so this is broken out as a separate step. You
 should also note that, thanks to the source and destination port numbers in the
 code, we’re going to have to run our DHCP examples with some sort of
 administrative privileges (e.g., via sudo on
 Unix/Mac OS X). If we don’t, we’re in for the Permission Denied blues.
Thank You, Lincoln Stein (Listening to Broadcasts Using
 IO::Socket)
When writing this example, I spent a good part of a day banging my head
 against a particular problem. For the life of me, I couldn’t get IO::Socket::INET to let me send to a broadcast
 address and then listen to the responses using the same socket, even though
 I knew this was possible. I had code that could listen for packets and code
 that could send broadcasts (as verified by Wireshark, a network sniffer),
 but I couldn’t get the pieces to play nicely together.
In desperation, I did two things: I re-read the appropriate sections of
 Stein’s excellent book Network Programming with
 Perl (Addison-Wesley) and traced the IO::Socket::INET module’s operations in a debugger really carefully. In Stein’s book, I
 found this paragraph about the connect()
 call being used for UDP sockets (p. 532):
A nice side effect of connecting a datagram socket is that such a
 socket can receive messages only from the designated peer. Messages sent
 to the socket from other hosts or from other ports on the peer host are
 ignored.... Servers that typically must receive messages to multiple
 clients should generally not connect their sockets.

My trace of IO::Socket::INET showed
 that it indeed did connect() its socket
 if a remote address was specified (i.e., using the PeerAddr argument in the new() call), even if the remote address was the
 255.255.255.255 broadcast address. That connected socket refused to listen
 to packets from any other host.
The code presented in this section intentionally does not specify PeerAddr when it wants to listen to responses
 to broadcasted packets, even though it seems like the obvious approach. My
 thanks to Lincoln Stein’s book for helping me figure this out before I went
 batty.

Once we have the socket to be used for transiting data, it’s time to bake some
 packets. The next line constructs a DHCP packet to our specification. Let’s look
 at each flag in that constructor call, because they’re all pretty important for
 understanding how things work:
	
 Xid

	This is the transaction ID for the discussion we’re about to have.
 The client picks a random ID for both it and the server to include
 in each packet being sent. This lets them both know that they are
 both referring to the same conversation.

	
 Chaddr

	This is the client
 hardware address (i.e.,
 Ethernet or MAC address). In this example I’ve done the simple but
 potentially dangerous thing of taking my laptop’s Ethernet address
 and incrementing some of the digits. It would probably be better to
 either use a known idle address (like that broken Ethernet card you
 have sitting on your shelf) or determine the current address of your
 machine (assuming it isn’t using DHCP at the moment).[35]

	
 Flags

	The DHCP specification allows you to set a flag to request that
 the response to the packet you’re sending be sent as a broadcast (as
 opposed to a unicast reply) as well. In this case we’re asking all
 servers that reply to do so using a broadcast response just to be
 safe.

	
 DHO_DHCP_MESSAGE_TYPE

	This option sets the type of DHCP packet being sent. Here’s where we
 say we’re sending out the initial DHCP DISCOVER packet.

	
 DHO_HOST_NAME

	Though not necessary for this particular task, this option lets our
 client self-identify using a name of our choice. Using this option
 can help make network sniffer traces easier to follow (because we
 can clearly identify our packets). Later, in a more complex example,
 we’ll actually reserve a lease. In that case, it will be handy when
 we look at the lease database of a server (e.g., in a wireless
 router). It’s much easier to tell which client is yours in the list
 if the client has supplied a recognizable name.

	
 DHO_VENDOR_CLASS_IDENTIFIER

	Another optional flag that isn’t strictly necessary, the vendor class is
 a concept detailed in the DHCP RFC that can help make server
 configuration easier. It allows you to break up your network devices
 into different vendor classes for the purpose of assigning
 configurations. For example, you might want all of your Windows
 machines to receive a
 configuration that points them to your Windows Server 2003 DNS
 servers. If you assign them all to the same vendor class, the better
 DHCP servers will allow you to apply configuration directives to
 that set.

If specifying a DHCP packet is easy thanks to Net::DHCP::Packet, actually sending it is even easier. In the
 next line of code, we just call send() on a
 massaged (serialized) version of that packet and send it to the broadcast
 address and port previously defined. The middle argument of the send() call is for optional flags—we set it to
 0, which means we’ll take the
 defaults.
Immediately after sending the packet, we call recv() to listen for a response. There are two important things
 to note here:
	To keep the example code as simple as possible we call recv() only once, which means we’re only
 going to listen for a single packet in response to our broadcast.
 Ideally we would loop so we could return to listening for
 packets.

	A simple recv() call like this will
 block (i.e., hang) forever until it receives data. Again, we didn’t do
 anything fancy here for simplicity’s sake. There are ways to get around
 this limitation, such as using alarm() or IO::Select.
 See Lincoln Stein’s book Network Programming with
 Perl (Addison-Wesley) or the examples in
 Perl
 Cookbook
 (O’Reilly) for more details.

For the purposes of illustration, we’ll assume that everything goes as planned
 and we do receive a packet. We then take
 that packet apart for display using Net::DHCP::Packet and print it. Here’s some sample output showing
 what we might see at this point:
Received response from: 192.168.0.1
Details:
op = BOOTREPLY
htype = HTYPE_ETHER
hlen = 6
hops = 0
xid = 912c020f
secs = 0
flags = 8000
ciaddr = 0.0.0.0
yiaddr = 192.168.0.2
siaddr = 0.0.0.0
giaddr = 0.0.0.0
chaddr = 0016cbb7c882
sname =
file =
Options :
 DHO_DHCP_MESSAGE_TYPE(53) = DHCPOFFER
 DHO_DHCP_SERVER_IDENTIFIER(54) = 192.168.0.1
 DHO_DHCP_LEASE_TIME(51) = 86400
 DHO_SUBNET_MASK(1) = 255.255.255.0
 DHO_ROUTERS(3) = 192.168.0.1
 DHO_DOMAIN_NAME_SERVERS(6) = 68.78.7.126 68.78.7.252
padding [270] = 00
00
000
000
000
00
000
00
That’s a lovely offer for a lease. The next logical thing for our code to do
 (that it doesn’t do yet) would be to check to make sure the DHCP server offering
 this lease is one of our authorized servers. If not, the hunt is on!

Monitoring Legitimate DHCP Servers

We can develop this last piece of code even further into yet another useful script. In
 the previous example we started the DHCP handshake process with a DHCPDISCOVER and received a DHCPOFFER, but we didn’t consummate the
 transaction with the last step in the process. Leaving off at this point means
 we didn’t hang in there long enough to see if the server would have actually
 given us a lease.
What if we wanted to see whether our legitimate DHCP server was properly
 handing out leases and other configuration information? To do that, we’d have to
 follow the handshake to its natural conclusion.
Here’s some example code that will request a lease, print out the final packet
 when it receives it, and then (because we’re well-mannered programmers) release
 that lease. I’ve highlighted the interesting bits that we’ll talk about after
 you get a chance to see the new code:
use IO::Socket::INET;
use Net::DHCP::Packet;
use Net::DHCP::Constants;

my $socket = IO::Socket::INET->new(
 Proto => 'udp',
 Broadcast => 1,
 LocalPort => '68',
) or die "Can't create socket: $@\n";

my $br_addr = sockaddr_in('67', inet_aton('255.255.255.255'));
my $xid = int(rand(0xFFFFFFFF));
my $chaddr = '0016cbb7c882';

my $discover_packet = Net::DHCP::Packet->new(
 Xid => $xid,
 Chaddr => $chaddr,
 Flags => 0x8000,
 DHO_DHCP_MESSAGE_TYPE() => DHCPDISCOVER(),
 DHO_HOST_NAME() => 'Perl Test Client',
 DHO_VENDOR_CLASS_IDENTIFIER() => 'perl',
);

$socket->send($discover_packet->serialize(), 0, $br_addr)
 or die "Error sending:$!\n";

my $buf = '';
$socket->recv($buf, 4096) or die "recvfrom() failed:$!";
my $resp = new Net::DHCP::Packet($buf);

my $request_packet = Net::DHCP::Packet->new(
 Xid => $xid,
 Chaddr => $chaddr,
 DHO_DHCP_MESSAGE_TYPE() => DHCPREQUEST(),
 DHO_VENDOR_CLASS_IDENTIFIER() => 'perl',
 DHO_HOST_NAME() => 'Perl Test Client',
 DHO_DHCP_REQUESTED_ADDRESS() => $resp->yiaddr(),
 DHO_DHCP_SERVER_IDENTIFIER() =>
 $resp->getOptionValue(DHO_DHCP_SERVER_IDENTIFIER()),
);

$socket->send($request_packet->serialize(), 0, $br_addr)
 or die "Error sending:$!\n";

$socket->recv($buf, 4096) or die "recvfrom() failed:$!";
$resp = new Net::DHCP::Packet($buf);

print $resp->toString();

my $dhcp_server = $resp->getOptionValue(DHO_DHCP_SERVER_IDENTIFIER());

close($socket);

my $socket = IO::Socket::INET->new(
 Proto => 'udp',
 LocalPort => '68',
 PeerPort => '67',
 PeerAddr => $dhcp_server,
) or die "Can't create socket: $@\n";

my $release_packet = Net::DHCP::Packet->new(
 Xid => $xid,
 Chaddr => $chaddr,
 DHO_DHCP_MESSAGE_TYPE() => DHCPRELEASE(),
);

$socket->send($release_packet->serialize())
 or die "Error sending:$!\n";
You probably have the gist of what’s going on here, thanks to the last
 example. Let’s look at the ways this code expands on those ideas.
The first chunk of highlighted code shows two flags we haven’t seen
 before:
	
 DHO_DHCP_REQUESTED_ADDRESS

	This is the address our client will request from the server. As part
 of the handshake, we’re just parroting back the address provided to
 us in the reply from the DHCP server. The DHCP server sends us a
 packet with the yiaddr field set
 to a suggested address that it could give us (i.e., “your Internet
 address could be...”). In our packet, we say, “OK, we will use the
 address you’re suggesting.”

	
 DHO_DHCP_SERVER_IDENTIFIER

	When there are multiple DHCP servers on the network that can hear
 broadcasts and respond to them, it is important for the client to be
 able to indicate which server’s response it is choosing to answer.
 It does this using the identifier (i.e., the IP address) of the
 server in this field.

The second piece of interesting code demonstrates the use of a new socket for
 the release of the lease. We need a new socket because we’re done broadcasting
 our replies and instead need to send a unicast response to the server. We get
 the address of that server from the DHO_DHCP_SERVER_IDENTIFIER option set in the server’s previous
 response to us.
The final addition in this example is the snippet that sends a request to
 relinquish the previously assigned lease. You might note that this packet has
 the fewest options/flags of any we’ve seen to date: our client just has to
 reference the transaction ID we’ve been using and the client’s hardware
 (Ethernet) address in order to let the server know which lease to
 release.
With that we’ve seen one way to test a full DISCOVER-OFFER-REQUEST-RELEASE
 cycle. Clearly we could get even fancier and test lease renewals or closely
 check over the results we’re receiving from our servers to make sure they make
 sense. If you’d like to do the former, where acting like a real DHCP client is
 important, I should mention in the interest of full disclosure that there is a
 module, Net::DHCPClientLive by Ming Zhang,
 that can make your life easier. It basically lets you test the various states a
 DHCP client moves through (e.g., “lease expired, attempt to renew lease”) and
 will automatically send and receive the necessary packets to reach that state.
 Use it when you really need to beat up on your DHCP servers for testing
 purposes.

[33] For example, we won’t talk about zone transfers, non-ASCII names, or even
 what happens if the answer to a question can’t fit in a single UDP packet.
 Paul Vixie wrote an excellent article on this topic for the April 2007 issue
 of ACM Queue magazine called “DNS Complexity.” It’s
 well worth a read.

[34] Eagle-eyed network administrators will note that we’re wimping out
 here by sending to the “all-ones” broadcast address rather than the one
 specific to our subnet. Figuring out that address would add a bit of
 distraction in this example. There are a number of modules (such as
 NetAddr::IP, Net::Interface, and IO::Interface) that can help if you want
 to be more accurate in your target.

[35] This ostensibly simple task isn’t as easy as it sounds.
 There is no truly portable way to get the Ethernet address
 of an interface on your machine. The closest you can come is
 using a module like Net::Address::Ethernet or Net::Ifconfig::Wrapper (which
 basically call ifconfig or
 ipconfig for you), IO::Interface::Simple (which
 attempts to use some of the system libraries to find the
 information), or even Net::SNMP::Interfaces pointed at the local
 host. None of these solutions works all of the time, so
 caveat implementor.

Module Information for This Chapter

	
 Module

 	
 CPAN ID

 	
 Version

	

 Rcs

 	
 CFRETER

 	
 1.05

	

 Net::NIS

 	
 RIK

 	
 0.34

	
 Data::Dumper (ships with
 Perl)

 	
 ILYAM

 	
 2.121

	
 IO::Socket::INET (ships
 with Perl)

 	
 GBARR

 	
 1.2301

	

 Net::DNS

 	
 OLAF

 	
 0.59

	

 Net::DHCP::Packet

 	
 SHADINGER

 	
 0.66

References for More Information

DNS and
 BIND, Fifth Edition, by Paul Albitz and Cricket Liu
 (O’Reilly)
Managing NFS and
 NIS, Second Edition, by Mike Eisler et al.
 (O’Reilly)
The DHCP Handbook, Second Edition, by Ralph Droms and Ted
 Lemon (Sams)
Network Programming with Perl, by Lincoln Stein
 (Addison-Wesley)
Perl
 Cookbook, Second Edition, by Tom Christiansen and Nathan
 Torkington (O’Reilly)
RFC 849: Suggestions For Improved Host Table Distribution, by
 Mark Crispin (1983)
RFC 881: The Domain Names Plan and Schedule, by J. Postel (1983)
RFC 882: Domain Names: Concepts And Facilities, by P.
 Mockapetris (1983)
RFC 1035: Domain Names: Implementation And Specification, by
 P. Mockapetris (1987)
RFC 1101: NS Encoding of Network Names and Other Types, by P.
 Mockapetris (1989)
RFC 2131: Dynamic Host Configuration Protocol, by R.
 Droms (1997)

Chapter 6. Working with Configuration Files

Let us consider the lowly config file. For better or worse, config files are omnipresent not just in the lives of sysadmins, but in the
 lives of anyone who ever has to configure software before using it. Yes, GUIs and
 web-based point-and-click festivals are becoming more prevalent for configuration, but
 even in those cases there’s often some piece of configuration information that has to be
 twiddled before you get to the nifty GUI installer.
From the Perl programmer’s point of view, the evolutionary stages of a program usually
 go like this. First, the programmer writes the roughest and simplest of scripts. Take
 for example the following script, which reads a file and adds some text to lines that
 begin with the string hostname: before writing the
 data out to a second file:
open my $DATA_FILE_H, '<', '/var/adm/data'
 or die "unable to open datafile: $!\n";
open my $OUTPUT_FILE_H, '>', '/var/adm/output'
 or die "unable to write to outputfile: $!\n";

while (my $dataline = <$DATA_FILE_H>) {
 chomp($dataline);
 if ($dataline =~ /^hostname: /) {
 $dataline .= '.example.edu';
 }
 print $OUTPUT_FILE_H $dataline . "\n";
}
close $DATA_FILE_H;
close $OUTPUT_FILE_H;
That’s quickly replaced by the next stage, the arrival of variables to represent parts
 of the program’s configuration:
my $datafile = '/var/adm/data'; # input data filename
my $outputfile = '/var/adm/output'; # output data filename
my $change_tag = 'hostname: '; # append data to these lines
my $fdqn = '.example.edu'; # domain we'll be appending

open my $DATA_FILE_H, '<', $datafile
 or die "unable to open $datafile: $!\n";
open my $OUTPUT_FILE_H, '>', $outputfile
 or die "unable to write to $outputfile: $!\n";

while (my $dataline = <$DATA_FILE_H>) {
 chomp($dataline);
 if ($dataline =~ /^$change_tag/) {
 $dataline .= $fdqn;
 }
 print $OUTPUT_FILE_H $dataline . "\n";
}
close $DATA_FILE_H;
close $OUTPUT_FILE_H;
Many Perl programs happily remain at this stage for their whole lives. However, more
 experienced programmers will recognize that code like this is fraught with potential
 peril: problems can arise as development continues and the program gets bigger and
 bigger, perhaps being handed off to other people to maintain.
These problems will manifest the first time someone naïvely adds code deep within the
 program that modifies $change_tag or $fdqn. All of a sudden, the program output changes in an
 unexpected and unwanted way. In a small code snippet it is easy to spot the connection
 between $change_tag or $fdqn and the desired results, but it can be much trickier in a program
 that scrolls by for screen after screen.
One approach to fixing this problem would be to rename variables like $fdqn to something more obscure, like $dont_change_this_value_yesiree_bob, but that’s a bad
 idea. Besides consuming far too many of the finite number of keystrokes you’ll be able
 to type in your lifetime, it wreaks havoc on code readability. There are a number of
 data-hiding tricks we could play instead (closures, symbol table manipulation, etc.),
 but they don’t help with readability either and are more complex than necessary.
The best idea is to use something similar to the
 use constants pragma (see the sidebar Constant As the Northern Star) to make the variables read-only:
use Readonly;

we've upcased the constants so they stick out
note: this is the Perl 5.8.x syntax, see the Readonly docs for using
Readonly with versions of Perl older than 5.8
Readonly my $DATAFILE => '/var/adm/data'; # input data filename
Readonly my $OUTPUTFILE => '/var/adm/output'; # output data filename
Readonly my $CHANGE_TAG => 'hostname: '; # append data to these lines
Readonly my $FDQN => '.example.edu'; # domain we'll be appending

open my $DATA_FILE_H, '<', $DATAFILE
 or die "unable to open $DATAFILE: $!\n";
open my $OUTPUT_FILE_H, '>', $OUTPUTFILE
 or die "unable to write to $OUTPUTFILE: $!\n";

while (my $dataline = <$DATA_FILE_H>) {
 chomp($dataline);
 if ($dataline =~ /^$CHANGE_TAG/) {
 $dataline .= $FDQN;
 }
 print $OUTPUT_FILE $dataline . "\n";
}
close $DATA_FILE_H;
close $OUTPUT_FILE_H;
Constant As the Northern Star
Why not actually “use constants” instead? The Readonly
 module’s documentation points out a number of reasons, the three most
 compelling of which are:
	The ability to interpolate Readonly
 variables into strings (e.g., print "Constant set
 to $CONSTANT\n")

	The ability to lexically scope Readonly
 variables (e.g., Readonly
 my
 $constant => "fred") so they can
 be present in only the scope you desire

	Unlike with use constant, once a
 Readonly variable is defined,
 attempts to redefine it are rebuffed

Now that we’ve seen the nec plus ultra of storing configuration
 information within the script,[36] we’ve hit a wall: what happens when we decide to write a second or third
 script that needs similar configuration information? Copy and paste is the wrong answer.
 Simply duplicating the same information into a second script might seem harmless, but
 this would lead to Multiple Sources of Truth™.[37] That is, someday, something will change, and you’ll forget to update one of
 these files, and then you’ll spend hours trying to figure out what’s gone wrong. This is
 the first step on to the road away from Oz and toward an unpleasant encounter with the
 flying monkeys and an unhappy lady with a broomstick. Don’t do it.
The right answer is probably to create some sort of config file (or something more
 sophisticated, which we will touch on later in the chapter). The next choice once you’ve
 reached the decision to use a config file is: what format?
The answer to that question is similar to the old joke, “The wonderful thing about
 standards is there are so many to choose from!” Discussions of which formats are best
 are usually based on some mishmash of religion, politics, and personal aesthetic taste.
 Because I’m a flaming pluralist, we’re going to take a look at how to deal with several
 of the most common formats, and I’ll leave you to choose the best one for your application.
Configuration File Formats

We’ll look at four ways of storing configuration data in this chapter: in binary
 format, as naked delimited data, as key/value pairs, and using a markup format such
 as XML or YAML. I’ll try to give you my humble opinion about each to help you with
 your decision process.
Binary

The first kind of configuration file we’re going to look at is my least favorite, so
 let’s get it out of the way quickly. Some people choose to store their
 configuration data on disk as basically a serialized memory dump of their Perl
 data structures. There are several ways to write this data structure to disk,
 including the old warhorse
 Storable:
use Storable;

write the config file data structure out to $CONFIG_FILE
store \%config, $CONFIG_FILE; # use nstore() for platform independent file

later (perhaps in another program), read it back in for use
my $config = retrieve($CONFIG_FILE);
If you need something that is pure Perl,
 DBM::Deep is another good choice. It has the
 benefit of producing data files that aren’t platform-specific by default
 (though
 Storable’s nstore() method can help with that):
use DBM::Deep;

my $configdb = new DBM::Deep 'config.db';

store some host config info to that db
$configdb->{hosts} = {
 'agatha' => '192.168.0.4',
 'gilgamesh' => '192.168.0.5',
 'tarsus' => '192.168.0.6',
};

(later) retrieve the names of the hosts we've stored
print join(' ', keys %{ $configdb->{hosts} }) . "\n";
Files in a binary format are typically really fast to read, which can be quite
 helpful if performance is a concern. Similarly, there’s something elegant about
 having the information stay close to the native format (i.e., a Perl data
 structure you’re going to traverse in memory) for its entire lifespan, rather
 than transcoding it to and from another representation through a myriad of
 parsing/slicing/dicing steps.
So why is this my least favorite kind of config file? To me, the least
 palatable aspect is the opaque nature of the files created. I much prefer my
 config files to be human-readable whenever possible. I don’t want to have to
 rely on a special program to decode the information (or encode it, when the data
 gets written in the first place). Besides that visceral reaction, the use of
 binary formats also means you can’t operate on the data using other standard
 tools at your disposal, like grep.[38] Luckily, if you’re looking for speed, there are other alternatives,
 as you’ll see in a moment.

Naked Delimited Data

Also in the category of formats I tend to dislike are those that simply present
 a set of data in fields delimited by some character. The
 /etc directory on a Unix box is lousy with them:
 passwd, group, and so on. Comma-
 or Character-Separated Value (CSV, take your pick of expansions) files are in the same
 category.
Reading them in Perl is pretty easy because of the built-in split() operator:
use Readonly;

Readonly my $DELIMITER => ':';
Readonly my $NUMFIELDS => 4 ;

open your config file and read in a line here

now parse the data
my ($field1, $field2, $field3, $field4, $excess) =
 split $DELIMITER, $line_of_config, $NUMFIELDS;
For CSV files, a number of helpful modules can handle tricky situations like
 escaped characters (e.g., when commas are used in the data itself).
 Text::CSV::Simple, a wrapper around Text::CSV_XS, works well:
use Text::CSV::Simple;

my $csv_parser = Text::CSV::Simple->new;

@data will then contain a list of lists, one entry per line of the file
my @data = $csv_parser->read_file($datafile);
This data format is also on my “least favored” list. Unlike the binary format,
 it has the benefit of being human-readable and parsable by standard tools;
 however, it also has the drawback of being easily human-misunderstandable and
 mangle-able. Without a good memory or external documentation, it is often
 impossible to understand the contents of the file (“what was the 7th field
 again?”), making it susceptible to fumble-fingering and subtle typos. It is also
 field-order fragile. And if that doesn’t convince you not to use this format,
 the more you work with it, the more you’ll find that individual parsers in
 different applications have different ideas on how to handle commas, quotes, and
 carriage returns within the values. CSV data seems interoperable on the surface,
 but it often requires a deeper understanding of the quirks of the programs
 producing or consuming it.

Key/Value Pairs

The most common format is the key
 {something}
 value style, where {something} is usually
 whitespace, a colon, or an equals sign. Some key/value pair formats (e.g.,
 .ini files) throw in other twists, like section names
 that look like this:
[server section]
{setting}={value}
{setting}={value}
or configuration scopes (as in Apache’s configuration file):
<Location>
 {setting} {value}
 {setting} {value}
 ...
</Location>
Dealing with key/value pair formats using Perl modules is initially difficult,
 because there are so many choices. As of this writing, there are at least 26
 modules in this category on CPAN.
How do you pick which module to use? The first step is to ask yourself a
 number of questions that will help define your needs and winnow down the
 contenders.
To start, you’ll want to consider just how complex you want the configuration
 file to be:
	Will simple .ini files work for
 you? More complex .ini files? Apache
 style? Extended Apache style? Do you need sections? Do you need scoped
 directives? Want to write your own grammar representing the format?

Next, consider how you would like to interact with the configuration
 information:
	Want the module to hand you back a simple data structure or an object
 representing the information? Prefer to treat things like magical tied
 hashes or Perl constants? Does the information you get back have to come
 back in the same order as it is listed in the config file? Would you be
 happy if the module figured out the config file format for you?

Finally, think about what else is important to you:
	Do you care how quickly the configuration is parsed or how much memory
 the parsing process takes? Should it handle caching of the config for fast
 reload? Do you want to be able to cascade the configs (i.e., have a global
 config that can include other config files)? Should the configuration data
 be validated on parsing? Should the module both read and write config files
 for you?

The answers to each of these questions will point at a different module or set
 of modules available for your use. I don’t have space to discuss all of the
 modules out there, so let’s look at three of particular merit.
Config::Std is Damian Conway’s config parsing module. It has the distinction of
 being able to read the configuration file and then update it with section order
 preserved and comments still intact. The file format it uses looks much like
 that of an .ini file, so it should be pretty easy for most
 people to understand on first sight. Here’s an example of the module in action
 (note that the examples in this section will be very simple—read: boring—because
 the modules are all designed to make the process of dealing with config files
 simple):
use Config::Std;

read_config 'config.cfg' => my %config;

now work with $config{Section}{key}...
...
and write the config file back out again
write_config %config;
In Conway’s book
 Perl Best
 Practices
 (O’Reilly), he suggests that if you need something more
 sophisticated than his simple Config::Std
 format can provide, Thomas Linden’s Config::General
 can oblige. It handles files in the Apache config file family and has a much
 richer syntax. Actual use of the module isn’t any more complex than use of
 Config::Std:
use Config::General;

my %config = ParseConfig(-ConfigFile => 'rcfile');

now work with the contents of %config...
...
and then write the config file back out again
SaveConfig('configdb', \%config);
If Config::General doesn’t give you enough
 bells and whistles, there is always
 Config::Scoped, by Karl
 Gaissmaier. This module parses a similarly complex format that includes scoped directives
 (essentially the ones used by BIND or the ISC DHCP server), can check the data being parsed, will
 check the permissions of the config file itself, and includes caching
 functionality. This caching functionality allows your program to parse the more
 complex format once and then quickly load in a binary representation of the
 format on subsequent loads if the original file hasn’t changed. This gives us
 the speed we coveted from the first kind of file we looked at and the
 readability of the file formats discussed in this section. It doesn’t, however,
 offer an easy way to programmatically update an existing configuration file,
 like some of the other modules we’ve seen. Here’s a small snippet that shows how
 to use the caching functionality:
use Config::Scoped;
my $parser = Config::Scoped->new(file => 'config.cfg');
my $config = $parser->parse;

store the cached version on disk for later use
$parser->store_cache(cache => 'config.cfg.cache');

(later, in another program... we load the cached version)
my $cfg = Config::Scoped->new(file => 'config.cfg')->retrieve_cache;
If you are the type of person that likes to smelt your own bits, there are
 also a number of other modules, such as Config::Grammar by David Schweikert, that allow you to define your own grammar to
 represent the configuration file format. I tend not to like creating custom
 formats if I can help it for maintainability purposes, but if this is a
 requirement, modules like Schweikert’s can oblige.

Markup Languages

Each of the formats we’ve seen so far is limited in some way. Some lack
 readability, while others lack extensibility. Most have a certain level of
 unpredictability in their parsing: there’s either a lack of precision in the
 specification or a level of rigidity to the format that can make it hard to tell
 whether you have parsed the data correctly. For example, with CSV files, the
 quoting of delimiters is handled differently depending on the parser. With
 binary files, one wrong element in the unpack() template of your program can cause it to happily start
 reading in garbage without any indication to the parser that something has gone
 wrong. Markup languages, when implemented and used intelligently, can overcome
 these concerns.
XML

When I started work on the first edition of this book it was clear that XML was
 an up-and-coming technology that deserved sysadmins’ attention, and hence it
 found its way into the book.[39] In the intervening years XML has worked its way into many of the
 nooks and crannies of system administration and data handling, to the point
 where having some facility with it is probably essential. Given the
 importance of XML, we’re going to spend a considerable part of this chapter
 discussing how to work with it.
One place where XML has started to become more prevalent is in
 configuration files. There are in fact a variety of XML dialects (that we
 won’t discuss here), including DCML, NetML, and SAML, that are hoping to
 become the de facto formats for different parts of the
 configuration management space.
Before we dig into the mechanics of using XML it will be worthwhile to
 look at why it works well in this context. XML has a few properties that
 make it a good choice for configuration files:
	XML is a plain-text format, which means we can use our usual Perl
 bag o’ tricks to deal with it easily.

	When kept simple (because a complex/convoluted XML document is as
 inscrutable as one in any other format), XML is self-describing and
 practically self-documenting.
 With a character-delimited file like
 /etc/passwd, it is not always
 easy to determine which part
 of a line represents which field. With XML, this is never a problem
 because an obvious tag can surround each field.

	With the right parser, XML can also be self-validating. If you use
 a validating parser, mistakes in an entry’s format will be caught
 right away, since the file will not parse correctly according to its
 document type definition (DTD) or schema. Even without a validating
 parser, any XML parser that checks for well-formedness will catch many
 errors.[40]

	XML is flexible enough to describe virtually any set of text
 information you would ever desire to keep. The freedom to define
 almost arbitrary tags lets it be as descriptive as you’d like. This
 flexibility means you can use one parser library to get at all of
 your data, rather than having to write a new parser for each
 different format.

Here’s an example of what I mean when I say that XML can be
 self-describing and self-documenting. If I write a simple XML file like
 this, you can probably understand the gist of it without needing a separate
 manual page:
 <network>
 <host>
 <name>agatha</name>
 <addr>192.168.0.4</addr>
 </host>
 ...
 </network>
We’ll use a config file like this one, but with a slightly more
 complicated format, in the examples to come.

Writing XML from Perl

XML is a textual format, so there are any number of ways to write XML
 files from Perl. Using ordinary print
 statements to write XML-compliant text would be the simplest method, but we
 can do better. Perl modules like
 XML::Generator by Benjamin Holzman
 and
 XML::Writer by David Megginson can make
 the process easier and less error-prone by handling details like start/end
 tag matching and escaping special characters (<, >,
 &, etc.) for us.
To keep the example simple, let’s say we wanted to write the teeny XML
 config file that we just saw.[41] The XML::Writer way to do
 this would be:
use XML::Writer;
use IO::File;

my %hosts = (
 'name' => 'agatha',
 'addr' => '192.168.0.4',
);

my $FH = new IO::File('>netconfig.xml')
 or die "Unable to write to file netconfig.xml: $!\n";

my $xmlw = new XML::Writer(OUTPUT => $FH);

$xmlw->startTag('network');
print $FH "\n ";

$xmlw->startTag('host');

note that we're not guaranteed any specific ordering of the
subelements using this code
foreach my $field (keys %hosts) {
 print $FH "\n ";
 $xmlw->startTag($field);
 $xmlw->characters($hosts{$field});
 $xmlw->endTag;
}
print $FH "\n ";

$xmlw->endTag;
print $FH "\n";

$xmlw->endTag;
$xmlw->end;
$FH->close();
Using XML::Writer gives us a few
 perks:
	The code is quite legible; anyone with a little bit of markup
 language experience will instantly understand the names startTag(),
 characters(), and endTag().

	Though our data didn’t need this, characters() is silently performing a bit of
 protective magic for us by properly escaping reserved entities like
 the greater-than symbol (>).

	Our code doesn’t have to remember the last start tag we opened for
 later closing. XML::Writer
 handles this matching for us, allowing us to call endTag() without specifying
 which end tag we need.

Two drawbacks of using XML::Writer in
 this case are:
	We certainly typed more than we would have if we had just used
 print statements.

	XML::Writer is oriented more
 toward generating XML that will be parsed by a machine rather than something
 pretty that a human might like to read. It does have a couple of
 initialization-time options that allow it to provide slightly
 prettier output, but they
 still don’t produce output that looks like our original example
 file—hence all of the icky
 print $FH statements
 scattered throughout the code to add whitespace.

Survey of best-practice tools to parse and manipulate XML from
 Perl

We’re going to look at several ways to parse XML from Perl, because each way
 has its strengths that make it well suited for particular situations or
 programming styles. Knowing about all of them will allow you to pick the
 right tool for the job.
To make the parsing tools easier to compare and understand, we’re going to
 use a common example XML file as input. Let’s look at that now so we
 understand just what the data we’re going to chew on looks like. Here’s the
 full file. We’ll take it apart in a second:
<?xml version="1.0" encoding="UTF-8"?>

<network>
 <description name="Boston">
 This is the configuration of our network in the Boston office.
 </description>
 <host name="agatha" type="server" os="linux">
 <interface name="eth0" type="Ethernet" >
 <arec>agatha.example.edu</arec>
 <cname>mail.example.edu</cname>
 <addr>192.168.0.4</addr>
 </interface>
 <service>SMTP</service>
 <service>POP3</service>
 <service>IMAP4</service>
 </host>
 <host name="gil" type="server" os="linux">
 <interface name="eth0" type="Ethernet" >
 <arec>gil.example.edu</arec>
 <cname>www.example.edu</cname>
 <addr>192.168.0.5</addr>
 </interface>
 <service>HTTP</service>
 <service>HTTPS</service>
 </host>
 <host name="baron" type="server" os="linux">
 <interface name="eth0" type="Ethernet" >
 <arec>baron.example.edu</arec>
 <cname>dns.example.edu</cname>
 <cname>ntp.example.edu</cname>
 <cname>ldap.example.edu</cname>
 <addr>192.168.0.6</addr>
 </interface>
 <service>DNS</service>
 <service>NTP</service>
 <service>LDAP</service>
 <service>LDAPS</service>
 </host>
 <host name="mr-tock" type="server" os="openbsd">
 <interface name="fxp0" type="Ethernet">
 <arec>mr-tock.example.edu</arec>
 <cname>fw.example.edu</cname>
 <addr>192.168.0.1</addr>
 </interface>
 <service>firewall</service>
 </host>
 <host name="krosp" type="client" os="osx">
 <interface name="en0" type="Ethernet" >
 <arec>krosp.example.edu</arec>
 <addr>192.168.0.100</addr>
 </interface>
 <interface name="en1" type="AirPort">
 <arec>krosp.wireless.example.edu</arec>
 <addr>192.168.100.100</addr>
 </interface>
 </host>
 <host name="zeetha" type="client" os="osx">
 <interface name="en0" type="Ethernet" >
 <arec>zeetha.example.edu</arec>
 <addr>192.168.0.101</addr>
 </interface>
 <interface name="en1" type="AirPort">
 <arec>zeetha.wireless.example.edu</arec>
 <addr>192.168.100.101</addr>
 </interface>
 </host>
</network>
This file represents a very small network consisting of three servers and
 two clients. Each <host></host> element represents
 a machine. The first is a server that provides mail services:
<host name="agatha" type="server" os="linux">
 <interface name="eth0" type="Ethernet" >
 <arec>agatha.example.edu</arec>
 <cname>mail.example.edu</cname>
 <addr>192.168.0.4</addr>
 </interface>
 <service>SMTP</service>
 <service>POP3</service>
 <service>IMAP4</service>
</host>
Each interface has an <arec></arec> associated with it
 to provide its DNS name (in DNS parlance, it has an A resource record). The server in the example excerpt provides
 three mail-related services and has a DNS CNAME element reflecting that.
 Other servers provide other services, and their CNAME or CNAMEs are listed accordingly. Here’s a sample client:
<host name="krosp" type="client" os="osx">
 <interface name="en0" type="Ethernet" >
 <arec>krosp.example.edu</arec>
 <addr>192.168.0.100</addr>
 </interface>
 <interface name="en1" type="AirPort">
 <arec>krosp.wireless.example.edu</arec>
 <addr>192.168.100.100</addr>
 </interface>
</host>
It is different from our example server not only because it has a
 different type attribute and has no
 services listed, but also because it has multiple interfaces (it is probably
 a laptop, since it has both wireless and Ethernet interfaces), though that
 could be changed if we decided to multihome any of the servers. Each
 interface has an address and a DNS hostname (A resource record) listed for
 it.
There’s an interesting decision ingrained in this file. Unlike our first
 XML example, this file shows the use of both attributes (name, type,
 os) and subelements (interface, service). Choosing between the two is
 always a fun intellectual exercise and a great way to start a debate. In
 this case I was guided by one of the canonical discussions on this topic
 (http://xml.coverpages.org/attrSperberg92.html) and chose
 to make the pieces of information that describe a machine be attributes and
 the things we add to or remove from a machine (interfaces, services) be
 subelements. This was strictly my choice; you should do what makes sense for
 you.
So, let’s get into the game of parsing XML files. We’re going to look at
 the process using three different modules/approaches with roughly increasing
 complexity. Each module has pluses and minuses that make it better than the
 others for certain situations. I’ll list them right at the beginning of each
 section so you go into each passage with the right expectations. Having at
 least a cursory understanding of all three will give you a complete toolkit
 that can tackle virtually all of your XML-related needs.[42]

Working with XML using XML::Simple

XML::Simple Pros and Cons
Benefits:
	It’s the simplest module (at least on the surface) to
 use.

	It maps XML into a standard Perl data structure.

	It will actually use one of the other modules that we’ll see
 in a moment (XML::LibXML)
 for pretty fast parsing.

	It’s well documented.

	The module’s maintainer is very responsive to questions,
 issues, etc.

Drawbacks:
	It doesn’t preserve element order or format (i.e., if you read
 in an XML file and spit it out again, the elements won’t
 necessarily be in the same order or have the same
 format).

	It can’t handle “mixed content” situations (where both text
 and elements are embedded
 in another element), as in:
<network>This is our <type>devel</type> network</network>

	All of the data gets slurped into memory by default.

	Some people are philosophically opposed to a direct
 transformation of XML to Perl data structures.

So when should you use this module?
 XML::Simple is perfect for small
 XML-related jobs like configuration files. It’s great when your main
 task includes reading in an XML file or writing an XML file (although it
 may get a little trickier if you have to read and then write, depending
 on the situation). I use it for the majority of situations where XML is
 just a small part of the actual task at hand and not the main
 point.

The easiest way to read an XML config file from Perl is to use the
 XML::Simple module, by Grant McLean. It allows you to write simple code like this to
 slurp an XML file into a Perl data structure:
use XML::Simple;

my $config = XMLin('config.xml');

work with $config->{stuff}
Turning that data structure back into XML for writing after you’ve made a
 change to it is equally as easy:
... (data structure already in place)

XMLout($config, OutputFile => $configfile);
I know what you’re thinking: it can’t be that easy, right? Well, let’s see
 what happens if we feed our sample XML file to the module using its
 defaults. If we ran the first of our XML::Simple code samples and then dumped the resulting data
 structure using the debugger’s x command,
 we’d get this output:[43]
0 HASH(0xa36fc8)
 'description' => HASH(0x97f5e8)
 'content' => '
 This is the configuration of our network in the Boston office.
 '
 'name' => 'Boston'
 'host' => HASH(0xa5d6ac)
 'agatha' => HASH(0xa5d424)
 'interface' => HASH(0xa38f98)
 'addr' => '192.168.0.4'
 'arec' => 'agatha.example.edu'
 'cname' => 'mail.example.edu'
 'name' => 'eth0'
 'type' => 'Ethernet'
 'os' => 'linux'
 'service' => ARRAY(0xa5da6c)
 0 'SMTP'
 1 'POP3'
 2 'IMAP4'
 'type' => 'server'
 'baron' => HASH(0xa51390)
 'interface' => HASH(0xa3e228)
 'addr' => '192.168.0.6'
 'arec' => 'baron.example.edu'
 'cname' => ARRAY(0xa5d874)
 0 'dns.example.edu'
 1 'ntp.example.edu'
 2 'ldap.example.edu'
 'name' => 'eth0'
 'type' => 'Ethernet'
 'os' => 'linux'
 'service' => ARRAY(0xa5d994)
 0 'DNS'
 1 'NTP'
 2 'LDAP'
 3 'LDAPS'
 'type' => 'server'
 'gil' => HASH(0xa5d61c)
 'interface' => HASH(0xa3de44)
 'addr' => '192.168.0.5'
 'arec' => 'gil.example.edu'
 'cname' => 'www.example.edu'
 'name' => 'eth0'
 'type' => 'Ethernet'
 'os' => 'linux'
 'service' => ARRAY(0xa5d964)
 0 'HTTP'
 1 'HTTPS'
 'type' => 'server'
 'krosp' => HASH(0xa5d754)
 'interface' => HASH(0xa5d664)
 'en0' => HASH(0xa5d5ec)
 'addr' => '192.168.0.100'
 'arec' => 'krosp.example.edu'
 'type' => 'Ethernet'
 'en1' => HASH(0xa5d604)
 'addr' => '192.168.100.100'
 'arec' => 'krosp.wireless.example.edu'
 'type' => 'AirPort'
 'os' => 'osx'
 'type' => 'client'
 'mr-tock' => HASH(0xa4ee28)
 'interface' => HASH(0xa2fc50)
 'addr' => '192.168.0.1'
 'arec' => 'mr-tock.example.edu'
 'cname' => 'fw.example.edu'
 'name' => 'fxp0'
 'type' => 'Ethernet'
 'os' => 'openbsd'
 'service' => 'firewall'
 'type' => 'server'
 'zeetha' => HASH(0xa5d4b4)
 'interface' => HASH(0xa5d4cc)
 'en0' => HASH(0xa5d454)
 'addr' => '192.168.0.101'
 'arec' => 'zeetha.example.edu'
 'type' => 'Ethernet'
 'en1' => HASH(0xa5d46c)
 'addr' => '192.168.100.101'
 'arec' => 'zeetha.wireless.example.edu'
 'type' => 'AirPort'
 'os' => 'osx'
 'type' => 'client'
Using just the defaults, we get a pretty workable data structure. There’s
 a hash with a key called host. This
 points to another hash that contains the hosts, each keyed by its name. This means we could get each
 host’s information with a simple $config->{host}->{hostname}. That’s all well and good, but if you peer a
 little harder at the data structure, a few interesting things start to stick
 out (in order of least to most important):
	XML::Simple has preserved much
 of the whitespace that was included in the file just to make things
 prettier. When we actually want to operate on the data, we could
 strip the leading and trailing whitespace, but it would be much more
 convenient to have the parser do it for us. If we change:
my $config = XMLin('config.xml');
to:
my $config = XMLin('config.xml', NormalizeSpace => 2);
we get our wish.

	If you look at how the
 <service></service>
 elements from the file have been translated into data structures for
 all of the server hosts, you’ll notice something interesting. Take a
 peek at the results for, say, agatha and
 mr-tock. The service section for
 agatha looks like this:
'service' => ARRAY(0xa4f2d8)
 0 'SMTP'
 1 'POP3'
 2 'IMAP4'
while the same section for mr-tock looks like
 this:
'service' => 'firewall'
In one case it’s an array, and in the other it’s a simple scalar.
 This difference will make coding harder, because it means we have to
 have two conventions for data retrieval. Why did XML::Simple do two different things in
 this case? By default XML::Simple
 converts nested elements (like those in the <service></service>
 elements) differently based on whether there is one or more than one
 subelement present. We can actually tune that behavior by using
 the
 ForceArray argument. It can take
 either a simple 1 to force all
 nested elements into arrays or, better yet, a list of element names
 to force only the listed elements into array form. If we instead
 write:
my $config = XMLin('config.xml', NormalizeSpace => 2, ForceArray => ['service']);
those two sections will look much more uniform:
'service' => ARRAY(0xa4f2d8)
 0 'SMTP'
 1 'POP3'
 2 'IMAP4'
...
'service' => ARRAY(0xa31fac)
 0 'firewall'

When to Use XML::Simple’s ForceArray
You could make a good argument that one should always use ForceArray => 1 because it provides
 the maximum amount of consistency. That’s true, but using that setting
 also ensures the maximum amount of syntactic hassle. You’ll quickly
 become annoyed at having to use an array index every time you want to
 get to the contents of even single subelements in the original XML
 file.
I’d like to suggest that you use ForceArray with a list of element names in the following
 judicious manner: if you have an element that could even conceivably
 contain more than one instance of a subelement (e.g., multiple <service></service>
 subelements), include it in the ForceArray list. If an element definitely[44] will only have one subelement instance, you can leave it
 out.
Also, if you plan to use the KeyAttr option we’ll discuss shortly, any elements listed
 for that option need to be listed in ForceArray as well.

	There’s another section of the XMLin() data structure that looks a little awry. If
 you look at how the <interface></interface>
 elements from the file have been translated into data structures for
 all of the hosts, you’ll notice something interesting if you compare
 the results for agatha and
 zeetha. The interface section for
 agatha looks like this:
'interface' => HASH(0xa38f98)
 'addr' => '192.168.0.4'
 'arec' => 'agatha.example.edu'
 'cname' => 'mail.example.edu'
 'name' => 'eth0'
 'type' => 'Ethernet'
while the same section for zeetha looks like
 this:
'interface' => HASH(0xa5d4cc)
 'en0' => HASH(0xa5d454)
 'addr' => '192.168.0.101'
 'arec' => 'zeetha.example.edu'
 'type' => 'Ethernet'
 'en1' => HASH(0xa5d46c)
 'addr' => '192.168.100.101'
 'arec' => 'zeetha.wireless.example.edu'
 'type' => 'AirPort'
In one case it is a hash whose keys are the various components
 that make up the interface (address, type, etc.), while in the other
 it is a hash of a hash whose keys are the interface names and whose
 components are the sub-hash’s keys. When it comes time to work with
 the imported data structure, we’ll be forced into coding two
 different ways to get at basically the same kind of data.
Here, we’re running into another example of single and multiple
 instances with the same subelement name (<interface></interface>)
 being treated differently. Let’s try to apply the ForceArray option to this case as
 well:
my $config = XMLin('config.xml', NormalizeSpace => 2,
 ForceArray => ['interface']);
Great, now those two sections also have become much more
 uniform:
'interface' => HASH(0xa32f28)
 'eth0' => HASH(0xa32e80)
 'addr' => '192.168.0.4'
 'arec' => 'agatha.example.edu'
 'cname' => 'mail.example.edu'
 'type' => 'Ethernet'
...
'interface' => HASH(0xa2593c)
 'en0' => HASH(0xa257bc)
 'addr' => '192.168.0.101'
 'arec' => 'zeetha.example.edu'
 'type' => 'Ethernet'
 'en1' => HASH(0xa257d4)
 'addr' => '192.168.100.101'
 'arec' => 'zeetha.wireless.example.edu'
 'type' => 'AirPort'
But wait a second; didn’t we just set something called ForceArray?
 The <interface></interface>
 elements have been converted into hash of hashes with no explicit
 arrays in sight. There’s some magic afoot here that we really should
 discuss, and that leads us to our fourth comment on the default Perl
 data structure XMLin() created
 for us.

	XML::Simple notices when nested
 subelements (like those we’ve been dealing with) have certain
 attributes and does something special with them. By default, if they
 have the attribute name, key, or id, XML::Simple
 will turn the usual array created by nested subelements into a hash
 keyed by that attribute. In the case we just saw, once the <interface></interface>
 elements were converted to an array, further logic kicked in because
 each <interface></interface>
 element has a name attribute. On
 the surface this may appear like a little too much “Do What I Mean”
 meddling, but it turns out that it yields some very usable data
 structures, especially if you understand how/when it works. In our
 example, we can now reference:
can remove last two arrows
$config->{hostname}->{interface}->{interface_name}
The code reads well as a result.
As with the ForceArray option,
 we can tweak this behavior easily. To turn it off entirely, we
 can add KeyAttr =>
 {}. However, the resulting data structure will have to
 be accessed by looping through the array of elements to find the one
 we need. That’s a little cumbersome, so most of the time we’ll
 instead want to write code like this:
can remove last two arrows
$config->{hostname}->{interface}->{ip_addr}
to access a data structure with an inner part like this:
'interface' => HASH(0xa31c50)
 '192.168.0.101' => HASH(0xa31b18)
 'arec' => 'zeetha.example.edu'
 'name' => 'en0'
 'type' => 'Ethernet'
 '192.168.100.101' => HASH(0xa31b30)
 'arec' => 'zeetha.wireless.example.edu'
 'name' => 'en1'
 'type' => 'AirPort'
We’d then use a parse line like this:
my $config = XMLin(
 'config.xml',
 NormaliseSpace => 2,
 ForceArray => ['interface'], # uses square brackets
 KeyAttr => { 'interface' => 'addr' }, # uses curly braces
);
The KeyAttr option highlighted
 earlier says to turn the subelements of interface elements (only) into a hash keyed on the
 interface’s IP address. If for some reason you wanted to have the
 addr field also appear in the
 contents of that hash (instead of appearing only in the key name),
 you could add a + at the front of
 that attribute name. One last thing to point out here: we left the
 ForceArray argument in place
 to make sure even single <interface></interface>
 elements get turned into arrays for KeyAttr to transform.

The lesson to learn from that little exploration of XML::Simple’s default parsing behavior is that
 although the module is simple on the surface, you may have to do a little
 unexpected argument tweaking to get the results you want. XML::Simple has a “strict” mode you can turn
 on (like
 use strict;) to help guide you in the
 right direction, but it still takes a little work get things right
 sometimes. This issue becomes painfully clear when we try to round-trip the
 XML (i.e., read it in, modify the data, and then write it back out
 again).
Modifying the data we’re working with is easy—we use the standard Perl
 data structure semantics to add/delete/modify elements of the data structure
 in memory. But how about writing the data?
If we use the previous parsing code example and then add this to the
 bottom:
print XMLout($config);
we get XML output that looks like this in part:
...
<host name="agatha" os="linux" type="server">
 <interface name="eth0" arec="agatha.example.edu"
 cname="mail.example.edu" type="Ethernet" />
 <service>SMTP</service>
 <service>POP3</service>
 <service>IMAP4</service>
</host>
...
This is hardly what we started with, and we’ve lost data (the interface
 address)! If we add a KeyAttr option
 (matching the one for XMLin()), as
 recommended by the module’s strict mode, we get back the data, but not the
 subelement/attribute changes:
...
<host name="agatha" os="linux" type="server">
 <interface addr="192.168.0.4" arec="agatha.example.edu"
 cname="mail.example.edu" name="eth0" type="Ethernet" />
 <service>SMTP</service>
 <service>POP3</service>
 <service>IMAP4</service>
</host>
...
Unpleasant situation, no? We have a few choices at this point if we want
 to stick with XML::Simple,
 including:
	Changing the format of our data file. This seems a bit
 extreme.

	Changing the way we ask XML::Simple to parse our file by working hard to
 fine-tune our options. For example, the XML::Simple documentation recommends using KeyAttr => {} for both reading
 and writing in this situation. But when we tailor the way we read in
 the data to make for easy writing, we lose our easy hash semantics
 for data lookup and manipulation.

	Performing some data manipulation after reading but before
 writing. We could read the data into a structure we like (just as we
 did before), manipulate the data to our heart’s content, and then
 transform that data structure into one XML::Simple “likes” before
 writing it out. This isn’t terribly hard, but you do need a good
 grasp of how to manipulate moderately complex data structures. It
 usually involves a map() call or
 two and a pile of punctuation.

Your situation will dictate which (if any) of these options is best. I’ve
 picked from all three choices in the past, depending what seemed to make the
 most sense. And sometimes, to be quite frank about it, the best way to win
 is not to play at all. Sometimes you need to leave the comfy harbors of
 XML::Simple and use another module
 entirely. That’s just what we’ll do in the next section.
Note
Grant McLean, XML::Simple’s author,
 says that he recommends people:
	Use XML::Simple’s strict
 mode to avoid common mistakes.

	Switch to using XML::LibXML
 if they haven’t gotten the results they want from
 XML::Simple within 5–10
 minutes.

He’s written an interesting article on the subject, available at http://www.perlmonks.org/index.pl?node_id=490846.

Working with XML using XML::LibXML

XML::LibXML Pros and Cons
Benefits:
	It provides a very fast parser.

	It has an emphasis on standards compliance (although it
 currently supports only XPath 1.0; XPath 2.0 support is not
 planned as of this writing).

	It supports both XPath and DOM, making navigating through and
 operating on a document pretty easy.

	It’s the current default recommendation for XML parsing from
 Perl (as per http://perl-xml.sourceforge.net/faq/).

	The module maintainer is very responsive to questions, issues,
 etc.

	As a bonus, it can also parse HTML and (largely) operate on it
 as if it were XML.

Drawbacks:
	A working and compatible version of the libxml2 library must be present on
 the system to be called by the module.

	The documentation is centered on describing what is supported
 in the module but is very light on how to go about using it. If
 you already know what you want to do (perhaps because you are
 familiar with XML, DOM, XPath, and other related standards),
 this is fine, but if you’re just starting out and want to
 understand the basics, you’ll have a very hard time getting what
 you need from the documentation. This is by far the module’s
 biggest drawback.

	All of the data gets slurped into memory by default.

When should you use this module? XML::LibXML is good for the vast majority of cases where
 you need to process reasonably sized XML documents as the main thrust of
 what you are trying to get done. It’s fast, it behaves the way the
 standards suggest it should, and it’s pretty easy to use, provided that
 you understand the basics of XPath or DOM and can figure how to use
 it.

XML::LibXML, maintained by Petr Pajas, has much to recommend it, including many powerful
 features and options. I’ll just skim the surface here, to show you the most
 useful stuff. You’ll want to consult the resources listed at the end of the
 chapter for the rest of the story.
Like XML::Simple, XML::LibXML slurps your entire XML document
 into memory by default and gives you
 the tools to work with that in-memory representation. Unlike XML::Simple, the interface for doing so in
 XML::LibXML is not your native Perl
 data structure semantics. Instead, the data is represented as a tree with
 several methods for manipulating it. If the idea of representing XML data in
 a tree structure doesn’t make immediate sense to you, you should reach for a
 bookmark and insert it here. Pause reading this chapter, go read Appendix B, and then come right back. This
 is important because the very next paragraph is going to assume that you
 have at least the background provided in that appendix at your
 disposal.
XML::LibXML supports the two most
 common ways to navigate XML data represented in tree form: the W3C Document Object Model (DOM) and XPath.[45] Though I tend to favor XPath over DOM in my programming because
 I like XPath’s concision and elegance, we’ll look at examples using both
 approaches. It’s good to know both methods because XML::LibXML allows you to use virtually any combination of
 the two that makes sense to you.
Let’s start with the DOM method of getting around a tree of XML data. To
 make a comparison between DOM and XPath easier, we’ll stick to the same
 sample XML document introduced in the XML::Simple section. To keep the tree mortality rate down, I
 won’t reprint that document here.
XML::LibXML programs that use the DOM
 method and those that use XPath begin the same way (load the module, create
 a parser instance, parse the XML data):
use XML::LibXML;

my $prsr = XML::LibXML->new();

my $doc = $prsr->parse_file('config.xml');
To use the DOM method of walking our data, we start by retrieving the root
 element of the XML document:
my $root = $doc->documentElement();
From this element we can either start to explicitly walk the tree by hand
 or ask the module to search down the tree on our behalf. To walk the tree,
 we request the child nodes and iterate over them explicitly:
my @children = $root->childNodes;

foreach my $node (@children){
 print $node->nodeName(). "\n";
}
If you run the XML::LibXML code we’ve
 written so far, you’ll get some very peculiar output:
#text
description
#text
host
#text
host
#text
host
#text
host
#text
host
#text
host
#text
The description and host lines make sense (those are the
 <description></description> and <host></host> elements from our
 document), but what’s with all of the #text nodes (nodes with a default name of #text)? If you were to look carefully at the
 contents of one of the #text nodes when
 the program was running, you would see:
x $node->data
0 '
 '
or, to make this even clearer:
x split(//,$node->data);
0 '
'
1 ' '
2 ' '
3 ' '
4 ' '
The node is holding one carriage return character and four space
 characters. Unlike XML::Simple, which
 strips whitespace by default, XML::LibXML
 tries to preserve any whitespace it encounters when parsing a document
 (because it isn’t always clear when the whitespace itself could be
 significant). It preserves the whitespace by storing it in generic text
 nodes in the tree. If you find the “empty” text nodes distracting and you
 don’t need the whitespace kept around, you can ask the parser to drop all of
 the nodes that hold only whitespace. To do this, you set a parser option
 before parsing the file:
$prsr->keep_blanks(0);
my $doc = $prsr->parse_file('config.xml');
Adding this option gives us the output we’d expect (the names of all of
 the child nodes of <network></network>, the root
 element of the document):
description
host
host
host
host
host
host
Just to keep things simpler for the rest of this section, you can assume
 that keep_blanks(0) has been set.
The actual mechanics of walking a tree are pretty basic: you iterate over
 the child nodes of the node you are at, and if any of those nodes have
 children (you can check with
 hasChildNodes()), walk those as well.
 Most often people write recursive programs for this sort of thing; see the
 tree-walking code in Chapter 2 for the basic idea. To
 navigate by hand to a specific node someplace deeper in the tree, access the
 node you want at each level in the tree and descend from there:
my $root = $doc->documentElement();
my @children = $root->childNodes;

my $current = $children[2]; # second <host></host> element
@children = $current->childNodes();
$current = $children[1]; # first <service></service> element
print $current->textContent(); # 'HTTP'

or, chain the steps together in a punctuation-heavy fashion (yuck):
print STDOUT (($root->childNodes())[2]->childNodes())[1]->textContent();
In addition to walking down the tree, we can also use
 nextSibling() to go sideways:
my $root = $doc->documentElement();
my @children = $root->childNodes;

my $current = $children[2]; # second <host></host> element
$current = $current->nextSibling; # move to third <host></host> element
If all this manual tree-walking code looks like a pain, there is another
 DOM-flavored alternative: XML::LibXML can
 do some of the work for us. If we know we only care about certain
 subelements of the element we’ve focused on, we can ask for just those
 elements using
 getChildrenByTagName(). This function
 takes the name of an element and returns only the nodes containing that
 element. For example, in our document we might want to only retrieve the
 interface definition(s) of a host:
my $root = $doc->documentElement();
my @children = $root->childNodes;

my $current = $children[5]; # <host></host> element for krosp
my @interface_nodes = $current->getChildrenByTagName('interface');
This grep()-like function saves us the
 effort of iterating over all of the children of a node looking for the elements of interest.
 If you have a sufficiently large tree, the reduction in effort can make a real difference. A more
 exciting method related to getChildrenByTagName() is
 getElementsByTagName(). getElementsByTagName() will search not only
 the children of the node it is called from, but everything below that node
 in the tree. If we wanted to retrieve all of the interface definitions for
 all of the hosts, we could write something like this:
my $root = $doc->documentElement();
my @interface_nodes = $root->getElementsByTagName('interface');
Once we’ve found the node or nodes we want in the tree, we can retrieve
 the child text nodes that store what you would probably consider the
 “contents” of an element’s node (if you didn’t know that that info is
 actually kept in a separate text sub-node):
foreach my $node (@interface_nodes) {
 $node->textContent(); # returns the contents of all child text nodes
}
If that node has attributes, we can list them or get their values:
foreach my $attribute ($node->attributes()){
 print $attribute->nodeName . ":" . $attribute->getValue() . "\n";
}
or to retrieve a specific attribute:
print $node->getAttribute('name') if $node->hasAttribute('name');
Note
Attributes of elements are stored in an associated attribute node, which
 is why we can call
 nodeName() here to get the
 attribute’s name. Attribute nodes are associated with their elements but
 are not children of those element nodes in the same way the text nodes
 that hold the “contents”[46] of the elements are. For instance, if we call
 childNodes(), they are not listed as
 children. This is true in both the DOM and XPath specs.

To change the “contents” of an element node, we change the data in the
 appropriate child text node:
If we know that a node has a single child, and that child is a text
node, we can go right to it. To test whether it is a text node, we
could do something like the first line below.
#
If we don't know which child (or children) of the node holds the data we
want, we can iterate over the list returned by childNodes(), testing
nodeType() and textContent() as we go along.

my $textnode = $node->firstChild
 if ($node->firstChild->nodeType == XML_TEXT_NODE);

$textnode->setData('new information');
There are various methods, such as
 insertData(), appendData(), and replaceData(), that let us operate on the text node as we
 would expect. Attribute modification takes place on the element node
 directly using the analogous call to
 getAttribute(): setAttribute().
Operating on the data associated with nodes is the most common task, but
 sometimes we need to manipulate the node tree itself. If we want to add or
 delete elements (and/or their
 subelements) to or from an XML document, we’ll need to mess with its nodes.
 Let’s start with the second operation, deletion, because it is the easier of
 the two. To delete a node (perhaps deleting a whole branch of the tree at
 the same time), we locate that node’s parent and tell it to remove the node
 in question:
my $parent = $node->parentNode;
$parent->removeChild($node);
Alternatively, we can chain these two steps. In case you are curious,
 $node gets a new parent (a XML::LibXML::DocumentFragment node) after the following is executed:
$node->parentNode->removeChild($node)
Adding an element node to a tree is a little trickier because we have to
 construct everything about that node
 before adding it to the tree. That is, we have to make the node itself, set
 any attributes, create text nodes and any other sub-nodes, and give those
 nodes values; only then can we finally connect it to the tree.
For example, let’s say we wanted to add a new <meta></meta> element. In this
 element, we’ll place other elements that describe the network. One such
 element could be <type></type> to help us
 distinguish development (or staging) networks from production networks. The
 XML in question would look like this (whitespace added for readability):
<meta>
 <type name="production">This is a production network</type>
</meta>
To create just that much, we’d write code like this:
let's build the XML elements from the inside out
my $type = $doc->createElement('type');
$type->setAttribute('name', 'production');
$type->appendTextNode('This is a production network');

my $meta = $doc->createElement('meta');

make <type></type> a subelement, or child, of <meta></meta>
$meta->appendChild($type);
If you are suitably anal retentive (a good quality in a network
 administrator), you are probably bothered by the <description></description>
 element being a separate element in the document (rather than a
 subelement of <meta></meta>, where it
 rightfully belongs). To fix this, let’s move it into the meta tag:
my $root = $doc->documentElement();

find the <description></description> element that is a child of the
root element and make it the last child of the <meta></meta>
element instead
$meta->appendChild($root->getChildrenByTagName('description'));
Now that we have the XML fragment, let’s place it into our document’s node
 tree. If we wanted to be lazy, we could simply add it to the end of the
 document by making it a child of the root element ($root->appendChild($meta)), but what we really want is
 to have it come first in the document, since it describes the data that will
 follow:
my $root = $doc->documentElement();

place it before the root element's current first child
$root->insertBefore($meta,$root->firstChild);
If you plan to insert lots of nodes, crafting them by hand can be a bit
 tedious. Fortunately, XML::LibXML
 provides a very nice shortcut called parse_balanced_chunk() that takes in XML data and returns a
 document fragment that can be linked into your node tree. Let’s use our
 first <meta></meta> example to
 demonstrate this technique:
my $root = $doc->documentElement();

my $xmltoinsert = <<'EOXML';
<meta>
 <type name="production">This is a production network</type>
</meta>
EOXML

my $meta = $prsr->parse_balanced_chunk($xmltoinsert);

$root->insertBefore($meta,$root->firstChild);
Once you have the tree you want in memory, with whatever changes you made
 to the nodes or the tree itself, writing it out is a snap:
open my $OUTPUT_FILE, '>', $filename or
 die "Can't open $filename for writing: $!\n";
print $OUTPUT_FILE $doc->toString;
close $OUTPUT_FILE;
That’s basically how to work with a document via the DOM model. Once you
 get this far into understanding XML::LibXML, the documentation may start to make more sense
 to you, so be sure to give the XML::LibXML::{Element, Node, Attr and Text} documentation
 another read for the countless methods left out of this brief
 introduction.
If you are one of the people who took my earlier suggestion and read the
 XPath appendix, you may be curious about how you can put your newfound XPath
 knowledge into practice. Let’s look at that now.
As I mentioned before, XML::LibXML
 programs that use XPath start the same way as those that are DOM-based:
use XML::LibXML;

my $prsr = XML::LibXML->new();
$prsr->keep_blanks(0);
my $doc = $prsr->parse_file('config.xml');
The difference begins at the point where you want to start navigating the
 node tree or querying nodes from it. Instead of manually walking nodes, you
 can instead bring location paths into
 the picture using
 findnodes(). For comparison’s sake, let’s
 go back and redo some of the DOM examples using XPath. The first example we
 saw with DOM was a list of the root’s child nodes. Here’s the XPath
 equivalent:
my @children = $doc->findnodes('/network/*');

foreach my $node (@children){
 print "$node->nodeName()\n";
}
Not so exciting, I know. But now let’s look at the very next example,
 where we had to do a lot of work to get the data associated with the first
 service provided by the second host in our XML config file. With XPath, all
 of that code gets whittled down to a line or two:
we ask for the single node we're going to get back using a
list context (the parens around $node) because findnodes()
returns a NodeList object in a scalar context
my ($tnode) = $doc->findnodes('/network/host[2]/service[1]/text()');
print $tnode->data . "\n";

or, if you'd like to do this in a way that allows for
a query that could return multiple text nodes:
foreach my $tnode ($doc->findnodes('/network/host[2]/service[1]/text()')){
 print $tnode->data . "\n";
}
With one findnodes() call, we can
 locate the correct nodes and return their associated text nodes. findnodes() gives us all of the power of XPath
 1.0’s location paths. This power includes things like the descendant
 operator (//), which can easily replicate
 the functionality of the DOM
 getChildrenByTagName() and getElementByTagName() calls and add a whole
 new level of sophistication at the same time (thanks to XPath predicates):
find all of the hosts that currently provide more than one service
my @multiservers = $doc->findnodes('//host[count(service) > 1]');

find their names (name attribute values) instead and print them
foreach my $anode ($doc->findnodes('//host[count(service) > 1]/@name')){
 print $anode->value . "\n";
}
Here we’ve used the XPath descendant operator to find all the host element
 nodes in the document and then
 filtered that set using the XPath function count() in a
 predicate.
Now let’s look at a simple XPath example that demonstrates the
 programmatic flexibility XML::LibXML
 offers:
@nodes = $doc->findnodes('/network/host[@type = "server"]//addr');
This XPath expression will find all servers and return their <addr></addr>
 element nodes. We probably don’t want
 the nodes themselves, though; we more likely want the actual information
 stored in their text node children (i.e., the addresses they “hold”). There
 are three things you could do at this point, depending on your programming
 style and perhaps the larger context of the program:
	Change the XPath expression to look more like the previous example
 (i.e., add a text() step):
@nodes = $doc->findnodes('/network/host[@type = "server"]//addr/text()');
This gets you all of the text nodes that hold the address values.
 We’ve already seen how to iterate over a list of text nodes,
 extracting their contents with a data() method call as we go, so I won’t repeat that
 foreach() loop here.

	Make additional XPath evaluation calls from each of the nodes
 found:
foreach my $node (@nodes){
 print $node->find('normalize-space(./text())') . "\n";
}
Here we’ve called find() and
 not findnodes() because we’re
 going to evaluate an XPath expression that will yield a string (not
 a node or node set). The expression we’re evaluating says, “Start at
 the current node, find its associated text node, and normalize its
 value (i.e., strip the leading/trailing whitespace).” We could have
 left out the normalize-space()
 XPath function call and kept it like the other examples in this
 list, but this way helps show how breaking the task into two XPath
 calls can lead to more legible location paths in your code.

	Switch to using DOM methods at this point:
foreach my $node (@nodes) {
 print $node->textContent() . "\n";
}

The last choice may seem the least sexy of the three, but it is actually
 one of the more important options at this point in our XPath-related
 discussion. XPath is superb for navigating a document or querying certain
 information from it, but it doesn’t address how to modify that document at
 all. Once we’ve found the information we want to modify, or if we want to
 make some change to the tree starting at a node we’ve located, XPath steps
 out of the picture and we’re back in DOM-land again. Everything we saw a
 little earlier in this section about how to modify the information stored in
 the node tree or how to mess with the tree itself now comes into play. If we
 want to change the data stored in a text node, we call
 setData(). If we want to remove a node,
 we call
 removeChild() from its parent, and so on.
 Even the use of to_string() to write out
 the tree is the same.
XPath and XHTML
Here’s a tip that Petra Pajas, the current maintainer of
 XML::LibXML, recommended I share
 with you:
Beginners using XPath to parse an XHTML document (e.g., via XML::LibXML) often get stymied because
 simple XPath location paths like /html/body don’t appear to match anything. Questions
 about this come up time and time again on the perl-XML mailing list
 because it certainly looks like it should work.
Here’s the trick: XHTML has a default namespace of its own predefined
 (<html
 xmlns="http://www.w3.org/1999/xhtml">). See the
 sidebar XML Namespaces for a more complete
 explanation, but if we were to use Perl terms, you could think of the
 <html></html> and <body></body>
 elements as living in a separate package from the default one the XPath
 parser would normally search. To get around this, we have to give the
 XPath implementation a mapping that assigns a prefix for that namespace.
 Once we’ve done this, we can successfully use location paths that
 include the prefix we defined. For example, /x:html/x:body will now do the right thing.
To create this mapping in XML::LibXML, we create a new XPathContext (a context in which we’re going to do XPath
 work) and then register a prefix for the XHTML namespace in it. Here’s a
 code snippet that demonstrates how this is done. The code extracts the
 textual contents of all paragraph nodes in a document:
use XML::LibXML;
use XML::LibXML::XPathContext;

my $doc = XML::LibXML->new->parse_file('index.xhtml');
my $xpath = XML::LibXML::XPathContext->new($doc);

$xpath->registerNs(x => 'http://www.w3.org/1999/xhtml');

for my $paragraph ($xpath->findnodes('//x:p')) {
 print $paragraph->textContent,"\n";
}
Hope this tip saves you a bit of frustration.

To drive this point home and reinforce what you learned earlier, let’s
 look at a more extended example of some XPath/DOM interactions used to do
 real work. For this example, we’ll generate a DNS zone file for the wired
 network portion of the XML config file we’ve been using. To keep the focus
 on XML, we’ll use the GenerateHeader code
 from Chapter 5 to generate
 a correct and current zone file header:
use XML::LibXML;
use Readonly;

Readonly my $domain => '.example.edu';

from the programs we wrote in Chapter 5
print GenerateHeader();

my $prsr = XML::LibXML->new();
$prsr->keep_blanks(0);
my $doc = $prsr->parse_file('config.xml');

find all of the interface nodes of machines connected over Ethernet
foreach
 my $interface ($doc->findnodes('//host/interface[@type ="Ethernet"]'))
{

 # print a pretty comment for each machine with info retrieved via
 # DOM methods
 my $p = $interface->parentNode;
 print "\n; "
 . $p->getAttribute('name')
 . ' is a '
 . $p->getAttribute('type')
 . ' running '
 . $p->getAttribute('os') . "\n";

 # print the A record for the host
 #
 # yes, we could strip off the domain and whitespace using
 # a Perl regexp (and that might make more sense), but this is just
 # an example so you can see how XPath functions can be used
 my $arrname = $interface->find(
 " substring-before(normalize-space(arec / text()), '$domain') ");

 print "$arrname \tIN A \t \t "
 . $interface->find('normalize-space(addr/text())') . " \n ";

 # find all of the CNAME RR and print them as well
 #
 # an example of using DOM and XPath methods in the same for loop
 # note: XPath calls can be computationally expensive, so you would
 # (in production) not want to place them in a loop in a loop
 foreach my $cnamenode ($interface->getChildrenByTagName('cname')) {
 print $cnamenode->find(
 " substring-before(normalize-space(./text()),'$domain')")
 . "\tIN CNAME\t$arrname\n";
 }

 # we could do more here, e.g., output SRV records ...
}
Now let’s shift gears entirely and leave tree-based XML parsing behind
 for a bit.

Working with XML using SAX2 via XML::SAX

SAX2 via XML::SAX Pros and Cons
Benefits:
	Data can be parsed as it is received (you don’t have to wait
 for the entire document to begin processing).

	SAX2 has become a multilingual standard. (SAX started out in
 the Java world but was quickly adopted by all of the major
 scripting languages as well. This means your Perl SAX2 code, at
 least at a conceptual level, will be easy for your Java, Python,
 Ruby, and other colleagues to understand.)

	XML::SAX makes it easy to
 use different parser backends with the same basic code.

	XML::SAX is object-oriented
 through and through.

	SAX2 has some very cool advanced features, like pipelining
 (multiple XML filter routines connected to each other) and easy
 ways to consume data from non-XML sources or export data from
 XML.

Drawbacks:
	You snooze, you lose. The parser will send you information a
 single time. If you don’t save that information or you realize
 you should have kept the data in a different data structure for
 later retrieval, you’re out of luck!

	XML::SAX is object-oriented
 through and through. If your programming experience isn’t
 particularly oriented toward this approach, the learning curve
 can be steep.

	Sometimes you have to do more coding because certain
 operations require manual labor. Examples include collecting
 textual data and finding specific elements. If you want to store
 anything from the document being parsed (e.g., if you need a
 tree), you have to do that by hand.

So when is it appropriate to use XML::SAX? This module is good for large XML data sets or conditions
 where collecting all of the data first into an in-memory tree isn’t
 practical. XML::SAX works well if the
 idea of an event-based parsing model fits the way you think about your
 task at hand. If you are already using XML::Parser, this would be a good next step.

So far everything we’ve seen for handling XML requires us to slurp all
 of the data into some in-memory representation before we can begin to
 operate on it. Even if memory prices drop, at a certain point this doesn’t
 scale. If you have a really huge XML data set, trying to keep it all in
 memory probably won’t work. There are also issues of timing and efficiency.
 If you have to bring all the data into memory before you can proceed, the
 actual work can’t take place until the parsing is totally complete. You
 can’t start processing if your data hasn’t entirely arrived yet (e.g., if
 it’s coming over a network pipe). Finally, this model can yield a lot of
 unnecessary work, especially in those cases where your program is acting as
 a filter to modify data (e.g., renaming all <service></service>
 elements to <protocol></protocol> elements or
 some such transformation). With a tree-based model, the parser treats every
 element it reads the same, even though most (in this case, everything that
 isn’t a <service></service> element)
 aren’t relevant to the task at hand.
We’re going to look at a standard model for XML processing that uses an
 approach without these disadvantages: SAX. SAX stands for Simple API for XML
 and is currently in its second major revision (SAX2). It provides a
 processing model that treats the data in an XML document as a stream of
 events to be handled. To understand what this means, let’s take a small
 digression into some Perl/XML history that is still relevant to this
 day.
Once upon a time, James Clark, the technical lead for the XML Working Group, created a really spiffy XML parser library
 in C called
 expat. expat was a well-respected piece of code, and as the
 popularity of XML increased, various developers started calling it from
 within their code to handle the work of parsing XML documents (as of this
 writing, important software projects such as Apache HTTP Server and
 Mozilla’s Firefox browser still do). Larry Wall himself actually wrote the first module for calling
 expat from Perl. This module, XML::Parser, was subsequently maintained by
 Clark Cooper, who substantially revamped it and shepherded it for quite a
 number of years. It is now in the capable hands of Matt Sergeant.
XML::Parser provides several interfaces
 for working with XML data. Let’s take a really quick look at its stream style (i.e., parsing mode), because it
 will allow us to slide back into talking about SAX2 with considerable
 ease.
First, some technical background. XML::Parser is an event-based module, which can be described
 using a stockbroker analogy. Before trading begins, you leave a set of
 instructions with the broker for actions she should take should certain
 triggers occur (e.g., sell a thousand shares should the price drop below 3¼
 dollars per share, buy this stock at the beginning of the trading day, and
 so on). With event-based programs, the triggers are called
 events and the instructions for what to do when an
 event happens are called event handlers. Handlers are
 usually just special subroutines designed to deal with particular events.
 Some people call them callback routines, since they are
 run when the main program “calls us back” after a certain condition is
 established. With the XML::Parser module,
 our events will be things like “started parsing the data stream,” “found a
 start tag,” and “found an XML comment,” and our handlers will do things like
 “print the contents of the element you just found.”
Before we begin to parse our data, we need to create an XML::Parser object. When we create this
 object, we’ll specify which parsing mode, or style, to
 use. XML::Parser provides several styles,
 each of which behaves a little differently. The style of a parse will
 determine which event handlers it calls by default and the way data returned
 by the parser (if any) is structured.
Certain styles require that we specify an association between each event
 we wish to manually process and its handler. No special actions are taken
 for events we haven’t chosen to explicitly handle. This association is
 stored in a simple hash table with keys that are the names of the events we
 want to handle, and values that are references to our handler subroutines.
 For the styles that require this association, we pass in the hash using a
 named parameter called Handlers (for
 example, Handlers => {Start
 =>
 \&start_handler}) when we create a parser
 object.
We’ll be using the stream style, which
 does not require this initialization step: it simply calls a set of
 predefined event handlers if certain subroutines are found in the program’s
 namespace. The stream event handlers
 we’ll be using are simple: StartTag,
 EndTag, and Text. All but Text should
 be self-explanatory. Text, according to
 the XML::Parser documentation, is “called
 just before start or end tags with accumulated non-markup text in the
 $_ variable.” We’ll use it when we
 need to know the contents of a particular element. Let’s take a look at the
 code first, and then we’ll explore a few of the interesting points it
 demonstrates:
use strict;
use XML::Parser;
use YAML; # needed for display, not part of the parsing

my $parser = new XML::Parser(
 ErrorContext => 3,
 Style => 'Stream',
 Pkg => 'Config::Parse'
);

$parser->parsefile('config.xml');
print Dump(\%Config::Parse::hosts);

package Config::Parse;

our %hosts;
our $current_host;
our $current_interface;

sub StartTag {
 my $parser = shift;
 my $element = shift;
 my %attr = %_; # not @_, see the XML::Parser doc

 if ($element eq 'host') {
 $current_host = $attr{name};
 $hosts{$current_host}{type} = $attr{type};
 $hosts{$current_host}{os} = $attr{os};
 }

 if ($element eq 'interface') {
 $current_interface = $attr{name};
 $hosts{$current_host}{interfaces}{$current_interface}{type}
 = $attr{type};
 }
}

sub Text {
 my $parser = shift;
 my $text = $_;
 my $current_element = $parser->current_element();

 $text =~ s/^\s+|\s+$//g;

 if ($current_element eq 'arec' or $current_element eq 'addr') {
 $hosts{$current_host}{interfaces}{$current_interface}
 {$current_element} = $text;
 }

 if ($current_element eq 'cname') {
 push(
 @{ $hosts{$current_host}{interfaces}{$current_interface}{cnames}
 },
 $text
);
 }

 if ($current_element eq 'service') {
 push(@{ $hosts{$current_host}{services} }, $text);
 }

}

sub StartDocument { }
sub EndTag { }
sub PI { }
sub EndDocument { }
The StartTag() and Text() subroutines do all the work in this
 code. If we see a <host>
 start tag, we create a new hash key for the host (found in the tag’s
 attributes) and store the information found in the attributes in a sub-hash
 keyed by its name. We also set a global variable to keep the name of the
 host found in that tag in play for the subelements nested in that <host></host>
 element. One such element is the <interface></interface> element.
 If we see its starting tag, we add a nested hash for the interface to the
 hash being kept for the current host and similarly set a global variable so
 we can use the current interface name when we subsequently parse its
 subelements. This use of global variables to maintain state in a nested set
 of elements is a common idiom when working with XML::Parser, although it’s not particularly elegant from a
 programming or program maintenance perspective (for all the “unprotected
 global variables are icky” reasons). The tutorial for XML::SAX points out that it would be better to
 use a closure to maintain state when using XML::Parser, but that would make our code more complex than
 we really need given that this is just a stepping-stone example.
The Text() subroutine deals with the
 elements we care about that have data in them. For <arec></arec> and <addr></addr>,
 which appear only once in an interface, we store the values in the
 appropriate interface’s sub-hash. We can tell which is the appropriate
 interface by consulting the global variables StartTag() sets. The code that handles <cname></cname>
 and <service></service>
 tags is a hair more complex, because there can be more than one
 instance of these tags in an interface or host element. To handle the
 possibility of multiple values, their contents get pushed onto an anonymous
 array that will be stored in the host record.
The two other interesting parts of this code are the empty subroutines at
 the end and the way the data structure that gets generated by StartTag() and Text() is displayed. The empty subroutines are there because
 XML::Parser in stream style will print the data from any
 event that doesn’t have a subroutine defined to handle it. We don’t want any
 output from those events, so we define empty subroutines for them.
The data structure we create is displayed using YAML. Here’s an excerpt of
 the program’s output:
agatha:
 interfaces:
 eth0:
 addr: 192.168.0.4
 arec: agatha.example.edu
 cnames:
 - mail.example.edu
 type: Ethernet
 os: linux
 services:
 - SMTP
 - POP3
 - IMAP4
 type: server

...

zeetha:
 interfaces:
 en0:
 addr: 192.168.0.101
 arec: zeetha.example.edu
 type: Ethernet
 en1:
 addr: 192.168.100.101
 arec: zeetha.wireless.example.edu
 type: AirPort
 os: osx
 type: client
We’ll be looking at YAML a little later in the chapter, so consider this a
 foreshadowing of some good stuff to come.
Now let’s get to SAX2, because we’re practically there. Similar to
 XML::Parser’s stream style, SAX2 is an event-based API that
 requires us to provide the code to handle events as the XML parser generates
 them. One of the main differences between XML::Parser and XML::SAX
 is that the latter is object-oriented through and through. This can be a bit
 of a stumbling block for people without an OOP background, so I will try to
 keep the XML::SAX example as simple as
 possible from an OOP perspective. If you really want a good grasp of how OOP
 in Perl functions, Damian Conway’s Object Oriented Perl: A
 Comprehensive Guide to Concepts and Programming Techniques
 (Manning) is your best resource. The only other caveat is that we’ll only be
 skimming the surface of the subject in this fly-by. There are further SAX2
 pointers in the references section at the end of the chapter that can help
 you go deeper into the subject.
Enough preface; let’s see some code. We need to write two kinds of code to
 use XML::SAX: the parser initialization
 code and the event handlers. The parser initialization for a simple parse
 consists of asking
 XML::SAX::ParserFactory to hand us back a
 parser instance:
use XML::SAX;
use YAML; # needed for display, not part of the parsing

use HostHandler; # we'll define this in a moment

my $parser = XML::SAX::ParserFactory->parser(Handler => HostHandler->new);
There are two things about this code snippet that aren’t obvious at first
 glance. First, it includes HostHandler,
 which is the module we’ll construct in a moment that implements the event
 handling class. I called it HostHandler
 because it provides the handler object the parser will use to handle the
 SAX2 events as they come in from parsing our host definition.[47] The class’s new() method
 returns the object used to encapsulate that code. If this seems a bit
 confusing, hang tight. When we return to this subject in a moment with some
 concrete code examples, it should all gel.
Let’s get back to the parser initialization code. The second unobvious
 feature of this code is the module being called with the huge name of
 XML::SAX::ParserFactory. This
 module’s purpose (I’m intentionally avoiding using the OOP parlance here) is
 to return a parser object from an appropriate parser-providing module.
 Examples of parser-providing modules include XML::LibXML and
 XML::SAX::PurePerl, the pure-Perl parser
 packaged with XML::SAX. XML::SAX::ParserFactory provides a generic way
 to request a parser, so you can write the same code independently of which
 XML::SAX-friendly parser module you
 intend to use. In this case we’re letting XML::SAX::ParserFactory pick one for us, though there are
 ways of being more picky (see the documentation).
Once we have a parser ready to go, we aim it at our XML document just as
 we did with every other parser we’ve used to date:
open my $XML_DOC, '<', 'config.xml' or die "Could not open config.xml:$!";

parse_file takes a filehandle, not a filename
$parser->parse_file($XML_DOC);

close $XML_DOC;

print Dump(\%HostHandler::hosts);
Now let’s see where the real action in SAX lives—the event handling code.
 We’ll take it in bite-sized pieces and use our previous XML::Parser example for comparison. As with
 XML::Parser, we’re going to need to
 write a few subroutines that will fire based on what the parser finds as it
 moves through the document. The names are a little different, though:
 StartTag() becomes start_element(), EndTag() becomes end_element(), and Text()
 (mostly) becomes characters().
There is one big difference between the two sets of subroutines: the
 XML::Parser subroutines were
 unaffiliated subroutines that lived in a specific package, but the XML::SAX subroutines need to be class methods.
 If your lack of an OOP background makes you break out into a cold sweat when
 you hear terms like “class method,” don’t panic! XML::SAX makes it really easy. All you need to do is include
 two lines like these ahead of your subroutines, and presto, you have class
 methods (or more precisely, you are now overriding the default
 methods
 XML::SAX::Base provides):
package HostHandler;
use base 'XML::SAX::Base';
XML::SAX::Base handles all of the scut
 work associated with the parser object, including defining the new() method we called in our parser
 initialization code.
Note
If you haven’t already done so, now would be a good time to shift your
 mental model so you are thinking solely (even on a very basic level) in
 terms of objects. Nothing fancy is required. Keep it as simple as this:
 there’s a parser object, and it will encapsulate code and data for
 us.
The code in the object (the object’s method calls) consists of
 subroutines that the parser will call when it finds something of
 interest. For example, if the parser
 finds a start tag for an element, the object’s start_element()
 method is called. Other code, such as little utility routines, will also
 reside in this object. We can even use the object to hold data for us
 (e.g., the name of the host whose record we’re parsing), instead of
 using global variables like we did in the previous section.
That’s it—that’s all the OOP knowledge you’ll need for the rest of
 this section.

Let’s look at the first of those method definitions. Here’s the method
 that gets called when the parser finds the start tag for an element:
%hosts is used to collect all of the parsed data
(yes, we could keep this in the object itself)
my %hosts;

sub start_element {
 my ($self, $element) = @_;

 $self->_contents('');

 # these weird '{}something' hash keys are using James Clark notation;
 # we'll address this convention in a moment when we talk about
 # XML namespaces
 if ($element->{LocalName} eq 'host') {
 $self->{current_host} = $element->{Attributes}{'{}name'}{Value};
 $hosts{ $self->{current_host} }{type}
 = $element->{Attributes}{'{}type'}{Value};
 $hosts{ $self->{current_host} }{os}
 = $element->{Attributes}{'{}os'}{Value};
 }

 if ($element->{LocalName} eq 'interface') {
 $self->{current_interface} = $element->{Attributes}{'{}name'}{Value};
 $hosts{ $self->{current_host} }{interfaces}
 { $self->{current_interface} }{type}
 = $element->{Attributes}{'{}type'}{Value};
 }

 $self->{current_element} = $element->{LocalName};

 $self->SUPER::start_element($element);
}
This subroutine has obviously been modified from its equivalent in the
 XML::Parser example, so let’s look at
 the differences. The first change is in the arguments passed to the event handler.
 XML::SAX passes to its handlers a
 reference to the parser object as the first
 argument and handler-specific data in the rest of the
 arguments. start_element() gets information in its second argument about
 the element the parser has just seen via a reference to a data structure
 that looks like this:
0 HASH(0xa30624)
 'LocalName' => 'host'
 'Name' => 'host'
 'NamespaceURI' => undef
 'Prefix' => ''
 'Attributes' => HASH(0xa30768)
 '{}name' => HASH(0xa3033c)
 'LocalName' => 'name'
 'Name' => 'name'
 'NamespaceURI' => ''
 'Prefix' => ''
 'Value' => 'agatha'
 '{}os' => HASH(0xa307f8)
 'LocalName' => 'os'
 'Name' => 'os'
 'NamespaceURI' => ''
 'Prefix' => ''
 'Value' => 'linux'
 '{}type' => HASH(0xa30678)
 'LocalName' => 'type'
 'Name' => 'type'
 'NamespaceURI' => ''
 'Prefix' => ''
 'Value' => 'server'
It’s a hash with the fields described in Table 6-1.
Table 6-1. Contents of the hash passed to start_element()
	
 Hash key

 	
 Contents

	

 LocalName

 	
 The name of the element, without any namespace prefix
 (see the sidebar for more info on what
 that means)

	

 Name

 	
 The name of the element, including the namespace
 prefix

	

 Prefix

 	
 The namespace prefix for this element (if it has
 one)

	

 NamespaceURI

 	
 The URI for the element’s namespace (if it has
 one)

	

 Attributes

 	
 A hash of hashes containing information about the
 element’s attributes

XML Namespaces
Up to now, I’ve intentionally avoided any mention of the concept of
 XML namespaces. They don’t usually show up in smallish XML
 documents (like config files), and I didn’t want to add an extra layer
 of complexity to the rest of the material. But XML::SAX provides namespace information to its event
 handlers, so we should give them at least a passing glance before moving
 on. If you’d like more detail about XML namespaces, the best place to
 start is the official W3C recommendation on the subject at http://www.w3.org/TR/REC-xml-names/.
XML namespaces are a way of making sure that elements in a document
 are unique and partitioned. If our document had an element called
 <orange></orange>, its
 contents or subelements could refer to either a color or a fruit. For a
 contrived case, imagine the situation where a design firm needs to
 provide information about a new juice box to a citrus grower’s
 organization. The file could easily use <orange></orange> elements
 for both senses of the word. With namespaces, you can add an extra
 attribute (xmlns) to disambiguate an
 element:
<orange xmlns="http://colors.example.com/chart"> ... </orange>
Now everything in the element has a namespace associated with that
 URI[48] and it’s clear just what kind of orange we’re talking
 about.[49]
A slightly more complex XML namespace syntax lets you define multiple
 namespaces in the same element, each with its own identifying string
 (called a prefix):
<juicebox xmlns:color="http://colors.example.com/chart"
 xmlns:fruit="http://fruits.example.com/fruitlst">
 <color:orange>#ffa500</color:orange>
 <fruit:orange>Citrus sinensis</fruit:orange>
</juicebox>
In this case, we’ve defined two different namespaces with the prefixes
 color and fruit. We can then use these prefixes to
 label the two <orange></orange> subelements
 appropriately with namespace: orange, as in the preceding code, so
 there is no confusion. I did say the example was contrived....
One last related note: James Clark, source of much impressive work in
 the XML world (including the expat
 parser we discussed earlier in the chapter) invented an informal syntax
 for displaying namespaces that has become known as “James Clark
 notation.” It uses the form <{namespace}element_name>. In this notation, our first
 example from earlier would be written as:
<{http://colors.example.com/chart}orange> ... </orange>
This syntax isn’t accepted by any XML parser, but it is used in places
 like XML::SAX’s representation of
 attributes.

If an element has attributes (as in the sample data we just saw), the
 attributes are stored in their own hash of hashes data structure. The keys
 of that hash are the attribute names, represented in James Clark notation (see the previous sidebar). The content of
 each key is a hash whose keys are described in Table 6-2.
Table 6-2. Contents of the hash used to store attribute information
	
 Hash key

 	
 Contents

	

 LocalName

 	
 The name of the attribute without any namespace
 prefix

	

 Name

 	
 The name of the attribute including the namespace
 prefix (if it has one)

	

 Prefix

 	
 The namespace prefix for this element (if it has
 one)

	

 NamespaceURI

 	
 The URI for the attribute’s namespace (if it has one
 and the attribute was prefixed)

	

 Value

 	
 The attribute’s value

Our configuration file didn’t use namespaces, so the attributes in our
 data structure all start out with empty prefixes ({}). This is what makes their hash keys look so funny.
Now that you understand how information about an element is passed into
 start_element(),
 hopefully the code shown earlier will start to make more sense. If you
 ignore the _content() and SUPER::start_element() methods (we’ll get to
 those in a few moments), all the code is doing is either copying information
 out of the $element data structure into
 our %hosts hash or squirreling away
 information from $element (like the
 current element name) into the parser object[50] for later use.
That’s what happens when the parse encounters a new start tag. Let’s see
 what it does for the textual contents (as opposed to another subelement) of
 the element:
sub characters {
 my ($self, $data) = @_;

 $self->_contents($self->_contents() . $data->{Data});

 $self->SUPER::characters($data);
}
You’ll notice this is much smaller than the Text() subroutine in our XML::Parser example. All it does is use a separate _contents() method[51] to collect the data it receives (ignore the second mysterious
 SUPER:: line, I’ll explain it soon).
 That method looks like this:
stash any text passed to us in the parser object or return the
current contents of that stash
sub _contents {
 my ($self, $text) = @_;

 $self->{'_contents'} = $text if defined $text;

 return $self->{'_contents'};
}
The characters() method is much smaller
 than the Text() subroutine because of a
 subtle but important difference in how the two work. With Text(), the module author guaranteed that it
 would receive (to quote the docs) “accumulated non-markup text.” That’s not
 the way it works for characters(). The
 XML::SAX tutorial says: “A SAX parser
 has to make no guarantees whatsoever about how many times it may call
 characters for a stretch of text in
 an XML document—it may call once, or it may call once for every character in
 the text.” As a result, we can’t make the same assumptions that we did
 before in our XML::Parser code about when
 we have the entire text contents of the element to be stored. Instead, we
 have to push that work into end_element(), because by
 then we’re certain we’ve collected the contents of an element. The first
 thing the end_element() handler does is
 retrieve the current contents of the collected data and strip the
 leading/following whitespace, just in case we want to store it for
 posterity:
sub end_element {
 my ($self, $element) = @_;

 my $text = $self->_contents();

 $text =~ s/^\s+|\s+$//g; # remove leading/following whitespace

 if ($self->{current_element} eq 'arec'
 or $self->{current_element} eq 'addr')
 {
 $hosts{ $self->{current_host} }{interfaces}
 { $self->{current_interface} }{ $self->{current_element} }
 = $text;
 }

 if ($self->{current_element} eq 'cname') {
 push(
 @{ $hosts{ $self->{current_host} }{interfaces}
 { $self->{current_interface} }{cnames}
 },
 $text
);
 }

 if ($self->{current_element} eq 'service') {
 push(@{ $hosts{ $self->{current_host} }{services} }, $text);
 }

 $self->SUPER::end_element($element);
}

1; # to make sure the HostHandler module will load properly
One quick warning about this code: it makes no attempt to handle mixed
 content situations like this:
<element>
 This is some text in the element.
 <sub_element> This is some text in a subelement </sub_element>
 This is some more text in the element.
</element>
You can handle mixed content using XML::SAX, but it increases the complexity of the event
 handlers beyond what I wanted to show for a basic SAX2 example.
We’re practically done with our exploration of SAX2-based XML reading.
 There are a number of more advanced SAX techniques that we won’t have room
 to explore. One of those holds the secret to the lines of code in our
 example that began $self–>SUPER::, so I want to at least mention it.
 SAX2-based coding makes it very easy to construct multistage pipelines, like
 Unix-style pipes. A piece of SAX2 code can take in a stream of SAX2 events,
 transform/filter them in some fashion, and then pass the events on to the
 next handler. XML::SAX makes it
 relatively easy to hook up handlers (XML::SAX::Machine by Barrie Slaymaker makes it
 very easy). The $self->SUPER:: calls in each of our methods makes sure
 that the events get passed on correctly should our code be placed somewhere
 before the end of a pipeline. Even if you don’t think it will happen to your
 code, it is good practice to include those lines.

Working with XML using a hybrid approach (XML::Twig)

XML::Twig Pros and Cons
Benefits:
	It offers a very Perl-centric approach.

	It’s engineered to handle very large data sets in a
 memory/CPU-efficient and granular manner. It is especially good
 in those scenarios where you need to operate on a small portion
 of a much larger document. You can instruct XML::Twig to process only a
 particular element and its subelements, and it will create an
 in-memory representation of just that part of your data. You can
 then flush this document fragment from memory and replace it
 with the next instance of the desired element.

	It has the ability to use XPath-like selectors when choosing
 what data to process. These selectors make it easy to construct
 callbacks (i.e., give it an XPath selector and it will run a
 piece of code when it finds something in the document that
 matches the selector).

	The module offers a nice compromise between tree-based
 processing (similar to XML::LibXML’s DOM features) and stream-based
 processing (like the SAX2 processing model).

	It can also read HTML (it uses
 HTML::TreeBuilder’s XML
 export, so it needs to read the entire doc into memory).

	It has options to maintain attribute order and to pretty-print
 in a format that’s easy to read.

	Its emphasis is on DWIM (do what I mean).

	It has superb
 documentation and author support.

Drawbacks:
	It’s not particularly standards-compliant (in the way XML::SAX follows SAX2 and XML::LibXML implements the W3C DOM
 model), but that may not matter to you.

	It implements only a subset of the XPath 1.0 standard (albeit
 a very useful subset).

	Depending on the situation, it can be slower than XML::LibXML.

	It uses expat as its
 underlying parser (probably not an issue because
 it’s so solid, but expat
 doesn’t see much active maintenance).

When should you use this module?
 XML::Twig is especially good for
 situations where you are processing a large data set but only need to
 operate on a smaller subset of that data. Once you grok its basic way of
 thinking about the world (as “twigs”), it can be a pleasure for someone
 with Perl and a dash of XPath experience to use.

There’s considerable overlap between XML::Twig’s functionality and the functionality of the
 modules we’ve seen so far. Like the others, Michel Rodriguez’s XML::Twig can create and manipulate an
 in-memory tree representation of an XML document (DOM-like) or parse the
 data while providing event-based callbacks. To keep this section short and
 sweet, I’m going to focus on the unique features XML::Twig provides. The excellent documentation and the
 module’s website can provide
 details on the rest of its
 functionality.
XML::Twig’s main premise is that an XML
 document should be processed as a bunch of subtrees. In Appendix B, I introduce the notion that
 you can represent an XML document as a big tree structure starting from the
 root element of the document. XML::Twig
 takes this one step further: it allows you to select certain subtrees of
 that structure (“twigs”) as you parse the document and operate on those
 twigs while ignoring the rest of the data whizzing by. This selection takes
 place using a subset of the XPath 1.0 specification. Before parsing, you
 provide a set of XPath selectors and their callbacks (the Perl code to run
 when the selector matches). This is similar to some of the callback-based
 code we’ve seen earlier in this chapter, except now we’re thinking about
 firing off code based on finding subtrees of a document rather than just
 certain elements or parse events. Let’s see how this works in practice by
 looking at two simple examples. We’ll use the same sample XML data file for
 these examples as well.
First, here’s a simple example of data extraction from an XML document. If
 we wanted to extract just the <interface></interface> elements
 and their contents, we’d write:[52]
use XML::Twig;

my $twig = XML::Twig->new(
 twig_roots => {
 # $_ gets set to the element here
 'host/interface' => sub { $_->print },
},
 pretty_print => 'indented',
);

$twig->parsefile('config.xml');
and the output would begin like this:
<interface name="eth0" type="Ethernet">
 <arec>agatha.example.edu</arec>
 <cname>mail.example.edu</cname>
 <addr>192.168.0.4</addr>
 </interface>
 <interface name="eth0" type="Ethernet">
 <arec>gil.example.edu</arec>
 <cname>www.example.edu</cname>
 <addr>192.168.0.5</addr>
 </interface>
 <interface name="eth0" type="Ethernet">
 <arec>baron.example.edu</arec>
 <cname>dns.example.edu</cname>
 <cname>ntp.example.edu</cname>
 <cname>ldap.example.edu</cname>
 <addr>192.168.0.6</addr>
 </interface>
...
The key here is the twig_roots option,
 which lets XML::Twig know that we only
 care about <interface></interface>
 subtrees/twigs in the data found in each <host></host> element. For each twig
 found matching that specification, we ask the module to (pretty-)print its
 contents.
Let’s follow that extraction example with a slightly more complex
 transformation example. If we wanted to modify our sample document so that
 all of the
 <service></service>
 elements became
 <port></port>
 elements instead (complete with port numbers as attributes), we would write
 something like this:
use XML::Twig;
use LWP::Simple;

my %port_fix = ('DNS' => 'domain',
 'IMAP4' => 'imap',
 'firewall' => 'all');
my $port_list_url = 'http://www.iana.org/assignments/port-numbers';

my %port_list = &grab_iana_list;

my $twig = XML::Twig->new(
 twig_roots => { 'host/service' => \&transform_service_tags },
 twig_print_outside_roots => 1,
);

$twig->parsefile('config.xml');

change <service> -> <port> and add that service's port number
as an attribute
sub transform_service_tags {
 my ($twig, $service_tag) = @_;

 my $port_number = (
 $port_list{ lc $service_tag->trimmed_text }
 or $port_list{ lc $port_fix{ $service_tag->trimmed_text } }
 or $port_fix{ lc $service_tag->trimmed_text }
);

 $service_tag->set_tag('port');
 $service_tag->set_att(number => $port_number);

 $twig->flush;
}

retrieve the IANA allocated port list from its URL and return
a hash that maps names to numbers
sub grab_iana_list {
 my $port_page = get($port_list_url);

 # each line is of the form:
 # service port/protocol explanation
 # e.g.:
 # http 80/tcp World Wide Web HTTP
 my %ports = $port_page =~ /([\w-]+)\s+(\d+)\/(?:tcp|udp)/mg;

 return %ports;
}
Let’s take this apart step by step. First, we (somewhat gratuitously, I
 admit) grab the IANA-allocated port number list and return it as a hash for
 further lookups. Some of the service names we’ve used in our example won’t
 be found in that assignment list, so we also load up a hash with the
 information we’ll need to fix up any lookups that fail. Then we load XML::Twig with the selector we need and a reference to the subroutine that it will run when it finds that selector. In the
 same step, we also set twig_print_outside_roots, which tells XML::Twig to pass along any data from the
 document that doesn’t match the twig_roots selector verbatim (as opposed to
 simply dropping it, as in our first example). With this defined, we pull the
 trigger and the parse commences on our sample config file.
The parse will hum along, passing input data to output data untouched
 until it finds a twig that matches the selector. When this happens, the
 entire twig, plus the element that was parsed to yield the twig, will be
 sent to the handler associated with that selector. In this case, the element
 in question is <service></service> and it
 contains a single piece of text: the name of the service. We request the
 whitespace-“trimmed” version of that text and use it to look up the port
 number in the hash we built from the IANA data. If we don’t find it in the
 first lookup, we try again with a fixed-up version of the name (e.g., we
 look up “domain” if “DNS” wasn’t found). If this second attempt fails, we
 give up on the IANA list and pull the value we need from the fixed-up hash
 itself (e.g., for the service “firewall,” which isn’t a network service with
 an assigned port).
XML::Twig makes it very simple to
 perform the actual transformation. set_tag changes the tag name and set_att lets us insert a new attribute with the port number
 we just retrieved. The final step for the handler is to instruct XML::Twig to print out the contents of the
 twig and remove it from memory before moving on in the document. This
 flush step is optional, but it is one
 of the keys to XML::Twig’s memory
 efficiency. Once flushed (or purged if you don’t need to print that twig),
 the subtree you were working on no longer resides in memory, so each new
 subtree found takes up essentially the same space instead of accumulating in
 memory, like it would in a DOM-based representation.
XML::Twig has a ton of other methods
 available that make working with XML pretty easy for a Perl programmer. This
 section has just presented some of the essential pieces that differentiate
 it from the other approaches we explored; be sure to consult the
 documentation for more details.
With that, we can conclude our tour of the top three best-practice
 approaches (as of this writing) for dealing with XML from Perl. Now that you
 have some best-of-breed tools in your toolkit, you should be able to handle
 any XML challenge that comes your way using an approach well suited to that
 situation.
As a final note for this section, there are a number of up-and-coming
 modules that will also deserve your attention as they mature. Two of the
 more interesting ones I’d recommend you check out if you are going to work
 with XML are
 XML::Rules by Jenda Krynicky
 and
 XML::Compile by Mark Overmeer.
But what if, after all of that, you decide XML itself is close, but not
 exactly the best format for your particular needs?
 Well....

YAML

Some people think that XML has too much markup for each piece of content and would
 prefer something with fewer angle brackets. For these people, there is a
 lighter-weight format called YAML (which stands for YAML Ain’t Markup
 Language). It’s trying to solve a different problem than XML, but it often
 gets pressed into service for similar reasons.
YAML tries to strike a balance between structure and concision, so it
 looks a little cleaner to the average eye. Here’s a fairly literal
 translation from the sample XML config file we rubbed raw in our discussion
 of XML:

network:
 description:
 name: Boston
 text: This is the configuration of our network in the Boston office.
 hosts:

 - name: agatha
 os: linux
 type: server
 interface:
 - name: eth0
 type: Ethernet
 addr: 192.168.0.4
 arec: agatha.example.edu
 cname:
 - mail.example.edu
 service:
 - SMTP
 - POP3
 - IMAP4

 - name: gil
 os: linux
 type: server
 interface:
 - name: eth0
 type: Ethernet
 addr: 192.168.0.5
 arec: gil.example.edu
 cname:
 - www.example.edu
 service:
 - HTTP
 - HTTPS

 - name: baron
 os: linux
 type: server
 interface:
 - name: eth0
 type: Ethernet
 addr: 192.168.0.6
 arec: baron.example.edu
 cname:
 - dns.example.edu
 - ntp.example.edu
 - ldap.example.edu
 service:
 - DNS
 - NTP
 - LDAP
 - LDAPS

 - name: mr-tock
 os: openbsd
 type: server
 interface:
 - name: fxp0
 type: Ethernet
 addr: 192.168.0.1
 arec: mr-tock.example.edu
 cname:
 - fw.example.edu
 service:
 - firewall

 - name: krosp
 os: osx
 type: client
 interface:
 - name: en0
 type: Ethernet
 addr: 192.168.0.100
 arec: krosp.example.edu
 - name: en1
 type: AirPort
 addr: 192.168.100.100
 arec: krosp.wireless.example.edu

 - name: zeetha
 os: osx
 type: client
 interface:
 - name: en0
 type: Ethernet
 addr: 192.168.0.101
 arec: zeetha.example.edu
 - name: en1
 addr: 192.168.100.101
 type: AirPort
 arec: zeetha.wireless.example.edu
Already this is probably looking a little easier on the eyes. It’s a
 fairly literal translation because it attempts to preserve all of the XML
 attribute names (YAML doesn’t have tag attributes per
 se, so all of the attributes and the contents of each element
 are listed in the same way). If direct conversion weren’t a priority, we’d
 definitely want to write our config file in an even more straightforward
 way. For example, here’s a repeat of the YAML file we generated earlier in
 the chapter while mucking about with XML::Parser:
agatha:
 interfaces:
 eth0:
 addr: 192.168.0.4
 arec: agatha.example.edu
 cnames:
 - mail.example.edu
 type: Ethernet
 os: linux
 services:
 - SMTP
 - POP3
 - IMAP4
 type: server

...

zeetha:
 interfaces:
 en0:
 addr: 192.168.0.101
 arec: zeetha.example.edu
 type: Ethernet
 en1:
 addr: 192.168.100.101
 arec: zeetha.wireless.example.edu
 type: AirPort
 os: osx
 type: client
There’s not a big difference, but hopefully you’ll get a sense that it is
 possible to simplify your data file even further by eliminating extraneous
 labels.
The Perl module to parse YAML[53] is called, strangely enough, YAML and is used like this:
use YAML qw(DumpFile); # finds and loads an appropriate YAML parser

my $config = YAML::LoadFile('config.yml');

(later...) dump the config back out to a file
YAML::DumpFile('config.yml' , $config);
The
 YAML module itself is just a frontend to
 other YAML parsers that provides a common interface similar to what we saw
 with XML::SAX. By default it provides
 simple Load/Dump procedure calls that operate on in-memory data, though
 you can also use LoadFile and DumpFile to
 work with files. That’s almost all there is to it: you either Load YAML data from some place or Dump a YAML representation of the data.
If you’d prefer a more object-oriented way of working with YAML,
 Config::YAML can provide it. There is
 also a screamingly fast parser/dumper for YAML built on the libyaml library
 called
 YAML::XS. If you don’t need a pure-Perl
 parser, that’s the recommended module to use (the YAML module will attempt to use it by default if it is
 available).
And with that last simple but very powerful config file format, we can
 start to wrap up the chapter. There are an infinite number of possible
 formats for config files, but at least now we’ve hit the highlights.

[36] There are some games we could play with __DATA__, but in general, keeping the configuration information
 at the beginning of the script is better form.

[37] To use Hugh Brown’s special phrase for the situation.

[38] As Mark Pilgrim once said, “Never trust a format you can’t edit in Emacs or
 vi”.

[39] Most of the XML discussion in the first edition was presented
 using account maintenance as a backdrop, but as the use of XML
 matured in the world of system administration it became clear that
 this chapter would be a better home for this discussion.

[40] One error that is easily caught by the well-formedness
 check is truncated files. If the file is missing its last
 closing tag because some data has been lost from the end,
 the document will not parse correctly. This is one property
 YAML, which we’ll look at later in this chapter, does not
 have.

[41] As a quick aside, the XML specification recommends that every XML
 file begin with a version declaration (e.g., <?xml version="1.0"?>).
 It is not mandatory, but if we want to comply, XML::Writer offers the xmlDecl() method to create one for
 us.

[42] As an aside, you could also write your own code to parse XML
 (perhaps using some fancy regexp footwork). If you attempt this,
 however, you’ll spend more time on the parser and less on your
 actual goal, with little return. If you do need a super-simple XML
 parser made out of regexps, modules like that also exist, though we
 won’t be looking at them here.

[43] To debug XML::Simple code, it
 is best to use a good data-structure-dumping module like Data::Dumper, Data::Dump::Streamer, YAML, or the Perl debugger, as demonstrated
 here.

[44] Experienced old-timers may snicker at the notion that you
 could say anything “definite” about user-supplied data (“oh,
 that will never happen...”), and they’d be right. To get the
 best assurance possible that your expectations won’t be
 violated, you should provide a way to validate the XML file
 using a DTD or XML schema.

[45] DOM Level 2 Core and XPath 1.0, to be precise (as of this
 writing).

[46] I’m using snarky quotes around the word “contents” here and
 elsewhere to indicate that an element node doesn’t actually have
 data in it. It has one or more child text nodes that hold its
 data. But when you see <moo>baa-la-la</moo>
 it is hard not to think of “baa-la-la” as the contents of the
 <moo></moo> element
 node.

[47] The name was arbitrary. It could have been BobsYourUncle, but I’d recommend
 sticking to something at least vaguely understandable to someone
 reading your code.

[48] The URI here is just used as a convenient unique string that
 will describe the namespace. It doesn’t have to be real—the
 parser never opens a network connection to attempt to reach the
 URI. It is considered cool to have something at that URI for
 documentation purposes (e.g., http://www.w3.org/1999/XSL/Transform), but this
 isn’t required.

[49] If it helps you understand the concept, think of XML
 namespaces like package
 statements in Perl. package
 foo puts all of the subsequent code (until another
 package statement comes
 along) into the foo
 namespace. This lets you have two scalars called $orange in the same program, each
 in its own namespace.

[50] OOP purists will probably stomp on me with their steel-toed boots
 because the code isn’t using “getters” and “setters” for that
 squirreling. I’m trying to keep the amount of code in the example
 down to keep the focus on XML::SAX, but point taken, so you can stop kicking me
 now.

[51] If just to placate the OOP thugs from the last footnote just a
 little bit....

[52] If we didn’t want to write any code at all, XML::Twig comes with an
 xml_grep utility that would allow us
 to write
 xml_grep 'host/interface'
 config.xml. There is an XML::LibXML-based version of this utility at http://xmltwig.com/tool/.

[53] One nice property of YAML is that it is language-independent.
 There are YAML parsers and emitters for Ruby, Python, PHP, Java,
 OCaml, and even JavaScript.

All-in-One Modules

If all this talk about picking the right module for config parsing has started to wear on you,
 let me ease us toward the end of this chapter with a quick look at a set of modules
 that can help you sidestep the choice.
Config::Context
 is Michael Graham’s wrapper around the
 Config::General, XML::Simple, and Config::Scoped modules that allows you to use a single module for
 each of the formats those modules handle. On top of this, it also adds contexts (as
 in Apache), so you can use <Location></Location> tags in those file
 formats.
If you crave a module that supports a larger menu of config file
 formats,
 Config::Auto by Jos Boumans
 can handle colon/space/equals-separated key/value pairs, XML formats, Perl code,
 .ini formats, and BIND9-style and
 .irssi config file formats. Not only that, but it will (by
 default) guess the format it is parsing for you without further specification. If
 that’s too magical for you, you can specify the format yourself.

Advanced Configuration Storage Mechanisms

You’re probably sick of talking about config files at this point (I don’t blame
 you), so let’s end this chapter with a brief mention of some of the more advanced
 alternatives. There are a number of other reasonable places to stash configuration
 information.[54] Shared memory segments can work well when performance is the key
 criterion. Many systems are now keeping their configuration info in databases via
 DBI (see Chapter 7). Others have specific
 network servers to distribute configuration information. These are all interesting
 directions to explore, but beyond the scope of this book.

[54] There are also a number of other unreasonable places;
 for example, hidden in image files using Acme::Steganography::Image::Png or in a play via Acme::Playwright.

Module Information for This Chapter

	
 Modules

 	
 CPAN ID

 	
 Version

	

 Readonly

 	
 ROODE

 	
 1.03

	
 Storable (ships with
 Perl)

 	
 AMS

 	
 2.15

	

 DBM::Deep

 	
 RKINYON

 	
 1.0013

	

 Text::CSV::Simple

 	
 TMTM

 	
 1.00

	

 Text::CSV_XS

 	
 JWIED

 	
 0.23

	

 Config::Std

 	
 DCONWAY

 	
 0.0.4

	

 Config::General

 	
 TLINDEN

 	
 2.31

	

 Config::Scoped

 	
 GAISSMA

 	
 0.11

	

 Config::Grammar

 	
 DSCHWEI

 	
 1.02

	

 XML::Writer

 	
 JOSEPHW

 	
 0.606

	

 XML::Simple

 	
 GRANTM

 	
 2.18

	

 XML::LibXML

 	
 PAJAS

 	
 1.69

	

 XML::SAX

 	
 GRANTM

 	
 0.96

	

 XML::Parser

 	
 MSERGEANT

 	
 2.36

	

 XML::Twig

 	
 MIROD

 	
 3.32

	
 LWP::Simple (ships with
 Perl)

 	
 GAAS

 	
 5.810

	

 YAML

 	
 INGY

 	
 0.68

	

 Config::YAML

 	
 MDXI

 	
 1.42

	

 YAML::XS

 	
 NUFFIN

 	
 0.29

	

 Config::Context

 	
 MGRAHAM

 	
 0.10

	

 Config::Auto

 	
 KANE

 	
 0.16

References for More Information

Some of the material in this chapter is revised and modified from a column that I
 originally wrote for the February 2006
 issue of the USENIX Association’s ;login magazine.

 Perl Best
 Practices
 , by Damian Conway (O’Reilly), has a good section on config files.
XML and YAML

http://msdn.microsoft.com/xml and http://www.ibm.com/developer/xml both contain copious information. Microsoft and IBM are very serious about
 XML.
http://www.activestate.com/support/mailing_lists.htm hosts the
 Perl-XML mailing list. It (along with its archive) is
 one of the best sources on this topic.
http://www.w3.org/TR/1998/REC-xml-19980210 is the actual XML
 1.0 specification. Anyone who does anything with XML eventually winds up reading
 the full spec, but for anything but quick reference checks, I recommend reading
 an annotated version like those mentioned in the next two citations.
http://www.xml.com is a good reference for articles and XML
 links. It also offers an excellent annotated version of the XML specification
 created by Tim Bray, one of its authors.
XML: The Annotated Specification, by Bob DuCharme
 (Prentice Hall), is another excellent
 annotated version of the specification, chock-full of XML code examples.
XML Pocket
 Reference, Third Edition, by Simon St.Laurent and
 Michael Fitzgerald (O’Reilly), is a concise but surprisingly comprehensive
 introduction to XML for the impatient.
Learning
 XML, Second Edition, by Erik T. Ray (O’Reilly) and
 Essential XML: Beyond Markup, by Don Box et al.
 (Addison-Wesley) are good places to learn the range of XML-based technologies,
 including XPath. The latter is much more dense and less Perl-friendly but has a
 level of depth I haven’t found in any other reference.

 Perl and XML
 , by Erik T. Ray and Jason McIntosh (O’Reilly) is worth a look as
 well, though it was based on the XML modules current at that time. The Perl XML
 world has changed some since it was published in 2002, but it is a good
 reference for those modules that are still in use.
http://perl-xml.sourceforge.net is a hub for Perl XML-related
 development. The FAQ and Perl SAX pages at that site are important material you
 need to read.
http://xmlsoft.org is the official website for the Gnome
 libxml library on which XML::LibXML is based. You’ll eventually find
 yourself here as you try to understand some arcane part of XML::LibXML.
http://www.saxproject.org is the official website for
 SAX2.
Object Oriented Perl: A Comprehensive Guide to Concepts and
 Programming Techniques, by Damian Conway (Manning), is the best
 place to learn about OOP in Perl. Understanding OOP in Perl is crucial for using
 XML::SAX well.
http://www.xmltwig.com is the official website for XML::Twig and is chock-full of good documentation,
 tutorials, presentations, etc.
http://www.yaml.org is the home base for everything
 YAML-related.

Chapter 7. SQL Database Administration

What’s a chapter on database administration doing in a system administration book?
 There are several strong reasons for people with interests in Perl and system
 administration to become database-savvy:
	A not-so-subtle thread running through several chapters of this book is the increasing importance of databases to
 modern-day system administration. We’ve used databases (albeit simple ones) to
 keep track of user and machine information, but that’s just the tip of the
 iceberg. Mailing lists, password files, and even the Windows-based operating
 system registry are all examples of databases you probably interact with every
 day. All large-scale system administration packages (e.g., offerings from CA,
 Tivoli, HP, and Microsoft) depend on database backends. If you are planning to
 do any serious system administration, you are bound to bump into a database
 eventually.

	Database administration is a play within a play for system administrators.
 Database administrators (DBAs) have to contend with, among other things:
	Logins/users

	Log files

	Storage management (disk space, etc.)

	Process management

	Connectivity issues

	Backups

	Security/role-based access control (RBAC)

Sound familiar? We can and should learn from both knowledge domains.

	Perl is a glue language, arguably one of the best. Much work has gone into
 Perl/database integration, thanks mostly to the tremendous energy surrounding
 web development. We can put this effort to work for us. Though Perl can
 integrate with several different database formats (Unix DBM, Berkeley DB, etc.),
 we’re going to pay attention in this chapter to Perl’s interface with
 large-scale database products. We address other formats elsewhere in this
 book.

	Many applications we use or support require some database for storing
 information (e.g., Bugzilla, Request Tracker, calendars, etc.). In order to have
 a good understanding of the applications we support, we need to be able to mess
 with the storage beneath the databases and make sure they’re running
 efficiently.

	This is going to sound a bit obvious, but another reason why sysadmins care
 about databases is that they store information. Sometimes it’s even
 our information: logs, performance metrics (e.g., for
 trend analysis and capacity planning), meta-information about users
 and systems, and so on.

In order to be a database-literate system administrator, you have to speak a little
 Structured Query Language (SQL), the lingua franca of most
 commercial and several noncommercial databases. Writing scripts in Perl for database
 administration requires some SQL knowledge because these scripts will contain simple
 embedded SQL statements. See Appendix D for enough SQL
 to get you started. The examples in this chapter use largely the same data sets that we
 introduced in previous chapters to keep us from straying from the system administration
 realm.
Interacting with a SQL Server from Perl

Once upon a time, there were many Perl modules for interacting with different
 database systems. Each time you wanted to use a database by a certain vendor, you
 had to look for the right module for the task and then learn that module’s way of
 doing things. If you switched databases mid-project, you likely had to rewrite all
 of your code to use an entirely different module. And then the DataBase Interface (DBI) by Tim Bunce came along, and things got much,
 much better in the Perl universe.
DBI can be thought of as “middleware.” It forms a layer of abstraction that allows
 the programmer to write code using generic DBI calls, without having to know the
 specific API of any particular database. It is then up to the DBI software to hand
 these calls off to a database-specific layer. The DBI module calls a DataBase Dependent (DBD) driver for this. This database-specific driver
 takes care of the nitty-gritty details necessary for communicating with the server
 in question.
This is a great idea. It is so great that you see it not only in other languages
 (JDBC, etc.), but also in at least one OS platform: Windows has Open DataBase Connectivity (ODBC) built in. ODBC is not precisely a
 competitor to DBI, but there’s enough overlap and it’s a big enough presence in the
 Windows world that we’re going to have to give it some attention. Windows Perl
 programmers largely interact with ODBC data sources, so for their sake we’ll do a quick comparison. This will
 still be useful for non-Windows people to see because it’s not uncommon for ODBC to
 be the only programmatic method for interacting with certain “boutique”
 databases.
Figure 7-1 shows the DBI and ODBC architectures.
 In both cases, there is a (at least) three-tiered model:
	An underlying database (Oracle, MySQL, Sybase, Microsoft SQL Server,
 etc.).

	A database-specific layer that makes the actual server-specific requests
 to the server on behalf of the programmer. Programmers don’t directly
 communicate with this layer; they use the third tier. In DBI, a specific DBD
 module handles this layer. For example, when talking with an Oracle
 database, the DBD::Oracle module will
 be invoked. DBD modules are usually linked during the building process to a
 server-specific client library provided by the server vendor. With ODBC, a
 data source-specific ODBC driver provided by the vendor handles this
 layer.

	A database-independent API layer. Soon, we’ll be writing Perl scripts that
 will communicate with this layer. In DBI, this is known as the DBI layer
 (i.e., we’ll be making DBI calls). In ODBC, one typically communicates with
 the ODBC Driver Manager via ODBC API calls.

[image: DBI and ODBC architectures]

Figure 7-1. DBI and ODBC architectures

The beauty of this model is that most code written for DBI or ODBC is portable
 between different servers from different vendors. The API calls made are the same,
 independent of the underlying database—at least that’s the idea, and it holds true
 for most database programming. Unfortunately, the sort of code we’re most likely to
 write (i.e., database administration code) is bound to be server-specific, since
 virtually no two servers are administered in even a remotely similar
 fashion.[55] Experienced system administrators love portable solutions, but they
 don’t expect them.
With the background in place, let’s move as fast as possible toward writing some
 code. Interacting with basic DBI will be straightforward because there’s only one
 DBI module. What about ODBC? That’s an interesting question, as there are two common
 ways to go about interacting with ODBC in Perl: once upon a time the
 Win32::ODBC module was the primary conduit, but
 more recently a DBD module for the DBI framework called DBD::ODBC
 has become the preferred method interaction method (it is even now
 recommended by Win32::ODBC’s author). DBD::ODBC essentially subsumes the ODBC world into
 DBI, making it just one more data source. We’ll see an example of it in action
 shortly.
For our DBI example code, we’ll use the MySQL and Oracle servers; for ODBC, we’ll
 use the Microsoft SQL Server.
Accessing Microsoft SQL Server from Unix
Multiplatform system administrators often ask, “How can I talk to my Microsoft SQL Server
 installation from my Unix machine?” If an environment’s central administration
 or monitoring system is Unix-based, a new Microsoft SQL Server installation
 presents a challenge. I know of four ways to deal with this situation. Choices 2
 and 3 in the following list are not Microsoft SQL Server-specific, so even if
 you are not using Microsoft’s RDBMS in
 your environment you may find that these techniques come in handy some day. Your
 options are:
	Build and use
 DBD::Sybase. DBD::Sybase will require some underlying database
 communication libraries, and there are two sets of libraries available
 that will fit the bill. The first one, the Sybase OpenClient libraries,
 may be available for your platform (e.g., they ship for free with some
 Linux distributions as part of the Sybase Adaptive Server Enterprise). Your second option is to
 install the FreeTDS libraries found at http://www.freetds.org. See the instructions on this site
 for building the correct protocol version for the server you will be
 using.

	Use a “proxy” driver. There are two DBD proxy modules that ship with
 DBI: the oldest is called
 DBD::Proxy, and the more recent
 addition is DBD::Gofer. Both
 allow you to run a small network server on your SQL Server machine to
 transparently proxy requests from your Unix clients to the
 server.

	Acquire and use Unix ODBC software via DBD::ODBC. Several vendors, including
 MERANT and
 OpenLink Software, will
 sell such software to you, or you can attempt to use the work of the
 various open source developers. For more information, see the iODBC and unixODBC home pages. You will
 need both an ODBC driver for your Unix platform (provided by the
 database vendor) and an ODBC manager (such as unixODBC or iODBC).

	Microsoft SQL Server (starting with version 2000) can listen for
 database queries over HTTP or HTTPS without the need for another web
 server (such as IIS). The results are returned in an XML format that is
 easily processed with the methods we saw in Chapter 6.

[55] Microsoft SQL Server was initially derived from Sybase source code, so
 it’s one of the rare counter-examples.

Using the DBI Framework

Here are the basic steps for using DBI:[56]
	Load the necessary Perl module.
There’s nothing special here, we just need to include this line:
use DBI;

	Connect to the database and receive a connection handle.
The Perl code to establish a DBI connection to a MySQL database and return
 a database handle looks like this:
connect to the database named $database using the given
username and password, and return a database handle
my $database = 'sysadm';
my $dbh = DBI->connect("DBI:mysql:$database",$username,$pw);
die "Unable to connect: $DBI::errstr\n" unless (defined $dbh);
DBI will load the low-level DBD driver (DBD::mysql) for us prior to actually connecting to the
 server. We then test if the connect()
 succeeded before continuing. DBI provides RaiseError and PrintError
 options for connect(), should we want DBI to test the return code of all DBI operations
 in that session and automatically complain about errors when they happen.
 For example, if we used this code:
$dbh = DBI->connect("DBI:mysql:$database",
 $username,$pw,{RaiseError => 1});
DBI would call die for us if the
 connect() failed.

	Send SQL commands to the server.
With our Perl module loaded and a connection to the database server in
 place, it’s showtime! Let’s send some SQL commands to the server. We’ll use
 some of the SQL tutorial queries from Appendix D for examples. These queries will
 use the Perl q convention for quoting
 (i.e., something is written as q{something}), just so we don’t have to worry about
 single or double quotes in the actual queries themselves. Here’s the first
 of the two DBI methods for sending commands:
my $results=$dbh->do(q{UPDATE hosts
 SET bldg = 'Main'
 WHERE name = 'bendir'});
die "Unable to perform update:$DBI::errstr\n" unless (defined $results);
$results will receive either the number
 of rows updated, or undef if an error
 occurs. Though it is useful to know how many rows were affected, that’s not
 going to cut it for statements like SELECT, where we need to see the actual data. This is where
 the second method comes in.
To use the second method, you first prepare a SQL statement for use and then ask the server to
 execute it. Here’s an example:
my $sth = $dbh->prepare(q{SELECT * from hosts}) or
 die 'Unable to prep our query:'.$dbh->errstr."\n";
my $rc = $sth->execute or
 die 'Unable to execute our query:'.$dbh->errstr."\n";
prepare()
 returns a new creature we haven’t seen before: the
 statement handle. Just as a database handle refers
 to an open database connection, a statement handle refers to a particular
 SQL statement we’ve prepare()d. Once we
 have this statement handle, we use execute to actually send the query to our server. Later,
 we’ll be using the same statement handle to retrieve the results of our
 query.
You might wonder why we bother to prepare() a statement instead of just executing it directly.
 prepare()ing a statement gives the
 DBD driver (or more likely, the database client library it calls) a chance
 to parse and mull over the SQL query. Once a statement has been prepare()d, we can execute it repeatedly via
 our statement handle without parsing it (or deciding how the query will be
 played out in the server) over and over again. Often this is a major
 efficiency win. In fact, the default do()
 DBI method does a prepare() and then
 an
 execute() behind the scenes for each
 statement it is asked to execute.
Like the do call we saw earlier,
 execute() returns the number of rows
 affected. If the query affects zero rows, the string 0E0 is returned to allow a Boolean test to
 succeed. −1 is returned if the number of
 rows affected is unknown by the driver.
Before we move on to how the results of a query are retrieved, it is worth
 mentioning one more twist on the prepare() theme that is supported by most DBD modules:
 placeholders, also called positional
 markers, allow you to prepare() a SQL statement that has holes in it to be filled
 at execute() time. This allows you to
 construct queries on the fly without paying most of the parse-time penalty.
 The question mark character (?) is used
 as the placeholder for a single scalar value. Here’s some Perl code to
 demonstrate the use of placeholders:[57]
my @machines = qw(bendir shimmer sander);
my $sth = $dbh->prepare(q{SELECT name, ipaddr FROM hosts WHERE name = ?});
foreach my $name (@machines){
 $sth->execute($name);
 do-something-with-the-results
}
Each time we go through the foreach
 loop, the SELECT query is executed with a different WHERE clause. Multiple placeholders are
 straightforward:
$sth->prepare(
 q{SELECT name, ipaddr FROM hosts
 WHERE (name = ? AND bldg = ? AND dept = ?)});
$sth->execute($name,$bldg,$dept);
The other bonus you get by using placeholders is automatic quoting of the
 arguments.
Now that we know how to retrieve the number of rows affected by
 non-SELECT SQL queries, let’s look
 into retrieving the results of our SELECT
 requests.

	Retrieve SELECT results.
DBI offers three different approaches for retrieving the results of a
 query. We’re going to look at each of them in turn because they all come in
 handy at one time or another, depending on the situation and programming
 context.
Two of these mechanisms are similar to the cursors idea we discussed
 briefly in Appendix D. With these
 mechanisms we expect to iterate over the results one row at a time, calling
 some method each time we want the next row of results returned to our
 program.
The first of these mechanisms—using
 bind_col() or bind_columns() with fetchrow_arrayref()—is often the best
 tack, because it is both the most efficient and the most “magical” of the
 choices. Let’s take a look at how it works. After the execute(), we tell DBI to place the answers we
 get back into the scalar or the collection of scalars (list or hash) of our
 choosing. That binding between the results and the variables is done like
 this:
imagine we just finished a query like SELECT first,second,third FROM table
my $first;
my $second;
my $third;
$sth->bind_col(1, \$first); # bind first column of search result to $first
$sth->bind_col(2, \$second); # bind second column
$sth->bind_col(3, \$third); # bind third column, and so on

or perform all of the binds in one shot:
$sth->bind_columns(\$first, \$second, \$third);
Binding to whole arrays or to elements in a hash is equally as easy using
 the magical \(...) syntax:
$sth->bind_columns(\(@array)); # $array[0] gets the first column
 # $array[1] get the second column...

we can only bind to the hash elements, not to the hash itself
$sth->bind_col(1, \$hash{first});
$sth->bind_col(2, \$hash{second});
Now, each time we call fetch(), those
 variables magically get populated with another row from the results of our query:
while ($sth->fetch){
 # do something with $first, $second and $third
 # or $array[0], $array[1],...
 # or $hash{first}, $hash{second}
}
It turns out that fetch()
 is actually an alias for the method call fetchrow_arrayref(),
 giving us a nice segue to the second method of retrieving SELECT results from DBI. If you find the
 magical nature of binding columns to be a bit too magical or you’d prefer to
 receive the results back as a Perl data structure so you can manipulate the
 data, there are a number of methods you can call.
In DBI, we call one of the methods in Table 7-1 to return data from the
 result set.
Table 7-1. DBI methods for returning data
	
 Name

 	
 Returns

 	

 Returns if no more
 rows

	

 fetchrow_arrayref()

 	
 An array reference to an anonymous array with
 values that are the columns of the next row in a result
 set

 	

 undef

	

 fetchrow_array()

 	
 An array with values that are the columns of
 the next row in a result set

 	
 An empty list

	

 fetchrow_hashref()

 	
 A hash reference to an anonymous hash with keys
 that are the column names and values that are the values
 of the columns of the next row in a result set

 	

 undef

	

 fetchall_arrayref()

 	
 A reference to an array of arrays data structure

 	
 A reference to an empty array

	

 fetchall_hashref($key_field)

 	
 A reference to a hash of hashes. The top-level hash is
 keyed by the unique values returned from the $key_field column, and the
 inner hashes
 are structured just like the ones we get back from
 fetchrow_hashref()

 	
 A reference to an empty hash

Two kinds of methods are listed: single row (fetchrow_) methods and entire data set (fetchall_) methods. The fetchrow_ methods return a single row from the
 returned results, just like what we’ve seen so far. fetchall_ methods take this one step further and return the
 entire result set in one fell swoop (essentially by running the appropriate
 fetchrow_ as many times as necessary
 to retrieve the data). Be careful to limit the size of your queries when
 using this method because it does pull the entire result set into memory. If
 you have a terabyte-sized result set, this may prove to be a bit
 problematic.
Let’s take a look at these methods in context. For each of these examples,
 assume the following was executed just previously:
$sth = $dbh->prepare(q{SELECT name,ipaddr,dept from hosts}) or
 die 'Unable to prepare our query: '.$dbh->errstr."\n";
$sth->execute or die "Unable to execute our query: ".$dbh->errstr."\n";
Here’s fetchrow_arrayref() in
 action:
while (my $aref = $sth->fetchrow_arrayref){
 print 'name: ' . $aref->[0] . "\n";
 print 'ipaddr: ' . $aref->[1] . "\n";
 print 'dept: ' . $aref->[2] . "\n";
}
Warning
Just a quick warning about using fetchrow_arrayref() like this: any time you rely on the
 order of the elements in an array when you store/retrieve data (i.e.,
 which field is which array element), you’ve created a booby trap in your
 code that is just waiting to spring on you. All you (or someone else
 working on your code) have to do is naïvely change the previous SELECT statement, and all bets about what
 is versus what should be in $aref->[2] are off.

The DBI documentation mentions that
 fetchrow_hashref() is less efficient
 than
 fetchrow_arrayref() because of the extra
 processing it entails, but it can yield more readable and potentially more
 maintainable code. Here’s an example:
while (my $href = $sth->fetchrow_hashref){
 print 'name: ' . $href->{name} . "\n";
 print 'ipaddr: ' . $href->{ipaddr}. "\n";
 print 'dept: ' . $href->{dept} . "\n";
}
Finally, let’s look at fetchall_arrayref(). Each reference returned looks exactly
 like something we’d receive from fetchrow_arrayref(), as shown in Figure 7-2.
[image: The data structure returned by fetchrow_arrayref()]

Figure 7-2. The data structure returned by fetchrow_arrayref()

Here’s some code that will print out the entire query result set:
$aref_aref = $sth->fetchall_arrayref;
foreach my $rowref (@$aref_aref){
 print 'name: ' . $rowref->[0] . "\n";
 print 'ipaddr: ' . $rowref->[1] . "\n";
 print 'dept: ' . $rowref->[2] . "\n";
 print '-'x30,"\n";
}
This code sample is specific to our particular data set because it assumes
 a certain number of columns in a certain order. For instance, we assume the
 machine name is returned as the first column in the query ($rowref->[0]).
We can use some of the magic attributes (often called metadata) of statement handles to rewrite our result-retrieval
 code to make it more generic. Specifically, if we look at $sth->{NUM_OF_FIELDS} after a query, it
 will tell us the number of fields (columns) in our result set. $sth->{NAME} contains a reference to an
 array containing the names of each column. Here’s a more generic way to
 write the last example:
my $aref_aref = $sth->fetchall_arrayref;
my $numfields = $sth->{NUM_OF_FIELDS};
foreach my $rowref (@$aref_aref){
 for (my $i=0; $i < $numfields; $i++){
 print $sth->{NAME}->[$i].": ".$rowref->[$i]."\n";
 }
 print '-'x30,"\n";
}
Be sure to see the DBI documentation for more metadata attributes.
The last method for returning data is through a series of “shortcut”
 methods, listed in Table 7-2, that prepare a
 SQL statement, execute it, and then return the data using one of the methods
 we saw earlier.
Table 7-2. DBI shortcut methods
	
 Name

 	
 Combines these methods into a single method

	

 selectcol_arrayref($stmnt)

 	
 prepare($stmnt),
 execute(),
 (@{fetchrow_arrayref()})[0] (i.e.,
 returns the first column for each row,
 though the column number(s) can be changed via an
 optional Columns argument)

	

 selectrow_array($stmnt)

 	
 prepare($stmnt),
 execute(), fetchrow_array()

	

 selectrow_arrayref($stmnt)

 	
 prepare($stmnt),
 execute(), fetchrow_arrayref()

	

 selectrow_hashref($stmnt)

 	
 prepare($stmnt),
 execute(), fetchrow_hashref()

	

 selectall_arrayref($stmnt)

 	
 prepare($stmnt),
 execute(), fetchall_arrayref()

	

 selectall_hashref($stmnt)

 	
 prepare($stmnt),
 execute(), fetchall_hashref()

	Close the connection to the server.
In DBI, this is simply:
disconnects handle from database
$dbh->disconnect;

[56] For more information on DBI, see
 Programming the
 Perl DBI
 by Alligator Descartes and Tim Bunce (O’Reilly).

[57] This demonstrates the most common case, where the placeholders
 represent simple strings to be filled into the query. If you’ll be
 substituting in more complex data types, like SQL datetimes, you’ll
 need to use the DBI bind_param()
 method before calling execute().

Using ODBC from Within DBI

The basic steps for using ODBC from DBI are pretty much identical to the steps we just
 discussed, with one twist. The hardest part is dealing with the arguments in the
 initial connect() call. ODBC requires one
 preliminary step before making a connection: we need to create a
 data source name (DSN). A DSN is a named reference that stores
 the configuration information (e.g., server and database name) needed to reach an
 information source like a SQL server. DSNs come in two flavors,
 user and system, distinguishing
 between connections available to a single user on a machine and connections
 available to any user or service.[58]
DSNs can be created either through the ODBC control panel under Windows (see Figure 7-3), or programmatically via
 Perl.
[image: The Windows ODBC control panel]

Figure 7-3. The Windows ODBC control panel

We’ll take the latter route, if just to keep the snickering down among the Unix
 folks (see the upcoming note for a better reason). Here’s some code to create a user
 DSN to our SQL Server database:
use Win32::ODBC; # we only use this to create DSNs; everything else is
 # done via DBI through DBD::ODBC

Creates a user DSN to a Microsoft SQL Server
Note: to create a system DSN, substitute ODBC_ADD_SYS_DSN
for ODBC_ADD_DSN - be sure to use a system DSN for
situations where your code will be run as another user
(e.g., in a web application)
#
if (Win32::ODBC::ConfigDSN(
 ODBC_ADD_DSN,
 'SQL Server',
 ('DSN=PerlSysAdm',
 'DESCRIPTION=DSN for PerlSysAdm',
 'SERVER=mssql.example.edu', # server name
 'ADDRESS=192.168.1.4', # server IP addr
 'DATABASE=sysadm', # our database
 'NETWORK=DBMSSOCN', # TCP/IP Socket Lib
))){
 print "DSN created\n";
}
else {
 die "Unable to create DSN:" . Win32::ODBC::Error() . "\n";
}
Note
Should you create your DSNs manually or automatically? This is a superb
 question with no definitive answer. On the one hand, DSNs are compact
 descriptions of how to access potentially critical or sensitive data. This would
 lead one to be very cautious about who sets them up and tests them, and how
 (suggesting that a manual approach would be better). If a DSN is intentionally
 deleted from a machine, having it automatically created again may be undesirable. On the other hand,
 manual configuration is easy to get wrong and, in general, doesn’t scale for
 more than a few servers or applications.
The best answer is probably to write and test a set of special setup scripts
 that can be run either manually or as part of your automated initial
 configuration process. This should help avoid the pitfalls.

Once you have a DSN in place, you can reference it in the connect() call. For example, if we wanted to connect to the database
 via the DSN created by the previous code, the connect process would look like
 this:
use DBI;

$dbh = DBI->connect('DBI:ODBC:PerlSysAdm',$username,$pw);
die "Unable to connect: $DBI::errstr\n" unless (defined $dbh);
From that point on, you can put the rest of your DBI expertise to work. See
 the
 DBD::ODBC documentation for details on the
 additional features the driver provides and on the few ODBC-specific concerns worth
 mentioning. You now know how to work with a database from Perl using both DBI and
 ODBC, so let’s put your knowledge to the test with some more extended examples from
 the database administration realm.

[58] There’s a third flavor, file, that writes the DSN
 configuration information out to a file so it can be shared among several
 computers, but it isn’t created by the Win32::ODBC method call we’re about to use.

Server Documentation

A great deal of time and energy goes into the configuration of a SQL server and the
 objects that reside on it. Having a way to document this sort of information can
 come in handy in a number of situations. If a database gets corrupted and there’s no
 backup, you may be called upon to recreate all of its tables. You may have to
 migrate data from one server to another; knowing the source and destination
 configurations can be important. Even for your
 own database programming, being able to see a table map can be very helpful.
To give you a taste of the nonportable nature of database administration, let me
 show you an example of the same simple task as written for three different SQL
 servers using both DBI and ODBC (via
 Win32::ODBC). Each of these programs does the
 exact same thing: prints out a listing of all of the databases on a server, their
 tables, and the basic structure of each table. These scripts could easily be
 expanded to show more information about each object. For instance, it might be
 useful to show which columns in a table had NULL or NOT NULL set. The output of all
 three programs looks roughly like this:
---sysadm---
 hosts
 name [char(30)]
 ipaddr [char(15)]
 aliases [char(50)]
 owner [char(40)]
 dept [char(15)]
 bldg [char(10)]
 room [char(4)]
 manuf [char(10)]
 model [char(10)]
---hpotter---
 customers
 cid [char(4)]
 cname [varchar(13)]
 city [varchar(20)]
 discnt [real(7)]
 agents
 aid [char(3)]
 aname [varchar(13)]
 city [varchar(20)]
 percent [int(10)]
 products
 pid [char(3)]
 pname [varchar(13)]
 city [varchar(20)]
 quantity [int(10)]
 price [real(7)]
 orders
 ordno [int(10)]
 month [char(3)]
 cid [char(4)]
 aid [char(3)]
 pid [char(3)]
 qty [int(10)]
 dollars [real(7)]
...
It will be to your advantage to look at all three examples, even if you don’t use
 or plan to ever use the particular database server in question. We’ll be looking at
 several different methods for querying the information in these sections, all of
 which you will want to know about.
MySQL Server via DBI

Here’s a DBI way of pulling the information just presented from a MySQL server. MySQL’s SHOW command makes this task pretty easy:
use DBI;

print 'Enter user for connect: ';
chomp(my $user = <STDIN>);
print 'Enter passwd for $user: ';
chomp(my $pw = <STDIN>);

my $start= 'mysql'; # connect initially to this database

connect to the start MySQL database
my $dbh = DBI->connect("DBI:mysql:$start",$user,$pw,
 { RaiseError => 1, ShowErrorStatement => 1 });

find the databases on the server
my $sth=$dbh->prepare(q{SHOW DATABASES});
$sth->execute;

my @dbs = ();
while (my $aref = $sth->fetchrow_arrayref) {
 push(@dbs,$aref->[0]);
}

find the tables in each database
foreach my $db (@dbs) {
 print "---$db---\n";

 $sth=$dbh->prepare(qq{SHOW TABLES FROM $db});
 $sth->execute;

 my @tables=();
 while (my $aref = $sth->fetchrow_arrayref) {
 push(@tables,$aref->[0]);
 }

 # find the column info for each table
 foreach my $table (@tables) {
 print "\t$table\n";

 $sth=$dbh->prepare(qq{SHOW COLUMNS FROM $table FROM $db});
 $sth->execute;

 while (my $aref = $sth->fetchrow_arrayref) {
 print "\t\t",$aref->[0],' [',$aref->[1],"]\n";
 }
 }
}
$dbh->disconnect;
A few quick comments about this code:
	MySQL 5.x (a fairly new release as of this writing) has a special
 metadata database called
 INFORMATION_SCHEMA that contains
 tables that can be queried using ordinary SELECT statements to retrieve the same information as
 we’re getting from the SHOW commands.
 If you are using a 5.x version of MySQL, you’ll want to use that
 mechanism instead to get the table and column information. Querying this
 information is slower than querying normal data in your database,
 however, so be wary of doing so if performance is important to
 you.

	We connect to a starting database only to satisfy the DBI connect
 semantics; this context is not necessary thanks to the SHOW commands.

	If you thought the
 SHOW TABLES and SHOW COLUMNS prepare and execute
 statements looked like excellent candidates for placeholders, you’re
 absolutely right. Unfortunately, this particular DBD driver/server
 combination doesn’t support placeholders in this context (at least, not
 when this book was being written). If you can use placeholders in
 situations like this, definitely do. They offer some protection against
 SQL injection attacks, thanks to their automatic quoting property
 (mentioned earlier).

	We prompt for a database user and password interactively because the
 alternatives (hard-coding them into the script or passing them on the
 command line, where they can be found by anyone running a process table
 dump) are even worse evils. This prompt will echo the password
 characters as typed. To be really careful, we should use something
 like
 Term::Readkey to turn off character
 echo.

	And finally, a tip from Tim Bunce himself. Notice that we’re using RaiseError and ShowErrorStatement in the initial connect to the
 database. This asks DBI to handle the checking for and reporting of
 errors, which we would normally have to include with an or die "something" after each DBI call. It
 helps declutter your code considerably.

Oracle Server via DBI

Here’s an Oracle equivalent. This example sparks a whole bunch of commentary,
 so peruse the code and then we’ll talk about it:
use DBI;
use DBD::Oracle qw(:ora_session_modes);

print 'Enter passwd for sys: ';
chomp(my $pw = <STDIN>);

my $dbh =
 DBI->connect('DBI:Oracle:perlsysadm', 'sys', $pw,
 { RaiseError => 1, AutoCommit => 0, ora_session_mode => ORA_SYSDBA });

my ($catalog, $schema, $name, $type, $remarks); # table_info returns this
my $sth = $dbh->table_info(undef, undef, undef, 'TABLE');

my (@tables);

while (($catalog, $schema, $name, $type, $remarks) = $sth->fetchrow_array())
{
 push(@tables, [$schema, $name]);
}

for my $table (sort @tables) {
 $sth = $dbh->column_info(undef, $table->[0], $table->[1], undef);

 # if you encounter an ORA-24345 error from the following fetchrow_arrayref(),
 # you can set $sth->{LongTruncOk} = 1 here as described in the DBD::Oracle doc

 print join('.', @$table), "\n";
 while (my $aref = $sth->fetchrow_arrayref) {

 # [3] = COLUMN_NAME, [5] = TYPE_NAME, [6] = COLUMN_SIZE
 print "\t\t", $aref->[3], ' [', lc $aref->[5], "(", $aref->[6], ")]\n";
 }
}

$sth->finish;
$dbh->disconnect;
Here is the promised commentary:
	First, a general comment to set the scene: Oracle has a different
 notion of what the word “database” means than most other servers. The
 other servers discussed in this chapter each have a model where a user
 owns a database in which he is permitted to create a set of tables. This
 is why the previous example first found the list of the databases on the
 server, then stepped into each database, and finally listed the tables
 inside it. Oracle doesn’t have this additional level of hierarchy. Yes,
 there are databases in Oracle, but they are more like chunks of storage,
 often containing many tables owned by many users. The nearest equivalent
 to our previous usage of the word
 “database” in Oracle is the schema. A schema is the
 collection of objects (tables,
 indices, etc.) owned by a user. Tables are usually referenced as
 SCHEMA.TABLENAME. The preceding code
 connects to a single database instance called “perlsysadm” and shows its
 contents.

	Ideally this code would connect to the database using an account that
 was specially privileged for this kind of work. To make the code more
 generic for example purposes, it attempts to connect to the database as
 the standard Oracle systems user sys. This user has
 permission to look at all tables in the database. To connect to this
 database as this user, one has to request special SYSDBA privileges, hence the funky
 parameter ora_session_mode =>
 ORA_SYSDBA in the initial connect. If you have another
 user with that privilege granted, you will want to change the code to
 use that user instead of the all-powerful, all-knowing
 sys.

	Besides that connection parameter, the code is surprisingly database
 server-independent. In contrast to the
 previous MySQL example, where the SHOW
 commands did the heavy lifting,
 here we use the standard DBI table_info() and column_info() calls to retrieve the
 information we need. Oracle has at least one similar command (DESCR
 tablename) that returns more information
 about a table, but sticking with the most generic method possible will
 improve code portability between separate database servers.

	The example code is actually doing more work than it needs to do. To
 keep the code close in structure to the previous example, it first
 queries for the list of tables, then iterates over each table in a
 sorted order, and then queries the column info for that table. It turns
 out that column_info() is perfectly
 happy to retrieve information on
 all of the columns of all of the tables in the database in a single invocation if you just leave
 out the schema and table name (column_info(undef,undef,undef,undef)); furthermore, the DBI
 specification says the command should return the information to you in
 sorted order, so the sort() call also
 becomes unnecessary.

Microsoft SQL Server via ODBC

The DBI/DBD::ODBC-based code to show the same database/table/column information from
 Microsoft SQL Server is basically a combination of the two previous examples.
 First we use a database-specific query[59] to get the list of databases, and then we can use the DBI standard
 calls of
 table_info() and column_info() to retrieve the information we need.
One small but significant set of changes is in the initial connect string: the
 connect() uses 'dbi:ODBC:{DSN_name_here}' (with some predefined DSN), a
 different privileged user is entered (see the following note), and the ora_session_mode option is removed.
Note
One of the things that changed between SQL Server 2000 and SQL Server 2005
 is the visibility of the metadata (i.e., the list of all objects, etc.).
 With the 2000 version of the server, virtually any user on the system could
 enumerate these objects, but with 2005 this is considerably more locked
 down: a user must have the VIEW ANY
 DEFINITION permission to retrieve the same info as
 before.

These changes yield a program that looks like the following:
use DBI;

this assumes a privileged user called mssqldba; your
username will probably be different
print 'Enter passwd for mssqldba: ';
chomp(my $pw = <STDIN>);

assumes there is a predefined DSN with the name "PerlSys"
my $dbh =
 DBI->connect('dbi:ODBC:PerlSys', 'mssqldba', $pw, { RaiseError => 1 });

fetch the names of all of the databases
my (@dbs) =
 map { $_->[0] }
 @{ $dbh->selectall_arrayref("select name from master.dbo.sysdatabases") };

my ($catalog, $schema, $name, $type, $remarks); # table_info returns this
foreach my $db (@dbs) {

 my $sth = $dbh->table_info($db, undef, undef, 'TABLE');

 my (@tables);

 while (($catalog, $schema, $name, $type, $remarks) =
 $sth->fetchrow_array()) {
 push(@tables, [$schema, $name]);
 }

 for my $table (sort @tables) {
 $sth = $dbh->column_info($db, $table->[0], $table->[1], undef);
 print join('.', @$table), "\n";
 while (my $aref = $sth->fetchrow_arrayref) {

 # [3] = COLUMN_NAME, [5] = TYPE_NAME, [6] = COLUMN_SIZE
 print "\t\t", $aref->[3], ' [', lc $aref->[5], "(", $aref->[6],
 ")]\n";
 }
 }
}
$dbh->disconnect;
Just to give you one more way to approach the problem, here’s some code that
 uses the legacy
 Win32::ODBC module. This code looks different
 from our previous two examples in a number of ways. First off, it uses the
 native-ODBC style of retrieving information (see the Win32::ODBC docs). It may also look strange because we are
 relying on a few of the special stored procedures that ship with the server to
 retrieve the info we need (e.g., sp_columns()), using a really icky calling convention. This
 particular example is included on the off chance that you’ll find yourself in a
 situation that requires the use of Win32::ODBC and you’d like an example to help you begin the
 process.
Here’s the code:
use Win32::ODBC;

print 'Enter user for connect: ';
chomp(my $user = <STDIN>);
print 'Enter passwd for $user: ';
chomp(my $pw = <STDIN>);

my $dsn='sysadm'; # name of the DSN we will be using

find the available DSNs, creating $dsn if it doesn't exist already
die 'Unable to query available DSN's'.Win32::ODBC::Error()."\n"
 unless (my %dsnavail = Win32::ODBC::DataSources());
if (!defined $dsnavail{$dsn}) {
 die 'unable to create DSN:'.Win32::ODBC::Error()."\n"
 unless (Win32::ODBC::ConfigDSN(ODBC_ADD_DSN,
 "SQL Server",
 ("DSN=$dsn",
 "DESCRIPTION=DSN for PerlSysAdm",
 "SERVER=mssql.happy.edu",
 "DATABASE=master",
 "NETWORK=DBMSSOCN", # TCP/IP Socket Lib
)));
}

connect to the master database via the DSN we just defined
#
the DSN specifies DATABASE=master so we don't have to
pick it as a starting database explicitly
my $dbh = new Win32::ODBC("DSN=$dsn;UID=$user;PWD=$pw;");
die "Unable to connect to DSN $dsn:".Win32::ODBC::Error()."\n"
 unless (defined $dbh);

find the databases on the server, Sql returns an error number if it fails
if (defined $dbh->Sql(q{SELECT name from sysdatabases})){
 die 'Unable to query databases:'.Win32::ODBC::Error()."\n";
}

my @dbs = ();
my @tables = ();
my @cols = ();
ODBC requires a two-step process of fetching the data and then
accessing it with a special call (Data)
while ($dbh->FetchRow()){
 push(@dbs, $dbh->Data("name"));
}
$dbh->DropCursor(); # this is like DBI's $sth->finish()

find the user tables in each database
foreach my $db (@dbs) {
 if (defined $dbh->Sql("use $db")){
 die "Unable to change to database $db:" .
 Win32::ODBC::Error() . "\n";
 }
 print "---$db---\n";
 @tables=();
 if (defined $dbh->Sql(q{SELECT name from sysobjects
 WHERE type="U"})){
 die "Unable to query tables in $db:" .
 Win32::ODBC::Error() . "\n";
 }
 while ($dbh->FetchRow()) {
 push(@tables,$dbh->Data("name"));
 }
 $dbh->DropCursor();

 # find the column info for each table
 foreach $table (@tables) {
 print "\t$table\n";
 if (defined $dbh->Sql(" {call sp_columns (\'$table\')} ")){
 die "Unable to query columns in $table:" .
 Win32::ODBC::Error() . "\n";
 }
 while ($dbh->FetchRow()) {
 @cols=$dbh->Data("COLUMN_NAME","TYPE_NAME","PRECISION");
 print "\t\t",$cols[0]," [",$cols[1],"(",$cols[2],")]\n";
 }
 $dbh->DropCursor();
 }
}
$dbh->Close();

die "Unable to delete DSN:".Win32::ODBC::Error()."\n"
 unless (Win32::ODBC::ConfigDSN(ODBC_REMOVE_DSN,
 "SQL Server","DSN=$dsn"));

[59] If your user has the ability to access all databases on the server and
 you’d prefer not to grovel around in a system table, select catalog_name from
 information_schema.schemata is another query that can be
 used to retrieve this information on a relatively recent version of SQL
 Server.

Database Logins

As mentioned earlier, database administrators have to deal with some of the same issues system
 administrators contend with, like maintaining logins and accounts. For instance, at
 my day job we teach database programming classes. Each student who takes a class
 gets a login on our Oracle server and her very own (albeit small) database quota on
 that server to play with. Here’s a simplified version of the code we use to create
 these databases and logins:
use DBI;

my $userquota = 10000; # K of user space given to each user
my $usertmpquota = 2000; # K of temp tablespace given to each user

my $admin = 'system';
print "Enter passwd for $admin: ";
chomp(my $pw = <STDIN>);
my $user=$ARGV[0];

generate a *bogus* password based on username reversed
and padded to at least 6 chars with dashes
note: this is a very bad algorithm; better to use something
like Crypt::GeneratePassword
my $genpass = reverse($user) . '-' x (6-length($user));

my $dbh = DBI->connect("dbi:Oracle:instance",$admin,$pw,{PrintError => 0});
die "Unable to connect: $DBI::errstr\n"
 unless (defined $dbh);

prepare the test to see if user name exists
my $sth = $dbh->prepare(q{SELECT USERNAME FROM dba_users WHERE USERNAME = ?})
 or die 'Unable to prepare user test SQL: '.$dbh->errstr."\n";

my $res = $sth->execute(uc $user);
$sth->fetchrow_array;
die "user $user exists, quitting" if ($sth->rows > 0);
if (!defined $dbh->do (
 qq {
 CREATE USER ${LOGIN} PROFILE DEFAULT
 IDENTIFIED BY ${PASSWORD}
 DEFAULT TABLESPACE USERS TEMPORARY TABLESPACE TEMP
 QUOTA $usertmpquota K ON TEMP QUOTA $userquota K ON USERS
 ACCOUNT UNLOCK
 })){
 die 'Unable to create database:'.$dbh->errstr."\n";
}

grant the necessary permissions
$dbh->do("GRANT CONNECT TO ${LOGIN}") or
 die "Unable to grant connect privs to ${LOGIN}:".$dbh->errstr."\n";

perhaps a better approach would be to explicity grant the parts of
RESOURCE the users need rather than grant them everything and
removing things like UNLIMITED TABLESPACE later
$dbh->do("GRANT RESOURCE TO ${LOGIN}") or
 die "Unable to grant resource privs to ${LOGIN}:".$dbh->errstr."\n";

set the correct roles
$dbh->do("ALTER USER ${LOGIN} DEFAULT ROLE ALL") or
 die "Unable to use set correct roles for ${LOGIN}:".$dbh->errstr."\n";

make sure the quotas are enforced
$dbh->do("REVOKE UNLIMITED TABLESPACE FROM ${LOGIN}") or
 die "Unable to revoke unlimited tablespace from ${LOGIN}:".$dbh->errstr."\n";

$dbh->disconnect;
We could use a similar script to delete these accounts and their databases when
 the class has concluded:
use DBI;

$admin = 'system';
print "Enter passwd for $admin: ";
chomp(my $pw = <STDIN>);
my $user=$ARGV[0];

my $dbh = DBI->connect("dbi:Oracle:instance",$admin,$pw,{PrintError => 0});
die "Unable to connect: $DBI::errstr\n"
 if (!defined $dbh);

die "Unable to drop user ${user}:".$dbh->errstr."\n"
 if (!defined $dbh->do("DROP USER ${user} CASCADE"));

$dbh->disconnect;
You might find it useful to code up a variety of login-related functions. Here are
 a few ideas:
	Password checker
	Connect to the server and get a listing of databases and logins.
 Attempt to connect using weak passwords (login names, blank passwords,
 default passwords).

	User mapping
	Generate a listing of which logins can access which databases.

	Password control
	Write a pseudo-password expiration system.

Monitoring Space Usage on a Database Server

For our final example, we’ll take a look at a way to monitor the storage space of a
 SQL server. This sort of routine monitoring is similar in nature to the network
 service monitoring we’ll see in Chapter 13.
To get technical for a moment, database servers are places to hold stuff. Running
 out of space to hold stuff is known as either “a bad thing” or “a very bad thing.”
 As a result, programs that help us monitor the amount of space allocated and used on
 a server are very useful indeed. Let’s look at a DBI program designed to evaluate
 the space situation on an Oracle server.
Here’s a snippet of output from a program that illustrates graphically each user’s
 space usage in relationship to her predefined quota. Each section shows a bar chart
 of the percentage of used versus allocated space in the USERS and TEMP tablespaces. In the
 following chart, u stands for user space and
 t stands for temp space. For each bar,
 the percentage of space used and the total
 available space are indicated:
 |uuuuuuu |15.23%/5MB
hpotter--------| |
 | |0.90%/5MB

 |uuuuuuu |15.23%/5MB
dumbledore-----| |
 | |1.52%/5MB

 |uuuuuuuu |16.48%/5MB
hgranger-------| |
 | |1.52%/5MB

 |uuuuuuu |15.23%/5MB
rweasley-------| |
 |t |3.40%/5MB

 |uuuuuuuuuuuuuuuuuuuuuuuuuuu |54.39%/2MB
hagrid---------| |
 |- no temp quota |
Here’s how we generated this output:
use DBI;
use DBD::Oracle qw(:ora_session_modes);
use POSIX; # for ceil rounding function

use strict;

print 'Enter passwd for sys: ';
chomp(my $pw = <STDIN>);

connect to the server
my $dbh = DBI->connect('DBI:Oracle:', 'sys', $pw,
 { RaiseError => 1, ShowErrorStatement => 1, AutoCommit => 0,
 ora_session_mode => ORA_SYSDBA });

get the quota information
my $sth = $dbh->prepare(
 q{SELECT USERNAME,TABLESPACE_NAME,BYTES,MAX_BYTES
 FROM SYS.DBA_TS_QUOTAS
 WHERE TABLESPACE_NAME = 'USERS' or TABLESPACE_NAME = 'TEMP'}
);

$sth->execute;

bind the results of the query to these variables, later to be stored in %qdata
my ($user, $tablespace, $bytes_used, $bytes_quota, %qdata);
$sth->bind_columns(\$user, \$tablespace, \$bytes_used, \$bytes_quota);

while (defined $sth->fetch) {
 $qdata{$user}->{$tablespace} = [$bytes_used, $bytes_quota];
}

$dbh->disconnect;

show this information graphically
foreach my $user (sort keys %qdata) {
 graph(
 $user,
 $qdata{$user}->{'USERS'}[0], # bytes used
 $qdata{$user}->{'TEMP'}[0],
 $qdata{$user}->{'USERS'}[1], # quota size
 $qdata{$user}->{'TEMP'}[1]
);
}

print out nice chart given username, user and temp sizes,
and usage info
sub graph {
 my ($user, $user_used, $temp_used, $user_quota, $temp_quota) = @_;

 # line for user space usage
 if ($user_quota > 0) {
 print ' ' x 15 . '|'
 . 'd' x POSIX::ceil(49 * ($user_used / $user_quota))
 . ' ' x (49 - POSIX::ceil(49 * ($user_used / $user_quota)))
 . '|';

 # percentage used and total M for data space
 printf("%.2f", ($user_used / $user_quota * 100));
 print "%/" . ($user_quota / 1024 / 1000) . "MB\n";
 }

 # some users do not have user quotas
 else {
 print ' ' x 15 . '|- no user quota' . (' ' x 34) . "|\n";
 }

 print $user . '-' x (14 - length($user)) . '-|' . (' ' x 49) . "|\n";

 # line for temp space usage
 if ($temp_quota > 0) {
 print ' ' x 15 . '|'
 . 't' x POSIX::ceil(49 * ($temp_used / $temp_quota))
 . ' ' x (49 - POSIX::ceil(49 * ($temp_used / $temp_quota)))
 . '|';

 # percentage used and total M for temp space
 printf("%.2f", ($temp_used / $temp_quota * 100));
 print "%/" . ($temp_quota / 1024 / 1000) . "MB\n";
 }

 # some users do not have temp quotas
 else {
 print ' ' x 15 . '|- no temp quota' . (' ' x 34) . "|\n";
 }
 print "\n";
}
Writing this code wasn’t particularly hard because Oracle provides a lovely view
 called SYS.DBA_TS_QUOTAS that contains the
 tablespace quota information we need in an easy-to-query fashion. This ease is
 highly database server-specific; other servers can make you work harder for this
 information (e.g., with Sybase you need to add up segments when computing database
 sizes).
This small program just scratches the surface of the sort of server monitoring we
 can do. It would be easy to take the results we get from SYS.DBA_TS_QUOTAS and graph them over time to get a better notion of
 how our server is being used. There are lots of other things we can (and probably
 should) monitor, including CPU usage and various database performance metrics (cache
 hit rates, etc.). There are entire books on “Tuning Database X”
 from which you can get a notion of the key parameters to watch from a Perl script.
 Let creeping featurism be your muse.

Module Information for This Chapter

	
 Module

 	
 CPAN ID

 	
 Version

	

 DBI

 	
 TIMB

 	
 1.50

	

 DBD::mysql

 	
 RUDY

 	
 2.9008

	

 DBD::Oracle

 	
 PYTHIAN

 	
 1.17

	

 DBD::ODBC

 	
 JURL

 	
 1.13

	
 Win32::ODBC (from http://www.roth.net)

 	
 JDB

 	
 970208

References for More Information

There are a number of good SQL tutorials on the Web, including http://www.sqlzoo.net and http://www.sqlcourse.com.
 Search for “SQL tutorial” and you’ll find a bunch more. Reading them can give you a
 good jumpstart into using the language.
http://home.fnal.gov/~dbox/SQL_API_Portability.html is a swell
 guide to the vagaries of the more popular database engines. Though its focus is on
 writing portable code, as you saw in this chapter, often one needs to know
 database-specific commands to help administer a server.
DBI

http://dbi.perl.org is the official DBI home page. It’s quite dated in places (according to Tim Bunce),
 but this should be your first stop.

 Programming the Perl
 DBI
 , by Alligator Descartes and Tim Bunce (O’Reilly), is a great DBI
 resource.
http://gmax.oltrelinux.com/dbirecipes.html has some useful DBI
 recipes for common tasks.

Microsoft SQL Server

In addition to the Microsoft SQL Server information available at the Microsoft website, there’s a
 tremendous amount of information at http://www.sqlserverfaq.com.
 Microsoft’s training materials for Microsoft SQL Server administration from MS
 Press are also quite good.

ODBC

http://www.microsoft.com/odbc contains Microsoft’s ODBC information. You’ll need to dig a little because it has been
 subsumed (as of this writing) into their larger Data Access and Storage Center rubric. You may also want to search
 for ODBC on the http://msdn.microsoft.com site, looking carefully
 at the library material on ODBC in the MDAC SDK.
http://www.roth.net/perl/odbc/ is the official Win32::ODBC home page. (For
 legacy purposes. You should use DBD::ODBC
 whenever possible.)
Win32 Perl Programming: The Standard Extensions, by Dave
 Roth (Macmillan), the author of Win32::ODBC,
 is still a good reference for Windows Perl module-based programming.

Oracle

The Oracle universe is very large. There are many, many Oracle-related books
 and websites. One site I find really useful is http://www.orafaq.com; this is a fabulous resource for getting answers to both basic and
 more sophisticated Oracle questions.
The Documentation and Tutorials paths on http://otn.oracle.com
 are a great source for in-depth information about the different releases of
 Oracle databases.

Chapter 8. Email

Unlike the other chapters in this book, this chapter does not discuss how to
 administer a particular service, technology, or knowledge domain. Instead, we’re going
 to look at how to use email from Perl as a tool for system administration.
Email is a great notification mechanism: often we want a program to tell us when something
 goes wrong, provide the results of an automatic process (like a late-night
 cron or scheduler service job), or let us know when something
 we care about changes. In this chapter we’ll explore how to send mail from Perl for
 these purposes and then look at some of the pitfalls associated with the practice of
 sending ourselves mail.
We’ll also look at how Perl can be used to fetch and post-process mail we receive to
 make it more useful to us. Perl can be useful for dealing with spam and managing user
 questions.
This chapter will assume that you already have a solid and reliable mail
 infrastructure. We’re also going to assume that your mail system, or one that you have
 access to, uses protocols that follow the IETF specifications for sending and receiving
 mail. The examples in this chapter will use protocols like SMTP (Simple Mail Transfer
 Protocol, RFC 2821) and expect messages to be RFC 2822-compliant. We’ll go over these terms in due course.
Sending Mail

Let’s talk about the mechanics of sending email before we tackle the more
 sophisticated issues. The traditional (Unix) Perl mail-sending code often looks
 something like this example from the Perl
 Frequently Asked Questions list:
assumes we have sendmail installed in /usr/sbin
sendmail install directory varies based on OS/distribution
open my $SENDMAIL, '|-', '|/usr/sbin/sendmail -oi -t -odq' or
 die "Can't fork for sendmail: $!\n";
print $SENDMAIL <<'EOF';
From: User Originating Mail <me@host>
To: Final Destination <you@otherhost>
Subject: A relevant subject line

Body of the message goes here after the blank line
in as many lines as you like.
EOF
close(SENDMAIL) or warn "sendmail didn't close nicely";
Note
A common error (which has its roots in Perl4 when made by Perl old-timers) is
 to write something like this, including the @
 sign directly in a double-quoted string:
$address = "fred@example.com"; # array interpolates
This line needs to be changed to one of the following to work properly:
$address = "fred\@example.com";
$address = 'fred@example.com';
$address = q{ fred@example.com };
$address = join('@', 'fred', 'example.com');

Code that calls sendmail (like the preceding example) works
 fine in many circumstances, but it doesn’t work on any operating system that lacks a
 mail transport agent called “sendmail” (e.g., Windows-based operating systems). If
 you’re using such an OS you have a few choices, which are described in the next few
 sections.
Getting sendmail (or a Similar Mail Transport Agent)

Various
 sendmail and sendmail-like ports (most
 of which are commercial) are available for Windows. If you want a free version
 of something that can potentially pretend to be sendmail,
 try the Cygwin
 exim port. If you’d like something more
 lightweight and are willing to make small modifications to your Perl code to
 support different command-line arguments, programs like
 blat
 will do the trick.
The advantage of this approach is that it offloads much of the mail-sending
 complexity from your script. A good mail transport agent (MTA) handles the
 process of retrying a destination mail server if it’s unreachable, selecting the
 right destination server (finding and choosing between Mail eXchanger DNS records), rewriting the headers if necessary,
 dealing with bounces, and so on. If you can avoid having to take care of all of
 that in Perl, that’s often a good thing.

Using the OS-Specific IPC Framework to Drive a Mail Client

On Mac OS X or Windows, you can drive a mail client using the native
 interprocess communication (IPC) framework.
Mac OS X ships with the Postfix MTA installed, but only minimally configured. If you don’t
 want to bother setting it up, you can ask Perl to use AppleScript to drive the built-in mail client (often called
 Mail.app):
use MacPerl;

my $to = 'user@example.com';
my $subject = 'Hi there';
my $body = 'message body';

MacPerl::DoAppleScript(<<EOAS);
tell application "Mail"
 set theNewMessage to make new outgoing message with properties
 {subject:"$subject", content:"$body", visible:true}
 tell theNewMessage
 make new to recipient at end of to recipients with properties
 {address:"$to"}
 send
 end tell
end tell
EOAS
This code executes a very simple AppleScript that creates and sends a message.
 There are a number of ways to drive AppleScript on Mac OS X from Perl; search
 CPAN for “AppleScript” to see some of them. This particular module, part of
 Mac::Carbon
 by Chris Nandor, happens to ship with Mac OS X 10.5 and is one of
 the more efficient methods.
Under Windows, we can use the
 Win32::OLE module to control the relatively
 ubiquitous Outlook:[60]
use Win32::OLE;
use Win32::OLE::Const 'Microsoft Outlook';

my $outl = Win32::OLE->new('Outlook.Application');
my $ol = Win32::OLE::Const->Load($outl);

my $message = $outl->CreateItem(olMailItem);

$message->Recipients->Add('user@example.edu');
$message->{Subject} = 'Perl to Outlook Test';
$message->{Body} = "Hi there!\n\nLove,\nPerl\n";

$message->Send;
To drive Outlook, we request an Outlook
 Application object and use it to create a
 mail message for sending. To make our lives easier during that process, we use
 Win32::OLE::Const
 to suck in the OLE constants associated with Outlook. This gives us
 olMailItem, and from there things are
 straightforward.
The preceding code is pretty simple, but we still had to know more than should
 have been necessary about how to talk to Outlook. Figuring out how to expand
 upon this idea (e.g., how to attach a file or move messages around in Outlook
 folders) would require more probing of the MSDN website for clues. To make this
 easier, the developer known as “Barbie” created Mail::Outlook, which allows us to write code like this instead:
use Mail::Outlook;

my $outl = new Mail::Outlook();

my $message = $outl->create();

$message->To('user@example.edu');
$message->Subject('Perl to Outlook Test');
$message->Body("Hi there!\n\nLove,\nPerl\n");
$message->Attach(@files);

$message->send() or die "failed to send message";
Ultimately, programs that rely on AppleScript or Application objects are equally as non-portable as those that
 call a program called “sendmail.” They offload some of the work, but they’re
 relatively inefficient. Such approaches should probably be your methods of last
 resort.

Speaking the Mail Protocols Directly

Our final choice is to write code that speaks to the mail server in its native
 language. Most of this language is documented in RFC 2821. Here’s a basic SMTP conversation. The data we send is in bold:
% telnet example.com 25 - connect to the SMTP port on example.com
Trying 192.168.1.10 ...
Connected to example.com.
Escape character is '^]'.
220 mailhub.example.com ESMTP Sendmail 8.9.1a/8.9.1; Sun, 13
 Apr 2008 15:32:16 −0400 (EDT)
HELO client.example.com - identify the machine we are connecting from
 (can also use EHLO)
250 mailhub.example.com Hello dnb@client.example.com [192.168.1.11],
 pleased to meet you
MAIL FROM: <dnb@example.com> - specify the sender
250 <dnb@example.com>... Sender ok
RCPT TO: <dnb@example.com> - specify the recipient
250 <dnb@example.com>... Recipient ok
DATA - begin to send message, note we send
 several key header lines
354 Enter mail, end with "." on a line by itself
From: David N. Blank-Edelman <dnb@example.com>
To: dnb@example.com
Subject: SMTP is a fine protocol

Just wanted to drop myself a note to remind myself how much I love SMTP.
 Peace,
 dNb
. - finish sending the message
250 PAA26624 Message accepted for delivery
QUIT - end the session
221 mailhub.example.com closing connection
Connection closed by foreign host.
It’s not difficult to script a network conversation like this; we could use
 the
 IO::Socket module, or even something
 like
 Net::Telnet, which we’ll see in the next
 chapter. However, there are good mail modules out there that make our job
 easier, such as Jenda Krynicky’s Mail::Sender,
 Milivoj Ivkovic’s Mail::Sendmail,
 the
 Mail::Mailer module in Graham Barr’s
 MailTools package, and
 Email::Send (maintained by Ricardo Signes for
 the Perl Email Project). All four of these packages are operating system-independent and
 will work almost anywhere a modern Perl distribution is available. We’ll look at
 Email::Send for two reasons: because it
 offers a single interface to two of the mail-sending methods we’ve discussed so
 far, and because it offers us a good entry into the phalanx of modules connected
 to the Perl Email Project.
Note
A late-breaking tip: after this book went to production, Ricardo Signes,
 the developer who maintains Email::Send
 (and most of the Perl Email Project modules), announced he was going to
 deprecate Email::Send in favor of a new
 module called Email::Sender. Email::Sender isn’t fully written yet (e.g.,
 there is an Email::Sender::Simple module
 on the way that will make using that module even easier) and hasn’t had the
 same level of field testing Email::Send
 has seen. Signes says he’ll still maintain Email::Send for a year or so, so I would recommend sticking
 with it until it is clear Email::Sender
 is ripe.

Sending vanilla mail messages with Email::Send

Email::Send will happily send a mail message stored in plain text in a scalar
 variable along the lines of:
my $message = <<'EOM';
From: motherofallthings@example.org
To: dnb@example.edu
Subject: advice

I am the mother-of-all-things and all things should wear a sweater.

 Love,
 Mom
EOM
You can also get some free error checking by using an object from another
 of the Perl Email Project’s modules: Email::Simple. Email::Simple
 and its plug-in module Email::Simple::Creator make it easy to programmatically
 construct email messages using an object-oriented approach. This is less
 prone to errors than writing email messages like the one in our last code
 snippet directly into your program. Let’s see these modules in action; then
 we can bring Email::Send back into the
 picture to actually send the message we create.
Email::Simple::Creator
 takes the hassle out of creating a message by providing a
 straightforward create() method. It takes
 two arguments, header (containing a list
 of headers and their contents) and body
 (a scalar with the body of the message), like so:
use Email::Simple;
use Email::Simple::Creator;
use Email::Send;

my $message = Email::Simple->create(
 header => [
 From => 'motherofallthings@example.org',
 To => 'dnb@example.edu',
 Subject => 'Test Message from Email::Simple::Creator',
],
 body => "Hi there!\n\tLove,\n\tdNb",
);
Easy, no? Now let’s look at how this message gets sent. If we wanted to
 directly send the message via SMTP, we’d write:
my $sender = Email::Send->new({mailer => 'SMTP'});
$sender->mailer_args([Host => 'smtp.example.edu']);
$sender->send($message) or die "Unable to send message!\n";
To send it using sendmail, or whatever is pretending
 to be sendmail on the system (e.g., Exim or Postfix),
 we’d change this to:
my $sender = Email::Send->new({mailer => 'Sendmail'});
$Email::Send::Sendmail::SENDMAIL = '/usr/sbin/sendmail';
$sender->send($message) or die "Unable to send message: $!\n";
You might note that the code is setting the package variable $Email::Send::Sendmail::SENDMAIL. This is required because
 Email::Send::Sendmail, at least as of
 this writing, makes no attempt to find the
 sendmail binary any place other than in the current
 path (a strange choice because the binary is very rarely in users’ paths).
 We have to help it out by pointing it to the correct location.
There are a number of other possible values for mailer, corresponding to various Email::Send:: helper modules. One of my favorites is 'test', which uses
 Email::Send::Test. The Email::Send::Test module lets your application
 think it is sending mail, but actually “traps” all outgoing mail and stores
 it in an array for your inspection. This is a great way to debug
 mail-sending code before accidentally irritating thousands of recipients
 with a mistake you didn’t catch until after the mail was sent.

Sending mail messages with attachments using Email::Send

Once people find sending mail via Perl is so easy, they often want to do more
 complicated things in this vein. Despite email being a poor medium for file
 transfer, it is pretty common to find yourself needing to send mail with
 arbitrary attachments. That process can get complex quickly, though, because
 you’re now on the path down the rabbit hole known as the Multipurpose Internet Mail Extensions (MIME) standards.
 Described in RFCs 2045, 2046, 2047, 2077, 4288, and 4289 (yes, it takes at
 least six standards documents to document this beast), MIME is a standard
 for including various kinds of content within an email message.
We don’t have the space in this chapter to do anything but skim the
 surface of MIME, so I’ll just note that a MIME message is composed of parts,
 each of which is labeled with a content type and other metadata, such as how
 it is represented or encoded. There is an
 Email::MIME module in the Perl Email Project (maintained by Ricardo Signes) for working with MIME in this context. Luckily
 for us, Email::MIME has a helper plug-in
 module called
 Email::MIME::Creator (also maintained by
 Signes) that makes creating attachments much less painful than usual. Let’s
 look at some example code first, and then we’ll talk about how it
 works:
use Email::Simple;
use Email::MIME::Creator;
use File::Slurp qw(slurp);
use Email::Send;

my @mimeparts = (
 Email::MIME->create(
 attributes => {
 content_type => 'text/plain',
 charset => 'US-ASCII',
 },
 body => "Hi there!\n\tLove,\n\tdNb\n",
),
 Email::MIME->create(
 attributes => {
 filename => 'picture.jpg',
 content_type => 'image/jpeg',
 encoding => 'base64',
 name => 'picture.jpg',
 },
 body => scalar slurp('picture.jpg'),
),
);
my $message = Email::MIME->create(
 header => [
 From => 'motherofallthings@example.org',
 To => 'dnb@example.edu',
 Subject => 'Test Message from Email::MIME::Creator',
],
 parts => [@mimeparts],
);

my $sender = Email::Send->new({mailer => 'Sendmail'});
$Email::Send::Sendmail::SENDMAIL = '/usr/sbin/sendmail';
$sender->send($message) or die "Unable to send message!\n";
The first step is to create the two parts that will make up the message:
 the plain-text part (the body of the message a user will see) and the
 attachment part. This is again pretty straightforward, with the only tricky
 part being the actual inclusion of the file being attached. Email::MIME->create() needs a scalar
 value containing the entire contents of the file being attached. One of the
 easiest and most efficient ways to suck an entire file into a variable is to
 use Dave Rolsky’s File::Slurp
 module. Being explicit about what type of value we expect to get back from
 the slurp() call ensures that we get the
 scalar value we need.
After defining the two MIME parts for the message and loading them with
 data, we now need to construct the message consisting of those two parts.
 The second call to Email::MIME->create() creates the message consisting
 of our required headers and the parts objects we just created. With this
 message in hand, sending the actual message is just like the vanilla send
 shown earlier.

Sending HTML mail messages using Email::Send

I’m loath to show you how to do this because I personally dislike HTML mail,
 but if it gets around that you know how to send mail programmatically,
 someday someone is going to come to you and demand you send HTML mail
 messages for him. If that person is your boss, you can say “HTML mail is
 icky” as many times as you want, but it probably won’t get you out of the
 assignment. To help you keep your job, I’ll show you one example of how this
 is done—just don’t tell anyone you learned this from me.
HTML mail messages are just another example of using MIME to transport
 non-plain-text data in a mail message. Given that, you could construct a
 mail message using the same
 Email::MIME::Creator technique
 demonstrated in the last section. This would be relatively straightforward
 for a very basic, text-only page if you already knew the MIME metadata for
 each part of the HTML message. However, it starts to get a little tricky if
 you want to have things like images rendered in the HTML page, particularly
 if you’d prefer to send those things within the message itself. There are a
 couple of reasons to embed images: URL-sourced images make for a slow
 message display, and, more importantly, many email clients block URL-based
 images for security reasons (so spammers cannot use them as web bugs to
 confirm that the messages were received).
Luckily, there’s a similar message-creation module called
 Email::MIME::CreateHTML, created and
 maintained by programmers at the BBC, that can handle all the heavy lifting
 for us. Here’s a very simple example of sending HTML mail with a plain-text
 alternative:
use Email::MIME::CreateHTML;
use Email::Send;

my $annoyinghtml=<<HTML;
<html>
 <body>
 Hi there!

 Love,

 dNb
 <body>
<html>
HTML

my $message = Email::MIME->create_html(
 header => [
 From => 'motherofallthings@example.org',
 To => 'dnb@example.edu',
 Subject => 'Test Message from Email::MIME::CreateHTML',
],
 body => $annoyinghtml,
 text_body => "Hi there!\n\tLove,\n\tdNb",
);

my $sender = Email::Send->new({ mailer => 'Sendmail' });
$Email::Send::Sendmail::SENDMAIL = '/usr/sbin/sendmail';
$sender->send($message) or die "Unable to send message!\n";
Our part in the process is super-simple—we’re just passing in scalar
 values that contain the HTML and plain-text versions of the message. The
 HTML we’re passing in doesn’t have any external references to images and
 such, but if it did, the method Email::MIME->create_html
 would have parsed them out of the message and attached the files
 for us accordingly. You’ll also notice that the actual sending of the
 message is handled in exactly the same way as in our previous examples. This
 is one of the benefits of using Email::Send.
One last comment about this code before we move on: Email::MIME::CreateHTML
 removes the need for a lot of complex fiddling around, but there’s a price
 to pay for all the power under the hood. In order to work its magic,
 Email::MIME::CreateHTML depends on a
 relatively large list of other modules (each with its own dependencies).
 Installing these dependencies isn’t a problem, thanks to the CPAN.pm and CPANPLUS modules, but if you’re looking for something
 lightweight you’ll want to look for another way to create your mail
 messages.

[60] The code shown here controls Outlook using the Application object, found in reasonably
 modern versions of Outlook (2000 and beyond). The first edition of this
 book predated those Outlook versions, so it described how to do this
 task using the lower-level MAPI calls. This is a much easier tack to
 take.

Common Mistakes in Sending Email

Now that you know how to send email, you can begin using email as a notification
 method. Once you start to write code that performs this function, you’ll quickly
 find that the issue of how to send mail is not nearly as
 interesting as the questions of when and
 what to send.
This section explores those questions by taking a contrary approach. If we look at
 when and how not to send mail, we’ll get a deeper insight into
 these issues.[61] Let’s begin by exploring some of the most common mistakes made by system
 administration programs that send mail.
Overzealous Message Sending

By far, the most common mistake is sending too much mail. It’s a great idea to
 have scripts send mail. If there’s a service disruption, normal email and email
 sent to a pager are good ways to bring this problem to the attention of a human.
 But under most circumstances, it is a very bad idea to have
 your program send mail about the problem every five minutes or so. Overzealous
 mail generators tend to be quickly added to the mail filters of the very humans
 who should be reading the messages, with the end result being that important
 mail is routinely and automatically ignored.
Controlling the frequency of mail

The easiest way to avoid what I call “mail beaconing” is to build into the
 programs safeguards to gate the delay between messages. If your script runs
 constantly, it’s easy to stash the time when the last mail message was sent
 in a variable like this:
my $last_sent = time;
If your program is started up every N minutes or
 hours via Unix’s cron or the Windows Task Scheduler service mechanisms, this information can
 be written to a one-line file and read again the next time the program is
 run. Be sure in this case to pay attention to some of the security
 precautions outlined in Chapter 1.
Depending on the situation, you may be able to get fancy about your delay
 times. One suggestion is to perform an exponential backoff where you have a
 routine that gives the OK to send mail once every minute
 (20), then every two minutes
 (21), every four minutes
 (22), every eight minutes
 (23), and so on until you reach some upper
 limit like “once a day.”
Alternatively, sometimes it is more appropriate to have your program act
 like a two-year-old, complaining more often as time goes by. In that case
 you can do an exponential ramp-up where the routine initially gives the OK
 to send messages starting with the maximum delay value (say, “once a day”)
 and becomes exponentially more permissive until it reaches a minimum value,
 like “every five minutes.”

Controlling the amount of mail

Another subclass of the “overzealous message sending” syndrome is the
 “everybody on the network for themselves” problem. If all the machines on
 your network decide to send you a piece of mail at the same time, you may
 miss something important in the subsequent message blizzard. A better
 approach is to have them all report to a central repository of some sort.[62] The information can then be collated and mailed out later in a
 single message.
Let’s consider a moderately contrived example. For this scenario, assume
 each machine in your network drops a one-line file into a shared
 directory.[63] Named for the machine, that file will contain that machine’s
 summary of the results of last night’s scientific computation. The single
 line in the file might be of this form:
hostname success-or-failure number-of-computations-completed
A program that collates the information and mails the results might look
 like this:
use Email::Simple;
use Email::Simple::Creator;
use Email::Send;
use Text::Wrap;
use File::Spec;

the list of machines reporting in
my $repolist = '/project/machinelist';

the directory where they write files
my $repodir = '/project/reportddir';

send mail "from" this address
my $reportfromaddr = 'project@example.com';

send mail to this address
my $reporttoaddr = 'project@example.com';

my $statfile; # the name of the file where status reports are recorded
my $report; # the report line found in each statfile
my %success; # the succesful hosts
my %fail; # the hosts that failed
my %missing; # the list of hosts missing in action (no reports)

Now we read the list of machines reporting in into a hash.
Later, we'll depopulate this hash as each machine reports in,
leaving behind only the machines that are missing in action.

open my $LIST, '<', $repolist or die "Unable to open list $repolist:$!\n";
while (<$LIST>) {
 chomp;
 $missing{$_} = 1;
}
close $LIST;

total number of machines that should be reporting
my $machines = scalar keys %missing;

Read all of the files in the central report directory.
Note: this directory should be cleaned out automatically
by another script.
opendir my $REPO, $repodir or die "Unable to open dir $repodir:$!\n";

while (defined($statfile = readdir($REPO))) {
 next unless -f File::Spec->catfile($repodir, $statfile);

 # open each status file and read in the one-line status report
 open my $STAT, File::Spec->catfile($repodir, $statfile)
 or die "Unable to open $statfile:$!\n";

 chomp($report = <$STAT>);

 my ($hostname, $result, $details) = split(' ', $report, 3);

 warn "$statfile said it was generated by $hostname!\n"
 if ($hostname ne $statfile);

 # hostname is no longer considered missing
 delete $missing{$hostname};

 # populate these hashes based on success or failure reported
 if ($result eq 'success') {
 $success{$hostname} = $details;
 }
 else {
 $fail{$hostname} = $details;
 }
 close $STAT;
 # we could remove the $statfile here to clean up for the
 # next night's run, but only if that works in your setup
}
closedir $REPO;

construct a useful subject for our mail message
my $subject;
if (scalar keys %success == $machines) {
 $subject = "[report] Success: $machines";
}
elsif (scalar keys %fail == $machines or
 scalar keys %missing >= $machines) {
 $subject = "[report] Fail: $machines";
}
else {
 $subject
 = '[report] Partial: '
 . keys(%success)
 . ' ACK, ' .
 keys(%fail) . ' NACK'
 . ((%missing) ? ', ' . keys(%missing) . ' MIA' : '');
}

create the body of the message
my $body = "Run report from $0 on " . scalar localtime(time) . "\n";

if (keys %success) {
 $body .= "\n==Succeeded==\n";
 foreach my $hostname (sort keys %success) {
 $body .= "$hostname: $success{$hostname}\n";
 }
}

if (keys %fail) {
 $body .= "\n==Failed==\n";
 foreach my $hostname (sort keys %fail) {
 $body .= "$hostname: $fail{$hostname}\n";
 }
}

if (keys %missing) {
 $body .= "\n==Missing==\n";
 $body .= wrap('', '', join(' ', sort keys %missing)), "\n";
}

my $message = Email::Simple->create(
 header => [
 From => $reportfromaddr,
 To => $reporttoaddr,
 Subject => $subject,
],
 body => $body,
);

my $sender = Email::Send->new({ mailer => 'Sendmail' });
$Email::Send::Sendmail::SENDMAIL = '/usr/sbin/sendmail';
$sender->send($message) or die "Unable to send message!\n";
The code first reads in a list of the machine names that will be
 participating in this scheme. Later, it will use a hash based on this list
 to check whether there are any machines that have not placed a file in the
 central reporting directory. We’ll open each file in this directory and
 extract the status information. Once we’ve collated the results, we
 construct a mail message and send it out.
Here’s an example of the resulting message:
Date: Mon, 14 Apr 2008 13:06:09 −0400 (EDT)
Message-Id: <200804141706.NAA08780@example.com>
Subject: [report] Partial: 3 ACK, 4 NACK, 1 MIA
To: project@example.com
From: project@example.com

Run report from reportscript on Mon Apr 14 13:06:08 2008

==Succeeded==
barney: computed 23123 oogatrons
betty: computed 6745634 oogatrons
fred: computed 56344 oogatrons

==Failed==
bambam: computed 0 oogatrons
dino: computed 0 oogatrons
pebbles: computed 0 oogatrons
wilma: computed 0 oogatrons

==Missing==
mrslate
Another way to collate results like this is to create a custom logging
 daemon and have each machine report in over a network socket. Let’s look at
 the code for the server first. This example reuses code from the previous
 example. We’ll talk about the important new bits right after you see the
 listing:
use IO::Socket;
use Text::Wrap; # used to make the output prettier

the list of machines reporting in
my $repolist = '/project/machinelist';

the port number clients should connect to
my $serverport = '9967';

my %success; # the succesful hosts
my %fail; # the hosts that failed
my %missing; # the list of hosts missing in action (no reports)

load the machine list using a hash slice (end result is a hash
of the form %missing = { key1 => undef, key2 => undef, ...})
@missing{ loadmachines() } = ();
my $machines = keys %missing;

set up our side of the socket
my $reserver = IO::Socket::INET->new(
 LocalPort => $serverport,
 Proto => "tcp",
 Type => SOCK_STREAM,
 Listen => 5,
 Reuse => 1
) or die "Unable to build our socket half: $!\n";

start listening on it for connects
while (my ($connectsock, $connectaddr) = $reserver->accept()) {

 # the name of the client that has connected to us
 my $connectname
 = gethostbyaddr((sockaddr_in($connectaddr))[1], AF_INET);

 chomp(my $report = $connectsock->getline);

 my ($hostname, $result, $details) = split(' ', $report, 3);

 # if we've been told to dump our info, print out a ready-to-go mail
 # message and reinitialize all of our hashes/counters
 if ($hostname eq 'DUMPNOW') {
 printmail($connectsock);
 close $connectsock;
 undef %success;
 undef %fail;
 undef %missing;
 @missing{ loadmachines() } = (); # reload the machine list
 my $machines = keys %missing;
 next;
 }

 warn "$connectname said it was generated by $hostname!\n"
 if ($hostname ne $connectname);

 delete $missing{$hostname};

 if ($result eq 'success') {
 $success{$hostname} = $details;
 }
 else {
 $fail{$hostname} = $details;
 }
 close $connectsock;
}
close $reserver;

Prints a ready-to-go mail message. The first line is the subject,
and subsequent lines are all the body of the message.
sub printmail {
 my $socket = shift;

 my $subject;
 if (keys %success == $machines) {
 $subject = "[report] Success: $machines";
 }
 elsif (keys %fail == $machines or keys %missing >= $machines) {
 $subject = "[report] Fail: $machines";
 }
 else {
 $subject
 = '[report] Partial: '
 . keys(%success)
 . ' ACK, ' .
 keys(%fail) . " NACK"
 . ((%missing) ? ', ' . keys(%missing) . ' MIA' : '');
 }

 print $socket "$subject\n";

 print $socket "Run report from $0 on " . scalar localtime(time) . "\n";

 if (keys %success) {
 print $socket "\n==Succeeded==\n";
 foreach my $hostname (sort keys %success) {
 print $socket "$hostname: $success{$hostname}\n";
 }
 }

 if (keys %fail) {
 print $socket "\n==Failed==\n";
 foreach my $hostname (sort keys %fail) {
 print $socket "$hostname: $fail{$hostname}\n";
 }
 }

 if (keys %missing) {
 print $socket "\n==Missing==\n";
 print $socket wrap('', '', join(' ', sort keys %missing)), "\n";
 }
}

loads the list of machines from the given file
sub loadmachines {
 my @missing;
 open my $LIST, '<', $repolist or die "Unable to open list $repolist:$!\n";
 while (<$LIST>) {
 chomp;
 push(@missing, $_);
 }
 close $LIST;
 return @missing;
}
Besides moving some of the code sections to their own subroutines, the key
 change is the addition of the networking code. The
 IO::Socket module makes the process of
 opening and using sockets pretty painless. Sockets are usually described
 using a telephone metaphor. We start by setting up our side of the socket
 (IO::Socket->new()),
 essentially turning on our phone, and then wait for a call from a network
 client (IO::Socket->accept()). Our
 program will pause (or “block”) until a connection request comes in. As soon
 as it arrives, we note the name of the connecting client. We then read a
 line of input from the socket.
This line of input is expected to look just like those we read from the
 individual files in our previous example. The one difference is the magic
 hostname DUMPNOW. If we see this
 hostname, we print the subject and body of a ready-to-mail message to the
 connecting client and reset all of our counters and hash tables. The client
 is then responsible for actually sending the mail it receives from the
 server. Let’s look at our sample client and what it can do with this
 message:
use IO::Socket;

the port number clients should connect to
my $serverport = '9967';

the name of the server
my $servername = 'reportserver';

name-to-IP address mapping
my $serveraddr = inet_ntoa(scalar gethostbyname($servername));
my $reportfromaddr = 'project@example.com';
my $reporttoaddr = 'project@example.com';

my $reserver = IO::Socket::INET->new(
 PeerAddr => $serveraddr,
 PeerPort => $serverport,
 Proto => 'tcp',
 Type => SOCK_STREAM
) or die "Unable to build our socket half: $!\n";

if ($ARGV[0] ne '-m') {
 print $reserver $ARGV[0];
}
else {

 # These 'use' statements will load their respective modules when the
 # script starts even if we don't get to this code block. We could use
 # require/import instead (like we did in Chapter 3), but the goal here
 # is to just make it clear that these modules come into play when we
 # use the -m switch.

 use Email::Simple;
 use Email::Simple::Creator;
 use Email::Send;

 print $reserver "DUMPNOW\n";
 chomp(my $subject = <$reserver>);
 my $body = join('', <$reserver>);

 my $message = Email::Simple->create(
 header => [
 From => $reportfromaddr,
 To => $reporttoaddr,
 Subject => $subject,
],
 body => $body,
);

 my $sender = Email::Send->new({ mailer => 'Sendmail' });
 $Email::Send::Sendmail::SENDMAIL = '/usr/sbin/sendmail';
 $sender->send($message) or die "Unable to send message!\n";
}

close $reserver;
First, we open up a socket to the server. In most cases, we pass it our
 status information (received on the command line as $ARGV[0], i.e., script.pl "dino fail
 computed 0 oogatrons") and drop the connection. If we were
 really going to set up a logging client/server like this, we would probably
 encapsulate this client code in a subroutine and call it from within a much
 larger program after its processing had been completed.
If this script is passed an -m flag, it
 instead sends “DUMPNOW” to the server and reads the subject line and body
 returned by the server. Then this output is fed to Email::Send and sent out via mail using the same code we saw
 earlier.
To limit the example code size and keep the discussion on track, the
 server and client code presented here is as bare bones as possible. There’s
 no error or input checking, access control or authentication (anyone on the
 Net who can get to our server can feed and receive data from it), persistent
 storage (what if the machine goes down?), or any of a number of other
 routine precautions in place. On top of this, we can only handle a single
 request at a time. If a client should stall in the middle of a transaction,
 we’re sunk. For more sophisticated server examples, I recommend you check
 out the client/server treatments in Lincoln Stein’s Network Programming With
 Perl (Addison-Wesley) and Tom Christiansen and Nathan Torkington’s
 Perl
 Cookbook
 (O’Reilly). Jochen Wiedmann’s
 Net::Daemon module will also help you
 write more sophisticated daemon programs.
Now that we’ve dealt with regulating the volume of mail sent, let’s move
 on to other common mistakes made when writing system administration programs
 that send mail.

Subject Line Waste

A Subject line is a terrible thing to waste. When sending mail automatically, it is possible to
 generate a useful Subject line on the fly for
 each message. This means there is very little excuse to leave someone with a
 mailbox that looks like this:
Super-User File history database merge report
Super-User File history database merge report
Super-User File history database merge report
Super-User File history database merge report
Super-User File history database merge report
Super-User File history database merge report
Super-User File history database merge report
when it could look like this:
Super-User Backup OK, 1 tape, 1.400 GB written.
Super-User Backup OK, 1 tape, 1.768 GB written.
Super-User Backup OK, 1 tape, 2.294 GB written.
Super-User Backup OK, 1 tape, 2.817 GB written.
Super-User Backup OK, 1 tape, 3.438 GB written.
Super-User Backup OK, 3 tapes, 75.40 GB written.
or even like this:
Super-User Backup of Hostname OK, 1 tape, 1.400 GB written.
Super-User Backup of Hostname:/usr OK, 1 tape, 1.768 GB written.
Your Subject line should provide a concise
 and explicit summary of the situation. It should be very clear from that line
 whether the program generating the message is reporting success, failure, or
 something in between. A little more programming effort will pay off handsomely
 in reduced time reading mail.

Insufficient Information in the Message Body

As with the Subject line, in the message body a little specificity goes a long way. If your
 script is going to complain about problems or error conditions via email, it
 should strive to provide certain pieces of information. They boil down to the
 canonical questions of journalism:
	Who?
	Which script is complaining? Include the contents of $0 (if you haven’t set it explicitly)
 to show the full path to the current script. Mention the version of
 your script if it has one.

	Where?
	Give some indication of the place in your script where trouble
 occurred. The Perl function
 caller() returns all sorts of
 useful information for this purpose:
Note: what caller() returns can be specific to a
particular Perl version, so be sure to see the perlfunc docs
($package, $filename, $line, $subroutine, $hasargs, $wantarray,
 $evaltext, $is_require) = caller($frames);
$frames is the number of stack
 frames (if you’ve called subroutines from within subroutines)
 desired. Most often you’ll want $frames set to 1.
 Here’s a sample list returned by the caller() function when it’s called in the middle of
 the server code from our last full code example:
('main','repserver',32,'main::printmail',1,undef)
This shows that the script was in the main package while running from the filename repserver at line 32 in the script. At
 that point it was executing code in the main::printmail subroutine (which has arguments and
 has not been called in a list context).
If you want to be even kinder to the people who will read your
 mail, you can pair caller() up
 with the
 Carp module shipped with Perl to
 output diagnostic information that is (at best guess) most relevant
 to the issue at hand. For our purposes, we’ll want to use the
 longmess() routine,
 explicitly imported because the module does not export it by
 default:
use Carp qw(longmess);
longmess() provides the
 contents of the warning message that would be produced if one called
 a warn()-like substitute called
 cluck(). In addition to
 printing out this warning, it also produces a whole stack backtrace
 that can be helpful for determining exactly where in a long program
 things failed.

	When?
	Describe the program state at the time of the error. For instance,
 what was the last line of input read?

	Why?
	If you can, answer the reader’s unspoken question: “Why are you
 bothering me with a mail message?” The answer may be as simple as
 “the accounting data has not been fully collated,” “DNS service is
 not available now,” or “the machine room is on fire.” This provides
 context to the reader (and perhaps some motivation to
 investigate).

	What?
	Finally, don’t forget to mention what went wrong in the first
 place.

Here’s some simple Perl code that covers all of these bases:
use Text::Wrap;
use Carp qw(longmess);

sub problemreport {

 # $shortcontext should be a one-line description of the problem
 # $usercontext should be a detailed description of the problem
 # $nextstep should be the best suggestion for how to remedy the problem
 my ($shortcontext, $usercontext, $nextstep) = @_;
 my ($filename, $line, $subroutine) = (caller(1))[1, 2, 3];
 my $report = '';

 $report .= "Problem with $filename: $shortcontext\n";
 $report .= "*** Problem report for $filename ***\n\n";
 $report .= fill('', ' ', "- Problem: $usercontext") . "\n\n";
 $report
 .= "- Location: line $line of file $filename in " . "$subroutine\n\n";
 $report .= longmess('Stack trace ') . "\n";
 $report .= '- Occurred: ' . scalar localtime(time) . "\n\n";
 $report .= "- Next step: $nextstep\n";

 return $report;
}

sub fireperson {
 my $report = problemreport('the computer is on fire', <<EOR, <<EON);
While running the accounting report, smoke started pouring out of the
back of the machine. This occurred right after we processed the
pension plan.
EOR
Please put fire out before continuing.
EON

 print $report;

}

fireperson();
problemreport() will output a problem
 report, subject line first, suitable for feeding to Email::Send as per our previous examples. fireperson() is an example test of this subroutine.
Note
One last tip: if you are going to write code that sends mail in response
 to mail you receive (e.g., an auto-responder of some sort), you should
 definitely read RFC 3834, Recommendations for Automatic Responses
 to Electronic Mail.

Now that we’ve explored sending mail, let’s take a look at the other edge of
 the sword.

[61] This assumes that you’ve decided email is still the best communication
 method for your purposes. When making that decision, you should take into
 account that it can be subject to large delays, isn’t generally secure,
 etc.

[62] One good tool (under Unix) for the central reporting of status is
 syslog (or one of its descendants, such as
 syslog-ng). To be able to use this tool
 effectively in this context, however, you need to be able to control
 its configuration on the receiving end. That’s not always an option,
 for any number of technical and administrative reasons, so this
 chapter presents another method. For more info on dealing with
 syslog logs, see Chapter 10.

[63] Another good rendezvous spot for status information like this
 would be in a database. A third possibility would be to have all of
 the mail sent to another mailbox. You could then have a separate
 Perl program retrieve the messages via POP3 and post-process
 them.

Fetching Mail

The attraction of being able to send mail programmatically is probably pretty easy to see,
 but it may not be as clear why you might want to be able to fetch or receive mail
 with similar mechanical ease. One reason is mail server testing. If you run a mail
 server, this capability lets you test that server’s functionality beyond the usual
 sending tests. Ideally you would test mail fetching as if you were one of your
 server’s clients. I also recommend doing round-trip tests where you attempt both to
 send a piece of mail through your server and to retrieve it again. This type of
 check isn’t perfect by any means because mail paths aren’t always symmetric, but
 it’s much better than just checking whether your MTA is still listening on a
 socket.
Even if you don’t run any mail servers, there are still good reasons for knowing
 how to fetch mail. For example, if you think you can do a better job of filtering
 spam than your ISP does, you may want to pull down all incoming mail, check it, and
 then act on the spam messages before your usual mail-reading client sees them.
 Similarly, if you want to do more sophisticated filtering or processing of your mail
 than is possible at your ISP, you could use the information in this section to fetch
 the mail and work on it locally.
Talking POP3 to Fetch Mail

The POP3 protocol (documented in RFC 1939) is relatively simple, so we’ll start there. Here’s the
 usual set of steps a POP3 client will perform each time it connects to a POP3
 server:
	Connect and authenticate as a known user.

	See if there is new mail (more on this step in a bit).

	Request the contents of the oldest unseen message and squirrel it away
 on the local machine.

	Request that the server delete the message just fetched (the server
 marks the message for deletion).

	Repeat steps 3 and 4 for every remaining new message.

	Signal that it is finished with the connection and close it. The
 server actually removes the
 messages marked for deletion in step 4.

One of the pleasant things about this protocol is its simplicity: those six
 steps show almost all of the operations available.[64] There are a couple of details about those operations that need to be
 mentioned, though.
First, how does the client determine if there are new messages? If the client
 always requests that the server delete the messages it downloads (as in step 4),
 the answer is easy: any messages on the server at connection time are new. But a
 client doesn’t always want the mail messages to be deleted right after
 downloading them; sometimes it makes more sense to leave them in place. This is
 most often the case when the user wants to have two mail readers look at the
 same mail (e.g., home and office machines). In this case, one of the clients
 downloads the mail; the other both downloads it and asks the server to delete
 those messages.
The client that doesn’t ask the server to delete the mail needs a way to
 remember which messages it has seen before. This is usually handled with an
 RFC-optional command called UIDL. The UIDL command asks the server to return a
 “unique-id listing” for a single message or each message on the server. The
 client caches these unique identifiers and later downloads only the messages
 whose UIDLs are not in the cache.
There are a number of POP3 Perl modules out there that can make using POP3
 really simple. The one I tend to use most is Mail::POP3Client, because it makes SSL connections easy (by default POP3 sends
 passwords in the clear) and provides methods that mostly map directly to the
 names of the operations found in RFC 1939. That “mostly” part is my one quibble
 with this module, because sometimes it makes up its own names for things that
 have perfectly good (but different) names in the RFC. For example, it provides
 Retrieve() (which is an alias for
 HeadAndBody()), while RFC 1939 calls that method RETR.
 I’d prefer that the module’s methods could be directly inferred from the RFC,
 even as an option.
Here’s some sample code that shows how to connect securely, display a count of
 messages in a mailbox, and print out the contents of its first message:
use Mail::POP3Client;

my $pop3 = new Mail::POP3Client(
 USER => 'user',
 PASSWORD => 'secretsquirrel',
 HOST => 'pop3.example.edu',
 USESSL => 'true',
);

die 'Connection failed: ' . $pop3->Message() . "\n"
 if $pop3->Count() == −1;

print 'Number of messages in this mailbox: ' . $pop3->Count() . "\n\n";
print "The first message looks like this: \n" . $pop3->Retrieve(1) . "\n";

$pop3->Close();
There’s not much to this code as written because there doesn’t have to be
 much. If we wanted to extend it, we could call Delete(message #) to mark a message for deletion or Uidl() if we wanted to get back UIDLs for all
 messages or a particular one. Both the Head()
 and HeadAndBody() methods will return either
 a scalar or an array based on their calling context, so it’s easy to get a mail
 header or message in the form desired by packages like
 Mail::SpamAssassin, discussed later in this
 chapter.

Talking IMAP4rev1 to Fetch Mail

IMAP4rev1, called IMAP4 from this point on, is a significantly more powerful (read:
 complex) protocol documented in RFC 3501. Its basic model is different from that of POP3. With POP3
 it is assumed that the POP3 client polls the POP3 server and downloads mail
 periodically, while with IMAP4 a client connects to a server for the duration of
 the mail reading session.[65] With POP3 the client is expected to handle all of the sophisticated
 work, like deciding what messages to download, while with IMAP4 the discussion
 between the server and the client is much richer, so the protocol has to be
 considerably smarter. Smarter how? Here are some of the characteristics of
 IMAP4:
	It can deal with a whole hierarchical structure of mail folders and
 the contents of each folder. According to RFC 3051, “IMAP4rev1 includes operations for creating,
 deleting, and renaming mailboxes, checking for new messages, permanently
 removing messages, setting and clearing flags, RFC 2822 and RFC 2045 parsing, searching, and selective
 fetching of message attributes, texts, and portions thereof.”

	It has a much more sophisticated understanding of the structure of an
 individual mail message. POP3 lets us grab a mail message’s headers or
 the headers plus the first N lines of the message
 body. IMAP4 lets us ask for just “the text part of the message” in
 messages that have lots of attachments and doodads. It does this by
 building MIME into the official specification.

	It lets a client send a whole bunch of commands to the server at once
 and receive the results back in whatever fashion the server chooses to
 send them. This is different from the standard process of having a
 client send a command and then wait for the server to respond before it
 can send a second command. Each IMAP4 command and response is prefaced
 with a unique “tag” that allows both the client and the server to keep
 track of what has been asked and answered.

	It has a “disconnected mode” that allows clients to connect to a
 server, cache as much information as they need, and then disconnect. The
 user can then potentially operate on that cache as if the connection was
 still in place. When the connection returns, the client can play the
 changes made to the local mail store back to the server and the server
 will catch the client up on what happened while the client was out of
 touch. This mode allows you to sit on a plane without network access,
 deleting and filing mail, later to have those changes be reflected on
 the server once you get back on the network.

With all of this power comes the price of complexity. You won’t want to do
 much IMAP4 programming without RFC 3501 close at hand. Even that only gets you
 so far, because different server authors have decided to implement certain edge
 cases differently. You may have to play around a bit to get the results you want
 when it comes to more advanced IMAP4 programming.
For the example code we’re about to see, I’ll be using my current preferred
 IMAP module,
 Mail::IMAPClient (originally by David J. Kernen, rewritten and now maintained by Mark
 Overmeer). This is the same module that forms the basis of the superb
 imapsync program, a great tool for migrating data from one IMAP4 server to
 another. In addition to imapsync’s vote of confidence, I
 like this module because it is mostly complete when it comes to features while
 still offering the ability to send raw IMAP4 commands should it become
 necessary. The other module that I would consider looking at is
 Mail::IMAPTalk by Rob Mueller, the primary developer behind Fastmail.fm. Even though it hasn’t been updated in a few years, the
 module’s author assures me that the current release still works well and is in
 active use.
For our first IMAP4 example, here’s some code that connects (securely) to a
 user’s mailbox, finds everything that was previously labeled as spam
 by SpamAssassin (it adds the header X-Spam-Flag: YES), and moves those messages to a
 SPAM folder. We’ll start with connecting to the IMAP
 server:
use IO::Socket::SSL;
use Mail::IMAPClient;

my $s = IO::Socket::SSL->new(PeerAddr =>'imap.example.com',
 PeerPort => '993',
 Proto => 'tcp');
die $@ unless defined $s;

my $m = Mail::IMAPClient->new(User => 'user', Socket=>$s,
 Password => 'topsecret');
Mail::IMAPClient
 does not have SSL built-in in the same way that Mail::POP3Client does, so
 we’re forced to construct an SSL-protected socket by hand and pass it to
 Mail::IMAPClient. Without specifying this
 connection, all communication, including the password, would be sent in clear
 text.
Chained to an Old Version
If you rely on
 imapsync, you may find yourself in the unfortunate
 position of having to keep an old version of Mail::IMAPClient around because, as of this writing,
 imapsync doesn’t yet completely work with the 3.x
 rewrite of
 Mail::IMAPClient. If this is still the
 case when you read this text, you are going to find that the code in this
 section won’t work as written. There are two non-obvious changes of the
 hair-pulling kind that you’ll need to make if you are going to use your own
 secure socket.
First, Mail::IMAPClient doesn’t
 properly handle the greeting that comes back from the server. You’ll need to
 “eat” the greeting yourself right after the socket is created using code
 like this:
my $greeting = <$s>;
my ($id, $answer) = split /\s+/, $greeting;
die "connect problem: $greeting" if $answer ne 'OK';
Second, Mail::IMAPClient doesn’t know
 that it is connected and doesn’t automatically initiate a login sequence, so
 the following is necessary right after the call to new():
$m->State(Mail::IMAPClient::Connected());
$m->login() or die 'login(): ' . $m->LastError();
Both of these issues get fixed in the 3.x versions of Mail::IMAPClient, so hopefully the module will
 play nicely with imapsync in the future.
STOP THE PRESSES: Literally as this book was being produced, a set of
 patches that purport to fix a number
 of the major incompatibilities with the latest Mail::IMAPClient version came across the
 imapsync mailing list. Looks like hope is in
 sight—perhaps by the time you have the chance to read this sidebar it will
 be a non-issue. The moral of the story: sometimes an application you use can
 lock you into a specific version of a Perl module.[66]

Once connected, the first thing one typically does is tell the server which
 folder to operate on. In this case, we’ll select the user’s
 INBOX:
$m->select('INBOX');
Now let’s get to work and look for all of the messages in the
 INBOX with the X-Spam-Flag header set to YES:
my @spammsgs = $m->search(qw(HEADER X-Spam-Flag YES));
die $@ if $@;
@spammsgs now contains the list of messages
 we want to move, so we move each one in turn, close the folder, and log out of
 the server:
foreach my $msg (@spammsgs){
 $m->move('SPAM', $msg) or die 'move failed: '.$m->LastError;
}
$m->close(); # expunges currently selected folder
$m->logout;
There’s a hidden detail in the last two lines of code that I feel compelled to
 mention. You might remember from the POP3 discussion that we talked about
 messages being “marked as deleted.” The same tombstoning process takes place
 here as well. Deletes are always a two-step process in IMAP4: we first flag
 messages as \Deleted, then expunge messages
 marked with that flag. When we requested that a message be moved, the server
 copied the message to the new folder and marked the message in the source folder
 as being deleted. Ordinarily you would need to expunge() the source folder to actually remove the message, but
 RFC 3501 says that performing a CLOSE
 operation on a folder implicitly expunges that folder.
Let’s look at one more IMAP4 example that will offer a good segue into our
 next section on processing mail. Earlier in this section we mentioned IMAP4’s
 ability to work with a message’s component MIME parts. Here’s some code that
 demonstrates this at work. To save a tree or two of book paper, I’ll leave out
 the initial module load, object creation, secure connection to the server, and
 mailbox selection code, because it’s exactly the same as what we’ve already
 seen:
my @digests = $m->search(qw(SUBJECT digest));

foreach my $msg (@digests) {

 my $struct = $m->get_bodystructure($msg);
 next unless defined $struct;

 # Messages in a mailbox get assigned both a sequence number and
 # a unique identifier. By default Mail::IMAPClient works with UIDs.
 print "Message with UID $msg (Content-type: ",$struct->bodytype,'/',
 $struct->bodysubtype,
 ") has this structure:\n\t",
 join("\n\t",$struct->parts) ,"\n\n";
}

$m->logout;
This code searches for all of the messages in the currently selected folder
 that have “digest” in the Subject line. Then
 the loop examines the structure of each message and prints the MIME parts of
 each. Here’s some sample output for two messages in my
 INBOX:
Message with UID 2457 (Content-type: TEXT/PLAIN) has this structure:
 HEAD
 1

Message with UID 29691 (Content-type: MULTIPART/MIXED) has this structure:
 1
 2
 3
 3.1
 3.1.HEAD
 3.1.1
 3.1.2
 3.2
 3.2.HEAD
 3.2.1
 3.2.2
 3.3
 3.3.HEAD
 3.3.1
 3.3.2
 4
Once you know the MIME part you’re looking for, you can call bodypart_string() with the message UID and the
 MIME part number to retrieve it. For example, the following:
print $m->bodypart_string(29691,'4');
prints out the footer of the message with UID 29691:
Perl-Win32-Database mailing list
 Perl-Win32-Database@listserv.ActiveState.com
 To unsubscribe: http://listserv.ActiveState.com/mailman/mysubs
Note
Mail::IMAPClient uses the Parse::RecDescent module to take apart MIME
 messages. Its parser works most of the time, but I have found that some
 messages cause it to malfunction. If you find yourself doing a good deal of
 MIME-related mail processing, you may want to call on one of the dedicated
 MIME-processing modules, such as Email::MIME, or even use the Mail::IMAPTalk module mentioned earlier. We’ll see an example
 of using Email::MIME in the next
 section.

This discussion of extracting parts of messages leads us right into our next subject.

[64] One operation we’re not going to discuss that you may want to use at
 some point is the RFC-optional TOP
 command. It asks the server for the headers of a message plus the top
 N lines of the body of a message.

[65] Warning: there’s a little bit of hand waving going on in this
 statement, because IMAP4 has something known as “disconnected mode” that
 doesn’t fit this description. We’ll talk about that in just a
 moment.

[66] The local::lib module by Matt
 S. Trout, now maintained by Christopher Nehren, can help a
 considerable amount with module version lock-in like this.

Processing Mail

It is useful to be able to fetch mail, but that’s just the beginning. In this
 section we’ll explore what can be done with that mail once it has been
 transferred.
Let’s start with the basics and look at the tools available for the dissection of
 both a single mail message and an entire mailbox. For the first topic, we will again
 turn to modules provided by the Perl Email Project.
Note
In the first edition of this book the examples in this section used the
 Mail::Internet, Mail::Header, and Mail::Folder
 modules. I’ve switched to the modules from the Perl Email Project for
 consistency’s sake, but the first edition’s modules are all still viable
 (especially now that the first two are being updated regularly under the
 stewardship of Mark Overmeer). Mark is
 also the author of Mail::Box, a copiously
 featured package for mail handling. If the modules from the Perl Email Project
 don’t provide what you need, you should definitely take a look at Mail::Box.

Dissecting a Single Message

The Email::Simple
 module offers a convenient way to slice and dice the headers of
 an RFC 2822-compliant mail message. RFC 2822 dictates the format of a
 mail message, including the names of the acceptable header lines and their
 formats.
To use Email::Simple, feed it a scalar
 variable that contains a mail message:
use Email::Simple;

my $message = <<'EOM';
From user@example.edu Mon Aug 6 05:43:22 2007
Received: from localhost (localhost [127.0.0.1])
 by zimbra.example.edu (Postfix) with ESMTP id 6A39577490A
 for <dnb@example.edu>; Mon, 6 Aug 2007 05:43:22 −0400 (EDT)
Received: from zimbra.example.edu ([127.0.0.1])
 by localhost (zimbra.example.edu [127.0.0.1]) (amavisd-new, port 10024)
 with ESMTP id OIIgygSczEdt for <dnb@zimbra.example.edu>;
 Mon, 6 Aug 2007 05:43:22 −0400 (EDT)
Received: from amber.example.edu (amber.example.edu [192.168.16.51])
 by zimbra.example.edu (Postfix) with ESMTP id 2828A774909
 for <dnb@zimbra.example.edu>; Mon, 6 Aug 2007 05:43:22 −0400 (EDT)
Received: from chinese.example.edu ([192.168.16.212])
 by amber.example.edu with esmtps (TLSv1:DHE-RSA-AES256-SHA:256)
 (Exim 4.50)
 id 1IHzA6-0002GV-7g
 for dnb@example.edu; Mon, 06 Aug 2007 05:46:06 −0400
Date: Mon, 6 Aug 2007 05:46:06 −0400 (EDT)
From: My User <user@example.edu>
To: "David N. Blank-Edelman" <dnb@example.edu>
Subject: About mail server
Message-ID: <Pine.GSO.4.58.0708060544550.2793@chinese.example.edu>

Hi David,

Boy, that's a spiffy mail server you have there!

Best,

Your User
EOM

my $esimple = Email::Simple->new($message);
There are two methods on the $esimple
 object that you would typically call at this point: header('field') and body(). The body() method returns the body of the message, as
 you’d expect, but the header() method is a
 little more interesting. It returns either all of the headers with that field
 (if called in a list context), or the first one (if called in a scalar
 context):
my @received = $esimple->header('Received');
my $first_received = $esimple->header('Received');
One difference between Email::Simple and
 some other mail-parsing modules is that Email::Simple returns only the data for the header, and not the
 entire line from the mail including that header. For example:
print scalar $esimple->header('Date')
prints:
Mon, 6 Aug 2007 05:46:06 −0400 (EDT)
not:
Date: Mon, 6 Aug 2007 05:46:06 −0400 (EDT)
If for some reason you need to know which header fields are present in a
 message, the header_names() method will
 return that information.
The other kind of mail message dissection one often does beyond just
 header/body processing is the extraction of certain contents from the body of
 the message. In the case of a MIME-encoded message, for example, we may want to
 extract an attachment from the contents of the mail and save it as a different
 file. Here’s an example of using
 Email::MIME to that end:
use Email::MIME;
use File::Slurp qw(slurp write_file);

my $message = slurp('mime.txt');

my $parsed = Email::MIME->new($message);

foreach my $part ($parsed->parts) {
 if ($part->content_type =~ /^application\/pdf;/i){
 write_file ($part->filename, $part->body);
 }
}
This code uses slurp() to bring in the
 contents of a message stored in mime.txt and then parses it
 (this is done automatically by the new()
 method). We then iterate over each MIME part and decide whether it is a PDF file
 based on the MIME content type. If it is, we write that part of the message out
 to a file using the filename provided in the MIME header (or one autogenerated
 by Email::MIME if the sender didn’t specify a
 name). It is important to note that this code is less than ideal in at least two
 ways. First, it looks only at the top-level MIME parts in the message when
 looking for the attachment. That approach won’t work if the attachment is
 embedded in another part (e.g., when someone forwards the entire contents of a
 message, attachments included, as an attachment itself).[67] The second and much more serious problem with this code is that it
 trusts the filename as specified in the header. Real code would be much more
 paranoid (see the cautionary note in the following sidebar).
Don’t Cut Corners When Parsing Mail
Here’s a quick warning that should accompany all of the mail-parsing material
 that we’ve just covered. Parsing mail is tricky business for at least two
 reasons: the complexity of the data and “the bad guys.” Your code needs to
 be robust and complete.
Here’s a good example that demonstrates the first peril: many people write
 code that uses simple regular expressions to validate email addresses. Don’t
 be one of them. The RFC 2822 syntax is sufficiently complex that I can almost
 guarantee that some day your code will break if you cut corners like this.
 It is far better to use a tool such as the
 Email::Valid
 module, currently maintained by Ricardo Signes, or the
 Mail::Message::Field::* modules in the
 Mail::Box package. Look first to modules
 like
 Regexp::Common (e.g., the net module) for parsing IP addresses and so on. Packages like these can help you
 manage the complexity of the data. You can also use Perl’s -T switch (taint mode) to look carefully at
 how data is being passed around in your script.
As for “the bad guys,” they mostly appear when you’re parsing mail
 received by spammers and other nogoodniks. As Bill Cole, someone who has worked in the anti-spam community for over a
 decade, said to me in an email he gave me permission to publish:
Spammers toss all sorts of pathological garbage at filters, both as
 stupid accident and as conscious attack. Spam filtering is no place to
 assume that someone else has validated your input as meeting any sort of
 norm. You really need to protect yourself in any code that looks at
 email, because even if you are being shielded in principle by some other
 tool (e.g., MIMEDefang,
 sendmail, whatever) you have to assume that
 someday spam will start coming in that gets malicious content through
 that armor to your code.

Before we end this section, I’d like to give two examples of “deep” parsing of
 a message. For this kind of parsing, we’re going to take apart the message body
 itself. To keep things simple for the example, I’m going to assume that the
 message body is plain text and is not encoded in any way, as in the previous
 MIME examples. You should be able to use the modules mentioned earlier to
 whittle down a message to this point if you need to deal with more complex
 message formats.
For the first example, we’ll explore how to do keyword scanning efficiently. Let’s say it’s important to quarantine
 all messages that contain any words on a special “dirty words” list. The key to
 efficient scanning of a message text (especially when given a whole list of
 items) is to pass over the same text as few times as possible—ideally, only
 once. Sure, we could do this:
my @dirty_words = qw (sod ground soil earth filth mud shmutz);

foreach my $word (@dirty_words){
 return 'dirty' if ($body =~ /$word/is);
}
But that would drag the regular expression engine over the whole message again
 and again, and it would force the regexp engine to reparse/recompile the regexp
 each time. There are a number of ways to get around this problem, but one of the
 most efficient is to combine the strings using regular expression alternation.
 We could jam all of the words together, with pipe characters (|) separating them:
my $wordalt = join('|',@dirty_words);
my $regex = qr/$wordalt/is;

return 'dirty' if ($message =~ $regex);
That’s a bit better, but we can still go one step further. If you stare at
 your list of dirty words for a while, you’ll probably notice that they have some
 things in common (lexicographically).
 Several of them will start with the same letters, which means we could start
 optimizing the regexp using shorthand like so(d|il). Perl 5.10+’s regular expression engine will do some of
 this optimization for us. If you really have a need for speed and/or if you’re
 working with an earlier version of the Perl interpreter, you can use modules
 like Aaron Crane’s Text::Match::FastAlternatives or David Landgren’s Regexp::Assemble. The former is made exactly for the case we’re
 describing here and is even faster than the 5.10+ optimized regular expression
 engine. Regexp::Assemble isn’t as fast, but
 it has a number of additional features that may make it a good choice for more
 complicated tasks. Here’s a quick example of Text::Match::FastAlternatives in action:
use Text::Match::FastAlternatives;
use Email::Simple;
use File::Slurp qw(slurp);

my $message = slurp('message.txt');
my $esimple = Email::Simple->new($message);

my @dirty_words = qw (sod ground soil earth filth mud shmutz);

this gets much more impressive when the size of the list is huge
my $matcher = Text::Match::FastAlternatives->new(@dirty_words);

print 'dirty' if $matcher->match($esimple->body());
There are two important restrictions that should be mentioned when talking
 about Text::Match::FastAlternatives. First,
 it only works with data consisting of printable ASCII characters (a problem if
 you are scanning email messages that use a different character set); second, and
 more importantly, it only performs case-sensitive matches. If we wanted to catch
 both “filth” and “Filth,” we’d probably have to rewrite the last two lines of
 the code to look like this instead:
my $matcher = Text::Match::FastAlternatives->new(map { lc } @dirty_words);

print 'dirty' if $matcher->match(lc $esimple->body());
Text::Match::FastAlternatives
 usually gives enough of a speed boost to your program that you
 probably won’t mind having to downcase everything first.
So that’s looking for keywords. What if you wanted to find more sophisticated
 content? Sometimes it is useful to extract URIs from a message. As mentioned in
 the sidebar Don’t Cut Corners When Parsing Mail, Regexp::Common is one module that can make this
 task easier/safer:
use File::Slurp qw(slurp);
use Email::Simple;
use Regexp::Common qw /URI/;

my $esimple = Email::Simple->new(scalar slurp $ARGV[0]);
my $body = $esimple->body;

while ($body =~ /$RE{URI}{HTTP}{-keep}/g) {
 print "$1\n";
}
This code uses a regular expression from
 Regexp::Common to find all URIs in a message.
 The use of the -keep flag means we capture
 those URIs into $1. We’ll discuss something
 more interesting to do with the URIs a little later in this chapter.

Dissecting a Whole Mailbox

Taking this subject to the next level, where we slice and dice entire mailboxes, is
 straightforward. If our mail is stored in the classical Unix
 mbox, maildir, or mh format, we can
 use
 Email::Folder from the Perl Email Project (also currently maintained by Ricardo Signes). Even many common non-Unix mail agents, like Eudora, store their mail in classical Unix mbox format, so this module can be useful on multiple
 platforms.
The drill is very similar to the examples we’ve seen before:
use Email::Folder;

my $folder = Email::Folder->('FilenameOrDirectory');
The new() constructor takes the filename
 (for mbox format storage) or the directory
 where mail is stored (for the maildir and
 mh formats) to parse. It returns a
 folder object instance, which represents
 a mail folder containing a number of messages.[68] We can retrieve messages from that folder as
 Email::Simple objects. We can either retrieve
 all of the messages:
my @messages = $folder->messages;
or retrieve one message at a time:
foreach my $message ($folder->next_message){
 ... # do something with that message object
}
$message will contain an Email::Simple object instance. With this object
 instance, you can use all of the methods we just discussed. For example, if you
 need just the Subject
 header of the same message:
$subject = $message->header('Subject');
These methods can be chained, so the following code will get the Subject line for the next message in the
 mailbox:
$subject = $folder->next_message->header('Subject');
Email::Folder by itself is very
 basic.[69] If you need to do anything beyond simply dicing a folder, you should
 consider using the
 Mail::Box package mentioned earlier.
Into the Fray Again
Of all the material that was updated in this second edition of the book, the
 sections on spam turned out to be some of the most challenging. The war
 between spammers and the anti-spam community escalated to such an extent in
 the interim that the approach and tools presented in the first edition seem
 ridiculously naïve to me now, even though the advice I gave was good at the
 time.
Once upon a time, you could help fight the good fight by first identifying
 the origin of a message and then complaining to the ISP that sent the mail.
 However, in the current age, which is populated with legions of zombie
 machines herded into massive botnets doing spammers’ bidding, reporting one
 sending host just isn’t going to make an appreciable dent. The advice to locate and report the host is
 so outdated, it would be like someone telling you to be sure to keep the
 pointy part of your pike upright as you entered a modern battlefield.
Truth be told, when I first started to rewrite this section I wasn’t sure
 what Perl tools would be helpful, not just at the time I was writing it, but
 for the shelf life of this edition. It’s very hard to predict how the battle
 between good and evil will rage in the coming years, especially given how
 far things have progressed since the publication of the last edition. To
 figure out what to present to you, dear reader, I wound up turning to a
 group of people who I knew had some of the greatest expertise and experience
 in the anti-spam realm. They were kind enough to offer a slew of
 suggestions, many of which I’ve incorporated into the section and the rest of
 the chapter. Hopefully this will provide you with some best-practices advice
 that will serve you well for some time to come.

Dealing with Spam

So far in this chapter we’ve looked at general tools for slicing and dicing mail
 messages and briefly touched on some of the applications that could benefit from
 a pile of finely chopped message parts. One (unfortunately increasingly large)
 application domain for these techniques is that surrounding the handling of
 unsolicited commercial email, or “spam” for short.
SpamAssassin

As the sidebar
 mentions, dealing with spam from any angle has become a tricky
 business. Thus, it behooves us to bring to bear on the problem as much
 firepower as possible. Ideally, we’d like to use software assembled from the
 collective intelligence of lots of people working on the issue. The easiest
 way for us to do that is to do something unusual for this book and focus on
 how to program using just one Perl-based anti-spam tool: Apache
 SpamAssassin. The SpamAssassin Perl API is provided by
 the
 Mail::SpamAssassin set of modules. The
 API has stayed stable for the last five years and is likely to continue to
 be useful for quite a few more years to come. Another reason to look at this
 module is that it provides quite a few handy utility functions for mail
 processing. The package provides easy ways to decode HTML and MIME
 structures, extract readable URLs, perform blacklist lookups, and much more.
 This in itself makes it worth exploring.
Like most Perl modules that are indistinguishable from magic, Mail::SpamAssassin makes the hardest thing the
 easiest to do. Want to figure out whether a message is spam (according to
 SpamAssassin)? It’s this easy, though there is more going on here than meets
 the eye:
use Mail::SpamAssassin;
use File::Slurp qw(slurp);

my $spama = Mail::SpamAssassin->new();
my $message = $spama->parse(scalar slurp 'message.txt');
my $status = $spama->check($message);

print (($status->is_spam()) ? 'spammy!' : "hammy!" . "\n");

$status->finish();
$message->finish();
This code requires three steps to answer the spam/not spam question:
 create the Mail::SpamAssassin object, use
 it to parse a mail message into an object it can use, and then call the
 check() method from that object. We
 could actually do this in two steps if we eliminated the parse step and
 called check_message_text() instead of
 check(). The check_message_text() method will work on a plain mail
 message, but if we eliminate the parsing step we don’t get a cool message
 object that can be used later if we need to query or manipulate parts of the
 original message. Let’s look at some of the things we can do with that
 message object.
The first thing we can do is extract RFC 2822-related parts of the message, such as the headers. For
 example, to get a list of all of the Received headers, we can write:
use Mail::SpamAssassin;
use File::Slurp qw(slurp);

my $spama = Mail::SpamAssassin->new();
my $message = $spama->parse(scalar slurp 'message.txt');

my @received = $message->header('Received');
or, to retrieve only the last one (as opposed to the first one,
which most packages give you when called in a scalar context):
my $received = $message->header('Received');

$message->finish();
Mail::SpamAssassin can also help us
 extract MIME parts found in the message. For example, to print all the HTML
 parts of a message, we could write code like this:
use Mail::SpamAssassin;
use File::Slurp qw(slurp);

my $sa = Mail::SpamAssassin->new();
my $message = $sa->parse(scalar slurp 'mime.txt');
my @html_parts = $message->find_parts(qr(text/html), 1);

foreach my $part (@html_parts) {
 print @{ $part->raw() };
}

$message->finish();
Let’s talk for a second about the two highlighted lines, because we’ve
 already seen the others. The first line calls find_parts(). This method does a complete MIME parse of the
 message, walks the potentially complex structure of the message, and returns
 pointers (Mail::SpamAssassin::Message::Node objects, to be precise) to the parts that match the
 regular expression provided. The second parameter (1) tells the method to return only the individual parts
 found. Without that parameter, find_parts() will also return the containing parts should the
 desired type be found nested in some other part.
To see all of the parts of the message after a full parse has been
 completed (see the sidebar), we can call content_summary() on the object. This will return output that
 looks like this:
DB<1> x $message->content_summary();
0 'multipart/mixed'
1 'multipart/alternative,text/plain,text/html'
2 'application/pdf'
Parse As Little As Possible
One gotcha that you may encounter is that Mail::SpamAssassin doesn’t do a complete MIME parse of a
 message until it has no choice but to take that extra step. This can be
 confusing if you expect the parse()
 method to return an object that reflects a complete parse. Not so! It
 only initially parses the headers of a message.
This will throw you the first time you try to use content_summary() and don’t see all the
 parts you’d expect in a message. The easiest way to deal with this is to
 first do a find_parts(), perhaps
 something like this:
$message->find_parts(qr/./,1);
This unexpected behavior shows that this is a highly optimized
 spam-fighting tool, not just yet another general-purpose mail-parsing
 module. Ideally, you want messages to pass through Mail::SpamAssassin as quickly as possible
 so it can process high volumes of mail. To this end, the less
 work/parsing the module has to do initially per message, the
 better.

Once we’ve found the parts of a message that we need, we can print them in
 their raw form as we do in our sample code, decode them (e.g., from base64
 encoding), render them as text (e.g., for HTML parts), and so on.
Note
Right about now you may be experiencing some feelings of déjà vu,
 because it seems like we’ve already seen how to handle most of these
 parsing tasks using other modules from the Perl Email Project. You’re
 not imagining things; there is definitely some overlap between these two
 sets of mail-handling modules.
So how do you choose which mail-handling package to use? My
 inclination is to avoid mixing and matching modules from different
 packages. If you’re doing only generic mail parsing and don’t need
 anything that Mail::SpamAssassin
 provides, stick with the Email::
 modules. If you do need something anti-spam-related, you want to be
 paranoid about the input messages, and/or you want to use some of the
 convenience functions (like
 those we’re about to see), go with Mail::SpamAssassin.

We’ve just looked at the functionality provided to us if we parse() a message to receive a Mail::SpamAssassin::Message
 object, but it turns out that there are a number of benefits to
 check()ing a message as well. These
 benefits go beyond just the ability to decide whether or not a message is
 spam.
Running check() on a message object or
 check_message_text() on a plain-text
 message returns a Mail::SpamAssassin::PerMsgStatus
 object. We called $status->is_spam() earlier in this chapter to check
 whether the object was classified as spam, but there are other methods that
 we could call as well. Here are some of the ones I find most handy:
	
 get_content_preview()

	Returns a small, text-only excerpt from the first few lines
 of a message.

	
 get_decoded_body_text_array()

 get_decoded_stripped_body_text_array()

	Returns a message body with all encoded data (base64, etc.)
 decoded and all of the non-text parts (e.g., attachments)
 removed. The ..._stripped_...
 method will also try to render HTML message parts into their
 text equivalents.

	
 get_uri_list()

 get_uri_detail_list()

	Retrieves a list of the URIs mentioned in the message. The ..._detail_... method provides a
 data structure with more details about the URIs.

	
 get()

	Very similar to the header()
 functionality we’ve seen, but with a couple of helpful
 twists.

Let’s look at the URI-related methods in more detail.
There may be multiple reasons to extract all of the URIs found in a
 message. In the context of SpamAssassin, doing so offers another tool for
 spam detection. When sending spam
 related to products or services for sale over the Internet, spammers usually
 include URLs in the messages so people can go to the sites that sell their
 wares. If you extracted the URLs, you could then conceivably filter based on
 the URLs themselves. You could even look for the domains mentioned in those
 URLs and then, once you’ve identified a set of spammer’s domains, look for
 messages that contain them and deal with them accordingly. The SURBL blacklists are predicated on
 this idea (they list the domains extracted from known spam messages) and
 tend to be very effective. This is the use for URIs foreshadowed at the end
 of Dissecting a Single Message.
The get_uri_detail_list() method
 returns a data structure like this (from the documentation):
raw_uri => {
 types => { a => 1, img => 1, parsed => 1 },
 cleaned => [canonified_uri],
 anchor_text => ["click here", "no click here"],
 domains => { domain1 => 1, domain2 => 1 },
 }
The hash of a hash data structure requires us to do a little work to get
 the list of unique domains mentioned in the URIs, but it’s not that
 hard:
use Mail::SpamAssassin;
use File::Slurp qw(slurp);
use List::MoreUtils qw(uniq);

my $sa = Mail::SpamAssassin->new();
my $status = $sa->check_message_text(scalar slurp 'spam.txt');
my $uris = $status->get_uri_detail_list();

my @domains;

foreach my $uri (keys %{$uris}) {
 next if $uri =~ /^mailto:/;
 push(@domains, keys %{ $uris->{$uri}->{domains} });
}

print join("\n", uniq @domains);
Once you have a set of unique domains, you can look them up in a blacklist
 like those available at surbl.org.
 Each blacklisted domain is recorded as a DNS “A” resource record (hostname)
 entry under the surbl.org domain. This provides an easy
 way to check whether a domain has been blacklisted: simply prepend the
 domain name in question to multi.surbl.org (e.g.,
 makemoneyfast.com.multi.surbl.org) and performing a
 DNS lookup for the resulting hostname. This can be done using
 Net::DNS, as demonstrated in Chapter 5. If the hostname
 resolves, you can take action accordingly, because that domain is in the
 blacklist.
To finish this section, let’s briefly look at the
 get() method. To use get(), we first run check() on the message object or check_message_text() on the message. These methods each
 return a status object from which a get()
 method call can be made. The get() method
 extracts headers just as
 Email::Simple’s header() method does, but the additional parsing done by a
 check() gives it a few extra
 superpowers. For example, header('From')
 will return the From header from a
 message, but get('From:addr') takes an
 extra step and returns just the address part of that header. Likewise,
 get('From:name') will return just the
 “name” part of the header. For instance, if the header contains:
David Blank-Edelman <dnb@example.edu>
we can use the :addr form to return
 “dnb@example.edu” and the :name form to
 return “David Blank-Edelman”. The get()
 method also provides a set of pseudo-headers that can be queried. These are
 typically aggregates of other headers. For example, if you want to retrieve
 all of the stated recipients of a message (Bccs aside), using ToCc as
 the header name will get that list for you.
SpamAssassin allows you to configure “trusted” and “untrusted” hosts at
 install time. This helps it distinguish between hosts that are locally
 controlled and those in the big, bad, scary Internet for the purpose of
 determining how likely they are to contribute to the “spaminess” of a
 message. There are several get()
 pseudo-headers that return information
 based on this distinction, but I think the most interesting ones are
 X-Spam-Relays-Untrusted and X-Spam-Relays-Trusted. Here’s an example set of received headers from a real piece of
 spam:
Received: from smtp.abac.com (smtp.abac.com [208.137.248.30])
 by amber.example.edu (8.8.6/8.8.6) with ESMTP id FAA29389
 for <user@ccs.example.edu>; Tue, 2 Dec 1997 05:51:56 −0500 (EST)
Received: from smtp.abac.com (la-ppp-109.abac.com [209.60.248.109])
 by smtp.abac.com (8.8.7/8.8.7) with SMTP id CAA01384;
 Tue, 2 Dec 1997 02:53:33 −0800 (PST)
Received: from mailhost.nowhere.com (alt1.nowhere.com (208.137.887.15))
 by nowhere.com (8.8.5/8.6.5) with SMTP id GAA00064 for <>;
 Tue, 02 Dec 1997 01:49:32 −0600 (EST)
Asking for X-Spam-Relays-Untrusted
 gives us (slightly reformatted):
[ip=208.137.248.30 rdns=smtp.abac.com helo=smtp.
abac.com by=amber.example.edu ident= envfrom= intl=0 id=FAA29389 auth= msa=0]

[ip=209.60.248.109 rdns=la-ppp-109.abac.com helo=smtp.abac.com
by=smtp.abac.com ident= envfrom= intl=0 id=CAA01384 auth= msa=0]
SpamAssassin has parsed the headers into a form that makes it easy to see
 the inconsistencies (to put it charitably) between the information the
 sender presented to us and the actual origins of the message. This is most
 clear in the last line of the output, corresponding to the second Received header in the input, where the sender
 claimed to be from smtp.abac.com but instead was
 actually coming from (presumably) a dial-up line at la-ppp-109.abac.com.

Feedback loops

There’s another side to the spam discussion that often gets forgotten. We’ve just looked
 at how you deal with messages you’ve received to determine if they are spam.
 But what if you’re on the other side of the fence and want to avoid being
 labeled a spammer due to the mail you send?
Legitimate bulk email senders and people who run email systems, especially
 the large ones, actually have some goals in common. Both want people to
 receive the mail they have opted to receive, and neither wants to be part of
 a process that leaves the users feeling like they’ve received spam. The bulk
 emailer doesn’t want to send something the user does not want to receive,
 and the email system administrator doesn’t want to anger the users by
 continuing to deliver mail they don’t desire.
This common ground gives the two parties a reason to collaborate. One
 thing they can do is share information about which messages are considered
 to be spam, either because the service provider uses software that has
 tagged it as such, or because the recipient has actually pressed a mark this as spam button in her mail client. In
 either case, the sender will generally want to know that this has taken
 place so that the recipient’s address can be removed from its database, and
 so on. That’s where feedback loops come into play.
Some of the large email providers let bulk-email-sending companies
 subscribe to a feedback loop. This loop sends information back to the sender
 about the messages the email provider has received (from the bulk-email
 company) that were labeled as spam. The best collection of available
 feedback loops I know about at the time of this writing can be found in the
 Spamhaus FAQ mentioned in the references section at the end of this
 chapter.
You may be wondering what role Perl can play in all of this. A number of
 the big players in the arena got together and hashed out a standardized
 format for the reports that are sent as part of a feedback loop. This format
 is called the Abuse Reporting Format (ARF) and is documented in the draft
 specification also pointed to in the references section. It’s a MIME-based format that automated systems can use to send and
 receive this sort of spam report. The availability of this common format
 makes it easier to write Perl scripts that can parse incoming reports and
 act on them.
You may be saying “MIME? Great![70] We went over MIME parsing before, I know how to do that!” And if
 you said this, you wouldn’t be wrong. However, there are two specialized
 Perl packages that make handling ARF reports a little easier than rolling
 your own code based on the standard Perl MIME parsers. I’ll show you an
 example of parsing an ARF message using
 Email::ARF::Report, from the Perl Email Project. If you plan to send ARF messages, you may
 also want to look at
 MIME::ARF, by Steve Atkins (found at
 http://wordtothewise.com/resources/mimearf.html).
Just so we know what we’re dealing with, Table 8-1 shows the three mandatory parts of an
 ARF message. The example text comes from the ARF spec.
Table 8-1. ARF message structure
	
 Part

 	
 Contents

 	
 Example

	
 1

 	
 Human-readable information

 	
 This is an email abuse report for an email
message received from IP 10.67.41.167 on Thu, 8
Mar 2005 14:00:00 EDT. For more information
about this format please see
http://www.mipassoc.org/arf/.

	
 2

 	
 Machine-readable metadata

 	
 Feedback-Type: abuse
User-Agent: SomeGenerator/1.0
Version: 0.1

	
 3

 	
 Full copy of message or message headers

 	
 From: <somespammer@example.net>
Received: from mailserver.example.net
 (mailserver.example.net [10.67.41.167])
 by example.com with ESMTP id
 M63d4137594e46;
 Thu, 08 Mar 2005 14:00:00 −0400
To: <Undisclosed Recipients>
Subject: Earn money
MIME-Version: 1.0
Content-type: text/plain
Message-ID:
 8787KJKJ3K4J3K4J3K4J3.mail@example.net
Date: Thu, 02 Sep 2004 12:31:03 −0500

Spam Spam Spam
Spam Spam Spam
Spam Spam Spam

Please refer to the ARF spec to see these parts in the context of a full
 email message. Taking apart a message like this is pretty easy with Email::ARF::Report. Here’s example code that prints some information
 from the original message copied into an ARF report:
use Email::ARF::Report;
use File::Slurp qw(slurp);

my $message = slurp('arfsample1.txt');

my $report = Email::ARF::Report->new($message);

foreach my $header (qw(to date subject message-id)) {
 print ucfirst $header . ': '
 . $report->original_email->header($header) . "\n";
}
If this looks remarkably like the Email::Simple code we looked at earlier, that’s no
 coincidence. Email::ARF::Report parses an
 ARF message and provides methods to retrieve parts of that report. In this
 case we’re using the method original_email() to access the original message. original_email() is kind enough to return an
 Email::Simple
 object, so we can put to use all of our previous knowledge and call the
 header() method
 on that object as desired. Once we’ve extracted the information we need from
 the report, we can do whatever we like with that info (unsubscribe the user,
 etc.).
But spam is such an unpleasant subject. Let’s move on to a cheerier topic,
 such as interacting with users via email.

Support Mail Augmentation

Even if you don’t have a “help desk” at your site, you probably have some sort
 of support email address for user questions and problems. Email as a medium for
 support communications has certain advantages:
	It can be stored and tracked, unlike hallway conversations.

	It is asynchronous; the system administrator can read and answer mail
 during the more rational nighttime hours.

	It can be a unicast, multicast, or broadcast medium. If 14 people
 write in, it’s possible to respond to all of them simultaneously when
 the problem is resolved.

	It can easily be forwarded to someone else who might know the answer
 or have authority over that service domain.

These are all strong reasons to make email an integral part of any support
 relationship. However, email does have certain disadvantages:
	If there is a problem with your email system itself, or if the user is
 having email-related problems, another medium must be used.

	Users can and will type anything they want into an email message.
 There’s no guarantee that this message will contain the information you
 need to fix the problem or assist the user. You may not gain even a
 superficial understanding of the purpose of the email. This leads us to
 the conundrum we’ll attempt to address in this section.

My favorite support email of all time is reproduced in its entirety here, with
 only the name of the sender changed to protect the guilty:
Date: Sat, 28 Sep 1996 12:27:35 −0400 (EDT)
From: Special User <user@example.com>
To: systems@example.com
Subject: [Req. #9531] printer help

something is wrong and I have know idea what
If the user hadn’t mentioned “printer” in the subject of the mail, we would
 have had no clue where to begin and would probably have chalked the situation up
 to existential angst. Granted, this was perhaps an extreme example. More often,
 you’ll receive mail like this:
From: Another user <user2@example.com>
Subject: [Req #14563] broken macine
To: systems@example.com
Date: Wed, 11 Mar 1998 10:59:42 −0500 (EST)

There is something wrong with the following machine:

 krakatoa.example.com
A user does not send mail devoid of contextual content like this out of
 malice. I believe the root cause of these problems is an impedance mismatch
 between the user’s and the system administrator’s mental model of the computing
 environment.
For most users, the visible structure of the computing environment is limited
 to the client machine they are logged into, the nearby printer, and their
 storage (i.e., home directory). For a system administrator, the structure of the
 computing environment is considerably different. It consists of a set of servers
 providing services to clients, all of which may have a multitude of different
 peripheral devices. Each machine may have a different set of software installed
 and a different state (system load, configuration, etc.).
To users, the question “Which machine is having a problem?” may seem strange.
 They’re talking about the computer, the one they’re using
 now. Isn’t that obvious? To a system administrator, a
 request for “help with the printer” is equally odd; after
 all, there are likely many printers in his charge.
So too it goes with the specifics of a problem. System administrators around
 the world grit their teeth every day when they receive mail that says, “My
 machine isn’t working, can you help me?” They know “not working” could indicate
 a whole panoply of symptoms, each with its own array of causes. To a user that
 has experienced three screen freezes in the last week, however, “not working” is
 unambiguous.
One way to address this disconnect is to constrain the material sent in email.
 Some sites force the users to send in trouble reports using a custom support
 application or web form. The problem with this approach is that very few users
 enjoy engaging in a click-and-scroll fest just to report a problem or ask a
 question. The more pain is involved in the process, the less likely it is that
 someone will go to the trouble of using these mechanisms. It doesn’t matter how
 carefully constructed or beautifully designed your web form is if no one is
 willing to use it. Hallway requests will become the norm again. Back to square
 one?
Well, with the help of Perl, maybe not. Perl can help us augment normal mail
 receiving to assist us in the support process. One of the first steps in this
 process for a system administrator is the identification of locus: “Where is the
 problem? Which printer? Which machine?” And so on.
Let’s take a look at a program I call suss, which
 demonstrates the augmentation I have in mind in a simple fashion. It looks at an
 email message and attempts to guess the name of the machine associated with that
 message. The upshot of this is that we can often determine the hostname for the
 “My machine has a problem” category of email without having to engage in a
 second round of email with the vague user. That hostname is typically a good
 starting point in the troubleshooting process.
suss uses an extremely simple algorithm to guess the name of the machine in
 question (basically just a hash lookup for every word in the message). First it
 examines the message subject, then the body of the message, and finally it looks
 at the initial Received header on the
 message. Here’s a simplified version of the code that expects to be able to read
 an /etc/hosts file to determine the names of our
 hosts:[71]
use Email::Simple;
use List::MoreUtils qw(uniq);
use File::Slurp qw(slurp);
my $localdomain = ".example.edu";

read in our host file
open my $HOSTS, '<', '/ccs/etc/hosts' or die "Can't open hosts file\n";
my $machine;
my %machines;
while (defined($_ = <$HOSTS>)) {
 next if /^#/; # skip comments
 next if /^$/; # skip blank lines
 next if /monitor/i; # an example of a misleading host

 $machine = lc((split)[1]); # extract the first host name & downcase
 $machine =~ s/\Q$localdomain\E//oi; # remove our domain name
 $machines{$machine}++ unless $machines{$machine};
}
close $HOSTS;

parse the message
my $message = new Email::Simple(scalar slurp($ARGV[0]));

my @found;

check in the subject line
if (@found = check_part($message->header('Subject'), \%machines)) {
 print 'subject: ' . join(' ', @found) . "\n";
 exit;
}

check in the body of the message
if (@found = check_part($message->body, \%machines)) {
 print 'body: ' . join(' ', @found) . "\n";
 exit;
}

last resort: check the last Received line
my $received = (reverse $message->header('Received'))[0];
$received =~ s/\Q$localdomain\E//g;
if (@found = check_part($received, \%machines)) {
 print 'received: ' . join(' ', @found) . "\n";
}

find all unique matches from host lookup table in given part of message
sub check_part {
 my $part = shift; # the text from that message part
 my $machines = shift; # a reference to the machine lookup table

 $part =~ s/[^\w\s]//g;
 $part =~ s/\n/ /g;

 return uniq grep { exists $machines->{$_} } split(' ', lc $part);
}
One comment on this code: the simplicity of our word check becomes painfully
 apparent when we encounter perfectly reasonable hostnames like
 monitor in sentences like “My monitor is broken.” If
 you have hostnames that are likely to appear in support messages, you’ll either
 have to special-case them, as we do with next if /monitor/i;, or preferably create a
 more complicated parsing scheme.
Let’s take this code out for a spin. Here are two real support
 messages:
Received: from strontium.example.com (strontium.example.com [192.168.1.114])
 by mailhub.example.com (8.8.4/8.7.3) with ESMTP id RAA27043
 for <systems>; Thu, 29 Mar 2007 17:07:44 −0500 (EST)
From: User Person <user@example.com>
Received: (user@localhost)
 by strontium.example.com (8.8.4/8.6.4) id RAA10500
 for systems; Thu, 29 Mar 2007 17:07:41 −0500 (EST)
Message-Id: <199703272207.RAA10500@strontium.example.com>
Subject: [Req #11509] Monitor
To: systems@example.com
Date: Thu, 29 Mar 2007 17:07:40 −0500 (EST)

Hi,
My monitor is flickering a little bit and it is tiresome
whe working with it to much.
Is it possible to fix it or changing the monitor?

Thanks.

User.

Received: from example.com (user2@example.com [192.168.1.7])
 by mailhost.example.com (8.8.4/8.7.3) with SMTP id SAA00732
 for <systems@example.com>; Thu, 29 Mar 2007 18:34:54 −0500 (EST)
Date: Thu, 29 Mar 2007 18:34:54 −0500 (EST)
From: Another User <user2@example.com>
To: systems@example.com
Subject: [Req #11510] problems with two computers
Message-Id: <Pine.SUN.3.95.970327183117.23440A-100000@example.com>

In Jenolen (in room 292), there is a piece of a disk stuck in it. In intrepid,
there is a disk with no cover (or whatever you call that silver thing) stuck in
it. We tried to turn off intrepid, but it wouldn't work. We (the proctor on duty
and I) tried to get the disk piece out, but it didn't work. The proctor in charge
decided to put signs on them saying 'out of order'

AnotherUser
Aiming our code at these two messages yields:
received: strontium
and:
body: jenolen intrepid
Both hostname guesses were right on the money, and that’s with just a little
 bit of simple code. To take things one step further, let’s assume we got this
 email from a user who doesn’t realize we’re responsible for a herd of 30
 printers:
Received: from [192.168.1.118] (buggypeak.example.com [192.168.1.118])
 by mailhost.example.com (8.8.6/8.8.6) with SMTP id JAA16638
 for <systems>; Tue, 7 Aug 2007 09:07:15 −0400 (EDT)
Message-Id: <v02130502b1ecb78576a9@[192.168.1.118]>
Date: Tue, 7 Aug 2007 09:07:16 −0400
To: systems@example.com
From: user@example.com (Nice User)
Subject: [Req #15746] printer

Could someone please persuade my printer to behave and print like a nice printer
should? Thanks much :)

-Nice User.
Fortunately, we can use Perl and a basic observation to help us make an
 educated guess about which printer is causing the problem. Users tend to print
 to printers that are geographically close to the machines they are using at the
 time. If we can determine which machine the user sent the mail from, we can
 probably figure out which printer she’s using. There are many ways to retrieve a
 machine-to-printer mapping (e.g., from a separate file, from a field in the host
 database we mentioned in Chapter 5, or even a directory
 service from LDAP). Here’s some code that uses a simple hostname-to-associated printer database:
use Email::Simple;
use File::Slurp qw(slurp);
use DB_File;

my $localdomain = '.example.com';
my $printdb = 'printdb';

parse the message
my $message = new Email::Simple(scalar slurp $ARGV[0]);

check in the subject line
my $subject = $message->header('Subject');

if ($subject =~ /print(er)?/i) {

 # find sending machine
 my $received = (reverse $message->header('Received'))[0];
 my ($host) = $received =~ /\((\S+)\Q$localdomain\E \[/;

 tie my %printdb, 'DB_File', $printdb
 or die "Can't tie $printdb database:$!\n";

 print "Problem on $host may be with printer " . $printdb{$host} . ".\n";

 untie %printdb;

}
If the message mentions “print,” “printer,” or “printing” in its subject line,
 we pull out the hostname from the Received
 header. We know the format our mail hub uses for Received headers, so we can construct a regular expression to
 extract this information. (If this does not match your MTA’s format, you may
 have to fiddle with the regexp a little bit.) With the hostname in hand, we can
 look up the associated printer in a Berkeley DB database. The end result:
Problem on buggypeak may be with the printer called prints-charming.
If you take a moment to examine the fabric of your environment, you will see
 other ways to augment the receiving of your support email. The examples in this
 section were small and designed to get you thinking about the
 possibilities.
The suss program, with rules specific to your
 environment, could become a frontend to almost any kind of ticketing system.
 Combining it with the earlier concepts of using Perl to retrieve and parse mail
 would allow you to build a system that lets users send mail to a “catachall”
 address, such as “helpdesk@example.com,” where it’s automatically parsed. If
 there’s good confidence about the determination of the subject of the question
 (the
 Mail::SpamAssassin rules provide an example
 of that kind of scoring), the mail could automatically be forwarded to the
 person designated for handling that type of problem.
Perl gives you many ways to analyze your email, place it in a larger context,
 and then act upon that information. I’ll leave it to you to consider other kinds
 of help programs that read mail (perhaps mail sent by other programs) could
 provide you.

[67] You might think that looking for embedded attachments using recursive
 parts() calls or the subparts() method would be a good exercise
 to leave to the reader, but I’ll make it easier than that: there is a
 separate module called Email::MIME::Attachment::Stripper, also maintained by
 Ricardo Signes, that does this work for you.

[68] This folder representation does not depend on how the messages are
 actually stored, be they messages kept in a single file (for mbox format) or one file per message (for
 maildir/mh format).

[69] There are additional Email::Folder:: helper modules available that allow you
 to specify a folder on a POP3, IMAP(s), or Exchange server and parse it
 as if it were local. Still basic, sure, but cool nonetheless.

[70] Or, if you’re as ambivalent about MIME as I am, you may choose a
 word that begins with a letter a little earlier in the
 alphabet.

[71] In real life you would probably want to use something considerably
 more sophisticated to get a host list, like a cached copy of a DNS zone
 transfer or perhaps a walk of an LDAP tree.

Module Information for This Chapter

	
 Module

 	
 CPAN ID

 	
 Version

	

 Mac::Carbon

 	
 CNANDOR

 	
 0.77

	
 Win32::OLE (ships with
 ActiveState Perl)

 	
 JDB

 	
 0.1709

	
 Mail::Outlook (found in
 MailTools)

 	
 BARBIE

 	
 0.13

	

 Email::Send

 	
 RJBS

 	
 2.192

	

 Email::Simple

 	
 RJBS

 	
 2.003

	

 Email::Simple::Creator

 	
 RJBS

 	
 1.424

	

 Email::MIME

 	
 RJBS

 	
 1.861

	

 Email::MIME::Creator

 	
 RJBS

 	
 1.454

	

 File::Slurp

 	
 DROLSKY

 	
 9999.13

	

 Email::MIME::CreateHTML

 	
 BBC

 	
 1.026

	
 Text::Wrap (found in
 Text-Tabs+Wrap and also ships with Perl)

 	
 MUIR

 	
 2006.1117

	
 File::Spec (found
 in PathTools and also ships
 with Perl)

 	
 KWILLIAMS

 	
 3.2701

	
 IO::Socket (found in
 IO and also ships with
 Perl)

 	
 GBARR

 	
 1.30

	
 Carp (ships with
 Perl)

 	 	
 1.08

	

 Mail::POP3Client

 	
 SDOWD

 	
 2.18

	

 Mail::IMAPClient

 	
 MARKOV

 	
 3.08

	

 Mail::IMAPTalk

 	
 ROBM

 	
 1.03

	

 IO::Socket::SSL

 	
 SULLR

 	
 1.13

	

 Mail::Box

 	
 MARKOV

 	
 2.082

	

 Text::Match::FastAlternatives

 	
 ARC

 	
 1.00

	

 Regexp::Common

 	
 ABIGAIL

 	
 2.122

	

 Email::Folder

 	
 RJBS

 	
 0.854

	

 Mail::SpamAssassin

 	
 JMASON

 	
 3.24

	

 List::MoreUtils

 	
 VPARSEVAL

 	
 0.22

	

 Email::ARF::Report

 	
 RJBS

 	
 3.01

	
 DB_File (ships with
 Perl)

 	
 PMQS

 	
 1.817

References for More Information

The POP3 and IMAPv4 sections of this chapter are revised and modified from a column I originally wrote
 for the February 2008 issue of the USENIX Association’s ;login magazine.
Network Programming with Perl, by Lincoln Stein
 (Addison-Wesley), is one of the best books on programming network servers in
 Perl.

 Perl Cookbook
 , by Tom Christiansen and Nathan Torkington (O’Reilly), also addresses
 the programming of network servers.
http://www.cauce.org is the website of the Coalition Against
 Unsolicited Commercial Email. There are many sites devoted to fighting spam; this
 site is a good place to start. It has pointers to many other sites, including those
 that go into greater detail about the analysis of mail headers for this
 process.
http://emailproject.perl.org is the home page for the Perl Email
 Project.
http://www.spamhaus.org/faq/ has a number of good anti-spam-related
 FAQ lists, including one on ISP spam issues that addresses feedback loops and other
 ways ISPs can address spam issues for and with their customers.
http://wordtothewise.com/resources/arf.html and http://mipassoc.org/arf/index.html are two good resources for
 information on the ARF standard. The latest draft of the standard itself (as of this
 writing) can be found at http://www.ietf.org/internet-drafts/draft-shafranovich-feedback-report-07.txt.
 (See http://www.ietf.org/internet-drafts/ for the latest draft.)
If you’d like to experiment with high-volume mail handling from a server
 perspective (especially in the anti-spam context), there are two very interesting
 pieces of software you may want to investigate:
 qpsmtpd
 and Traffic Control.
 The first is an open source package, and the second is a commercial package free for
 use under some conditions. Both are SMTP handlers/daemons written in Perl that are
 meant to sit in front of a standard MTA and proxy only good mail to it. What makes
 these two interesting for this chapter in particular is their plug-in functionality.
 A user can write plug-ins in Perl to change or direct how messages that pass through
 these packages are processed. Often these plug-ins attempt to do some sort of
 spam/ham determination, but really, the sky is the limit.
You may also want to take a look at these RFCs:
	RFC 1939: Post Office Protocol - Version 3,
 by J. Myers and M. Rose (1996)

	RFC 2045: Multipurpose Internet Mail Extensions (MIME) Part One:
 Format of Internet Message Bodies, by N. Freed and N. Borenstein (1996)

	RFC 2046: Multipurpose Internet Mail Extensions (MIME) Part Two:
 Media Types, by N. Freed and N. Borenstein (1996)

	RFC 2047: MIME (Multipurpose Internet Mail Extensions) Part
 Three: Message Header Extensions for Non-ASCII Text, by K.
 Moore (1996)

	RFC 2077: The Model Primary Content Type for Multipurpose
 Internet Mail Extensions, S. Nelson and C. Parks (1997)

	RFC 2821: Simple Mail Transfer Protocol, by
 J. Klensin (2001)

	RFC 2822: Internet Message Format, by P. Resnick (2001)

	RFC 3501: INTERNET MESSAGE ACCESS PROTOCOL - VERSION
 4rev1, by M. Crispin (2003)

	RFC 3834: Recommendations for Automatic Responses to Electronic
 Mail, by K. Harrenstien and K. Moore (2004)

	RFC 4288: Media Type Specifications and Registration
 Procedures, by N. Freed and J. Klensin (2005)

	RFC 4289: Multipurpose Internet Mail Extensions (MIME) Part
 Four: Registration Procedures, N. Freed and J. Klensin (2005)

Chapter 9. Directory Services

The larger an information system gets, the harder it becomes to find anything in that
 system, or even to know what’s available. As networks grow and become more complex, they
 are well served by some sort of directory. Network users might make use of a directory
 service to find other users for email and messaging services. A directory service might
 advertise resources on a network, such as printers and network-available disk areas.
 Public-key and certificate infrastructures could use a directory service to distribute
 information. In this chapter we’ll look at how to use Perl to interact with some of the
 more popular directory services, including Finger, WHOIS, LDAP, and Active Directory
 (via Active Directory Service Interfaces).
What’s a Directory?

In Chapter 7, I suggested that all the system
 administration world is a database. Directories are a good example of this characterization. For
 the purpose of our discussion, we’ll distinguish between “databases” and
 “directories” by observing a few salient characteristics of directories:
	Networked
	Directories are almost always networked. Unlike a database, which may
 live on the same machine as its clients (e.g., the venerable
 /etc/passwd file), directory services are
 usually provided over a network.

	Simple communication/data manipulation
	Databases often have complex query languages for data queries and
 manipulation. We looked at the most common of these, SQL, in Chapter 7 (and in Appendix D). Communicating with a
 directory is a much simpler affair. A directory client typically
 performs only rudimentary operations and does not use a full-fledged
 language as part of its communication with the server. As a result, any
 queries made are often much simpler.

	Hierarchical
	Modern directory services encourage the building of tree-like
 information structures, whereas databases on the whole do not.

	Read-many, write-few
	Modern directory servers are optimized for a very specific data
 traffic pattern. Under normal use, the number of reads/queries to a
 directory service far outweighs the number of writes/updates.

If you encounter something that looks like a database (and is probably backended
 by a database) but has the preceding characteristics, you’re probably dealing with a
 directory. In the four directory services
 we’re about to discuss, these characteristics will be easy to spot.

Finger: A Simple Directory Service

Finger and WHOIS are good examples of simple directory services. Finger exists primarily to
 provide read-only information about a machine’s users (although we’ll see some more
 creative uses shortly). Later versions of Finger, like the GNU Finger server and its
 derivatives, expanded upon this basic functionality by allowing you to query one
 machine and receive back information from all the machines on your network.
Churn Your Own Butter, Too?
I think you’d be hard-pressed to find a site running Finger these days (the
 World Wide Web and privacy concerns drove it to near extinction)—so why is it
 still in the book?
I’m including a very short discussion of Finger here for one reason: it is an
 excellent training-wheels protocol. The protocol itself is simple, which makes
 it ideal for learning to deal with text-based network services that don’t have
 their own custom client modules. You’ll be happy you paid attention to this
 little slice of history the first time you need to interact with a service like
 that.

Finger was one of the first widely deployed directory services. Once upon a time,
 if you wanted to locate a user’s email address at another site, or even within your own, the
 finger command was the best option. finger harry@hogwarts.edu would tell you whether
 Harry’s email address was harry, hpotter, or something more obscure (along with listing
 all of the other Harrys at that school). Finger’s popularity has waned over time as
 web home pages have become prevalent and the practice of freely giving out user
 information has become problematic.
Using the Finger protocol from Perl provides another good example of TMTOWTDI. In
 2000, when I first looked on CPAN for a module to perform Finger operations, there
 were none available. If you look now, you’ll find Dennis Taylor’s Net::Finger module, which he published six months or so
 after my initial search. We’ll see how to use it in a moment, but in the meantime,
 let’s pretend it doesn’t exist and take advantage of this opportunity to learn how
 to use a more generic module to talk to a specific protocol when the “perfect”
 module doesn’t exist.
The Finger protocol itself is a very simple TCP/IP-based text protocol. Defined
 in RFC 1288, it calls for a standard TCP connection to port 79. The client
 passes a simple CRLF-terminated[72] string over the connection. This string either requests specific user
 information or, if empty, asks for information about all the machine’s users. The
 server responds with the requested data and closes the connection at the end of the
 data stream. You can see this in action by
 telneting to the Finger port directly on a remote
 machine:[73]
$ telnet quake.geo.berkeley.edu 79
Trying 136.177.20.1...
Connected to gldfs.cr.usgs.gov.
Escape character is '^]'.
/W quake<CR><LF>
 RAPID EARTHQUAKE LOCATION SERVICE
 U.S. Geological Survey, Menlo Park, California.
 U.C. Berkeley Seismological Laboratory, Berkeley, California.
 (members of the Council of the National Seismic System)
...
DATE-(UTC)-TIME LAT LON DEP MAG Q COMMENTS
yy/mm/dd hh:mm:ss deg. deg. km
--
09/01/12 16:29:37 36.03N 120.59W 4.5 2.3Md A* 20 km NW of Parkfield, CA
09/01/13 08:17:38 38.81N 122.82W 2.4 2.1Md A* 2 km NNW of The Geysers, CA
09/01/13 11:51:09 40.66N 124.04W 23.6 2.5Md B* 12 km NE of Fortuna, CA
09/01/13 18:27:01 36.80N 121.51W 5.5 2.4Md A* 5 km SSE of San Juan Bautista, CA
09/01/14 00:29:11 39.37N 123.27W 3.1 2.2Md B* 8 km ESE of Willits, CA
09/01/14 01:48:23 38.24N 118.69W 12.0 2.3Md C* 17 km WSW of Qualeys Camp, NV
09/01/14 02:06:57 38.24N 118.69W 6.0 2.2Md C* 17 km WSW of Qualeys Camp, NV
09/01/14 03:44:02 38.82N 122.83W 2.1 2.1Md A* 3 km NW of The Geysers, CA
09/01/14 05:08:21 36.74N 121.34W 9.1 3.4Ml A* 6 km SSW of Tres Pinos, CA
09/01/14 07:46:02 39.04N 123.34W 0.1 2.2Md C* 17 km SW of Ukiah, CA
09/01/14 10:24:53 40.42N 125.07W 1.2 3.1Ml C* 67 km W of Petrolia, CA
09/01/14 17:32:54 38.84N 122.83W 1.9 2.2Md A* 5 km NNW of The Geysers, CA
09/01/14 17:57:34 36.56N 121.16W 6.7 2.4Md A* 4 km NNW of Pinnacles, CA

...
$
In this example we’ve connected directly to
 quake.geo.berkeley.edu’s Finger port. We typed the username
 “quake” (with a /W to ask for verbose
 information), and the server returned information about that user.
I chose this particular host and user just to show you some of the variety of
 information that used to be available via Finger servers back in the early days of
 the Internet. Finger servers got pressed into
 service for all sorts of tasks. You used to be able to send Finger requests to soda machines, hot tubs, and
 sensor machines of all sorts. The Finger
 example just shown, for instance, allows
 anyone anywhere on the planet to see information on earthquakes recorded by seismic
 sensors.
Unfortunately, making interesting information like this available via Finger seems
 to be a dying art. At the time of this writing, none of the Finger hosts listed
 in Bennet Yee’s “Internet Accessible Coke Machines” and “Internet Accessible Machines”
 pages were operational. HTTP has almost entirely supplanted the Finger
 protocol for these sorts of tasks. There may still be Finger servers available on
 the Internet, but they are mostly set up for internal use.
Even though Finger servers are less prevalent today than they used to be, the
 simplicity of the protocol itself makes it a good place to start if you are looking
 to learn how to roll your own simple network service clients. Let’s take the network
 communication we just performed using a telnet binary back to
 the world of Perl. With Perl, we can also open up a network socket and communicate
 over it. Instead of using lower-level socket commands, we’ll use Jay Rogers’s
 Net::Telnet module.[74]
Net::Telnet will handle all of the connection
 setup work for us and provide a clean interface for sending and receiving data over
 this connection. Though we won’t use them in this example, Net::Telnet also provides some handy pattern-scanning mechanisms that
 allow programs to watch for specific responses from the other server.
Here’s a Net::Telnet version of a simple Finger
 client. This code takes an argument of the form
 user@finger_server. If the username is omitted, the server
 will return a list of all users it considers active. If the hostname is omitted, we
 query the local host:
use Net::Telnet;

my($username,$host) = split(/\@/,$ARGV[0]);
$host = $host ? $host : 'localhost';

create a new connection
my $cn = new Net::Telnet(Host => $host,
 Port => 'finger');

send the username down this connection
/W for verbose information as per RFC 1288
unless ($cn->print("/W $username")){
 $cn->close;
 die 'Unable to send finger string: '.$cn->errmg."\n";
}

grab all of the data we receive, stopping when the
connection is dropped
my ($ret,$data);
while (defined ($ret = $cn->get)) {
 $data .= $ret;
}

close the connection
$cn->close;

display the data we collected
print $data;
You may have noticed the /W in the string we
 passed to print(): RFC 1288 specifies that a /W switch
 can be prepended to the username sent to the server to request it to provide “a
 higher level of verbosity in the user information output.”
If you needed to connect to another TCP-based text protocol besides Finger, you’d
 use very similar code. For example, the following code connects to a daytime server
 (which shows the local time on a machine):
use Net::Telnet;

my $host = $ARGV[0] ? $ARGV[0] : 'localhost';

my $cn = new Net::Telnet(Host => $host,
 Port => 'daytime'); port 13

my ($ret,$data);
while (defined ($ret = $cn->get)) {
 $data .= $ret;
}
$cn->close;

print $data;
Now you have a sense of how easy it is to create generic TCP-based network
 clients. If someone has taken the time to write a module specifically designed to
 handle a protocol, it can be even easier. In the case of Finger, you can
 use Taylor’s Net::Finger to turn the
 whole task into a single function call:
use Net::Finger;

finger() takes a user@host string and returns the data received
print finger($ARGV[0]);
Just to present all of the options, there’s also the fallback position of calling
 another executable (if it exists on the machine), like so:
my($username,$host) = split('@',$ARGV[0]);
$host = $host ? $host : 'localhost';

location of finger executable
my $fingerex = ($^O eq 'MSWin32') ?
 $ENV{'SYSTEMROOT'}.'\\System32\\finger' :
 '/usr/bin/finger'; # (could also be /usr/ucb/finger)

print `$fingerex ${username}\@${host}`
Now you’ve seen three different methods for performing Finger requests. The third
 method is probably the least ideal because it requires spawning another process.
 Net::Finger will handle simple Finger
 requests; for everything else, Net::Telnet or any
 of its kin should work well for you.

[72] Carriage return + linefeed; i.e., ASCII 13 + ASCII 10.

[73] There used to be a whole battalion of earthquake information Finger
 servers. This is the only one of the 16 I tried that was still working as of
 this writing. If you don’t get a response from this server, you’ll have to
 trust me that it did return this data once upon a time.

[74] If Net::Telnet didn’t fit the bill so
 nicely, another alternative would be Expect.pm (written by Austin Schutz and now maintained by
 Roland Giersig), driving telnet or another network
 client.

The WHOIS Directory Service

WHOIS is another useful read-only directory service. WHOIS provides a service
 like a telephone directory for machines, networks, and the people who run them. Some
 larger organizations (such as IBM, UC Berkeley, and MIT) provide WHOIS services, but
 the most important WHOIS servers by far are those run by the InterNIC and other Internet registries such as RIPE (European IP address allocations) and APNIC (Asia/Pacific address allocations).
If you have to contact a system administrator at another site to report suspicious
 network activity, you can use WHOIS to get the contact info.[75] GUI and command-line tools are available, making WHOIS queries possible
 on most operating systems. All of the registrars also have web-based WHOIS query
 pages. Under Unix, a typical query using a command-line interface looks like
 this:
% whois -h whois.educause.net brandeis.edu
<instructional paragraph omitted>
Registrant:
 Brandeis University
 Library and Technology Services MS017
 415 South Street
 Waltham, MA 02453-2728
 UNITED STATES

Administrative Contact:
 Director for Networks & Systems
 Brandeis University
 Library and Technology Services
 MS017 PO Box 9110
 Waltham, MA 02454-9110
 UNITED STATES
 (781) 736-4569
 noc@brandeis.edu

Technical Contact:
 NetSys
 Brandeis University
 Library and Technology Services
 MS017 PO Box 9110
 Waltham, MA 02454-9110
 UNITED STATES
 (781) 736-4571
 hostmaster@brandeis.edu

Name Servers:
 LILITH.UNET.BRANDEIS.EDU 129.64.99.12
 FRASIER.UNET.BRANDEIS.EDU 129.64.99.11
 NS1.UMASS.EDU
 NS2.UMASS.EDU
 NS3.UMASS.EDU

Domain record activated: 27-May-1987
Domain record last updated: 11-Jun-2008
Domain expires: 31-Jul-2009
If you need to track down the owner of a particular IP address range, WHOIS is also the right tool:
% whois -h whois.arin.net 129.64.2
OrgName: Brandeis University
OrgID: BRANDE
Address: 415 South Street
City: Waltham
StateProv: MA
PostalCode: 02454
Country: US

NetRange: 129.64.0.0 - 129.64.255.255
CIDR: 129.64.0.0/16
NetName: BRANDEIS
NetHandle: NET-129-64-0-0-1
Parent: NET-129-0-0-0-0
NetType: Direct Assignment
NameServer: LILITH.UNET.BRANDEIS.EDU
NameServer: FRASIER.UNET.BRANDEIS.EDU
Comment:
RegDate: 1987-09-04
Updated: 2002-10-24

TechHandle: ZB114-ARIN
TechName: Brandeis University Information Technology
TechPhone: +1-781-736-4800
TechEmail: hostmaster@brandeis.edu

ARIN WHOIS database, last updated 2009-01-13 19:10
Enter ? for additional hints on searching ARIN's WHOIS database.
The previous sessions used a command-line WHOIS client like that found in Unix and
 Mac OS X distributions. Windows-based operating systems do not ship with such a client, but that
 shouldn’t stop users of Windows systems from accessing this information. There are
 many fine free and shareware clients available; the
 cygwin distribution contains one, and the
 Net::Whois::Raw module introduced in a few
 paragraphs also provides a client.
A recent wise footnote warned you that there was some hand waving going on. Let’s
 dispense with that now and get to the reality of the situation: as of this writing,
 the WHOIS situation on the Internet continues to be in considerable flux. Several of
 the previous Perl solutions for doing WHOIS queries are now, quite frankly, in
 shambles as a result of this situation.
Let me try to explain without going too deep into the morass. Once upon a time
 there was one registry for all Internet-related WHOIS information. This made it easy
 to write Perl code that created a query and properly parsed the response. For
 political and perhaps technical reasons, the Pangaea of registries was split into
 different subregistries. This meant that WHOIS query code had to become smarter
 about where to send a query and how to parse the response (thanks to variations in the
 different output formats of new severs as they
 were introduced).
Even with this added complexity, the Perl module authors were able to keep up. The
 changes in the WHOIS landscape happened infrequently enough that authors were able
 to release new versions to handle them. Some created frameworks for plugging in new
 server formats and locations. Vipul Ved Prakash wrote one good example of this, called Net::XWhois.
As the registrar churn continued and even accelerated, the amount of bitrot in
 this area became more and more apparent. Net::Whois, now maintained by Dana Hudes but last updated in 1999, doesn’t work much
 of the time: a change to the registry provider for the top-level domain (TLD) .org broke Net::XWhois’s lookups for those sites, and so on. For
 a while, none of the existing modules really could be trusted to work.
Before we break out the guitar and start to compose a blues number about this
 sad state of affairs, it turns out there
 is a ray of hope that can help us get out of this situation. The fine folks
 at CenterGate Research Group LLC set up the domain
 whois-servers.net. In this domain, they’ve
 registered CNAMEs for all the TLDs on the Internet. These CNAMEs point to the name
 of the registrar for each TLD. For example, to find the registrar for the
 .com TLD, we could type:
$ host com.whois-servers.net
com.whois-servers.net is an alias for whois.verisign-grs.com.
whois.verisign-grs.com has address 199.7.52.74
It would be easy enough to use a module like
 Net::DNS to retrieve this information, but
 luckily, at least one module author has beaten us to it. The
 Net::Whois::Raw module, maintained by Walery Studennikov, uses
 whois-servers.net and is still being actively developed. Using
 it is as trivial as using Net::Finger was in the
 last section:
use Net::Whois::Raw;

my $whois = whois('example.org');
Puny as this code sample is, there are a couple of small details behind it that
 you’ll want to know. First, using the default options, as we’ve done here, only
 queries the whois-servers.net name servers
 for top-level domains not already in the module’s hard-coded registrar table. To
 always rely on whois-servers.net for registrar info, you need
 to import and set an option like this:
use Net::Whois::Raw;

$Net::Whois::Raw::USE_CNAMES = 1;
my $whois = whois('example.org');
The second detail worth knowing about is the $OMIT_MSG option, set in the same way $USE_CNAMES was in this the last example. $OMIT_MSG will do its best to remove the lengthy copyright
 disclaimers most WHOIS servers return these days. It uses a set of hardcoded regular
 expressions, though, so rely on it with caution.
$OMIT_MSG aside, Net::Whois::Raw just returns the results of a WHOIS query in raw
 form: it makes no attempt to parse the information returned, like Net::Whois and Net::Xwhois used to do. That’s probably a wise decision on the
 author’s part, because the format of the response seems to change from registrar to
 registrar. All of the successful queries will have fields of some sort. You’ll
 likely find at least Name, Address, and Domain
 fields in the response, but who knows how they’ll be formatted, what order they’ll
 appear in, etc. This can make WHOIS data really annoying to parse and render the
 resulting programs brittle. To get away from this problem, we have to look at more
 complex directory protocols, like LDAP.
Note
One final idea before we leave this section. There’s one other approach we
 haven’t discussed because it also can be a bit dicey. There are a few public
 services that provide WHOIS proxy servers that attempt to do the work for you.
 You can query them like any other server, and you’ll get results based on
 someone’s code that works hard to query the right places on your behalf and
 format the output in a reasonable way. Two such services are found at whois.geektools.com (sponsored by CenterGate
 Research Group; see http://www.geektools.com) for general WHOIS queries and whois.pwhois.org (see http://pwhois.org) for data based on the
 global routing tables. In both cases you can just point a standard whois client
 at them (e.g., whois -h whois.geektools.com
 and whois -h pwhois.org 18.0.0.0) and they
 will do the right thing. The key issues with using public servers like these for
 your mission-critical application are: a) they typically have usage limits (to
 prevent abuse), and b) someone else is running them, so if they go down, sorry!
 But for the occasional query, they can be very handy.

[75] If you feel a breeze after reading this sentence, that’s because there’s a
 lot of hand waving behind this overly simplistic statement. In a page or two
 the reality of the situation will make its entrance.

LDAP: A Sophisticated Directory Service

The Lightweight Directory Access Protocol, or LDAP (including its Active
 Directory implementation), is a much richer and more sophisticated directory service
 than the ones we’ve considered thus far. There are two widely deployed versions of
 the LDAP protocol out there: version 2 and version 3. Anything that is
 version-specific will be clearly noted as such.
This protocol is the industry standard for directory access. System
 administrators have embraced LDAP because it offers them a way to centralize and
 make available all sorts of infrastructure information. Besides the standard
 “company directory” examples, applications include:
	NIS-to-LDAP gateways

	Authentication databases of all sorts (e.g., for use on the Web)

	Resource advertisement (i.e., which machines and peripherals are
 available)

LDAP is also the basis of other sophisticated directory services, such as
 Microsoft’s Active Directory (explored later, in the section Active Directory Service Interfaces).
Even if your environment doesn’t use LDAP to provide anything but a fancy phone
 book, there are still good reasons to learn how to use the protocol. LDAP servers
 themselves can be administered using the same protocol they serve, similar to SQL
 database servers being administered via SQL. To this end, Perl offers an excellent
 glue environment for automating LDAP administrative tasks. Before we get there,
 though, it’s important that you understand
 LDAP itself.
Appendix C contains a quick introduction to
 LDAP for the uninitiated. The biggest barrier new system administrators encounter
 when they begin to learn about LDAP is the unwieldy nomenclature it inherited from
 its parent protocol, the X.500 Directory Service. LDAP is a simplified version of part of X.500,
 but unfortunately the distillation process did not make the terminology any easier
 to swallow. Taking a few moments with Appendix C
 to get the language under your belt will make understanding how to use LDAP from
 Perl easier.
LDAP Programming with Perl

Like so many other system administration tasks in Perl, a good first step
 toward LDAP programming is the selection of the required Perl module. LDAP is
 not the most complex protocol out there, but it is not a plain-text protocol. As
 a result, cobbling together something that speaks LDAP is not a trivial
 exercise. Luckily, there are two modules available for this purpose:
 Net::LDAPapi (a.k.a.
 PerLDAP and Mozilla::LDAP) by Leif Hedstrom and Clayton Donley, and Graham Barr’s Net::LDAP. In the
 first edition of this book, the code examples used both modules. Since then,
 Net::LDAP has continued to
 evolve[76] while PerLDAP has suffered bitrot
 for about 10 years. Though you’ll occasionally see a piece of PerlLDAP code go by, at this point I can only
 recommend using Net::LDAP and will use it
 exclusively in the code we’re about to explore.[77]
For demonstration servers, we’ll be using the commercial (formerly Sun One, formerly iPlanet, formerly Netscape) JES Directory Server
 and the free OpenLDAP server (found at http://www.sun.com and
 http://www.openldap.org) almost interchangeably. Both come
 with nearly identical command-line utilities that you can use to prototype and
 crosscheck your Perl code.

The Initial LDAP Connection

Connecting with authentication is the usual first step in any LDAP client/server
 transaction. In LDAP-speak this is known as “binding to the server.” Binding to a server before sending commands
 to it was required in LDAPv2, but this requirement was relaxed for
 LDAPv3.
When you bind to an LDAP server, you are said to be doing so in the context of
 a specific
 distinguished name (DN), described as the bind
 DN for that session. This is similar to logging in as a
 particular user on a multiuser system. On such a system, your current login (for
 the most part) determines your level of access to data on the system; with LDAP,
 it is the bind DN context that determines how much data on the LDAP server you
 can see and modify. There is also a special DN known as the
 root distinguished name (which is not given an acronym to
 avoid confusing it with the term “relative distinguished name”). The root
 distinguished name is the DN context that has total control over the whole tree;
 it’s similar to being logged in as root under Unix/Mac OS X or Administrator
 on Windows. Some servers also refer to this as the
 manager DN.
If a client provides no authentication information (e.g., DN and password) as
 part of a bind, or does not bother to bind before sending commands, this is
 known as
 anonymous binding. Anonymously bound
 clients typically receive very restricted access to a server’s data.
There are two flavors of binding in the LDAPv3 specification: simple and SASL.
 Simple binding uses plain-text passwords for authentication. SASL (Simple Authentication and Security Layer) is
 an extensible authentication framework defined in RFC 2222 that allows client/server authors to plug in a number of
 different authentication schemes, such as Kerberos and one-time passwords. When a client connects to a server, it requests a
 particular authentication mechanism. If the server supports this mechanism, it
 will begin the challenge/response dialogue specific to that mechanism to
 authenticate the client. During this dialogue, the client and server may also
 negotiate a security layer (e.g., “all traffic between us will be encrypted
 using TLS”) for use after the initial authentication has been completed.
Some LDAP servers and clients add one more authentication method to the
 standard simple and SASL choices. This method comes as a by-product of running
 LDAP over an encrypted channel via the Secure Sockets Layer (SSL) or its successor, Transport Layer Security (TLS). To set up this channel, LDAP servers
 and clients exchange public-key cryptography certificates just like a web server
 and browser do for HTTPS. Once the channel is in place, some LDAP servers can be
 told to use a trusted client’s certificate for authentication without having to
 bother with other authentication info.
There are two ways to handle SSL/TLS connections. In LDAPv2 days, some servers
 started to provide SSL-encrypted connections on a separate port designated for
 this purpose (port 636). A client could connect to this special port and
 immediately negotiate an SSL connection before performing any LDAP operations.
 This is often referred to as LDAPS, just like the HTTP/HTTPS analogue. However,
 HTTPS differs from LDAPS in one very important respect: LDAPS isn’t part of the
 LDAP specifications and hence isn’t a “real” protocol, even though quite a few
 servers still implement it.
RFC 2830 defines the real extension to the LDAPv3 protocol for this purpose.
 In LDAPv3, clients can connect to the standard LDAP port (port 389) and request
 an encrypted connection by making a Start TLS request. Servers that implement
 this extension to the protocol (most do at this point) will then begin the
 process of negotiating a TLS-encrypted connection through which the normal
 authentication and other LDAP requests will take place.
To keep our examples from getting too complicated, we’ll stick to simple
 authentication and unencrypted transport sessions in everything but the upcoming
 sidebar on this topic.
Here’s how you do a simple bind and unbind in Perl:
use Net::LDAP;

create a Net::LDAP object and connect to server
my $c = Net::LDAP->new($server, port => $port) or
 die "Unable to connect to $server: $@\n";

use no parameters to bind() for anonymous bind
$binddn is presumably set to something like:
"uid=bucky,ou=people,dc=example,dc=edu"
my $mesg = $c->bind($binddn, password => $passwd);
if ($mesg->code){
 die 'Unable to bind: ' . $mesg->error . "\n";
}
...
$c->unbind(); # not strictly necessary, but polite
All
 Net::LDAP methods—e.g., bind()—return a message response object. When we
 call that object’s code() method it will
 return the result code of the last operation. The result code for a successful
 operation (LDAP_SUCCESS) is 0, hence the test in the preceding code.
Using Encryption for LDAP Communications
Given the wild and woolly nature of today’s network life, it would be
 irresponsible of me not to show you how to encrypt your LDAP communications
 (either the initial authentication or subsequent operations).
Luckily, the simple methods are pretty easy.
First, you have to determine what encryption methods the server you are
 using implements. The choices are (in order of decreasing
 preference):
	Start TLS

	LDAPS

	SASL

You may be surprised that I listed SASL last, so let’s get that question out of the way first. Yes,
 SASL is the most flexible of the methods available, but it also requires the
 most work on your part. The most common reason to use SASL is for times when
 Kerberos (via the GSSAPI mechanism in SASL[78]) is used as the authentication source. Another scenario would be
 for server configurations that don’t require encryption for simple queries
 (e.g., a company directory), but require them for operations where the
 information will be updated (e.g., updating your own record). In that case
 they might use SASL since simple binds are performed in clear text. Other
 uses exist but are relatively rare.
It is much more common to use the first two choices in my list: Start TLS
 and LDAPS. These are both easy from Net::LDAP:
	For Start TLS, call the start_tls() method after you use new() but before making a bind() call.

	For LDAPS, either use the Net::LDAPS module and add additional certificate-related parameters to new(), or use the normal Net::LDAP module but feed an ldaps:// URI to new() along with additional
 certificate-related
 parameters.

Performing LDAP Searches

The D in LDAP stands for Directory, and the one operation you’ll perform most often on a
 directory is a search. Let’s start our exploration of LDAP functionality by
 looking at how to find information. An LDAP search is specified in terms
 of:
	Where to begin the search
	This is called the
 base DN or search base. A
 base DN is simply the DN of the entry in the directory tree where
 the search should begin.

	Where to look
	This is known as the search scope. The scope
 can be either base (search just the base DN),
 one (search everything one level below the
 base DN, not including the base DN itself), or
 sub (search the base DN and all of the
 parts of the tree below it).

	What to look for
	This is called the search filter. We’ll
 discuss filters and how they are specified in just a
 moment.

	What to return
	To speed up the search operation, you can select which attributes
 the search filter returns for each entry it finds. It is also
 possible to request that the search filter only return attribute
 names and not their values. This is useful for those times when you
 want to know which entries have a certain attribute, but you don’t
 care what value that attribute contains.

Be Prepared to Carefully Quote Attribute Values
A quick tip before we do any more Perl programming: if you have an
 attribute in your relative distinguished name with a value that contains one of
 the characters “+”, “(space),” “,”, “‘”, “>”, “<”, or “;”, you
 must specify the value surrounded by quotation marks or with the offending
 character escaped by a backslash (\). If the value
 contains quotation marks, those marks must be escaped using backslashes.
 Backslashes in values are also escaped with more backslashes. Later versions
 of Net::LDAP::Util (0.32+) have an escape_dn_value()
 function to help you with this.
Insufficient quoting will bite you if you are not careful (of course,
 avoiding these characters all together in your directory’s RDNs wouldn’t
 hurt either).

In Perl, a search looks like this:[79]
...
my $searchobj = $c->search(base => $basedn,
 scope => $scope,
 filter => $filter);
die 'Bad search: ' . $searchobj->error() if $searchobj->code();
Let’s talk about the mysterious $filter
 parameter before we get into a fully fleshed-out code example. Simple search
 filters are of the form:[80]
<attribute name> <comparison operator> <attribute value>
where <comparison
 operator> is
 specified in RFC 2254 as one of the operators listed in Table 9-1.
Table 9-1. LDAP comparison operators
	
 Operator

 	
 Means

	

 =

 	
 Exact value match. Can also be a partial value match if
 * is used in the
 <attribute
 value> specification (e.g., cn=Tim O*).

	

 =*

 	
 Match all entries that have values for <attribute
 name>, independent of what the values are.
 By specifying * instead
 of <attribute
 value>, we test for the presence of that
 particular attribute in an entry (e.g., cn=* would select entries that
 have cn
 attributes).

	

 ~=

 	
 Approximate value match.

	

 >=

 	
 Greater than or equal to value.

	

 <=

 	
 Less than or equal to value.

Before you get excited because these look like Perl operators, I have bad
 news: they have nothing to do with the Perl operators. Two misleading constructs
 to a Perl person are ~= and =*. The first has nothing to do with regular
 expression matches; instead, it finds matches that approximate the stated value.
 The definition of “approximate” in this case is server-dependent. Most servers
 use an algorithm called soundex, originally
 invented for census taking, to determine the matching values. It attempts to
 find words that “sound like” the given value (in English) but are spelled differently.[81]
The other construct that may clash with your Perl knowledge is the = operator. In addition to testing for exact value
 matches (both string and numeric), = can also
 be used with prefix and suffix asterisks as wildcard characters, similar to shell globbing. For example, cn=fi* will yield all of the entries that have a common name that
 begins with the letters “fi”. cn=*ink*
 likewise performs just as you would suspect, finding each entry whose common
 name attribute has the letters “ink” in it.
We can take two or more of these simple <attribute
 name>
 <comparison
 operator>
 <attribute
 value>
 search forms and string them together with Boolean operators to make a more
 complex filter. This takes the form:
(<boolean operator> (<simple1>) (<simple2>) (<simple3>) ...)
People with LISP experience will have no problem with this sort of syntax;
 everyone else will just have to remember that the operator that combines the
 simple search forms is written first. To filter entries that match both criteria
 A and B, you would use (&(A)(B)). For entries that match
 criteria A or B or C, you would use
 (|(A)(B)(C)). The exclamation mark negates a specific criterion: A and
 not B is written (&(A)(!(B))). Compound filters can be compounded
 themselves to make arbitrarily complex search filters. Here is an example of a
 compound search filter that finds all of the Finkelsteins who work in
 Boston:
(&(sn=Finkelstein)(l=Boston))
To find anyone with the last name Finkelstein or Hodgkin:
(|(sn=Finkelstein)(sn=Hodgkin))
To find all of the Finkelsteins who do not work in Boston:
(&(sn=Finkelstein)(!(l=Boston)))
To find all the Finkelsteins or Hodgkins who do not work in Boston:
(&(|(sn=Finkelstein)(sn=Hodgkin))(!(l=Boston)))
Here are two code examples that take an LDAP server name and an LDAP filter
 and return the results of the query:
use Net::LDAP;
use Net::LDAP::LDIF;

my $server = $ARGV[0];
my $port = getservbyname('ldap','tcp') || '389';
my $basedn = 'c=US';
my $scope = 'sub';

anonymous bind
my $c = Net::LDAP->new($server, port=>$port) or
 die "Unable to connect to $server: $@\n";
my $mesg = $c->bind();
if ($mesg->code){
 die 'Unable to bind: ' . $mesg->error . "\n";
}

my $searchobj = $c->search(base => $basedn,
 scope => $scope,
 filter => $ARGV[1]);
die "Bad search: " . $searchobj->error() if $searchobj->code();

print the return values from search() found in our $searchobj
if ($searchobj){
 my $ldif = Net::LDAP::LDIF->new('-', 'w');
 $ldif->write_entry($searchobj->entries());
 $ldif->done();
}
Here’s an excerpt from some sample output:
$ ldapsrch ldap.example.org '(sn=Pooh)'
...
dn: cn="bear pooh",mail=poohbear219@hotmail.com,c=US,o=hotmail.com
mail: poohbear219@hotmail.com
cn: bear pooh
o: hotmail.com
givenname: bear
surname: pooh
...
Before we develop this example any further, let’s explore the code that
 processes the results returned by search().
 You may be wondering what all of that
 Net::LDAP::LDIF stuff was. This is a sneak
 peek at a format called LDAP Data Interchange Format, or LDIF. Hang on for just a couple
 more sections and we’ll talk about LDIF in detail.
More interesting at the moment is that innocuous call to $searchobj->entries(). Net::LDAP’s programming model resembles the
 protocol definition of RFC 2251. LDAP search results are returned in LDAP Message objects. The code we just saw calls the
 entries() method to return a list of all
 of the entries returned in these packets. We then use a method from the adjunct
 module Net::LDAP::LDIF to dump out these
 entries en masse.
Let’s tweak our previous example a little bit. Earlier in this chapter I
 mentioned that we could construct speedier searches by limiting the attributes
 that are returned by a search. With the
 Net::LDAP module, this is as simple as adding
 an extra parameter to our search() method
 call:
...
could also add "typesonly => 1" to return just attribute types
#(i.e., no values at all)
my @attr = qw(sn cn);
my $searchobj = $c->search(base => $basedn,
 scope => $scope,
 filter => $ARGV[1],
 attrs => \@attr);
Note that Net::LDAP takes a reference to an
 array for that additional argument, not values in the array.

Entry Representation in Perl

These code samples may provoke some questions about entry representation and
 manipulation—for example, how are entries themselves stored and manipulated in a
 Perl program? I’ll answer a few of those questions as a follow-up to our LDAP
 searching discussion here and then provide a more in-depth exploration in the
 upcoming sections on addition and modification of entries.
After you conduct a search with
 Net::LDAP, all of the results are available
 encapsulated by a single Net::LDAP::Search
 object. To get at the individual attributes for the entries in this object, you
 can take one of two approaches.
First, you can ask the module to convert all of the returned entries
 (represented as
 Net::LDAP::Entry objects) into one large
 user-accessible data structure. $searchobj->as_struct() returns a hash-of-hash-of-lists
 data structure. That is, it returns a reference to a hash whose keys are the
 DNs of the returned entries. The values for these keys are
 references to anonymous hashes keyed on the attribute names. These keys yield
 references to anonymous arrays that hold the actual values for those attributes.
 Figure 9-1 makes this
 clearer.
[image: Data structure returned by as_struct()]

Figure 9-1. Data structure returned by as_struct()

To print the first value of the cn
 attribute for each entry in this data structure, you could use code like
 this:
my $searchstruct = $searchobj->as_struct;
foreach my $dn (keys %$searchstruct){
 print $searchstruct->{$dn}{cn}[0],"\n";
}
Alternatively, you can first use any one of these methods to unload an
 individual entry object from the object a search returns:
return a specific entry number
my $entry = $searchobj->entry($entrynum);

acts like Perl shift() on entry list
my $entry = $searchobj->shift_entry;

acts like Perl pop() on entry list
my $entry = $searchobj->pop_entry;

return all of the entries as a list
my @entries = $searchobj->entries;
Once you have an entry object, you can use one of the method calls in Table 9-2.
Table 9-2. Key Net::LDAP entry methods (see Net::LDAP::Entry for more)
	
 Method call

 	
 Returns

	

 $entry->get_value($attrname)

 	
 The value(s) of that attribute in the given entry. In a list context,
 returns all of the values. In a scalar context, returns just
 the first one.

	

 $entry->attributes()

 	
 The list of attribute names for that entry.

It is possible to chain these method calls together in a fairly legible
 fashion. For instance, this line of code will retrieve the first value of the
 cn attribute in the first returned
 entry:
my $value = $searchobj->entry(1)->get_value('cn')
Now that you know how to access individual attributes and values returned by a
 search, let’s look at how to get this sort of data into a directory server in
 the first place.

Adding Entries with LDIF

Before we get into the generic methods for adding entries to an LDAP
 directory, let’s look at a technique useful mostly to system and directory
 administrators. This technique uses a data format that helps you to bulk-load
 data into a directory server. We’re going to explore ways of writing and reading
 LDIF.
LDIF, defined by Gordon Good in RFC 2849, offers a simple text representation of a directory entry.
 Here’s a simple LDIF example taken from that RFC:
version: 1
 dn: cn=Barbara Jensen, ou=Product Development, dc=airius, dc=com
 objectclass: top
 objectclass: person
 objectclass: organizationalPerson
 cn: Barbara Jensen
 cn: Barbara J Jensen
 cn: Babs Jensen
 sn: Jensen
 uid: bjensen
 telephonenumber: +1 408 555 1212
 description: A big sailing fan.

 dn: cn=Bjorn Jensen, ou=Accounting, dc=airius, dc=com
 objectclass: top
 objectclass: person
 objectclass: organizationalPerson
 cn: Bjorn Jensen
 sn: Jensen
 telephonenumber: +1 408 555 1212
The format should be almost self-explanatory to you by now. After the LDIF
 version number, each entry’s DN, objectClass
 definitions, and attributes are listed. A line separator alone on a
 line (i.e., a blank line) separates individual entries.
Our first task is to learn how to write LDIF files from extant directory
 entries. In addition to giving us practice data for the next section (where
 we’ll read LDIF files), this functionality is useful because once we have an
 LDIF file, we can massage it any way we like using Perl’s usual
 text-manipulation idioms. LDIF has a few twists (e.g., how it handles special
 characters and long lines), so it is a good idea to use
 Net::LDAP::LDIF to handle the production and
 parsing of your LDIF data whenever possible.
You already saw how to print out entries in LDIF format, during our discussion
 of LDAP searches. Let’s change the code we used in that example so it writes to
 a file. Instead of using this line:
my $ldif = Net::LDAP::LDIF->new('-', 'w');
we use:
my $ldif = Net::LDAP::LDIF->new($filename, 'w');
to print the output to the specified filename instead of the standard output
 channel.
Let’s work in the opposite direction now, reading LDIF files instead of
 writing them. The module object methods we’re about to explore will allow us to
 easily add entries to a directory.[82]
When you read in LDIF data via Perl, the process is exactly the reverse of
 what we used in the previous LDIF-writing examples. Each entry listing in the
 data gets read in and converted to an entry object instance that is later fed to
 the appropriate directory modification method. Net::LDAP handles the data reading and parsing for you, so this
 is a relatively painless process.
Warning
In the following examples, we’re using the root or
 manager DN user context for demonstration purposes.
 In general, if you can avoid using this context for everyday work, you
 should. Good practice for setting up an LDAP server includes creating a
 powerful account or account group (which is not the
 root DN) for directory management. Keep this
 security tip in mind as you code your own applications.

With
 Net::LDAP, the LDIF entry addition code is
 easier to write:
use Net::LDAP;
use Net::LDAP::LDIF;

my $server = $ARGV[0];
my $LDIFfile = $ARGV[1];
my $port = getservbyname('ldap','tcp') || '389';
my $rootdn = 'cn=Manager, ou=Systems, dc=ccis, dc=hogwarts, dc=edu';
my $pw = 'secret';

read in the LDIF file specified as the second argument on the command line;
last parameter is "r" for open for read, "w" would be used for write
my $ldif = Net::LDAP::LDIF->new($LDIFfile,'r');

copied from the deprecated read() command in Net::LDAP::LDIF
my ($entry,@entries);
push(@entries,$entry) while $entry = $ldif->read_entry;

my $c = Net::LDAP-> new($server, port => $port) or
 die "Unable to connect to $server: $@\n";

my $mesg = $c->bind(dn => $rootdn, password => $pw);
if ($mesg->code){
 die 'Unable to bind: ' . $mesg->error . "\n"; }

for (@entries){
 my $res = $c->add($_);
 warn 'Error in add for '. $_->dn().': ' . $res->error()."\n"
 if $res->code();
}

$c->unbind();

Adding Entries with Standard LDAP Operations

It’s time to look under the hood of the entry addition process, so we can see how to
 create and populate entries manually, instead of just reading them from a file
 like we did in the last subsection.
 Net::LDAP supports two ways to go about
 creating entries in a directory. Feel free to choose the one that feels the most
 comfortable to you.
If you are used to working with Perl data structures and like your programming
 to be terse and to the point, you can feed the add() method a naked data structure for single-step entry
 addition:
my $res = $c->add(
 dn => 'uid=jay, ou=systems, ou=people, dc=ccis, dc=hogwarts, dc=edu',
 attr => ['cn' => 'Jay Sekora',
 'sn' => 'Sekora',
 'mail' => 'jayguy@ccis.hogwarts.edu',
 'title' => ['Sysadmin','Part-time Lecturer'],
 'uid' => 'jayguy',
 'objectClass' => [qw(top person organizationalPerson inetOrgPerson)]]
);
die 'Error in add: ' . $res->error()."\n" if $res->code();
Here, we’re passing two arguments to add():
 the first is a DN for the entry, and the second is a reference to an anonymous
 array of attribute/value pairs. You’ll notice that multivalued attributes like
 title are specified using a nested
 anonymous array.
If you’d prefer to take things one step at a time, you can construct a new
 Net::LDAP::Entry object and feed
 that object to add() instead:
use Net::LDAP;
use Net::LDAP::Entry;
...
my $entry = Net::LDAP::Entry->new;

$entry->dn(
 'uid=jayguy, ou=systems, ou=people, dc=ccs, dc=hogwarts, dc=edu');

these add statements could be collapsed into a single add()
$entry->add('cn' => 'Jay Sekora');
$entry->add('sn' => 'Sekora');
$entry->add('mail' => 'jayguy@ccis.hogwarts.edu');
$entry->add('title' => ['Sysadmin','Part-time Lecturer']);
$entry->add('uid' => 'jayguy');
$entry->add('objectClass' =>
 [qw(top person organizationalPerson inetOrgPerson)]);

we could also call $entry->update($c) instead
of add() if we felt like it
my $res = $c->add($entry);
die 'Error in add: ' . $res->error()."\n" if $res->code();
One thing that may be a bit confusing in this last example is the double use
 of the method name add(). There are two very
 different method calls being made here that unfortunately have the same name.
 The first is from a Net::LDAP::Entry object
 ($entry->add())—this adds new attributes and their values
 to an existing entry. The second, $c->add($entry), is a method call to our Net::LDAP connection object asking it to add our
 newly constructed Net::LDAP::Entry object to
 the directory. If you pay attention to the piece of the call before the arrow,
 you’ll be fine. If this double use of the same name bothers you too much, you
 could replace the second add() call with
 a
 Net::LDAP::Entry update() call, as mentioned
 in the final code comment.

Deleting Entries

Deleting entries from a directory is easy (and irrevocable, so be careful).
 Here is a code snippet, again with the bind code left out for brevity’s
 sake:
...
my $res = $c->delete($dn);
die 'Error in delete: ' . $res->error() . "\n" if $res->code();
It is important to note that
 delete() operates on a single entry at a
 time. With most servers, if you want to delete an entire subtree, you will need
 to first search for all of the child entries of that subtree using a scope of
 sub or one and then iterate through the return values, deleting as you
 go; once you’ve deleted all the children, you can remove the top of that
 subtree. However, the following sidebar details a few shortcuts that may work
 for you.
Deleting an Entire Directory Subtree
As of this writing, the somewhat laborious process described in the text for deleting a whole
 subtree from a directory is the correct canonical method for performing that
 task. There are a couple of easier approaches you can take in some cases,
 though:
	Use someone else’s code—OpenLDAP ships with a command-line tool called
 ldapdelete that has a –r option for recursive deletions. No,
 you won’t get closer to your Net::LDAP merit badge by calling another executable
 from your program, but it does make the code considerably easier to
 write.

	Use an unofficial LDAP control—we haven’t talked about LDAP controls yet
 in this chapter (we’ll get to them in another few sections), so for
 the moment feel free to treat the following code snippet as a magic
 incantation for deleting whole subtrees:
my $res =
 $ldap->delete($dn, control =>
 {type => LDAP_CONTROL_TREE_DELETE});

There are two complications with using this code. First, it uses a control
 that was proposed as a standard but never made it to the RFC stage (the last
 version was draft-armijo-ldap-treedelete-02.txt), and hence is
 “unofficial.” Second, most LDAP servers don’t implement it. I wouldn’t
 mention it except that the one notable exception that does implement it is
 Active Directory. Caveat implementor.

Modifying Entry Names

For our final look at LDAP operations, we will focus on two kinds of modifications
 to LDAP entries. The first kind of modification we’ll consider is a change of DN
 or RDN.
Here’s an example of the
 Net::LDAP code used to change the relative distinguished name for an entry:
$oldDN could be something like
"uid=johnny,ou=people,dc=example,dc=edu"
$newRDN could be something like
"uid=pedro"
my $res = $c->moddn($oldDN,
 newrdn => $newRDN,
 deleteoldrdn => 1);
die 'Error in rename: ' . $res->error()."\n" if $res->code();
Here’s a quick review, in case you’re fuzzy on this RDN concept. LDAP servers
 store their entries in a tree-like form. But unlike some tree-based protocols
 (e.g., SNMP, which we’ll see later), LDAP doesn’t let you pick a specific entry
 out of the tree by its numeric position. For instance, you can’t just say “give
 me the third entry found in the fourth branch to the left.” Instead, you need to
 identify a unique path to that entry. LDAP makes it easy to find a unique path
 by dictating that at each level of the tree an individual entry must have
 something that sets it apart from every other entry at that level in the tree.
 Since every step of your path is guaranteed to be unique at that level, the
 whole path is guaranteed to be a unique way to locate a specific entry.[83]
It is the RDN that keeps each entry unique at a particular level of the tree.
 This is why we’re fussing so much about this single line of code. When you
 change the RDN, you are changing the entry’s name at that level. The actual
 operation is pretty simple; it’s just important to understand what’s
 happening.
Before we move on to the second kind of rename, there’s one small detail worth
 mentioning. You probably noticed the deleteoldrdn parameter being set in the code and may have
 wondered about it. When we think about renaming objects in almost all contexts
 (e.g., filename changes), we don’t worry about what happens to the old name
 after the operation has been completed. If you rename a file, the file gets a
 new name, and the information about what the file was
 called is lost to the mists of time. With LDAP, you have a choice:
	You can change the RDN and toss the old RDN information (deleteoldrdn => 1). This is almost
 always the right choice.

	You can change the RDN and keep the old RDN information as an
 additional value in the entry (deleteoldrdn
 => 0). Don’t do this unless you have a good
 reason.

Since this is so weird, here’s a quick example that will make it clear. Let’s
 assume we start off with an entry that looks in part like this:
dn: uid=gmarx, ou=People, dc=freedonia, dc=com
cn: Julius Henry Marx
sn: Marx
uid: gmarx
If we execute code that includes these lines:
my $oldDN = "uid=gmarx, ou=People, dc=freedonia, dc=com";
my $newRDN = "uid=cspaulding";
my $res = $c->moddn($oldDN, newrdn => $newRDN, deleteoldrdn => 1);
the entry will look like this:
dn: uid=cspaulding, ou=People, dc=freedonia, dc=com
cn: Julius Henry Marx
sn: Marx
uid: cspaulding
Nothing special here; it looks just like we’d expect. If we had run the same
 code with the last line changed to this:
my $res = $c->moddn($oldDN, newrdn => $newRDN, deleteoldrdn => 0);
the entry would look like this:
dn: uid=cspaulding, ou=People, dc=freedonia, dc=com
cn: Julius Henry Marx
sn: Marx
uid: gmarx
uid: cspaulding
That’s clearly not what we want. As mentioned earlier, you’ll almost
 always[84] want to set deleteoldrdn to
 1. Time to move on.
The second kind of entry name modification is the more drastic one. To move an
 entry to a different spot in the directory tree, you need to change its
 distinguished name. Version 3 of LDAP introduces a more powerful renaming
 operation that allows arbitrary entry relocations within the directory tree
 hierarchy.
 Net::LDAP ’s moddn() function gives us access to that when called with the
 additional parameter newsuperior. If we add
 it like so:
$oldDN could be something like
"uid=johnny,ou=people,dc=example,dc=edu"
$newRDN could be something like
"uid=pedro"
$parenDN could be something like
ou=boxdweller, dc=example,dc=edu
$result = $c->moddn($oldDN,
 newrdn => $newRDN,
 deleteoldrdn => 1,
 newsuperior => $parentDN);
die 'Error in rename: ' . $res->error()."\n" if $res->code();
the entry located at $oldDN will be moved
 to become the child of the DN specified in $parentDN. Using this method to move entries in a directory tree
 is more efficient than the add() or delete() sequence previously required by the
 protocol, but it is not supported by all LDAP servers. Other server-dependent
 caveats may be applicable here as well: for example, the server you are using
 may not allow you to modify the DN of an entry that has children. In any case,
 if you’ve carefully designed your directory tree structure, you’ll hopefully
 have to relocate entries less often.

Modifying Entry Attributes

Let’s move on to the more common operation of modifying the attributes and
 attribute values in an entry. We’ll start with an example of this process as
 part of a global search-and-replace. Here’s the scenario: one of the facilities
 at your company is moving from Pittsburgh to Los Angeles. This code will change
 all of the entries with a Pittsburgh location:
use Net::LDAP;

my $server = $ARGV[0];
my $port = getservbyname('ldap','tcp') || '389';
my $basedn = 'dc=ccis,dc=hogwarts,dc=edu';
my $scope = 'sub';
my $rootdn = 'cn=Manager, ou=Systems, dc=ccis, dc=hogwarts, dc=edu';
my $pw = 'secret';

my $c = Net::LDAP->new($server, port => $port) or
 die "Unable to init for $server: $@\n";
my $mesg = $c->bind(dn => $rootdn, password => $pw);
if ($mesg->code){
 die 'Unable to bind: ' . $mesg->error . "\n";
}

my $searchobj = $c->search(base => $basedn, filter => '(l=Pittsburgh)',
 scope => $scope, attrs => [''],
 typesonly => 1);
die 'Error in search: '.$searchobj->error()."\n" if ($searchobj->code());

if ($searchobj){
 @entries = $searchobj->entries;
 for (@entries){

 # we could also use replace {'l' => 'Los Angeles'} here
 $res=$c->modify($_->dn(), # dn() yields the DN of that entry
 delete => {'l' => 'Pittsburgh'},
 add => {'l' => 'Los Angeles'});

 die 'unable to modify, errorcode #'.$res->error() if $res->code();
 }
}
$c->unbind();
The crucial part of this code is the use of the mega-method called
 modify(), toward the end of the example.
 modify() takes the DN of the entry to be
 changed and a set of parameters that tells it just how to modify that entry.
 Table 9-3 lists the possible
 choices.
Table 9-3. Net::LDAP entry modification methods
	
 Parameter

 	
 Effect

	

 add =>
 {$attrname => $attrvalue}

 	
 Adds a named attribute with the given value.

	

 add => {$attrname =>
 [$attrvalue1,
 $attrvalue2...]}

 	
 Adds a named attribute with the specified set of
 values.

	

 delete
 => {$attrname => $attrvalue}

 	
 Deletes a named attribute with the specified value.

	

 delete => {$attrname
 => []}

 delete
 => [$attrname1, $attrname2...]

 	
 Deletes an attribute or set of attributes independent of
 their value or values.

	

 replace => {$attrname
 => $attrvalue}

 	
 Like add, but
 replaces the current named attribute value. If
 $attrvalue is a
 reference to an empty anonymous list ([]), this becomes a synonym
 for the delete
 operation.

Be sure to pay attention to the punctuation in Table 9-3. Some parameters call
 for a reference to an anonymous hash, while others call for a reference to an
 anonymous array. Mixing the two will cause problems.
If you find yourself needing to make several changes to an entry, as we did in
 our code example, you can combine several of these parameters in the same call
 to modify(). However, there’s a
 potential problem lurking here. When you call modify() with a set of parameters, like so:
$c->modify($dn,replace => {'l' => 'Medford'},
 add => {'l' => 'Boston'},
 add => {'l' => 'Cambridge'});
there’s no guarantee that the additions you specify will take place after the
 replacement. This code could have an unpredictable, if not downright unpleasant,
 result.
If you need your operations to take place in a specific order, you’ll need to
 use a slight twist on the normal syntax. Instead of using a set of discrete
 parameters, pass in a single array containing a queue of commands. In this
 version, modify() takes a changes parameter whose value is a list. This list
 is treated as a set of pairs: the first half of the pair is the operation to be
 performed, and the second half is a reference to an anonymous array of data for
 that operation. For instance, if we wanted to ensure that the operations in the
 previous code snippet happened in order, we could write:
$c->modify($dn, changes =>
 [replace => ['l' => 'Medford'],
 add => ['l' => 'Boston'],
 add => ['l' => 'Cambridge']
]);
Take careful note of the punctuation: it is different from that in the earlier
 examples.

Deeper LDAP Topics

If you’ve read up to this point and things are starting to make sense to you,
 you’ve got all the basic skills for using LDAP from Perl ready to roll. If
 you’re chomping at the bit to see how this is all put together in some more
 complete examples, you can skip to the next section, Putting It All Together, and come back here when you’re done. If
 you can hold on for a little while longer, in this section we’ll touch on a few
 advanced topics to give you a really thorough grounding in this stuff.
Referrals and references

The hardest part of understanding LDAP referrals and references is simply keeping
 the two of them distinct in your memory. In LDAPv2, referrals were pretty
 simple (so simple, in fact, that they really didn’t exist in the spec). If
 you asked an LDAPv2 server for data it didn’t have, the server could return
 a default referral that said, “I don’t know anything about that. Why don’t
 you go look over here at this LDAP URL instead?” An LDAP client could then
 use that URL (whose format is defined in RFC 2255) to determine the name of the server to query and the
 base DN. For example, if your LDAP client asked the server responsible for
 ou=sharks,dc=jeromerobbins,dc=org
 about ou=jets,dc=jeromerobbins,dc=org, it
 could return a response that said “Sorry, ask ldap:://robertwise.org/ou=jets,dc=robertwise,dc=org instead.”
 Your client could then attempt to connect to the LDAP server running on
 robertwise.org and retry its query.
LDAPv3 made this concept a little more complex, by adding the LDAPv2
 behavior to the spec and expanding upon it. Now, when a server is queried
 for data it knows it doesn’t have, it can return a response like “Sorry,
 never heard of that. Why don’t you check over yonder at this URL or set of
 URLs?” The client is then free to choose for itself which URL to follow to
 get its information.
The second enhancement to the referral concept in LDAPv3 came in the form
 of
 continuation references.
 Continuation references are a type of referral (see, I told you it was hard
 to keep the two things straight![85]) that only comes into play during an LDAP search. If the server realizes during a search that more
 information for that search could be found at another server, it is free to
 return a continuation reference along with the other entries being returned.
 This continuation reference says, “Hey, I couldn’t answer the entire
 question, but I think I know who can. Try asking over at this URL (or set of
 URLs) for the rest of your data.” It is then up to the client to query all
 of those additional servers to complete its query. Continuation references
 usually come into play when dealing with a very large directory tree where
 parts of the tree have been split onto multiple servers for load
 management.
Let’s see how all this manifests itself in Perl code. Though they are
 related, we’ll examine referrals and continuation references separately. To
 deal with referrals, here are the steps:
	When the operation has completed, check to see if we’ve received
 any referrals. If not, just proceed.

	If we did receive a referral, extract an LDAP URL[86] from the response and dissect it into its component
 parts.

	Bind to the appropriate server based on this information and query
 it. Go back to step 1 (since we might have received another
 referral).

The code for these steps is pretty easy:
	Check for a referral:
use Net::LDAP qw(LDAP_REFERRAL); # be sure to import this constant
use URI::LDAP; # going to use this to dissect our LDAP URL

bind as usual
...
perform a search as usual
my $searchobj = $c->search(...);

check if we've received a referral
if ($searchobj->code() == LDAP_REFERRAL) {

	Extract an LDAP URL:
 # the return code indicates we have referrals, so retrieve all of them
 my @referrals = $searchobj->referrals();
 # RFC 2251 says we can choose any of them - let's pick the first one
 my $uri = URI->new($referrals[0]);

	Bind and query again using the new info (dissecting the URL we received as
 necessary with
 URI::LDAP method calls):
 $c->unbind();
 my $c = Net::LDAP-> new ($uri->host(), port => $uri->port()) or
 die 'Unable to init for ' . $uri->$host . ": $@\n";
 my $mesg = $c->bind(dn => $rootdn, password => $pw);
 if ($mesg->code){
 die 'Unable to bind: ' . $mesg->error . "\n";
 }

 # RFC 2251 says we must use the filter in the referral URL if one
 # is returned; otherwise, we should use the original filter
 #
 # Note: we're using $uri->_filter() instead of just $uri->filter()
 # because the latter returns a default string when no filter is
 # present in the URL. We want to use our original filter in that case
 # instead of the default of (objectClass=*).
 $searchobj = $c->search(base => $uri->dn(),
 scope => $scope,
 filter => $uri->_filter() ? $uri->_filter() :
 $filter,
 ...);
}

You may find it easier to think about referral processing as just
 sophisticated error handling (because that is essentially what it is). You
 query a server and it replies, “Sorry, can’t handle your request. Please try
 again, but this time, try again at this server on this port with
 this baseDN and filter.”
It is important to note that the preceding code isn’t as sophisticated or
 as rigorous as it could be. The first flaw is that, while RFC 2251
 states that almost all LDAP operations can return a referral,
 the code only checks for this condition after the search operation (not
 after the initial bind). I would recommend that you sit down and have a good
 long think before you decide to follow referrals from bind operations, even
 if the spec says you should. If you are going to present your authentication
 credentials to some other server besides the one you originally intended, be
 sure you completely trust both servers (perhaps by checking the server
 certificates) first. Similar dire warnings apply to following referrals
 during the other LDAP operations.
The second flaw is that there’s nothing (besides good directory
 architecture practices) stopping the second server you query from handing
 you back another reference for you to chase. It is highly inefficient to
 keep a client hopping from server to server, so you shouldn’t see this in
 the real world, but it is possible.
And finally, in the same category of “you shouldn’t see this,” the code
 doesn’t check for referral loops where server A says to go talk to server B,
 which sends you back to server A. It is easy to keep a list of the servers
 you’ve contacted to avoid this issue if you think it may happen for some
 reason. Caveat implementor.
Now that you have referrals under your belt, let’s move on to continuation references. Continuation references are marginally
 easier to deal with; they occur only during a search operation and they come into play only if a search can
 successfully begin (i.e., if the place you’ve asked to start searching from
 really exists in the tree). Unlike the referrals we just talked about,
 receiving a continuation reference is not an error condition that requires
 restarting the whole operation. Continuation references are more like
 outstanding IOUs to a dull-witted debt collector. If your program were the
 debt collector, it would ask a server for information it felt entitled to
 have, and the server might say, “I’m sorry, I can’t make the entire payment
 (of LDAP entries you are looking for), but you can get the rest by asking at
 these three places....” Instead of trying to collect the whole amount from a
 single other server (as with a referral), your program will dutifully trudge
 off and try to get the rest of the information from all the additional
 sources. Those sources are, unfortunately, allowed to send you on a further
 chase to other places as well.
From a coding perspective, the difference between continuation references
 and referrals is twofold:
	The methods for determining whether a referral or a continuation
 reference is in play are very different. For a referral, we check
 the result code of an operation and then call the
 referrals() method. For a
 continuation reference, we examine the data we receive back from the
 server and then call the
 references() method if we find a
 continuation reference:
... # bind and search have taken place
if ($searchobj){
 my @returndata = $searchobj->entries;
 foreach my $entry (@returndata){
 if ($entry->isa('Net::LDAP::Reference'){
 # @references is a list of LDAP URLs
 push(@references,$entry->references());
 }
 }
}

	Unlike with referrals, where we have a choice for which URLs to
 follow, we’re supposed to follow all continuation references. Most
 people code this using a recursive
 subroutine[87] along the lines of:
... # assume a search has taken place that has yielded continuation
 # references
foreach my $reference (@references){
 ChaseReference($reference)
}

sub ChaseReference ($reference){
 my $reference = shift;

 # this code should look very familiar because we stole it almost
 # verbatim from the previous example on referrals

 # dissect the LDAP URL, bind to the indicated server, and search it
 my $uri = URI->new($reference);
 my $c = Net::LDAP-> new ($uri->host(), port => $uri->port()) or
 die 'Unable to init for ' . $uri->$host . ": $@\n";
 my $mesg = $c->bind(dn => $rootdn, password => $pw);
 if ($mesg->code){
 die 'Unable to bind: ' . $mesg->error . "\n";
 }

 my $searchobj = $c->search(base => $uri->dn(),
 scope => $scope,
 filter => $uri->_filter() ? $uri->_filter() :
 $filter,
 ...);
 # assuming we got a result, collect the entries and the references into
 # different lists
 if ($searchobj){
 my @returndata = $searchobj->entries;
 my @references = ();
 foreach my $entry (@returndata){
 if ($entry->isa('Net::LDAP::Reference'){
 # @references will contain a list of LDAP URLs
 push(@references,$entry->references());
 }
 else { push @entries, $entry);
 }
 }

 # now, chase any more references we received from that last search
 # (here's the recursion part)
 foreach my $reference (@references){
 ChaseReference($reference)
 }
}

Now, if you wanted to be a troublemaker, you might ask whether any of the
 operations in this code could return referrals, and whether the code should
 be handling these cases. “Yes” and “Yes.” Next question?
Seriously though, the code presented so far on this topic has been
 intentionally kept as simple as possible to help explain the concepts and
 keep referrals and continuation references distinct in your mind. If you
 wanted to write the most robust code possible to handle these cases, you’d
 probably need to write wrapper subroutines around each LDAP operation that
 are prepared to handle referrals and deal with continuation references
 during searches.

Controls and extensions

The best explanation I’ve ever heard for LDAP controls comes from
 Gerald Carter’s book
 LDAP System
 Administration
 (O’Reilly). Carter
 described them as “adverbs” for LDAP operations: they modify, change, or enhance an ordinary LDAP
 operation. For example, if you wanted a server to pre-sort the results of a
 search, you would use the Server Side Sorting control, as documented
 by RFC 2891. Let’s look at some code that presumes the server
 supports this control (not all do—for example, the Sun JES Directory Server
 does, but the OpenLDAP server does not).
In most cases, the first step is to locate the
 Net::LDAP::Control subclass module for
 that particular control. All of the common controls have one.[88] In this case we’ll be using
 Net::LDAP::Control::Sort. Using this
 module, we create a control object:
use Net::LDAP;
use Net::LDAP::Control::Sort;

...

create a control object that will ask to sort by surname
$control = Net::LDAP::Control::Sort->new(order => 'sn');
Once we have the control object, it is trivial to use it to modify a
 search:
this should return back the entries in a sorted order
$searchobj= $c->search (base => $base,
 scope => $scope,
 filter => $filter,
 control => [$control]);
Some controls require more effort than others to use, but now you have the
 basic idea.
Extensions (also called “extended operations” in some contexts) are like
 controls, only more powerful. Instead of modifying a basic LDAP operation,
 they actually allow for extending the basic LDAP protocol to include
 entirely new operations. Examples of new operations added to the LDAP world
 through this mechanism include Start TLS (RFC 2830) for secure transmission of LDAP data
 and LDAP Password Modify (RFC 3062) for changing passwords stored
 on an LDAP server.
Using extensions from Perl is usually a very simple affair, because all of
 the common extensions exist in their own module as part of Net::LDAP. For example, using Password Modify
 is this easy:
use Net::LDAP;
use Net::LDAP::Extension::SetPassword;

... # usual connection and bind here
$res = $c->set_password(user => $username,
 oldpassword => $oldpw,
 newpassword => $newpw,);
die 'Error in password change : ' . $res->error()."\n" if $res->code();
If you need to use an extension that isn’t already implemented in the
 package, then your best bet is to cheat by copying a module file such
 as
 Net::LDAP::Extension::SetPassword and
 modifying it accordingly.
One question you may have had while reading this section is, “How do I
 know which controls and extensions are supported by the server I’m using?”
 Besides looking at the server’s documentation or source code (if available),
 you could also query the root DSE. That’s the subject of the next
 section.

The root DSE

The hardest thing about dealing with this topic is hacking through the
 overgrown terminology inherited from X.500 just to get to the actual
 meaning. Machete in hand, here’s how it goes:
	A DSE is a DSA-specific entry. What’s a DSA, you
 ask?
	A DSA is a directory system agent. What’s a directory
 system agent?
	A directory system agent is a server (an LDAP server, in this
 case).

Besides the ability to impress all your friends at party with your command
 of X.500 terminology, why do you care about any of this? The root DSE is a
 special entry in a directory server that contains information about that
 server. If you interrogate the root DSE, RFC 2251 says you should be able to find the following
 attributes:
	
 namingContexts

	Which suffixes/directory trees (e.g., dc=ccis, dc=hogwarts, dc=edu) the server is ready to serve.

	
 subschemaSubentry

	The location in the directory where you can query the server’s
 schema (see Appendix C for an
 explanation of LDAP schemas).

	
 altServer

	According to RFC 2251, a list of “alternative servers in case
 this one is later unavailable” (this is stated without noting
 the irony). This information might come in handy if you were
 storing the data for future queries after your first contact
 with the server, but it still seems like the time you’ll be most
 interested in this information (i.e., during an outage) is the
 time when it is least accessible.

	
 supportedExtension

	The list of extensions this server can handle.

	
 supportedControl

	The list of controls that can be used with this server.

	
 supportedSASLMechanisms

	The list of available SASL mechanisms (e.g., Kerberos).

	
 supportedLDAPVersion

	Which LDAP versions the server is willing to speak (as of this
 writing, probably 2 and 3).

Getting this info from Perl is really easy. Net::LDAP has a
 Net::LDAP::RootDSE module that gets
 called like this:
use Net::LDAP;
use Net::LDAP::RootDSE;

my $server = 'ldap.hogwarts.edu';

my $c = Net::LDAP->new($server) or
 die "Unable to init for $server: $@\n";

my $dse = $c->root_dse();

let's find out which suffixes can be found on this server
print join("\n",$dse->get_value('namingContexts')),"\n";
This code returns something like this (i.e., a list of suffixes served
 from that server):
dc=hogwarts,dc=edu
o=NetscapeRoot
You may have noticed we’re missing the usual “bind happens here” ellipsis
 we’ve seen in most of the code examples up until this point. That’s
 because
 Net::LDAP::RootDSE is actually arranging
 for an anonymous bind() followed by a
 search() to happen on our behalf
 behind the scenes. If you looked at the LDAP server log after this
 operation, you’d see what was really going on:
[16/May/2004:21:25:46 −0400] conn=144 op=0
 msgId=1 - SRCH base="" scope=0 filter="(objectClass=*)" attrs="subsch
emaSubentry namingContexts altServer supportedExtension supportedControl
 supportedSASLMechanisms supportedLDAPVersion"
This says we’re performing a search with a baseDN of an empty string
 (meaning the root DSE), a scope of 0 (which is “base”), a filter for
 anything in that entry, and a list of specific attributes to return. If you
 ever want to query this information for attributes in the root DSE not
 normally returned by Net::LDAP::RootDSE,
 now you know how to do it.

DSML

Our last advanced topic before we look at a small sample application is
 the Directory Services Markup Language (DSML). DSML comes in two flavors:
 version 1 and version 2. For our purposes, you can think of DSMLv1 as a
 slightly improved version of LDIF in XML. Acronym parking lot aside, this
 means that DSML represents entry data in XML instead of the LDIF format we
 learned about in Adding Entries with LDIF. It slightly
 improves on LDIF in this regard because it has an explicit standard for
 representing not just entries but also directory schemas (mentioned in Appendix C). That’s the good news. The bad
 news is that DMSLv1 can’t actually represent directory operations like LDIF
 can (via changetype: delete). This
 deficiency was remedied in the more complex DSMLv2. As of this writing, the
 Perl world hasn’t caught up yet, so the only modules available specific to
 DSML are for version 1 only.
However, if DSMLv1 is your bag,
 Net::LDAP::DSML offers a handy way to
 write DSMLv1-formatted files (though as of this writing, it can’t read
 them[89]). The process is very similar to the one we used for writing
 LDIF:
use Net::LDAP;
use Net::LDAP::DSML;

open my $OUTPUTFILE, '>', 'output.xml'
 or die "Can't open file to write:$!\n";

my $dsml = Net::LDAP::DSML->new(output => $OUTPUTFILE,
 pretty_print => 1)
 or die "OUTPUTFILE problem: $!\n";

... # bind and search here to @entries

$dsml->start_dsml();

foreach my $entry (@entries){
 $dsml->write_entry($entry);
}

$dsml->end_dsml();
close $OUTPUTFILE;
When we run this code (with the ellipsis replaced with real code), we get
 output like this (hand-indented for clarity):
<?xml version="1.0" encoding="UTF-8"?>
<dsml:dsml xmlns:dsml="http://www.dsml.org/DSML">
 <dsml:directory-entries>
 <dsml:entry dn="ou=People, dc=hogwarts,dc=edu">
 <dsml:objectclass>
 <dsml:oc-value>top</dsml:oc-value>
 <dsml:oc-value>organizationalunit</dsml:oc-value>
 </dsml:objectclass>
 </dsml:entry>
 </dsml:directory-entries>
 <dsml:directory-entries>
 <dsml:entry dn="uid=colinguy,ou=People, dc=hogwarts,dc=edu">
 <dsml:attr name="cn">
 <dsml:value>Colin Johnson</dsml:value>
 </dsml:attr>
 <dsml:attr name="uid">
 <dsml:value>colinguy</dsml:value>
 </dsml:attr>
 <dsml:objectclass>
 <dsml:oc-value>top</dsml:oc-value>
 <dsml:oc-value>person</dsml:oc-value>
 <dsml:oc-value>organizationalPerson</dsml:oc-value>
 <dsml:oc-value>inetorgperson</dsml:oc-value>
 </dsml:objectclass>
 </dsml:entry>
 </dsml:directory-entries>
</dsml:dsml>
This all begs the question, “Why use DSML instead of LDIF for entry
 representation?” It’s a reasonable question. DSML is meant to be an abstract
 representation of directory data (and directory operations, in version 2) in
 XML form. If you are doing lots of inter-organizational directory sharing,
 or you find a use for this abstraction, DSML might be right for you. But if
 you plan to stick to the LDAP arena and you don’t need the interoperability
 XML provides, stick to LDIF. LDIF is (on the whole) simpler, well tested,
 and well supported by directory vendors.

Putting It All Together

Now that we’ve toured all of the major LDAP areas (and even some of the minor
 ones), let’s write some small system administration-related scripts. We’ll
 import our machine database from Chapter 5 into an LDAP server and
 then generate some useful output based on LDAP queries. Here are a couple of
 listings from that flat file, just to remind you of the format:
name: shimmer
address: 192.168.1.11
aliases: shim shimmy shimmydoodles
owner: David Davis
department: software
building: main
room: 909
manufacturer: Sun
model: M4000
-=-
name: bendir
address: 192.168.1.3
aliases: ben bendoodles
owner: Cindy Coltrane
department: IT
building: west
room: 143
manufacturer: Apple
model: Mac Pro
-=-
The first thing we need to do is prepare the directory server to receive this
 data. We’re going to use nonstandard attributes, so we’ll need to update the
 server’s schema. Different servers handle this process in different ways. For
 instance, the Sun JES Directory Server has
 a pleasant Directory Server Console GUI for changing details like this. Other
 servers require modifications to a text configuration file. With OpenLDAP, we could use something like this in a file that the master
 configuration file includes to define our own object class for a machine:
objectclass machine
 requires
 objectClass,
 cn
 allows
 address,
 aliases,
 owner,
 department,
 building,
 room,
 manufacturer,
 model
Once we’ve configured the server properly, we can think about importing the
 data. One approach would be to bulk load it using LDIF. If the sample from our
 flat-file database reminded you of the LDIF format, you were right on target.
 This similarity makes the translation easy. Still, we’ll have to watch out for a
 few snares:
	Continuation lines
	Our flat-file database does not have any entries with values
 spanning several lines, but if it did we’d need to make sure that
 the output conformed to the LDIF standard. The LDIF standard
 dictates that all continuation lines must begin with exactly one
 space.

	Entry separators
	Our database uses the adorable character sequence -=- between each entry. Two line
 separators (i.e., a blank line) must separate LDIF entries, so we’ll
 need to axe this character sequence when we see it in the
 input.

	Attribute separators
	Right now our data has only one multivalued attribute: aliases. LDIF deals with multivalued
 attributes by listing each value on a separate line. If we encounter
 multiple aliases, we’ll need special code to print out a separate
 line for each. If it weren’t for this misfeature in our data format,
 the code to go from our format to LDIF would be a single line of
 Perl.

Even with these snares, the conversion program is still pretty simple:
my $datafile = 'database';
my $recordsep = "-=-\n";
my $suffix = 'ou=data, ou=systems, dc=ccis, dc=hogwarts, dc=edu';
my $objectclass = <<"EOC";
objectclass: top
objectclass: machine
EOC

open my $DATAFILE, '<', $datafile or die "unable to open $datafile:$!\n";

print "version: 1\n"; #

while (<$DATAFILE>) {
 # print the header for each entry
 if (/name:\s*(.*)/){
 print "dn: cn=$1, $suffix\n";
 print $objectclass;
 print "cn: $1\n";
 next;
 }
 # handle the multivalued aliases attribute
 if (s/^aliases:\s*//){
 my @aliases = split;
 foreach my $name (@aliases){
 print "aliases: $name\n";
 }
 next;
 }
 # handle the end of record separator
 if ($_ eq $recordsep){
 print "\n";
 next;
 }
 # otherwise, just print the attribute as we found it
 print;
}

close $DATAFILE;
If we run this code, it prints an LDIF file that looks (in part) like
 this:
version: 1
dn: cn=shimmer, ou=data, ou=systems, dc=ccis, dc=hogwarts, dc=edu
objectclass: top
objectclass: machine
cn: shimmer
address: 192.168.1.11
aliases: shim
aliases: shimmy
aliases: shimmydoodles
owner: David Davis
department: software
building: main
room: 909
manufacturer: Sun
model: M4000

dn: cn=bendir, ou=data, ou=systems, dc=ccis, dc=hogwarts, dc=edu
objectclass: top
objectclass: machine
cn: bendir
address: 192.168.1.3
aliases: ben
aliases: bendoodles
owner: Cindy Coltrane
department: IT
building: west
room: 143
manufacturer: Apple
model: Mac Pro
...
With this LDIF file, we can use one of the bulk-load programs that come with
 our servers to load our data into the server. For instance,
 ldif2ldbm, packaged with both the OpenLDAP and Sun JES Directory Servers, reads an LDIF file and imports it
 directly into the directory server’s native backend format without having to go
 through LDAP. Though you can only use this program while the server is not
 running, it can provide the quickest way to get lots of data into a server. If
 you can’t take the server offline, you can use the LDIF-reading Perl code we
 developed earlier to feed a file like this to an LDAP server.
To throw one more option into the mix, here’s some code that skips the
 intermediate step of creating an LDIF file and imports our data directly into an
 LDAP server:
use Net::LDAP;
use Net::LDAP::Entry;

my $datafile = 'database';
my $recordsep = '-=-';
my $server = $ARGV[0];
my $port = getservbyname('ldap','tcp') || '389';
my $suffix = 'ou=data, ou=systems, dc=ccis, dc=hogwarts, dc=edu';
my $rootdn = 'cn=Manager, ou=Systems, dc=ccis, dc=hogwarts, dc=edu';
my $pw = 'secret';

my $c = Net::LDAP-> new ($server,port => $port) or
 die "Unable to init for $server: $@\n";
my $mesg = $c->bind(dn => $rootdn,password => $pw);
if ($mesg->code){
 die 'Unable to bind: ' . $mesg->error . "\n";
}

open my $DATAFILE, '<', $datafile or die "unable to open $datafile:$!\n";

while (<$DATAFILE>) {
 chomp;
 my $entry;
 my $dn;
 # at the start of a new record, create a new entry object instance
 if (/^name:\s*(.*)/){
 $dn="cn=$1, $suffix";
 $entry = Net::LDAP::Entry->new;
 $entry->add('cn',$1);
 next;
 }
 # special case for multivalued attribute
 if (s/^aliases:\s*//){
 $entry->add('aliases',[split()]);
 next;
 }

 # if we've hit the end of the record, add it to the server
 if ($_ eq $recordsep){
 $entry->add('objectclass',['top','machine']);
 $entry->dn($dn);
 my $res = $c->add($entry);
 warn 'Error in add for ' . $entry->dn() . ':' .
 $res->error()."\n" if $res->code();
 undef $entry;
 next;
 }

 # add all of the other attributes
 $entry->add(split(':\s*')); # assume single valued attributes
}

close $DATAFILE;
$c->unbind();
Now that we’ve imported the data into a server, we can start to do some
 interesting things. To save space, in the following examples the header at the
 top that sets our configuration variables and the code that binds us to a server
 will not be repeated.
So what can we do with this data when it resides in an LDAP server? We can
 generate a host file on the fly:
use Net::LDAP;

...

my $searchobj = $c->search (base => $basedn,
 scope => 'one',
 filter => '(objectclass=machine)'
 attrs => ['cn','address','aliases']);
die 'Bad search: ' . $searchobj->error() if $searchobj->code();

if ($searchobj){
 print "#\n\# host file - GENERATED BY $0\n
 # DO NOT EDIT BY HAND!\n#\n";
 foreach my $entry ($searchobj->entries()){
 print $entry->get_value(address),"\t",
 $entry->get_value(cn)," ",
 join(' ', $entry->get_value(aliases),"\n";
 }
}
$c->close();
Here’s the output:
#
host file - GENERATED BY ldap2hosts
DO NOT EDIT BY HAND!
#
192.168.1.11 shimmer shim shimmy shimmydoodles
192.168.1.3 bendir ben bendoodles
192.168.1.12 sulawesi sula su-lee
192.168.1.55 sander sandy mickey mickeydoo
We can also find the names of all of our machines made by Apple:
use Net::LDAP;
...
my $searchobj = $c->search(base => $basedn,
 filter => '(manufacturer=Apple)',
 scope => 'one',
 attrs => ['cn']);
die 'Bad search: ' . $searchobj->error() if $searchobj->code();

if ($searchobj){
 foreach my $entry ($searchobj->entries){
 print $entry->get_value('cn'),"\n";
 }
}

$c->unbind();
Here’s the output:
bendir
sulawesi
We can generate a list of machine owners:
use Net::LDAP;
...
my $searchobj = $c->search(base => $basedn,
 filter => '(manufacturer=Apple)',
 scope => 'one',
 attrs => ['cn','owner']);
die 'Bad search: ' . $searchobj->error() if $searchobj->code();

my $entries = $searchobj->as_struct;

foreach my $dn (sort byOwner keys %{entries}){
 print $entries->{$dn}->{owner}->[0]. ":\t" .
 $entries->{$dn}->{cn}->[0]."\n";
}

to sort our data structure by owner instead of its DN key
sub byOwner
 { $entries->{$a}->{owner}->[0] <=> $entries->{$b}->{owner}->[0] }
Here’s the output:
Alex Rollins: sander
Cindy Coltrane: bendir
David Davis: shimmer
Ellen Monk: sulawesi
And we can check to see if the current user ID is the owner of the current
 Unix machine (maybe some kind of pseudo-authentication):
use Net::LDAP;
use Sys::Hostname;

$user = (getpwuid($<))[6];

my $hostname = hostname;
my $hostname =~ s/\..*//; # strip domain name off of host

...

my $searchobj = $c->search (base => "cn=$hostname,$suffix",
 scope => 'base',
 filter => "(owner=$user)"
 typesonly => 1);

if ($searchobj){
 print "Owner ($user) can log on to machine $hostname.\n";
}
else {
 print "$user is not the owner of this machine ($hostname).\n";
}
These snippets should give you an idea of some of the system administration
 uses for LDAP access through Perl, and provide inspiration to write your own
 code. In the next section we’ll take these ideas to the next level and look at a
 whole administration framework based on the conceptual groundwork laid
 by LDAP.
Not (Really) a Database
Before we move on to ADSI, I just want to offer a quick note about one way
 not to use LDAP. It might be tempting to use an
 LDAP server as your central repository for all information (as discussed in
 Chapter 7). Heck, to a certain
 extent Microsoft uses Active Directory in this fashion.
This is up for debate, but I believe this isn’t the best of ideas for a homegrown system. LDAP makes things look very
 database-like, but it doesn’t have the power of a good relational database.
 It is very forgiving about what is stored (vis-à-vis data validation),
 doesn’t really use a relational model, has a limited query language,
 etc.
My preference is to keep most information in a relational database and
 feed an LDAP server from it. This gives you the power of both models without
 having to work as hard to make LDAP into something it is not. Microsoft has
 a considerable amount of code in its management tools and APIs to allow it
 to use LDAP as a central data store. You probably don’t want to have to
 write code like that. If you do decide to go this route, be sure to think
 carefully about it first.

[76] Quanah Gibson-Mount recently (around January 2008) took over Net::LDAPapi and published the first
 update of the module to CPAN since 1998.

[77] As an aside, Donley, one of the original authors, himself uses
 Net::LDAP in his book
 LDAP Programming, Management and Integration
 (Manning).

[78] For generic Kerberos authentication, the Authen::SASL package (plus its dependent modules) by
 Graham Barr works fine. If you need to do anything funky like
 connect to an Active Directory server explicitly authenticated by
 Kerberos, you’ll probably need to use Mark Adamson’s hooks into the
 Cyrus-SASL libraries (Authen::SASL::Cyrus). This module has some issues, so
 be sure to look at the Net::LDAP
 mailing list archives before you head down that twisted path.

[79] Because we do it exactly the same way each time, and to save space,
 the module load, creation of the connection object, and bind steps have
 been replaced with an ellipsis in this and later code examples.

[80] Filters also have restrictions on the characters that can be used
 without special handling. escape_filter_value() in version 0.32+ of Net::LDAP::Util can help with this.

[81] If you want to play with the soundex algorithm, Mark Mielke’s Text::Soundex module provides a Perl
 implementation.

[82] LDIF files can also contain a special changetype: directive that instructs the LDIF reader to
 delete or modify entry information rather than just adding it. Net::LDAP has direct support for changetype: via its Net::LDAP::LDIF::read_entry()
 method.

[83] There’s some moderate hand waving going on here because LDAP directory
 “trees” (snarky quotes provided for the benefit of readers with a
 computer science background) can have symlink-like aliases and other
 complications that make it possible to find an entry using two very
 different paths. This isn’t a problem for the discussion at hand, but
 it’s worth noting to keep ourselves honest.

[84] To keep you from spending all day racking your brain looking for a
 case where you would want to keep the old RDN, here’s one idea: imagine
 you were changing all of your usernames due to a company merger and you
 wanted the ability to look up users by their old names after the
 renaming. There are better ways to implement this, but you
 asked....

[85] To make it easier for you to remember the difference between
 referrals and references, I’ll always refer to references as
 “continuation references.”

[86] RFC 2251, the LDAPv3 spec, says that while multiple URLs
 can be returned as part of the referral process, “All the
 URLs MUST be equally capable of being used to progress the
 operation.” This means you get to choose which one to
 follow. The level of difficulty of your strategy for making
 that choice can be low (pick the first one, pick a random
 one), medium (pick the one with the shortest ping time), or
 high (pick the closest one in your network topology). It’s
 your call.

[87] For a refresher on recursion, see Chapter 2.

[88] If you get unlucky and can’t find one for the control you want to
 use, it’s not hard to roll your own. The controls included with
 Net::LDAP should provide
 enough examples to get you all or most of the way there.

[89] If you want to read DSML, you can use any of the XML reading
 modules (e.g., XML::Simple), to
 read the data and then hand it to the Net::LDAP calls we saw in the section Adding Entries with Standard LDAP Operations.

Active Directory Service Interfaces

For the final section of this chapter, we’ll discuss a platform-dependent
 directory service framework that is heavily based on the material we’ve just
 covered.
Microsoft created a sophisticated LDAP-based directory service called Active
 Directory for use at the heart of its Windows administration framework. Active
 Directory serves as the repository for all of the important configuration
 information (users, groups, system policies, software installation support, etc.)
 used in a network of Windows machines.
During the development of Active Directory, the folks at Microsoft realized that a
 higher-level applications interface to this service was needed. They invented Active
 Directory Service Interfaces (ADSI) to provide this interface. To their credit, the
 developers at Microsoft also realized that their new ADSI framework could be
 extended to cover other system administration realms, such as printers and Windows
 services. This coverage makes ADSI immensely useful to people who script and
 automate system administration tasks. Before we show this power in action, we need
 to cover a few basic concepts and terms.
ADSI Basics

You can think of ADSI as a wrapper around any directory service that wishes
 to participate in the ADSI framework. There are providers,
 as these ADSI glue implementations are called, for LDAP, Security Accounts Manager (i.e., local/WinNT-domain style)
 databases, and Novell Directory Services, among others. In ADSI-speak, each of
 these directory services and data domains are called
 namespaces. ADSI gives you a uniform way to query and
 change the data found in these namespaces.
To understand ADSI, you have to know a little about the Microsoft Component Object Model (COM) upon which ADSI is built. There are
 many books about COM, but we can distill the basics down to these key
 points:
	Everything we want to work with via COM is an object.[90]

	Objects have
 interfaces that provide a set of
 methods for us to use to interact with these
 objects. From Perl, we can use the methods provided by or inherited from
 the interface called
 IDispatch. Luckily, most of the ADSI
 methods provided by the ADSI interfaces and their children
 (e.g.,
 IADsUser, IADsComputer, IADsPrintQueue) are inherited from IDispatch.

	The values encapsulated by an object, which is queried and changed
 through these methods, are called properties. We’ll refer to two
 kinds of properties in this chapter: interface-defined
 properties
 (those that are defined as part of an interface) and
 schema-defined properties (those that are
 defined in a schema object—more on this in just a moment). Unless I
 refer explicitly to “schema properties” in the following discussion, you
 can assume we’re using interface properties.

This is standard object-oriented programming fare, but it starts to get tricky
 when the nomenclature for ADSI/COM and other object-oriented worlds, like LDAP,
 collide.
For instance, in ADSI we speak of two different kinds of objects: leaf and
 container. Leaf objects encapsulate real data;
 container objects hold, or parent, other objects. In
 LDAP-speak, a close translation for these terms might be “entry” and “branching
 point.” On the one hand we talk about objects with properties, and on the other
 we talk about entries with attributes. So how do you deal with this discrepancy,
 since both names refer to the exact same data?
Here’s one way to think about it: an LDAP server does indeed provide access to
 a tree full of entries and their associated attributes. When you use ADSI
 instead of native LDAP to get at an entry in that tree, ADSI sucks the entry
 out of the LDAP server, wraps it up in a few layers of shiny wrapping paper, and
 hands it to you as a COM object. You use the necessary methods to get the
 contents of that parcel, which are now called “properties.” If you make any
 changes to the properties of this object, you can hand the object back to ADSI,
 which will take care of unwrapping the information and putting it back in the
 LDAP tree for you.
A reasonable question at this point is, “Why not go directly to the LDAP
 server?” There are three good answers:
	Once we know how to use ADSI to communicate with one kind of directory
 service, we know how to communicate with them all (or at least the ones
 that have ADSI providers).

	ADSI’s encapsulation can make directory service programming a little
 easier.

	Microsoft tells us to use ADSI. Using Microsoft’s supported API is
 almost always the right decision.

To head in the direction of ADSI programming from Perl, we need to
 introduce
 ADsPaths. ADsPaths give us a unique
 way to refer to objects in any of our namespaces. They look like this:
<progID>:<path to object>
where <progID> is the programmatic
 identifier for a provider and <path to
 object> is a provider-specific way of finding the
 object in its namespace. The two most common progIDs are
 LDAP and WinNT (WinNT uses the SAM
 databases mentioned in Chapter 3).
Here are some ADsPath examples taken from the ADSI SDK documentation:
WinNT://MyDomain/MyServer/User
WinNT://MyDomain/JohnSmith,user
LDAP://ldapsvr/CN=TopHat,DC=DEV,DC=MSFT,DC=COM,O=Internet
LDAP://MyDomain.microsoft.com/CN=TopH,DC=DEV,DC=MSFT,DC=COM,O=Internet
It’s no coincidence that these look like URLs, since both URLs and ADsPaths serve roughly the same purpose:
 they both try to provide an unambiguous way to reference a piece of data made
 available by different data services. In the case of LDAP ADsPaths, we are using the LDAP URL syntax from the RFC
 mentioned in Appendix C (RFC 2255).
Warning
The <progID> portion is
 case-sensitive. Using winnt, ldap, or WINNT instead of WinNT and LDAP will cause
 your programs to fail. Also be sure to note that there are some characters
 that can’t be used in an ADsPath without being escaped with a backslash or
 represented in hexadecimal format.[91] At the time of this writing, they were the line feed and
 carriage return, ,, ;, ",
 #, +, <, =, >, and \.

We’ll look more closely at ADsPaths when we discuss the two namespaces,
 WinNT and LDAP, referenced earlier. Before we get there, let’s see how ADSI
 in general is used from Perl.
The Tools of the ADSI Trade
Any machine running Windows 2000 or later has ADSI built into the
 OS. I recommend downloading the ADSI SDK found at http://www.microsoft.com/adsi, because it provides this
 documentation and a handy ADSI object browser called ADsVW. The SDK comes with ADSI programming
 examples in a number of languages, including Perl. Unfortunately, the
 examples in the current ADSI distribution rely on the deprecated
 OLE.pm module, so while you might be able
 to pick up a few tips, you should not use these examples as your starting
 point. At this URL you will also find crucial ADSI documentation
 including
 adsi25.chm, a compressed HTML help file that contains
 some of the best ADSI documentation available.
Before you begin to code, you will also want to pick up Toby Everett’s ADSI object browser (written in Perl) from
 http://public.activestate.com/authors/tobyeverett/. It
 will help you navigate around the ADSI namespaces. Be sure to visit this
 site early in your ADSI programming career. It hasn’t been updated in a
 while, but it remains a good starting place for using ADSI from Perl.
One last tip: even if it makes you queasy, it is in your best interest to
 gain just enough familiarity with VBScript to be able to read scripts written in that language.
 The deeper you get into ADSI, the more VBScript code you’ll find yourself
 reading and adapting. Appendix F and some of the
 references listed at the end of this chapter should help a bit with this
 learning process.

Using ADSI from Perl

The
 Win32::OLE family of modules, maintained
 by Jan Dubois, gives us a Perl bridge to ADSI (which is built on COM
 as part of OLE). After loading the main module, we use it to request an ADSI
 object:
use Win32::OLE;

$adsobj = Win32::OLE->GetObject($ADsPath) or
 die "Unable to retrieve the object for $ADsPath\n";
Note
Here are two tips that may save you some consternation. First, if you run
 these two lines of code in the Perl debugger and examine the contents of the
 object reference that is returned, you might see something like this:
DB<3> x $adsobj
0 Win32::OLE=HASH(0x10fe0d4)
 empty hash
Don’t panic.
 Win32::OLE uses the power of tied variables. The seemingly empty data structure you
 see here will magically yield information from our object when we access it
 properly.
Second, if your GetObject call returns
 something like this (especially from within the debugger):
Win32::OLE(0.1403) error 0x8007202b:
 "A referral was returned from the server"         
it often means you’ve requested an LDAP provider ADsPath for an LDAP tree
 that doesn’t exist on your server. This is usually the result of a simple
 typo: e.g., you typed LDAP://dc=exampel,dc=com when you
 really meant LDAP://dc=example,dc=com.                    

Win32::OLE->GetObject() takes an OLE
 moniker (a unique identifier to an object, which in this case is an ADsPath)
 and returns an ADSI object for us. This call also handles the process of binding to the object, which is a process
 you should be familiar with from our LDAP discussion. By default we bind to the
 object using the credentials of the user running the script.
Perl’s hash reference syntax is used to access the interface property values of an ADSI object:
$value = $adsobj->{key}
For instance, if that object had a Name
 property defined as part of its interface (and they all do), you could retrieve
 it like this:
print $adsobj->{Name}."\n";
Interface property values can be assigned using the same notation:
$adsobj->{FullName}= "Oog"; # set the property in the cache
An ADSI object’s properties are stored in an in-memory cache called
 the
 property cache. The first request for an object’s
 properties populates this cache. Subsequent queries for the same property will retrieve the
 information from this cache, not from the directory
 service. If you want to populate the cache by hand, you can call that
 object instance’s
 GetInfo() or GetInfoEx() method (an extended version of GetInfo()) using the syntax we’ll see in a
 moment.
Because the initial fetch is automatic, GetInfo() and GetInfoEx() are
 often overlooked. Though we won’t see any in this book, there are cases where
 you will need them. Here are two example cases:
	Some object properties are only fetched by an explicit GetInfoEx() call. For example, many of the
 properties of Microsoft Exchange 5.5’s LDAP provider were not available
 without calling GetInfoEx() first.
 See http://public.activestate.com/authors/tobyeverett/
 for more details on this inconsistency.

	If you have a directory that multiple people can change, an object you
 may have just retrieved could be changed while you are still working
 with it. If this happens, the data in your property cache for that
 object will be stale. GetInfo() and
 GetInfoEx()
 will refresh this cache for you.

To actually update the backend directory service and data source provided
 through ADSI, you must call the special method SetInfo() after changing an object.
 SetInfo() flushes the changes from the
 property cache to the actual directory service or data source.
Calling methods from an ADSI object instance is easy:
$adsobj->Method($arguments...)
So, if we changed an object’s properties, we might use this line right after
 the code that made the change:
$adsobj->SetInfo();
This would flush the data from the property cache back into the underlying
 directory service or data source.
One Win32::OLE call you’ll want to use
 often is
 Win32::OLE->LastError(). This will
 return the error, if any, that the last OLE operation generated. Using the
 -w switch with Perl (e.g., perl -w
 script) also causes any OLE failures to complain in a
 verbose manner. Often these error messages are all the debugging help you have,
 so be sure to make good use of them.
The ADSI code we’ve seen so far should look like fairly standard Perl to you,
 because on the surface, it is. Now let’s introduce a few of the plot complications.

Dealing with Container/Collection Objects

Earlier, I mentioned that there are two kinds of ADSI objects: leaf and container
 objects. Leaf objects represent pure data, whereas container objects (also called “collection objects” in OLE/COM
 terms) contain other objects. Another way to distinguish between the two in the
 ADSI context is by noting that leaf objects have no children, but container
 objects do.
Container objects require special handling, since most of the time we’re interested in the
 data encapsulated by their child objects. There are two ways to access these
 objects from Perl.
 Win32::OLE offers a special function called
 in() for this purpose, though it is not
 available by default when the module is loaded in the standard fashion. We have
 to use the following line at the beginning of our code to make use of it:
use Win32::OLE qw(in);
in() will return a list of references to
 the child objects held by the specified container. This allows us to write
 easy-to-read Perl code like:
foreach $child (in $adsobj){
 print $child->{Name}
}
Alternatively, we can load one of Win32::OLE’s helpful progeny, called
 Win32::OLE::Enum. So Win32::OLE::Enum->new() will create an enumerator object
 from one of our container objects:
use Win32::OLE::Enum;

$enobj = Win32::OLE::Enum->new($adsobj);
We can then call a few methods on this enumerator object to get at $adsobj’s children. $enobj->Next() will return a reference to the next child
 object instance (or the next N objects if given an optional
 parameter). $enobj->All() returns a
 list of object instance references. Win32::OLE::Enum offers a few more methods (see the documentation
 for details), but these are the ones you’ll use most often.

Identifying a Container Object

You can’t know if an object is a container object a
 priori. There is no way to ask an object itself about its
 “containerness” from Perl. The closest you can come is to try to create an
 enumerator object and fail gracefully if this does not succeed. Here’s some code
 that does just that:
use Win32::OLE;
use Win32::OLE::Enum;

eval {$enobj = Win32::OLE::Enum->new($adsobj)};
print 'object is ' . ($@ ? 'not ' : '') . "a container\n";
Alternatively, you can look to other sources that describe the object. This
 segues nicely into our third plot complication.

So How Do You Know Anything About an Object?

We’ve avoided the biggest and perhaps the most important question until now. In a moment we’ll be
 dealing with objects in two of our namespaces. You already know how to retrieve
 and set object properties and how to call object methods for these objects, but
 only if you already know the names of these properties and methods. Where do
 these names come from? How do you find them in the first place?
There’s no single place to find an answer to these questions, but there are a
 few sources we can draw upon to get most of the picture. The first place is the
 ADSI documentation—especially
 the help file mentioned in the earlier sidebar, The Tools of the ADSI Trade. This file contains a huge amount of
 helpful material. For the answer to our question about property and method
 names, the place to start in the file is Active Directory Service Interfaces
 2.5→ADSI Reference→ADSI System Providers.
The documentation is sometimes the only place to find method names, but there’s a second, more interesting approach we can
 take when looking for property names: we can use metadata that ADSI itself provides. This is where the schema
 properties concept I mentioned earlier comes into the picture (see the first
 part of the section ADSI Basics if you don’t recall the
 schema/interface property distinction).
Every ADSI object has a property called Schema that yields an
 ADsPath to its schema object. For instance, the following code:
use Win32::OLE;

$ADsPath = 'WinNT://BEESKNEES,computer';
$adsobj = Win32::OLE->GetObject($ADsPath) or
 die "Unable to retrieve the object for $ADsPath\n";
print 'This is a '.$adsobj->{Class}."object, schema is at:\n".
 $adsobj->{Schema},"\n";
will print:
This is a Computer object, schema is at:
WinNT://DomainName/Schema/Computer
The value of $adsobj->{Schema} is an ADsPath to an object that describes the schema for the objects of
 class
 Computer in that domain. Here we’re using the
 term “schema” in the same way we used it when talking about LDAP schemas. In
 LDAP, schemas define which attributes can and must be present in
 entries of specific object classes. In ADSI, a schema object holds the same
 information about objects of a certain class and their schema properties.
If we want to see the possible attribute names for an object, we can look at the values of two properties in its schema
 object: MandatoryProperties and OptionalProperties. Let’s change the print statement from our last example to the
 following:
$schmobj = Win32::OLE->GetObject($adsobj->{Schema}) or
 die "Unable to retrieve the object for $ADsPath\n";
print join("\n",@{$schmobj->{MandatoryProperties}},
 @{$schmobj->{OptionalProperties}}),"\n";
This prints:
Owner
Division
OperatingSystem
OperatingSystemVersion
Processor
ProcessorCount
Now we know the possible schema interface property names in the WinNT namespace for our Computer objects. Pretty nifty, eh?
Schema properties are retrieved and set in a slightly different manner than interface
 properties. Recall that interface properties are retrieved and set like this:
retrieving and setting INTERFACE properties
$value = $obj->{property};
$obj->{property} = $value;
Schema properties are retrieved and set using special methods:
retrieving and setting SCHEMA properties
$value = $obj->Get('property');
$obj->Put('property','value');
Everything we’ve talked about so far regarding interface properties holds true
 for schema properties as well (i.e., the property cache, SetInfo(), etc.). Besides the need to use special
 methods to retrieve and set values, the only other place where you’ll need to
 distinguish between the two is in their names. Sometimes the same object may have two different names for
 essentially the same property: one for the interface property and one for the
 schema property. For example, these two lines retrieve the same basic setting
 for a user:
$len = $userobj->{PasswordMinimumLength}; # the interface property
$len = $userobj->Get('MinPasswordLength'); # the same schema property
There are two kinds of properties because interface properties exist as part
 of the underlying COM model. When developers define an interface as part of developing
 a program, they also define the interface properties. Later, if they want to
 extend the property set, they have to modify both the COM interface and any code
 that uses that interface. In ADSI, developers can change the schema properties
 in a provider without having to modify the underlying COM interface for that
 provider. It is important to become comfortable with dealing with both kinds of
 properties, because sometimes a certain piece of data in an object is made
 available only from within one kind.
On a practical note, if you are just looking for interface or schema property
 names and don’t want to bother writing a program to find them, I recommend
 using Toby Everett’s ADSI browser, mentioned earlier. Figure 9-2 is a sample screen shot
 of this browser in action.
[image: Everett’s ADSI browser displaying an Administrators group object]

Figure 9-2. Everett’s ADSI browser displaying an Administrators group object

Alternatively, the General folder of the SDK samples
 contains a program called
 ADSIDump that can dump the contents of
 an entire ADSI tree for you.

Searching

This is the last complication we’ll discuss before moving on. In the section
 LDAP: A Sophisticated Directory Service, we spent
 considerable time talking about LDAP searches. But here in ADSI-land, we’ve
 breathed hardly a word about the subject. This is because from Perl (and any
 other language that uses the same OLE automation interface), searching with ADSI
 is a pain—that is, subtree searches, or searches that entail anything but the
 simplest of search filters, are excruciatingly painful (other types of search
 are not so bad). Complex searches are troublesome because they require you to
 step out of the ADSI framework and use a whole different methodology to get at
 your data (not to mention learn more Microsoft acronyms).
But people who do system administration are trained to laugh at pain, so let’s
 take a look. We’ll start with simple searches before tackling the hard stuff.
 Simple searches that encompass one object (scope of base) or an object’s immediate children (scope of one) can be handled manually with Perl. Here’s
 how:
	For a single object, retrieve the properties of interest and use the
 normal Perl comparison operators to determine if this object is a
 match:
if ($adsobj->{cn} eq 'Mark Sausville' and $adsobj->{State} eq 'CA'){...}

	To search the children of an object, use the container object access
 techniques we discussed previously and then examine each child object in
 turn. We’ll see some examples of this type of search in a moment.

If you want to do more complex searches, like those that entail searching a
 whole directory tree or subtree, you need to switch to using a different
 “middleware” technology called ActiveX Data Objects (ADO). ADO offers scripting languages an
 interface to Microsoft’s OLE DB layer. OLE DB provides a common database-oriented interface to data sources
 such as relational databases and directory services. In our case we’ll be using ADO to talk to ADSI (which then talks
 to the actual directory service). Because ADO is a database-oriented
 methodology, the code you are about to see relates to the ODBC
 material we covered in Chapter 7.
Note
ADO only works when talking to the LDAP ADSI provider. It will not work
 for the
 WinNT namespace.

ADO is a whole subject in itself that is only peripherally related to the
 subject of directory services, so we’ll do
 no more than look at one example and a little bit of explanation before moving on to some more
 relevant ADSI examples. For more information on ADO itself, search the Microsoft website for the
 term “ADO” and check out this Wikipedia page: http://en.wikipedia.org/wiki/ActiveX_Data_Objects.
Here’s some code that displays the names of all of the groups to be found in a
 given domain:
use Win32::OLE qw(in);

get the ADO object, set the provider, open the connection
$c = Win32::OLE->new('ADODB.Connection');
$c->{Provider} = 'ADsDSOObject';
$c->Open('ADSI Provider');
die Win32::OLE->LastError() if Win32::OLE->LastError();

prepare and then execute the query
$ADsPath = 'LDAP://ldapserver/dc=example,dc=com';
$rs = $c->Execute("<$ADsPath>;(objectClass=Group);Name;SubTree");
die Win32::OLE->LastError() if Win32::OLE->LastError();

until ($rs->EOF){
 print $rs->Fields(0)->{Value},"\n";
 $rs->MoveNext;
}

$rs->Close;
$c->Close;
After loading the modules, this block of code gets an ADO Connection object instance,
 sets that object instance’s provider name, and then instructs it to open the
 connection. This connection is opened on behalf of the user running the script,
 though we could have set some other object properties to change this.
We then perform the actual search using Execute(). This search can be specified using one of two
 “dialects,” SQL or ADSI.[92] The ADSI dialect, as shown, uses a command string consisting of four
 arguments, separated by semicolons.
Warning
Be careful of this ADSI ADO provider quirk: there cannot be any whitespace
 around the semicolons, or the query will fail.

The arguments are:
	An ADsPath (in angle brackets) that sets the server and base DN for
 the search

	A search filter (using the same LDAP filter syntax we saw
 before)

	The name or names (separated by commas) of the properties to
 return

	A search scope of either Base,
 OneLevel, or SubTree (as per the LDAP standard)

Execute() returns a reference to the first
 of the ADO
 RecordSet objects returned by our query. We
 ask for each RecordSet object in turn,
 unpacking the objects it holds and printing the Value property returned by the Fields() method for each of these objects. The Value property contains the value we requested in
 our command string (the name of the Group
 object). Here’s an excerpt from sample output from a Windows Server 2003
 machine:
Domain Computers
Domain Users
RAS and IAS Servers
Users
Domain Guests
Group Policy Creator Owners
Enterprise Admins
Server Operators
Account Operators
Print Operators
Replicator
Domain Controllers
Schema Admins
Remote Desktop Users
Network Configuration Operators
Incoming Forest Trust Builders
Performance Monitor Users
Terminal Server License Servers
Pre-Windows 2000 Compatible Access
Performance Log Users
Windows Authorization Access Group
Backup Operators
Domain Admins
Administrators
Cert Publishers
Guests
DnsAdmins
DnsUpdateProxy
Debugger Users

Performing Common Tasks Using the WinNT and LDAP Namespaces

Now that we’ve safely emerged from our list of complications, we can turn to performing
 some common administrative tasks using ADSI from Perl. The goal is to give you a
 taste of the things you can do with the ADSI information we’ve presented. Then
 you can use the code we’re going to see as starter recipes for your own
 programming.
For these tasks, we’ll use one of two namespaces. The first namespace is
 WinNT, which gives us access to the local
 Windows SAM database that includes objects like local users, groups, printers,
 services, etc.
The second is our friend LDAP. LDAP becomes the provider of choice when we move
 on to the LDAP-based Active Directory of Windows 2000 and beyond. Most of the
 WinNT objects can be accessed via
 LDAP as well. But even with Windows
 Server 2003, there are still tasks that can only be performed using the WinNT namespace (like the creation of local
 machine accounts).
The code that works with these different namespaces looks similar (after all,
 that’s part of the point of using ADSI), but you should note two important
 differences. First, the ADsPath format is slightly different. The WinNT ADsPath takes one of these forms, according to the ADSI SDK:
WinNT:[//DomainName[/ComputerName[/ObjectName[,className]]]]
WinNT:[//DomainName[/ObjectName[,className]]]
WinNT:[//ComputerName,computer]
WinNT:
The LDAP ADsPath looks like this:
LDAP://HostName[:PortNumber][/DistinguishedName]
Note that the properties of the objects in the LDAP and WinNT namespaces are
 similar, but they are not the same. For instance, you can access the same user
 objects from both namespaces, but you can only get to some Active Directory
 properties for a particular user object through the LDAP namespace.
It’s especially important to pay attention to the differences between
 the schemas found in the two namespaces. For example, the User class for WinNT has no mandatory properties, while the LDAP User class has several. With the LDAP namespace, you need to populate at least the
 cn and samAccountName properties to successfully create a User object.
With these differences in mind, let’s look at some actual code. To save space,
 we’re going to omit most of the error checking, but you’ll want to run your
 scripts with the -w switch and liberally
 sprinkle lines like this throughout your code:
die 'OLE error :'.Win32::OLE->LastError() if Win32::OLE->LastError();
Note
In the examples that follow, you’ll find that I flip-flop between using
 the WinNT and LDAP namespaces. This is to give you a sense of how to use
 both of them. Deciding which one to use depends largely on the task at hand
 and the size of the Active Directory implementation in play.
Sometimes the decision is made for you. For example, you need to use
 WinNT when dealing with local machine
 users/services and for printer queue control; conversely, you need to use
 LDAP to access some user properties
 in AD, AD control objects, and so on.
For other tasks, you have a choice. In those cases LDAP is usually preferred (despite being a bit
 more complex) because it is more efficient. With the LDAP namespace, you can operate directly on an
 object deep in the AD tree without having to enumerate through a list of
 objects as you would when using WinNT. If
 your AD implementation is relatively small, this efficiency gain may not
 matter to you and the ease of using WinNT
 may be more compelling. It is largely your choice.

Working with Users via ADSI

To dump the list of users using the
 WinNT namespace:
use Win32::OLE qw(in);

'WinNT://CurrentComputername,computer' - accounts local to this computer
'WinNT://DCname, computer' - accounts for the client's current domain
'WinNT://DomainName/DCName,computer' - to specify the domain

my $ADsPath= 'WinNT://DomainName/DCName,computer';
my $c = Win32::OLE->GetObject($ADsPath) or die "Unable to get $ADsPath\n";
foreach my $adsobj (in $c){
 print $adsobj->{Name},"\n" if ($adsobj->{Class} eq 'User');
}
If you wanted to use the
 LDAP namespace instead of the WinNT namespace to do an exhaustive (i.e.,
 entire-tree) search for users, you would need to use the ADO-based method
 demonstrated in the section on searching.
To create a user (local to the machine) and set that user’s full name:
use Win32::OLE;

my $ADsPath='WinNT://LocalMachineName,computer';
my $c = Win32::OLE->GetObject($ADsPath) or die "Unable to get $ADsPath\n";

create and return a User object
my $u = $c->Create('user',$username);
$u->SetInfo(); # we have to create the user before we modify it

no space between "Full" and "Name" allowed with WinNT namespace
$u->{FullName} = $fullname;
$u->SetInfo();
The equivalent code to create a global user (you can’t create local users
 using the LDAP namespace) in Active Directory
 looks like this:
use Win32::OLE;

This creates the user under the cn=Users branch of your directory tree.
If you keep your users in a sub-OU of Users, just change the next line.
my $ADsPath= 'LDAP://ldapserver,CN=Users,dc=example,dc=com';

my $c = Win32::OLE->GetObject($ADsPath) or die "Unable to get $ADsPath\n";

create and return a User object
my $u=$c->Create('user','cn='.$commonname);
$u->{samAccountName} = $username;
IMPORTANT: we have to create the user in the dir before we modify it
$u->SetInfo();

space between "Full" and "Name" required with LDAP namespace (sigh)
$u->{'Full Name'} = $fullname;
$u->SetInfo();
Deleting a local user requires just a small change:
use Win32::OLE;

my $ADsPath= 'WinNT://DomainName/ComputerName,computer';
my $c = Win32::OLE->GetObject($ADsPath) or die "Unable to get $ADsPath\n";

delete the User object; note that we are bound to the container object
$c->Delete('user',$username);
$c->SetInfo();
Changing a user’s password is a single method’s work:
use Win32::OLE;

or 'LDAP://cn=$username,ou=staff,ou=users,dc=example,dc=com' (for example)
my $ADsPath= 'WinNT://DomainName/ComputerName/'.$username;
my $u = Win32::OLE->GetObject($ADsPath) or die "Unable to get $ADsPath\n";

$u->ChangePasssword($oldpassword,$newpassword);
$u->SetInfo();

Working with Groups via ADSI

You can enumerate the available groups using the
 WinNT namespace with just a minor tweak of
 our user enumeration code. The one changed line is:
print $adsobj->{Name},"\n" if ($adsobj->{Class} eq 'Group');
If you want to enumerate groups using the
 LDAP namespace, it is best to use ADO (see
 the section Searching).
Creation and deletion of groups involves the same Create()
 and Delete() methods we just saw for user
 account creation and deletion; the only difference is the first argument needs
 to be 'group'. For example:
my $g = $c->Create('group',$groupname);
To add a user to a group (specified as a GroupName)
 once you’ve created it:
use Win32::OLE;

my $ADsPath= 'WinNT://DomainName/GroupName,group';

my $g = Win32::OLE->GetObject($ADsPath) or die "Unable to get $ADsPath\n";

this uses the ADsPath to a specific user object
$g->Add($userADsPath);
With the WinNT namespace, the same rules we
 saw earlier about local versus domain (global) users apply here as well. If we want to
 add a domain user to our group, our $userADsPath should reference the user at a DC for that domain.
 If we want to use the LDAP namespace for this
 task, we explicitly point at the group in the directory tree:
my $ADsPath= 'LDAP://cn=GroupName,ou=Groups,dc=example,dc=com';
To remove a user from a group, use:
$c->Remove($userADsPath);

Working with File Shares via ADSI

Now we start to get into some of the more interesting ADSI work. It is possible to
 use ADSI to instruct a machine to start sharing a part of its local storage with
 other computers:
use Win32::OLE;

my $ADsPath= 'WinNT://ComputerName/lanmanserver';

my $c = Win32::OLE->GetObject($ADsPath) or die "Unable to get $ADsPath\n";

my $s = $c->Create('fileshare',$sharename);
$s->{path} = 'C:\directory';
$s->{description} = 'This is a Perl created share';
$s->SetInfo();
File shares are deleted using the Delete()
 method.
Note
Before we move on to other tasks, let me take this opportunity to remind
 you to closely consult the SDK documentation before using any of these ADSI
 objects. Sometimes, you’ll find useful surprises. If you look in the ADSI
 2.5 help file at Active Directory Service Interfaces 2.5→ADSI Reference→ADSI
 Interfaces→Persistent Object Interfaces→IADsFileShare, you’ll see that a
 fileshare object has a CurrentUserCount property that shows how many
 users are currently connected to this file share. This could be a very handy
 detail.

Working with Print Queues and Print Jobs via ADSI

Here’s how to determine the names of the queues on a particular server and the
 models of the printers being used to serve those queues:
use Win32::OLE qw(in);

my $ADsPath='WinNT://DomainName/PrintServerName,computer';

my $c = Win32::OLE->GetObject($ADsPath) or die "Unable to get $ADsPath\n";

foreach my $adsobj (in $c){
 print $adsobj->{Name}.':'.$adsobj->{Model}."\n"
 if ($adsobj->{Class} eq 'PrintQueue');
}
Once you have the name of a print queue, you can bind to it directly to
 query and control it:
use Win32::OLE qw(in);

this table comes from this section in the ADSI 2.5 SDK:
'Active Directory Service Interfaces 2.5->ADSI Reference->
ADSI Interfaces->Dynamic Object Interfaces->IADsPrintQueueOperations->
IADsPrintQueueOperations Property Methods' (phew)

my %status =
 (0x00000001 => 'PAUSED', 0x00000002 => 'PENDING_DELETION',
 0x00000003 => 'ERROR' , 0x00000004 => 'PAPER_JAM',
 0x00000005 => 'PAPER_OUT', 0x00000006 => 'MANUAL_FEED',
 0x00000007 => 'PAPER_PROBLEM', 0x00000008 => 'OFFLINE',
 0x00000100 => 'IO_ACTIVE', 0x00000200 => 'BUSY',
 0x00000400 => 'PRINTING', 0x00000800 => 'OUTPUT_BIN_FULL',
 0x00001000 => 'NOT_AVAILABLE', 0x00002000 => 'WAITING',
 0x00004000 => 'PROCESSING', 0x00008000 => 'INITIALIZING',
 0x00010000 => 'WARMING_UP', 0x00020000 => 'TONER_LOW',
 0x00040000 => 'NO_TONER', 0x00080000 => 'PAGE_PUNT',
 0x00100000 => 'USER_INTERVENTION', 0x00200000 => 'OUT_OF_MEMORY',
 0x00400000 => 'DOOR_OPEN', 0x00800000 => 'SERVER_UNKNOWN',
 0x01000000 => 'POWER_SAVE');

my $ADsPath = 'WinNT://PrintServerName/PrintQueueName';

my $p = Win32::OLE->GetObject($ADsPath) or die "Unable to get $ADsPath\n";

print 'The printer status for ' . $c->{Name} . ' is ' .
 ((exists $p->{status}) ? $status{$c->{status}} : 'NOT ACTIVE') . "\n";
The
 PrintQueue object offers the set of print
 queue control methods you’d hope for: Pause(), Resume(), and Purge(). These allow us to control the actions of
 the queue itself. But what if we want to examine or manipulate the actual jobs
 in this queue?
To get at the actual jobs, you call a PrintQueue object method called PrintJobs(). PrintJobs()
 returns a collection of PrintJob objects,
 each of which has a set of properties and methods. For instance, here’s how to
 show the jobs in a particular queue:
use Win32::OLE qw(in);

this table comes from this section in the ADSI 2.5 SDK:
'Active Directory Service Interfaces 2.5->ADSI Reference->
ADSI Interfaces->Dynamic Object Interfaces->IADsPrintJobOperations->
IADsPrintJobOperations Property Methods' (double phew)

my %status = (0x00000001 => 'PAUSED', 0x00000002 => 'ERROR',
 0x00000004 => 'DELETING',0x00000010 => 'PRINTING',
 0x00000020 => 'OFFLINE', 0x00000040 => 'PAPEROUT',
 0x00000080 => 'PRINTED', 0x00000100 => 'DELETED');

my $ADsPath = 'WinNT://PrintServerName/PrintQueueName';

my $p = Win32::OLE->GetObject($ADsPath) or die "Unable to get $ADsPath\n";

$jobs = $p->PrintJobs();
foreach my $job (in $jobs){
 print $job->{User} . "\t" . $job->{Description} . "\t" .
 $status{$job->{status}} . "\n";
}
Each job can be Pause()d and Resume()d as well.

Working with Windows-Based Operating System Services via ADSI

For our last set of examples, we’re going to look at how to locate, start, and
 stop the services on a Windows machine. Like the other examples in this chapter,
 these code snippets must be run from an account with sufficient privileges on
 the target computer to effect changes.
To list the services on a computer and their statuses, we could use this
 code:
use Win32::OLE qw(in);

this table comes from this section in the ADSI 2.5 SDK:
'Active Directory Service Interfaces 2.5->ADSI Reference->
ADSI Interfaces->Dynamic Object Interfaces->IADsServiceOperations->
IADsServiceOperations Property Methods'

my %status =
 (0x00000001 => 'STOPPED', 0x00000002 => 'START_PENDING',
 0x00000003 => 'STOP_PENDING', 0x00000004 => 'RUNNING',
 0x00000005 => 'CONTINUE_PENDING',0x00000006 => 'PAUSE_PENDING',
 0x00000007 => 'PAUSED', 0x00000008 => 'ERROR');

my $ADsPath = 'WinNT://DomainName/ComputerName,computer';

my $c = Win32::OLE->GetObject($ADsPath) or die "Unable to get $ADsPath\n";

foreach my $adsobj (in $c){
 print $adsobj->{DisplayName} . ':' . $status{$adsobj->{status}} . "\n"
 if ($adsobj->{Class} eq 'Service');
}
To start, stop, pause, or continue a service, we call the obvious methods
 (Start(), Stop(), etc.). Here’s how we might start the Network Time service
 on a Windows machine if it were stopped:
use Win32::OLE;

my $ADsPath = 'WinNT://DomainName/ComputerName/W32Time,service';

my $s = Win32::OLE->GetObject($ADsPath) or die "Unable to get $ADsPath\n";

$s->Start();
may wish to check status at this point, looping until it is started
To avoid potential user and computer name conflicts, the previous code can
 also be written as:
use Win32::OLE;

my $d = Win32::OLE->GetObject('WinNT://Domain');
my $c = $d->GetObject('Computer', $computername);
my $s = $c->GetObject('Service', 'W32Time');

$s->Start();
Stopping it is just a matter of changing the last line to:
$s->Stop();
may wish to check status at this point, sleep for a second or two
and then loop until it is stopped
These examples should give you some idea of the amount of control using ADSI
 from Perl can give you over your system administration work. Directory services
 and their interfaces can be a very powerful part of your computing infrastructure.

[90] COM is in fact the protocol used to communicate with these
 objects as part of the larger framework called Object Linking
 and Embedding (OLE). In this section, I’ve tried to keep us out
 of the Microsoft morass of acronyms, but if you want to dig
 deeper, some good resources are available at http://www.microsoft.com/com.

[91] There’s an old vaudeville skit where a man goes to the doctor and
 complains, “Doc, my arm hurts when I move it like this,” only to
 receive the advice, “So, don’t move it like that!” I have to offer
 the same advice. Don’t set up a situation where you might need to
 use these characters in an ADsPath. You’ll only be asking for
 trouble.

[92] The mention of SQL in this context leads into an interesting aside:
 Microsoft SQL Server can be configured to know about ADSI providers in
 addition to normal databases. This means that you can execute SQL
 queries against SQL Server and have it actually query ActiveDirectory objects via ADSI instead
 of normal databases. Pretty cool.

Module Information for This Chapter

	
 Name

 	
 CPAN ID

 	
 Version

	

 Net::Telnet

 	
 JROGERS

 	
 3.03

	

 Net::Finger

 	
 FIMM

 	
 1.06

	

 Net::Whois::Raw

 	
 DESPAIR

 	
 0.34

	

 Net::LDAP

 	
 GBARR

 	
 0.32

	
 Sys::Hostname (ships
 with Perl)

 	 	
 1.11

	
 Win32::OLE (ships with
 ActiveState Perl)

 	
 JDB

 	
 0.17

References for More Information

The following sections list some resources you might want to consult for further
 information on the topics discussed in
 this chapter.
RFC 1288: The Finger User Information Protocol, by D.
 Zimmerman (1991), defines Finger.
ftp://sipb.mit.edu/pub/whois/whois-servers.list is a list of most
 major WHOIS servers.
RFC 954: NICNAME/WHOIS, by K. Harrenstien, M. Stahl, and E. Feinler (1985), defines WHOIS.
LDAP

http://ldap.perl.org is the home page for Net::LDAP.
http://www.openldap.org is the home page for OpenLDAP, a free LDAP server under active development.
JXplorer
 and Apache Directory
 Studio are both good, free GUI LDAP browsers that work with all of
 the LDAP servers I’ve ever used.

 led
 and
 ldapdiff

 are two handy command-line utilities to help with the editing of
 LDAP entries/trees. The first pops you into an editor of your choice to edit an
 LDIF representation of an entry, and the second helps with showing the
 difference between a live LDAP tree and an LDIF file (and patching it
 accordingly if you’d like).
You might also want to consult the following sources on LDAP:
	Implementing LDAP, by Mark Wilcox (Wrox
 Press)

	LDAP-HOWTO, by Mark Grennan (1999), available at
 http://www.grennan.com/ldap-HOWTO.html

	Understanding and Deploying LDAP Directory
 Services, Second Edition, by Tim Howes et al.
 (Addison-Wesley)

	RFC 1823: The LDAP Application Program Interface,
 by T. Howes and M. Smith (1995)

	RFC 2222: Simple Authentication and Security
 Layer (SASL), by J. Myers (1997)

	RFC 2251: Lightweight Directory Access Protocol
 (v3), by M. Wahl, T. Howes, and S. Kille (1997)

	RFC 2252: Lightweight Directory Access Protocol (v3):
 Attribute Syntax Definitions, by M. Wahl et al. (1997)

	RFC 2254: The String Representation of LDAP Search
 Filters, by T. Howes (1997)

	RFC 2255: The LDAP URL Format, by T. Howes and M.
 Smith (1997)

	RFC 2256: A Summary of the X.500(96) User Schema for Use
 with LDAPv3, by M. Wahl (1997)

	RFC 2849: The LDAP Data Interchange Format (LDIF)—Technical
 Specification, by Gordon Good (2000)

	Understanding LDAP, by Heinz Jonner et al.
 (1998), available at http://www.redbooks.ibm.com/abstracts/sg244986.html (a
 superb “Redbook” introduction to LDAP)

	
 LDAP System
 Administration
 , by Gerald Carter (O’Reilly)

	LDAP Programming, Management, and Integration, by
 Clayton Donley (Manning)

ADSI

http://cwashington.netreach.net is a good (non-Perl-specific) site on scripting ADSI and other Microsoft
 technologies.
http://msdn.microsoft.com/en-us/library/aa772170.aspx is the
 canonical source for ADSI information.
http://public.activestate.com/authors/tobyeverett/ contains
 Toby Everett’s collection of documentation on using ADSI from Perl.
http://www.15seconds.com is another good (non-Perl-specific)
 site on scripting ADSI and other Microsoft technologies.
http://isg.ee.ethz.ch/tools/realmen/ presents a whole
 system-management infrastructure for Windows written almost entirely in
 Perl.
Robbie Allen, author/coauthor of a slew of superb books on Windows and AD, has a
 website at http://techtasks.com where you can find the code
 samples from all of his books. It truly is the mother lode of examples—one of
 the single most helpful websites for ADSI programming that you’ll ever find. For
 more on Allen’s contributions, see the references at the end of Chapter 3.
You might also want to check out these sources:
	
 Active
 Directory
 , Second Edition, by Alistair G. Lowe-Norris
 (O’Reilly)

	Managing Enterprise Active Directory Services, by
 Robbie Allen and Richard Puckett
 (Addison-Wesley)

	Microsoft Windows 2000 Scripting Guide: Automating System
 Administration (Microsoft Press)

Chapter 10. Log Files

If this weren’t a book on system administration, an entire chapter on log files would
 seem peculiar. But system administrators have a very special relationship with log
 files. System administrators are expected to be like Doctor Doolittle, who could talk to
 the animals: able to communicate with a large menagerie of software and hardware. Much
 of this communication takes place through log files, so we become log file linguists.
 Perl can be a big help in this process.
It would be impossible to touch on all the different kinds of processing and analysis
 you can do with logs in a single chapter. Entire books have been devoted to just
 statistical analysis of this sort of data, and companies have been founded to sell
 products to help analyze it. However, this chapter does present some general approaches
 to the topic and some relevant Perl tools, to whet your appetite for more.
Reading Text Logs

Logs come in different flavors, so we need several approaches for dealing
 with them. The most common type of log file is one composed entirely of lines of
 text: popular server packages like Apache (Web), BIND (DNS), and
 sendmail (email) spew log text in voluminous quantities
 (especially in debug mode). Most logs on Unix machines look similar because they are
 created by a centralized logging facility known as
 syslog. For our purposes, we can treat files created by
 syslog like any other text files.
Here’s a simple Perl program to scan for the word “error” in a text-based log
 file:
open my $LOG, '<', "$logfile" or die "Unable to open $logfile:$!\n";
while(my $line = <$LOG>){
 print if $line =~ /\berror\b/i;
}
close $LOG;
Perl-savvy readers are probably itching to turn it into a one-liner. For those
 folks:
perl -ne 'print if /\berror\b/i' logfile

Reading Binary Log Files

Sometimes it’s not that easy writing programs to deal with log files. Instead of nice, easily
 parsable text lines, some logging mechanisms produce nasty, gnarly binary files with
 proprietary formats that can’t be parsed with a single line of Perl. Luckily, Perl
 isn’t afraid of these miscreants. Let’s look at a few approaches we can take when
 dealing with these files. We’re going to look at two different examples of binary
 logs: Unix’s wtmp file and Windows-based operating system event logs.
Back in Chapter 4, we touched briefly on the notion of
 logging in and logging out of a Unix host. Login and logout activity is tracked in a
 file called
 wtmpx (or wtmp) on most Unix variants. It
 is common to check this file whenever there is a question about a user’s connection
 habits (e.g., what hosts does this person usually log in from?). It tends to live in
 different places depending on the operating system (e.g., Solaris has it in /var/adm,
 Linux in /var/log[93]).
On Windows, the event logs play a more generalized role. They are used as a
 central clearinghouse for logging practically all activity that takes place on these
 machines, including login and logout activity, OS messages, security events, etc.
 Their role is analogous to the Unix syslog service we mentioned
 earlier.
Using unpack()

Perl has a function called unpack()
 especially designed to parse binary and structured data. Let’s take a look at how we might
 use it to deal with the wtmpx files. The format of wtmp and wtmpx differs
 from Unix variant to Unix variant. For this specific example, we’ll look at the
 wtmpx file found on Solaris 10 and the Linux 2.6 wtmp. Here’s a plain-text translation
 of the first two records in a Solaris 10 wtmpx file:
0000000 d n b \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
0000020 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
0000040 t s / 1 p t s / 1 \0 \0 \0 \0 \0 \0 \0
0000060 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
0000100 \0 \0 \0 \0 \0 \0 # 346 \0 007 \0 \0 \0 \0 \0 \0
0000120 D 9 . 253 \0 \t 313 234 \0 \0 \0 \0 \0 \0 \0 \0
0000140 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
0000160 \0 ' p o o l - 1 4 1 - 1 5 4 - 1
0000200 2 1 - 5 . b o s . e a s t . v e
0000220 r i z o n . n e t \0 \0 \0 \0 \0 \0 \0
0000240 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
*
0000560 \0 \0 \0 T d n b \0 \0 \0 \0 \0 \0 \0 \0 \0
0000600 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
0000620 \0 \0 \0 \0 t s / 2 p t s / 2 \0 \0 \0
0000640 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
0000660 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 $ R \0 007 \0 \0
0000700 \0 \0 \0 \0 D 9 / 212 \0 016 L 315 \0 \0 \0 \0
0000720 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
0000740 \0 \0 \0 \0 \0 ' p o o l - 1 4 1 - 1
0000760 5 4 - 1 2 1 - 5 . b o s . e a s
0001000 t . v e r i z o n . n e t \0 \0 \0
0001020 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
*
0001340 \0 \0 \0 \0 \0 \0 \0 T
Unless you are already familiar with the structure of this file, that “ASCII
 dump” (as it is called) of the data probably looks like line noise or some other
 kind of semirandom garbage. So how do we become acquainted with this file’s
 structure?
The easiest way to understand the format of this file is to look at the source
 code for programs that read and write to it. If you are not literate in the C
 language, this may seem like a daunting task. Luckily, we don’t actually have to
 understand or even look at most of the source code; we can just examine the
 portion that defines the file format.
All of the operating system programs that read and write to the
 wtmp file get their file definitions from a single,
 short C include file, which is very likely to be found at /usr/include/utmp.h or
 utmpx.h. The part of the file we need to look at begins
 with a definition of the C data structure that will be used to hold the
 information. If you search for struct utmp {,
 you’ll find the portion we need. The next lines after struct utmp { define each of the fields in
 this structure. These lines should each be commented using the /*
 text
 */ C comment convention.
Just to give you an idea of how different two versions of
 wtmpx can be, let’s compare the relevant excerpts on
 these two operating systems.
Here’s an excerpt from Solaris 10’s utmpx.h:
/*
 * This data structure describes the utmp *file* contents using
 * fixed-width data types. It should only be used by the implementation.
 *
 * Applications should use the getutxent(3c) family of routines to interact
 * with this database.
 */

struct futmpx {
 char ut_user[32]; /* user login name */
 char ut_id[4]; /* inittab id */
 char ut_line[32]; /* device name (console, lnxx) */
 pid32_t ut_pid; /* process id */
 int16_t ut_type; /* type of entry */
 struct {
 int16_t e_termination; /* process termination status */
 int16_t e_exit; /* process exit status */
 } ut_exit; /* exit status of a process */
 struct timeval32 ut_tv; /* time entry was made */
 int32_t ut_session; /* session ID, user for windowing */
 int32_t pad[5]; /* reserved for future use */
 int16_t ut_syslen; /* significant length of ut_host */
 char ut_host[257]; /* remote host name */
};
And here’s an excerpt from Linux 2.6’s bits/utmp.h:
struct utmp
{
 short int ut_type; /* Type of login. */
 pid_t ut_pid; /* Process ID of login process. */
 char ut_line[UT_LINESIZE]; /* Device name. */
 char ut_id[4]; /* Inittab ID. */
 char ut_user[UT_NAMESIZE]; /* Username. */
 char ut_host[UT_HOSTSIZE]; /* Hostname for remote login. */
 struct exit_status ut_exit; /* Exit status of a process marked
 as DEAD_PROCESS. */
/* The ut_session and ut_tv fields must be the same size when compiled
 32- and 64-bit. This allows data files and shared memory to be
 shared between 32- and 64-bit applications. */
#if __WORDSIZE == 64 && defined __WORDSIZE_COMPAT32
 int32_t ut_session; /* Session ID, used for windowing. */
 struct
 {
 int32_t tv_sec; /* Seconds. */
 int32_t tv_usec; /* Microseconds. */
 } ut_tv; /* Time entry was made. */
#else
long int ut_session; /* Session ID, used for windowing. */
 struct timeval ut_tv; /* Time entry was made. */
#endif

 int32_t ut_addr_v6[4]; /* Internet address of remote host. */
 char __unused[20]; /* Reserved for future use. */
};
These files provide all the clues we need to compose the necessary unpack() statement. unpack() takes a data format template as its first argument. It
 uses this template to determine how to disassemble the (usually) binary data it
 receives in its second argument. unpack()
 will take apart the data as instructed, returning a list in which each element
 corresponds to an element of your template.
Let’s construct our template piece by piece, based on the C structure from the
 Solaris utmpx.h include file. There are many possible
 template letters we can use. I’ve translated the ones we’ll use in Table 10-1, but you should check
 the pack() section of the perlfunc manual page for more information.
 Constructing these templates is not always straightforward; C compilers
 occasionally pad out values to satisfy alignment constraints. The command
 pstruct that ships with Perl can often
 help with quirks like these.
Table 10-1. Translating the utmpx.h C code to an unpack() template
	
 C code

 	

 unpack() template

 	

 Template letter/repeat #
 translation

	

 char ut_user[32];

 	

 A32

 	
 ASCII string (space-padded), 32 bytes long

	

 char ut_id[4];

 	

 A4

 	
 ASCII string (space-padded), 4 bytes long

	

 char ut_line[32];

 	

 A32

 	
 ASCII string (space-padded), 32 bytes long

	

 pid32_t ut_pid;

 	

 l

 	
 A signed “long” value (4 bytes, which may not be the same
 as the size of a true long value on some machines)

	

 int16_t ut_type;

 	

 s

 	
 A signed “short” value

	

 struct {

 int16_t
 e_termination;

 	

 s

 	
 A signed “short” value

	

 int16_t e_exit;

 } ut_exit;

 	

 s

 	
 A signed “short” value

	 	

 x2

 	
 Compiler-inserted padding

	

 struct {

 time32_t tv_sec;

 	

 l

 	
 A signed “long” value

	

 int32_t tv_usec

 } ut_tv;

 	

 l

 	
 A signed “long” value

	

 int32_t ut_session;

 	

 l

 	
 A signed “long” value

	

 int32_t pad[5];

 	

 x20

 	
 Skip 20 bytes for padding

	

 int16_t ut_syslen;

 	

 s

 	
 A signed “short” value

	

 char ut_host[257];

 	

 Z257

 	
 ASCII string, null-terminated up to 257 bytes including
 \0

	 	

 x

 	
 Compiler-inserted padding

Having constructed our template, let’s use it in a real piece of code:
template for Solaris 9/10 wtmpx
my $template = 'A32 A4 A32 l s s s x2 l l l x20 s Z257 x';

my $recordsize = length(pack($template, ()));

open my $WTMP, '<', '/var/adm/wtmpx' or die "Unable to open wtmpx:$!\n";

my ($ut_user, $ut_id, $ut_line, $ut_pid,
 $ut_type, $ut_e_termination, $ut_e_exit, $tv_sec,
 $tv_usec, $ut_session, $ut_syslen, $ut_host,
) = ();

read wtmpx one record at a time
my $record;
while (read($WTMP, $record, $recordsize)) {

 # unpack it using our template
 ($ut_user, $ut_id, $ut_line, $ut_pid,
 $ut_type, $ut_e_termination, $ut_e_exit, $tv_sec,
 $tv_usec, $ut_session, $ut_syslen, $ut_host
) = unpack($template, $record);

 # this makes the output more readable - the value 8 comes
 # from /usr/include/utmp.h:
 # #define DEAD_PROCESS 8
 if ($ut_type == 8) {
 $ut_host = '(exit)';
 }
 print "$ut_line:$ut_user:$ut_host:" . scalar localtime($tv_sec) . "\n";
}

close $WTMP;
Here’s the output of this little program:
pts/176:vezt:c-61-212-209-21.hsd1.ma.comcast.net:Wed Apr 16 06:37:44 2008
pts/176:vezt:(exit):Wed Apr 16 06:38:03 2008
pts/147:birnou:pool-50-29-232-81.bos.eas.veriz.net:Wed Apr 16 08:09:27 2008
pts/17:croche:ce-23-213-189-154.nycap.res.rr.com:Wed Apr 16 08:34:18 2008
pts/17:croche:(exit):Wed Apr 16 08:34:45 2008
pts/139:hermd:d-66-249-250-270.hsd1.ut.comc.net:Wed Apr 16 09:45:57 2008
pts/139:hermd:(exit):Wed Apr 16 09:58:55 2008
One small comment on the code before we move on: read() takes a number of bytes to read as its third argument.
 Rather than hardcoding in a record size like “32”, we use a handy property of
 the pack() function. When handed an empty
 list, pack() returns a null or space-padded
 string the size of a record. This allows us to feed pack() an arbitrary record template and have it tell us how big a
 record it is:
my $recordsize = length(pack($template, ()));
You Know You’re a Power User When...
Of all the methods we’ll look at for accessing logging information, the
 unpack() method is the one with the
 greatest potential to leave you feeling like a power user. This is the one
 you’ll need to use if you find the other methods are failing due to data
 corruption. For example, I’ve heard of cases where the
 wtmpx file became damaged in a way that left the
 last executable just sputtering error messages.
 When that happens it’s sometimes possible to write code that will skip the
 damaged part (via sysread() in concert
 with unpack()) and allow you to recover
 the rest of the file. You’ll definitely have earned your superhero cape the
 first time you succeed in one of these situations.

The unpack() method is not the only
 intra-Perl method for accessing the wtmp/x data. At least
 one module uses the vendor-approved system calls (getutxent(), etc.) for reading these files. We’ll use that module
 in an example a little later.

Calling an OS (or Someone Else’s) Binary

Sifting through
 wtmp files is such a common task that Unix systems ship
 with a command called
 last for printing a human-readable dump of
 the binary file. Here’s some sample output showing approximately the same data
 as the output of our previous example:
vezt pts/176 c-61-212-209-21. Wed Apr 16 06:37 - 06:38 (00:00)
birnou pts/147 pool-50-29-232-8 Wed Apr 16 08:09 still logged
croche pts/17 ce-23-213-189-15 Wed Apr 16 08:34 - 08:34 (00:00)
hermd pts/139 d-66-249-250-270 Wed Apr 16 09:45 - 09:58 (00:12)
We can easily call binaries like last from Perl. This
 code will show all the unique usernames found in our current
 wtmpx file:
location of the last command binary
my $lastexec = '/bin/last';

open my $LAST, '-|', "$lastexec" or die "Unable to run $lastexec:$!\n";
my %seen;
while(my $line = <$LAST>){
 last if $line =~ /^$/;
 my $user = (split(' ', $line))[0];
 print "$user\n" unless exists $seen{$user};
 $seen{$user}='';
}
close $LAST or die "Unable to properly close pipe:$!\n";
So why use this method when unpack() looked
 like it could serve all your needs? Portability. As you’ve seen, the format of
 the
 wtmp/x file differs from Unix variant to Unix variant. On
 top of this, a single vendor may change the format of
 wtmp/x between OS releases, rendering your perfectly
 good unpack() template invalid.
However, one thing you can reasonably depend on is the
 continued presence of a last command that
 will read this format, independent of any underlying format changes. If you use
 the unpack() method, you have to create and
 maintain separate template strings for each different wtmp
 format you plan to parse.[94]
The biggest disadvantage of using this method rather than unpack() is the increased sophistication of the
 field parsing you need to do in the program. With unpack(), all the fields are automatically extracted from the
 data for you. Using our last example, you may find yourself
 with split() or regular expression-resistant
 output like this, all in the same output:
user console Wed Oct 14 20:35 - 20:37 (00:01)
user pts/12 208.243.191.21 Wed Oct 14 09:19 - 18:12 (08:53)
user pts/17 208.243.191.21 Tue Oct 13 13:36 - 17:09 (03:33)
reboot system boot Tue Oct 6 14:13
Your eye has little trouble picking out the columns, but any program that
 parses this output will have to deal with the missing information in lines 1 and
 4. unpack() can still be used to tease apart
 this output because it has fixed field widths, but that’s not always possible.
 There are other techniques for writing more sophisticated parsers, but that’s
 probably more work than you desire.

Using the OS’s Logging API

For this approach, let’s switch our focus to the Windows Event Log Service. As mentioned earlier, Windows machines
 unfortunately do not log to plain-text files. The only supported way to get to
 the log file data is through a set of special API calls. Most users rely on the
 Event Viewer program, shown in Figure 10-1, to
 retrieve this data for them.
[image: The Windows Event Viewer]

Figure 10-1. The Windows Event Viewer

Luckily, there is a Perl module (written by Jesse Dougherty and later updated by Martin Pauley and Bret
 Giddings) that allows easy access to the Event Log API calls.[95] We’ll walk through a more complex version of this program later in
 this chapter, but for now here’s a simple program that dumps a listing of events
 in the
 System event log in a syslog-like
 format:
use Win32::EventLog;
each event has a type - this is a translation of the common types
my %type = (1 => 'ERROR',
 2 => 'WARNING',
 4 => 'INFORMATION',
 8 => 'AUDIT_SUCCESS',
 16 => 'AUDIT_FAILURE');

if this is set, we also retrieve the full text of every
message on each Read()
$Win32::EventLog::GetMessageText = 1;

open the System event log
my $log = new Win32::EventLog('System')
 or die "Unable to open system log:$^E\n";

my $event = '';
read through it one record at a time, starting with the first entry
while ($log->Read((EVENTLOG_SEQUENTIAL_READ|EVENTLOG_FORWARDS_READ),
 1,$entry)){
 print scalar localtime($entry->{TimeGenerated}).' ';
 print $entry->{Computer}.'['.($entry->{EventID} &
 0xffff).'] ';
 print $entry->{Source}.':'.$type{$entry->{EventType}}.': ';
 print $entry->{Message};
}
Command-line utilities like last that dump event logs
 into plain ASCII format also exist for Windows. We’ll see one of these utilities
 in action later in this chapter, and shortly we’ll see an example of using the
 Unix equivalent of an OS logging API for wtmp
 data.

[93] And Mac OS X has, sigh, its own logging framework called the Apple System
 Log facility. It does keep /var/run/utmpx up-to-date at the same time, though.

[94] There’s a bit of hand waving going on here, since you still have to
 track where the last executable is found in each
 Unix environment and compensate for any differences in the format of
 each program’s output.

[95] Log information in Windows can also be retrieved using the Window
 Management Instrumentation (WMI) framework we touched on in Chapter 4, but Win32::EventLog is easier to use and understand. If you
 need to parse Event Log data stored on a non-Windows machine, Parse::EventLog by John Eaglesham makes a
 valiant attempt.

Structure of Log File Data

In addition to the format in which log files present their data, it is important to think
 about the contents of these files, because what the data
 represents and how it is represented both contribute to our
 plan of attack when programming. With log file contents, often a distinction can be
 made between data that is
 stateful and data that is stateless. Let’s
 take a look at a couple of examples that will make this distinction clear.
Here’s a three-line snippet from an Apache web server log. Each line represents a request answered by the
 web server:
esnet-118.dynamic.rpi.edu - - [13/Dec/2008:00:04:20 −0500] "GET home/u1/tux/
tuxedo05.gif

HTTP/1.0" 200 18666 ppp-206-170-3-49.okld03.pacbell.net - - [13/Dec/2008:00:04:21
 −0500] "GET home/u2/news.htm

HTTP/1.0" 200 6748 ts007d39.ftl-fl.concentric.net - - [13/Dec/2008:00:04:22 −0500]
 "GET home/u1/bgc.jpg HTTP/1.1" 304 -
Here are a few lines from a printer daemon log file:
Aug 14 12:58:46 warhol printer: cover/door open
Aug 14 12:58:58 warhol printer: error cleared
Aug 14 17:16:26 warhol printer: offline or intervention needed
Aug 14 17:16:43 warhol printer: error cleared
Aug 15 20:40:45 warhol printer: paper out
Aug 15 20:40:48 warhol printer: error cleared
In both cases, each line of the log file is independent of every other line in the
 file. We can find patterns or aggregate lines together to gather statistics, but
 there’s nothing inherent in the data that connects the log file entries to each
 other.
Now consider some slightly doctored entries from a sendmail
 mail log:
Dec 13 05:28:27 mailhub sendmail[26690]: FAA26690:
from=<user@has.a.godcomplex.com>, size=643, class=0, pri=30643, nrcpts=1,
msgid=<200812131032.CAA22824@has.a.godcomplex.com>, proto=ESMTP,
 relay=user@has.a.godcomplex.com [216.32.32.176]

Dec 13 05:29:13 mailhub sendmail[26695]: FAA26695: from=<root@host.example.edu>,
size=9600, class=0, pri=39600, nrcpts=1,
msgid=<200812131029.FAA15005@host.example.edu>, proto=ESMTP,
 relay=root@host.example.edu [192.168.16.69]

Dec 13 05:29:15 mailhub sendmail[26691]: FAA26690: to=<user@host.example.edu>,
 delay=00:00:02, xdelay=00:00:01, mailer=local, stat=Sent

Dec 13 05:29:19 mailhub sendmail[26696]: FAA26695: to="|IFS=' '&&exec /usr/bin/
procmail -f-||exit 75 #user", ctladdr=user (6603/104), delay=00:00:06,
xdelay=00:00:06, mailer=prog, stat=Sent
Unlike in the previous examples, there is a definite connection between the lines
 in this file. Figure 10-2 makes that
 connection explicit.
[image: Related entries in the sendmail log]

Figure 10-2. Related entries in the sendmail log

Each line has at least one partner entry that shows the source and destination(s)
 of each message. When a message enters the system it is assigned a unique
 “Message-ID,” highlighted in the figure, which identifies that message while it is
 in play. This message ID allows us to associate related lines in an interleaved log
 file, essentially giving a message an existence or “state” in between entries
 in the log file.
Sometimes we care about the “distance” between state transitions. Take, for
 instance, the
 wtmpx file we looked at earlier in this chapter: in that file
 we’re interested not only in when a user logs in and out (the two state transitions
 in the log), but also in the time between these two events (i.e., how long the user
 was logged in).
The most sophisticated log files can add another twist. Here are some excerpts
 from a POP (Post Office Protocol) server’s log file while the server is in
 debug mode. The names and IP addresses have been changed to protect the
 innocent:
Jan 14 15:53:45 mailhub popper[20243]: Debugging turned on
Jan 14 15:53:45 mailhub popper[20243]: (v2.53) Servicing request from
"client" at 129.X.X.X
Jan 14 15:53:45 mailhub popper[20243]: +OK QPOP (version 2.53) at mailhub starting.
Jan 14 15:53:45 mailhub popper[20243]: Received: "USER username"
Jan 14 15:53:45 mailhub popper[20243]: +OK Password required for username.
Jan 14 15:53:45 mailhub popper[20243]: Received: "pass xxxxxxxxx"
Jan 14 15:53:45 mailhub popper[20243]: +OK username has 1 message (26627 octets).
Jan 14 15:53:46 mailhub popper[20243]: Received: "LIST"
Jan 14 15:53:46 mailhub popper[20243]: +OK 1 messages (26627 octets)
Jan 14 15:53:46 mailhub popper[20243]: Received: "RETR 1"
Jan 14 15:53:46 mailhub popper[20243]: +OK 26627 octets
<message text appears here>
Jan 14 15:53:56 mailhub popper[20243]: Received: "DELE 1"
Jan 14 15:53:56 mailhub popper[20243]: Deleting message 1 at offset 0 of length 26627
Jan 14 15:53:56 mailhub popper[20243]: +OK Message 1 has been deleted.
Jan 14 15:53:56 mailhub popper[20243]: Received: "QUIT"
Jan 14 15:53:56 mailhub popper[20243]: +OK Pop server at mailhub signing off.
Jan 14 15:53:56 mailhub popper[20243]: (v2.53) Ending request
 from "user" at (client) 129.X.X.X
Not only do we encounter connections (“Servicing request from...”) and
 disconnections (“Ending request from...”), but we have information detailing what
 took place in between these state transitions.
Each of the middle events also provides potentially useful “distance” information.
 If there was a problem with our POP server, we might look to see how long each step
 in the output took.
In the case of an FTP server, you may be able to draw some conclusions from this
 data about how people interact with your site. On average, how long do people stay
 connected before they transfer files? Do they pause between commands for a long
 time? Do they always travel from one part of your site to another before downloading
 the same file? The interstitial data can be a rich source of information.

Dealing with Log File Information

Once you’ve learned how to access your logging data programmatically, two important
 applications start begging to be addressed: logging information space management and
 log analysis. Let’s look at each in turn.
Space Management of Logging Information

The downside to having programs that can provide useful or verbose
 logging output is the amount of disk space this output can consume. This is a
 concern for all three operating systems covered in this book: Unix, Mac OS X,
 and Windows. Windows is probably the least troublesome of the lot, because its
 central logging facility has built-in autotrimming support.
Usually, the task of keeping the log files down to a reasonable size is handed
 off to the system administrator. Most Unix vendors provide some sort of
 automated log size management mechanism with the OS, but it often handles only
 the select set of log files shipped with the machine. As soon as you add another
 service to a machine that creates a separate log file, it becomes necessary to
 tweak (or even toss) the vendor-supplied solution.
Log rotation

The usual solution to the space problem is to rotate
 the log files. (We’ll explore an unusual solution in the next subsection.)
 After a specific interval has passed or a certain file size has been
 reached, we rename the current log file (e.g., logfile
 becomes logfile.0). The logging
 process is then continued into an empty file. The next time the specified
 interval or limit is reached, we repeat the process, first renaming the
 original backup file (e.g., renaming logfile.0 to
 logfile.1) and then renaming the current log file
 to logfile.0. This process is
 repeated until a set number backup files have been created, at which point
 the oldest backup file is deleted. Figure 10-3 illustrates this
 process.
This method allows us to keep on hand a reasonable, finite amount of log
 data. Table 10-2 provides one
 recipe for log rotation and the Perl functions needed to perform each
 step.
Table 10-2. A recipe for log rotation in Perl
	
 Process

 	
 Perl

	
 Move the older backup logs out of the way (i.e., move
 each one to a new name in the sequence).

 	
 rename(),
 or File::Copy::move()
 if moving files across filesystems.

	
 If necessary, signal the process creating this
 particular log file to close the current file and cease
 logging to disk until told otherwise.

 	
 kill() for
 programs that take signals;
 system() or `` (backticks) if another
 administrative program has to be called for this
 purpose.

	
 Copy or move the log file that was just in use to
 another file.

 	
 File::Copy to copy,
 rename() to
 rename (or File::Copy::move() if moving files across
 filesystems).

	
 If necessary, truncate the current log file.

 	
 truncate()
 or open my
 $FILE,'>','filename'.

	
 If necessary, signal the logging process to resume
 logging.

 	
 See row 2 of this table.

	
 If desired, compress or post-process the copied
 file.

 	
 system()
 or ``
 (backticks) to run a compression program; Compress::Zlib or
 other code for post-processing.

	
 Delete other, older log file copies.

 	
 stat() to
 examine file sizes and dates; unlink() to delete files.

[image: A pictorial representation of log rotation]

Figure 10-3. A pictorial representation of log rotation

There are many variations on this theme. Everyone and their aunt’s vendors
 have written their own scripts for log rotation. Thus, it should come as no
 surprise that there’s a Perl module to handle log rotation. Let’s look at
 Logfile::Rotate, by Paul Gampe.
Logfile::Rotate uses the
 object-oriented programming convention of first creating a new log file
 object instance and then running a method of that instance. First, we create
 a new instance with the parameters found in Table 10-3.
Table 10-3. Logfile::Rotate parameters
	
 Parameter

 	
 Purpose

	

 File

 	
 Name of log file to rotate

	
 Count (optional,
 default: 7)

 	
 Number of backup files to keep around

	
 Gzip (optional,
 default: Perl’s default gzip
 executable name as found during the Perl build—must be
 in your path)

 	
 Full path to gzip compression
 program executable

	

 Post

 	
 Code to be executed after the rotation has been
 completed, as in row 5 of Table 10-2

Here’s some example code that uses these parameters:
use Logfile::Rotate;
my $logfile = new Logfile::Rotate(
 File => '/var/adm/log/syslog',
 Count => 5,
 Gzip => '/usr/local/bin/gzip',
 Post =>
 sub {
 open my $PID, '<', '/etc/syslog.pid' or
 die "Unable to open pid file:$!\n";
 chomp(my $pid = <$PID>);
 close $PID;
 kill 'HUP', $pid;
 }
);
Log file locked (really) and loaded. Now let's rotate it.
$logfile->rotate();
make sure the log file is unlocked (destroying object unlocks file)
undef $logfile;
Note
The preceding code has three potential security
 flaws. See if you can pick them out before looking at the sidebar for the answers and tips on how to avoid
 all three.

Identifying and Fixing Insecure Code
Now that you’ve pored over the Logfile::Rotate code looking for security holes, let’s talk about them. Since this module is
 often run by a privileged user (such as root),
 there are a few concerns:
	The /usr/local/bin/gzip
 command will be run as that privileged user. We’ve done the
 right thing by calling the command with a full path
 (important!), but it behooves you to
 check just who has filesystem permissions to modify/replace that
 executable. One perhaps slightly safer way to sidestep this
 problem (presuming you retain total control over who can install
 Perl modules) is to change the line to Gzip => 'lib'. This causes Logfile::Rotate to call Compress::Zlib instead of calling
 out to a separate binary to do the compression.

	In the Post section, the
 code happily reads /etc/syslog.pid without seeing if that file could
 be tampered with by a malicious party. Is the file
 world-writable? Is it a link to something else? Does the right
 user own the file? Our code doesn’t care, but it should. It
 would be easy to check its permissions via stat()
 before proceeding.

	In the same section, the code blithely sends a HUP signal to
 the PID number it read from the file just mentioned. It makes no
 attempt to determine if that process ID actually refers to a
 running syslog process. More defensive
 coding would check the process table first (perhaps with one of
 the process table listing strategies we discussed in Chapter 4) before sending the signal.

These are the most blatant problems with the code. Be sure to read the
 section on safe scripting in Chapter 1 for more
 thoughts on the matter.

Circular buffering

We’ve just discussed the traditional log rotation method for dealing with
 storage of ever-growing logs. Now let me show you a more unusual approach
 that you can add to your toolkit.
Here’s a common scenario: you’re trying to debug a server daemon that
 provides a torrent of log output. You’re only interested in a small part of
 the total output, perhaps just the lines the server produces after you run
 some sort of test with a special client. Saving all of the log output to
 disk as usual would fill your disk quickly. Rotating the logs as often as
 would be needed with this volume of output would slow down the server. What
 do you do?
I wrote a program called bigbuffy
 to deal with this conundrum. The approach is pretty
 straightforward. bigbuffy reads from its usual
 “standard” or “console” input one line at a time. These lines are stored in
 a circular buffer of a set size (see Figure 10-4). When the buffer is full, it
 starts filling from the top again. This read/store process continues until
 bigbuffy receives a signal from the user. Upon
 receiving this signal, it dumps the current contents of the buffer to a file
 and returns to its normal cycle. What’s left behind on disk is essentially a
 window into the log stream, showing just the data you need.
[image: Logging to a circular buffer]

Figure 10-4. Logging to a circular buffer

bigbuffy can be paired with a service-monitoring
 program like those found in Chapter 13. As soon as the monitor detects a problem, it can signal
 bigbuffy to dump its log buffer, leaving you with a
 snapshot of the log localized to the failure instance (assuming your buffer
 is large enough and your monitor noticed the problem in time).
Here’s a simplified version of bigbuffy. The code is
 longer than the examples we’ve seen so far in this chapter, but it’s not
 very complex. We’ll use it in a moment as a springboard for addressing some
 important issues, such as input blocking and security:
use Getopt::Long;

my @buffer; # buffer for storing input
my $dbuffsize = 200; # default circular buffer size (in lines)
my $whatline = 0; # start line in circular buffer
my $dumpnow = 0; # flag to indicate dump requested

parse the options
my ($buffsize, $dumpfile);
GetOptions(
 'buffsize=i' => \$buffsize,
 'dumpfile=s' => \$dumpfile,
);
$buffsize ||= $dbuffsize;

set up the signal handler and initialize a counter
die "USAGE: $0 [--buffsize=<lines>] --dumpfile=<filename>"
 unless (length($dumpfile));

$SIG{'USR1'} = \&dumpnow; # set a signal handler for dump

and away we go! (with just a simple
read line-store line loop)
while (defined($_ = <>)) {

 # Insert line into data structure.
 # Note: we do this first, even if we've caught a signal.
 # Better to dump an extra line than lose a line of data if
 # something goes wrong in the dumping process.

 $buffer[$whatline] = $_;

 # where should the next line go?
 $whatline = ++$whatline % $buffsize;

 # if we receive a signal, dump the current buffer
 if ($dumpnow) {
 dodump();
 }
}

simple signal handler that just sets an exception flag,
see perlipc(1)
sub dumpnow {
 $dumpnow = 1;
}

dump the circular buffer out to a file, appending to file if
it exists
sub dodump {
 my $line; # counter for line dump
 my $exists; # flag, does the output file exist already?
 my $DUMP_FH; # filehandle for dump file
 my (@firststat, @secondstat); # to hold output of lstats

 $dumpnow = 0; # reset the flag and signal handler
 $SIG{'USR1'} = \&dumpnow;

 if (-e $dumpfile and (! -f $dumpfile or -l $dumpfile)) {
 warn 'ALERT: dumpfile exists and is not a plain file, '.
 "skipping dump.\n";
 return undef;
 }

 # We have to take special precautions when we're doing an
 # append. The next set of "if" statements performs a set of
 # security checks while opening the file for appending.
 if (-e $dumpfile) {
 $exists = 1;
 unless (@firststat = lstat $dumpfile) {
 warn "Unable to lstat $dumpfile, skipping dump.\n";
 return undef;
 }
 if ($firststat[3] != 1) {
 warn "$dumpfile is a hard link, skipping dump.\n";
 return undef;
 }
 }
 unless (open $DUMP_FH, '>>', $dumpfile) {
 warn "Unable to open $dumpfile for append, skipping dump:$!.\n";
 return undef;
 }
 if ($exists) {
 unless (@secondstat = lstat $DUMP_FH) {
 warn "Unable to lstat opened $dumpfile, skipping dump.\n";
 return undef;
 }

 if (
 $firststat[0] != $secondstat[0] or # check dev num
 $firststat[1] != $secondstat[1] or # check inode
 $firststat[7] != $secondstat[7] # check sizes
)
 {
 warn "SECURITY PROBLEM: lstats don't match, skipping dump.\n";
 return undef;
 }
 }

 $line = $whatline;
 print {$DUMP_FH} '-' . scalar(localtime) . ('-' x 50) . "\n";

 do {
 # print only valid lines in case buffer was not full
 print {$DUMP_FH} $buffer[$line] if defined $buffer[$line];
 $line = ++$line % $buffsize;
 } until $line == $whatline;

 close $DUMP_FH;

 # zorch the active buffer to avoid leftovers
 # in future dumps
 $whatline = 1;
 @buffer = ();

 return 1;
}
A program like this can stir up interesting implementation issues. We’ll
 look at a few of them here.
Input blocking in log-processing programs

I mentioned earlier that this is a simplified version of
 bigbuffy. For ease of implementation,
 especially across platforms, this version has an unsavory
 characteristic: while dumping data to disk, it can’t continue reading
 input. During a buffer dump, the OS may tell the program sending output
 to bigbuffy to pause operation pending the drain of
 its output buffer. Luckily, the dump is fast, so the window where this
 could happen is very small, but this is still less passive than you
 might like.
Possible solutions to this problem include:
	Rewriting bigbuffy to use a
 double-buffered, multitasking approach. Instead of using a
 single storage buffer, it would use two. Upon receiving the
 signal, the program would begin to log to a second buffer while
 a child process or another thread handled dumping the first
 buffer. At the next signal, the buffers would be swapped
 again.

	Rewriting bigbuffy to interleave reading
 and writing while it is dumping. The simplest version of this
 approach would involve writing some number of lines to the
 output file each time a new line is read. This gets a bit tricky
 if the log output being read is “bursty” instead of arriving as
 constant flow, though, as you wouldn’t want to have to wait for
 a new line of output before you could receive the requested log
 buffer dump. You’d have to use some sort of timeout or internal
 clock mechanism to get around this problem.

Both approaches are hard to pull off portably in a cross-platform
 environment, hence the simplified version shown in this book.

Security in log-processing programs

You may have noticed that bigbuffy takes
 considerable care with the opening and writing of its output file. This
 is an example of the defensive coding style mentioned earlier, in the
 section Log rotation. If this program is to be used to
 debug server daemons, it is likely to be run by privileged users on a
 system. It is therefore important to think about unpleasant situations
 that might allow the program to be abused.
One possible scenario would be swapping the link to the output file
 with a link to another file. If we opened and wrote to the file without
 checking its identity, we might find ourselves inadvertently stomping on
 an important file like /etc/passwd. Even if we
 check the output file before opening it, it might be possible for a
 malicious party to switch it on us before we begin writing to it. To
 avoid this scenario:
	We check if the output file exists already. If it does,
 we
 lstat() it to get the
 filesystem information.

	We open the file in append mode.

	Before we actually write to the file, we lstat() the open filehandle and
 check that it is still the same file we expect it to be and that
 it hasn’t been switched since we initially checked it. If it is
 not the same file (e.g., if someone swapped the file with a link
 right before the open), we do
 not write to the file and we complain
 loudly. This last step avoids the potential race condition
 mentioned in Chapter 1.

If we didn’t have to append, we could instead open a temporary file
 with a randomized name (so it couldn’t be guessed ahead of time) and
 then rename the temporary file into place. Perl ships with Tim Jenness’s File::Temp
 module to help you do things like this.
These sorts of gyrations are necessary on most Unix systems because
 Unix was not originally designed with security as a high priority.
 Windows also has “junctions,”[96] the rough equivalent of symbolic links, but I have yet to
 see any indication that they pose the same sort of security threat due
 to their implementation.

Log Parsing and Analysis

Some system administrators never get past the rotation phase in their
 relationships with their log files. As long as the necessary information exists
 on disk when it is needed for debugging, they never put any thought into using
 their log file information for any other purpose. I’d like to suggest that this
 is a shortsighted view, and that a little log file analysis can go a long way.
 We’re going to look at a few approaches you can use for performing log file
 analysis in Perl, starting with the most simple and getting more complex as we
 go along.
Most of the examples in this section use Unix log files for demonstration
 purposes, since the average Unix system has ample logs just waiting to be
 analyzed, but the approaches offered here
 are not OS-specific.
Stream read-count

The easiest approach is the simple “read and count,” where we read through a
 stream of log data looking for interesting data, and increment a counter
 when we find it. Here’s a simple example that counts the number of times a
 machine has rebooted based on the contents of a Solaris 10 wtmpx file:
template for Solaris 10 wtmpx
my $template = 'A32 A4 A32 l s s s x2 l l l x20 s Z257 x';

determine the size of a record
my $recordsize = length(pack($template, ()));

open the file
open my $WTMP, '<', '/var/adm/wtmpx' or die "Unable to open wtmpx:$!\n";

my ($ut_user, $ut_id, $ut_line, $ut_pid,
 $ut_type, $ut_e_termination, $ut_e_exit, $tv_sec,
 $tv_usec, $ut_session_pad, $ut_syslen, $ut_host
)
 = ();

my $reboots = 0;

read through it one record at a time
while (read($WTMP, $record, $recordsize)) {
 ($ut_user, $ut_id, $ut_line, $ut_pid,
 $ut_type, $ut_e_termination, $ut_e_exit, $tv_sec,
 $tv_usec, $ut_session, $ut_syslen, $ut_host
)
 = unpack($template, $record);

 if ($ut_line eq 'system boot') {
 print "rebooted " . scalar localtime($tv_sec) . "\n";
 $reboots++;
 }
}

close $WTMP;
print "Total reboots: $reboots\n";
Let’s extend this methodology and explore an example of statistics
 gathering using the Windows Event Log facility. As mentioned before, Windows has a well-developed and fairly sophisticated
 system-logging mechanism. This sophistication makes it a bit trickier for
 the beginning Perl programmer. We’ll have to use some Windows-specific Perl
 module routines to get at the basic log information.
Windows programs and operating system components log their activities by
 posting “events” to one of several different event logs. The OS records in
 the log basic information such as when the event was posted, which program
 or OS function posted it, what kind of event it is (informational or
 something more serious), etc.
Unlike in Unix, the actual description of the event, or log message, is
 not actually stored with the event entry. Instead, an EventID is posted to the log. This EventID contains a
 reference to a specific message compiled into a program library
 (.dll). Retrieving a log message given an EventID is tricky. The process involves looking up the proper
 library in the registry and
 loading the library by hand. Luckily, the current version of
 Win32::EventLog performs this process for us automatically (see
 $Win32::EventLog::GetMessageText in our first Win32::Eventlog example, in the section Using the OS’s Logging API).
For our next example, we’re going to generate some simple statistics on
 the number of entries currently in the System log,
 where they have come from, and their level of severity. We’ll write this program in a slightly different
 manner from how we wrote the first Windows logging example in this
 chapter.
Our first step is to load the Win32::EventLog module, which contains the glue between Perl
 and the Windows event log routines. We then initialize a hash table that
 will be used to contain the results of our calls to the log-reading
 routines. Perl would normally take care of this for us, but sometimes it is
 good to add code like this for the benefit of others who will be reading the
 program. Finally, we set up a small list of event types that we will use
 later for printing statistics:
use Win32::EventLog;

this is the equivalent of $event{Length => NULL, RecordNumber =>NULL, ...}
my %event;
my @fields = qw(Length RecordNumber TimeGenerated TimeWritten EventID
 EventType Category ClosingRecordNumber Source Computer Strings Data);
@event{@fields} = (NULL) x @fields;

partial list of event types: Type 1 is "Error",
2 is "Warning", etc.
my @types = ('','Error','Warning','','Information");
Our next step is to open up the
 System event log. The Open() call places an EventLog handle
 into $EventLog that we can use as our
 connection to this particular log:
my $EventLog = ''; # the handle to the event Log
my $event = ''; # the event we'll be returning
my $numevents = 0; # total number of events in log
my $oldestevent = 0; # oldest event in the log
Win32::EventLog::Open($EventLog,'System','')
 or die "Could not open System log:$^E\n";
Once we have this handle, we can use it to retrieve the number of events
 in the log and the ID of the oldest record:
$EventLog->GetNumber($numevents);
$EventLog->GetOldest($oldestevent);
We use this information as part of our first Read() statement, which positions us at the place in the log
 right before the first record. This is the equivalent of seek()ing to the beginning of a file:
$EventLog->Read((EVENTLOG_SEEK_READ | EVENTLOG_FORWARDS_READ),
 $numevents + $oldestevent, $event);
From here on in, we use a simple loop to read each log entry in
 turn. The EVENTLOG_SEQUENTIAL_READ flag says “continue reading from the
 position of the last record read.” The
 EVENTLOG_FORWARDS_READ flag moves us
 forward in chronological order.[97] The third argument to Read()
 is the record offset: in this case it’s 0, because we want to pick up right where we left off. As we read
 each record, we record its Source and
 EventType in a
 hash table of counters:
my %source;
my %types;
for (my $i = 0; $i < $numevents; $i++) {
$EventLog->Read((EVENTLOG_SEQUENTIAL_READ | EVENTLOG_FORWARDS_READ),
 0, $event);
 $source{ $event->{Source} }++;
 $types{ $event->{EventType} }++;
}

now print out the totals
print "--> Event Log Source Totals:\n";
for (sort keys %source) {
 print "$_: $source{$_}\n";
}
print '-' x 30, "\n";
print "--> Event Log Type Totals:\n";
for (sort keys %types) {
 print "$types[$_]: $types{$_}\n";
}
print '-' x 30, "\n";
print "Total number of events: $numevents\n";
My results look like this:
--> Event Log Source Totals:
Application Popup: 4
BROWSER: 228
DCOM: 12
Dhcp: 12
EventLog: 351
Mouclass: 6
NWCWorkstation: 2
Print: 27
Rdr: 12
RemoteAccess: 108
SNMP: 350
Serial: 175
Service Control Manager: 248
Sparrow: 5
Srv: 201
msbusmou: 162
msi8042: 3
msinport: 162
mssermou: 151
qic117: 2

--> Event Log Type Totals:
Error: 493
Warning: 714
Information: 1014

Total number of events: 2220
As promised, here’s some sample code that relies on a
 last-like program to dump the contents of the event
 log. It uses a program called
 ElDump by Jesper Lauritsen, which you can download from
 http://www.ibt.ku.dk/Jesper/NTtools/.
 ElDump is similar to
 DumpEl, which can be found in several of the resource
 kits (and online at http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/dumpel-o.asp):
my $eldump = 'c:\bin\eldump'; # path to ElDump

output data field separated by ~ and without full message
text (faster)
my $dumpflags = '-l system -c ~ -M';

open my $ELDUMP, '-|', "$eldump $dumpflags" or die "Unable to run $eldump:$!\n";

print 'Reading system log.';

my ($date, $time, $source, $type, $category, $event, $user, $computer);
while (defined ($_ = <$ELDUMP>)) {
 ($date, $time, $source, $type, $category, $event, $user, $computer) =
 split('~');
 $$type{$source}++;
 print '.';
}
print "done.\n";

close $ELDUMP;

for each type of event, print out the sources and number of
events per source
foreach $type (qw(Error Warning Information AuditSuccess AuditFailure))
{
 print '-' x 65, "\n";
 print uc($type) . "s by source:\n";
 for (sort keys %$type) {
 print "$_ ($$type{$_})\n";
 }
}
print '-' x 65, "\n";
Here’s a snippet from the output:
ERRORs by source:
BROWSER (8)
Cdrom (2)
DCOM (15)
Dhcp (2524)
Disk (1)
EventLog (5)
RemoteAccess (30)
Serial (24)
Service Control Manager (100)
Sparrow (2)
atapi (2)
i8042prt (4)

WARNINGs by source:
BROWSER (80)
Cdrom (22)
Dhcp (76)
Print (8)
Srv (82)

A simple stream read-count variation

A simple variation of the stream read-count approach involves making
 multiple passes through the data. This is sometimes necessary for large data
 sets and cases where it takes an initial scan to determine the difference
 between interesting and uninteresting data. Programmatically, this means
 that after the first pass through the input, you do one of the
 following:
	Move back to the beginning of the data stream (which could just be
 a file) using seek() or an
 API-specific call.

	Close and reopen the filehandle. This is often the only choice
 when you are reading the output of a program like
 last.

Here’s an example where a multiple-pass read-count approach might be
 useful. Imagine you have to deal with a security breach where an account on
 your system has been compromised. One of the first questions you might want
 to ask is, “Has any other account been compromised from the same source
 machine?” Finding a comprehensive answer to this seemingly simple question
 turns out to be trickier than you might expect. Let’s take a first shot at
 the problem. This code takes the name of a user as its first argument and an
 optional regular expression as a second argument for filtering out hosts we
 wish to ignore:
use Perl6::Form;
use User::Utmp qw(:constants);

my ($user, $ignore) = @ARGV;
my $format
 = '{<<<<<<<} {<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<} {<<<<<<<<<<<<<<<<<<<<<<<}';

User::Utmp::utmpxname('/var/adm/wtmpx');

print "-- scanning for first host contacts from $user --\n";
my %contacts = ();# hostnames that have contacted us for specified user
while (my $entry = User::Utmp::getutxent()) {
 if ($entry->{ut_user} eq $user) {
 next if (defined $ignore and $entry->{ut_host} =~ /$ignore/o);
 if ($entry->{ut_type} == USER_PROCESS
 and !exists $contacts{ $entry->{ut_host} })
 {
 $contacts{ $entry->{ut_host} } = $entry->{ut_time};
 print form $format, $entry->{ut_user}, $entry->{ut_host},
 scalar localtime($entry->{ut_time});
 }
 }
}

print "-- scanning for other contacts from those hosts --\n";
User::Utmp::setutxent(); # reset to start of database

while (my $entry = User::Utmp::getutxent()) {

 # if it is a user's process, and we're looking for this host,
 # and this is a connection from a user *other* than the
 # compromised account, then output this record
 if ($entry->{ut_type} == USER_PROCESS
 and exists $contacts{ $entry->{ut_host} }
 and $entry->{ut_user} ne $user)
 {
 print form $format, $entry->{ut_user}, $entry->{ut_host},
 scalar localtime($entry->{ut_time});
 }
}
User::Utmp::endutxent(); # close database (not strictly necessary)
First the program scans through the wtmpx data
 looking for all logins from the compromised user. As it finds them, it
 compiles a hash of all the hosts from which these logins took place. It then
 resets the database so the next scan will start at the beginning of the
 file. The second scan looks for connections from that host list, printing
 matches as it finds them. We could easily modify this program to scan all of
 the files in a directory of rotated wtmp log files. To
 do that, we’d just have to loop over the list, calling
 User::Utmp::utmpxname() with each
 filename in turn.
One problem with this program is that it is too specific. That is, it will
 only match exact hostnames. If the intruder is coming in from an ISP’s pool
 of DSL or cable modem addresses (which they often are), chances are the
 hostnames could change with each connection. Still, partial solutions like
 this often help a great deal.
Besides its simplicity, the stream read-count approach we’ve been
 discussing has the advantage of being faster and less memory-intensive than
 the method we’ll consider next. It works well with the stateless type of log
 files we discussed early on in the chapter. But sometimes, especially when
 dealing with stateful data, we need to use a different plan of
 attack.

Read-remember-process

The opposite extreme of our previous approach, where we passed by the data as
 fast as possible, is to read it into memory and deal with it after reading.
 Let’s look at a few versions of this strategy.
First, an easy example: let’s say you have an FTP transfer log and you
 want to know which files have been transferred the most often. Here are some
 sample lines from a
 wu-ftpd FTP server transfer log. Blank lines have been
 added to make it easier to see where these long lines begin and end:
Sun Dec 27 05:18:57 2008 1 nic.funet.fi 11868
/net/ftp.funet.fi/CPAN/MIRRORING.FROM a _ o a cpan@perl.org ftp 0 *

Sun Dec 27 05:52:28 2008 25 kju.hc.congress.ccc.de 269273
/CPAN/doc/FAQs/FAQ/PerlFAQ.html a _ o a mozilla@ ftp 0 *

Sun Dec 27 06:15:04 2008 1 rising-sun.media.mit.edu 11868
/CPAN/MIRRORING.FROM b _ o a root@rising-sun.media.mit.edu ftp 0 *

Sun Dec 27 06:15:05 2008 1 rising-sun.media.mit.edu 35993
 /CPAN/RECENT.html b _ o a root@rising-sun.media.mit.edu ftp 0 *
Table 10-4 lists the fields
 in each line of the output (please see the wu-ftpd server manpage xferlog(5) for
 details on each field).
Table 10-4. Fields in a wu-ftpd server transfer log
	
 Field #

 	
 Field name

	
 0

 	

 current-time

	
 1

 	
 transfer-time (in
 seconds)

	
 2

 	

 remote-host

	
 3

 	

 filesize

	
 4

 	

 filename

	
 5

 	

 transfer-type

	
 6

 	

 special-action-flag

	
 7

 	

 direction

	
 8

 	

 access-mode

	
 9

 	

 username

	
 10

 	

 service-name

	
 11

 	

 authentication-method

	
 12

 	

 authenticated-user-id

Here’s some code to show which files have been transferred most
 often:
my $xferlog = '/var/adm/log/xferlog';
my %files = ();

open my $XFERLOG, '<', $xferlog or die "Unable to open $xferlog:$!\n";

while (defined ($line = <$XFERLOG>)){
 $files{(split(' ',$line))[8]}++;
}

close $XFERLOG;

for (sort {$files{$b} <=> $files{$a}||$a cmp $b} keys %files){
 print "$_:$files{$_}\n";
}
We read each line of the file, using the name of the file as a hash key
 and incrementing the value for that key. The name of the file is extracted
 from each log line using an array index that references a specific element
 of the list returned by the split()
 function:[98]
$files{(split)[8]}++;
You may notice that the specific element we reference (8) is different from the eighth field listed
 in Table 10-4. This is an
 unfortunate result of the lack of field delimiters in the original file. We
 are splitting on whitespace (the default for split()), so the date field becomes five separate list
 items.
One subtle trick in this code sample is in the anonymous
 sort function we use to sort the
 values:
for (sort {$files{$b} <=> $files{$a}||$a cmp $b} keys %files){
Note that the places of $a and $b have been switched from their alphabetical
 order in the first portion. This causes sort to return the items in descending order, thus showing us
 the more frequently transferred files first. The second portion of the
 anonymous sort function (||$a cmp $b) assures that we list files with
 the same number of transfers in a sorted order.
If we wanted to limit this script to counting only certain files or
 directories, we could let the user specify a regular expression as the first
 argument to this script. For example, adding this:
next unless /$ARGV[0]/o;
to the while loop allows you to specify
 a regular expression to limit which log lines will be counted.
Regular Expressions
Crafting regular expressions is often one of the most important parts
 of log parsing. Regexps are used like programmatic sieves to extract the
 interesting data from the uninteresting data in the logs. The regular
 expressions used in this chapter are very basic, but you’ll probably be
 creating more sophisticated regexps for your own use. To use them more
 efficiently, you may wish to use the regular expression techniques
 introduced in Chapter 8.
One of the best resources for learning about regular expressions
 is Jeffrey Friedl’s book,
 Mastering
 Regular Expressions
 (O’Reilly). Any time you spend learning how to wield the
 power of regexps will benefit you in many ways.

Let’s take a look at another example of the read-remember-process
 approach, using our “breach-finder” program from the previous section. Our
 earlier code only showed us successful logins from the
 intruder sites. What if we want to find out about unsuccessful attempts? For
 that information, we’re going to have to bring in another log file.
Warning
This scenario exposes one of Unix’s flaws: Unix systems tend to store
 log information in a number of different places and formats. Few tools
 are provided for dealing with these disparities (luckily, we have Perl).
 It is not uncommon to need more than one data source to solve problems
 like this one.

The log file that will be the most help to us in this endeavor is the one
 generated through
 syslog by Wietse Venema’s Unix security tool
 tcpwrappers. tcpwrappers
 provides gatekeeper programs and libraries that can be used to control
 access to network services. An individual network service like
 telnet can be configured so that a
 tcpwrappers program handles all network
 connections. When a connection attempt is made, the
 tcpwrappers program will
 syslog it and then either pass the connection off
 to the real service or take some action (like dropping the connection). The
 choice of whether to let the connection through is based on some simple
 user-provided rules (e.g., allow connections from only certain hosts).
 tcpwrappers can also take preliminary precautions
 to make sure the connection is coming from the place it purports to come
 from using a DNS reverse-lookup. It can even be configured to log the name
 of the user who made the connection (via the RFC 931 ident protocol) if possible. For a
 more detailed description of tcpwrappers, see Simson Garfinkel, Gene Spafford, and Alan Schwartz’s book
 Practical Unix
 & Internet Security
 (O’Reilly).
For our purposes, we can just add some code to our previous breach-finder
 program that scans the tcpwrappers log
 (tcpdlog in this case) for connections from the
 suspect hosts we found in our scan of wtmp. If we add
 the following code to the end of our previous code sample:
tcpd log file location
my $tcpdlog = '/var/log/tcpd/tcpdlog';

print "-- connections found in tcpdlog --\n";
open my $TCPDLOG, '<', $tcpdlog or die "Unable to read $tcpdlog:$!\n";
my ($connecto, $connectfrom);
while (defined($_ = <$TCPDLOG>)) {
 next if !/connect from /; # we only care about connections
 ($connecto, $connectfrom) = /(.+):\s+connect from\s+(.+)/;
 $connectfrom =~ s/^.+@//;

 print
 if (exists $contacts{$connectfrom}
 and $connectfrom !~ /$ignore/o);
}
close $TCPDLOG;
we get output that looks like this:
-- first host contacts from baduser --
user hostxx.ccs.example.edu Thu Apr 3 13:41:47 2008
-- other connects from suspect machines --
user2 hostxx.ccs.example.edu Thu Oct 9 17:06:49 2008
user2 hostxx.ccs.example.edu Thu Oct 9 17:44:31 2008
user2 hostxx.ccs.example.edu Fri Oct 10 22:00:41 2008
user2 hostxx.ccs.example.edu Wed Oct 15 07:32:50 2008
user2 hostxx.ccs.example.edu Wed Oct 22 16:24:12 2008
-- connections found in tcpdlog --
Jan 12 13:16:29 host2 in.rshd[866]: connect from user4@hostxx.ccs.example.edu
Jan 13 14:38:54 host3 in.rlogind[4761]: connect from user5@hostxx.ccs.example.edu
Jan 15 14:30:17 host4 in.ftpd[18799]: connect from user6@hostxx.ccs.example.edu
Jan 16 19:48:19 host5 in.ftpd[5131]: connect from user7@hostxx.ccs.example.edu
You may have noticed that this output contains connections from two
 different time ranges: we found connections in
 wtmpx from April 3 to October 22, while the tcpwrappers data appeared to show only
 January connections. The difference in these dates is an indication that our
 wtmpx files and our
 tcpwrappers files are rotated at different speeds.
 You need to be aware of these details when writing code that tacitly assumes
 the two log files being correlated refer to the same time period.
For a final and more sophisticated example of the read-remember-process
 approach, let’s look at a task that requires combining stateful and
 stateless data. If you wanted a more comprehensive picture of the activity
 on a
 wu-ftpd server, you might want to use code to correlate
 the login and logout activity logged in a machine’s
 wtmp file with the file transfer information
 recorded by wu-ftpd in its xferlog
 file. It might be nice if you could see output that showed when an FTP
 session started and finished, and what transfers took place during that
 session.
Here’s a snippet of sample output from the code we’re about to assemble.
 It shows four FTP sessions in March. The first session shows one file being
 transferred to the machine, the next two show files being transferred from
 that machine, and the last shows a connection without any transfers:
Thu Mar 12 18:14:30 2008-Wed Mar 12 18:14:38 2008 pitpc.host.ed
 -> /home/dnb/makemod

Sat Mar 14 23:28:08 2008-Fri Mar 14 23:28:56 2008 traal-22.host.edu
 <- /home/dnb/.emacs19

Sat Mar 14 23:14:05 2008-Fri Mar 14 23:34:28 2008 traal-22.host.edu
 <- /home/dnb/lib/emacs19/cperl-mode.el
 <- /home/dnb/lib/emacs19/filladapt.el

Wed Mar 25 21:21:15 2008-Tue Mar 25 21:36:15 2008 traal-22.host.edu
 (no transfers in xferlog)
Producing this output turns out to be nontrivial, since we need to
 pigeonhole stateless data into a stateful log. The
 xferlog transfer log shows only the time and the
 host that initiated the transfer. The wtmpx log shows
 the connections and disconnections from other hosts to the server. Let’s
 walk through how to combine the two types of data using a
 read-remember-process approach. First, we’ll define some variables for the
 program and load some supporting modules:
use Time::Local; # for date->Unix time (secs from Epoch) conversion
use User::Utmp qw(:constants);
use Readonly; # to create read-only constants for legibility

location of transfer log
my $xferlog = '/var/log/xferlog';

location of wtmpx
my $wtmpx = '/var/adm/wtmpx';

month name to number mapping
my %month = qw{Jan 0 Feb 1 Mar 2 Apr 3 May 4 Jun 5 Jul 6
 Aug 7 Sep 8 Oct 9 Nov 10 Dec 11};
Now let’s look at the procedure that reads the wu-ftpd
 xferlog log file:
scans a wu-ftpd transfer log and populates the %transfers
data structure
print 'Scanning $xferlog...';
open my $XFERLOG, '<', $xferlog or die "Unable to open $xferlog:$!\n";

fields we will parse from the log
my ($time, $rhost, $fname, $direction);
my ($sec, $min, $hours, $mday, $mon, $year);
my $unixdate; # the converted date
my %transfers; # our data structure for holding transfer info

while (<$XFERLOG>) {

 # using an array slice to select the fields we want
 ($mon, $mday, $time, $year, $rhost, $fname, $direction)
 = (split)[1, 2, 3, 4, 6, 8, 11];

 $fname =~ tr/ -~//cd; # remove "bad" chars
 $rhost =~ tr/ -~//cd; # remove "bad" chars

 # 'i' is "transferred in"
 $fname = ($direction eq 'i' ? '-> ' : '<- ') . $fname;

 # convert the transfer time to Unix epoch format
 ($hours, $min, $sec) = split(':', $time);
 $unixdate = timelocal($sec, $min, $hours, $mday, $month{$mon}, $year);

 # put the data into a hash of lists of lists, i.e.:
 # $transfers{hostname} = ([time1, $filename1],
 # [time2, $filename2],
 # ...)
 push(@{ $transfers{$rhost} }, [$unixdate, $fname]);
}
close $XFERLOG;
print "done.\n";
Three lines of Perl in the previous code deserve a little explanation. The
 first two are:
$fname =~ tr/ -~//cd; # remove "bad" chars
$rhost =~ tr/ -~//cd; # remove "bad" chars
This is just a primitive attempt to prevent nasty things from showing up
 in our output later in the program. This line strips control characters from
 the filename, so if a user has transferred a file with a funky name (either
 unintentionally or maliciously) we don’t have to suffer later when we go to
 print the name and our terminal program freaks out. You’ll see a similar
 cleanup take place to the hostnames we read in later in the code. If we
 wanted to be really thorough (and we should want this), we could write a
 regular expression to accept only “legitimate” filenames and use what it
 captured. But for now, this will do.
A more complicated piece of Perl is the push() statement:
push(@{ $transfers{$rhost} }, [$unixdate, $fname]);
This line creates a hash of lists of lists that looks something like
 this:
$transfers{hostname} =
 ([time1, filename1], [time2, filename2],[time3, filename3]...)
The %transfers hash is keyed on the
 name of the host that initiated the transfer.
For each host, we store a list of transfer pairs, each pair recording when
 a file was transferred and the name of that file. We’re choosing to store
 the time in “seconds since the epoch”[99] for ease of comparison later. The subroutine timelocal() from the module Time::Local helps us
 convert to that standard. Because we’re scanning a file transfer log written
 in chronological order, these lists of pairs are built in chronological
 order as well (a property that will come in handy later).
Let’s move on to scanning
 wtmpx:
scans the wtmpx file and populates the @sessions structure with ftp sessions
my (%connections, @sessions);

print "Scanning $wtmpx...\n";
User::Utmp::utmpxname($wtmpx);
while (my $entry = User::Utmp::getutxent()) {
 next if ($entry->{ut_id} ne 'ftp'); # ignore non-ftp sessions

 # "open" connection record using a hash of lists of lists (where the LoL
 # is used like a a stack stored in a hash, keyed on the device name)
 if ($entry->{ut_user} and $entry->{ut_type} == USER_PROCESS) {
 $entry->{ut_host} =~ tr/ -~//cd; # remove "bad" chars

 push(
 @{ $connections{ $entry->{ut_line} } },
 [$entry->{ut_host}, $entry->{ut_time}]
);
 }

 # found close connection entry, try to pair with open
 if ($entry->{ut_type} == DEAD_PROCESS) {
 if (!exists $connections{ $entry->{ut_line} }) {
 warn "found lone logout on $entry->{ut_line}:"
 . scalar localtime($entry->{ut_time}) . "\n";
 next;
 }

 # create a list of sessions, where each session is represented by
 # a list of this form: (hostname, login, logout)
 push(
 @sessions,
 [@{ shift @{ $connections{ $entry->{ut_line} } } },
 $entry->{ut_time}
]
);

 # if there are no more connections under that tty, remove it from hash
 delete $connections{ $entry->{ut_line} }
 unless (@{ $connections{ $entry->{ut_line} } });
 }
}
User::Utmp::endutxent();
print "done.\n";
Let’s look at what’s going on in this code. We read through
 wtmpx one record at a time. If the current record
 takes place on the special device name ftp, we know that this is an FTP session. Given an entry in
 the wtmpx database for ftp, we see if it describes the opening (ut_type is USER_PROCESS) or closing (ut_type is DEAD_PROCESS)
 of an FTP session.
If it describes the opening of a connection, we record that info in a data
 structure that keeps tabs on all the open sessions, called %connections. Like %transfers in our previous subroutine, it is a hash of lists
 of lists, this time keyed on the device (i.e., tty/pty) of each connection.
 Each of the values in this hash is a set of pairs detailing the name of the
 host from which the connection originated and the time.
Why use such a complicated data structure to keep track of the open
 connections? Unfortunately, there isn’t a simple “open-close open-close
 open-close” pairing of lines in wtmpx. For instance,
 take a look at these lines from wtmpx (as printed by
 our first wtmpx program earlier in this
 chapter):
ftpd1833:dnb:ganges.example.edu:Thu Mar 27 14:04:47 2008
ttyp7:dnb:(exit):Thu Mar 27 14:05:11 2008
ftpd1833:dnb:hotdiggitydog.example.edu:Thu Mar 27 14:05:20 2008
ftpd1833:dnb:(exit):Thu Mar 27 14:06:20 2008
ftpd1833:dnb:(exit):Thu Mar 27 14:06:43 2008
Notice the two open FTP connection records on the same device (lines 1 and
 3). If we just stored a single connection per device in a plain hash, we’d
 lose the first connection record when we found the second one.
Instead, we use the list of lists keyed off every device in %connections as a stack. When we see a
 connection opening, we add a (host,
 login-time)
 pair for the connection to the stack kept for that device. Each time we see
 a close connection line for this device, we “pop” one of the open connection
 records off the stack and store our complete information about the session
 as a whole in another data structure called @sessions. That’s the purpose of this statement:
push(
 @sessions,
 [@{ shift @{ $connections{ $entry->{ut_line} } } },
 $entry->{ut_time}
]
);
Let’s untangle this statement from the inside out to make sure everything
 is clear. The part in bold type returns a reference to the stack/list of
 open connection pairs for a specific device (ut_line):
push(
 @sessions,
 [@{ shift @{ $connections{ $entry->{ut_line} } } },
 $entry->{ut_time}
]
);
This pops the reference to the first connection pair off that
 stack:
push(
 @sessions,
 [@{ shift @{ $connections{ $entry->{ut_line} } } },
 $entry->{ut_time}
]
);
We dereference it to get at the actual (host,
 login-time)
 connection pair list. If we place this pair at the beginning of another list
 that ends with the connection time, Perl will interpolate the connection
 pair and we’ll have a single, three-element list. This gives us a triad of
 (host,
 login-time,
 logout-time):
push(
 @sessions,
 [@{ shift @{ $connections{ $entry->{ut_line} } } },
 $entry->{ut_time}
]
);
Now that we have all of the parts of an FTP session (initiating host,
 connection start time, and end time) in a single list, we can push a
 reference to a new anonymous array containing that list on to the @sessions list of lists for future use:
push(
 @sessions,
 [@{ shift @{ $connections{ $entry->{ut_line} } } },
 $entry->{ut_time}
]
);
We have a list of sessions thanks to this one very busy statement.
To finish the job, we check if the stack is empty for a device (i.e., if
 there are no more open connection requests pending). If this is the case, we
 can delete that device’s entry from the hash, as we know the connection has
 ended:
delete $connections{ $entry->{ut_line} }
 unless (@{ $connections{ $entry->{ut_line} } });
Now it’s time to do the actual correlation between our two data sets. For
 each session, we want to print out the connection triad, and then the files
 transferred during that session:
constants to make the connection triad data structure more readable;
the list consists of ($HOSTNAME,$LOGIN,$LOGOUT) in those positions
Readonly my $HOSTNAME => 0;
Readonly my $LOGIN => 1;
Readonly my $LOGOUT => 2;

iterate over the session log, pairing sessions with transfers

foreach my $session (@sessions) {

 # print session times
 print scalar localtime($session->[$LOGIN]) . '-'
 . scalar localtime($session->[$LOGOUT]) . ' '
 . $session->[$HOSTNAME] . "\n ";

 # returns all of the files transferred for a given connect session

 # easy case, no transfers in this login
 if (!exists $transfers{ $session->[$HOSTNAME] }) {
 print " \t(no transfers in xferlog) \n ";
 next;
 }

 # easy case, first transfer we have on record is after this login
 if ($transfers{ $session->[$HOSTNAME] }->[0]->[0] > $session->[$LOGOUT])
 {
 print " \t(no transfers in xferlog) \n ";
 next;
 }

 my (@found) = (); # to hold the transfers we find per each session

 # find any files transferred in this session
 foreach my $transfer (@{ $transfers{ $session->[$HOSTNAME] } }) {

 # if transfer happened before login
 next if ($transfer->[0] < $session->[$LOGIN]);

 # if transfer happened after logout
 next if ($transfer->[0] > $session->[$LOGOUT]);

 # if we've already reported on this entry
 next if (!defined $transfer->[1]);

 # record that transfer and mark as used by undef'ing the filename
 push(@found, " \t " . $transfer->[1] . " \n ");
 undef $transfer->[1];
 }
 print(scalar @found ? @found : " \t(no transfers in xferlog) \n")
 . " \n ";
}
The code starts by eliminating the easy cases: if we haven’t seen any
 transfers initiated by this host, or if the first transfer associated with
 this host occurs after the session triad we are checking has ended, we know
 no files have been transferred during this session.
If we can’t eliminate the easy cases, we need to look through our lists of
 transfers. We check each transfer made from the host in question to see if
 it occurred after the session started but before the session ended. If
 either of these conditions isn’t true, we skip to the next transfer. Also,
 as soon as we’ve found a transfer that takes place after the session has
 ended, we avoid testing the other transfers for the host. Remember I
 mentioned that all of the transfers are added to the data structure in
 chronological order? Here’s where that pays off.
The last test we make before considering a transfer entry to be valid may
 look a little peculiar:
if we've already used this entry
next if (!defined $transfer->[1]);
If two anonymous FTP sessions from the same host overlap in time, we have
 no way of knowing which session is responsible for initiating the transfer
 of any files uploaded or downloaded during that window. There is no
 information in either of our logs that can help us make that determination.
 The best we can do in this case is make up a standard and keep to it. The
 standard used here is “attribute the transfer to the first session
 possible.” The preceding test line and the subsequent undefing of the filename value as a flag
 enforce that standard.
If this final test passes, we declare victory and add the filename to the
 list of files transferred in the current session (@found). The session and its accompanying file transfers are
 then printed.
Read-remember-process programs that have to do this sort of correlation
 can get fairly sophisticated, especially when they are bringing together
 data sources where the correlation is a bit fuzzy. So, in good Perl spirit,
 let’s see if we can take an easier approach.

Black boxes

In the Perl world, if you are trying to write something generally
 useful, it’s always possible that another person has beaten you to it and
 published his code for the task. In that case, you can simply feed your data
 into that person’s module in a prescribed way and receive results without
 having to know how the task was actually performed. This is often known as a
 “black box approach.” This approach can have its perils, though, so be sure
 to heed the warning in the following sidebar.
Congratulations! You Are the New Module Maintainer!
Though I tend to go for the black box approach more often than not, it
 is not without its perils. Let me tell you a cautionary tale.
In the first edition of this book I gushed about a module
 called
 SyslogScan. This
 was a swell module for the parsing of syslog with
 especially good support for the mail logs the
 sendmail mail transfer agent produced. It
 handled the drudgework of parsing a raw sendmail
 log and pairing up the two log lines associated with the handling of a
 single mail message. It provided a lovely, simple interface for
 iterating through the log file one message at a time. These iterators
 could then be handed to other parts of the package, and it would produce
 summary reports and summary objects. Those objects could in turn be
 handed to yet another part of the package, and even more impressive
 reports would be generated. It was beautiful.
But at some point, the developers of sendmail
 made a few small changes to the format of their log file. SyslogScan ceased being able to parse the
 log file as well as it did before. In time, it stopped working
 entirely.
In most cases this sort of change wouldn’t be too much of a hassle,
 because the module author would notice the problem and issue a new
 release to address the log format change. Unfortunately, the author of
 SyslogScan seems to have
 disappeared from the Perl world some time in 1997. And that’s where the
 module sits as of this writing on CPAN: frozen in time and
 broken.
If you depended on the module after the log format change, you had
 three choices:
	Start using another module (perhaps not viable if this was the
 only module for that purpose).

	Write your own replacement module (could be lots of
 work).

	Try to patch SyslogScan
 yourself to deal with the format change.

Of the three choices, #3 probably involves the least work. Chances are
 the changes necessary to get it working again are small. But from this
 point on, congratulations, you are now the maintainer of the module (at
 least for your small world)! If it breaks again for some reason, the
 onus will be on you to fix it again. This may not be a big deal for you,
 but it is a potential drawback worth knowing about before you commit to
 relying on somebody else’s code.

One of the strengths of the Perl community is its generosity in sharing
 code. There are many log-parsing modules available on CPAN. Most of them are designed to perform very specific tasks.
 For example, the
 Log::Procmail module by Philippe “BooK”
 Bruhat makes iterating through the log produced by the
 procmail mail filter and parsing it as we go easy. To print a list of addresses we
 received mail from and where each of those messages were filed, we can just
 write code like this:
use Log::Procmail;

my $procl = new Log::Procmail '/var/log/procmail';

while (my $entry = $procl->next){
 print $entry->from . ' => ' . $entry->folder . "\n";
}
There are a number of Apache log file parsers (for example, Apache::ParseLog, Parse::AccessLogEntry, and Apache::LogRegex) that perform similar heavy
 lifting for that log format.
Several modules are also available for building your own special-purpose
 parsers. Some of these are themselves more “black box” than others. On the
 Unix side of the house,
 Parse::Syslog continues to be a good
 black-box choice for taking apart syslog-style lines.
 As an added spiffy feature, Parse::Syslog’s new() method
 will also take a
 File::Tail object instead of just your
 average, boring filehandle. Given this object, Parse::Syslog will operate on a log file that is still being
 written to, like so:
use File::Tail;
use Parse::Syslog;

my $file = File::Tail->new(name => '/var/log/mail/mail.log');

my $syslg = Parse::Syslog->new($file);

while (my $parsed = $syslg->next) {
 print $parsed->{host} . ':'
 . $parsed->{program} . ':'
 . $parsed->{text} . "\n";
}
If you’d like to build a parser using more basic building blocks, you may
 want to look at the set of modules that help in the construction of regular
 expressions. For example, Dmitry Karasik’s Regexp::Log::DateRange module helps you construct the gnarly
 regular expression necessary for selecting a date range in
 syslog files:
use Regexp::Log::DateRange;

construct a regexp for May 31 8:00a to May 31 11:00a
my $regexp = Regexp::Log::DateRange->new('syslog', [qw(5 31 8 00)],
 [qw(5 31 11 00)]);
$regexp now contains: 'may\s+31\s+(?:(?:0?[8-9]|10)\:|11\:0?0\:)'
compile that regular expression for better performance
$regexp = qr/$regexp/i;

now use that regexp
if ($input =~ /$regexp/) { print "$input matched\n" };
If you want to go up one level of meta, Philippe “BooK” Bruhat’s Regexp::Log module allows you to build other modules that
 build regular expressions for you. The easiest way to see how these derived
 modules function is to look at one of the modules built using it.
 Regexp::Log::Common, a parser module for
 the Common Log Format (used by packages like Apache) by Barbie, is a good
 example of a derived module.
Here’s how a derived module like Regexp::Log::Common is used:
use Regexp::Log::Common;

my $rlc = Regexp::Log::Common->new(format => ':extended');
$rlc->capture(qw(:none referer));
my $regexp = $rlc->regexp;

now we have a regexp that will capture the referer field
from each line in the Extended Common Log Format
as in
($referer) = $logline =~ /$regexp/
After loading the module, we tell it that we will be dealing with a file
 that has lines following the Extended Common Log Format. (:extended is just a shortcut for specifying all of field
 names found in that format; we could have listed them by hand if we really
 wanted.)
We then tell the module which of these fields we want to capture using
 capture(). capture() may look like a simple method call to set the list
 of fields to capture, but it actually adds those fields to the current
 capture list. This list starts off defaulting to the entire set of fields,
 so we need to use the special :none
 keyword to zero out the list before telling it the one field we are looking
 to capture (“referer”).
To end this section on using the black box method of programming, we’re
 going to look at one of the black box analysis modules that can help make
 the writing of log analysis modules considerably easier. Alex White has written a module called Log::Statistics that can perform simple
 (i.e., count-based) analyses of log files. Let’s take a look at how it
 works.
The first step after the usual loading of the module and creation of a new
 object is to teach the module how to parse your log file into fields. For
 this example, we’ll use the stats log file format
 generated by the
 PureFtpd server. It has the
 following fields:
<date> <session id> <user> <ip> <U or D> <size> <duration> <file>
Here are three example lines (with extra separator lines) so you can get a
 sense of what they look like:
1151826125 44a778cc.1a41 ftp bb.67.1333.static.
theplanet.com D 29 0 /home/ftp/net/mirrors/ftp.funet.fi/pub/
languages/perl/CPAN/authors/02STAMP

1151826483 44a77a32.1cf4 ftp ajax-1.apache.org D 11 0
 /home/ftp/net/mirrors/dev.apache.org/dist/DATE

1151829011 44a78408.1eca ftp 69.51.111.252 D 1809 0 /home/ftp/net
/mirrors/squid.nlanr.net/pub/squid-2/md5s.txt
To parse this sort of line, we tell
 Log::Statistics to use a custom regular
 expression that will capture each field:
use Log::Statistics;

my $ls = Log::Statistics->new();
$ls->add_line_regexp(
 '^(\d+)\s+(.*)\s+(\w+)\s(.*)\s+(U|D)\s+(\d+)\s+(\d+)\s+(.*)');
At this point, we tell the module which fields it should summarize and at
 which positions they are found in the regular expression:
$ls->add_field(3, 'ip');
$ls->add_field(4, 'direction');
All that remains is the actual reading of the log file and its
 parsing:
open my $LOG, '<', 'pureftpd.log';

my $line = '';
while (defined ($line = <$LOG>)) {
 $ls->parse_line($line);
}

close($LOG);
print $ls->get_xml();
The end result is an XML-based report that looks something like
 this:
<?xml version="1.0" standalone="yes"?>

<log-statistics>
 <fields name="direction">
 <direction name="D" count="4674" />
 </fields>
 <fields name="ip">
 <ip name="0x530f53.hrnxx2.adsl-dhcp.tele.dk" count="2" />
 <ip name="12.135.144.8" count="6" />
 <ip name="12.24.221.254" count="1" />
 <ip name="124.14.4.223" count="1" />
 <ip name="125.13.133.183" count="2" />
 ...
</fields>
</log-statistics>
In it, we can see that 4674 downloads have been recorded; we also get a
 list of the IP addresses or hostnames that did the downloading and how many
 downloads each performed. If we wanted to get fancier and show the files
 each host downloaded, we could change the add_field() section to:
$ls->register_field('ip', 3);
$ls->register_field('file', 7);
$ls->add_group(['ip','file']);
The first two lines associate names to those positions in the regexp
 (without generating statistics for them, like add_field() does); the last line specifies the two fields to
 group on when calculating the statistics. Now the XML output looks like
 this:
<?xml version="1.0" standalone="yes"?>

<log-statistics>
 <groups name="ip-file">
 <ip name="12.135.144.8">
 <file name="/home/ftp/net/mirrors/ftp.funet.fi/pub/languages/perl/CPAN/
authors/01mailrc.txt.gz" count="1" />
 <file name="/home/ftp/net/mirrors/ftp.funet.fi/pub/languages/perl/CPAN/
authors/id/H/HA/HAKANARDO/CHECKSUMS" count="1" />
 <file name="/home/ftp/net/mirrors/ftp.funet.fi/pub/languages/perl/CPAN/
authors/id/Y/YV/YVES/CHECKSUMS" count="1" />
 <file name="/home/ftp/net/mirrors/ftp.funet.fi/pub/languages/perl/CPAN/
authors/id/Y/YV/YVES/MIME-Lite-3.01.tar.gz" count="1" />
 <file name="/home/ftp/net/mirrors/ftp.funet.fi/pub/languages/perl/CPAN/
modules/02packages.details.txt.gz" count="1" />
 <file name="/home/ftp/net/mirrors/ftp.funet.fi/pub/languages/perl/CPAN/
modules/03modlist.data.gz" count="1" />
 </ip>
 ...
</groups>
</log-statistics>
Prefer to see who downloaded which files? Simply reverse the last line of
 the preceding code so it reads:
$ls->add_group(['file','ip']);
The output will now have a section like this:
...
 <groups name="file-ip">
 <file name="/home/ftp/ls-lR.gz">
 <ip name="dau.cgr.ru" count="1" />
 </file>
 <file name="/home/ftp/net/mirrors/dev.apache.org/dist/DATE">
 <ip name="ajax-1.apache.org" count="14" />
 <ip name="month.cs.uu.nl" count="20" />
 <ip name="minotaur.apache.org" count="26" />
 </file>
 ...
 </groups>
This XML output can be transformed for display in a pretty table (perhaps
 using an XSLT stylesheet) or parsed and graphed to make pretty
 pictures.
If you like modules that do this sort of statistical work for you, there
 are a few worth looking at (including Algorithm::Accounting and Logfile). Be sure to check them all out before embarking on
 your next project in this vein.
As a way of ending this section, let me remind you that the black box
 approach should be used carefully. The plus side of this approach is that
 you can often get a great deal done with very little code of your own,
 thanks to the hard work of the module or script author. The minus side to
 using the black box approach is that you have to place your trust in another
 author’s code. It may have subtle bugs or use an approach that does not
 scale for your needs. It is best to look over the code carefully before you
 drop it into production in your site.

Using databases

The last approach we’ll discuss requires the most knowledge outside of
 the Perl domain to implement. As a result, we’ll only take a very simple
 look at a technique that over time will probably become more
 prevalent.
The previous examples we’ve seen work fine on reasonably sized data sets
 when run on machines with a reasonable amount of memory, but they don’t
 scale. For situations where you have lots of data, especially if the data
 comes from different sources, databases are the natural tool.
There are at least two ways to make use of databases from Perl. The first
 is one I’ll call a “Perl-only” method. With this method, all of the database
 activity takes place in Perl, or libraries tightly coupled to Perl. The
 second way uses Perl modules like the DBI family to make Perl a client of
 another database, such as MySQL, Oracle, or Microsoft SQL Server. Let’s look
 at an example of using both of these approaches for log processing and
 analysis.
Using Perl-only databases

As long as the data set is not too large, we can probably stick to a
 Perl-only solution. We’ll extend our ubiquitous breach-finder program
 for an example. So far our code just dealt with connections on a single
 machine. If we wanted to find out about logins from intruders on any of
 our machines, how would we do it?
Our first step is to drop all of the
 wtmpx data for our machines into a database of some
 sort. For the purpose of this example, assume that all the machines in
 question have direct access to some shared directory via some network
 filesystem, like NFS. Before we proceed, we need to choose a database
 format.
My “Perl database format” of choice is the Berkeley DB format. I use
 quotes around “Perl database format” because, while the support for DB
 is shipped with the Perl sources, the actually DB libraries must be
 procured from another source (http://www.oracle.com/database/berkeley-db/index.html) and
 installed before the Perl support can be built. Table 10-5 provides a
 comparison between the different supported database formats.
Table 10-5. Comparison of the supported Perl database formats
	
 Name

 	
 Unix support

 	
 Windows
 support

 	
 Mac OS X
 support

 	
 Key or value
 size
 limits

 	
 Byte-order
 independent

	

 “old” dbm

 	
 Yes

 	
 No

 	
 No

 	
 1K

 	
 No

	

 “new” dbm

 	
 Yes

 	
 No

 	
 Yes

 	
 4K

 	
 No

	

 Sdbm

 	
 Yes

 	
 Yes

 	
 Yes

 	
 1K (default)

 	
 No

	

 Gdbm

 	
 Yes[a]

 	
 Yes[b]

 	
 Yes[a]

 	
 None

 	
 No

	

 DB

 	
 Yes[a]

 	
 Yes[b]

 	
 Yes[a]

 	
 None

 	
 Yes

	[a] Actual database libraries may have to be
 downloaded separately.

[b] Database library and Perl module must be
 downloaded from the Web (http://www.roth.net has an old version, or
 you’ll need to use the Cygwin distribution of
 Perl). At some point, you may be able to use
 Strawberry Perl as well (see Chapter 1).

I like the Berkeley DB format because it can handle larger data sets
 and is byte-order-independent. Byte-order independence is
 particularly important for the Perl code we’re about to see, since we’ll
 want to read and write to the same file from different machines, which
 may have different architectures. If byte-order independence is
 important to you but you don’t want to build and link in external
 libraries, the module DBM::Deep is
 another good option.
We’ll start by populating the database. For the sake of simplicity and
 portability, we’re calling the last program to
 avoid having to unpack() several
 different wtmpx files ourselves. Here’s the code,
 with an explanation to follow:
use DB_File;
use FreezeThaw qw(freeze thaw);
use Sys::Hostname;
use Fcntl;
use strict;

note for Solaris, if you don't want the hostnames truncated you can use
last -a, but that requires a change to the field parsing code below
my $lastex = '/bin/last' if (-x '/bin/last');
$lastex = '/usr/ucb/last' if (-x '/usr/ucb/last');

my $userdb = 'userdata';
my $connectdb = 'connectdata';
my $thishost = &hostname;

open my $LAST, '-|', "$lastex" or die "Can't run the program $lastex:$!\n";

my ($user, $tty, $host, $day, $mon, $date, $time, $when);
my (%users, %connects);
while (defined($_ = <$LAST>)) {
 next if /^reboot/ or /^shutdown/ or /^ftp/ or /^account/ or /^wtmp/;
 ($user, $tty, $host, $day, $mon, $date, $time) = split;
 next if $tty =~ /^:0/ or $tty =~ /^console$/;
 next if (length($host) < 4);
 $when = $mon . ' ' . $date . ' ' . $time;

 push(@{ $users{$user} }, [$thishost, $host, $when]);
 push(@{ $connects{$host} }, [$thishost, $user, $when]);
}

close $LAST;

tie my %userdb, 'DB_File', $userdb, O_CREAT | O_RDWR, 0600, $DB_BTREE
 or die "Unable to open $userdb database for r/w:$!\n";

my $userinfo;
for my $user (keys %users) {
 if (exists $userdb{$user}) {
 ($userinfo) = thaw($userdb{$user});
 push(@{$userinfo}, @{ $users{$user} });
 $userdb{$user} = freeze $userinfo;
 }
 else {
 $userdb{$user} = freeze $users{$user};
 }
}

untie %userdb;

tie my %connectdb, 'DB_File', $connectdb, O_CREAT | O_RDWR, 0600, $DB_BTREE
 or die "Unable to open $connectdb database for r/w:$!\n";

my $connectinfo;
for my $connect (keys %connects) {
 if (exists $connectdb{$connect}) {
 ($connectinfo) = thaw($connectdb{$connect});
 push(@{$connectinfo}, @{ $connects{$connect} });
 $connectdb{$connect} = freeze($connectinfo);
 }
 else {
 $connectdb{$connect} = freeze($connects{$connect});
 }
}
untie %connectdb;
Our code takes the output from the last program
 and does the following:
	Filters out the lines that are not useful.

	Squirrels away the output in two hashes of lists of lists data
 structures that look like this:
$users{username} =
 [[current host, connecting host, connect time],
 [current host, connecting host, connect time]
 ...
];
$connects{host} =
 [[current host, username1, connect time],
 [current host, username2, connect time],
 ...
];

	Takes this data structure in memory and attempts to merge it
 into a database.

This last step is the most interesting, so let’s explore it more
 carefully. We tie the hashes %userdb
 and %connectdb to database
 files.[100] This magic allows us to access those hashes transparently,
 while Perl handles storing data in and retrieving it from the database
 files behind the scenes. But hashes only store simple strings, so how do
 we get our “hashes of list of lists” into a single hash value for
 storage?
Ilya Zakharevich’s FreezeThaw
 module is used to store our complex data structure in a single
 scalar that can be used as a hash value. FreezeThaw can take an arbitrary Perl data structure and
 encode it as a string. There are other modules like this,
 including
 Data::Dumper by Gurusamy Sarathy
 (shipped with Perl) and
 Storable by Raphael Manfredi, but
 FreezeThaw offers the most
 compact representation of a complex data structure (hence its use here).
 Each of these modules has its strong points, so be sure to investigate
 all three if you have a task like this one to perform.
In our program, we check whether an entry for this user or host
 exists. If it doesn’t, we simply “freeze” the data structure into a
 string and store that string in the database using our tied hash. If it
 does exist, we “thaw” the existing data structure found in the database
 back into memory, add our data, then re-freeze and re-store it.
If we run this code on several machines, we’ll have a database with
 some potentially useful information to feed to the next version of our
 breach-finder program.
Note
An excellent time to populate a database like this is just after a
 log rotation of a wtmp file has taken
 place.
The database population code presented here is too bare-bones for
 production use. One glaring deficiency is the lack of a mechanism to
 prevent multiple instances of the program from updating the database
 at the same time. Given that file locking over NFS is known to be
 dicey at best, it might be easier to call code like this from a
 larger program that serializes the process of collecting information
 from each machine in turn.

Now that we have a database full of data, let’s walk through our new
 improved breach-finder program that uses this information:
use DB_File;
use FreezeThaw qw(freeze thaw);
use Perl6::Form;
use Fcntl;

my ($user, $ignore) = @ARGV;

my $userdb = 'userdata';
my $connectdb = 'connectdata';
my $hostformat = '{<<<<<<<<<<<<<<<} -> {<<<<<<<<<<<<<<<} on {<<<<<<<<<<<}';
my $userformat
 = '{<<<<<<<<}: {<<<<<<<<<<<<<<<} -> {<<<<<<<<<<<<<<<} on {<<<<<<<<<<<}';

tie my %userdb, 'DB_File', $userdb, O_RDONLY, 666, $DB_BTREE
 or die "Unable to open $userdb database for reading:$!\n";
tie my %connectdb, 'DB_File', $connectdb, O_RDONLY, 666, $DB_BTREE
 or die "Unable to open $connectdb database for reading:$!\n";
We’ve loaded the modules we need, taken our input, set a few
 variables, and tied them to our database files. Now it’s time to do some
 work:
we can exit if we've never seen a connect from this user
if (!exists $userdb{$user}) {
 print "No logins from that user\n";
 untie %userdb;
 untie %connectdb;
 exit;
}

my ($userinfo) = thaw($userdb{$user});

print "-- first host contacts from $user --\n";
my %otherhosts;
foreach my $contact (@{$userinfo}) {
 next if ($ignore and $contact->[1] =~ /$ignore/o);
 print form $hostformat, $contact->[1], $contact->[0], $contact->[2];
 $otherhosts{ $contact->[1] } = 1;
}
This code says: if we’ve seen this user at all, we reconstitute the
 user’s contact records in memory using thaw(). For each contact, we test to see if we’ve been
 asked to ignore the host from which it came. If not, we print a line for
 that contact and record the originating host in the %otherhosts hash.
We use a hash here as a simple way of collecting the unique list of
 hosts from all of the contact records. Now that we have the list of
 hosts from which the intruder may have connected, we need to identify
 all the other users who have connected from these potentially compromising hosts.
Finding this information will be easy, because when we recorded which
 users logged into which machines, we also recorded the inverse (i.e.,
 which machines were logged into by which users) in another database
 file. We can now look at all of the records from the hosts we identified
 in the previous step. If we are not told to ignore a host, and we have
 connection records for it, we capture a unique list of users who have
 logged into that host using the %userseen hash:
print "-- other connects from suspect machines --\n";
my %userseen;
foreach my $host (keys %otherhosts) {
 next if ($ignore and $host =~ /$ignore/o);
 next if (!exists $connectdb{$host});

 my ($connectinfo) = thaw($connectdb{$host});

 foreach my $connect (@{$connectinfo}) {
 next if ($ignore and $connect->[0] =~ /$ignore/o);
 $userseen{ $connect->[1] } = 1;
 }
}
The final act of this three-step drama has a nice circular flair. We
 return to our original user database to find all of the connections made
 by suspect users from suspect machines:
foreach my $user (sort keys %userseen) {
 next if (!exists $userdb{$user});

 ($userinfo) = thaw($userdb{$user});

 foreach my $contact (@{$userinfo}) {
 next if ($ignore and $contact->[1] =~ /$ignore/o);
 print form $userformat, $user, $contact->[1], $contact->[0],
 $contact->[2]
 if (exists $otherhosts{ $contact->[1] });
 }
}
All that’s left to do then is sweep up the theater and go home:
untie %userdb;
untie %connectdb;
Here’s some example output from the program (again, with the user- and
 hostnames changed to protect the innocent):
-- first host contacts from baduser --
badhost1.example -> machine1.hogwarts.ed on Jan 18 09:55
badhost2.example -> machine2.hogwarts.ed on Jan 19 11:53
-- other connects from suspect machines --
baduser2: badhost1.example -> machine2.hogwarts.e on Dec 15 13:26
baduser2: badhost2.example -> machine2.hogwarts.e on Dec 11 12:45
baduser3: badhost1.example -> machine1.hogwarts.e on Jul 13 16:20
baduser4: badhost1.example -> machine1.hogwarts.e on Jun 9 11:53
baduser: badhost1.example -> machine1.hogwarts.e on Jan 18 09:55
baduser: badhost2.example -> machine2.hogwarts.e on Jan 19 11:53
This is a lovely example program, but it doesn’t really scale past a
 small cluster of machines. For every subsequent run of the program, it
 may have to read a record from the database, thaw() it back into memory, add some new data to the
 record, freeze() it again, and store
 it back in the database. This can be CPU time- and memory-intensive. The
 whole process potentially happens once per user and machine connection,
 so things slow down very quickly.

Using Perl-cliented SQL databases

If you have a very large data set, you may need to load your data into
 a more sophisticated SQL database (commercial or otherwise) and query
 the information you need from it using SQL. If you’re not familiar with
 SQL, I recommend you take a quick peek at Appendix D before looking at this
 section.
Populating the database could be done with code that looks like the
 following. This example uses SQLite as the backend, but swapping in most other database
 backends (e.g., MySQL, Microsoft SQL Server, Oracle, DB2, etc.) would be
 easy; the only things you’d need to change are the DBI connect string
 and the code for making sure a table with that name exists/is created.
 That said, let’s dive in:
use DBI;
use Sys::Hostname;
use strict;

my $db = 'lastdata';
my $table = 'lastinfo';

field names we'll use in that table
my @fields = qw(username localhost otherhost whenl);

my $lastex = '/bin/last' if (-x '/bin/last');
$lastex = '/usr/ucb/last' if (-x '/usr/ucb/last');

database-specific code (note: no username/pwd used, unusual)
RaiseError is used so we don't have to check that each operation succeeds
my $dbh = DBI->connect(
 'dbi:SQLite:dbname=$db.sql3',
 '', '',
 { PrintError => 0,
 RaiseError => 1,
 ShowErrorStatement => 1,
 }
);

Determine the names of the tables currently in the database.
This code is mildly database engine-specific because of the
need to map() to strip off the quotes DBD::SQLite returns around
table names. Most database engines don't require that handholding,
so $dbh->tables()'s results can be used directly.
my %dbtables;
@dbtables{ map { /\"(.*)\"/, $1 } $dbh->tables() } = ();

if (!exists $dbtables{$table}) {

More database engine-specific code.
This creates the table with all fields of type text. With other database
engines, you might want to use char and varchar as appropriate.
 $dbh->do(
 "CREATE TABLE $table (" . join(' text, ', @fields) . ' text)');
}

my $thishost = &hostname;

this constructs and prepares a SQL statement with placeholders, as in:
"INSERT INTO lastinfo(username,localhost,otherhost,whenl)
VALUES (?, ?, ?, ?)"
my $sth = $dbh->prepare("INSERT INTO $table ("
 . join(', ', @fields)
 . ') VALUES ('
 . join(', ', ('?') x @fields)
 . ')');

open my $LAST, '-|', "$lastex" or die "Can't run the program $lastex:$!\n";

my ($user, $tty, $host, $day, $mon, $date, $time, $whenl);
my (%users, %connects);
while (defined($_ = <$LAST>)) {
 next if /^reboot/ or /^shutdown/ or /^ftp/ or /^account/ or /^wtmp/;
 ($user, $tty, $host, $day, $mon, $date, $time) = split;
 next if $tty =~ /^:0/ or $tty =~ /^console$/;
 next if (length($host) < 4);
 $whenl = $mon . ' ' . $date . ' ' . $time;

actually insert the data into the database
 $sth->execute($user, $thishost, $host, $whenl);
}

close $LAST;
$dbh->disconnect;
This code creates a table called lastinfo with username, localhost,
 otherhost, and whenl columns. We iterate over the output
 of last, inserting non-bogus entries into this
 table.
Now we can use our databases to do what they do so well. Here is a set
 of sample SQL queries that could easily be wrapped in Perl using the DBI
 or ODBC interfaces we explored in Chapter 7:
-- how many entries in the database?
select count (*) from lastinfo;

 10068

-- how many users have logged in?
select count (distinct username) from lastinfo;

 237

-- how many separate hosts have connected to our machines?
select count (distinct otherhost) from lastinfo;

 1000

-- which local hosts has the user "dnb" logged into?
select distinct localhost from lastinfo where username = "dnb";
 localhost
 --
 host1
 host2
These examples should give you a taste of the sort of “data mining”
 you can do once all of the data is in a real database. Each of those
 queries took only a second or so to run. Databases can be fast, powerful
 tools for system administration.

[96] You’ll also hear the term “reparse point” in this context,
 because Microsoft has been refining its terminology about these
 sorts of things over the course of several OS releases. At the
 time of this writing, junctions are considered to be created
 from reparse points.

[97] Here’s another place where the Win32 event log routines are more
 flexible than usual. Our code could have moved to the end of the log
 and read backward in time if we wanted to do that for some
 reason.

[98] Just FYI, a split() is likely
 to break if you have filenames with whitespace in them. In that case
 you’d probably need to use a regexp to take apart the line
 instead.

[99] This is seconds since some arbitrary starting point. For example,
 the epoch on Unix machines is 00:00:00 GMT on January 1,
 1970.

[100] You don’t usually have to use the BTree form of storage when
 using DB_File, but this
 program can store some very long values. Those values caused the
 version 1.85 DB_HASH storage
 method to croak in testing (causing corrupted data), while the
 BTree storage method seemed to handle the pounding. Later
 versions of the DB libraries may not have this bug.

Writing Your Own Log Files

I’ve intentionally held back any discussion of how to create your own log files until the
 very end of this chapter for one simple reason: if you have a good understanding of
 how to read, parse, and analyze random log files, you are much more likely to write
 code that will produce log files that are easy to read, parse, and analyze. The
 actual mechanics of writing log files is pretty easy, as you’ll see in a moment, but
 knowing how to write good/useful log files is a learned art.
There are a relatively large number of Perl modules available to help you with log
 file production. In the interest of saving space, we’ll look at three options that
 do a good job of representing the varying levels of functionality and complexity the
 cornucopia of modules has to offer.
Note
One simple admission before we look at some modules: you don’t actually need
 any modules at all to write to a log file. This process can be as simple
 as:
 open my $LOGFILE, '>>', 'logfile' or
 die "can't open logfile for append: $!\n";
 print $LOGFILE 'began logfile example: ' .
 scalar localtime . "\n";
 close $LOGFILE;
But as you’ve probably guessed, we’re going to get much spiffier than
 that....

Logging Shortcuts and Formatting Help

The first option is to use log modules that try to make writing the actual
 lines of a log easier, more structured, or both. For example, Tie::LogFile
 by Chris Reinhardt makes it easy to write lines to a log file with a
 preset format. Here’s a piece of sample code:
use Tie::LogFile;

tie(*LOG, 'Tie::LogFile', 'filename', format => '(%p) [%d] %m');

print LOG 'message'; # (pid) [dt] message

close(LOG);
The tie() line creates a tie()d filehandle with special properties. Each
 time we print to that filehandle, it will format the output using the format
 string specified and then add it to the file. In this case, we’re specifying
 that each line contain:
	
 (%p)

	The PID of the running process

	
 [%d]

	A date/time stamp

	
 %m

	The actual message

If we run the preceding program three times, we get a file that looks like
 this:
(19064) [Wed Jun 21 12:01:46 2008] message
(19719) [Wed Jun 21 12:09:02 2008] message
(19725) [Wed Jun 21 12:10:12 2008] message

Basic/Intermediate Logging Frameworks

Eventually, your desires for more sophisticated logging functionality may
 outgrow the types of modules we’ve seen so far. At that point you’ll find
 yourself looking for a module with at least a basic framework for handling
 logging tasks. Two such frameworks that have found favor in the Perl community
 are
 Log::Dispatch, by Dave Rolsky, and
 Log::Agent, originally by Raphael Manfredi
 and now maintained by Mark Rogaski. We’ll take a look at the first one, but you
 should feel free to compare the two and see which one appeals to you.
Here’s how Log::Dispatch works. First, you
 create a log dispatch object through which all logging is done:
use Log::Dispatch;
my $ld = Log::Dispatch->new;
That object isn’t particularly useful to start, but (and here comes the fun
 part) it acts as the hub for a set of modules that handle the disposition of
 every log message. For example, if you wanted log messages to go to a file, you
 would use a line like this to add it to the dispatch object:
$ld->add(
 Log::Dispatch::File->new(
 name => 'to_file',
 filename => 'filename',
 min_level => 'info',
 max_level => 'alert',
 mode => 'append'
)
);
This line says that output should go to an object called to_file whose job it will be to log data to the
 file filename. That object will log any
 message it receives that has a log level anywhere from info to alert.
But why stop with logging to a file? How about configuring it to send out
 messages via an email message? You can do that as follows:
$ld->add(
 Log::Dispatch::Email::MailSend->new(
 name => 'to_email',
 min_level => 'alert',
 to => [qw (operators@example.com)],
 subject => 'log alert'
)
);
Similarly, you might want to send messages to a syslog
 server for further aggregation and processing:
$ld->add(
 Log::Dispatch::Syslog->new(
 name => 'to_syslog',
 min_level => 'warning',
 facility => 'local2'
)
);
One of the great things about
 Log::Dispatch is that it has so many of these
 dispatch objects available. The module ships with other modules that can write
 to a file, send email, or log to the screen. Others have created modules for
 logging to a database via DBI, writing to files that are automatically rotated
 for you, sending messages via a Jabber IM server, and so on.
Observant readers are probably getting a bit impatient at this point, because
 they’ve noticed we haven’t actually logged anything yet. No
 problem, that’s easy:
$ld->log(level => 'notice', message => 'here is a log message');
Or, we could use a shortcut to send a message at the notice level:
$ld->notice('here is a log message');
This code will send that message to each of the dispatch objects we’ve
 add()ed that are set to listen to
 messages at this log level. If at this point we did the equivalent of screaming
 bloody murder:
$ld->emergency('printer on fire!');
a message would get recorded to the file and sent to
 syslog, and an email message would be dispatched. To
 send a message to a specific dispatch object, the log_to method is used:
$ld->log_to(name => 'to_syslog',
 level => 'debug',
 message => 'sneeble component is failing');
A basic/intermediate logging framework like this gives us significantly more
 control over when messages are logged, and where. This is often all of the
 flexibility and control one needs for a project. But there are cases where a
 really large project demands even more control. For those cases, there is an
 advanced logging framework available.

Advanced Logging Framework

The next step up in complexity and power is the
 log4perl logging framework, by Mike Schilli
 and Kevin Goess. This is a direct port of the
 log4j framework that is so popular in the
 Java community. The log4perl package is so
 compatible with its progenitor that it will even parse and use many log4j configuration files without
 modification.
Code examples and a deeper exploration of log4perl’s functionality would take considerably more space in
 this chapter than makes sense, especially considering that one of its authors
 has created an excellent tutorial (see the references section at the end of this
 chapter for a pointer). Instead, let me give you a quick rundown of the features
 of the framework and how they can benefit you.
Let’s start with the features we’ve already seen:
	log4perl offers the same ability to
 multiplex logging messages out to different output destinations as Log::Dispatch. In fact, it actually uses the same
 Log::Dispatch::* output modules as
 Log::Dispatch, so all of that
 flexibility comes along for the ride.

	log4perl supports logging levels
 (and has the ability to tell parts of the framework to pay attention to
 only messages of a certain level).

	log4perl has similar convenience
 methods ($object->error(),
 $object->warn(), $object->debug(), etc.) for logging
 at all of the standard levels.

Now let’s add the exciting parts:
	log4perl has something called
 “categories” that let you name a particular section of your code for
 logging purposes. For example, for an online banking application, you
 might have GetBalance, MakeWithdrawal, and MakeDeposit categories for each section of
 your code. The logging for each of these categories can be turned off/on
 and have its level set independently. Only want logging information
 about withdrawals at debug level? No problem with log4perl.

	If you are building big systems with lots of code, chances are they
 are written in an OOP-ish style with classes and subclasses, objects and
 sub-objects, and all that other good stuff. log4perl handles all of this complexity, because its
 categories are actually hierarchical in nature. Each category can
 correspond to a class in your system; you can have a Withdrawal, Withdrawal::CheckBalance, Withdrawal::CheckBalance::Overdraft, and so on. Log
 levels can be set at a place high in the tree of categories, and all
 subcategories under that level will inherit the setting. Want logging
 enabled for only a piece of your complex code hierarchy? Easily
 done.

	As I alluded to earlier, log4perl
 can read configuration files that describe precisely how logging should
 be enabled for your complex code jungle. As an added bonus, log4perl can be set to periodically check
 this file for modifications and load a new configuration if it changes.
 This means you can change the kind of logging your massive system is
 doing while it’s running. Pretty slick.

If this description has piqued your interest, visit http://log4perl.sourceforge.net for more details.
The subject of log creation, manipulation, and analysis is a vast one.
 Hopefully this chapter has given you a grasp of a few tools and a little
 inspiration.

Module Information for This Chapter

	
 Modules

 	
 CPAN ID

 	
 Version

	
 Win32::EventLog (ships with
 ActivePerl)

 	 	
 0.074

	
 File::Copy (ships with
 ActivePerl)

 	 	
 2.09

	

 Logfile::Rotate

 	
 PAULG

 	
 1.04

	
 File::Temp (ships with
 Perl)

 	 	
 0.17

	
 Getopt::Long (ships
 with Perl)

 	 	
 2.35

	
 Time::Local (ships with
 Perl)

 	 	
 1.13

	

 Perl6::Form

 	
 DCONWAY

 	
 0.04

	

 User::Utmp

 	
 MPIOTR

 	
 1.8

	

 Readonly

 	
 ROODE

 	
 1.03

	

 Log::Procmail

 	
 BOOK

 	
 0.11

	

 SyslogScan

 	
 RHNELSON

 	
 0.32

	

 File::Tail

 	
 MGRABNAR

 	
 0.99.3

	

 Parse::Syslog

 	
 DSCHWEI

 	
 1.09

	

 Regexp::Log::DateRange

 	
 KARASIK

 	
 0.01

	

 Regexp::Log

 	
 BOOK

 	
 0.04

	

 Regexp::Log::Common

 	
 BARBIE

 	
 0.04

	

 Log::Statistics

 	
 VVU

 	
 0.047

	
 DB_File (ships with Perl)

 	
 PMQS

 	
 1.72

	

 DBM::Deep

 	
 RKINYON

 	
 0.983

	

 FreezeThaw

 	
 ILYAZ

 	
 0.3

	
 Sys::Hostname (ships
 with Perl)

 	 	
 1.11

	
 Fcntl (ships with
 Perl)

 	 	
 1.05

	

 DBI

 	
 TIMB

 	
 1.52

	

 DBD::Sqlite

 	
 MSERGEANT

 	
 1.13

	

 Tie::LogFile

 	
 CREIN

 	
 0.1

	

 Log::Dispatch

 	
 DROLSKY

 	
 2.13

	

 Log4perl

 	
 MSCHILLI

 	
 1.07

References for More Information

Essential System
 Administration, Third Edition, by Æleen Frisch (O’Reilly)
 has a good, short intro to syslog.
http://www.heysoft.de/index.htm is the home of Frank Heyne
 software, a provider of Win32 Event Log-parsing software. It also has a good Event
 Log FAQ list.
http://www.le-berre.com is Philippe Le Berre’s home page; it
 contains an excellent write-up on the use of Win32::EventLog and other Windows packages.
Practical Unix
 & Internet Security, Third Edition, by Simson
 Garfinkel, Gene Spafford, and Alan Schwartz (O’Reilly), is another good (and
 slightly more detailed) intro to syslog; also includes
 tcpwrappers information.
http://www.geekfarm.org/wu/muse/LogStatistics.html is the home of
 the Log::Statistics package
 and contains some good documentation on the project.
http://log4perl.sourceforge.net is the home of the log4perl project. Be sure to see the tutorial linked
 off that site at http://www.perl.com/pub/a/2002/09/11/log4perl.html.
http://www.loganalysis.org is the site set up by Tina Bird and
 Marcus Ranum, two security researchers who are
 working to bring more attention to log analysis issues as they relate to security.
 They also host a mailing list on the subject at http://www.loganalysis.org/mailman/listinfo/loganalysis/.
USENIX held a workshop on analysis of system logs in 2008 (WASL ’08). More
 information can be found at http://www.usenix.org/events/wasl08/.
For interactive log analysis, the products provided by Splunk are pretty phenomenal. They also
 allow for free usage when analyzing data under a certain size.
Microsoft makes a (poorly publicized but very cool) package called Log Parser. I last found it on the download
 site at http://www.microsoft.com/downloads/details.aspx?FamilyID=890cd06b-abf8-4c25-91b2-f8d975cf8c07, but given how often Microsoft shuffles
 URLs, you may have to search for it at http://www.microsoft.com/downloads/. Microsoft describes it like this:
Log parser is a powerful, versatile tool that provides universal query access
 to text-based data such as log files, XML files and CSV files, as well as key
 data sources on the Windows® operating system such as the Event Log, the
 Registry, the file system, and Active Directory®. You tell Log Parser what
 information you need and how you want it processed. The results of your query
 can be custom-formatted in text based output, or they can be persisted to more
 specialty targets like SQL, SYSLOG, or a chart.

Chapter 11. Security

Any discussion of security is fraught with peril, for at least three reasons:
	Security means different things to different people. If you walked into a
 conference of Greco-Roman scholars and asked about Rome, the first scholar might
 rise dramatically to her feet and begin to
 lecture about aqueducts (infrastructure and delivery), while the second focused on Pax
 Romana (ideology and policies), a third expounded on the Roman
 legions (enforcement), a fourth on the Roman Senate (administration), and so on.
 The need to deal with every facet of security at once is security’s first
 trap.

	Security is a continuum, not a binary. People often mistakenly think that a
 program, a computer, a network, etc. can be “secure.” This chapter will never
 claim to show you how to make anything secure, though it will try to help you to
 make something more secure, or at least to recognize when
 something is less secure.

	Finally, one of the most deadly traps in this business is specificity. It is
 true that you can often address security issues by paying attention to the
 details, but the set of details is ever-shifting. Patching security holes A, B,
 and C only ensures that those particular holes will not be a
 problem—if the patches work as promised. It does
 nothing to help when hole D is found. That’s why this chapter will focus on
 general principles and tools for improving security, rather than telling you how
 to fix any particular buffer overflow, vulnerable registry key, or
 world-writable system file.

One good way to lead into a discussion of these principles is to examine how security
 manifests itself in the physical world. In both the real and virtual worlds, it all
 comes down to fear. Will something I care about be damaged, lost,
 or revealed? Is there something I can do to prevent this from happening? What is the
 likelihood of something happening, and what are the consequences if it does? Is it
 happening right now?
If we look at how we face fear in the physical world, we can learn ways to deal with
 it in the system administration domain as well. When we want to protect real-world
 objects, we invent stronger ways of partitioning physical space (e.g., bank vaults) so
 that only certain people can get to their contents. When we want to protect real-world
 intellectual property and secrets, we create methods of restricting access, like
 top-secret clearance policies or, in spy-vs.-spy situations, data encryption. The
 computer equivalents of these things are remarkably similar; they too include permission
 systems, access lists, encryption, etc. But both on and off the computer, security is a
 never-ending pursuit. For every hour spent designing a security system, there is at
 least an hour spent looking for a way to evade it. In our case, threats may come from
 hordes of bored teenagers with computers looking for something to do with their excess
 energy, or disgruntled former employees with vengeance on their minds.
One approach to improving security that has persisted over the ages is appointing a
 designated person to allay the public’s fears. Once upon a time, there was nothing so
 comforting as the sound of the night watchman’s footsteps as he walked through the town,
 jiggling door handles. We’ll use this quaint image as the jumping-off point for our
 exploration of security and network monitoring with Perl.
Noticing Unexpected or Unauthorized Changes

A good watchman notices change. She knows when things are in the wrong place or go
 missing. If your precious Maltese Falcon gets replaced with a forgery, the watchman
 is the first person who should notice. Similarly, if someone modifies or replaces
 key files on your system, you want sirens to blare and klaxons to sound. More often
 than not, the change will be harmless. But the first time someone breaches your
 security and mucks with /bin/login,
 system32/*.dll, or Finder, you’ll be
 so glad you noticed that you will excuse any prior false alarms.[101]
Local Filesystem Changes

Filesystems are an excellent place to begin our exploration of change-checking
 programs. We’re going to investigate ways to check whether important files, like
 operating system binaries and security-related files (e.g.,
 /etc/passwd or system32/*.dll),
 have changed. Changes to these files made without the administrator’s knowledge
 are often signs of an intruder. Some relatively sophisticated cracker toolkits
 available on the Web install Trojan versions of important files, then cover
 their tracks. That’s a malevolent kind of change that we have the ability to
 detect.[102] On the other end of the spectrum, sometimes it is just nice to know
 when important files have been changed (especially in environments where
 multiple people administer the same systems). The techniques we’re about to
 explore will work equally well in both cases.
The easiest way to tell if a file has changed is to use the Perl
 functions
 stat() and lstat(). These functions take a filename or a filehandle and
 return an array containing information about that file. The only difference
 between the two functions manifests itself on operating systems such as Unix
 that support symbolic links. In these cases, lstat() returns information about the symbolic link itself, while
 stat() returns info about the target of
 the link. On all other operating systems, the information lstat() returns should be the same as that
 returned by stat().
Using stat() or lstat() is easy:
my @information = stat('filename');
As demonstrated in Chapter 2, we can also use Tom Christiansen’s File::Stat
 module to provide this information using an object-oriented syntax.
The information stat() or lstat() returns is operating system-dependent.
 stat() and lstat() began as Unix system calls, so the Perl documentation for
 these calls is skewed toward the return values for Unix systems. Table 11-1 shows how these values
 compare to those returned by stat() on
 Windows-based operating systems. The first two columns show the Unix field number and description.
Table 11-1. stat() return value comparison[103]
	
 Field #

 	
 Unix field description

 	
 Valid for Windows-based operating systems?

	
 0

 	
 Device number of filesystem

 	
 Yes (drive #)

	
 1

 	
 Inode number

 	
 No (always 0)

	
 2

 	
 File mode (type and permissions)

 	
 Yes

	
 3

 	
 Number of (hard) links to the file

 	
 Yes (for NTFS)

	
 4

 	
 Numeric user ID of file’s owner

 	
 No (always 0)

	
 5

 	
 Numeric group ID of file’s owner

 	
 No (always 0)

	
 6

 	
 Device identifier (special files only)

 	
 Yes (drive #)

	
 7

 	
 Total size of file, in bytes

 	
 Yes (but does not include the size of any alternate data
 streams)

	
 8

 	
 Last access time since the epoch

 	
 Yes

	
 9

 	
 Last modify time since the epoch

 	
 Yes

	
 10

 	
 Inode change time since the epoch

 	
 Yes (but is file creation
 time)

	
 11

 	
 Preferred block size for filesystem I/O

 	
 No (always null)

	
 12

 	
 Actual number of blocks allocated

 	
 No (always null)

	[103] Fans of the first edition of this book might notice that this
 chart has lost a column. The transition from Mac OS to Mac OS X
 brought along a massive amount of compatibility changes (unusually,
 making it more compatible), rendering the Mac
 OS column unnecessary.

Warning
If dealing with time values on Windows systems in a way that is consistent
 with Unix systems is important to you, you will want to install the
 module
 Win32::UTCFileTime, by Steve Hay, and
 read its documentation carefully. Windows systems have some issues reporting
 file times as they relate to daylight savings time. This module can override
 the standard Perl stat() and other calls
 to fix the problems.

In addition to stat() and lstat(), some versions of Perl have special
 mechanisms for returning attributes of a file that are particular to a specific
 OS. See Chapter 2 for discussions of functions
 like
 Win32::FileSecurity::Get().
Once you have queried the stat() values for
 a file, the next step is to compare the “interesting” values against a known set
 of values for that file that you’ve pre-generated and kept secure. If the values
 have changed, something about the file must have changed. Here’s a program that
 both generates a string of lstat() values and
 checks files against a known set of those values. We intentionally exclude field
 #8 from Table 11-1 (last access
 time) because it changes every time a file is read.
This program takes either a -p
 filename argument to print
 lstat() values for a given file or a -c
 filename argument to check the lstat() values for all of the files recorded in
 filename:
use Getopt::Std;

we use this for prettier output later in PrintChanged()
my @statnames = qw(dev ino mode nlink uid gid rdev
 size mtime ctime blksize blocks);

getopt('p:c:', \my %opt);

die "Usage: $0 [-p <filename>|-c <filename>]\n"
 unless ($opt{p} or $opt{c});

if ($opt{p}) {
 die "Unable to stat file $opt{p}:$!\n"
 unless (-e $opt{p});
 print $opt{p}, '|', join('|', (lstat($opt{p}))[0 .. 7, 9 .. 12]),
 "\n";
 exit;
}

if ($opt{c}) {
 open my $CFILE, '<', $opt{c}
 or die "Unable to open check file $opt{c}:$!\n";
 while (<$CFILE>) {
 chomp;
 my @savedstats = split('\|');
 die "Wrong number of fields in line beginning with "$savedstats[0]\n"
 unless (scalar @savedstats == 13);
 my @currentstats = (lstat($savedstats[0]))[0 .. 7, 9 .. 12];

 # print the changed fields only if something has changed
 PrintChanged(\@savedstats, \@currentstats)
 if ("@savedstats[1..12]" ne "@currentstats");
 }
 close $CFILE;
}

iterates through attribute lists and prints any changes between
the two
sub PrintChanged {
 my ($saved, $current) = @_;

 # prints the name of the file after popping it off of the array read
 # from the check file
 print shift @{$saved}, ":\n";

 for (my $i = 0; $i <= $#{$saved}; $i++) {
 if ($saved->[$i] ne $current->[$i]) {
 print "\t" . $statnames[$i] . ' is now ' . $current->[$i];
 print ' (should be ' . $saved->[$i] . ")\n";
 }
 }
}
To use this program, we might type checkfile -p
 /etc/passwd >> checksumfile. checksumfile should then contain a line that looks
 like this:
/etc/passwd|1792|11427|33060|1|0|0|24959|607|921016509|921016509|8192|2
We would then repeat this step for each other file we want to monitor. Then,
 running the script with checkfile -c
 checksumfile will show any changes. For instance, if we remove a
 character from /etc/passwd, the script will complain like
 this:
/etc/passwd:
 size is now 606 (should be 607)
 mtime is now 921020731 (should be 921016509)
 ctime is now 921020731 (should be 921016509)
Before we move on, there’s one quick Perl trick in this code that I want to
 mention. The following line demonstrates a quick-and-dirty way of comparing two
 lists for equality (or lack thereof):
if ("@savedstats[1..12]" ne "@currentstats");
Perl automatically “stringifies” the contents of the two lists by
 concatenating the list elements with a space between them, doing essentially
 this:
join(' ',@savedstats[1..12]))
Then, the resulting strings are compared. For short lists where the order and
 number of the list elements is important, and the elements themselves do not
 contain the list separator ($", normally a
 space character), this technique works well. In most other cases, modules
 like
 Array::Compare can be of service.
Now that you have file attributes under your belt, I’ve got bad news for you.
 Checking to see that a file’s attributes have not changed is a good first step,
 but it doesn’t go far enough. It is not difficult to alter a file while keeping
 attributes like the last access and modification times the same. Perl even has a
 function, utime(), for changing the
 access or modification times of a file. Time to pull out the power tools.
Detecting changes in data is one of the fortés of a particular set of
 algorithms known as “message-digest algorithms.” Here’s how Ron Rivest describes a particular message-digest algorithm called the “RSA Data Security, Inc. MD5 Message-Digest Algorithm” in RFC
 1321:
The algorithm takes as input a message of arbitrary length and produces as
 output a 128-bit “fingerprint” or
 “message digest” of the input. It is conjectured that it is computationally
 infeasible to produce two messages having the same message digest, or to
 produce any message having a given
 prespecified target message digest.

For our purposes, this means that if we run a message digest algorithm such as
 MD5 (or, better, SHA) on a file we’ll get a unique fingerprint. If the data in
 this file were to change in any way, no matter how small, the fingerprint for
 that file would change.
MD5 Considered Harmful?
With apologies to Dan Kaminsky (one of my favorite security researchers), who
 wrote the paper called “MD5 To Be Considered Harmful Someday” cited in the
 references section at the end of this chapter, here’s a brief note about why
 none of the MD5 code from the first edition is still found in this
 chapter.
Since the first edition of this book was published, Ron Rivest’s conjecture from 1992 “that it is computationally
 infeasible to produce two messages having the same message digest” turned out to be a bit, umm, optimistic,
 especially in the face of some interesting mathematical attacks and the
 aggregate computing power (clusters and spare cycle scavenging contests) now
 available. It’s now somewhat easier to construct two files that have the
 same MD5 message digest.
Note that I said “easier” and not “easy.” This sidebar may seem equally
 optimistic some day, but it is my conjecture that if
 someone is going to go to the (currently) considerable trouble to create a
 substitute file with the same MD5 hash as one of your important files,
 you’ve got bigger problems than the message digest algorithm in use.
That being said, it took me maybe 5 seconds per program to swap
 in SHA-256 for MD5, because the
 Digest::SHA module by Mark Shelor has an almost identical interface to Gisle Aas’s
 Digest::MD5. It supports other
 members of the SHA-2 family as well, so feel free to ratchet up the digest
 length should you want even more warm fuzziness. I’ve swapped out the MD5
 code in this chapter to make sure you don’t get taunted about weak message
 digest algorithms at work.

The easiest way to harness this magic from Perl is through the Digest module family and its Digest::SHA module.
The Digest::SHA module is easy to use. You
 create a Digest::SHA object, add the data to
 it using the add() or addfile() method, and then ask the module to
 create a digest (fingerprint) for you.
To compute the SHA-256 fingerprint for a password file on Unix, we could use
 something like this:
use Digest::SHA;

my $sha = Digest::SHA->new(256);

'p' means 'portable mode'; it converts line endings in
data to Unix format so the same code yields the same
digest on different operating systems. Feel free to
leave that out if that is not a concern for you.
$sha->addfile('/etc/passwd', 'p');

print $sha->hexdigest . "\n";
We can also string methods together to make the program more compact:
use Digest::SHA;

print Digest::SHA->new(256)->addfile('/etc/passwd', 'p')->hexdigest, "\n";
Both of these code snippets print out:
c0e541600943622fe8ddf4142072107f076a8da35d1e39bc1c8c91a3892a46da
If we make even the slightest change to that file, the output changes. Here’s
 the output after I transpose just two characters in the
 password file:
ef88f8ce4c24eaa2d5937e929955d0eb63caf4813026ca8c877e3cc4b123c3ac
Any change in the data now becomes obvious. If we were to change it back, the
 fingerprint would return to the previous one, but the stat() information would reflect that the file had been
 updated.
Let’s extend our previous attribute-checking program to include
 SHA-256:
use Getopt::Std;
use Digest::SHA;

we use this for prettier output later in PrintChanged()
my @statnames = qw(dev ino mode nlink uid gid rdev
 size mtime ctime blksize blocks SHA-256);

getopt('p:c:', \my %opt);

die "Usage: $0 [-p <filename>|-c <filename>]\n"
 unless ($opt{p} or $opt{c});

if ($opt{p}) {
 die "Unable to stat file $opt{p}:$!\n"
 unless (-e $opt{p});

 my $digest = Digest::SHA->new(256)->addfile($opt{p}, 'p')->hexdigest;

 print $opt{p}, '|', join('|', (lstat($opt{p}))[0 .. 7, 9 .. 12]),
 "|$digest", "\n";
 exit;
}

if ($opt{c}) {
 open my $CFILE, '<', $opt{c}
 or die "Unable to open check file $opt{c}:$!\n";
 while (<$CFILE>) {
 chomp;
 my @savedstats = split('\|');
 die "Wrong number of fields in line beginning with $savedstats[0]\n"
 unless (scalar @savedstats == 14);
 my @currentstats = (lstat($savedstats[0]))[0 .. 7, 9 .. 12];
 push(@currentstats,
 Digest::SHA->new(256)->addfile($savedstats[0])->hexdigest);

 # print the changed fields only if something has changed
 PrintChanged(\@savedstats, \@currentstats)
 if ("@savedstats[1..13]" ne "@currentstats");
 }
 close $CFILE;
}

iterates through attributes lists and prints any changes between
the two
sub PrintChanged {
 my ($saved, $current) = @_;

 # prints the name of the file after popping it off of the array read
 # from the check file
 print shift @{$saved}, ":\n";

 for (my $i = 0; $i <= $#{$saved}; $i++) {
 if ($saved->[$i] ne $current->[$i]) {
 print "\t" . $statnames[$i] . ' is now ' . $current->[$i];
 print " (should be " . $saved->[$i] . ")\n";
 }
 }
}
One last tip on monitoring filesystem changes before we switch topics: many
 operating systems have a built-in way to look for changes to a filesystem—Linux
 has inotify (previously dnotify was
 available), Mac OS X 10.5+ has a filesystem events API (available for use from
 Perl using Andy Grundman’s Mac::FSEvents
 module), and Windows has the built-in auditing mechanism we looked at in Chapter 4. One of these facilities may come in handy for
 you.

Changes in Data Served Over the Network

We’ve looked at ways to detect changes on our local filesystem. How about noticing changes on other machines or in
 the services they provide? In Chapter 5, we saw ways to query
 NIS and DNS. It would be easy to check repeated queries to these services for
 changes. For instance, if our DNS servers are configured to allow this, we can
 pretend to be a secondary server and request a dump (i.e., a “zone transfer”) of
 that server’s data for a particular domain:
use Net::DNS;

takes two command-line arguments: the first is the name server
to query, the second is the domain to query from that name server
my $server = new Net::DNS::Resolver;
$server->nameservers($ARGV[0]);

print STDERR 'Transfer in progress...';
my @zone = $server->axfr($ARGV[1]);
die $server->errorstring unless @zone;
print STDERR "done.\n";

foreach my $record (@zone) {
 $record->print;
}
Note
All correctly configured DNS servers should be set to strictly control
 which hosts can perform a zone transfer. Code like this must run on one of
 those permitted hosts.

Let’s combine this idea with SHA-256. Instead of printing the zone information, let’s take a
 digest of it:
use Net::DNS;
use FreezeThaw qw(freeze);
use Digest::SHA;

my $server = new Net::DNS::Resolver;
$server->nameservers($ARGV[0]);

print STDERR 'Transfer in progress...';
my @zone = $server->axfr($ARGV[1]);
die $server->errorstring unless @zone;
print STDERR "done.\n";

my $zone = join('', sort map { freeze($_) } @zone);

print "SHA-2 fingerprint for this zone transfer is: \n";
print Digest::SHA->new(256)->add($zone)->hexdigest, "\n";
SHA-256 (or any message digest algorithm) works on a scalar chunk of data (a
 message), not a Perl list-of-hashes data structure like @zone. That’s where this line of code comes into play:
my $zone = join('', sort map { freeze($_) } @zone);
We’re using the
 FreezeThaw module introduced in Chapter 10 to flatten each @zone record data structure into a plain text string. Any other
 module like this (e.g., Data::Dumper) could also
 be used. Once flattened, the records are sorted before being concatenated into
 one large scalar value. The sort step allows us to ignore the order in which the
 records are returned in the zone transfer.
Dumping the contents of an entire zone file is a bit extreme, especially for
 large zones, so it may make more sense to monitor only an important subset of
 addresses. It is also a good idea to restrict the ability to do zone transfers
 to as few machines as possible, for security reasons.
The material we’ve seen so far doesn’t get you completely out of the woods.
 Here are a few questions you might want to ponder:
	What if someone tampers with your database of SHA-256 digests and
 substitutes valid fingerprints for their Trojan file replacements or
 service changes?

	What if someone tampers with your script so it only
 appears to check the digests against your
 database?

	What if someone tampers with the SHA module on your system?

	For the ultimate in paranoia, what if someone manages to tamper with
 the Perl executable, one of its shared libraries, or the operating
 system core itself?[104]

The usual ways of dealing with these threats (poor as they may be) involve
 keeping known good copies of everything related to the tamper-checking process
 (digest databases, modules, statically linked Perl, etc.) on read-only
 media.
This conundrum is another illustration of the continuum of security. It is
 always possible to find more to fear. The trick is to find a balance between
 paranoia and laziness.

[101] This is not to say that you shouldn’t work hard to reduce false positives.
 If you get too many alerts, you’ll start ignoring them or (worse)
 automatically sending them to the bitbucket.

[102] Though if you are dealing with a particularly nasty rootkit that
 changes the OS-level functions that Perl calls, all bets are off.
 Sorry.

[104] If you haven’t read Ken Thompson’s seminal paper “Reflections on Trusting Trust”, you really
 must.

Noticing Suspicious Activities

A good night watchman needs more than just the ability to monitor for change. He also
 needs to be able to spot suspicious activities and circumstances. Someone needs to
 notice holes in the perimeter fence and unexplained bumps in the night. We can write
 programs to play this role.
Local Signs of Peril

It’s unfortunate, but a talent for spotting signs of suspicious activity often
 comes as a result of experiencing pain and the desire to avoid it in the future.
 After the first few security breaches, you’ll start to notice that intruders
 often follow certain patterns and leave behind telltale clues. Spotting these
 signs, once you know what they are, is often easy in Perl.
Note
After each security breach, it is vitally important that you take a few
 moments to perform a postmortem of the incident. Document (to the best of
 your knowledge) where the intruders came in, what tools or holes they used,
 what they did, who else they attacked, what you did in response, and so on.
It is tempting to return to normal daily life and forget the break-in. If
 you can resist this temptation, you’ll find later that you’ve gained
 something from the incident, rather than just wasting time and effort. The
 Nietzschean principle of “that which does not kill you makes you stronger” is often applicable in the
 system administration realm.

For instance, intruders—especially the less sophisticated kind—often try to
 hide their activities by creating “hidden” directories to store their data. On
 Unix systems they will put exploit code and sniffer output in directories with
 names like “...” (dot dot dot), “. ” (dot space), or “ Mail” (space Mail). These
 names are likely to be passed over in a cursory inspection of
 ls output.
We can easily write a program to search for these names using the tools
 introduced in Chapter 2. Here’s a program based on
 the
 File::Find module that looks for anomalous
 directory names:
use File::Find;

find(\&wanted, '.');

sub wanted {

 (-d $_) and # is a directory
 $_ ne '.' and $_ ne '..' and # is not . or ..
 (
 /[^-.a-zA-Z0-9+,:;_~\$#()]/ or # contains a "bad" character
 /^\.{3,}/ or # or starts with at least 3 dots
 /^-/ # or begins with a dash
) and print "'" . nice($File::Find::name) . "'\n";
}

Print a "nice" version of the directory name, i.e., with control chars
displayed. This subroutine is barely modified from &unctrl() in Perl's
stock dumpvar.pl. If we wanted to be less of a copycat we could
use something like Devel::Dumpvar instead.
sub nice {
 my $name = shift;
 $name =~ s/([\001-\037\177])/'^'.pack('c',ord($1)^64)/eg;

 return $name;
}
A prettier option is the
 File::Find::Rule equivalent of the same
 code:
use File::Find::Rule;

my @problems
 = File::Find::Rule->name(qr/[^-.a-zA-Z0-9+,:;_~\$#()]/,
 qr/^\.{3,}/,
 qr/^-/)
 ->in('.');

foreach my $name (@problems) {
 print "'" . nice($name) . "'\n";
}

Print a "nice" version of the directory name, i.e., with control chars
explicated. This subroutine is barely modified from &unctrl() in Perl's
stock dumpvar.pl. If we wanted to be less of a copycat we could
use something like Devel::Dumpvar instead.
sub nice {
 my $name = shift;
 $name =~ s/([\001-\037\177])/'^'.pack('c',ord($1)^64)/eg;

 return $name;
}
The effectiveness of filesystem-sifting programs often hinges on the quality
 and quantity of their regular expressions. If you use too few regexps, you miss
 things you might want to catch. If you use too many regexps or regexps that are
 inefficient, your program runs for too long and uses too many resources. If you
 use regexps that are too loose, the program will generate many false positives.
 It’s a delicate balance.

Finding Problematic Patterns

We’ve just talked about looking for suspicious objects; now let’s move on to looking
 for patterns that may indicate suspicious activity. We can
 demonstrate this with a program that does some primitive log file analysis to
 identify potential break-ins.
This example is based on the following premise: most users logging in remotely
 do so consistently from the same place or a small list of places. That is, they
 usually log in remotely from a single machine, or from the same ISP each time.
 If you find an account that has logged in from more than a handful of domains,
 it’s a good indicator that this account has been compromised and the password
 has been widely distributed. Obviously this premise does not hold for
 populations of highly mobile users (especially if they are using a VPN or
 company proxy server), but if you find an account that has been logged into from
 Brazil and Finland in the same two-hour period, that’s a pretty good indicator
 that something is fishy.
Let’s walk through some code that looks for this indicator. This code is
 Unix-centric, but the techniques demonstrated in it are platform-independent.
 First, here’s our built-in documentation. It’s not a bad idea to put something
 like this near the top of your program for the sake of other people who will
 read your code.[105] Before we move on, be sure to take a quick look at the arguments the
 rest of the program will support:
sub usage {
 print <<"EOU";
lastcheck - check the output of the last command on a machine
 to determine if any user has logged in from > N domains
 (inspired by an idea from Daniel Rinehart)

 USAGE: lastcheck [args], where args can be any of:
 -i <class> for IP #'s, treat class <B|C> subnets as the same "domain"
 -f <domain> count only foreign domains, specify home domain
 -l <command> use <command> instead of default /usr/bin/last -a
 note: no output format checking is done!
 -m <#> max number of unique domains allowed, default 3
 -u <user> perform check for only this username

 -h this help message

EOU
 exit;
}
First we parse the user’s command-line arguments. The getopts line in the following code will look at the arguments to
 the program and set $opt{<flag
 letter>:}
 appropriately. The colon after the letter means that option takes an
 argument:
use Getopt::Std;
use Regexp::Common qw(net);

getopts('i:hf:l:m:u:', \my %opt); # parse user input

usage() if (defined $opt{h});

number of unique domains before we complain (default 3)
my $maxdomains = $opt{m} ||= 3;

keep network block upcased, provide default of 'C'-sized
if (exists $opt{i}) {
 $opt{i} = uc $opt{i};
 $opt{i} ||= 'C';
}
The following lines reflect the portability versus efficiency decision we
 discussed in Chapter 4. If you wanted to make the program
 a little more efficient (but less portable), you could use unpack(), as discussed in that chapter. Here,
 we’re opting to call an external program:
my $lastex = $opt{l} ||= '/usr/bin/last -a';

open my $LAST, '-|', $lastex || die "Can't run the program $lastex:$!\n";
Before we get any further into the program, let’s take a quick look at the
 hash-of-hashes data structure this program uses as it processes the data from
 last. This hash will have a username as
 its key and a reference to a sub-hash with the unique domains that user has
 logged in from as its keys. The values of the sub-hash don’t really matter.
 We’re just using a sub-hash instead of a sub-list because it makes it very easy
 to keep the list of domains associated with a user unique.
For instance, a sample entry might be:
$userinfo { 'laf' } = { 'ccs.example.edu' => undef,
 'xerox.com' => undef,
 'tpu.edu' => undef }
This entry shows that the user laf has logged in from the
 ccs.example.edu, xerox.com, and
 tpu.edu domains.
We begin by iterating over the input we get from last. On my system, the output looks like this:
cindy pts/145 Thu Jan 1 20:57 still logged in nwbdfsd42.hsd1.ma.comcast.net
michael pts/145 Thu Jan 1 20:27 - 20:27 (00:00) pool-68-25-87.bos.verizon.net
david pts/113 Thu Jan 1 18:51 still logged in 65.64.24.204
deborah pts/110 Thu Jan 1 14:48 - 15:42 (00:54) nat-service4.example.net
barbara pts/158 Thu Jan 1 10:25 - 11:22 (00:57) 65.96.246.34
jerry pts/81 Thu Jan 1 10:04 - 12:13 (02:09) athedsl-4392.home.otenet.gr
Early on in the while loop, we try to skip
 lines that contain cases we don’t care about. In general, it is a good idea to
 check for special cases like these at the beginning of your loops before any
 actual processing of data (e.g., data extraction with //) takes place. This lets the program quickly identify when it
 can skip a particular line and continue reading input:
my %userinfo;
while (<$LAST>) {

 # ignore special users
 next if /^reboot\s|^shutdown\s|^ftp\s/;

 # if we've used -u to specify a specific user, skip all entries
 # that don't pertain to this user (whose name is stored in $opt{u}
 # by getopts for us)
 next if (defined $opt{u} && !/^$opt{u}\s/);

 # ignore X console logins
 next if /:0\s+(:0)?/;

 chomp; # chomp if we think we still might be interested in the line

 # find the user's name, tty, and remote hostname
 my ($user, $host) = /^([a-z0-9-.]+)\s.*\s([a-zA-Z0-9-.]+)$/;

 # ignore if the log had a bad username after parsing
 next if (length($user) < 2);

 # ignore if no domain name or IP info in name
 next if $host !~ /\./;

 # find the domain name of this host (see explanation following code)
 my $dn = domain($host);

 # ignore if you get a bogus domain name
 next if (length($dn) < 2);

 # ignore this input line if it is in the home domain as specified
 # by the -f switch
 next if (defined $opt{f} && ($dn =~ /^$opt{f}/));

 # store the info for this user
 $userinfo{$user}{$dn} = undef;
}
close $LAST;
There’s one utility subroutine, domain(),
 that takes a fully qualified domain name (FQDN)—i.e., a hostname with the full
 domain name attached—and returns its best guess at the domain name of that host.
 It has to make a few choices because not all hostnames in the logs will be
 actual names; they may be simple IP addresses. In this case, if the person
 running the script has set the -i switch, we
 assume any IP address we get is a class B or C network subnetted on the standard
 byte boundary. In practical terms, this means that we treat the first two or
 three octets as the “domain name” of the host. This allows us to treat logins
 from 192.168.1.10, for example, as coming from the same logical source as logins
 from 192.168.1.12. This may not be the best of assumptions, but it is the best we can do without consulting
 another source of information (and it works most of the time). If the user does
 not use the -i switch, we treat the entire IP
 address as the domain of record.
Here’s the code for this subroutine, followed by one quick comment:
take an FQDN and attempt to return the FQD
sub domain {
 my $fdqn_or_ip = shift;

 if ($fdqn_or_ip =~ /^$RE{net}{IPv4}{-keep}$/) {
 if (exists $opt{i}) {
 return ($opt{i} eq 'B') ? "$2.$3" : "$2.$3.$4";
 }
 else { return $fdqn_or_ip; }
 }
 else {

 # Ideally we'd check against $RE{net}{domain}{-nospace}, but this
 # (as of this writing) enforces the RFC 1035 spec, which
 # has been updated by RFC 1101. This is a problem
 # for domains that begin with numbers (e.g., 3com.com).

 # downcase the info for consistency's sake
 $fdqn_or_ip = lc $fdqn_or_ip;

 # then return everything after first dot
 $fdqn_or_ip =~ /^[^.]+\.(.*)/;
 return $1;
 }
}
The most interesting thing about this code is the use of Regexp::Common to do some of its dirty work. The
 match that determines whether the input to the subroutine was an IP address has
 someone else’s smarts embedded in it. Using
 Regexp::Common means we don’t have to think
 hard about constructing the right regexp to both identify the correct format and
 dice it properly. With the {-keep} subkey, it
 not only matches valid IP addresses but also sets (as per the
 documentation):
	$1 to the entire match

	$2 to the first component of the
 address

	$3 to the second component of the
 address

	$4 to the third component of the
 address

	$5 to the final component of the
 address

We first saw Regexp::Common in Chapter 8, but I thought it deserved a second cameo because of its
 usefulness.
That’s it for iterating over the output of last and building our data structure. To wrap up this program,
 let’s run through all the users we found and check how many unique domains each
 has logged in from (i.e., the number of keys we’ve stored for each user). For
 those entries that have more domains than our comfort level, we print the
 contents:
foreach my $user (sort keys %userinfo) {
 if (scalar keys %{ $userinfo{$user} } > $maxdomains) {
 print "\n\n$user has logged in from:\n";
 print join("\n", sort keys %{ $userinfo{$user} });
 }
}
print "\n";
Now that you’ve seen the code, you might wonder if this approach really works.
 Here’s some real sample output from our program (with some of the hostnames
 truncated to protect the innocent) for a user who had her password sniffed at
 another site:
username has logged in from:
38.254.131
bu.edu
ccs.neu.ed
dac.neu.ed
hials.no
ipt.a
tnt1.bos1
tnt1.bost
tnt1.dia
tnt2.bos
tnt3.bos
tnt4.bos
toronto4.di
Some of these entries look normal for a user in the Boston area. However, the
 toronto4.di entry is a bit
 suspect, and the hials.no site is in Norway. Busted!
This program could be further refined to include the element of time or
 correlations with another log file, like that from
 tcpwrappers. But as you can see, pattern detection is
 often very useful by itself.

[105] If you want to be really cool and impress all your friends, use
 something like Pod::Usage’s pod2usage() to allow your program to
 display its own manual page based on embedded documentation in POD
 format.

Danger on the Wire, or “Perl Saves the Day”

Here’s a true story that shows how Perl can help in crisis times. One Saturday
 evening I casually logged into a machine on my network to read my email. Much to my
 surprise, I found our mail and web servers near death and fading fast. Attempts to
 read and send mail or look at web content yielded slow responses, hung connections,
 and outright connection failures. Our mail queue was starting to reach critical
 mass.
I looked first at the state of the servers. The interactive response was fine, and
 the CPU load was high, but not deadly. One sign of trouble was the number of mail
 processes running. According to the mail logs, there were more processes running
 than expected because many transactions were not completing. Processes that had
 started up to handle incoming connections from the outside were hanging, driving up
 the load. This load was then capping any new outgoing connections from initiating.
 This strange network behavior led me to examine the current connection table of the
 server using netstat.
The last column of the
 netstat output told me that there were indeed
 many connections in progress on that machine from many different hosts. The big
 shocker was the state of those connections. Instead of looking like this:
tcp 0 0 mailhub.3322 mail.mel.aone.ne.smtp ESTABLISHED
tcp 0 0 mailhub.3320 edunet.edunet.dk.smtp CLOSE_WAIT
tcp 0 0 mailhub.1723 kraken.mvnet.wne.smtp ESTABLISHED
tcp 0 0 mailhub.1709 plover.net.bridg.smtp CLOSE_WAIT
they looked more like this:
tcp 0 0 mailhub.3322 mail.mel.aone.ne.smtp SYN_RCVD
tcp 0 0 mailhub.3320 edunet.edunet.dk.smtp SYN_RCVD
tcp 0 0 mailhub.1723 kraken.mvnet.wne.smtp SYN_RCVD
tcp 0 0 mailhub.1709 plover.net.bridg.smtp CLOSE_WAIT
At first, this looked like a classic denial of service attack called a SYN flood or a SYN-ACK attack. To understand
 these attacks, we have to digress for a moment and talk a little bit about how the
 TCP/IP protocol works.
Every TCP/IP connection begins with a handshake between the participants. This
 little dance lets both the initiator and the recipient signal their readiness to
 enter into a conversation. The first step is taken by the initiating network entity.
 It sends a SYN (for SYNchronize) packet to the
 recipient. If the recipient wishes to talk, it will send back a SYN-ACK, an ACKnowledgment of the request, and record
 that a conversation is about to begin in its pending connection table. The initiator
 then replies to the SYN-ACK with an ACK packet, confirming that the SYN-ACK was heard. The recipient hears the ACK, removes the entry from its pending table, and
 away they go.
At least, that’s what should happen. In a SYN flood situation, a nogoodnik will send a flood of
 SYN packets to a machine, often with spoofed
 source addresses. The unsuspecting machine will send SYN-ACKs to all the spoofed source addresses and open an entry in its
 pending communication table for each SYN packet
 it has received. These bogus connection entries will stay in the pending table until
 the OS ages them out using some default timeout value. If enough packets are sent,
 the pending communication table will fill up and no legitimate connection attempts
 will succeed. This leads to symptoms like those I was experiencing at the time, and
 similar netstat output.
The one anomaly in the
 netstat output that made me question this
 diagnosis was the variety of hosts represented in the table. It was possible that
 the attacker had a program with superb spoofing capabilities, but you usually expect
 to see many connections from a smaller set of bogus hosts (unless they are using a
 botnet to launch a distributed denial of service attack). Many of these hosts also
 seemed perfectly legitimate and unlikely to be zombies. Further clouding the
 situation were the results of a few connectivity tests I ran. Sometimes I
 could
 ping or traceroute to a randomly selected host listed in my netstat output, and sometimes I couldn’t. I needed
 more data. I needed to get a better grasp on the connectivity to these remote hosts.
 That’s where Perl came in.
Because I was writing code under the gun, I wrote a very simple script that relied
 on the output of two other external network programs to handle the hard parts of the
 task. Let me show you that version, and then we’ll use this task as a springboard
 for some more advanced programming.
The task in this case boiled down to one question: could I reach the hosts that
 appeared to be trying to connect to me? To find out which hosts were trying to
 contact my machine, I turned to a program called
 clog written by Brian Mitchell, found at http://coast.cs.purdue.edu/pub/tools/unix/logutils/clog/.
 clog uses the Unix
 libpcap library from Lawrence Berkeley National Laboratory’s Network Research Group to sniff
 the network for TCP connection requests (i.e., SYN packets). This is the same library used by the seminal network
 monitoring program
 tcpdump. Found at http://www.tcpdump.org,
 libpcap works for most Unix variants. A
 libpcap port for Windows can be found at
 http://www.winpcap.org.
clog reports SYN packets
 like this:
Mar 02 11:21|192.168.1.51|1074|192.168.1.104|113
Mar 02 11:21|192.168.1.51|1094|192.168.1.104|23
The preceding output shows two connection requests from 192.168.1.51 to
 192.168.1.104. The first was an attempt to connect to port 113
 (ident), and the second to port 23
 (telnet).
With clog, I was able to learn which hosts were attempting to
 connect to me, and now I needed to know whether I could also reach them. That task
 was left to a program called
 fping, written by Roland J. Schemers III and now maintained
 by Thomas Dzubin. fping, which can be found at http://www.fping.com, is a fast and fancy ping
 program for testing network connectivity on Unix and variants. Putting these
 external commands together, we get this little Perl program:
use Readonly;

location/switches of clog
Readonly my $clogex => '/tmp/clog';

location/switches of fping
Readonly my $fpingex => '/arch/unix/bin/fping -r1';

Readonly my $localnet => '192.168.1'; # local network
my %cache;

open my $CLOG, '-|', "$clogex" or die "Unable to run clog:$!\n";
while (<$CLOG>) {
 my ($date, $orighost, $origport, $desthost, $destport) = split(/\|/);
 next if ($orighost =~ /^$localnet\b/);
 next if (exists $cache{$orighost});
 print `$fpingex $orighost`;
 $cache{$orighost} = 1;
}

we'd never really get here because we were in an infinite loop,
but this is just good practice should we change the code above
close $CLOG;
This program runs the clog command and reads
 its output ad infinitum. Since our internal network
 connectivity wasn’t suspect, it checked each originating host against the local
 network’s addressing prefix and ignored traffic from the local network.
We perform some rudimentary caching in this code. To be a good net citizen we want
 to avoid hammering outside machines with multiple ping packets,
 so we keep track of every host we’ve already queried. The -r1 flag to fping is used to restrict the number
 of times fping will retry a host (the default is three
 retries).
This program has to be run with elevated privileges, since both
 clog and fping need privileged access
 to the computer’s network interface. On my system, the program printed output like
 this:
199.174.175.99 is unreachable
128.148.157.143 is unreachable
204.241.60.5 is alive
199.2.26.116 is unreachable
199.172.62.5 is unreachable
130.111.39.100 is alive
207.70.7.25 is unreachable
198.214.63.11 is alive
129.186.1.10 is alive
Clearly something fishy was going on here. Why would half of the sites be
 reachable, and the other half unreachable? Before we answer that question, let’s
 look at what we could do to improve this program. A first step would be to remove
 the external program dependencies. Learning how to sniff the network and send
 ping packets from Perl opens a whole range of
 possibilities. Let’s take care of removing the easy dependency first.
The
 Net::Ping module (written by Russell Mosemann and
 now maintained by Steve Peters), found in the Perl distribution, can help us with
 testing connectivity to network hosts. Net::Ping
 allows us to send three different flavors of ping packets—ICMP,
 TCP, and UDP—and check for a return response. Internet Control Message Protocol (ICMP) echo packets are
 “ping classic,” the kind of packet sent by the vast
 majority of the command-line ping programs. This particular
 packet flavor has one major disadvantage, though: like our previous
 clog/fping code, any Net::Ping scripts using ICMP need to be run with
 elevated privileges.
Note
If you don’t like the “run with elevated privileges” restriction, I’d
 recommend using Net::Ping::External by
 Alexandr Ciornii and Colin McMillen.
Net::Ping::External is a wrapper that knows
 how to call the ping command in your path on
 many different operating systems and parse the results. Since the operating
 system’s ping command is already set up in
 some fashion (e.g., the executable might be marked setuid
 root) to work when called by mere mortal users, calling it from
 Perl means your code will also have this ability. If you want to cut out the
 middleman on Windows systems, Toby Ovod-Everett’s Win32::PingICMP uses Win32::API to call ICMP.DLL just like the
 standard ping command does.
I’ll stick to Net::Ping in this particular
 example (since we’ll need to run with elevated privileges to sniff the network)
 but switching to either of these two alternatives is quite easy.

The other two choices for Net::Ping packets are
 TCP (Transmission Control Protocol) and UDP (User Datagram Protocol). Both of these choices send packets to a
 remote machine’s echo service port. Using these options gains
 you portability, but you may find them less reliable than ICMP. ICMP is built into
 all standard TCP/IP stacks, but all machines may not be running the
 echo service. As a result, unless ICMP is deliberately
 filtered, you are more likely to receive a response to an ICMP packet than to the
 other types.
Net::Ping uses the standard object-oriented
 programming model, so the first step is the creation of a new ping object instance:
use Net::Ping;
my $p = Net::Ping->new('icmp');
Using this object is simple:
if ($p->ping($host)) {
 print "ping succeeded.\n";
}
else {
 print "ping failed\n";
}
Now let’s dig into the hard part of our initial script, the network sniffing.
 Earlier, we used the clog program to handle that work, but it
 was written for Unix systems so using it on another operating system may be dicey
 (or downright impossible). We’re going to need a different solution if we expect to
 perform this function on anything but a Unix variant.
The first step toward using Perl in this case is to build and/or install
 libpcap (or, if you’re on Windows, winpcap) on your machine. I recommend you also build and/or install
 tcpdump. tcpdump can be used to explore
 libpcap functionality before coding Perl or
 to double-check that code.
With libpcap built, it’s easy to build
 the
 Net::Pcap module (originally written by Peter Lister, completely rewritten by Tim Potter, and now maintained by
 Sébastien Aperghis-Tramoni). This module gives you full access to the power of
 libpcap. Let’s first take a look at a very
 simple Net::Pcap example, and then develop it
 into something that we can use to find SYN
 packets, similar to clog.
Our example code begins by requesting a packet capture descriptor for the
 specified device (in this case, the wireless adaptor on my laptop):
use Net::Pcap qw(:functions);

could also use lookupdev and findalldevs to find the right device
my $dev = 'en1';

prepare to capture 1500 bytes from each packet,
promiscuously (i.e., all traffic, not just sent to us),
with no packet timeout, placing any error messages
for this call in $err
my $err;
my $pcap = open_live($dev, 1500, 1, 1, \$err)
 or die "Unable to open_live device $dev: $err\n";
Note
If you’d like your code to be smarter about which device to open, check out the
 Net::Pcap::FindDevice module in Max
 Maischein’s Sniffer::HTTP package. It has the
 best set of heuristics I’ve seen for that purpose.

Now we ask Net::Pcap to begin the actual
 capture:
capture packets until interrupted
my $ret = loop($pcap, −1, \&printpacketlength, '');
warn 'Unable to perform capture:' . geterr($pcap) . "\n"
 if ($ret == −1);

Net::Pcap::close($pcap);
This says to start capturing packets (−1 says
 do so until interrupted; we could give a set number of packets here instead). Each
 time we capture a packet, we hand it to the callback code in printpacketlength() for processing. Should we not
 capture any packets, we print an error and attempt to nicely close the device
 associated with our packet capture descriptor.
Callback subroutines like printpacketlength()
 receive a few pieces of data from loop():
	A user ID string, optionally set when starting a capture, that allows a
 callback procedure to distinguish between several open packet capture
 sessions

	A reference to a hash describing the packet header (timestamps,
 etc.)

	A copy of the entire packet

It’s the third item in that list that lets us trivially compute the packet length
 for every packet:
sub printpacketlength {
 my ($user_data, $header, $packet) = @_;
 print length($packet), "\n";
}
If we run the code at this point, it will start spewing the packet length for
 every packet. That’s the basics of using Net::Pcap.
OK, so let’s get to the SYN capture question.
 libpcap gives you the ability to capture all
 network traffic or a select subset based on filter criteria of your choosing. Its
 filtering mechanism is very efficient, so it is often best to invoke it up front,
 rather than sifting through all the packets via Perl code. In our case, we need to
 look at only SYN packets.
So what’s a SYN packet? To understand that, you
 need to know a little bit about how TCP packets are put together. Figure 11-1 shows a picture (from RFC 793) of a TCP packet and its header.
A SYN packet, for our purposes, is simply one
 that has only the SYN flag (highlighted in Figure 11-1) in the packet header set. In order to tell
 libpcap to capture packets like this, we need
 to specify which byte it should look at in the packet. Each tick mark above is a
 bit, so let’s count bytes. Figure 11-2
 shows the same packet with byte numbers.
We’ll need to check if byte 13 is set to binary 00000010, or 2. The filter string
 we’ll need is tcp[13] = 2. If we wanted to check
 for packets that had at least the SYN flag set, we could use tcp[13] &
 2 != 0.
[image: Diagram of a TCP packet]

Figure 11-1. Diagram of a TCP packet

[image: Finding the right byte in a TCP packet]

Figure 11-2. Finding the right byte in a TCP packet

To use this information in a Net::Pcap program,
 we need just a few additional lines of code before we begin the capture with
 loop(). The filter string we just constructed
 first gets compiled into a filter program and then set on the
 packet capture descriptor:
my $filter_string = 'tcp[13] = 2';

compile and set our "filter program"
Net::Pcap::compile($pcap, \my $filter, $filter_string, 1, 0)
 and die "unable to compile $filter_string\n";

Net::Pcap::setfilter($pcap, $filter) and die "unable to set filter\n";
If we run the modified version of the code, we now see packet lengths only for
 those TCP packets with just the SYN flag
 set.
This code captures SYN packets and prints their
 lengths, but that’s not quite where we wanted be when we started this section. We
 need a program that watches for SYN packets from
 another network and attempts to ping the originating hosts. We
 have almost all of the pieces; the only thing we are missing is a way to determine
 the sources of the SYN packets we’ve
 received.
As with our nitty-gritty DNS example in Chapter 5, we’ll need to take a raw
 packet and dissect it. Usually this entails reading the specifications (RFCs) and
 constructing the necessary unpack() templates.
 Fortunately, Tim Potter has done this hard work for us, producing a set of
 NetPacket modules now maintained by Yanick
 Champoux: NetPacket::Ethernet, NetPacket::IP, NetPacket::TCP,
 NetPacket::ICMP, and so on. Each of these
 modules provides two methods: strip() and
 decode().
strip() simply returns the packet data with the
 network layer stripped from it. Remember, a TCP/IP packet on an Ethernet network is
 really just a TCP packet embedded in an IP packet embedded in an Ethernet packet.
 So, if $pkt holds a TCP/IP packet, NetPacket::Ethernet::strip($pkt) will return an IP
 packet (having stripped off the Ethernet layer). If you needed to get at the TCP
 portion of $pkt, you could use NetPacket::IP::strip(NetPacket::Ethernet::strip($packet)) to strip
 off both the IP and Ethernet layers.
decode() takes this one step further, breaking
 a packet into its component parts and returning an instance of an object that
 contains all of those parts. The following line returns an object instance with the
 fields detailed in Table 11-2:
my $pobj = NetPacket::TCP->decode(
 NetPacket::IP::strip(NetPacket::Ethernet::strip($packet)))
Table 11-2. Fields accessible from the object returned by NetPacket::TCP’s decode()
 method
	
 Field name

 	
 Description

	

 src_port

 	
 Source TCP port

	

 dest_port

 	
 Destination TCP port

	

 seqnum

 	
 TCP sequence number

	

 acknum

 	
 TCP acknowledgment number

	

 hlen

 	
 Header length

	

 reserved

 	
 6-bit “reserved” space in the TCP header

	

 flags

 	
 URG, ACK, PSH, RST,
 SYN, and FIN flags

	

 winsize

 	
 TCP window size

	

 cksum

 	
 TCP checksum

	

 urg

 	
 TCP urgent pointer

	

 options

 	
 Any TCP options in binary form

	

 data

 	
 Encapsulated data (payload) for this packet

These should look familiar to you from Figure 11-2. To get the destination TCP
 port for a packet, we can use:
my $dport = NetPacket::TCP->decode(
 NetPacket::IP::strip(
 NetPacket::Ethernet::strip($packet)))->{dest_port};
Let’s tie this all together and then throw in two quick ways to make this task
 easier. Tim Potter created a small wrapper for the Net::Pcap initialization and loop code and released it in his
 Net::PcapUtils module. It handles several of
 the packet capture descriptor initialization steps we just performed, making our
 code shorter. Here it is in action, along with everything else we’ve learned along
 the way in the last section:
use Net::PcapUtils;
use NetPacket::Ethernet;
use NetPacket::IP;
use Net::Ping;
use Readonly;

Readonly my $dev => 'en0';
Readonly my $localnet => '192.168.1';

filter string that looks for SYN-only packets
not originating from local network
Readonly my $filter_string => "tcp[13] = 2 and src net not $localnet";

my %cache;

$| = 1; # unbuffer STDIO

construct the ping object we'll use later
my $p = Net::Ping->new('icmp');

and away we go
my $ret = Net::PcapUtils::loop(
 \&grab_ip_and_ping,
 FILTER => $filter_string,
 DEV => $dev
);
die "Unable to perform capture: $ret\n" if $ret;

find the source IP address of a packet, and ping it (once per run)
sub grab_ip_and_ping {
 my ($arg, $hdr, $pkt) = @_;

 # get the source IP adrress
 my $src_ip
 = NetPacket::IP->decode(NetPacket::Ethernet::strip($pkt))->{src_ip};

 print "$src_ip is "
 . (($p->ping($src_ip)) ? 'alive' : 'unreachable') . "\n"
 unless $cache{$src_ip}++;
}
If you like the idea of using wrapper modules to eliminate code, a relatively
 recent addition to the module scene can take things still further. Paul Miller’s Net::Pcap::Easy
 attempts to provide built-in routines for the sorts of operations you find yourself
 rewriting over and over again when using Net::Pcap. Here’s a rewrite of the previous code, with a brief
 explanation to follow:
use Net::Pcap::Easy;
use Net::Ping;
use Readonly;

Readonly my $dev => 'en1';
Readonly my $localnet => "192.168.1";

filter string that looks for SYN-only packets
not originating from local network
Readonly my $filter_string => "tcp[13] = 2 and src net not $localnet";

my %cache;

$| = 1; # unbuffer STDIO

construct the ping object we'll use later
my $p = Net::Ping->new('icmp');

set up all of the Net::Pcap stuff and
include a callback
my $npe = Net::Pcap::Easy->new(
 dev => $dev,
 filter => $filter_string,
 packets_per_loop => 10,
 bytes_to_capture => 1500,
 timeout_in_ms => 1,
 promiscuous => 1,

 tcp_callback => sub {
 my ($npe, $ether, $ip, $tcp) = @_;

 my $src_ip = $ip->{src_ip};

 print "$src_ip is "
 . (($p->ping($src_ip)) ? 'alive' : 'unreachable') . "\n"
 unless $cache{$src_ip}++;
 }
);

while (1) { $npe->loop(); }
Only the last half of the code has changed, so we’ll focus on that in this
 explanation. Most of the magic is in the new()
 call, where we can very simply set the parameters for the capture, including the
 filter string and any callbacks we need. Net::Pcap::Easy lets us define callbacks for the different packet
 types (TCP, UDP, ICMP, etc.). Since our filter string specifies only TCP packets,
 we’ve only defined the TCP callback. One really cool thing about Net::Pcap::Easy’s callbacks is that they are handed
 NetPacket::* objects instead of raw packets.
 We no longer have to write the code to strip() or
 decode(); we can just access the right object
 attributes, like src_ip. When we call the
 loop() method, Net::Pcap::Easy captures the number of packets specified by packets_per_loop in the new() call. Once it has captured this number of
 packets, it parcels them out one packet at a time to the appropriate callbacks and
 returns. To be consistent with the other versions of our program, we call loop() again and again until interrupted.
Now that we’ve achieved our goal of writing a program completely in Perl that
 would have helped diagnose my server problem (albeit using some modules that are
 Perl wrappers around C code), let me tell you the end of the story.
On Sunday morning, the central support group outside of my department discovered
 an error in its router configuration. A student in one of the dorms had installed
 Linux on his machine and misconfigured the network routing daemon. This machine was
 broadcasting to the rest of the university that it was a default route to the
 Internet. The misconfigured router that fed our department was happy to listen to
 this broadcast and promptly changed its routing table to add a second route to the
 rest of the universe. Packets came to us from the outside world, and this router
 dutifully doled out our response packets evenly between both destinations. This “a
 packet for the real router to the Internet, a packet for the student’s machine, a
 packet for the real router, a packet for the student’s machine...” distribution
 created an asymmetric routing situation. Once the bogus route was cleared and
 filters were put in place to prevent it from returning, our lives returned to
 normal. I won’t tell you what happened to the student who caused the problem (or the
 employee who configured the router that way!).
In this section, you have now seen one diagnostic application of the Net::Pcap, Net::PcapUtils/Net::Pcap::Easy,
 and NetPacket::* family of modules. Don’t stop
 there! These modules give you the flexibility to construct a whole variety of
 programs that can help you debug network problems or actively watch your wire for
 danger.

Preventing Suspicious Activities

The very last night watchman’s attribute that we will consider is an eye toward prevention.
 This is the voice that says “You know, you shouldn’t leave those fresh-baked pies on
 the windowsill to cool.”
We’re going to conclude this chapter with an example that, when properly deployed,
 could positively impact a single machine, or even an entire computing
 infrastructure. As a symbolic gesture, instead of making use of somebody else’s
 work, we’ll build our own module.
The goal I have in mind is the prevention, or at least reduction, of bad
 passwords. Good security mechanisms have been thwarted by the selection of bad
 passwords since the dawn of time. Oog’s password to get back into the clan’s cave
 was probably “oog”.[106] Nowadays, the situation is exacerbated by the widespread availability of
 sophisticated password-cracking programs like John the Ripper
 by Solar Designer and Alec Muffett’s Crack.
The only way to prevent the vulnerability in your systems that these programs
 expose is to avoid bad passwords in the first place. You need to help your users
 choose and retain hard-to-crack passwords. There are two complementary ways to do
 this: suggest good passwords and prevent bad passwords from being used.
Suggest Better Passwords

Picking a good password is actually pretty hard if you have no idea what makes a
 password “good.” There are a number of psychological, sociological, and
 contextual factors contributing to why people pick and keep bad passwords. One
 important factor is the “blank-page” problem. If someone says to you “quick,
 pick something you’ll need to be able to remember, but don’t make it something
 anyone else can guess,” that’s a lot of pressure.
To help people get over this pressure, it can often be helpful to pre-generate
 suggested passwords for them to use. There are several Perl modules designed to
 generate more secure passwords. Some of them create passwords that are truly
 random. Others produce passwords that are close to random, but have the nice
 property of being pronounceable in someone’s native language (and hence perhaps
 more memorizable). Random passwords are in theory more secure, but there have
 been some good debates over the years in the security community about whether
 providing users with something so complex that they have to write it down on a
 sticky note is any better than giving them something less random that they are
 more likely to be able to keep in their heads.
All the Perl modules in this space are very easy to use. You ask for a
 password, and the module hands you one. You may have to (or want to) provide
 some parameters describing the kind of
 password you want, or perhaps provide some hints on what “pronounceable” entails
 in your language, but that’s all the thinking you need to do to use them. Let’s
 look at a couple of examples. The first, Data::SimplePassword, prints a random password of 10 characters long:
use Data::SimplePassword;

my $dsp = Data::SimplePassword->new();

10-char-long random password; we could specify which
characters to use if we cared via the chars() method
print $dsp->make_password(10),"\n";
When I have to generate random passwords, I tend to use
 Crypt::GeneratePassword by Jörg Walter, because it generates pronounceable passwords that are slightly
 more secure than those that rely strictly
 on the NIST standard (FIPS-181) for creating them. It also provides the functionality for
 screening the generated password for naughty words of your choice (one of the
 hazards of creating pronounceable passwords is that it’s possible to generate
 passwords containing character sequences that might offend those with delicate
 sensibilities). To use it, we call either the word() function for pronounceable passwords or the chars() function for purely random passwords. Both
 functions take two required arguments: the minimum and maximum lengths of the
 password to return. For example, the following code:
use Crypt::GeneratePassword;

for (1..5) {
 print Crypt::GeneratePassword::word(8, 8),"\n";
}
might print something like:
ecloorfi
neleappw
xchanedo
noutoone
nopenule

Reject Bad Passwords

Suggesting good passwords to your users is an excellent start, but it’s also
 important to have a mechanism in place to reject bad passwords should they
 ignore your suggestions. One way to do this on Unix machines is to use
 CrackLib, also by Alec Muffett. In the process of writing
 Crack, Muffett did the system administration community
 a great service by taking some of the methods used in
 Crack and distilling them to a single password-checking
 library written in C.
This library has exactly one function for its user interface: FascistCheck(). This function takes two arguments:
 a string to check and the full pathname prefix of the dictionary file created
 when installing CrackLib. It returns either NULL if the string is a “safe” password, or an
 explanatory piece of text (e.g., “is a dictionary word”) if it is vulnerable to
 cracking. It would be extremely handy to be able to use this functionality as
 part of any Perl program that sets or changes a password, so let’s look at how
 we would build a module that would incorporate it. This foray will require a
 very brief peek at some C code, but I promise it will be quick and
 painless.
Note
In the interest of full disclosure, I should mention that there is a
 module to do exactly this available on CPAN: Crypt::Cracklib by Dan Sully. I wasn’t aware of this module at the time I wrote
 this section for the first edition; I’ve updated this discussion and left it
 in the book in this new edition because I think it’s useful to know how to
 roll your own modules. Sully’s module works well, though, and I recommend it
 if you don’t want to use the one we’ll build together here.
One tip: as of this writing, the tests for that module haven’t been
 updated to match the newer CrackLib responses, so you
 may have to force the install.

Our first step is to build the CrackLib package,
 available from http://sourceforge.net/projects/cracklib. The
 process detailed in the distribution is straightforward. Let me offer three
 hints:
	The larger the dictionary you can build, the better. Two good sources
 of wordlists to be included in that dictionary are ftp://ftp.ox.ac.uk/pub/wordlists and the wordlist CD for
 sale via the Openwall project at http://www.openwall.com/wordlists. The dictionary build
 process requires a significant amount of temporary disk space (for the
 sort process in
 utils/mkdict), so plan accordingly.

	Be sure to build CrackLib with the same
 development tools used to build Perl. For instance, if you
 used
 gcc to compile Perl, be sure to use
 gcc for the CrackLib build
 process as well. This is true of all modules that need to link in
 additional C libraries.

	The example code in this section uses CrackLib
 version 2.8.12. Make sure the version you are building against is
 sufficiently up-to-date (even if it means downloading the new version
 from the site referenced earlier and building it instead of relying on
 the version that shipped with your OS distribution).

Once we’ve built the C library libcrack.a (or the shared
 library equivalent), we need to set up the method for calling the FascistCheck() function in that library from
 within Perl. This method is called XS.[107]
The easiest way to begin with XS is to use
 the
 h2xs program to create a proto-module for us:
$ h2xs -b 5.6.0 -A -n Cracklib
Writing Cracklib/ppport.h
Writing Cracklib/lib/Cracklib.pm
Writing Cracklib/Cracklib.xs
Writing Cracklib/Makefile.PL
Writing Cracklib/README
Writing Cracklib/t/Cracklib.t
Writing Cracklib/Changes
Writing Cracklib/MANIFEST
Table 11-3 describes the files
 created by this command.
Table 11-3. Files created by h2xs -b 5.6.0 -A -n Cracklib
	
 Filename

 	
 Description

	

 Cracklib/ppport.h

 	
 Cross-version portability header file

	

 Cracklib/lib/Cracklib.pm

 	
 Perl stub and documentation

	

 Cracklib/Cracklib.xs

 	
 C code glue

	

 Cracklib/Makefile.PL

 	
 Makefile-generating Perl code

	

 Cracklib/t/Cracklib.t

 	
 Stub test code

	

 Cracklib/Changes

 	
 Version documentation

	

 Cracklib/MANIFEST

 	
 List of files shipped with module

We only need to change a few of these files to get the functionality we seek.
 Let’s take on the hardest part first: the C code glue. Here’s how the function
 is defined in the CrackLib include file
 (crack.h):
const char *FascistCheck(const char *pw, const char *dictpath);
Warning
To save you some hassle, here’s a quick warning: the XS tools are finicky about whitespace, so if
 you’re following along at home and copying the following code to make your
 own Cracklib/Cracklib.xs, be sure you preserve the
 whitespace as written.

In our Cracklib/Cracklib.xs glue file, we repeat this
 definition:
#include <crack.h>

PROTOTYPES: ENABLE

const char *
FascistCheck(pw,dictpath)
 char *pw
 char *dictpath
The
 PROTOTYPES directive will create Perl
 prototypes for the functions in our glue file. This isn’t an issue for the code
 we’re writing, but we include the directive to stifle a warning message in the
 build process.
Right after the function definition, we describe how it’s called and what it
 returns:
CODE:

 RETVAL = FascistCheck((const char*)pw, (const char*)dictpath);

 OUTPUT:
 RETVAL
RETVAL is the actual glue here. It
 represents the transfer point between the C code and the Perl interpreter. Here,
 we tell Perl that it should receive a
 string of characters returned from the FascistCheck() C library function and make that available as the
 return value (i.e., OUTPUT) of the Perl
 Cracklib::FascistCheck() function.
We can also remove the #include "ppport.h"
 line that was added to this file by h2xs
 because we’re not doing anything that it (and the Devel::PPPort module) was designed to help. If you run the Perl
 interpreter on that include file, it will tell you whether it is needed:
$ perl ppport.h
Scanning ./Cracklib.xs ...
=== Analyzing ./Cracklib.xs ===
No need to include 'ppport.h'
Suggested changes:
--- ./Cracklib.xs 2009-01-03 22:08:28.000000000 −0500
+++ ./Cracklib.xs.patched 2009-01-03 22:08:30.000000000 −0500
@@ −2,7 +2,6 @@
 #include "perl.h"
 #include "XSUB.h"

-#include "ppport.h"

 #include <crack.h>
When we remove it from Cracklib/Cracklib.xs, we should
 also remove the actual file, and its mention in
 Cracklib/MANIFEST.
That’s all the C code we’ll need to touch.
The other file we need to modify needs only a couple of lines changed. To be
 sure Perl can find the libcrack library and
 its crack.h include file, we need to modify the arguments
 to the WriteMakefile() call in
 Cracklib/Makefile.PL. Here are the additional and
 changed lines, in context:
LIBS => [''], # e.g., '-lm'
 DEFINE => '', # e.g., '-DHAVE_SOMETHING'
 MYEXTLIB => '/opt/local/lib/libcrack$(LIB_EXT)',
 INC => '-I. -I/opt/local/include',
That’s the bare minimum we need to do to make this module work.[108] If we type:
$ perl Makefile.PL
$ make
$ make install
we can begin to use our new module like this:
use Cracklib;
use Term::Prompt;
use Readonly;

Readonly my $dictpath => '/opt/local/share/cracklib/pw_dict';

my $pw = prompt('p', 'Please enter password:', '', '');
print "\n";

my $result = Cracklib::FascistCheck($pw, $dictpath);
if (defined $result) {
 print "That is not a valid password because $result.\n";
}
else {
 print "That password is peachy, thanks!\n";
}
Don’t skip right to using the module yet, though. Let’s make this a
 professional-grade module before we install it.
First, let’s modify the skeleton test script h2xs created to test that the module is working correctly. First
 we’ll change it to use the more fully featured test module
 Test::More. Test::More helps us to provide output in a specific format for
 the test harness to use. The Test::More
 module makes this easy, we just need to do two things:
	Specify how many tests we plan to run by changing the tests => 1 line.

	Use the is() function to call our
 function with some known values (and specify the known results we expect
 to get back).

Here are the contents of Cracklib/t/Cracklib.t with the
 changes made to run our tests. I’ve removed the boilerplate comments from
 h2xs to make for easier reading:
use Test::More tests => 6;
BEGIN { use_ok 'Cracklib' };

location of our cracklib dictionary files
#
to make this test file portable we'd write out this test
file with the pointer to the dictionary files supplied
by the user at Makefile.PL runtime
my $dictpath = '/opt/local/share/cracklib/pw_dict';

test strings and their known cracklib responses
my %tests =
 ('happy' => 'it is too short',
 'a' => 'it is WAY too short',
 'asdfasdf' => 'it does not contain enough DIFFERENT characters',
 'minicomputer' => 'it is based on a dictionary word',
 '1ftm2tgr3fts' => undef);

foreach my $pw (sort keys %tests){
 is(Cracklib::FascistCheck($pw,$dictpath), $tests{$pw}, "Passwd = $pw");
}
Now, we can type make test and
 Makefile will run the test code to check that our
 module is working properly:
PERL_DL_NONLAZY=1 /opt/local/bin/perl "-MExtUtils::
Command::MM" "-e" "test_harness(0, 'blib/lib', 'blib/arch')" t/*.t
t/Cracklib....ok
All tests successful.
Files=1, Tests=6, 0 wallclock secs (0.02 cusr + 0.01 csys = 0.03 CPU)
A test script is certainly important, but our script won’t be nearly
 respectable if we omit one crucial component: documentation. Take some time to
 flesh out the stub information in the Cracklib/Cracklib.pm
 and Cracklib/Changes files. It is also a good idea to edit
 the Cracklib/README file[109] and perhaps add a Cracklib/INSTALL file
 describing how to build the module, where to get the component parts like
 CrackLib, example code, etc. New files and the earlier
 deleting of the ppport.h file should be noted in the
 Cracklib/MANIFEST file to keep the generic
 module-building code happy.
Finally, install your module everywhere in your infrastructure. Sprinkle calls
 to Cracklib::FascistCheck() everywhere you need to set or change
 passwords. As the number of bad passwords diminishes in your environment, so
 shall the night watchman smile kindly upon you.

[106] It was only later that he changed it to 00g.

[107] In the first edition of this book I also mentioned using SWIG as an
 interface method, but as far as I can tell that has fallen out of favor
 in the Perl community (at least for modules published to CPAN).

[108] I had to add -lintl to LIBS to get
 the module to link properly in my Mac OS X-based
 macports setup, but that’s not a generic
 requirement so I did not include it in the example text.

[109] One of my pet peeves are the README files in
 modules published to CPAN that haven’t been modified one whit from the
 stock one created by h2xs and other
 module-building tools. I think it is very bad form to leave the generic
 file untouched, reflecting badly on the module and its author. It
 doesn’t take much effort to add a modicum of real documentation to that
 file, so what does that say about the actual code?

Module Information for This Chapter

	
 Module

 	
 CPAN ID

 	
 Version

	
 Getopt::Std (ships with
 Perl)

 	 	
 1.06

	

 Digest::SHA

 	
 MSHELOR

 	
 5.47

	

 Net::DNS

 	
 OLAF

 	
 0.64

	

 FreezeThaw

 	
 ILYAZ

 	
 0.43

	
 File::Find (ships with
 Perl)

 	 	
 1.13

	

 File::Find::Rule

 	
 RCLAMP

 	
 0.30

	

 Regexp::Common

 	
 ABIGAIL

 	
 2.122

	
 Net::Ping (ships with
 Perl)

 	
 SMPETERS

 	
 2.35

	

 Net::Pcap

 	
 SAPER

 	
 0.16

	

 Net::PcapUtils

 	
 TIMPOTTER

 	
 0.01

	

 NetPacket

 	
 YANICK

 	
 0.41

	

 Net::Pcap::Easy

 	
 JETTERO

 	
 1.32

	

 Data::SimplePassword

 	
 RYOCHIN

 	
 0.04

	

 Crypt::GeneratePassword

 	
 JWALT

 	
 0.03

	

 Readonly

 	
 ROODE

 	
 1.03

	

 Term::Prompt

 	
 PERSICOM

 	
 1.04

References for More Information

http://www.tcpdump.org is the home of libpcap and
 tcpdump. winpcap can be
 found at http://www.winpcap.org.
RFC 793: Transmission Control Protocol, by J. Postel (1981), documents TCP.
“MD5 To Be Considered Harmful Someday,” by Dan Kaminsky (2004), can be found at
 http://www.doxpara.com/md5_someday.pdf.
http://www.perlmonks.org/?displaytype=print;node_id=431702 is a
 lovely (only slightly out of date) guide to writing your own modules.
The section Suggest Better Passwords was adapted from text
 originally published in the column I wrote for ;login magazine called “This Column is Password
 Protected.”
RFC 1321: The MD5 Message-Digest Algorithm, by R. Rivest (1992), documents MD5.
FIPS 180-2: Secure Hash Standard (SHS) documents the SHA-1
 and SHA-2 standards (as of this writing) and can be downloaded from http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf.
tripwire used to be the canonical free tool for filesystem change detection. After it was commercialized, the company stopped selling a
 filesystem change-detection program as a product per se. A
 number of other open source tools, such as

 yafic
 and

 AIDE
 , stepped in to fill the
 void.

Chapter 12. SNMP

The Simple Network Management Protocol (SNMP) offers a general way to remotely monitor
 and configure network devices and networked computers. Once you master the basics of
 SNMP, you can use it to keep tabs on (and often configure) practically every device on
 your network.
Truth be told, the “Simple” Network Management Protocol isn’t particularly simple.
 There’s a respectable learning curve associated with this subject. If you aren’t already
 familiar with SNMP, see Appendix G for a
 tutorial.
Using SNMP from Perl

One way you can use SNMP from Perl is to call command-line programs. In Appendix G I show how to use the programs in
 the Net-SNMP distribution as one example of this. It’s a straightforward
 process, no different from any of the examples of calling external programs earlier
 in this book. Since there’s nothing new to learn there, we won’t spend any time on
 this technique.
One caveat: if you are using SNMPv1 or SNMPv2c, chances are you’ll be tempted to
 put the community name on the command line. But if the program runs on a multiuser
 box, anyone who can list the process table may be able to see this community name
 and steal the keys to the kingdom. This threat is present in our command-line
 examples in Appendix G, but it becomes more
 acute with automated programs that repeatedly make external program calls. For
 demonstration purposes only, the examples in this chapter are invoked with the
 target hostname and community name string on the command line. You should change
 that for production code.[110]
If we don’t call an external program to perform SNMP operations from Perl, our
 other choice is to use a Perl SNMP module. There are at least three separate but
 similar modules available: Net::SNMP, by David M.
 Town;
 SNMP_Session.pm, by Simon Leinen; and a module
 that has had several names, including NetSNMP, Perl/SNMP, and “The Perl5 ‘SNMP’ Extension Module v5.0 for the
 Net-SNMP Library,” originally written by G. S. Marzot and now maintained by the Net-SNMP Project. We’ll refer to
 that last module as
 SNMP because of the way it is loaded. All of
 these modules implement SNMPv1. Net::SNMP and
 SNMP additionally offer some SNMPv2c and
 SNMPv3 support. Table 12-1 gives a
 comparison of these modules versus calling the Net-SNMP command-line tools from Perl.
Table 12-1. Comparison of SNMP methods from Perl
	
 Feature

 	
 SNMP_Session

 	
 Net::SNMP

 	
 SNMP

 	
 Net-SNMP command line

	
 SNMPv1 support

 	
 Y

 	
 Y

 	
 Y

 	
 Y

	
 SNMPv2c support

 	
 Y

 	
 Y

 	
 Y

 	
 Y

	
 SNMPv3 support

 	
 N

 	
 Y

 	
 Y

 	
 Y

	
 OID resolution

 	
 N

 	
 N

 	
 Y

 	
 Y

	
 Send version 1 traps

 	
 Y

 	
 Y

 	
 Y

 	
 Y

	
 Receive version 1 traps

 	
 Y

 	
 N

 	
 N

 	
 Y

	
 Send v2 notifications

 	
 Y

 	
 Y

 	
 Y

 	
 Y

	
 Receive v2 notifications

 	
 Y

 	
 N

 	
 N

 	
 Y

	
 Send v3 notifications

 	
 N

 	
 N

 	
 Y

 	
 Y

	
 Receive v3 notifications

 	
 N

 	
 N

 	
 N

 	
 Y

	
 Send informs

 	
 N

 	
 Y

 	
 Y

 	
 Y

	
 Receive informs

 	
 Y

 	
 N

 	
 N

 	
 Y

	
 All Perl

 	
 Y

 	
 Y for v1 and v2c, N for v3

 	
 N

 	
 Y

The most significant difference between these three modules (other than their
 level of SNMP support) is their reliance on libraries external to the core Perl
 distribution. The first two (Net::SNMP and
 SNMP_Session.pm) are largely implemented in
 Perl alone,[111] while SNMP needs to be linked against
 a separate prebuilt Net-SNMP library. The main drawback to using SNMP is this added dependency and build step
 (presuming you can build the Net-SNMP library on your platform).
The plus side of depending on the Net-SNMP library is the extra power it provides
 to the module. For instance, SNMP can parse
 Management Information Base (MIB) description files and print raw SNMP packet dumps
 for debugging, two functions the other modules do not provide. There are other
 modules that can help reduce this disparity in functionality, but if you are looking
 for one module to do the whole job, SNMP is your
 best bet.
Note
Be sure to install the version of the SNMP
 module found in the perl directory of the Net-SNMP source
 distribution. The version found on CPAN is likely to be less up-to-date than
 this version and may be out of sync with the current Net-SNMP libraries.

Let’s start with a small Perl example. If we need to know the number of interfaces
 a particular device has, we can query the
 interfaces.ifNumber variable. Using Net::SNMP, it’s this easy:
use Net::SNMP;

requires a hostname and a community string as its arguments
my ($session,$error) = Net::SNMP->session(Hostname => $ARGV[0],
 Community => $ARGV[1]);

die "session error: $error" unless ($session);

iso.org.dod.internet.mgmt.mib-2.interfaces.ifNumber.0 =
1.3.6.1.2.1.2.1.0
my $result = $session->get_request('1.3.6.1.2.1.2.1.0');

die 'request error: '.$session->error unless (defined $result);

$session->close;

print 'Number of interfaces: '.$result->{'1.3.6.1.2.1.2.1.0'}."\n";
When pointed at a workstation with Ethernet and loopback interfaces, this program
 will print Number of interfaces: 2; a laptop with
 Ethernet, loopback, and PPP interfaces returns Number of
 interfaces: 3; and a small router might return Number of interfaces: 7.
One key thing to notice is the use of object identifiers (OIDs) instead of variable names. Both Net::SNMP and
 SNMP_Session.pm handle SNMP protocol interactions
 only; they don’t convert numerical OIDs to human-readable names by handling
 peripheral SNMP-related tasks like parsing SNMP MIB descriptions. For this
 functionality you will have to look to other modules, such as SNMP::MIB::Compiler or SNMP_util.pm by Mike Mitchell for use with SNMP_Session.pm.[112]
If you want to use textual identifiers instead of numeric OIDs without coding in
 the mapping yourself or using an additional module, your only choice is to use the
 SNMP module, which has a built-in MIB parser.
 Let’s do a table walk of a machine’s Address Resolution Protocol (ARP) table using this module:
use SNMP;

requires a hostname and a community string as its arguments
my $session = new SNMP::Session(DestHost => $ARGV[0],
 Community => $ARGV[1],
 Version => '1',
 UseSprintValue => 1);

die "session creation error: $SNMP::Session::ErrorStr" unless
 (defined $session);

set up the data structure for the getnext() command
my $vars = new SNMP::VarList(['ipNetToMediaNetAddress'],
 ['ipNetToMediaPhysAddress']);

get first row
my ($ip,$mac) = $session->getnext($vars);
die $session->{ErrorStr} if ($session->{ErrorStr});

and all subsequent rows
while (!$session->{ErrorStr} and
 $vars->[0]->tag eq 'ipNetToMediaNetAddress'){
 print "$ip -> $mac\n";
 ($ip, $mac) = $session->getnext($vars);
};
Here’s an example of the output this produces:
192.168.1.70 -> 8:0:20:21:40:51
192.168.1.74 -> 8:0:20:76:7c:85
192.168.1.98 -> 0:c0:95:e0:5c:1c
This code looks similar to the previous Net::SNMP example. We’ll walk through it to highlight the
 differences:
use SNMP;

my $session = new SNMP::Session(DestHost => $ARGV[0],
 Community => $ARGV[1],
 Version => '1',
 UseSprintValue => 1);
After loading the SNMP module, we create a
 session object just like we did in the Net::SNMP
 example. The additional Version => 1
 sets the protocol version (the default is version 3), and the UseSprintValue => 1 argument just tells the
 SNMP module to pretty-print the return
 values. If we didn’t set the latter, the Ethernet (MAC) addresses in the output
 would be printed in an encoded form.
The next line creates the object that getnext()
 will use:
my $vars = new SNMP::VarList (['ipNetToMediaNetAddress'],
 ['ipNetToMediaPhysAddress']);
SNMP uses simple strings like interfaces.ifNumber.0 with its commands, but getnext() requests need to use
 special objects called VarBinds. In RFC 1157 it says, “A variable binding, or VarBind, refers to the pairing of the name of a variable to the
 variable’s value. A
 VarBindList is a simple list of variable names
 and corresponding values.” If you’re thinking that a VarBind sounds like a Perl hash key/value pair and a VarBindList sounds like a list of
 hashes, you’re on the right track. They aren’t implemented that way in the SNMP
 module, but you’ve got the right idea. The preceding line of code uses VarList(), which creates an object containing a list
 of two VarBinds, each of which is a reference to
 an anonymous array with just the obj element
 filled in.
VarBinds are actually implemented as anonymous
 Perl arrays with four elements—obj, iid, val, and
 type—because that is closer to the way they
 are specified in the encoding system used for SNMP. For our purposes, we only need
 to worry about obj and iid. The first element, obj, is
 the object you are querying. obj can be specified
 in one of several formats. In this case, we are using a leaf
 identifier format (i.e., specifying the leaf of the tree we are
 concerned with). ipNetToMediaNetAddress is the
 leaf of the tree (this is all one long string, broken into two lines):
.iso.org.dod.internet.mgmt.mib-2.ip.ipNetToMediaTable.
ipNetToMediaEntry.ipNetToMediaNetAddress
The second element in a VarBind is the iid, or instance identifier. In our previous
 discussions, we’ve always used a 0 here (e.g.,
 system.sysDescr.0), because we’ve been
 dealing with objects that only have a single instance. Shortly, however, we’ll see
 examples where the iid can be something other
 than 0. For instance, later we’ll want to refer
 to a particular network interface on a multiinterface Ethernet switch.
obj and iid
 are usually the only two parts of a VarBind you
 need to specify for a get() operation; SNMP will fill in suitable values for the rest. If you
 are only using getnext() calls, you don’t even
 need to specify iid, since that method returns
 the next instance by default. That’s why the preceding code can specify just the
 first element of the VarBind (the obj) when creating the two VarBinds that make up the VarList.
For our purposes you can think of VarBinds as
 buckets of information for passing data to and from SNMP queries. For example, the
 preceding code calls the getnext() method to send
 a GetNextRequest, just like in the IP route table
 example in Appendix G. We get back some data,
 the indices of which we’ll use in our next call to getnext(). SNMP stores the
 returned iids in a VarBind for us so we don’t have to keep track of them by hand. The
 next call to getnext() passes in the VarList object with the two VarBinds that are holding the last values we received, and does the
 right thing.
We feed the VarList object we created to the
 getnext() method:
get first row
my ($ip,$mac) = $session->getnext($vars);
die $session->{ErrorStr} if ($session->{ErrorStr});
getnext() returns the values it received from
 our request and updates the VarList data
 structure accordingly. Now it’s just a matter of calling getnext() until we fall off the end of the table:
while (!$session->{ErrorStr} and
 ($vars->[0]->tag eq 'ipNetToMediaNetAddress')){
 print "$ip -> $mac\n";
 ($ip,$mac) = $session->getnext($vars);
};
For our final SNMP module example, let’s use a
 scenario from the world of security. We’ll pick a task that would be tricky, or at
 least annoying, to do well with the command-line SNMP utilities.
Here’s the scenario: you’re asked to track down a misbehaving user on your
 switched Ethernet network. The only info you have is the Ethernet address of the
 machine that user is on. It’s not an Ethernet address you have on file (such
 addresses could be kept in our host database from Chapter 5 if we extended it), and you
 can’t easily sniff your switched net, so you’re going to have to be a little bit
 clever about tracking down this machine. Your best bet in this case may be to ask
 one or all of your Ethernet switches if they’ve seen that address on one of their
 ports (i.e., is it in the switch’s dynamic CAM table?). Doing this by hand can be a
 big pain, involving connecting to multiple network boxes and running multiple
 commands on each.
Just to make this example more concrete so we can point at specific MIB variables, we’ll say that your network consists of several Cisco
 Catalyst 6500 and 4500 switches. The basic methodology we’re going to use to solve
 this problem will apply to other products and other vendors as well. Any switch- or
 vendor-specific information will be noted as we go along. Let’s walk through this
 problem step by step.
As before, first we have to search through the correct MIB module files. With a
 little jumpstart from Cisco’s tech support, we realize we’ll need to access five
 separate objects:
	The vmMembershipTable, found here (it’s one long string, listed on two lines):
enterprises.cisco.ciscoMgmt.ciscoVlanMembershipMIB.
ciscoVlanMembershipMIBObjects.vmMembership
in the CISCO-VLAN-MEMBERSHIP-MIB
 description.[113]

	The dot1dTpFdbTable
 (transparent port forwarding table), found at dot1dBridge.dot1dTp in the RFC 1493
 BRIDGE-MIB description.

	The dot1dBasePortTable, found at dot1dBridge.dot1dBase in the same RFC.

	The ifXTable, found in the RFC 1573 IF-MIB (interfaces)
 description.

	The vlanTrunkPortTable, found at:
enterprises.cisco.ciscoMgmt.ciscoVtpMIB.vtpMIBObjects.vlanTrunkPorts
in the CISCO-VTP-MIB
 description.

Why five different tables? Each table has a piece to contribute to the answer, but
 no one table has all the information we seek. The first table provides us with a
 list of the virtual local area networks (VLANs), or virtual “network
 segments,”[114] on the switch. Cisco has chosen to keep separate tables for each VLAN on
 a switch, so we will need to query one VLAN at a time (more on this in a
 moment).
The second table provides us with a list of Ethernet addresses and the number of
 the switch’s bridge port on which each address was last seen.
 Unfortunately, a bridge port number is an internal reckoning for the switch; it does
 not correspond to the name of a physical port on that switch. We need to know the
 physical port name (i.e., from which card and port the machine with that Ethernet
 address last spoke), so we have to dig further.
There is no table that maps bridge ports to physical port names (that would be too
 easy), but the dot1dBasePortTable can provide a
 mapping from bridge ports to interface numbers. Once we have the interface number,
 we can look it up in ifXTable and retrieve the
 port name.
And finally, we use the vlanTrunkPortTable to
 help us determine if a particular interface number is trunked (i.e., configured so
 it will pass traffic to another network box). We can ignore all matches for the
 Ethernet address in question found on trunked ports. A trunked port will report back
 the addresses it has learned from its peer. Information about another switch that
 saw the address isn’t helpful when we’re trying to track down the physical port on
 the current device.
Figure 12-1 shows a picture of a
 four-layer dereference necessary to perform our desired task.
[image: The set of SNMP queries needed to find the port name on a Cisco 6500 or 4500]

Figure 12-1. The set of SNMP queries needed to find the port name on a Cisco 6500 or
 4500

Here’s the code to put these five tables together and dump the information we
 need:
use SNMP;

my ($switchname, $community, $macaddr) = @ARGV;

here are the MIBs we need and why
$ENV{'MIBS'}=join(':', ('CISCO-VLAN-MEMBERSHIP-MIB', # VLAN listing and status
 'BRIDGE-MIB', # MAC address to port table
 'CISCO-VTP-MIB', # port trunking status
));

connect and get the list of VLANs on this switch
$session = new SNMP::Session(DestHost => $switchname,
 Community => $community,
 Version => 1);
die "session creation error: $SNMP::Session::ErrorStr" unless
 (defined $session);

enterprises.cisco.ciscoMgmt.
ciscoVlanMembershipMIB.ciscoVlanMembershipMIBObjects.vmMembership.
vmMembershipTable.vmMembershipEntry
in CISCO-VLAN-MEMBERSHIP-MIB
my $vars = new SNMP::VarList (['vmVlan'],['vmPortStatus']);

my ($vlan, $vlanstatus) = $session->getnext($vars);
die $session->{ErrorStr} if ($session->{ErrorStr});

my %vlans;
while (!$session->{ErrorStr} and $vars->[0]->tag eq 'vmVlan'){
 $vlans{$vlan}++ if $vlanstatus == 2; # make sure the vlan is active (2)
 ($vlan, $vlanstatus) = $session->getnext($vars);
};

undef $session,$vars;

make sure the MAC address is in the right form
my $findaddr = massage_mac($macaddr);

for each VLAN, see if there is a bridge port that has seen a particular
macaddr; if so, find the interface number associated with that port, and
then the interface name for that interface number
foreach my $vlan (sort keys %vlans) {

 # for caching query results
 # (we keep the cache around only for a single VLAN)
 my (%ifnum, %portname);

 # note our use of "community string indexing" as part
 # of the session setup
 my $session = new SNMP::Session(DestHost => $switchname,
 Community => $community.'@'.$vlan,
 UseSprintValue => 1,
 Version => 1);

 die "session creation error: $SNMP::Session::ErrorStr"
 unless (defined $session);

 # see if the MAC address is in our bridge forwarding table
 # note: the $macaddr has to be in XX.XX.XX.XX.XX.XX form
 #
 # from transparent forwarding port table at
 # dot1dBridge.dot1dTp.dot1dTpFdbTable.dot1dTpFdbEntry
 # in RFC 1493 BRIDGE-MIB
 my $portnum = $session->get(['dot1dTpFdbPort',$findaddr]);

 # nope, it's not there (at least in this VLAN), try the next VLAN
 next if $session->{ErrorStr} =~ /noSuchName/;

 # convert the forwarding table port number to interface number
 #
 # from dot1dBridge.dot1dBase.dot1dBasePortTable.dot1dBasePortEntry
 # in RFC 1493 BRIDGE-MIB

 my $ifnum =
 (exists $ifnum{$portnum}) ? $ifnum{$portnum} :
 ($ifnum{$portnum} =
 $session->get(['dot1dBasePortIfIndex',$portnum]));

 # skip it if this interface is a trunk port
 #
 # from ciscoVtpMIB.vtpMIBObjects.vlanTrunkPorts.vlanTrunkPortTable.
 # vlanTrunkPortEntry in CISCO-VTP-MIB
 next if
 $session->get(['vlanTrunkPortDynamicStatus',$ifnum]) eq 'trunking';

 # convert the interface number to port name (i.e., module/port)
 #
 # from ifMIB.ifMIBObjects.ifXTable.ifXEntry in RFC 1573 IF-MIB
 my $portname =
 (exists $portname{$ifnum}) ? $portname{$ifnum} :
 ($portname{$ifnum}=$session->get(['ifName',$ifnum]));

 print "$macaddr on VLAN $vlan at $portname\n";

}

take in a MAC address in the form of XX:XX:XX:XX:XX:XX,
XX-XX-XX-XX-XX-XX, or XXXXXXXXXXXXXX (X is hex) and return it in the
decimal, period-delimited format we need for queries
sub massage_mac {
 my $macaddr = shift;

 # no punctuation at all (becomes colon-separated)
 $macaddr =~ s/(..)(?=.)/$1:/g if (length($macaddr) == 12);

 # colon- or dash-separated
 return join('.', map (hex,split(/[:-]/,uc $macaddr)))
}
If you’ve read Appendix G, most of this
 code will look familiar. Let’s take a look at the new stuff:
$ENV{'MIBS'}=join(':', ('CISCO-VLAN-MEMBERSHIP-MIB', # VLAN listing and status
 'BRIDGE-MIB', # MAC address to port table
 'CISCO-VTP-MIB', # port trunking status
));
This code sets the
 MIBS environment variable for the Net-SNMP
 package library. When set, this variable instructs the library to parse the listed
 set of additional MIB modules for object definitions. These files should be in the
 default search path for the Net-SNMP distribution. If you don’t want to place them
 in the standard spot, you can set the
 MIBFILES environment variable to make their
 location more explicit.
Note
There’s a common misunderstanding about the Net-SNMP MIBS environment variable. My own understanding of it used to be
 weak, so let me clear it up for you before it gets in your way. MIBS contains a list of SNMP MIB
 module names, not SNMP MIB module
 file names. You do not place the name of the file that
 holds the module definition in this list; instead, you use the module’s name.
 That name is usually found as the first non-commented piece of text in a MIB
 module file. For example, Cisco distributes a file called
 CISCO-VLAN-MEMBERSHIP-MIB-V1SMI.my. That file’s first
 non-comment line says:
CISCO-VLAN-MEMBERSHIP-MIB DEFINITIONS ::= BEGIN
So in this case, we would use CISCO-VLAN-MEMBERSHIP-MIB when populating the MIB environment variable.

You might also have noticed that we don’t include IF-MIB and BRIDGE-MIB, even though
 the program references objects from both of them. This is because they are both in
 the Net-SNMP library’s default list of MIB modules to load. That list is created at
 Net-SNMP compile time, during the
 configure stage (both IF-MIB and BRIDGE-MIB are among the recommended choices). It
 would be perfectly reasonable to include these in the setting of MIBS here just to explicitly declare their use in your
 program; it’s a matter of personal taste.
Moving on in our code, here’s another strange statement:
foreach my $vlan (sort keys %vlans) {

 my $session = new SNMP::Session(DestHost => $switchname,
 Community => $community.'@'.$vlan,
 UseSprintValue => 1,
 Version => 1);
Instead of just passing on the community name as provided by the user, we’re
 appending something in the form @VLAN-NUMBER. In Cisco parlance, this is
 known as “community string indexing.” When
 dealing with VLANs and bridging, Cisco devices keep track of several “instances”
 (duplicate internal copies) of the MIB, one for each VLAN. Our code makes the same
 queries once per each VLAN found on the switch. Here are two such queries:
my $portnum = $session->get(['dot1dTpFdbPort',$findaddr]);

nope, it's not there (at least in this VLAN), try the next VLAN
next if $session->{ErrorStr} =~ /noSuchName/;
and:
my $ifnum =
 (exists $ifnum{$portnum}) ? $ifnum{$portnum} :
 ($ifnum{$portnum} =
 $session->get(['dot1dBasePortIfIndex',$portnum]));
For the first piece of code, the key thing to note is that we’re performing a
 lookup in the dot1dTpFdbTable of the
 massaged version (i.e., $macaddr) of the Ethernet address we’re looking up. This table is
 indexed by dot1dTpFdbAddress (MAC address). To
 actually perform this lookup, we need to query using a period-delimited decimal
 format: NNN.NNN.NNN.NNN.NNN.NNN. The massage_mac() subroutine handles the work of taking a MAC address in
 one of several common formats and returning the canonical format we need to use for
 queries.
In the second piece of code, we’re doing some very simple caching. Before we
 actually perform a get(), we look in a simple
 hash table (%ifnum) to see if we’ve already made
 this query. If we haven’t, we make the query and populate the hash table with the
 result. This is a good technique to remember when programming SNMP code. It is
 important to query for as little data and as seldom as possible if you want to be
 kind to your network and network devices. A device may have to take horsepower away
 from its usual tasks to respond to your slew of queries if you are not
 prudent.
Here’s the output of our code:
00:60:b0:b7:1e:ed on VLAN 116 at "Gi4/2"
It’s not hard to see how this program could be enhanced. Besides prettier or more
 orderly output, it could save state between runs. Each time it ran, the program
 could let you know how things have changed: new addresses appearing, ports being
 changed, etc. One quick caveat: most switches are of the “learning” variety, so they
 will age out entries for addresses that they haven’t heard from in a while. This
 means that your program will need to run at least as often as the standard port
 aging time (by default this is three minutes in most Cisco gear).
Sending and Receiving SNMP Traps, Notifications, and Informs

Working with SNMP traps, notifications, and informs from Perl is pretty
 straightforward, so this section will be brief. Just to quickly review the
 background from Appendix G, traps,
 notifications, and informs are ways for an SNMP agent (in v1 and v2c terms) or
 SNMP entity (in v3 terminology) to send important messages to designated
 management stations without being polled first. The asynchronous messages could
 be something serious, like “Hey, I’m on fire!,” or something less dramatic, like
 “A route has gone down.” The protocol specifies a special way to transmit this
 information because the messages are considered either a) important enough not
 to wait for another SNMP entity to poll the device, or b) a poor fit for the
 polling model (you wouldn’t want to constantly send out messages like, “Are you
 on fire yet? Are you on fire yet? How about now? Still not on fire?”). These
 asynchronous messages are called
 traps in v1; in v2 and v3 the name became
 notification.[115]
Informs are just a fancier form of notification. With most SNMP notifications, the
 notifying device sends the message to the listening station, and that’s the end
 of the interaction until the next notification is sent. The tricky part here is
 that these messages are most likely being sent over UDP.[116] UDP, by design, makes no guarantees that the intended recipient will
 actually receive the data after it has been sent. SNMPv2c provides a simple
 response to this concern through the use of informs, sometimes known as
 “acknowledged notifications.” When an inform listener receives a “legitimate”
 message (see the RFCs for details), it responds with an acknowledgment of
 receipt. And yes, before you ask, the response is most likely coming back
 over UDP, so the response’s receipt isn’t guaranteed either. The RFCs
 specifically do not dictate how the initial sender should behave if does not
 receive an acknowledgment. Still, this is better than no mechanism at
 all.
Let’s take a quick look at how you send and receive traps, notifications, and
 informs from Perl. We’ll look at the mechanisms for sending first because that’s
 the most common operation.
As I mentioned in Appendix G, the
 format of trap messages changes significantly from SNMPv1 to v2 (remember: the
 name also changes from “trap” to “notification” in v2). Luckily, the sending
 process is almost the same. Here’s the code for sending a v1 trap using the SNMP
 module:
my $s = new SNMP::TrapSession(..., Version => 1);
$s->trap(enterprise => '.1.3.6.1.4.1.2021', # Net-SNMP MIB extension
 agent => '192.168.0.1',
 generic => 2, # link down
 specific => 0,
 uptime => 1097679379, # leave out to use current time
 [['ifIndex', 1, 1], # which interface
 ['sysLocation', 0, 'dieselcafe']]); # in which location
SNMP::TrapSession()
 takes the same arguments as SNMP::Session()that we’ve seen all along (DestHost, Community, etc., represented by the ellipsis). Version is included here to indicate that this is
 an SNMPv1 trap. The SNMPv2c notification sending code is a little easier to
 read:
my $s = new SNMP::TrapSession(..., Version => '2c');
$s->trap(oid => 'linkDown',
 uptime => 1097679379, # leave out to use current time
 [['ifIndex', 1, 1], # which interface
 ['ifAdminStatus', 1, 1], # administratively up
 ['ifOperStatus', 1, 2]]); # operationally down
Sending a v3 inform (v2 informs are not implemented as of this writing) looks
 almost exactly the same as sending an ordinary notification. Here’s an example
 with the differences highlighted:
sub callback {...};
my $s = new SNMP::TrapSession(..., Version => '3');
$s->inform(oid => 'linkDown',
 uptime => 1097679379, # leave out to use current time
 [[ifIndex, 1, 1], # which interface
 [ifAdminStatus, 1, 1], # administratively up
 [ifOperStatus, 1, 2]], # operationally down
 [\&callback, $s]);
Switching from trap to inform and 2c
 to 3 is pretty obvious, but that callback
 part looks a little weird. The code is there because we need a way to receive
 acknowledgments back from the receiver. When the acknowledgment returns or the
 process times out waiting for it, a subroutine called “callback” (we could have
 called it “message” or “got_it” or anything we liked) is invoked with arguments
 that contain the response message or an indication that the request has timed
 out. See the SNMP module documentation for
 more specifics on these arguments. Two comments on this idea before we move
 on:
	You don’t need to include callback code if you don’t want to—the last
 argument isn’t mandatory. It really doesn’t make sense to send an
 acknowledgment-requested notification and not listen
 for the response, but hey, it’s your prerogative. The only reason I can
 see for sending an inform rather than a vanilla notification without
 caring about the response—and it is a stretch—is to comply with some
 internal enterprise standard that all SNMP notifications must be
 informs.

	Mentioning callbacks like this is actually a sneaky way to peek at a
 more sophisticated way of using the SNMP module. Though we won’t be exploring this
 functionality, most of the SNMP
 module’s methods (get(), getnext(), set(), etc.) can accept a callback reference as their
 last argument. When they receive this reference, they act in an
 asynchronous manner. That’s a big word for “method calls run in the
 background without waiting and report back when they get an
 answer.”
Usually when you call get(), your
 program waits around (blocks) until whatever you’ve asked to get has
 been gotten (or the request times out). But in asynchronous mode, the
 program starts the request going and then immediately continues to
 process the next statement. Once the request completes, the code
 designated for callback is run with the answer to the original request
 passed in through its arguments. This way of working can be very useful
 when it is efficient to spin off a number of requests in the background
 without causing the entire program to grind to a halt for each one. One
 of the classical uses for this is in network management GUI programming,
 where you’d like the user to retain the ability to scroll a window even
 while an SNMP query is in progress.

Now that you’ve seen how to send traps, notifications, and informs, it’s
 natural to want to know how to write programs that can receive them. It’s less
 common to need to do this, because sites often deploy a
 larger network-monitoring package whose job it is to sit around receiving
 distress calls and alerting personnel as necessary. Those packages can be
 expensive, though, or sometimes too heavyweight for small tasks, so we’ll take a
 quick look here at how to roll our own receivers.
The simplest and most boring method is to launch
 snmptrapd, which ships with the Net-SNMP distribution, and
 monitor its output. Though this method isn’t exciting, as of this writing it is
 the only way to receive SNMPv3 notifications using Perl. We will shortly discuss
 a much more interesting way to use snmptrapd, so look for
 its triumphant return in a few moments.
If you need a pure Perl solution to handle v1 traps and v2c notifications, you
 can turn to a module we’ve largely neglected so far in this chapter:
 SNMP_Session.pm by Simon Leinen. This module
 is mostly known because of its association with the network-monitoring program
 the Multi Router Traffic Grapher (MRTG), but it can be useful by
 itself. SNMP_Session.pm is not available on
 CPAN as of this writing, so see the Module Information table at the end of this
 chapter for a pointer on where to get it if you want to use it.
Here’s an example from the SNMP_Session.pm
 documentation that demonstrates how to listen for an SNMPv1 trap:
use SNMP_Session;
use BER;
my $trap_session = SNMPv1_Session->open_trap_session()
 or die 'cannot open trap session';
my ($trap, $sender_addr, $sender_port) = $trap_session->receive_trap()
 or die 'cannot receive trap';
my ($community, $enterprise, $agent,
 $generic, $specific, $sysUptime, $bindings) =
 $trap_session->decode_trap_request($trap)
 or die 'cannot decode trap received';
...
this is how we would decode the bindings (e.g., if dealing
with v2c notification)
my ($binding, $oid, $value);
while ($bindings ne '') {
 ($binding,$bindings) = decode_sequence($bindings);
 ($oid, $value) = decode_by_template($binding, "%O%@");
 print BER::pretty_oid($oid),' => ',pretty_print ($value),"\n";
}
First we open a session, then we sit and wait to receive the data from that
 session. Once the data is received, it gets decoded into its individual parts.
 The last of these parts in the request is the encoded sequence of data fields
 (OID/value pairs) called
 VarBinds that we saw in an earlier example.
 We iterate through this sequence, unpacking the individual OID/value pairs into
 a form we can use as we go. SNMPv2c notifications are received in a similar way
 (we replace SNMPv1_Session with SNMPv2c_Session), with the one important
 difference being the location where the important part of the message is
 encoded. In v1, most of the data is available to us after we’ve performed the
 decode_trap_request(). Extra information
 on that request can be found in the bindings, but we don’t have to decode any
 further to know most of what we need to know about the message. This is largely
 reversed for v2 notifications: the key information is in the bindings, so we
 have to do a dual decode, as seen in the preceding code.
Before we move on, I should briefly mention the most interesting development
 to date in the world of trap and notification receipt. Versions 5.2 and greater
 of the Net-SNMP package let you build
 snmptrapd with an embedded Perl interpreter. If you add
 perl ... directives to the
 snmptrapd configuration file, the daemon will run your
 code at startup and then fire off code (e.g., a subroutine) as traps,
 notifications, and informs are received. This essentially gives you the best of
 both worlds, because it means you don’t have to worry about the gnarly details
 of listening on the network, receiving messages, decoding them, running as a
 daemon, etc. Instead, your Perl coding time can be spent writing the programs
 that will react to these messages in some way.

Alternative SNMP Programming Interfaces

We’ve now seen all of the standard ways to do SNMP programming in Perl. Once
 you get the hang of them, and of SNMP in general, they are pretty
 straightforward to use. Still, as demonstrated in the multi-table lookup example
 earlier in this chapter, more involved tasks can sometimes be a bit more tedious
 to code than we’d like. In this section we’ll explore a few of the additions and
 alternatives to the standard modules that aim to make the job easier. Be sure to
 do a search for “snmp” on http://search.cpan.org to see the
 breadth of modules available.
Some of the helper modules try to save you the labor of remembering specific
 SNMP variable names or OIDs. They have
 methods that return the most commonly requested information. For
 example,
 Net::SNMP::Interfaces by Jonathan Stowe
 and
 Net::SNMP::HostInfo by James Macfarlane
 augment Net::SNMP by providing method calls
 like:
$interface->ifInOctets()
$interface->ifOperStatus()
$interface->ifOutErrors()
and:
$hostinfo->ipForwarding()
$hostinfo->ipRouteTable()
$hostinfo->icmpInEchos()
SNMP::BridgeQuery by John D. Shearer also uses Net::SNMP to make retrieving certain tables from bridge devices
 (e.g., network switches) easy. With a single function you can retrieve a
 device’s forwarding bridge table or address translation table.
A more sophisticated family of modules in the same vein is
 SNMP::Info, originally written for the
 netdisco project by Max Baker. SNMP::Info is
 a framework that includes a set of vendor- and device-specific submodules
 like:
SNMP::Info::Layer1::Allied
SNMP::Info::Layer2::Aironet
SNMP::Info::Layer2::Bay
SNMP::Info::Layer2::HP
SNMP::Info::Layer3::Foundry
SNMP::Info::Layer3::C6500
Using SNMP::Info, you can make queries for
 generic information (e.g., the duplex setting on an interface) without having to
 worry about which vendor-specific SNMP variable needs to be queried for that
 particular device. This means that the code can be this simple:
use SNMP::Info;

my $c = SNMP::Info->new(AutoSpecify => 1,
 DestHost => $ARGV[0],
 Community => $ARGV[1],
 Version => '2c');

my $duplextable = $c->i_duplex();

print "Duplex setting for interface $ARGV[2]: " .
 $duplextable->{$ARGV[2]} . "\n";
This code snippet takes the name of the host, the community string, and the
 interface number to query and returns the duplex setting of that interface. The
 code should be very easy to read, in part because:
	We didn’t have to write vendor/model-specific code for all of the
 possible devices we might want to query, with each special case full of
 esoteric SNMP variable names or OIDs.

	We didn’t even have to write code to determine the vendor or model of
 the device. Just setting AutoSpecify =>
 1 in the object constructor tells the module to do this on
 our behalf.

	To get the table of duplex settings, we didn’t have to bother writing
 table-walking code that makes getnext() calls. We just called a single function.

SNMP::Info is worth exploring for a number
 of problems you may encounter. It is a good way to help make the Simple Network
 Management Protocol simpler.

[110] Another way around this problem is to use a well-protected
 snmp.conf file, as documented in the Net-SNMP
 package.

[111] Net::SNMP relies on a few C-based
 modules (such as Crypt::DES, Digest::MD5, and Digest::SHA1) if you use it for SNMPv3, so it is not strictly
 pure Perl.

[112] SNMP_util.pm should not be confused
 with the similarly named module SNMP::Util, by Wayne Marquette. Marquette’s module serves a
 very different purpose as a helper to the SNMP module.

[113] In the first edition of this book, we used the vlanTable from CISCO-STACK-MIB. That still works for
 older Cisco equipment, but the vmMembershipTable is the only available way to get
 this information for the more current gear.

[114] Technically VLANs are actually “broadcast domains,” but most people think
 of them as ways to partition their networks so that the hosts on a given
 VLAN see only the traffic from the other hosts on the same VLAN.

[115] I have also seen the term “trap notification” used to cover both
 cases.

[116] Unless they are using TCP for the transport, as defined in RFC 3430
 (or one of the other transports listed in RFC 3417)—but in practice,
 that’s very rare.

Module Information for This Chapter

	
 Module

 	
 CPAN ID/URL

 	
 Version

	

 Net::SNMP

 	
 DTOWN

 	
 5.01

	

 SNMP

 	

 http://www.net-snmp.org

 	
 5.2.1

	

 SNMP_Session.pm

 	

 http://www.switch.ch/misc/leinen/snmp/perl/

 	
 1.07

	

 SNMP::MIB::Compiler

 	
 FTASSIN

 	
 0.05

	

 SNMP_util.pm

 	

 http://www.switch.ch/misc/leinen/snmp/perl/

 	
 1.04

	

 SNMP::Util

 	
 WMARQ

 	
 1.8

	

 Net::SNMP::Interfaces

 	
 JSTOWE

 	
 1.1

	

 Net::SNMP::HostInfo

 	
 JMACFARLA

 	
 0.04

	

 SNMP::BridgeQuery

 	
 JSHEARER

 	
 0.58

	

 SNMP::Info

 	
 MAXB

 	
 0.90

References for More Information

There are over 70 RFCs with SNMP in their titles (and more than 100 that mention SNMP elsewhere).
 Here are just the RFCs referenced in this chapter or in Appendix G:
	RFC 1157: A Simple Network Management Protocol
 (SNMP), by J. Case, M. Fedor, M. Schoffstall, and J. Davin (1990)

	RFC 1213: Management Information Base for Network Management of
 TCP/IP-based Internets: MIB-II, by K. McCloghrie and M. Rose (1991)

	RFC 1493: Definitions of Managed Objects for Bridges,
 by E. Decker, P. Langille, A. Rijsinghani, and K. McCloghrie
 (1993)

	RFC 1573: Evolution of the Interfaces Group of
 MIB-II, by K. McCloghrie and F. Kastenholz (1994)

	RFC 1905: Protocol Operations for Version 2 of the Simple
 Network Management Protocol (SNMPv2), by J. Case, K. McCloghrie, M. Rose, and S. Waldbusser (1996)

	RFC 1907: Management Information Base for Version 2 of the
 Simple Network Management Protocol (SNMPv2), by J. Case, K. McCloghrie, M. Rose, and S. Waldbusser (1996)

	RFC 2011: SNMPv2 Management Information Base for the Internet
 Protocol using SMIv2, by K. McCloghrie (1996)

	RFC 2012: SNMPv2 Management Information Base for the
 Transmission Control Protocol using SMIv2, by K. McCloghrie (1996)

	RFC 2013: SNMPv2 Management Information Base for the User
 Datagram Protocol using SMIv2, by K. McCloghrie (1996)

	RFC 2274: User-based Security Model (USM) for Version 3 of the
 Simple Network Management Protocol (SNMPv3), by U. Blumenthal and B. Wijnen (1998)

	RFC 2275: View-based Access Control Model (VACM) for the Simple
 Network Management Protocol (SNMP), by B. Wijnen, R. Presuhn, and K. McCloghrie (1998)

	RFC 2578: Structure of Management Information Version 2
 (SMIv2), by K. McCloghrie, D. Perkins, and J. Schoenwaelder (1999)

A variety of good general SNMP resources are also available.
http://www.simpleweb.org is a superb collection of all things
 related to network management, a big chunk of which is SNMP-related.
http://net-snmp.sourceforge.net is the home of the Net-SNMP
 project.
http://www.cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml is
 the location of Cisco’s MIB files. Other vendors have similar sites.
http://www.snmpinfo.com is the home of the company SNMPinfo and
 David Perkins (an SNMP guru who actively posts to
 comp.protocols.snmp, and one of the authors of
 Understanding SNMP MIBs).
http://www.ibr.cs.tu-bs.de/ietf/snmpv3/ is an excellent resource on
 version 3 of SNMP.
http://www.mrtg.org and http://cricket.sourceforge.net are the homes of MRTG and its descendant Cricket (written in Perl!), two good
 examples of how SNMP can be used to do long-term monitoring of devices.
Understanding SNMP MIBs, by David Perkins and Evan McGinnis
 (Prentice Hall) is a good resource on MIBs.
http://www.snmp.org is the home of the company SNMP Research. The
 “protocol” section of the site has some good references, including the
 comp.protocols.snmp FAQ.

Chapter 13. Network Mapping and Monitoring

People who administer networks of machines, even if they don’t officially have the
 title “network administrator,” care about the answers to at least two basic questions:
 “What’s on my network?” (mapping) and “Are the nodes doing what I think they should be
 doing?” (monitoring). Even though you’d probably like to think the first question is an
 easy one (after all, it is your network, right?), the answer turns out to be less simple
 in these days of $20 mini-hubs and wireless access. Making sure that the web servers are
 constantly serving HTTP or HTTPS, the routers are moving packets, and the database
 servers can be queried has become really important. Perhaps even more important is
 knowing when the web servers suddenly start serving SMTP, the database servers
 unexpectedly begin offering web access, or the routers are dropping packets. This
 chapter is about answering both the mapping and monitoring questions. Its goal is to
 help you identify and understand the various components necessary to build the custom
 solutions you need in these areas.
Network Mapping

We’ll start by looking at the mapping question, because it’s generally a good
 idea to know exactly what you have before you start trying to monitor it. Back in
 the Mesozoic age of computing, it was much easier to map one’s environment. The most
 sophisticated tools you needed were a pencil and paper and a few moments of quiet
 reflection. There were fewer computers, all ran services you’d installed, and the
 difficulty of adding a machine or a service to the network was beyond the ken of
 most users (packet drivers, anyone?). These days, anyone can roll in with a laptop
 ready to start spewing packets onto your network with a single click (or less)—and
 believe me, they will.
Now that we’ve had a lovely nostalgic moment, let’s come back to the cold, harsh
 present reality and get specific about just what we plan to map. There are a number
 of choices, but here are some of the more common possibilities:
	Host existence

	Network gear configuration

	Network topology

	Network services

	Physical locations of network hosts

Of these, the last item turns out to be both one of the most common requests and
 one of the hardest. We’ll save some tips on that until the very end of this section
 so we can concentrate on the more easily accomplished tasks.
Discovering Hosts

We can take one of two tacks when trying to determine which hosts are actually out
 on the network: active or passive. The active approach requires sending probe
 packets of some sort onto the network, while the passive approach simply
 requires listening. Let’s look at how we perform each approach. Then we’ll
 discuss their relative merits.
The simplest and most common active probe involves sending ICMP ECHO_REQUEST datagrams
 (i.e., “ping” packets) to a range of network addresses and listening
 for ICMP ECHO_RESPONSE datagrams.
 There are a few modules that make sending ping packets
 easy:
	
 Net::Ping

	This may be the grandpappy of all the Ping modules, but it has aged quite well. Over the
 years, the options for checking host reachability via a
 ping-ish packet have expanded to include a
 number of protocols besides ICMP. Russell Mosemann, the original author, and other
 contributors, including Rob Brown, the current maintainer, have kept
 up admirably with these developments. Net::Ping supports sending packets to a host’s TCP or
 UDP echo service,
 standard ICMP requests, and even partial TCP handshakes. It can also call the next module in our
 list when needed.

	
 Net::Ping::External

	Classic ping
 packets often pose a conundrum for Perl scripters. On
 the one hand, a random host is more likely to respond to an ICMP
 packet than it is to respond to a request for either TCP or UDP
 echo service.[117] On the other hand, many operating systems require
 scripts that wish to undertake ICMP-related activities to be run
 with elevated privileges. Net::Ping::External seeks to help security-conscious
 programmers by allowing them to call the native OS’s
 ping executable. That executable already
 has the privileges necessary for the job and (in theory) has been
 vetted for security issues surrounding that level of privilege.
 Net::Ping::External provides
 a simple layer around this process so your scripts don’t have to
 bother with the nitty-gritty of calling executables with different
 input or output formats on different operating systems.

	
 Win32::PingICMP

	If calling another executable just to get around the privilege issue
 bothers you, there is one more avenue available for Perl users on
 machines running Windows-based operating systems. Before raw sockets
 capabilities were introduced in Windows, it used a special
 ICMP.dll for ICMP packet sending and
 receipt. Largely undocumented by Microsoft, this DLL ties into the
 OS in a way that allows nonprivileged programs, like the standard
 ping program, to do their stuff. Toby Ovod-Everett’s Win32::PingICMP calls this same DLL. This gives Perl
 access to even more precise packet timing data than the previous
 module, which can only report on what the ping
 program returned. One caveat if you are planning to use this module:
 Microsoft has been promising for some time to remove this DLL from
 the OS. When (if) this happens, the Win32::PingICMP will cease to function.

So, let’s see one of these modules in action. The following code implements a
 simple ping sweep for an entire network block. It uses
 the
 Net::Netmask module to make the network block
 calculations easy:
use Net::Ping;
use Net::Netmask;

my $ping = Net::Ping->new('icmp'); # must run this script w/root privileges

hand this script a network/netmask specification
die $Net::Netmask::error
 unless my $netblock = new2 Net::Netmask($ARGV[0]);

my $blocksize = $netblock->size() - 1;

this loop may take a while since nonreachable addresses have to time out
my (@addrs);
for (my $i = 1; $i <= $blocksize; $i++) {
 my $addr = $netblock->nth($i);
 push(@addrs, $addr) if $ping->ping($addr, 1);
}
print "Found\n", join("\n", @addrs), "\n" if scalar @addrs;
The Net::Ping code is pretty easy to
 suss—it’s just a new() followed by a ping() of an address—so let’s skip straight to the
 Net::Netmask methods in this example. We
 first construct a Net::Netmask object using
 new2. The difference between new, the constructor you are used to seeing, and
 new2 has to do with how the module
 responds to bad data: new2 will return
 undef if it receives a network
 specification it can’t understand, while plain old new will hand back an empty object. I think this default is too
 subtle (I’d rather have the program blow up if it gets bad input); hence the use
 of new2 in the example. This object has a few
 handy method calls, such as size to return
 the size of the address block and nth to
 return the Nth address in that block. This makes it easy
 for us to iterate over the entire block, pinging as we go.
 Net::Netmask also has an enumerate() method that you can call like
 so:
for my $address ($netblock->enumerate) {...}
but it can be dangerous to use if the network block size is large (it will
 generate a huge list of items).
A related, but slightly more dangerous active probe technique is the
 Address Resolution Protocol (ARP) scan. ARP is used to help a
 machine determine the unique hardware address that another machine on its local
 segment uses for communication so it can talk to that machine. The host
 broadcasts a question like, “Which host is 192.168.0.11?” and the host with that
 address is supposed to reply, “Here I am, I’m at 00:1e:c2:c2:a1:f1.” To perform
 an ARP scan, you send out ARP requests for all the possible IP addresses on the
 segment and see which hosts reply. There are two reasons why I call this
 “slightly more dangerous”:
	The ARP protocol is a fundamental building block of your network. If
 your program impedes its functioning, either intentionally (as in the
 case of an ARP spoof attack) or unintentionally (in the case of an ARP
 storm), that’s a very bad thing. Be sure you know
 what you are doing before going down this path.

	Some operating systems like Windows get very
 unhappy if they see replies to handcrafted ARP requests (i.e., responses
 to requests the OS itself didn’t make) involving the machine’s current
 IP address. How unhappy? Well, if you manually send an ARP request for a
 given machine from that machine, the OS may decide to shut down the
 interface, in addition to the klaxons and sirens going off. You need to
 be careful not to probe for the address of the machine sending the
 probe.

Now that I’ve warned you about playing with fire, let’s go find some matches.
 Constructing random ARP packets, sending them out, and then listening for the
 responses turns out to be really hard to do in a platform-independent fashion.
 Finding one approach that properly builds and functions under multiple operating
 systems can be very tricky. We’ll look at three possibilities, at least one of
 which is likely to work for you.
This may seem like a cop-out, but the closest thing to a multiplatform method
 for ARP packet manipulation is the use of an external binary. There are a number
 of packet construction suites available on the Web, including
 spak, ipsend, rain, arp-sk, hping,
 and nemesis. We’re going to look at the last
 one in that list, because creators Mark Grimes and Jeff Nathan have put considerable effort into making
 sure nemesis runs under a wide range of
 platforms, including the BSD flavors, Linux, Solaris, OS X, and Windows. The
 rest compile on only a subset of those platforms.
Warning
nemesis was written to use (and only
 works with) libnet 1.0.2. It does not
 work with libnet 1.1, the version that is
 included in most modern Linux distributions. Tips on getting nemesis working using the old libnet version can be
 found at http://codeidol.com/security/anti-hacker-tool-kit/TCP-IP-Stack-Tools/NEMESIS-PACKET-WEAVING-101.

Producing the ARP packet you want via nemesis is easy:
nemesis arp -v -S 192.168.0.2 -D 192.168.0.1
That command line will return something like this:
ARP/RARP Packet Injection -=- The NEMESIS Project Version 1.4 (Build 26)

 [MAC] 00:0A:95:F5:92:56 > FF:FF:FF:FF:FF:FF
 [Ethernet type] ARP (0x0806)

 [Protocol addr:IP] 192.168.0.4 > 192.168.0.1
 [Hardware addr:MAC] 00:0a:95:f5:92:56 > 00:00:00:00:00:00
 [ARP opcode] Request
 [ARP hardware fmt] Ethernet (1)
 [ARP proto format] IP (0x0800)
 [ARP protocol len] 6
 [ARP hardware len] 4
It’s easy to wrap a Perl script around this, similar to the one we saw a
 moment ago, and cause Net::Ping to send a flurry of queries. However, unlike
 the situation with our Net::Ping code, it
 then becomes incumbent on us to catch the responses that come back. We already
 saw how to capture packets in Chapter 11. When sniffing the
 traffic, we can trap just ARP replies by using this filter:
arp[7]=2
Let’s look at how that filter is constructed. The =2 part is easy: the ARP reply opcode (ares_op$REPLY) is defined in RFC 826 as 2. The harder part is determining where in the packet to look
 using the proto[N]
 notation. However, this isn’t a big deal either if you have a diagram of an ARP
 packet like the one in Figure 13-1 handy.
[image: ARP packet diagram]

Figure 13-1. ARP packet diagram

Besides calling an external binary, there are two remaining approaches
 available for ARP probing. First, there’s the do-it-yourself approach involving
 the modules we explored in detail in Chapter 5. It is possible to
 create your own ARP requests and place them on the wire. The Net::Packet module has explicit support for the
 construction of ARP packets. Net::Pcap
 can read the responses off the wire. We’ve already seen how these
 modules work, so we’ll skip right to the final approach.
Oleg Prokopyev’s
 Net::Arping module provides this last
 approach for ARP probing. It is similar to the two previous approaches in that
 it is built on the same fundamental libraries, libnet[118] (by Mike Schiffman) and
 libpcap (originally by Van Jacobson, Craig Leres, and Steven McCanne of the Lawrence
 Berkeley National Laboratory and now maintained by a group of volunteers at
 tcpdump.org). Windows users build
 against an enhanced port of libpcap
 called
 WinPcap.
Net::Arping has syntax similar to what we
 saw earlier for Net::Ping. Namely:
use Net::Arping;

my $arping = Net::Arping->new();
arping() returns the MAC address from the ARP response if received
my $return = $arping->arping($ARGV[0]);
print "$ARGV[0] " .
 ($return) ? "($return) is up\n" : "is down\n";
By now you’re probably starting to get sick of modules with the word “ping” in
 them, so let’s switch tracks and look at passive approaches to mapping host
 existence. These are the approaches that don’t involve asking each host to
 respond in some fashion to a probe. They typically take more time to complete
 but are useful in the following circumstances:
	When there’s a desire to avoid calling attention to the mapping
 efforts. Penetration tests often have a stealth component to
 them.

	When there’s a concern about adding to the amount of network traffic.
 This is especially important when dealing with slow or saturated
 links.

	When there’s a concern about damaging the network’s operation. As
 mentioned previously, there’s a certain amount of risk associated with
 playing with ARP packets and the like. Passive approaches are much less
 likely to have an adverse effect.

The first passive approach we’ll look at can be described as “just sit and
 listen.” Though it sounds more like a technique for meditation than for network
 mapping, this is often the easiest and most effective way to start. It involves
 using the same packet-sniffing techniques mentioned earlier (and described in
 detail in Chapter 11) to listen for the right things on the
 network. What are “the right things”? That depends on your network and where on
 the network you sniff, but here is a laundry list to get us started (with some
 code to follow):
	ARP traffic

	DHCP lease requests/renewals and server responses

	Traffic to a central gateway

	SNMP or other network-monitoring requests

Everything but the last item should make immediate sense, so here’s a quick
 explanation of that item before we see some actual code. If there is another
 network monitor of some sort running on your network that probes individual
 hosts or network gear for status, you can piggyback on its efforts by listening
 for its probes/responses. You may be wondering, “If there’s another monitoring
 system on the network, why are we bothering to write code?” There are a bunch of
 reasons to do this. Here’s one good one: the monitoring system may be set to
 monitor a select set of hosts, while you are trying to map the entire network
 and/or find the ones it’s missing. Gathering data from the probes sent from the
 existing system will give you a good start toward this goal. When you are
 mapping a network, it is good to make use of as many hints as are available to
 get the most complete picture.
Let’s look at some code that actually sniffs the network and shows us the
 request and reply ARP traffic. This code (like the rest of our network-sniffing
 code) must be run with elevated privileges to work:
use Net::PcapUtils;
use NetPacket::Ethernet;
use NetPacket::ARP;

my $filter = 'arp';
my $dev = 'en1'; # device for my wireless card
my %addresses = ();

die 'Unable to perform capture: ' . Net::Pcap::geterr($dev) . "\n"
 if (Net::PcapUtils::loop(\&CollectPackets,
 FILTER => $filter,
 DEV => $dev,
 NUMPACKETS => 100,
)
);

print join("\n", keys %addresses),"\n";

sub CollectPackets {
 my ($arg, $hdr, $pkt) = @_;

 # convert the source protocol address (i.e., IP address)
 # in hex form to dotted quad format (i.e., X.X.X.X)
 my $ip_addr = join(
 '.',
 unpack(
 'C*',
 pack('H*',
 NetPacket::ARP->decode(NetPacket::Ethernet::strip($pkt))
 ->{'spa'})
)
);

 $addresses{$ip_addr}++;
}
This code will run until it has seen 100 packets, collecting IP addresses from
 ARP requests and replies as it goes. It will then print all of the unique hosts
 found so far. Changing this code to look for any of the other signs of life
 mentioned earlier is just a matter of changing the libpcap filter string and the line that decodes the packet. For
 instance, this code will find DHCP response traffic and show you the DHCP
 servers found:
use Net::PcapUtils;
use NetPacket::Ethernet;
use NetPacket::IP;

my $filter = 'dst port 68'; # DHCP response port
my $dev = 'en1'; # device for my wireless card

my %addresses = ();

die 'Unable to perform capture: ' . Net::Pcap::geterr($dev) . "\n"
 if (
 Net::PcapUtils::loop(
 \&CollectPackets,
 FILTER => $filter,
 DEV => $dev, # device for my wireless card
 NUMPACKETS => 100,
)
);

print join("\n", keys %addresses), "\n";

sub CollectPackets {
 my ($arg, $hdr, $pkt) = @_;

 # convert the IP address in hex form to dotted quad
 my $ip_addr =
 NetPacket::IP->decode(NetPacket::Ethernet::strip($pkt))->{'src_ip'};

 $addresses{$ip_addr}++;
}
This code is pretty simplistic. It doesn’t try to interpret the contents of an
 ARP or DHCP packet, because it doesn’t need to. All we care about is the
 fact there’s a host talking (that protocol). We really don’t care what it’s
 saying, just that it’s out there. If we did want to get more sophisticated, we
 could look at the contents of the DHCP packets, see which IP addresses the
 server handed out or renewed, and add that to our knowledge of the
 network.
As simple as these programs are, the listening approach itself has its
 limitations. In order for it to be effective, the program has to be run from a
 place on the network that hears the traffic of interest. On wireless networks,
 that’s easy: anywhere within broadcast range of the talking nodes will
 do.[119] On a wired network that is switch-based, however, it’s considerably
 more difficult. The easiest way is to use a “mirrored” or “spanned” port
 specially configured to see all the traffic on that network. If you are not the
 network administrator, you’ll need that person or group to set this up for you.
 If that’s not an option, there are ways to redirect traffic through your node
 (e.g., involving ARP spoofing and packet forwarding), but that sort of
 skullduggery is beyond the scope of this book.[120]
Since we’ve brought network administrators into the picture, let’s look at
 another passive approach for discovering host existence. This approach barely
 squeaks in under the definition of passive discovery, since it involves talking
 on the network (it’s more of an active but indirect approach): we’ll send
 packets, just not to the actual hosts we’re trying to find. In this case we’re
 interested in querying the network gear to which those hosts are connected.
 There are three possible questions we might ask a network device:
	What hosts have you seen using IP (i.e., as part of populating your
 ARP table)?

	What hosts have you seen on your ports at the Ethernet level (i.e., in
 the dynamic CAM table)?

	Do you know about any other network devices?[121]

In the section Using SNMP from Perl in Chapter 12, we talked
 about using SNMP to retrieve both a device’s ARP table and its dynamic CAM table
 (i.e., the table containing all of the Ethernet addresses heard on its ports).
 That discussion covers the first two questions. Modifying the scripts we saw in
 that chapter to collect the information over time is easy, so we won’t rehash
 the actual query code here.
Warning
Here’s a repeat of the caveat I mentioned at the end of that section in
 Chapter 12, because it especially bears repeating in this
 context: most switches are of the “learning” variety, so they will age out
 entries for addresses in the dynamic CAM table that they haven’t heard from
 in a while. This means that your program will need to run at least as often
 as the standard port aging time (by default this is three minutes in most
 Cisco gear).

The third question is either very easy or more work to answer, depending on
 how your network gear is configured. Many vendors provide some sort of discovery
 protocol to facilitate broadcasting information to and receiving it from other
 network devices from the same manufacturer. For example, the Cisco Discovery Protocol (CDP) is fairly common, with others, like
 the Foundry Discover Protocol and the SynOptics Network Management Protocol (for SynOptics, Bay, and
 Nortel gear), serving a similar role. This makes it simple to answer the third
 question of our questions. If one of these protocols is turned on, we can query
 one of two ways: with a dedicated module (e.g., Net::CDP by Michael Chapman) or a more general framework (like that provided by
 Max Baker’s SNMP::Info). I’m
 partial to the latter approach, because it means I don’t have to find, install,
 learn, or write a new module every time I perform a similar discovery task.
 Here’s an excerpt from the sample code in the
 SNMP::Info::CDP documentation to show you
 just how easy it is to query a network device’s neighbors:
use SNMP::Info::CDP;

my $cdp = new SNMP::Info (
 AutoSpecify => 1,
 Debug => 1,
 DestHost => 'router',
 Community => 'public',
 Version => 2
);

my $interfaces = $cdp->interfaces();
my $c_if = $cdp->c_if();
my $c_ip = $cdp->c_ip();
my $c_port = $cdp->c_port();

foreach my $cdp_key (keys %$c_ip){
 my $iid = $c_if->{$cdp_key};
 my $port = $interfaces->{$iid};
 my $neighbor = $c_ip->{$cdp_key};
 my $neighbor_port = $c_port->{$cdp_key};
 print "Port : $port connected to $neighbor / $neighbor_port\n";
}
Now, what if the network gear in question isn’t running a discovery protocol
 like this? That’s actually a very likely scenario, because turning off this sort
 of protocol is high up on most security lists for ways to “harden” a network
 infrastructure. If something like CDP is blabbing router topology information in
 clear text onto the wire, it makes it much easier for nogoodniks to locate and
 target the central networking gear in an unfamiliar infrastructure. This is one
 of those places where we’re going to have to work a little harder to get the
 answer.
To discover other networking gear when we’re not being handed those devices’
 information on a silver platter, we
 need to hunt around to locate higher-level routing information.[122] We’re looking for the routers we’ve located through some sort of
 routing protocol, like BGP, OSPF, or RIPvN, or manually inserted via static
 routes. Looking at the routing table for other machines to query requires a
 simple snmpwalk followed by some
 filtering:
use SNMP;

my $c = new SNMP::Session(DestHost => 'router',
 Version => '2c',
 Community => 'secret');

my $routetable = $c->gettable('ipRouteTable');

for my $dest (keys %$routetable){
 # 3 = "direct" route (see RFC 1213 for the other values)
 next unless $routetable->{$dest}->{ipRouteType} == 3;
 print "$routetable->{$dest}->{ipRouteNextHop}\n";
}
This information gives us a starting place to go look for additional
 information.[123]

Discovering Network Services

Ordinarily we’d work our way up to the most sophisticated approach to a problem, but
 this time let’s go right for the atomic destructo-ray option. When looking for
 what services are running on a network, we could try simple approaches using
 modules like
 IO::Socket or Spider Boardman’s
 Net::UDP to attempt to make TCP and UDP
 contact with select ports. But that would be slow, tedious, and hardly
 whiz-bang.
For scanning a network segment to find open ports, nmap by Fyodor (http://nmap.org) is most often the tool of choice. It is optimized for speed and efficiency;
 we can probably do no better than an nmap scan driven and
 processed by Perl. The most complete module for initiating
 nmap scans from Perl is
 Nmap::Scanner by Max Schubert. If you need to
 parse and analyze the output of nmap (in XML mode),
 Nmap::Parser
 by Anthony G. Persaud is also an excellent tool. Be sure to look at
 both before you begin a project like this.
Nmap::Scanner has two programming styles available: batch and event-driven. In batch
 mode, we tell it, “Here’s what I want you to scan and how. Go off and do it and
 then come back and give me the results when you’re done.” In event mode, we
 register callbacks (snippets of code) we want run after certain events take
 place before, during, and after the scan. For example, we might tell it, “Let me
 know every time you find an open port so my code can do something (write to a
 database, ring a bell, deploy a SWAT team to rappel down the cubicle wall,
 etc.).” Let’s look at a sample of each style. Here’s an example of batch
 mode:
use Nmap::Scanner;

my $nscan = new Nmap::Scanner;

Location of nmap binary. We're being explicit
here as a matter of precaution, but if you leave
this out it will be found in your $PATH.
$nscan->nmap_location('/usr/local/bin/nmap');

scan the 192.168.0.x subnet for port 80 (http) open
my $nres = $nscan->scan('-p 80 192.168.0.0/24');

retrieve the list of host objects found by the scan
my $nhosts = $nres->get_host_list();

iterate over that list, printing out hostnames for
the hosts with open ports
while(my $host = $nhosts->get_next()){
 print $host->hostname()."\n" if
 $host->get_port("tcp",80)->state() eq 'open';
}
Here’s that code modified to use event mode:
use Nmap::Scanner;

my $nscan = new Nmap::Scanner;

$nscan->nmap_location('/sw/bin/nmap');

every time we find a port, run &PrintIfOpen
$nscan->register_port_found_event(\&PrintIfOpen);

my $nres = $nscan->scan('-p 80 129.10.116.0/24');

sub PrintIfOpen {

 # we receive a scanner object, a host object
 # and a port object each time this event
 # handler is called
 my ($self, $host, $port) = @_;

 print $host->hostname() . "\n"
 if $port->state() eq 'open';
}
We get two additional bonuses by using
 nmap for network discovery: version and OS identification.
 By default nmap will find open ports, but that’s not
 precisely the same as finding network services. An open port 80 is probably but
 not necessarily a web server, 22 is likely but not always an SSH server, and so
 on. If we change this line from our examples from:
my $nres = $nscan->scan('-p 80 192.168.0.0/24');
to:
my $nres = $nscan->scan('-p 80 -sV 192.168.0.0/24');
nmap will take the extra step of attempting to connect to
 the open ports it finds and doing its best to determine what actual services are
 being provided on those ports. Furthermore, if it finds an open port that
 appears to be serving SSL or TLS, it will engage OpenSSL’s client routines and attempt to determine what service is
 being offered over that encrypted channel. Pretty cool.
Note
Our code doesn’t display or do anything with the extra info returned when
 using the -sV flag. To get at that info,
 you can call methods like these:
$host->get_port('tcp',80)->service->extrainfo()
$host->get_port('tcp',80)->service->product()
$host->get_port('tcp',80)->service->version()

Adding OS detection to the script is equally as easy: just add –O, remove the port specification (or add to
 it—nmap needs to talk to at least one open port to
 perform the detection), and run the script with elevated privileges.

Physical Location

This is the holy grail of network discovery. Everyone would really like to be
 able to figure out where network hosts are physically located, but it is often
 the hardest task. When a machine gets infected with a worm that forces it to
 saturate a network segment, you can shut down its network port (and probably
 should), but what you really want is to be able to visit the machine itself to
 disinfect it. Merely shutting down the port often just encourages the unwitting
 user to switch to a working network wall jack, and the game starts again.
There are a few impediments that make this task impossible in the abstract.
 Wireless networking is the easiest one to point at, but even wired networks make
 this difficult. The vast majority of networks use patch panels to connect the
 network gear to the room ports. Network switch ports can be queried for their
 configuration, but unless you have very expensive patch panels, there’s no
 infallible way to determine which switch port was plugged into which physical
 port in the panel besides a visit to the wiring closet.[124] Even if you visit the closet, if you don’t know the local network
 well (e.g., in a large organization) tracking down the errant machine can be a
 big pain.
Unfortunately, there are no sure-fire technical solutions for this problem
 that will work for everyone. At best, there are a few technology-aided
 approaches that can help. Here are two general observations that may spark your
 own ideas.
Observation 1: Proximity can help

If you can identify a specific part of your network that the host is close
 to, it’s easier to track it down. Follow these steps:
	Narrow down the search to the last piece of network gear that saw
 that host. In Chapter 12, we saw how to query a network
 switch for its dynamic CAM table using SNMP. If your wireless access points are SNMP-manageable
 (recommended for just this reason), you should be able to query
 their lists of associated nodes to find the MAC address in question.
 In both cases, your search scope narrows significantly.

	Once you’ve narrowed the search, consider the various things you
 know about proximity in your network. Wireless access points are the
 most obvious epicenters, since users need to be within a certain
 distance of such an access point[125] (depending on the flavor of wireless network and
 antennae in use) to associate with it.
For wired networks, sometimes you can make use of known hosts,
 like servers, as an initial starting place. For example, if you know
 where some of the servers are found on the patch panel in your
 network, that may offer you an idea of where the machine you seek is
 located.[126] And finally, you may be able to discern something about
 the machine’s location based on the logs of a print server. Most
 people print to the nearest printer. If you know which printer that
 machine has accessed, it might be a good clue as to the location of
 the host in question.

Observation 2: Conventions can help

Thinking about the conventions used in your network (naming, wiring, etc.)
 can also help you identify the location of the errant machine:
	Narrow the search scope (as in the preceding section).

	If you have a local wiring/networking convention (and most people
 do, even if they didn’t intentionally create it), bring it to bear
 on this problem. Are your patch panels laid out in a particular way?
 Do you name your network ports for the rooms they serve? Can you use
 reverse DNS information to narrow down the list of possible network
 segments on which the host could be located?

I realize that neither of these approaches is perfect when attempting to
 track down a rogue node, but hopefully they are a start.

[117] Over time, largely in response to the wild and woolly
 nature of the current Internet (e.g., ICMP attacks,
 malevolent probes, etc.), ICMP has been blocked at more and
 more network gateways and hosts. By default, the Windows XP
 SP2+ firewall blocks ICMP. If you need to probe a host that
 is blocked like this, Net::Ping’s syn protocol mode may be your best
 bet.

[118] The same warning about libnet
 versions (only works with 1.0.2) that I gave for nemesis applies to Net::Arping as well.

[119] Assuming you can associate with the access point, have the right
 WEP/WPA keys, etc.

[120] If you’d like to get deeper into this topic, one place to start is Dug
 Song’s dsniff package, available at http://monkey.org/~dugsong/dsniff/.

[121] This question comes into play mostly when dealing with larger,
 dynamic, or unfamiliar infrastructures. If you are working on
 your own small and static network, writing code to discover
 other network devices probably isn’t worth your time.

[122] We could also look for trunked ports, but the problem is there isn’t a
 good way to determine the IP address of the network device on the
 other side of the trunk. If CDP were on, we
 could look at the cdpCacheTable for
 this info, but without it, we’re stuck.

[123] And this is just the tip of the iceberg. Michal Zaleweski’s book,
 cited in the references at the end of the chapter, is a good place to
 start, but there are other good places to look as well (e.g., the DHCP
 leases file, the log files of services such as IMAP, NetBIOS requests,
 etc.).

[124] And sometimes that doesn’t even help. Having a good record of all of
 your patches and a process for maintaining it is important, but I have
 yet to meet a network administrator who hasn’t had to trace cables at
 least once.

[125] Although that could be anywhere from 150 to >300
 feet in three dimensions, depending on the antennae in use.
 “Different floor” and even “next building over” are becoming
 pretty common search locations.

[126] The scenario being something like this: the infected
 machine is found on switch port 5/11, and you know that the
 mail server living in the machine room is plugged into the
 same switch on port 5/5. If your patch panel isn’t too
 spaghetti-like, you might be able to make a reasonable guess
 that the infected machine is in a room relatively near your
 machine room.

Presenting the Information

When rolling your own network-monitoring code, there are four components to the task: data acquisition
 (i.e., probing), data presentation, controlling framework, and finally analysis and
 notification. We’ve just spent a bunch of time on the first item in that list, so
 let’s move on to the second.
Textual Presentation Tools

In Hollywood movies network monitors all have shiny graphics, big maps, blinky
 lights, and the occasional sonar “ping” noise thrown in for good effect. In
 reality, this isn’t the normal (or arguably even the most useful) way for data
 about network status to be presented. A great deal of information is presented
 in pure text form. Plain text works best for email reports, status checks from
 smartphones, and a whole host of other data and contexts.
In this section we’re going to look at a number of Perl tools that can help
 make this presentation easier and more professional. Though we’ll be using
 network-monitoring data in our examples, these tools are great for any time you
 need to present output in textual form. Use them often, and with great
 gusto.
Note
There’s a whole class of related tools we won’t be
 looking at that are worth mentioning. These are the multipart suites and
 modules available for general template work. They define little
 mini-languages or markup that can be inserted into textual template
 documents to generate reports, web pages, and any other cookie-cutter
 output. Example packages
 include the Template Toolkit, Text::Template, and HTML::Template.
These tools can be used to perform all of the tasks I’ll be mentioning
 (most can embed Perl code to be executed, so they can do anything Perl can),
 but they are more complex and intricate than necessary for everyday simple
 tasks. We’re going to be looking at the best simple, single-purpose tools
 for the job. For larger tasks, definitely look at the larger suites/modules,
 because they work very well.

Let’s start off with some generic tools to make the text you present look
 better, and then get progressively fancier with our output. There are a number
 of good modules for reformatting text into something more legible.[127] This reformatting usually consists of wrapping lines where
 appropriate, stripping extra whitespace and punctuation characters, making
 capitalization changes, and so on. Modules in this category include
 Text::Wrap by David Muir Sharnoff
 and
 Text::Beautify by José Alves de Castro. More
 and more, though, I find myself using
 Text::Autoformat by Damian Conway in
 preference to these other modules. By default it tries very hard to reformat
 text the way you’d probably do it if you were working on it by hand. It
 preserves indentation, respects list formats and quoting conventions, and so on.
 All of this is configurable, but the module rarely requires tweaking.
Using Text::Autoformat is commendably
 simple:
use Text::Autoformat;
my $a= 'This is an example of really long text that blathers on and on.
 Strangely formatted, too.
Should it be presented to
 a user in this form? Probably not.
Here are three good reasons:
 1) we really don't want our lists to look bad. Ideally we'd
 like the numbered lists to wrap properly too.
 2) it looks unprofessional
 3) we need an example
';
print autoformat ($a, {all=>1});
This yields:
This is an example of really long text that blathers on and on.
Strangely formatted, too. Should it be presented to a user in this form?
Probably not. Here are three good reasons:
 1) we really don't want our lists to look bad. Ideally we'd like the
 numbered lists to wrap properly too.
 2) it looks unprofessional
 3) we need an example
This lovely reformatting was achieved with a single call to autoformat(). The only nonobvious part of the code
 is the optional parameter: by default, autoformat() will reformat only the first paragraph of the text;
 all tells it to reformat all of the
 paragraphs.
Note
Be sure you are using the latest version of Text::Autoformat (1.14.0 as of this writing), since it fixes
 an issue when interpreting lines that end with a colon, as in our
 example.

Now that we’ve seen an easy way to format text into good-looking paragraphs,
 let’s talk about presenting it in other shapes. Column and table are the next
 two most common forms. We often have lists of things we’d like to show to a user
 or send in an email. Putting a list into sorted columns can make it easier to
 read. Alan K. Stebbens’s Array::PrintCols performs this task well. For instance,
 this:
use Array::PrintCols;

my @a = ('Martin Balsam','John Fiedler','Lee J. Cobb','E.G. Marshall',
 'Jack Klugman','Ed Binns','Jack Warden','Henry Fonda',
 'Joseph Sweeney','Ed Begley','George Voskovec','Robert Webber');

$Array::PrintCols::PreSorted = 0; # the data is not presorted, so sort

print_cols \@a;
prints the following:
E.G. Marshall George Voskovec Jack Warden Lee J. Cobb
Ed Begley Henry Fonda John Fiedler Martin Balsam
Ed Binns Jack Klugman Joseph Sweeney Robert Webber
Array::PrintCols can be configured to print
 out a set number of columns or change the column widths. See the documentation
 for details.
The very next step toward spiffing up your output, once you have column
 creation under your belt, is table creation. Here’s an example of the sort of
 output you’ll be able to easily generate:
+----------+--------+--------+
| Host | Status | Owner |
+----------+--------+--------+
brady	passed	fmarch
drummond	passed	stracy
hornbeck	passed	gkelly
+----------+--------+--------+
For some reason it seems like text-formatting tasks inspire authors to write
 new modules even if similar modules already exist. When it comes to creating
 textual tables, choices include (at least)
 Text::TabularDisplay by Darren
 Chamberlain,
 Text::FormatTable by David
 Schweikert,
 Text::ASCIITable by Håkon Nessjøenand,
 and
 Data::ShowTable by Alan
 K. Stebbens. From this pack, I tend to employ Text::FormatTable most often because of its simplicity and ease
 of use.
Here’s the code that generated the table just shown:
use Text::FormatTable;

imagine we generated this data structure through some
complicated network probe process
my %results = (
 'drummond' => {
 status => 'passed',
 owner => 'stracy'
 },
 'brady' => {
 status => 'passed',
 owner => 'fmarch'
 },
 'hornbeck' => {
 status => 'passed',
 owner => 'gkelly'
 }
);

my $table = Text::FormatTable->new('| l | l | l |');
$table->rule('-');
$table->head(qw(Host Status Owner));
$table->rule('-');

for (sort keys %results) {
 $table->row($_, $results{$_}{status}, $results{$_}{owner});
}

$table->rule('-');
print $table->render();
Creating a table with this module is essentially a three-step process:
	Create a new table object. The number of columns and how they should
 be justified (i.e., whether the text should be centered or aligned to
 the left or right of the column) are specified at object-creation
 time.

	Fill in the table content, starting with a table header. Creating a
 table header is as simple as drawing a separator line with $table->rule('-'), specifying the
 column names, and then drawing another line. To populate the rows of the
 table, call row() once for every row
 to be added. row() takes the data for
 each column as its parameters, in the order specified when the table was
 created. After populating all of the rows, add another separator line at
 the bottom to close the table and make it look pretty.

	Generate the table with render()
 and print the results.

One last useful module to wrap up this section is
 Text::BarGraph, by Kirk Baucom. With a simple
 program like this:
use Text::BarGraph;

imagine these are important statistics collected for each machine
my %hoststats = ('click' => 100,
 'clack' => 37,
 'moo' => 75,
 'giggle' => 10,
 'duck' => 150);

my $g = Text::BarGraph->new();

$g->{columns} = 70; # set column size
$g->{num} = 1; # show values next to bars

print $g->graph(\%hoststats);
We can draw a textual bar graph like this:
clack (37) ##############
 click (100) ######################################
 duck (150) ###
giggle (10) ###
 moo (75) ############################
Graphs like this one can easily be sent in mail messages for reporting
 purposes.

Graphical Presentation Tools

The textual graph we talked about in the last section offers an excellent segue
 into a discussion on a few toolsets for presenting information using pictures
 instead of text.
Using the GD::Graph module family

When people think of displaying information in this context, they often
 think of producing pretty graphs. There are a plethora of ways to create
 graphs using Perl, ranging from remote controlling other dedicated graphing
 programs (e.g., gnuplot or
 ploticus) or generalized number-crunchers (e.g.,
 Excel or Matlab) to using sophisticated raytracers and OpenGL scene
 generators. The easiest (and perhaps most direct, in this context) way to
 create graphs is through the GD::Graph
 family of modules, by Martien Verbruggen and other contributors.
Note
The one thing that may not be easy about the modules we’re about to
 explore is the process of building them. GD::Graph modules rely upon the GD module by Lincoln Stein. The GD module relies upon the GD (C) library by Thomas
 Boutell. The GD library tries to rely on at least five other C libraries
 (zlib, libpng, FreeType,
 JPEG, and XPM). Several of those rely on other
 libraries. Getting the picture? Building the whole kit and kaboodle can
 be a good example of the term “shaving a yak.” Ultimately it’s probably
 worth it, but if you can get someone else’s build (e.g., if your Unix
 distribution offers a prebuilt package), all the better.

The first step when using these modules is to choose the kind of graph
 desired. Given the number of choices, this isn’t always easy. At the time of
 this writing the chart type alternatives included area, bar (both horizontal
 and vertical), histogram, lines, lines with points, pie, sparklines, and
 timeline.
Once you’ve chosen the graph type, the process for graphing is
 straightforward:
	Load the appropriate submodule. For example, to make a vertical
 bar graph similar to our earlier textual example, we would pick
 GD::Graph::hbars:
use GD::Graph::hbars;

	Make sure the data is in the correct form. It should consist of at
 least two array references. The first array reference should point
 to an array with the label values. This essentially lists the labels
 for the x/horizontal axis or, if creating a pie chart, the slice
 names. Subsequent array references describe the values to plot on
 the y/vertical axis or the
 sizes of the slices in the pie chart:
my @data=([qw(click clack moo giggle duck)],[100,37,75,10,150]);

	Create a new object of the desired type:
my $g = new GD::Graph::hbars;

	Plot the data:
$g->plot(\@data);

	Write it out to disk:
 open my $T, '>', 't.png' or die "Can't open t.png:$!\n";
 binmode $T;
 print $T $g->gd->png;
 close $T;
Everything in that snippet is pretty basic except for the mention
 of binmode. This is
 one of the more obscure Perl commands that you don’t typically find
 out about until your code requires it to operate properly. In short,
 it makes sure that data gets written with no end-of-line remapping
 or funny business that can take place on operating systems that
 distinguish between types of I/O handling. The most common place
 this shows up is in Windows Perl programming, since the Windows
 family of operating systems has text and binary modes.
Figure 13-2 shows the
 resulting graph from our code.
[image: The graph produced by our sample code]

Figure 13-2. The graph produced by our sample code

Pretty boring, eh? Boring in a chart isn’t always bad (see
 Edward Tufte’s lucid arguments against “chartjunk,”
 referenced at the end of this chapter, for more details), but a
 little prettier surely would be better. To improve the appearance,
 we can set some options right after creating the object and before
 plotting the data:
$g->set(
 x_label => 'Machine Name',
 y_label => 'Bogomips',
 title => 'Machine Computation Comparison',
 x_label_position => 0.5,
 bar_spacing => 10,
 values_space => 15,
 shadow_depth => 4,
 shadowclr => 'dred',
 transparent => 0,
 show_values => $g
);

Now we get the result shown in Figure 13-3.
[image: Improved graph with formatting]

Figure 13-3. Improved graph with formatting

Much nicer. There are many options for changing the look of the graph. If
 making things as shiny as possible is your aim, there is a GD::Graph3d module by Jeremy Wadsack that is a
 drop-in replacement for parts of GD::Graph. If we change hbars to bars3d in our
 code, we get the chart shown in Figure 13-4.
[image: 3D version of our graph]

Figure 13-4. 3D version of our graph

Using GraphViz

Charts and graphs aren’t the only graphical presentation available to us. I
 have yet to meet someone who deals with networks who isn’t delighted by a
 tool that makes drawing diagrams easy. The GraphViz visualization software
 by AT&T (http://www.graphviz.org), driven
 by Leon Brocard’s GraphViz
 module, is just such a tool.
Figure 13-5 shows a very simple diagram created
 with GraphViz.
[image: GraphViz diagram]

Figure 13-5. GraphViz diagram

The code to generate it is equally simple:
use GraphViz;

my $g = GraphViz->new();

$g->add_node('Client');
$g->add_node('Server', shape=>'box');
$g->add_edge('Client' => 'Server');

$g->as_jpeg('simple.jpg');
Create the object, add two nodes, add the connector, write the file out as
 a JPEG file—can’t get much simpler
 than that. Though it isn’t apparent in this example, the GraphViz module really
 starts to shine when it comes to creating more complex diagrams. The
 GraphViz software itself goes to
 considerable lengths to try to compute how to lay out diagrams in an
 aesthetically pleasing way, so you don’t have to bother. If you were going
 to create your diagrams using a drawing package, you’d probably spend
 considerable time writing code to place the nodes so they didn’t overlap and
 lines didn’t cross. GraphViz handles all
 of that for you.
Let’s look at a slightly more complex example so you can see the power of
 this tool. The following code sniffs the network for 50 SYN packets destined for the HTTP port and
 keeps a hash of all of their unique HTTP source/destination pairs. It then
 graphs this information so we can get a picture of which machines are
 browsing content from which servers. The sniffing code is the same as that
 in Chapter 11 with just the addition of a few GraphViz commands, so the whole program should
 be pretty straightforward:
use NetPacket::Ethernet qw(:strip);
use NetPacket::IP qw(:strip);
use NetPacket::TCP;
use Net::PcapUtils;
use GraphViz;

my $filt = 'port 80 and tcp[13] = 2';
my $dev = 'en1';
my %traffic; # for recording the src/dst pairs

die 'Unable to perform capture: '
 . Net::Pcap::geterr($dev) . "\n"
 if (Net::PcapUtils::loop(
 \&grabipandlog,
 DEV => $dev,
 FILTER => $filt,
 NUMPACKETS => 50)
);

my $g = new GraphViz;

for (keys %traffic) {
 my ($src, $dest) = split(/:/);
 $g->add_node($src);
 $g->add_node($dest);
 $g->add_edge($src => $dest);
}

$g->as_jpeg('syn80.jpg');

sub grabipandlog {
 my ($arg, $hdr, $pkt) = @_;

 my $src = NetPacket::IP->decode(NetPacket::Ethernet::strip($pkt))
 ->{'src_ip'};

 my $dst = NetPacket::IP->decode(NetPacket::Ethernet::strip($pkt))
 ->{'dest_ip'};

 $traffic{"$src:$dst"}++;
}
Some example output appears in Figure 13-6.
[image: Default output]

Figure 13-6. Default output

That’s with the default output format. If we change this line:
my $g = new GraphViz;
to:
my $g = new GraphViz(layout => 'circo');
the diagram changes to what you see in Figure 13-7.
Changing the line to the following:
my $g = new GraphViz(layout => 'fdp');
results in different formatting again, as illustrated in Figure 13-8.
GraphViz has many formatting options;
 see the documentation for more information.
Note
As an aside, I’d also recommend that you check out the
 Graph::Easy family of modules by
 Tels. It has a really comfortable user interface that you may prefer
 over plain GraphViz. It also has some
 spiffy features (e.g., ASCII diagram output).

Before finishing our discussion of GraphViz, it’s important to mention that there are a number
 of modules that have been built on the GraphViz module from which you can draw inspiration. The
 module itself ships with submodules that can produce diagrams from Perl data
 structures, regular expressions, parsing grammars, and XML files. Other
 people have written modules to visualize database structures via DBI,
 arbitrary graphs, Makefile dependencies, mail threads,
 and DNS zones, just to name a few. There’s no telling what uses you can find
 for GraphViz.
[image: Output with “circo” layout]

Figure 13-7. Output with “circo” layout

[image: Output with “fdp” layout]

Figure 13-8. Output with “fdp” layout

Using RRDtool

I’ve saved one more type of graphical presentation tool for last because it is potentially
 the most complex: RRDtool. We’re only going to skim the surface of this
 package to get you going, but once you’ve got the basics down you can
 explore the rest of the functionality at will.
People often find RRDtool a bit daunting at the start because they come to
 it with some misunderstandings about what it is good for and how it should
 work based on experiences with other programs. Let’s try to banish two
 misconceptions right away so you don’t fall into the same trap:
	RRDtool is not a general-purpose plotting package. In most cases,
 you don’t just hand it a data set and expect it to plot the data in
 an X, Y coordinate graph. If this is your primary need, see the
 GD::Graph family of modules
 we just discussed.

	RRDtool is not a general database tool for storing a data set,
 like the Berkeley DB or {s,n,g}bm databases. Use modules like
 BerkeleyDB or DBM::Deep
 for applications that require this storage model.

The key to easy entry into the RRDtool world is to have the right mental
 model for the tool when you start. If you think about it as either a
 plotting package or a relational database, it will be more confusing than is
 necessary. We’ll hit the core concepts of RRDtool first and then take a look
 at the actual command lines and such for implementing them.
One way to get the right mental model is to start with an
 RRDtool-appropriate goal in mind and figure out what is necessary to achieve
 it. A classic use for RRDtool is monitoring a router. There are many
 possible bits of information we might want to monitor on the average router,
 but we’ll pick just three for this example: incoming bandwidth, outgoing
 bandwidth, and router temperature. To keep track of these three statistics,
 we’ll poll the router for the information and store the data every 2
 minutes. That should be often enough to get a good picture of the current
 operation of the router.
To go about this, we need to understand five fundamental RRDtool
 concepts:
	RRDtool fundamental #1: Periodic update
	An RRDtool database consists of a number of time buckets that
 hold data. RRDtool stores data at fixed intervals (the step
 size), and it expects you to hand it data accordingly.
 Unfortunately, in the real world you are not always able to
 acquire and provide data at exactly the defined interval. So, to
 make it easier for you, RRDtool will take the data you provide
 and resample it to match the time buckets set up in the
 database. RRDtool assumes your data to be continuous and
 calculates accordingly.
I use my own made-up term, “time bucket,” rather than
 “timeslot” because RRDtool has the ability to handle a certain
 amount of wiggle room in the time between your updates. For
 example, an RRDtool database set to be updated every 5 minutes
 can be configured so that data stored at the 6-minute mark is
 handled properly (by calculating an average for the interval). A
 good mental image for this is an old milk bucket with a funnel
 built into the top. These buckets are able catch the milk poured
 directly into the narrow opening and the milk poured very close
 to the opening. Keep that picture in your head, and you’ll have
 the right idea.

	RRDtool fundamental #2: Unknown values
	You are expected to update the database with the latest values
 once per period to fill each bucket. If you don’t update once
 per period, you will get unknown values. If more than 50% of the
 values across the duration of a bucket are unknown, the whole
 bucket will be marked *UNKNOWN*.
UNKNOWN values come into
 play when subsequent calculations (e.g., daily averages) are
 made. RRDtool can be told the percentage of known to unknown
 values to allow for that calculation before marking the whole
 calculation *UNKNOWN*. This
 is similar to the way an error in a spreadsheet cell will cause
 any formulas based on that cell to show an error as well.

	RRDtool fundamental #3: Finite number of buckets
	When an RRDtool database is created, it is predefined with a
 set number of buckets (enough to hold the specified number of
 samples over the specified time period). RRDtool uses the same
 circular buffer approach we saw in Chapter 10
 with bigbuffy. Data values are added from the beginning of the
 database one at a time until the end of database has been
 reached. At that point RRDtool wraps back to the beginning and
 starts writing from the top again. This is where the term “round
 robin database” comes from in the tool’s name. The circular
 buffer approach allows RRDtool to store values for a specified
 window of time without taking up more storage space than is
 necessary.

	RRDtool fundamental #4: Primary data points (PDPs) and
 consolidated data points (CDPs)
	Each time new values are presented to RRDtool for an update, two
 things come into play: the primary data point (the actual value
 after it is stored for processing) and the consolidated data
 points calculated from it and other PDPs collected in the same
 bucket. For example, if RRDtool is told to keep a one-hour
 average for a statistic, it will store the new value (PDP) and
 the average (CDP) in that time bucket in the database. CDPs are
 important because more often than not they are the values that
 actually appear in the graphs we’ll be producing. RRDtool
 handles incoming data in such a way that the averages you can
 get out of it are quite accurate.
This point illustrates how RRDtool is not like a normal
 database. With most data stores, you expect to retrieve the same
 values you put into them. With RRDtool, that’s not the case. In
 our router example, we’ll be graphing a measure of the router’s
 average incoming bandwidth as it changes over time. With
 bandwidth measurements one is often looking for trends, so it is
 the average, not the actual stored byte count that
 matters.

	RRDtool fundamental #5: Data source types (DSTs)
	When creating an RRDtool database, you have to choose the type of data each data source
 will represent. This describes the structure of the data you are
 planning to feed to RRDtool. You are given a choice between
 counter, derive, absolute, gauge, and compute.
Note
In a second, the most important phrase of this section
 will be mentioned again. That phrase is “rate of
 change.”
RRDtool is largely concerned with presenting pieces of
 data as they change over time. Though
 you can record data values by themselves, RRDtool is
 designed to help you display the rate of
 change. It’s useful when first starting out
 with this stuff to keep repeating to yourself “rate of
 change, change over time, rate of change...” to make sure
 you are clear on just what data RRDtool will store and
 graph.

counter is the most
 frequently used DST. It is used to store the rate of change in
 ever-increasing counters, as its name suggests. Most counters
 (e.g., in routers) have an upper limit after which they wrap
 around to zero. RRDtool handles this case: if the value
 presented to RRDtool for a counter PDP is smaller than the previous value,
 it assumes the counter has wrapped and is actually the sum of
 the distance of the last value from the wrap point plus the
 current value. This wrapping feature of the counter type can be an issue in
 cases where the device has reset or rebooted, throwing the start
 value back to zero again. RRDtool has no way to tell the
 difference between a wrap and a reset if you have not specified
 an upper and lower bound for the data source, so it assumes the
 former. If this is a concern for you, there are two ways to deal
 with it: you can explicitly update with a value of “U” (unknown)
 to prevent RRDtool from making any wrong wrapping assumptions,
 or you can use the derive
 type instead and set the lower bound to 0.
derive is like counter but without the wrap
 logic. More precisely (according to the documentation), it is
 “the derivative of the line going from the last to the current
 value of the data source.” Before you whip out your calculus
 text, this means that the derive type can deal with both positive and
 negative rates of change. For example, available disk space is a
 statistic whose rate of change can be either positive (more
 space has been freed up) or negative (more disk space has been
 used).
absolute is usually
 described as being useful for counters that automatically reset
 back to zero each time you read them. Those are fairly rare, so
 I find it easier to think of this type as saying to RRDtool,
 “the rate of change should be whatever value I’m handing you
 divided by the amount of time between updates.” For example,
 let’s say the goal is to measure trends in virus handling on a
 mail server. If you check the number of virus messages rejected
 by the mail server every 5 minutes, and 30 more have been
 rejected since you last checked 5 minutes ago, an absolute data
 source would treat the rate of change as 30/(5 * 60 seconds).
gauge is probably the
 second most common type used. Unlike the other types we’ve seen
 so far, gauge values aren’t computed over time. They are not
 rates; they are the simple values as supplied to RRDtool. If you
 wanted to see the sheer numbers of rejected mail messages from
 the last example (as opposed to the rate at which that number
 has changed from one time bucket to the next), you would use
 gauge.
compute is a type that does
 not get mentioned much in RRDtool tutorials, because it leads to
 one of the parts of the tool known to scare beginners. RRDtool
 uses Reverse Polish Notation (RPN) for specifying certain
 calculations. In this case, RPN is used to specify a data source
 computed from other data sources. This is similar to storing a
 formula in a spreadsheet cell (only that formula gets expressed
 in RPN). There’s a good RPN tutorial distributed with RRDtool if
 you find your RPN skills are rusty from the days of your first
 calculator.

OK, enough theory. Let’s actually use what we’ve just learned in practice
 to set up an RRDtool database, update it, and then graph the results. First
 comes the creation of the database:
$ rrdtool create router.rrd --start `perl -e 'print time-1'` \
 --step 120 \
 DS:bandin:COUNTER:240:0:10000000 \
 DS:bandout:COUNTER:240:0:10000000 \
 DS:temp_in:GAUGE:240:0:100 \
 RRA:AVERAGE:0.5:30:24
Let’s look at this piece by piece. First we create the database, starting
 at the current time, and set it to be updated every 2 minutes (120
 seconds):
$ rrdtool create router.rrd --start `perl -e 'print time-1'` \
 --step 120 \
We’re going to be feeding it three sets of information every 2 minutes
 (bandwidth in, bandwidth out, and the temperature of the air flowing into
 the router). If we haven’t updated each value within 240 seconds of the last
 update, that time bucket gets marked as *UNKNOWN*. The bandwidth data sources have their minimum and
 maximum set to 0 and 10 MB, respectively (let’s assume we’re monitoring a 10
 MB router interface). This is important because it allows RRDtool to detect
 counter resets. We similarly declare reasonable maximum and minimum bounds
 for the temperature data source by stating that the temperature of the air
 flowing into the router will remain between the freezing and the boiling
 point of water (0–100° Celsius):[128]
DS:bandin:COUNTER:240:0:10000000 \
 DS:bandout:COUNTER:240:0:10000000 \
 DS:temp_in:GAUGE:240:0:100 \
And finally, we want to store a day’s worth of consolidated data points
 (CDPs), each representing an hourly average (there are 30 2-minute intervals
 in an hour and 24 total hours in a day). An hourly average is kept for each
 of the three data sources we defined. The 0.5 parameter here is the setting
 I mentioned in RRDtool fundamentals #2 a few pages back. It indicates that
 half of the buckets used to calculate this average can be *UNKNOWN* before we give up on the whole CDP
 and call it *UNKNOWN* too:
RRA:AVERAGE:0.5:30:24
We can store as many round robin archives (RRAs) as we want (e.g., for
 calculating a monthly or yearly average), but we’ll only use this one to
 keep the example simple.
The Perl version of this create command
 line is a direct translation:
use RRDs;
my $database = "router.rrd";
RRDs::create ($database, '--start', time-1, '--step', '120',
 'DS:bandin:COUNTER:240:0:10000000',
 'DS:bandout:COUNTER:240:0:10000000',
 'DS:temp_in:GAUGE:240:0:100',
 'RRA:AVERAGE:0.5:30:24');

my $ERR=RRDs::error;
die "Can't create $database: $ERR\n" if $ERR;
Database in hand, we can start to feed in data values every two
 minutes:
rrdtool update router.rrd N:25336600490171:159512031730187:26
 (2 minutes go by)
rrdtool update router.rrd N:25336612743804:159512154231472:26
...
rrdtool update router.rrd N:25336810864361:159513632487313:26
...
rrdtool update router.rrd N:25336950227556:159515045447411:26
...
rrdtool update router.rrd N:25337088963449:159516528948027:26
...
rrdtool update router.rrd N:25337088963449:159516528948027:26
...
The first parameter is the name of the RRDtool database being updated.
 This is followed by the actual data for the update. The first field of that
 data is the time or the shortcut N for
 Now, representing the current time. If for some reason we didn’t want the
 update to be associated with the current time via N (e.g., if we were loading in a data set already collected),
 we would use the time in the format shown previously in the rrdtool
 create command (as with time()). The fields after the timestamp are
 the values for each data source in the order they were specified in our
 rrdtool create or RRDs::create().
As you probably guessed, the Perl version of each line is also a direct
 translation, as in:[129]
RRDs::update('router.rrd', 'N:25336600490171:159512031730187:26');
RRDs::update('router.rrd', 'N:25336612743804:159512154231472:26'); ...
Although in a program, you’d probably write something like this:
while (1) {
 ($in,$out,$temp)= snmpquery(); # query the router with SNMP
 RRDs::update($database, "N:$in:$out:$temp");
 my $ERR=RRDs::error;
 die "Can't update $database: $ERR\n" if $ERR;
 sleep (120 - time % 120); # sleep until next step time
}
We started to talk about RRDtool because it is a graphing tool, but we
 haven’t seen a single picture yet. Your patience is about to be rewarded:
 we’re now going to look at how to use everything we’ve done so far to
 generate pretty graphs. We’ll be drawing two separate graphs (for reasons
 that will become clear in a moment).
The graphing features of RRDtool are the second speed bump beginners
 encounter, because they can get complex fast. As with the other parts of
 this survey, we’re only going to skim the top so you can get started. Be
 sure to consult the RRDtool documentation when you’re ready to dive
 deeper.
To graph the information we’ve collected so far, we need to specify at a
 minimum three things:
	The name of the output file where the graph will be stored. A dash
 (-) can be used if you’d like
 the data sent to stdout instead.

	One or more data definitions, so RRDtool knows which value or
 values to extract from the database for graphing or
 calculation.

	A graph specification (i.e., what to actually draw).

Let’s graph the router bandwidth information first. A command line to do
 this might be:
rrdtool graph bandw.png \
 DEF:bandwin=router.rrd:bandin:AVERAGE \
 DEF:bandwout=router.rrd:bandout:AVERAGE \
 LINE2:bandwin\#FF0000 \
 LINE2:bandwout\#000000
This yields a picture like the one shown in Figure 13-9.
[image: Router bandwidth graph]

Figure 13-9. Router bandwidth graph

Let’s break this down some more. We’ll start with the data
 definition:
 DEF:banwdin=router.rrd:bandin:AVERAGE \
 DEF:banwdout=router.rrd:bandout:AVERAGE \
This says to pull the averaged values from the data sources bandin and bandout in the router.rrd
 database and refer to them by the names bandwin and bandwout:
 LINE2:bandwin\#FF0000 \
 LINE2:bandwout\#000000
We then graph both bandwin and bandwout using a medium line (LINE2) with the colors specified in hex form.
 That wasn’t so bad, right? By default the graph shows about a day’s worth of
 data. We can narrow down the display to specific hours by specifying a start
 and end time. For fun, let’s generate a graph that displays data from 1 p.m.
 to 5 p.m. using Perl code:
use RRDs;
RRDs::graph('dayband.png',
 '-start', '1234893600','-end', '1234908000',
 '--lower-limit 0',
 'DEF:bandwin=router.rrd:bandin:AVERAGE',
 'DEF:bandwout=router.rrd:bandout:AVERAGE',
 'LINE2:bandwin#FF0000',
 'LINE2:bandwout#000000');
The resulting graph appears in Figure 13-10.
[image: 4-hour bandwidth graph]

Figure 13-10. 4-hour bandwidth graph

Now let’s get to the temperature graph. If we again create a graph using
 the minimum amount of code, like this:
use RRDs;
RRDs::graph('temp.png',
 'DEF:temp=router.rrd:temp_in:AVERAGE',
 'LINE2:temp#000000');
we get the result shown in Figure 13-11.
[image: Temperature graph]

Figure 13-11. Temperature graph

There are a few things to say about this graph. First, it’s boring. But
 boring is good! The graph is meant to display the temperature of the air as
 it enters the router.[130] If it were any less boring, it would mean there were serious
 issues with the cooling systems in our data center. The second thing to note
 about the graph is that the values are all in the 26–27° Celsius range. The
 scale and units of this graph are sufficiently different from that of the
 bandwidth graphs we just completed that it was necessary to create a
 separate graph to display the temperatures.
If we wanted to make the picture a little (but only a little) less boring,
 there are a number of things we could do. Most Americans aren’t used to
 reading temperatures in Celsius, so we’ll use RRDtool’s built-in RPN
 calculation engine to convert the temperature values to Fahrenheit. We’ll
 also gussy up the graph with both a legend and a warning line at 85°
 Fahrenheit:
use RRDs;
RRDs::graph('tempf.png',
 'DEF:temp=router.rrd:temp_in:AVERAGE',
 'CDEF:tempf=temp,9,*,5,/,32,+',
 'LINE2:tempf#000000:Inflow Temp',
 "LINE:85#FF0000:Danger Line\r");
Now we get the result shown in Figure 13-12.
[image: Temperature graph in Fahrenheit]

Figure 13-12. Temperature graph in Fahrenheit

Let’s look at the lines from the preceding code that are different from
 the previous examples. First, there is this pair:
'CDEF:tempf=temp,9,*,5,/,32,+',
'LINE2:tempf#000000:Inflow Temp',
The first line is one of those RPN calculations I warned you about
 earlier. It takes the value we pulled from the RRDtool database, multiplies
 it by 1.8 (9/5), and then adds 32 to convert the value from Celsius to
 Fahrenheit. The Fahrenheit value is then graphed and an entry for it is
 added to the graph’s legend.
The other line we haven’t seen before is:
"LINE:85#FF0000:Danger Line\r"
This is meant to simply draw a line at the 85° F mark and place an entry
 for it in the graph’s legend.
With this, we’ve come to the end of our exploration of RRDtool. RRDtool is
 a tremendously powerful tool. It has a large set of documentation, a very
 responsive developer, and an active user community. Hopefully this overview
 has given you a start with it; I encourage you to explore the more
 sophisticated aspects on your own.

[127] The modules we’ll be discussing are mostly geared toward making
 English or English-like text prettier. I don’t know how well they will
 play with non-Anglo-centric text.

[128] Though I don’t want to be anywhere near your data center if it
 ever approaches those temperatures!

[129] In case you’re wondering where these large data numbers come from,
 they are the respective values returned from my Cisco router by an
 snmpget (using SNMPv2c) for
 the OIDs 1.3.6.1.2.1.31.1.1.1.6.74 (ifHCInOctets), 1.3.6.1.2.1.31.1.1.1.10.74 (ifHCOutOctets), and 1.3.6.1.4.1.9.9.13.1.3.1.3.1 (ciscoEnvMonTemperatureStatusValue). I've omitted the snmpget command lines to keep the
 focus on RRDtool.

[130] There’s a separate SNMP OID for the outtake temperature that you
 may also want to track (e.g., to see if your router’s electronics
 have caught fire, or more likely, if there is fan/internal
 ventilation problem). That OID is 1.3.6.1.4.1.9.9.13.1.3.1.3.3.

Monitoring Frameworks

It’s time to pull together everything we’ve covered so far to create a framework for
 network monitoring. We’ve seen how to gather the information and how to present it.
 Now we just need something to drive the whole process. We’ll look at one option for
 building a home-brewed system here, and then we’ll end with a peek at how to
 integrate our work into other, larger pre-existing packages.
One of the simplest frameworks we can use to construct a monitoring system
 actually ships with Perl. In 2003 Randal Schwartz wrote a column for Linux Magazine
 about using the
 Test::More module to test a website’s health.
 Test::More is a module that provides a
 framework for writing a set of test scripts. You tell it which tests to run and what
 the expected output of those tests should be, and the module takes it from
 there.
Schwartz’s article described how to construct a Test::More script that connected to a website and checked that the
 site returned reasonable data. With very little effort, we can extend this basic
 idea to monitoring an entire network. As long as we can write a set of tests to
 determine that your network and its hosts are functioning, Test::More will do the rest. It runs these tests in the desired
 order, skips tests that don’t make sense (e.g., if you can’t
 ping the mail server, there’s no use trying to connect to
 its SMTP port), and provides coherent output.
Getting started with Test::More is really
 simple. The first step is to load the module and tell it how many tests will be
 run:
use Test::More tests => 5;
If you don’t know how many tests will be run in your script (e.g., while you are
 still developing it), you can say this instead:
use Test::More 'no_plan';
Now we write the actual tests:
is(check_dns('my_server'),$known_ip,
 'DNS query returns right address for server');
is(sha2_page('http://www.example.com'),
 '6df23dc03f9b54cc38a0fc1483df6e21',
 'Home page has correct data');
Test::More just defines is() and a few other simple testing routines. It’s up
 to code defined or loaded earlier in the script to define subroutines like check_dns(), sha2_page(), router_interface_up(), correct_ports_open(), or anything else we need checked. The script
 will generate output like this when everything is working OK:
ok 1 - DNS query returns right address for server
ok 2 - Home page has correct data
However, if something breaks, we might see output like this:
not ok 1 - DNS query returns right address for server
Failed test (test.pl at line 5)
got: '192.168.0.4'
expected: '192.168.0.6'
ok 2 - Home page has correct data
Once the results have been returned, we can feed them into a script that displays
 the information (perhaps using some of the tools we looked at earlier in this
 chapter in the sections
 Textual Presentation Tools and Graphical Presentation Tools).
Since writing tests is generally pretty easy, you may quickly amass a large
 collection of Test::More scripts to test
 different parts of your infrastructure. At a certain point, it becomes unwieldy to
 keep track of all of the different possible tests and their results. Test::Harness, shipped with Perl, can handle this task for you. You pass it a list of
 files to run, and it runs the tests and returns a summary of which failed and which
 succeeded. There are other, more sophisticated testing modules and options available
 if you want to go further down this path. For more info,
 Perl Testing: A
 Developer’s Notebook
 , by Ian Langworth and chromatic (O’Reilly), is a good reference.
Once you’ve written your framework (whether it’s a Test::Harness script or a collection of Test::More subroutine calls), you can run it from
 cron, launchd, or the
 scheduler service. If you’d prefer to keep even the
 scheduling part entirely in Perl, Roland Huß’s Schedule::Cron
 module provides a
 cron-like scheduler for Perl subroutines.
If you need something more sophisticated in a monitoring system framework, there
 are at least two directions you can pursue:
	For more complex, but still Perl-centric tasks, the best bet is to begin
 to use the Perl Object Environment (POE). For example, if you needed to
 gather data from multiple network devices at once (for a large
 infrastructure) while summarizing yet another set of data at the same time,
 POE would be a natural choice. POE is essentially a mini-operating system
 with process-like thingies that are run by a central kernel/scheduler in a
 multitasking-like fashion. POE has a considerable learning curve because it
 requires a solid grasp of OOP programming, the learning of new POE-specific
 terminology (sessions, wheels, handlers, drivers, etc.), and a little
 aptitude for multitasking programming. Rather than trying to cram a
 substantial POE tutorial into this already full chapter, let me direct you
 to the chapter devoted entirely to POE in Simon Cozen’s Advanced Perl
 Programming, Second Edition (O’Reilly). The POE
 home page also provides several tutorials that can be helpful.

	If a roll-your-own-in-Perl solution starts to be untenable, extending an
 existing monitoring package can be an attractive option. All good packages
 offer some way to plug in custom probe modules. In the next section we’ll
 explore the general ideas necessary to write these plug-ins and then look at
 some concrete examples using a few of the popular packages.

Extending Existing Monitoring Packages

The vast majority of the extendable packages available at the time of this writing
 operate on a simple principle for their extensions: they periodically call some
 code you’ve written, with the expectation that your code will return status
 information (in a prescribed manner). For example, once every 5 minutes, the
 monitoring system will call your code (perhaps kept in a Perl script), and your
 code will return the string “OK” or “NOT OK”. What your code does to determine
 which answer to return is totally up to you. Maybe it queries the outgoing
 packet count of a router via SNMP and makes sure that number has increased by
 the correct percentage since the last time it ran. Maybe it attempts to connect
 to your LDAP server to look up a test entry. Or perhaps it connects to your
 company’s web application via a proprietary API and requests a status check. All
 of this is totally up to you. The key thing here is that your code encapsulates
 a test in which a predetermined input will yield a specific predetermined
 output.
To make things more concrete, let’s look at a specific example. The Big Brother monitoring package (http://www.bb4.org
 and http://www.quest.com/bigbrother/) lets you write plug-ins
 (called “external scripts”) that are responsible for reporting back status to
 the main server each time they run. Though you could contact the server directly
 using Perl’s socket support, it is usually easier to do this (even from Perl) by
 calling the bb command with the right
 arguments:
bb machine_name color_code_for_display status_message
system("bb mymachine green everything_groovy")
If you don’t want to do this by hand, there is a third-party module called
 BigBrother.pm,
 available at http://www.deadcat.net, that can make writing Big
 Brother plug-ins from within Perl easier.
Virtually all of the extension mechanisms we’ll see in this section are
 variations on this theme. Let’s take a quick tour of three open source
 monitoring packages to see how this plays out.
Note
Two notes about the selection of monitoring packages:
	There are several good open source monitoring packages out there.
 The ones discussed here were selected because, as of this writing,
 they are under active development and have vibrant user communities.
 Others, such as Spong and Big
 Sister, are also worth looking at, but their development
 seems to have stalled. Be sure to factor this into your
 investigation when evaluating potential systems to use.

	This tour includes only open source packages (not any of the fine
 commercial products available) because they offer the lowest initial
 monetary impediment to implementation. The same principles shown
 here for extending an open source package apply to the commercial
 packages as well.

Xymon

Xymon, formerly known as “Hobbit” is a
 descendant of Big Brother that attempts to offer good legacy compatibility.
 As a result, it too has a bb command that
 can be used just like in our earlier example.

Mon

Mon describes
 itself as “fundamentally a scheduler which executes the monitors (each test a specific
 condition), and calls the appropriate
 alerts if the monitor fails.” Each monitor is essentially a separate program
 or script, so extending the basic system is easy. The main configuration
 file, mon.cf, lists the programs to be run and the
 arguments to be passed to them. The program then signals success to Mon by
 exiting with a status of 0, the standard
 shell return code for success—or, if things didn’t go so well, it exits with
 a different status to indicate that something has gone wrong. It can also
 print out more detail, the first line of which Mon treats as a summary of
 the problem.
This is all very simple to code, which is one of the reasons that Mon has
 built up a following of people who have written monitors for all sorts of
 services and devices. There’s also room for greater complexity within this
 simple framework. Each time a monitor is run, Mon hands it data about
 previous runs through environment variables (e.g., MON_LAST_SUCCESS for the time of the last successful
 run, MON_LAST_OUTPUT for the
 text last output by the monitor, and so on). Perl scripts can access this
 data with code similar to this:
my $lastfailure = $ENV{MON_LAST_FAILURE};
With this sort of data, the monitor script can make much more
 sophisticated decisions about what tests to run and how to react to the
 current condition.

Nagios

Nagios is the most sophisticated of the monitoring packages discussed here.
 Luckily, the basic plug-in interface mirrors that of Mon in that Nagios
 expects a return code based on the success of the test and a line of output
 to provide more information. The possible return codes are documented in
 Nagios’s plug-in documentation (this
 is the one package amongst all the ones mentioned here that actually has
 plug-in documentation).
Nagios does have stricter rules about how Perl plug-ins have to be coded
 (largely due to its embedded Perl interpreter environment) than the other
 packages, but these rules are excellent guidelines for coding plug-ins for
 any package. For example, plug-in authors are responsible for making sure
 their plug-ins properly time out. This keeps a plug-in from gumming up the
 works should the service it is testing hang the test connection forever. It
 is well worthwhile reading the plug-in documentation even if you don’t plan
 to use Nagios.

What’s Left?

With the probing, display, and framework components all set, you have most of a
 simple network-monitoring system built. The other piece, which can be as simple or
 as complex as you want, is the analysis/notification mechanism. This is the code
 that looks at the results of the framework and decides when and how to let you know
 about problems. We talked in depth about these elements earlier in Chapters
 8 and 10, so be sure to refer to
 those chapters when you are ready to tackle the final piece of this puzzle.

Module Information for This Chapter

	
 Module

 	
 CPAN ID/URL

 	
 Version

	

 Net::Ping

 	
 Bundled with Perl

 	
	

 Net::Ping::External

 	
 COLINM

 	
 0.11

	

 Win32::PingICMP

 	
 TEVERETT

 	
 0.02

	

 Net::Netmask

 	
 MUIR

 	
 1.9012

	

 NetPacket

 	
 ATRAK

 	
 0.04

	

 Net::Packet

 	
 GOMOR

 	
 2.04

	

 Net::Arping

 	
 RIIKI

 	
 0.02

	

 SNMP::Info

 	
 MAXB

 	
 0.9.0

	

 Nmap::Scanner

 	
 MAXSHUBE

 	
 0.8.0

	

 Text::Autoformat

 	
 DCONWAY

 	
 1.14.0

	

 Array::PrintCols

 	
 AKSTE

 	
 2.1

	

 Text::FormatTable

 	
 DSCHWEI

 	
 1.01

	

 Text::BarGraph

 	
 KBAUCOM

 	
 1.0

	

 GD::Graph

 	
 MVERB

 	
 1.43

	

 GD::Graph3d

 	
 WADG

 	
 0.63

	

 GraphViz

 	
 LBROCARD

 	
 2.02

	

 RRDs

 	
 Bundled with RRDtool

 	
	

 Test::More

 	
 Bundled with Perl

 	
	

 Test::Harness

 	
 Bundled with Perl

 	

References for More Information

http://www.packetfactory.net/projects/nemesis/ is the nemesis home page.
Silence on the Wire: A Field Guide to Passive Reconnaissance and
 Indirect Attacks, by Michal Zalewski (No Starch Press), is an entire book on finding
 information about a network and its hosts without directly probing for it.
http://www.tcpdump.org is the home page for
 tcpdump and the libpcap
 library.
http://www.winpcap.org is the home page for the Windows port of
 libpcap.
http://www.insecure.org/nmap/index.html is the Nmap Security
 Scanner home page.
http://rrdtool.org is a pointer to the RRDtool home page.
http://poe.perl.org is the POE home page.
Randal Schwartz’s November and December 2003 columns on checking a website’s health using
 Test::More
 can be found in the Linux Magazine’s archive at
 http://www.linux-mag.com/magazine/backissues.

 Perl Testing: A
 Developer’s Notebook
 , by Ian Langworth and chromatic (O’Reilly), is a useful guide to Perl
 testing modules and options.
Edward Tufte has written and self-published (as of this writing) four superb books on the
 presentation of information: The Visual Display of Quantitative
 Information, Envisioning Information,
 Visual Explanations: Images and Quantities, Evidence and
 Narrative, and Beautiful Evidence. They are well
 worth the read for anyone who has to take data, understand it, and present it to
 others.

Chapter 14. Experiential Learning

My apologies for foisting such a buzzword-compliant chapter title on you. I didn’t
 want your boss to see you reading something called “SysAdmins Just Want to Have Fun,”
 which probably would have been a better title for this chapter. If you
 are the boss (and you didn’t come up through the sysadmin
 ranks), I have a secret to share—just don’t tell upper management (and if you are upper
 management, feel free to tell anyone you’d like, because no one will believe
 you).
This secret revolves around something I wrote in the foreword of Thomas Limoncelli’s book
 Time Management for System
 Administrators
 (O’Reilly):
By and large, sysadmins find what they do to be fun. All of this tinkering,
 integrating, installing, building, reinstalling, puttering, etc., is fun. So fun, in
 fact, that they work all day and then go home and do it some more.
I once shared a bus ride with a professional chef who told me she hated to cook on
 her days off. “Postmen don’t like to take long walks when they come home from work”
 is how she put it. Most of the sysadmins I know have never heard of this idea.
 You’ll find them (and me, as my spouse would be quick to point out) curled up at
 home in front of a laptop “mucking about” virtually all the time. The notion of
 “play” and “work” are best described as a quantum superposition blur for a
 sysadmin....

The vast majority of the people I respect who are doing system administration in some
 guise or another (and enjoy it) seem to get tremendous value out of their play time.
 Things they learn from their experimentation outside of work invariably get funneled
 back into their work lives. They are more efficient at work because they already have
 both the right and the wrong answers to many problems at hand.
This chapter provides a small sampling of examples where playing with something fun
 (for a sysadmin) can yield real rewards in the work world. While I won’t be making an
 argument for more play time at work,[131] perhaps this chapter will help you form your own opinions on the
 subject.
Playing with Timelines

In January 2008, the following message was posted to the
 SAGE mailing list (lightly excerpted and anonymized, but
 reprinted with permission):
From: ...
Date: January 9, 2008 2:10:14 PM EST
Subject: Re: [SAGE] crontabs vs /etc/cron.[daily,hourly,*] vs.
/etc/cron.d/
On a more specific aspect of this (without regard to best practice), does
 anyone know of a tool that converts crontabs[132] into Gantt charts?
I’ve always wanted to visualize how the crontab jobs (on a set of machines)
 line up in time. Each entry would need to be supplemented with an estimate of
 the duration of the job (3 minutes vs. 3 hours).
JM

This seemed like a fun sysadmin-related visualization project, so I decided to see
 how hard it would be to undertake. Let me share what I learned along the way. We’ll
 tackle this challenge in three parts: parsing crontab files,
 displaying a timeline, and writing some XML output that will be used to generate
 that timeline. At the end we’ll put the pieces together and show the results.
Task One: Parsing crontab Files

The first subtask that comes up with this project is the parsing and interpretation of
 a standard crontab file. Reading in the file and having our
 program make sense of the individual fields is easy enough, but having a
 crontab file sliced and diced into some data structure
 or object doesn’t actually help us all that much, because our end goal is to be
 able to plot what happens when cron interprets those
 pieces. We’ll need some way to determine all of the times
 cron would have run a particular line during some set
 time period.
For example, let’s say we take a very basic crontab file
 like this:[133]
 45 * * * * /priv/adm/cron/hourly
 15 3 * * * /priv/adm/cron/daily
 15 5 * * 0 /priv/adm/cron/weekly
 15 6 1 * * /priv/adm/cron/monthly
The first line tells us that at 45 minutes past the hour the
 /priv/adm/cron/hourly program is run, so we’ll be
 plotting that event at 1:45 a.m., 2:45 a.m., 3:45 a.m., and so on. The second
 line indicates that at 3:15 a.m. each day we run
 /priv/adm/cron/daily, and so on.
Figuring all of this out is doable, but truth be told, kind of a pain.
 Luckily, we’ve been spared that effort because Piers Kent has written and published a module called
 Schedule::Cron::Events
 that makes this really easy. It calls upon another module (Set::Crontab by Abhijit Menon-Sen) to parse a crontab file line
 and then provides a simple interface for generating the discrete events we’ll
 need.
To use Schedule::Cron::Events, we’ll need
 to pass it two pieces of information: the line from
 the
 crontab file we care about and some indication of when we’d
 like Schedule::Cron::Events to begin calculating the events the file
 line creates:
my $event = Schedule::Cron::Events($cronline, Seconds => {some time});
(where {some
 time} is provided using the
 standard convention of describing time as the number of seconds that have
 elapsed since the epoch).
Once we’ve created that object, each call to $event->nextEvent() returns back all of the fields we’d
 need to describe a date (year, month, day, hour, minutes, second).

Task Two: Displaying the Timeline

Creating a pretty timeline is a nontrivial undertaking, so let’s let look for
 another prebuilt solution. There are some decent Perl timeline
 representation (Data::Timeline) and
 display (Graph::Timeline) modules
 available, but there’s one way to create timelines that is so spiffy that I’m
 actually going to forsake using Perl for it. The SIMILE project at MIT created a tool called
 Timeline that it describes as a “DHTML-based AJAXy widget
 for visualizing time-based events.” You can find more info on it at http://simile.mit.edu/timeline/.
To make use of this widget we need to create two files: an HTML file that
 references/initializes/displays the widget from MIT and an XML file containing
 the events we want displayed. That last requirement will be the task for the
 next section. In the meantime, let me show you the HTML file in question. I
 should mention that my JavaScript skills are larval at best, so most of the
 following is cribbed from the tutorial found at the SIMILE. If this is all
 gobbledygook to you, feel free to just read the comments (marked as <!-- --> and //):
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html>
 <head>
 <!-- Reference the widget -->
 <script src="http://simile.mit.edu/timeline/api/timeline-api.js"
 type="text/JavaScript">
 </script>

 <script type="text/JavaScript">

 function onLoad() {
 // tl will hold the timeline we're going to create
 var tl;
 // get ready to specify where we'll get the data
 var eventSource = new Timeline.DefaultEventSource();

 // Create a timeline with two horizontal bars, one displaying
 // the hours and the other the days that contain the hours.
 // Note: both bands are set to display things relative
 // to my time zone (-5 GMT).
 var bandInfos = [
 Timeline.createBandInfo({
 eventSource: eventSource,
 timeZone: −5, // my timezone in Boston
 width: "70%",
 intervalUnit: Timeline.DateTime.HOUR,
 intervalPixels: 100 }),
 Timeline.createBandInfo({
 timeZone: −5,
 width: "30%",
 intervalUnit: Timeline.DateTime.DAY,
 intervalPixels: 100 }),
];

 // keep the two bands in sync, highlight the connection
 bandInfos[1].syncWith = 0;
 bandInfos[1].highlight = true;

 // create a timeline and load its data from output.xml
 tl = Timeline.create(document.getElementById("cron-timeline"), bandInfos);
 Timeline.loadXML("output.xml", function(xml, url) {
 eventSource.loadXML(xml, url); });
 }

 // boilerplate code as specified in the tutorial
 var resizeTimerID = null;
 function onResize() {
 if (resizeTimerID == null) {
 resizeTimerID = window.setTimeout(function() {
 resizeTimerID = null;
 tl.layout();
 }, 500);
 }
 }
 </script>
 <title>My Test Cron Timeline</title>
 </head>

 <!-- run our custom code upon page load/resize -->
 <body onload="onLoad();" onresize="onResize();">

 <!-- actually display the timeline here in the document -->
 <div id="cron-timeline"
 style="height: 150px;
 border: 1px solid #aaa">
 </div>

 </body>
</html>
Rather than repeating the explanations for each part of this file here, I’ll
 just refer you to the Timeline
 tutorial
 instead.
The one last non-Perl thing I need to show you to complete this subtask is an
 example of the event data we’ll need (in a file called
 output.xml). This will give you an idea of what data
 the widget is expecting us to provide. Here’s an example that assumes we’re
 showing the cron events for January 2008:
<data>
 <event start="Jan 01 2008 00:45:00 EST" title="/priv/adm/cron/hourly"></event>
 <event start="Jan 01 2008 01:45:00 EST" title="/priv/adm/cron/hourly"></event>
 <event start="Jan 01 2008 02:45:00 EST" title="/priv/adm/cron/hourly"></event>
 <event start="Jan 01 2008 03:45:00 EST" title="/priv/adm/cron/hourly"></event>
 ...
 <event start="Jan 01 2008 03:15:00 EST" title="/priv/adm/cron/daily"></event>
 <event start="Jan 02 2008 03:15:00 EST" title="/priv/adm/cron/daily"></event>
 <event start="Jan 03 2008 03:15:00 EST" title="/priv/adm/cron/daily"></event>
 <event start="Jan 04 2008 03:15:00 EST" title="/priv/adm/cron/daily"></event>
 ...
 <event start="Jan 06 2008 05:15:00 EST" title="/priv/adm/cron/weekly"></event>
 <event start="Jan 13 2008 05:15:00 EST" title="/priv/adm/cron/weekly"></event>
 <event start="Jan 20 2008 05:15:00 EST" title="/priv/adm/cron/weekly"></event>
 <event start="Jan 27 2008 05:15:00 EST" title="/priv/adm/cron/weekly"></event>
 <event start="Jan 01 2008 06:15:00 EST" title="/priv/adm/cron/monthly"></event>
</data>

Task Three: Writing Out the Correct XML File

So far we’ve vanquished the tricky parts of the project having to do with
 determining what data we need and what will consume this data. The last task is
 to make sure we format the data in a workable form. In this case we’re looking
 to create an XML file with specific tags and contents. As you saw in Chapter 6, there are a whole bunch of
 ways to generate XML files with Perl. We’ll repeat a technique we saw in that
 chapter and press
 XML::Writer (now maintained by Joseph Walton) into service. This requires code something like the
 following:
use IO::File;
use XML::Writer;

set up a place to put the output
my $output = new IO::File('>output.xml');

create a new XML::Writer object with some pretty-printing turned on
my $writer
 = new XML::Writer(OUTPUT => $output, DATA_MODE => 1, DATA_INDENT => 2);

create a <sometag> start tag with the given attributes
$writer->startTag('sometag', Attribute1 => 'value', Attribute2 => 'value');

just FYI: we could leave out the tag name here and it will try to
figure out which one to close for us
$writer->endTag('sometag');

$writer->end();
$output->close();

Putting It All Together

Now that we have all of the pieces in place, let’s see the final script. I’ll
 only explicate the parts of the code that are new to the discussion.
First, we load the modules we need:
use Schedule::Cron::Events;
use File::Slurp qw(slurp); # we'll read the crontab file with this
use Time::Local; # needed for date format conversion
use POSIX qw(strftime); # needed for date formatting
use XML::Writer;
use IO::File;
Next, we get the info we’ll need for
 Schedule::Cron::Events ready. We’re going to
 have to tell Schedule::Cron::Events where to
 begin its event iteration—basically, we have to pick a start date. It seems like
 it might be useful to display a timeline showing the events for the current
 month, so let’s calculate the seconds from the epoch at the beginning of the first day of the current
 month:
my ($currentmonth, $currentyear) = (localtime(time()))[4,5];
my $monthstart = timelocal(0, 0, 0, 1, $currentmonth, $currentyear);
We then read the crontab file into memory and start
 writing our XML output file:
my @cronlines = slurp('crontab');
chomp(@cronlines);

my $output = new IO::File('>output.xml');
my $writer
 = new XML::Writer(OUTPUT => $output, DATA_MODE => 1,
 DATA_INDENT => 2);

$writer->startTag('data');
Now let’s do the actual work and iterate over the contents of the
 crontab file. As we iterate, we need to enumerate all
 of the events produced by each line we find. Schedule::Cron::Events is happy to provide
 nextEvent()s ad
 infinitum, so we’ll have to pick an arbitrary place in time to
 stop. As we’re planning on our timeline showing events for the month, our code
 stops asking for a nextEvent() as soon as
 that call returns something not in the current month. We hand each line in the
 crontab file that is not a comment or a variable
 definition to Schedule::Cron::Events, with a
 start time of the beginning of the current month. Then we iterate for as long as
 we’re still in the current month:
foreach my $cronline (@cronlines) {
 next if $cronline =~ /^#/; # skip comments
 next if $cronline =~ /^\s*\w+\s*=/; # skip variable definitions
 my $event
 = new Schedule::Cron::Events($cronline, Seconds => $monthstart);

 my @nextevent;
 while (1) {
 @nextevent = $event->nextEvent;

 # stop if we're no longer in the current month
 last if $nextevent[4] != $currentmonth;
For each event, we’re going to want to generate an <event></event> element with the
 start attribute showing the time of that event and the title attribute listing
 the command cron would run at that time. We’ll be calling
 the strftime() function from the POSIX module to get the date formatted the way the
 Timeline widget likes it. After this iteration we close the outer tag in the XML
 file, stop XML::Writer’s processing, and
 close the file itself:
$writer->startTag('event',
 'start' => strftime('%b %d %Y %T %Z',@nextevent),
 'title' => $event->commandLine(),
);
 $writer->endTag('event');
 }
}

$writer->endTag('data');
$writer->end();
$output->close();
We could add an <end></end> attribute to this element
 if we knew how long each event would last, but unfortunately there is no easy
 way to know or estimate the length of time a particular
 cron job takes (as suggested in the email that started
 this section). However, you could imagine writing more code to analyze past
 crontab file logs to try to guess that
 information.
So, how does this look? Figure 14-1 shows
 a screenshot from the widget when loaded into a browser using our newly created
 data file.
[image: Timeline from a simple crontab]

Figure 14-1. Timeline from a simple crontab

This is even cooler in person because you can scroll back and forth in the
 month.
I realize that this code doesn’t fulfill the original correspondent’s wishes,
 for two reasons:
	It’s not a Gantt chart (that requires analyzing the different
 cron jobs and seeing how they connect).

	It doesn’t show multiple machines overlaid.

Defect #1 turns out to be pretty hard to remedy. As another person pointed out
 in a followup to this message, dependency tracking in this context takes you
 into the fairly complex world of batch processing, and that’s not something we
 can address in this chapter. Defect #2, on the other hand, is pretty easy to
 fix; it just requires opening more than one crontab file
 and doing the same work on each file.
Even with these defects, the diagram seemed pretty spiffy to me. I wanted to
 see what would happen if I fed the script real-world data from another site, so
 I contacted the original message writer, and he was kind enough to send me a set
 of crontab files from his workplace. Running my code
 against one of the crontab files (and changing the HTML
 file that displayed it so it had a larger display area) yielded the results in
 Figure 14-2, which the
 correspondent described as “Sweet!”
[image: Timeline from a real-world crontab]

Figure 14-2. Timeline from a real-world crontab

Summary: What Can We Learn from This?

To complete this project, we needed to learn:
	How to deal with crontab files

	How to work with SIMILE’s Timeline widget (this will come in handy at
 work the next time you need to visualize a timeline of events—perhaps
 when documenting an equipment failure, or while you’re planning for some
 project)

	Some JavaScript

(Not to mention continuing to hone skills centered around problem
 decomposition.)

[131] Google’s 20% time, anyone?

[132] crontab files are a Unix-specific mechanism for
 specifying that certain tasks on the system should be run at certain set
 times or intervals. Run man 5 crontab
 or man crontab for more
 information.

[133] This is the basic crontab format. The modules we
 are using expect that format, rather than some of the newer extensions.
 For example, if you include a username before the command (as some
 formats allow), that will be interpreted as the command line.

Playing with Geocoding

Wikipedia (as of this writing) defines geocoding as “the process of finding associated geographic
 coordinates (often expressed as latitude and longitude) from other geographic data,
 such as street addresses, or zip codes (postal codes).” It also can refer to the
 process of attempting to geographically locate an IP address. Geocoding is one of
 those activities that is entertaining because it knits together the virtual and the
 physical world.
Geocoding from Postal Addresses

Let’s start with one of the standard geocoding tasks: given a postal address of some sort, is it
 possible to locate that address on the planet such that we could plot it on a
 map, etc.? Doing geocoding well (where “well” means “could use it for commercial
 applications”) is actually fairly difficult for a number of reasons, the most
 difficult being that all the data is suspect. Postal addresses can be ambiguous,
 the geographical data is sometimes incomplete/incorrect, and both man and nature
 are always changing the surface features of the planet.
Note
Disclaimer 1: I have no relationship, commercial or otherwise, to the
 various service providers mentioned in this chapter beyond occasionally
 paying for the cheaper web services so I can play with them.
Disclaimer 2: Often when people in the U.S. talk about geocoding, they
 really mean “North America geocoding” and are minimally concerned with
 finding points outside of the U.S. Setting aside the standard
 U.S.-ethnocentrism, this phenomenon is partly a function of the availability
 of data. The U.S. government makes a passable data set available for free;
 most other countries don’t have an equivalent. If you are interested in
 non-U.S. geocoding, the people at
 NAC Geographic Products, Inc.
 have a relatively inexpensive commercial offering that may suit your
 needs.

If we leave out the expensive for-pay geocoding services, there are still a
 few methods available to us. The first one Perl people tend to turn to is
 geocoder.us, which provides not only a free set of web
 services but also the
 Geo::Coder::US module on CPAN (should you
 desire to set up your own server). geocoder.us offers
 several different flavors of web service, including XML-RPC, SOAP, REST, and “plain-text” REST. We’re going to pick XML-RPC to start
 with because the code to use it is very simple:
use XMLRPC::Lite;

my $reply = XMLRPC::Lite
 -> proxy ('http://rpc.geocoder.us/service/xmlrpc')
 -> geocode('1005 Gravenstein Highway North, Sebastopol, CA')
 -> result;

foreach my $answer (@{$reply}){
 print 'lat: ' . $answer->{'lat'}
 . ' long: ' . $answer->{'long'} . "\n";
}
First we load the
 XMLRPC::Lite module that is bundled in
 the
 SOAP::Lite distribution. The proxy() method (which, despite its name, doesn’t
 have anything to do with a web proxy or any other kind of proxy) is used to
 specify where the query will be directed. We make our remote call out to that
 server using the geocode() method and ask
 XMLRPC::Lite to return the result.
The code for printing the result may look a little more complex than
 necessary. geocode()
 returns a list of hashes, one hash per result of the query. Some queries can
 yield multiple answers (e.g., if we asked for “300 Park, New York, NY” there
 might be a 300 Park Street, a 300 Park Drive, and a 300 Park Lane). There’s only
 one Gravenstein Highway North in Sebastopol, so it would have been easier (but
 less robust) to write:
print 'lat: ' . $reply->[0]->{'lat'} .
 'long: ' . $reply->[0]->{'long'} . "\n";
If you decide for some reason that you don’t like the results you receive from
 geocoder.us, there are a number of
 other cheap geocoding services available, including Yahoo!’s REST-based
 geocoding API (for less than 5000 queries a day). Let’s look at that now. To use
 Yahoo!’s service, we need to apply for a free application ID at http://developer.yahoo.com/wsregapp/. With that ID, we can then use
 the API described at http://developer.yahoo.com/maps/rest/V1/geocode.html. Here’s some
 sample code to do that:
use LWP::Simple;
use URI::Escape;
use XML::Simple;

usage: scriptname <location to geocode>

my $appid = '{your API key here}';
my $requrl = 'http://api.local.yahoo.com/MapsService/V1/geocode';

my $request
 = $requrl . "?appid=$appid&output=xml&location=" . uri_escape($ARGV[0]);

my $response = XMLin(get($request), forcearray => ['Result']);

foreach my $answer (@{ $response->{'Result'} }) {
 print "Lat: $answer->{Latitude} Long: $answer->{Longitude} \n";
}
One of the pleasant properties of REST interfaces is that they are really easy
 to query. If you know how to retrieve a web page in Perl using a GET or PUT, you
 can use a REST interface. In the preceding example, we constructed the URL by
 taking the base Yahoo! REST request URL and adding a few parameters: the
 required appid, our preferred output format, and a URL-encoded
 version of the location to query. This gets handed to LWP::Simple’s get() routine,
 the output of which we immediately parse using XML::Simple.
If the geocode server returned a single response,
 XML::Simple would ordinarily hand us back a
 hash that contained a single hash. If the server returned several
 answers—remember the ambiguous address
 case mentioned earlier—it would provide a hash that contained a list of hashes
 (one for each answer). When it came time to display the results, we could have
 written code to distinguish between the single-answer data structure and the
 multianswer data structure using ref() and
 act accordingly, but that’s too much work. Instead, we take the easy way out and
 ask XML::Simple (via forcearray=>['Result'], as we saw in
 Chapter 6) to always hand us back a
 hash with a list of hashes. The code for results output then gets to do an easy
 foreach walk over that list.
Note
If this code seemed a little too complex for you, there’s an even a
 simpler way to do it courtesy of the Geo::Coder::Yahoo
 module, by Ask Bjørn Hansen. This module has exactly two calls in it, one
 to create the search object and another to call the Geocoding API. The
 latter call returns a list of hashes, with no XML parsing required. Use
 whichever one suits your fancy.

Now that we’ve seen a couple of ways to turn an address into its corresponding
 latitude and longitude, what can we do with that information? The obvious answer
 to this question is to plot the information on a map. There are a number of good
 web services for doing this, including
 Google Maps, Yahoo! Maps,
 and TerraServer. For fun, you can generate KML or KMZ (compressed KML)
 files for
 Google Earth and fly between
 your data points.
The process of plotting geocoded data onto one of these maps usually involves
 fiddling with HTML and that icky JavaScript stuff. In Perl, we luck out for
 Google Map creation because Nate Mueller has written an HTML::GoogleMaps module that makes the process really easy.
 Here’s a sample CGI script that displays a map with a labeled marker pointing at
 the O’Reilly mothership:
use HTML::GoogleMaps;

'1005 Gravenstein Highway North, Sebastopol, CA'
though we could also specify the address and let the module call
Geo::Coder::Google for us
my $coords = [−122.841571, 38.411239];

my $map
 = HTML::GoogleMaps->new(key => '{your API KEY HERE}');
$map->center($coords); # center it on the address
$map->v2_zoom(15); # zoom closer than the default

add a marker at the address using the given html as a label
(and don't change the size of that label)
$map->add_marker(
 point => $coords,
 noformat => 1,
 html => "O'Reilly HQ"
);

add some map controls (zoom, etc.)
$map->controls('large_map_control', 'map_type_control');

create the parts of the map
my ($head, $map_div) = $map->onload_render;

output the HTML (plus CGI-required Content-Type header) for that map
print "Content-Type: text/html\n\n";
print <<"EOH";
<html>
 <head>
 <title>Otter Demo</title>
 $head
 </head>
EOH

print
 "<body onload=\"html_googlemaps_initialize()\" onunload=\"GUnload()\">
 $map_div </body> </html>\n";
It produces output that looks like Figure 14-3.
As with the Yahoo! service, to use Google Maps you’ll have to apply for an API
 key from Google at http://code.google.com/apis/maps/signup.html.
There’s much more that can be done with Google Maps and the other services, so
 be sure to check out the respective documentation for these services and
 products.
[image: Sample map generated with HTML::GoogleMaps]

Figure 14-3. Sample map generated with HTML::GoogleMaps

Geocoding from IP Addresses

It seems eminently doable that one could take a postal address and look it up
 on some list some place to find its coordinates. That seems like something you
 can picture rows and rows of clerks in little green visors doing in a big,
 nondescript office somewhere in the Midwest. It sounds a lot more magical if I
 tell you, “Give me the name of your computer on the Internet and I can make a
 guess as to where that computer is located.” There’s something about crossing
 over the virtual/physical divide I mentioned earlier that makes this task seem
 all the more impressive.
The first step of the process is to turn the DNS fully qualified domain name
 into an IP address. That’s straightforward with the Net::DNS module we’ve used
 throughout the book:
use Net::DNS;

my $resolv = Net::DNS::Resolver->new;

my $query = $resolv->search($ARGV[0]);

die 'No response for that query' if !defined $query;

only print addresses found in A resource records
foreach my $resrec ($query->answer){
 print $resrec->address . "\n" if ($resrec->type eq 'A');
}
Chances are you won’t be geocoding any names that have more than one IP
 address associated with them, but this code still tries to give you back all of
 the addresses returned in response to your query. Note that if you plan to do
 this sort of lookup many times (e.g., when parsing a log file), you’ll want to
 maintain a cache of your results like we did in Chapter 11. If
 you plan to process massive amounts of data, you’ll probably want to look into
 some of the asynchronous DNS libraries, like
 adns
 , that handle parallel queries well. adns can be called from Perl using the Net::ADNS or EV::ADNS
 modules.
Now that we have an IP address in hand, let’s use a different web service to
 get the data we need. There are a few fairly cheap (for the amount of data I
 push through them) providers. The following examples use the service provided
 by MaxMind, because that’s the one I’ve played with the most.[134] You can find more info on this service at http://www.maxmind.com/app/ip-location.
MaxMind and several other providers offer both a web services interface to
 their data and a database subscription that allows you to download the data to
 your server for faster lookups. We’ll look at examples of both methods here
 because the code required for each is really small.
For MaxMind’s web service, we just need to construct a simple HTTP GET (or
 PUT, if that’s your fancy), similar to what we did for the Yahoo! API earlier in
 this chapter. The main difference between that example and this one is the
 format returned. Here we get Comma/Character-Separated Values (CSV) results instead of something in XML format:
use LWP::Simple;
use Text::CSV_XS; # this is the faster version of Text::CSV

usage: scriptname <IP address to geocode>

my $maxmkey = '{your API key here}';

my $requrl = "http://maxmind.com:8010/f?l=$maxmkey&i=$ARGV[0]";

my $csvp = Text::CSV_XS->new(); # (or Text::CSV->new())

$csvp->parse(get($requrl));

my ($country, $region, $city, $postal,
 $lat, $lon, $metro_code, $area_code,
 $isp, $org, $err
) = $csvp->fields();
The non-web services version of this service requires downloading a database
 and then pointing MaxMind’s module at it. The data is available in an optimized
 binary format or CSV format for importing into a SQL database. Here’s how to use
 the binary version:
use Geo::IP;

my $gi = Geo::IP->open('GeoIPCity.dat', GEOIP_STANDARD);

my $record = $gi->record_by_name($ARGV[0]);

print join("\n",
 $record->country_code, $record->country_code3, $record->country_name,
 $record->region, $record->region_name, $record->city,
 $record->postal_code, $record->latitude, $record->longitude,
 $record->time_zone, $record->area_code, $record->continent_code,
 $record->metro_code);
OK, one last geocoding-related fun project for this section—if we geocode an
 IP address associated with a U.S. address and get back a zip code, it is easy to
 provide the current weather forecast for that zip code. I know of at least four
 U.S. weather services that are free for noncommercial use:
	NOAA’s National Weather Service has a SOAP-based service (details
 at http://www.weather.gov/xml/).

	Weather.com provides an XML-based service (details at http://www.weather.com/services/xmloap.html). However, this
 service comes with a whole boatload of requirements you have to satisfy if you want to use it on
 your website.

	Yahoo! provides weather information via RSS (see http://developer.yahoo.com/weather/). You’ll need to parse
 the RSS format using something like
 XML::RSS (or even
 XML::Simple).

	http://www.rssweather.com also provides weather info
 via RSS.

This project lets us bring together what we learned in the other sections. The
 following is a CGI script that attempts to determine the zip code for the
 connecting IP address’s location and then queries Yahoo! for the current weather
 conditions and forecast:
use LWP::Simple;
use Text::CSV_XS;
use XML::RSS;

my $maxmkey = '{your API key here}';
my $requrl = "http://maxmind.com:8010/f?l=$maxmkey&i=$ENV{'REMOTE_ADDR'}";

my $csvp = Text::CSV_XS->new();

$csvp->parse(get($requrl));
my ($country, $region, $city, $postal,
 $lat, $lon, $metro_code, $area_code,
 $isp, $org, $err
) = $csvp->fields();

print "Content-Type: text/html\n\n";
print << "EOH";
 <html><head><title>Otterbook test</title></head>
 <body>
EOH
print "<p>Hi there " . $ENV{'REMOTE_ADDR'} . "!</p>\n";

if ($postal) {
 my $rss = new XML::RSS;
 $rss->parse(get("http://xml.weather.yahoo.com/forecastrss?p=$postal"));
 print '<h1>' . $rss->{items}[0]->{'title'} . "</h1>\n";
 print $rss->{items}[0]->{'description'}, "\n";
}
print "</body></html>\n";

Summary: What Can We Learn from This?

In order to complete this project, we needed to learn:
	A bit more about XML-RPC (useful for all sorts of web services)

	How to work with several geocoding services (likely to come in handy
 the next time your boss asks, “So... what regions of the country and
 world do we get web hits from?” or the next time you want to set up a
 service that redirects people to their closest local mirrors).

	How to work with APIs from both Yahoo! and Google to retrieve maps,
 address info, weather reports, and more on demand.

[134] A small piece of trivia: MaxMind was founded by noted Perl hacker
 T. J.
 Mather.

Playing with an MP3 Collection

I’ve had the pleasure of getting to know many people who do system administration
 over the years. As I sit and talk with people at conferences like LISA (the Large Installation
 System Administration Conference, see http://www.usenix.org for
 details), one thing I’ve found in common amongst this crowd is their (sometimes
 voracious) love of music. Many have huge (legal) music collections that they have
 ripped to MP3 or Ogg/FLAC/Shorten format.[135]
Many of us baby our digital collections, making sure each file has the appropriate
 tags (if just to keep our portable MP3 players’ displays tidy). Some of us treat
 this pile of sound as another interesting data source to play with. Here are a few
 resources I’ve used in that process:
For operating on individual files, there are two modules in heavy use: MP3::Info, originally written by Chris Nandor and now maintained by Dan Sully, and Ilya Zakharevich’s MP3::Tag (which actually uses MP3::Info for certain functions). The latter is more complete when it
 comes to writing information back to MP3 files, but it is an interesting use of
 MP3::Info that I want to explore here.
A key function from that module is the get_mp3info() call. It takes a filename and returns a reference to a
 hash containing information about that file. For example, this:
use MP3::Info;

my $mp3 = get_mp3info($file);
will let you access some basic info about the file, like:
$mp3->{SECS}; # total number of seconds of audio
$mp3->{BITRATE}; # bitrate in kbps
There’s a similar call, get_mp3tag(), which is
 a little more fun. With that, we can write:
my $mp3 = getmp3tag($file);
and see something like this:
DB<1> x $mp3

0 HASH(0x439c00)
 'ALBUM' => 'Feel Good Ghosts'
 'ARTIST' => 'Cloud Cult'
 'COMMENT' => 'ISRC US 786 08 00002'
 'GENRE' => 'Other'
 'TAGVERSION' => 'ID3v1.1 / ID3v2.3.0'
 'TITLE' => 'Everybody here is a Cloud'
 'TRACKNUM' => 2
 'YEAR' => 2008
or:
DB<1> x $mp3

0 HASH(0x95a6dc)
 'ALBUM' => 'Little Creatures'
 'ARTIST' => 'Talking Heads'
 'COMMENT' => '6F091209'
 'GENRE' => 'rock/pop'
 'TAGVERSION' => 'ID3v2.3.0'
 'TITLE' => 'Road To Nowhere'
 'TRACKNUM' => '9/9'
 'YEAR' => 1985
MP3::Info lets you set tags on individual files
 too, but that’s not the interesting part.
For me, it becomes more interesting when we throw a little File::Find::Rule into the mix. There’s a File::Find::Rule::MP3Info
 module that lets you write code like this (to use the examples from the
 documentation):
use File::Find::Rule::MP3Info;

 # Which mp3s haven't I set the artist tag on yet?
 my @mp3s = find(mp3info => { ARTIST => '' }, in => '/mp3');

 # What have I got that's 3 minutes or longer?
 @mp3s = File::Find::Rule::MP3Info->file()
 ->mp3info(MM => '>=3')
 ->in('/mp3');

 # What have I got by either Kristin Hersh or Throwing Muses?
 # I'm sometimes lazy about case in my tags.
 @mp3s = find(mp3info =>
 { ARTIST => qr/(kristin hersh|throwing muses)/i },
 in => '/mp3');
I won’t show you a full project for this section, but I’m hoping I’ve already
 started your imagination running about the sorts of scripts that can be written to
 do things like create playlists, find badly tagged files, etc.
Summary: What Can We Learn from This?

This project should have taught you:
	How to work with MP3 files (not particularly utilitarian, but
 hey).

	How to get even more familiar with
 File::Find::Rule. This subject, plus
 File::Find::Rule::Permissions,
 which lets you write code like this:
Which files can the 'nobody' user read in the current directory?
 @readable = File::Find::Rule::Permissions->file()
 ->permissions(isReadable => 1, user => 'nobody')
 ->in('.');
inspired me to explore the File::Find::Rule module, leading to its inclusion in
 Chapter 2 (and use in my work).

[135] I’m fond of saying that the disposable income of a sysadmin coupled with a
 lack of a drug habit can yield a pretty sizable collection.

One Final Exploration

Let’s look at one final bit of play that combines some handy knowledge of web
 scraping with some more of the geocoding/mapping material we saw earlier in this
 chapter.
To set the scene, the book you have in front of you wouldn’t be nearly as good as
 it is without the help of an entire cadre of technical reviewers (see the
 acknowledgments section of this book for further gushing about their efforts). While
 setting up the reviewing infrastructure, I noticed that the people who had
 graciously offered their time to review the text seem to be geographically diverse.
 This observation was just based on casual glances at their email addresses and the
 timestamps on the messages I received from them. Just for a lark, I asked the
 reviewers if they would enter their home locations into a wiki page for me. I was
 amazed to see just how geographically diverse they really were, and hence this
 example project was born. For this section, let’s grab the live information from
 that page and map the results.
Part One: Retrieving the Wiki Page with WWW::Mechanize

Downloading the contents of a single web page is pretty easy, as evidenced by
 the
 LWP::Simple examples earlier in this chapter.
 It gets a bit trickier, however, if that web page is protected in some fashion.
 In this particular case, the web page is on a password-protected wiki page that
 is part of the
 trac
 instance I was using to coordinate work on this book. To get to the
 page, we’re going to first have to log on by submitting the right information to
 a web form.
The tool I reach for almost exclusively when it comes to web
 scraping/crawling/etc. is the module WWW::Mechanize, by Andy Lester (and the other related modules in its orbit). I know of no better
 tool for tasks like these. Let’s take a brief look at how to use the module
 first, and then we’ll attack the password-protected page problem.
Almost all WWW::Mechanize scripts start out
 like this:
use WWW::Mechanize;

my $mech = WWW::Mechanize->new();

get() can also take a ":content_file" parameter
to save the returned information to a file
$mech->get($url);
We initialize a new object and ask it to go fetch some web page. If we have
 the necessary SSL support installed (Crypt::SSLeay or IO::Socket::SSL), we can get() pages served by both
 http and https.
If want the contents of the page we just fetched, we call:
my $pagecontents = $mech->content();
It’s not uncommon to hand the results of the content() method off to some other module to do more
 sophisticated parsing. We’ll do exactly that in the next subsection.
So far, the code has been really simple. So simple, in fact, that LWP::Simple could have handled it. Let’s take
 things to the next level:
use WWW::Mechanize;

my $mech = WWW::Mechanize->new();

$mech->get('http://www.amazon.com');
$mech->follow_link(text => 'Help');
print $mech->uri . "\n";

prints out something like:
http://www.amazon.com/gp/help/customer/display.html?ie=UTF8&nodeId=508510
What happened here? WWW::Mechanize
 retrieved the home page for Amazon.com and then found the link on the page with
 the text “Help.” It followed the link in the same way you would in a browser and
 retrieved the contents of the URL specified in the link. At this point, if we
 called $mech->content(), we’d get back
 the contents of the new page found by browsing to the selected link.
If we wanted to, we could use an even cooler feature and write something
 like:
$mech->follow_link (text_regex => qr/rates.*policies/);
or
$mech->follow_link (url_regex => qr/gourmet.*food/);
The first line of code will find and then follow the first link whose text
 matches the given regular expression. This means we can follow links in a page
 without knowing the precise text used (e.g., if each page was generated
 dynamically and had unique links). The second line of code performs a similar
 find and follow, this time based on the URL in the link.
follow_link() has a number of other options
 as well. For instance, there’s a related url =>
 'http://...' option, equivalent to the text => 'text' option, that will take a fully specified
 URL to follow. Alternatively, though this is more fragile, follow_link() can take an n => option to allow you to choose the
 Nth link on the page. All of the options mentioned so
 far can be compounded. If we wanted the third “help”-related link on a page with
 a URL that includes “forum” in its path, for example, we could write:
$mech->follow_link(text => 'help', url_regex => 'forum', n => 3);
If for some reason we wanted to just find the links on a page without
 navigating to their targets, WWW::Mechanize
 provides find_link() and find_all_links() methods that take the same
 selector arguments as follow_link(). WWW::Mechanize can also find images on a page via
 find_images() and find_all_images(), using similar arguments.
Let’s get back to the situation where we need to log into the website before
 we can access the content we need. WWW::Mechanize has equally good support for dealing with forms
 like login pages, as long as you understand what information the form requires.
 WWW::Mechanize ships with a utility
 called mech-dump that can help you gain this
 understanding. You have the option to install mech-dump when you install WWW::Mechanize.
mech-dump uses the WWW::Mechanize module for its heavy lifting, thus giving you a
 little bit of insight into how WWW::Mechanize
 is parsing a particular page. It offers four choices:
	Display all forms found on a page

	Display all links found on a page

	Display all images found on a page

	Display all of the above

Let’s see it in action:
$ mech-dump --links http://www.amazon.com
http://www.amazon.com/access
/
/gp/yourstore/ref=pd_irl_gw?ie=UTF8&signIn=1
/gp/yourstore/home/ref=topnav_ys_gw
...
I cut that list off quickly, because:
count the number of links on that page
$ mech-dump --links http://www.amazon.com|wc -l
 247
Finding links can be helpful, but this command really shines when it comes
 time to interact with forms (something we’re going to do in just a
 moment):
$ mech-dump --forms http://www.boingboing.net

GET http://www.google.com/search
 ie=UTF-8 (hidden readonly)
 oe=UTF-8 (hidden readonly)
 domains=boingboing.net (hidden readonly)
 sitesearch=boingboing.net (hidden readonly)
 q= (text)
 btnG=Search (submit)

POST http://www.feedburner.com/fb/a/emailverify
 email= (text)
 url=http://feeds.feedburner.com/~e?ffid=18399 (hidden readonly)
 title=Boing Boing (hidden readonly)
 loc=en_US (hidden readonly)
 <NONAME>=Subscribe (submit)
The output shows us that each form has a number of fields. Some are hidden
 fields set in the form by the form’s author, but the useful information in the
 output is the fields that someone sitting at a browser would need to fill in and
 select. For example, the blog Boing Boing has an option to allow people to subscribe via
 email using a Feedburner service. The output of mech-dump lets us know that we’d need to fill in a field called
 email (rather than address or user_email or any number of similar possibilities).
If we point mech-dump at the
 trac site that is hosting the wiki we need to scrape,
 it shows:
$ mech-dump --forms http://otterbook.example.org/otterbook/wiki

GET http://otterbook.example.org/otterbook/search

POST http://otterbook.example.org/otterbook/login
 __FORM_TOKEN=d157f83e443347c3a36efe1f (hidden readonly)
 referer= (hidden readonly)
 user= (text)
 password= (password)
 <NONAME>=Login (submit)
So we know we’re going to need to fill in the fields user and password.
In WWW::Mechanize we can use the submit_form() method to fill in a form like
 so:
use WWW::Mechanize;
use Readonly;

Readonly my $loginurl => 'http://otterbook.example.org/otterbook/login';
Readonly my $revurl =>
 'http://otterbook.example.org/otterbook/wiki/ReviewerLocation';
Readonly my $user => 'username';
Readonly my $pass => 'password';

my $mech = WWW::Mechanize->new();
$mech->get($loginurl);
$mech->submit_form(
 form_number => 2,
 fields => { user => $user, password => $pass },
);
submit_form() chooses the form to use,
 fills in the given fields, and performs the “submit” action (the equivalent of selecting the “Login” element on
 the page). Now the script is “logged in” to the wiki and can proceed to fetch
 the protected page:
$mech->get($revurl);
Now that we’ve fetched the page, what can we do with it?

Part Two: Extracting the Data

The location information for each reviewer on that page is in an HTML table with each row
 containing City, State/etc, and Country
 columns. There are a number of ways to extract this data from the HTML page (see
 Kevin Hemenway and Tara Calishain’s
 Spidering
 Hacks
 , also from O’Reilly, for several of them), but we’re going to use
 another one of my favorite modules—HTML::TableExtract, by Matt
 Sisk—to make short work of the process. This module lets us specify the table we
 are looking for and the data we want from that table in a number of ways. The
 easiest way is to request it by providing the column headers:
use HTML::TableExtract;

my $te = HTML::TableExtract->new(headers => [qw(City State/etc Country)]);
Now we can feed HTML::TableExtract the
 contents of the fetched page to parse, as suggested in Part One:
$te->parse($mech->content());
Once the content is parsed, we can get to the data by asking for the info row
 by row:
rows() with no arguments works with the first table found by default.
Since there's only one table on the page, this is a safe thing to do.
#
$row is a reference to an anonymous array, and each element is a column
from that row

my @reviewlocations;
foreach my $row ($te->rows) {
 # the trac wiki adds spurious newlines into its HTML table code
 chomp (@$row);
 push @reviewlocations, $row;
}

Part Three: Geocoding and Mapping the Data

For the final fun we are going to have with this project, let’s use a cousin
 of the HTML::GoogleMaps module we saw earlier
 in the chapter. Google also offers a service that serves static images of maps
 (rather than interactive maps that use JavaScript). The Geo::Google::StaticMaps
 module by Martin Atkins let us use this service. The documentation
 for the module assumes you understand the Google API docs, so be sure to read
 the material at http://code.google.com/apis/maps/documentation/staticmaps before
 beginning (or if you’re like me, throughout) your development process. The other
 piece of this puzzle comes in the form of
 Geo::Coder::Google by Tatsuhiko Miyagawa. The
 two Google Maps APIs require us to send them already-geocoded data. The HTML::GoogleMaps module we
 used earlier in the chapter was kind enough to call Geo::Coder::Google for us on the fly to
 satisfy that restriction, but in this example we’re going to have to do our own
 geocoding. We’ll do that using this routine:
use Geo::Coder::Google;
use Geo::Google::StaticMaps;

...

sub locate {
 my $place = shift;

 # we could initialize this outside of this routine and pass the object
 # in to the routine with the query
 my $geocoder
 = Geo::Coder::Google->new(apikey => '{your API key here}');

 my $response;
 until (defined $response) {
 $response = $geocoder->geocode(location => $place);
 }

 my ($long, $lat) = @{ $response->{Point}{coordinates} };
 return $lat, $long;
}
locate() takes a place and returns a list
 with the latitude and longitude.
Warning
When I was working on this example I found that for some reason either the
 service or the module sometimes just (seemingly at random) didn’t return
 good data for perfectly valid queries. If I repeated the query again, even
 during the same session, it would return valid data.
Consequently, in the preceding code I do something very dangerous for most
 applications: if it doesn’t get a reasonable response, it tries again until
 it does. If you are going to geocode with addresses where there is any
 chance at all that the query could legitimately fail, don’t write code that
 is this persistent.

So, let’s briefly see how we use the module. The first step will be to
 construct a data structure that includes all of the locations we’re going to
 want to mark on the map. Once we have that, the rest is basically encapsulated
 in a single method call. Here’s what the code looks like:
my @markers;
create a list of hashes, each hash containing the info for
that marker (lat/long, size, etc.)
foreach my $location (@reviewlocations) {
 push @markers, {
 point => [locate(join(',', @$location))],
 size => 'mid' };
}

my $url = Geo::Google::StaticMaps->url(
 key => '{your API key here}',
 size => [640, 640],
 markers => [@markers],
);
Calling url() hands back a huge URL that
 looks something like this:
http://maps.google.com/staticmap?format=png&
markers=42.389121,-71.097145,midred%7C34.052187,-118.243425,midred%7C39.951639,
-75.163808,midred%7C35.231402,-80.845841,midred%7C42.503450,-71.
207985,midred%7C40.567095,-105.077036,midred%7C42.375392,-71.118487,
midred%7C33.754487,-84.389663,midred%7C32.718834,-117.163841,midred%7C49.203705,
-122.914588,midred%7C50.940664,6.959911,midred%7C-33.867139,151.207114,
midred%7C37.775196,-122.419204,midred%7C37.369195,-122.036849,midred%7C42
.886875,-78.877875,midred%7C61.216583,-149.899597,midred%7C47.350102,
7.902589,midred%7C33.179521,-96.492980,midred%7C49.263588,-123.138565,
midred%7C44.250871,-79.604822,midred%7C42.125291,-71.102576,
midred%7C45.423494,-75.697933,midred%7C37.279132,-121.956295,midred%7C51
.500152,-0.126236,midred%7C32.055400,34.759500,midred%7C39.762445,
-84.205247,midred%7C50.087811,14.420460,midred%7C52.663857,-8.626773,
midred%7C43.670233,-79.386755,midred%7C42.540904,-76.658372,midred%7C32.
832207,-85.763611,midred&key=YOURKEY&size=640x640
And a URL like that one, believe it or not, returns a picture of a map that
 displays where most of the reviewers for this book live (see Figure 14-4).
[image: Map displaying all reviewers’ locations]

Figure 14-4. Map displaying all reviewers’ locations

If we wanted to be more explicit about what is drawn (e.g., if we just wanted
 to see the North American/U.S. reviewers’ locations), we could add a few more
 fields to that last call to center the map and zoom it:
my $url = Geo::Google::StaticMaps->url(
 key => '{your API key here}',
 size => [640, 640],
 markers => [@markers],
 center => [locate('Kansas, US')],
 zoom => 3,
);
Figure 14-5 shows the centered
 and zoomed version.
[image: Centered and zoomed map displaying locations of U.S. reviewers]

Figure 14-5. Centered and zoomed map displaying locations of U.S. reviewers

And with that, let’s end this example and get ready to part company in
 this book.

Summary: What Can We Learn from This?

This project illustrates:
	How to use WWW::Mechanize
 (tremendously useful in this age of proliferating web interfaces for
 various system administration tools and applications)

	How to use HTML::TableExtract (an
 easy way to extract and reuse tabular data on a web page)

	How to use another geocoding and mapping API

	That the Perl community, especially those kind enough to help with
 this book, are a far-flung and generous lot

Remember to Play

There are many more projects like these that we could have looked at in this
 chapter. Just off the top of my head, here are some tasks you might consider:
	Parsing EXIF metadata from photographs

	Polling a cheap temperature sensor on the net in your house via SNMP and
 graphing the results via RRDtool

	Work with info from a barcode scanner

	Using CDDB for identifying CDs

	Controlling everything in your house from Perl (like with the MisterHouse project, at http://misterhouse.sourceforge.net)

	Computer speech production (e.g., via Win32 SAPI) or recognition

	Package tracking

	Parallel processing

	Cloud computing

All of these would lead to the acquisition of some great knowledge and skills
 immediately transferable to your workplace. If you can learn to play—to play with
 Perl, to play with anything sysadmin-related—the joy and learning you gain can
 improve all facets of your life.
Remember to play.

Module Information for This Chapter

	
 Name

 	
 CPAN ID

 	
 Version

	

 Schedule::Cron::Events

 	
 PKENT

 	
 1.8

	
 IO::File (part of IO
 dist)

 	
 GBARR

 	
 1.2301

	

 XML::Writer

 	
 JOSEPHW

 	
 0.606

	

 File::Slurp

 	
 DROLSKY

 	
 9999.13

	

 Time::Local

 	
 DROLSKY

 	
 1.1901

	
 POSIX (ships with
 Perl)

 	 	
 1.15

	
 XMLRPC::Lite (part of the
 SOAP-Lite dist)

 	
 MKUTTER

 	
 0.710.6

	
 URI::Escape (part of the
 URI dist)

 	
 GAAS

 	
 3.29

	

 XML::Simple

 	
 GRANTM

 	
 2.18

	
 LWP::Simple (part of the
 libwww/LWP dist)

 	
 GAAS

 	
 5.810

	

 HTML::GoogleMaps

 	
 NMUELLER

 	
 10

	

 Net::DNS

 	
 OLAF

 	
 0.64

	

 Text::CSV_XS

 	
 HMBRAND

 	
 0.58

	

 Geo::IP

 	
 BORISZ

 	
 1.36

	

 XML::RSS

 	
 SHLOMIF

 	
 1.42

	

 MP3::Info

 	
 DANIEL

 	
 1.24

	

 File::Find::Rule::MP3Info

 	
 KAKE

 	
 0.01

	

 File::Find::Rule::Permissions

 	
 DCANTRELL

 	
 1.3

	

 WWW::Mechanize

 	
 PETDANCE

 	
 1.52

	

 Readonly

 	
 ROODE

 	
 1.03

	

 HTML::TableExtract

 	
 MSISK

 	
 2.10

	

 Geo::Google::StaticMaps

 	
 MART

 	
 0.1

	

 Geo::Coder::Google

 	
 MIYAGAWA

 	
 0.03

Source Material for This Chapter

Much of the material in this chapter was adapted and expanded from columns I’ve published in USENIX’s ;login magazine (http://www.usenix.org/publications/login/).

Appendix A. The Eight-Minute XML Tutorial

One of the most impressive features of XML (eXtensible Markup Language) is how little you need to know
 to get started. This appendix gives you some of the key pieces of information you’ll
 need. The references at the end of Chapter 6
 point you to many excellent resources that you can turn to for more information.
XML Is a Markup Language

Thanks to the ubiquity of XML’s older and stodgier cousin, HTML, almost everyone
 is familiar with the notion of a markup language. Like HTML, XML consists of plain
 text interspersed with little bits of special descriptive or instructive text. HTML
 has a rigid definition for which bits of markup text, called
 tags, are allowed, while XML allows you to make up your
 own.
Consequently, XML provides a range of expression far beyond that of HTML. One
 example of this range of expression is found in Chapter 6, but here’s another simple example
 that you should find easy to read even if you don’t have any prior XML experience:
<hosts>
 <machine>
 <name> quiddish </name>
 <department> Software Sorcery </department>
 <room> 314WVH </room>
 <owner> Horry Patter </owner>
 <ipaddress> 192.168.1.13 </ipaddress>
 </machine>
 <machine>
 <name> dibby </name>
 <department> Hardware Hackery </department>
 <room> 310WVH </room>
 <owner> Harminone Grenger </owner>
 <ipaddress> 192.168.1.15 </ipaddress>
 </machine>
</hosts>

XML Is Picky

Despite XML’s flexibility, it is pickier in places than HTML. There are syntax and
 grammar rules that your data must follow. These rules are set down rather tersely in
 the XML specification found at http://www.w3.org/TR/REC-xml/. Rather
 than poring through the official spec, I recommend you seek out one of the annotated
 versions, such as Tim Bray’s version (available at http://www.xml.com) or Robert Ducharme’s book XML: The Annotated Specification
 (Prentice Hall). The former is online and free; the latter has many good examples of
 actual XML code.
Here are two of the XML rules that tend to trip up people who know HTML:
	If you begin something, you must end it. In the preceding example, we
 started a machine listing with <machine> and finished it with </machine>. Leaving off the
 ending tag would not have been acceptable XML.

	In HTML, tags like are legally allowed to stand by
 themselves. Not so in XML. This would have to be written as either:

or:

The extra slash at the end of this last tag lets the XML parser know that
 this single tag serves as both a start and an end tag. A pair of start and
 end tags and the data they contain are together called an
 element.

	Start tags and end tags must mirror one another exactly. Changing the case
 is not allowed, because XML is case-sensitive. If your start tag is <MaChINe>, your end tag must be
 </MaChINe> and cannot
 be </MACHine> or any other
 case combination. HTML is much more forgiving in this regard.

These are three of the general rules in the XML specification. But sometimes you
 want to define your own additional rules for an XML parser to enforce (where by
 “enforce” I mean “complain vociferously” or “stop parsing” while reading the XML
 data if a violation is encountered). If we use our previous machine database XML
 snippet as an example, one additional rule we might to enforce is “all <machine> entries must contain a
 <name> and an <ipaddress> element.” You may also wish
 to restrict the contents of an element to a set of specific values, like YES or NO.
How these rules get defined is less straightforward than the other material we’ll
 cover, because there are several complementary and competitive definition
 “languages” afloat at the moment.
The current XML specification uses a Document Type Definition (DTD), the SGML
 standby. Here’s an example piece of XML code from the XML specification that has its
 definition code at the beginning of the document itself:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE greeting [
 <!ELEMENT greeting (#PCDATA)>
]>
<greeting>Hello, world!</greeting>
The first line of this example specifies the version of XML in use and the
 character encoding (Unicode) for the document. The next three lines define the types
 of data in this document. This is followed by the actual document content (the
 <greeting> element) in the
 final line of the example.
If we wanted to define how the <hosts> XML code at the beginning of this appendix
 should be validated, we could place something like this at the beginning of the
 file:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE hosts [
 <!ELEMENT hosts (machine)*>
 <!ELEMENT machine (name,department,room,owner,ipaddress)>
 <!ELEMENT name (#PCDATA)>
 <!ELEMENT department (#PCDATA)>
 <!ELEMENT room (#PCDATA)>
 <!ELEMENT owner (#PCDATA)>
 <!ELEMENT ipaddress (#PCDATA)>
]>
This definition requires that a hosts element
 contains machine elements and that each machine element consists of name, department, room, owner, and
 ipaddress elements (in this specific order).
 Each of those elements is described as being #PCDATA (see the section Leftovers for
 details).
The World Wide Web Consortium (W3C) has also created a specification for data
 descriptions called schemas for DTD-like purposes. Schemas are
 themselves written in XML code. Here’s an example of schema code that uses the 1.0
 XML Schema recommendation syntax found at http://www.w3.org/XML/Schema (version 1.1 of this recommendation was
 still in process while this book was being written):
<?xml version='1.0' ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:complexType name="MachineType">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="department" type="xsd:string"/>
 <xsd:element name="room" type="xsd:string"/>
 <xsd:element name="owner" type="xsd:string"/>
 <xsd:element name="ipaddress" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="ListOfMachines">
 <xsd:sequence>
 <xsd:element name="machine" type="MachineType"
 minOccurs="1" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>

 <xsd:element name="hosts" type="ListOfMachines" />
</xsd:schema>
Both the DTD and schema mechanisms can get complicated quickly, so we’re going to
 leave further discussion of them to the books that are dedicated to XML/SGML.

Two Key XML Terms

You can’t go very far in XML without learning two important terms. First, XML data
 is said to be well-formed if it follows all of the XML syntax and
 grammar rules (matching tags, etc.). Often a simple check for well-formed data can
 help you spot typos in XML files. That’s an advantage when the data you are dealing
 with holds configuration information, as in the machine database excerpted in the
 last section.
Second, XML data is said to be
 valid if it conforms to the rules we’ve set down in one of the
 data definition mechanisms mentioned earlier. For instance, if your data file
 conforms to its DTD, it is valid XML data.
Valid data by definition is well-formed, but the converse does not have to be
 true. It is possible to have perfectly wonderful XML data that does not have an
 associated DTD or schema. If it parses properly, it is well-formed, but not
 valid.

Leftovers

Here are three terms that appear throughout the XML literature and may stymie the
 XML beginner:
	Attribute
	The descriptions of an element that are part of the initial
 start tag. To reuse a previous example, in the element ,
 src="picture.jpg" is an
 attribute. There is some controversy in the XML world about when to use
 the contents of an element and when to use attributes. The best set of
 guidelines on this particular issue is found at http://www.oasis-open.org/cover/elementsAndAttrs.html.

	CDATA
	The term CDATA (Character Data) is used in two contexts. Most of the
 time it refers to everything in an XML document that is not markup
 (tags, etc.). The second context involves
 CDATA sections. A CDATA section is declared to
 indicate that an XML parser should leave that section of data alone even
 if it contains text that could be construed as markup. CDATA sections
 look a little strange. Here’s the example from the XML spec:
<![CDATA[<greeting>Hello,world!</greeting>]]>
In this case the <greeting></greeting> tags
 get treated like just plain characters and not as markup that needs to
 be parsed.

	PCDATA
	Tim Bray’s annotation of the XML specification (mentioned earlier) gives the following definition:
The string PCDATA itself stands for “Parsed Character Data.” It is
 another inheritance from SGML; in this usage, “parsed” means that
 the XML processor will read this text looking for markup signaled by
 < and & characters.

You can think of this as data composed of CDATA and potentially some
 markup. Most XML data falls into this classification.

Here are two final tips about things that experienced XML users say may trip up
 people new to XML:
	Pay attention to the characters that, as in HTML, cannot be included in
 your XML data without being represented as entity references. These include
 <, >, &,
 '(single quote), and " (double quote). These are represented using
 the same convention as in HTML: <, >, &,
 ', and ". Lots of new users get stymied
 because they leave an ampersand somewhere in their data and it doesn’t
 parse.

	If you are going to place non-UTF-8 data into your documents, be sure to
 specify an encoding. Encodings are specified in the XML declaration:
<?xml version="1.0" encoding="iso-8859-1" ?>
A common mistake is to either omit this declaration or declare the
 document as UTF-8 when it has other kinds of characters in it.

XML has a bit of a learning curve, but this small tutorial should help you get
 started. Once you have the basics down, you can begin to look at some of the more
 complex specifications that surround XML, including XSLT (for transforming XML to
 something else, such as HTML), XPath (a way of referring to a specific part of an
 XML document; see the next appendix), and SOAP/XML-RPC (used to communicate with
 remote services using messages written in XML).

References for More Information

See the end of Chapter 6 for more
 references on XML-related topics.

Appendix B. The 10-Minute XPath Tutorial

Before we launch into XPath, we need to get three caveats out of the way.
First, in order to understand this appendix, you’ll need to have at least a moderate
 grip on the subject of XML. Be sure to read Appendix A if you haven’t already.
Second, XPath is a language unto itself. The XPath 1.0 spec consists of 34 relatively
 dense pages; the XPath 2.0 spec is 118 pages long. This appendix is not going to attempt
 to do any justice to the richness, expressiveness, and complexity of XPath (especially
 v2.0). Instead, it is going to focus on the subset of XPath that will be immediately
 useful to a Perl programmer.
Finally, this appendix will be sticking to XPath 1.0. As of this writing there are no
 solid Perl modules that I know of that support XPath 2.0.
With all of that aside, let’s get to questions like “What is XPath?” and, perhaps more
 importantly, “Why should I care?” XPath is a W3C spec for “a language for addressing
 parts of an XML document.” If you ever have to write code that attempts to select or
 extract certain parts of an XML document, XPath may make your life a great deal easier.
 It is a fairly terse but quite powerful language for this task and has a lovely “make it
 so” quality to it. If you can describe what data you are looking for using the XPath
 language (and you usually can), the XPath parser can fetch it for you, or allow you to
 point your program at the right part of the XML document. You can often achieve this
 with a single line of Perl.
XPath Basic Concepts

There are several basic concepts that you need to understand to be able to start
 using XPath. Let’s look at them one at a time in order of increasing
 complexity.
Basic Location Paths

To understand XPath, you have to start with the notion that an XML document can
 be parsed into a tree structure. The elements of the document (and the other
 stuff, but we’ll leave that out for now) serve as the nodes of the tree. To make
 this clearer, let’s pull in the sample XML file from Chapter 6. I’ll reprint it here so you
 don’t have to keep flipping back and forth to refer to it:
<?xml version="1.0" encoding="UTF-8"?>

<network>
 <description name="Boston">
 This is the configuration of our network in the Boston office.
 </description>
 <host name="agatha" type="server" os="linux">
 <interface name="eth0" type="Ethernet">
 <arec>agatha.example.edu</arec>
 <cname>mail.example.edu</cname>
 <addr>192.168.0.4</addr>
 </interface>
 <service>SMTP</service>
 <service>POP3</service>
 <service>IMAP4</service>
 </host>
 <host name="gil" type="server" os="linux">
 <interface name="eth0" type="Ethernet">
 <arec>gil.example.edu</arec>
 <cname>www.example.edu</cname>
 <addr>192.168.0.5</addr>
 </interface>
 <service>HTTP</service>
 <service>HTTPS</service>
 </host>
 <host name="baron" type="server" os="linux">
 <interface name="eth0" type="Ethernet">
 <arec>baron.example.edu</arec>
 <cname>dns.example.edu</cname>
 <cname>ntp.example.edu</cname>
 <cname>ldap.example.edu</cname>
 <addr>192.168.0.6</addr>
 </interface>
 <service>DNS</service>
 <service>NTP</service>
 <service>LDAP</service>
 <service>LDAPS</service>
 </host>
 <host name="mr-tock" type="server" os="openbsd">
 <interface name="fxp0" type="Ethernet">
 <arec>mr-tock.example.edu</arec>
 <cname>fw.example.edu</cname>
 <addr>192.168.0.1</addr>
 </interface>
 <service>firewall</service>
 </host>
 <host name="krosp" type="client" os="osx">
 <interface name="en0" type="Ethernet">
 <arec>krosp.example.edu</arec>
 <addr>192.168.0.100</addr>
 </interface>
 <interface name="en1" type="AirPort">
 <arec>krosp.wireless.example.edu</arec>
 <addr>192.168.100.100</addr>
 </interface>
 </host>
 <host name="zeetha" type="client" os="osx">
 <interface name="en0" type="Ethernet">
 <arec>zeetha.example.edu</arec>
 <addr>192.168.0.101</addr>
 </interface>
 <interface name="en1" type="AirPort">
 <arec>zeetha.wireless.example.edu</arec>
 <addr>192.168.100.101</addr>
 </interface>
 </host>
</network>
If we parse this into a node tree, it will look something like Figure B-1.
The root of the tree points to the document’s root element (<network></network>).
 The other elements of the document hang off of the root. Each element node has
 associated attribute nodes (if it has any attributes) and a child text node that
 represents the contents of that element (if it has any character data in it).
 For example, if the XML said <element
 attrib="value">something</element>, the XPath
 parse would have one <element></element> node with an
 attribute node of attrib and a text node
 holding the string something. Be sure to
 stare at Figure B-1 until the XML document-to-node
 tree idea is firmly lodged in your head, because it is crucial to the rest of
 this material.
If this diagram reminds you of the tree-like diagrams in Chapter 2, that’s good. The resemblance is intentional. XPath
 uses the concept of a location path to navigate to a node
 or set of nodes in a document. Location paths start either at the top of the
 tree (an absolute path) or at some other place in the tree (a relative path).
 Just like in a filesystem, “/” at the beginning means “start at the root of the
 tree,” “.” (dot) refers to the current node (also known as the “context node”),
 and “..” (dot-dot) refers to the parent of the context node.
If you want, you can think of location paths as a way to point at a specific
 node or set of nodes in a diagram. For example, if we wanted to point at the
 <description></description>
 node, the location path would be /network/description. If we used a location path of /network/host, we would be referring to all of the
 <host></host>
 nodes at that level of the tree. Pointing at a node any further down the tree
 would require a way to distinguish between the different <host></host> nodes.
 How to do that leads to a whole other XPath topic; we’ll hold off on that
 question for just a moment so we can look at a few more of the navigational
 aspects of walking a node tree.
[image: XML document node tree]

Figure B-1. XML document node tree

The information in our sample file consists of more than just markup tags; the
 file has real data in it. The elements themselves often have attributes (e.g.,
 <interface name="en1"
 type="AirPort">) or act as labels for data (e.g., <addr>192.168.0.4</addr>). How
 do we get to those parts of the document? To get to an element’s attributes, we
 use an @ in front of the attribute name. For
 example, /network/description/@name gets us name="Boston". To access the contents of an element’s text node,
 we end the location path with text(), as in
 /network/description/text(). This returns
 the data This is the configuration....
Wildcards in XPath can function similarly to their filesystem analogs.
 /network/host/*/arec/text() finds all
 element nodes[136] under a <host></host> node that have <arec></arec> sub-nodes and then returns
 the contents of those <arec></arec> elements. In this case,
 we get back the DNS A resource record name associated with each
 interface:
agatha.example.edu
gil.example.edu
baron.example.edu
mr-tock.example.edu
krosp.example.edu
krosp.wireless.example.edu
zeetha.example.edu
zeetha.wireless.example.edu
Attributes can be wildcarded in a similar fashion by using @*. /network/host/@* would return all of the attributes of the
 <host></host>
 elements.
There’s one last piece of syntax worth mentioning before we get to the next
 section. XPath has what I call a “magic” location path operator. If you use two
 slashes (//) anywhere in the location path,
 it will search from that point down in the tree to try to locate the subsequent
 path elements. For example, if we say //arec/text(), we will get back the same set of interface A
 resource record names as in our previous example, because the operator will
 search from the root of the tree down to find all of the <arec></arec> elements that have text nodes. You can also
 place double slashes in the middle of a location path, as in /network//service/text(). Our sample file has a
 very shallow node tree, but you can imagine how the ability to describe a path
 without specifying all of the intervening parts of the tree might come in handy.

Predicates

In the last section we daintily stepped over the question of how one specifies
 which branch or branches of a tree to follow if the elements at that level in
 the tree have the same name. In our example document, we have five <host></host> elements
 at the third level of the tree. They have different attributes and the data in
 each is different, but that doesn’t help if the location path is constructed
 with just element names. If we say /network/host, the word host
 is (in the parlance of the spec) acting as a “node test.” It selects which
 network branch or branches to take when moving down the tree in our location
 path. But the node test in this example isn’t giving us the granularity we need
 to select a single branch.
That’s one place where XPath predicates come into play.
 Predicates allow you to filter the set of possible nodes provided by a node test
 to get just the ones you care about. /network/host returned all of the host nodes;
 we’d like a way to narrow down that set. Predicates are specified in square
 brackets ([]) in the location path itself.
 You insert a predicate right at the point where a filtering decision has to be
 made.
The simplest predicate example looks like an index number, as in /network/host[2]/interface/arec/text(). This
 location path returns the interface name(s) for the second host node (second in
 document order). If you were standing and looking at all of the host nodes, the
 predicate would tell you which branch of the tree to take: in this case, the one
 in the second position.
Warning
Perl programmers should be familiar with this index-like syntax, but don’t
 get too comfortable. Unlike in Perl, the index numbers in XPath start with
 1, not 0.

If index numbers were the only possible predicate, that would be a bit ho-hum.
 But here’s where XPath starts to get really cool. XPath has a relatively rich
 set of predicates available for use. The next level of predicate complexity
 looks something like this: /network/host[@name="agatha"]. This selects the correct <host></host> by
 testing for the presence of a specific attribute with a specific value.[137]
Predicates aren’t always found at the very end of a location path, either. You
 can work them into a larger location string. Let’s say we wanted to find the
 names of all of the Linux servers in our network. To get this information we
 could write a location path like /network/host[@os="linux"]/service/../@name. This location path uses a predicate to select all
 the <host></host>
 elements that have an os attribute of
 linux. It walks down the branch for each
 of the nodes in that set that have a <service></service> subelement (i.e.,
 selecting only the hosts that are servers). At this point we’ve walked the tree
 all the way down to a <service></service> node, so we use
 ../@name to get to the name attribute of its parent (the <host></host> that
 contains the <service></service> we just
 found).
We can test the contents of a node like this: //host/service[text()='DNS']. This location path says to start at the root of the tree looking for
 branches that have a <service></service> node embedded in
 a <host></host>
 node. Once XPath finds a branch that fits this description, it compares the
 contents of each of those service nodes to find the one whose contents are
 “DNS”.
The location path is being nicer to the parser than it needs to be by calling
 text(). If we just use a “.” (dot)
 instead of text() (meaning the current node),
 XPath will perform the comparison against its contents.
Testing for equality is only one of the comparison operators. Our sample data
 doesn’t offer a good way to demonstrate this, but predicates like [price > 31337] can be used to select nodes
 as well.
It’s starting to look like a real computer language, no? It gets even closer
 when we bring functions into the picture. XPath defines a whole bunch of
 functions for working with node sets, strings, Boolean operations, and numbers.
 In fact, we’ve seen some of them in action
 already, because /network/host[2]/interface/arec/text() really means /network/host[position()=2]/interface/arec/text().
Just to give you a taste of this, here’s a location path that selects the HTTP
 and HTTPS service nodes (allowing for any whitespace that might creep in around
 the service name): //host/service[starts-with(normalize-space(.),'HTTP')]. The
 string function starts-with() does just what
 you would expect it to: it returns true if the thing being compared (the
 contents of the current node) begins with the string provided in the second
 argument. The XPath spec has a list of the available functions, though it is a
 little less beginner-friendly than one might like. Searching for “XPath
 predicate” on the Web can lead to other resources that help explain the spec.

Abbreviations and Axes

This appendix started with the simplest core ideas of XPath, and each
 section along the way has incorporated more complexity and nuance. Let’s add one
 last level of subtlety by circling back to the original discussion of location
 paths. It turns out that all of the location paths we’ve seen so far have been
 written in what the spec calls an “abbreviated syntax.” The
 unabbreviated syntax is one of those things that you
 almost never need, but when you do, you really need it.
 We’re going to look at it quickly here just so you know it is available if you
 get into one of those situations.
So what exactly got abbreviated in the location paths we’ve seen so far? When
 we said /network/host[2]/service[1]/text(),
 it actually meant:
	Start at the root of the tree.

	Walk toward the children of the root node (i.e., down the tree),
 looking for the child node or nodes with the element name network.

	Arrive at the <network></network> node.
 This becomes the context node.

	Walk toward the children of the context node, looking for the child
 node or nodes with the element name host.

	Arrive at the level in the tree that has several <host></host>
 nodes. Filter to choose the node in the second position. This becomes
 the context node.

	Walk toward the children of the context node, looking for the child
 node or nodes with the element name service.

	Arrive at the level in the tree that has several <service></service> nodes.
 Filter to choose the node in the first position. This becomes the
 context node.

	Walk toward the text node associated with the context node.
 Done.

If we were to write that out in the unabbreviated syntax, it would look like
 the following (this is all one long location path split onto two lines):
/child::network/child::host[position()=2]/child::service[position()=1]/
child::text()
The key things we’ve added in this path are the axes (plural of axis, we’re
 not talking weaponry here). For each step in the location path, we can include
 an axis to tell the parser which direction to go in the tree relative to the
 context node. In this case we’re telling it at each step to follow the child:: axis; that is, to move to the children of
 the context node. We’re so used to filesystem paths that describe a walk from
 directory to subdirectory to target file that we don’t think too hard when faced
 with the /dir/sub-dir/file syntax. This is
 why the abbreviated XPath syntax works so nicely. But XPath doesn’t restrict us
 to moving from child node to child node down the tree. We’ve seen one example of
 this freedom already with the // syntax. When
 we say /network//cname,
 we are really indicating /child::network/descendant-or-self::cname. That is:
	Start from the root.

	Move to its child nodes to find a <network></network> node or
 nodes. When we find one, it becomes the context node.

	Look at the context node or descend farther in the tree until we find
 a <cname></cname> node or nodes.

The other three axes you already know how to reference in abbreviated form
 are
 self:: (.), parent:: (..), and attribute:: (@). The
 unabbreviated syntax lets us use all of the other axes—eight more, believe it or
 not:
 ancestor::, following-sibling::, preceding-sibling::, following::, preceding::,
 namespace::, descendant::, and ancestor-or-self::.
Of these, following-sibling:: is probably
 the most useful, so I’m only going to describe and demonstrate that one. The
 references section of this appendix points you at other texts that have good
 descriptions of the other axes. The following-sibling:: axis tells the parser to move over to the
 next element(s) in the tree at that level. This references the context node’s
 siblings. If we wanted to write a location path that tried to find all of the
 hosts with multiple interfaces, we could write (again, as one long line):
/child::network/child::host/child::interface/following-sibling::interface/
parent::host/attribute::name
This essentially says, “Walk down from the network node until you find a host
 with an interface node as its child, then see if it has a sibling interface at
 the same level in the tree. If it does, walk back up to the host node and return
 its name attribute.”

Further Exploration

If you find XPath really interesting and you want to get even deeper into it,
 there are definitely some places you can explore outside the scope of this
 chapter. Be sure to read the specification and other references listed in the
 next section. Learn about the other predicates and axes available to you. Become
 acquainted with XPath 2.0, so when a Perl module that can use it becomes
 available, you’ll be ready. And in general, just play around with the language
 until you feel comfortable with it and it can become another handy tool in your
 toolchest.

[136] At the beginning of the chapter I mentioned that XPath parses the
 document into a set of nodes that include both the elements and “other
 stuff.” The wildcard * matches just
 element nodes, whereas node() matches
 all kinds of nodes (element nodes and the “other stuff”).

[137] Before we go any further, it is probably worthwhile making something
 implicit in this discussion explicit: if a node test fails (e.g., if we
 tried to find the node or nodes at /network/admin/homephonenumber in this document), it
 doesn’t return anything. There’s no error, the program doesn’t stop,
 etc.

References for More Information

http://www.w3.org/TR/xpath and http://www.w3.org/TR/xpath20 are the locations of the official XPath 1.0
 and 2.0 specifications. I’d recommend reading them after you’ve had a chance to read
 a good tutorial or two (like those listed here).
XML in a
 Nutshell, Third Edition, by Elliotte Rusty Harold and W. Scott Means (O’Reilly), and Learning
 XML, Second Edition, by Erik T. Ray (O’Reilly), both have
 superb sections on XPath. Of the tutorials I’ve seen so far, they are best.
http://www.zvon.org/xxl/XPathTutorial/General/examples.html is a
 tutorial that consists mostly of example location paths and how they map onto a
 sample document. If you like to learn by example, this can be a helpful
 resource.
There are various tools that allow you to type an XPath expression and see what it
 returns based on a sample document. Some parsers (e.g., the
 libxml2 parser) even ship with tools that provide this
 functionality. Get one, as they are really helpful for creating and debugging
 location paths. The one I use most of the time is built into the
 Oxygen XML editor.
Another cool tool for working with XML documents via XPath is XSH2 by Petr Pajas, the current maintainer of
 XML:LibXML. It lets you manipulate them using
 XPath 1.0 as easily as you can manipulate files using filesystem paths.

Appendix C. The 10-Minute LDAP Tutorial

The Lightweight Directory Access Protocol (LDAP) is the protocol[138] for accessing the preeminent directory services deployed in the world today.
 Over time, system administrators are likely to find themselves dealing with LDAP servers
 and clients in a number of contexts. For example, Active Directory and Mac OS X Open
 Directory are both LDAP-based. This tutorial will give you an introduction to the LDAP
 nomenclature and concepts you’ll need when using the material in Chapter 9.
The action in LDAP takes place around a data structure known as an
 entry. Figure C-1 is a
 picture to keep in mind as we look at an entry’s component parts.
[image: The LDAP entry data structure]

Figure C-1. The LDAP entry data structure

An entry has a set of named component parts called attributes
 that hold the data for that entry. To use database terms, they are like the
 fields in a database record. In Chapter 9 we use Perl to keep
 a list of machines in an LDAP directory. Each machine entry will have attributes like
 name, model,
 location, owner, etc.
Besides its name, an attribute consists of a type and the value for the attribute. The
 value has to be of the type defined for the attribute. For example, if you are storing
 employee information, your entry might have a phone
 attribute that has a type of telephoneNumber. The value of this attribute might be that employee’s
 phone number. A type also has a syntax that dictates what kind of data can be used
 (strings, numbers, etc.), how it is sorted, and how it is used in a search (is it
 case-sensitive, etc.?). To accommodate multiple values, you can store multiple
 attributes of the same name in a single entry. An example of this would be a group entry
 where you would have multiple member attributes in the entry, each holding a group
 member.
An entry’s contents and structure are defined by its object class. The object class
 (along with server and user settings) specifies which attributes must and may exist in
 that particular entry. Each entry can be in multiple object classes, in which case the
 specifications are essentially merged. The object class (or classes) of an entry is
 recorded in that entry in a special attribute named objectClass.
Let’s look a little closer at the
 objectClass attribute, because it illustrates some of
 the important qualities of LDAP and allows us to pick off the rest of the jargon we
 haven’t encountered yet. If we consider the objectClass attribute, we notice the following:
	LDAP is object-oriented.
	Each value in an objectClass attribute
 is the name of an object class. As mentioned earlier, these classes either
 define the set of attributes that can or must be in an entry, or expand on
 the definitions inherited from another class.
Let’s look at an example. Suppose the objectClass in an entry contains the string residentialPerson. RFC 2256, which has the
 daunting title of “A Summary of the X.500(96) User Schema for Use with
 LDAPv3,” defines the residentialPerson
 object class like this:
residentialPerson
 (2.5.6.10 NAME 'residentialPerson' SUP person STRUCTURAL MUST l
 MAY (businessCategory $ x121Address $ registeredAddress $
 destinationIndicator $ preferredDeliveryMethod $ telexNumber $
 teletexTerminalIdentifier $ telephoneNumber $
 internationaliSDNNumber $
 facsimileTelephoneNumber $ preferredDeliveryMethod $ street $
 postOfficeBox $ postalCode $ postalAddress $
 physicalDeliveryOfficeName $ st $ l))
This definition says that an entry of object class residentialPerson must have a l attribute (short for locality) and may have
 a whole other set of attributes (registeredAddress, postOfficeBox, etc.). The key part of the
 specification is the SUP
 person string. It says that the superior class (the one from
 which residentialPerson inherits its attributes) is the person object class. That class’s definition
 looks like this:
person
 (2.5.6.6 NAME 'person' SUP top STRUCTURAL MUST (sn $ cn)
 MAY (userPassword $ telephoneNumber $ seeAlso $ description))
So, an entry with object class of residentialPerson must have sn (surname), cn (common
 name), and l (locality) attributes and
 may have the other attributes listed in the MAY sections of these two RFC excerpts. We also know that
 person is the top of the object
 hierarchy for residentialPerson, since
 its superior class is the special abstract class top.
In most cases, you can get away with using the predefined standard object
 classes. If you need to construct entries with attributes not found in an
 existing object class, it is usually good form to locate the closest
 existing object class and build upon it, like residentialPerson builds upon person.

	LDAP has its origins in the database world.
	A second quality we see in objectClass
 is LDAP’s database roots. A collection of object classes that specify
 attributes for the entries in an LDAP server is called a
 schema. The RFC I just quoted is one example of an LDAP
 schema specification. We won’t be addressing the considerable issues
 surrounding schema in this book. Like database design, schema design can be
 a book topic in itself, but you should at least be familiar with the term
 “schema” because it will pop up later.

	LDAP is not limited to storing information in strict tree structures.
	There’s one last thing I should mention about objectClass to help us move from our examination of a single
 entry to the larger picture. Our previous object class example specified
 top at the top of the object
 hierarchy, but there’s another quasi-superclass worth mentioning: alias. If alias is specified, this entry is actually an alias for
 another entry (specified by the aliasedObjectName attribute in that entry). LDAP strongly
 encourages hierarchical tree structures, but it doesn’t demand them. It’s
 important to keep this flexibility in mind when you code to avoid making
 incorrect assumptions about the data hierarchy on a server.

LDAP Data Organization

So far we’ve been focused on a single entry, but there’s very little call for a directory
 that contains only one entry. When we expand our focus and consider a directory
 populated with many entries, we are immediately faced with one important question:
 how do we find anything?
The stuff we’ve discussed so far all falls under what the LDAP specification calls
 its “information model.” This is the part that sets the rules for how information is
 represented. But for the answer to our question, we need to look to LDAP’s “naming
 model,” which dictates how information is organized.
If you refer back to Figure C-1, you’ll see
 that we’ve discussed all of the parts of an entry except for its name. Each entry
 has a name, known as its distinguished name (DN). The DN consists of a string of relative distinguished names (RDNs). We’ll return to DNs in a moment,
 but first let’s concentrate on the RDN building blocks.
An RDN is composed of one or several attribute name/value pairs. For example, cn=Jay
 Sekora (where cn stands for “common
 name”) could be an RDN. The attribute name is cn
 and the value is Jay Sekora.
Neither the LDAP nor the X.500 specification dictates which attributes should be
 used to form an RDN. They do require RDNs to be unique at each level in a directory
 hierarchy, however. This restriction exists because LDAP has no inherent notion of
 “the third entry in the fourth branch of a directory tree,” so it must rely on
 unique names at each level to distinguish between individual entries at that level.
 Let’s see how this restriction plays out in practice.
Take, for instance, another example RDN: cn=Robert
 Smith. This is probably not a good RDN choice, since there may be more
 than one Robert Smith in an organization of even moderate size. If you have a large
 number of people in your organization and your LDAP hierarchy is relatively flat,
 name collisions like this are to be expected. A marginally better entry would
 combine two attributes: perhaps cn=Robert Smith +
 l=Boston. (Attributes in RDNs are combined with a plus sign.)
Our revised RDN, which appends a locality attribute, still has problems, though.
 We may have postponed a name clash, but we haven’t eliminated the possibility.
 Furthermore, if Smith moves to some other facility, we’ll have to change both the
 RDN for the entry and the location attribute in the entry. Perhaps the best RDN we
 could use would be one with a unique and immutable user ID for this person. For
 example, we could use the username component of the person’s email address, so the
 RDN would be uid=rsmith. This example should give
 you a taste of the decisions involved in the world of schemas.
Astute readers will notice that we’re not really expanding our focus; we’re still
 puttering around with a single entry. The RDN discussion was a prelude to this.
 Here’s the real jump: entries live in a tree-like[139] structure known as a directory information tree (DIT), or just a
 directory tree. The latter is probably the preferred term to use, because in X.500 nomenclature DIT usually refers to a single
 universal tree, similar to the global DNS hierarchy or the management information
 base (MIB) we’ll be seeing in Appendix G when
 we discuss SNMP.
Let’s bring DNs back into the picture. Each entry in a directory tree can be
 located by its distinguished name. A DN is composed of an entry’s RDN followed by
 all of the RDNs (separated by commas or semicolons) found as you walk your way back
 up the tree toward the root entry. If we follow the arrows in Figure C-2 and accumulate RDNs as we go,
 we’ll construct DNs for each highlighted entry.
[image: Walking back up the tree to produce a DN]

Figure C-2. Walking back up the tree to produce a DN

In the first picture, our DN would be:
cn=Robert Smith, l=main campus, ou=CCS, o=Hogwarts School, c=US
In the second, it is:
uid=rsmith, ou=system, ou=people, dc=ccs, dc=hogwarts, dc=edu
ou is short for organizational unit, o is short for organization, dc stands for “domain component” à la DNS, and c is for country (Sesame Street
 notwithstanding).
An analogy is often made between DNs and absolute pathnames in a filesystem, but DNs are more like postal addresses because they have a
 “most specific component first” ordering. In a postal address like this:
	Doreen Hodgkins
	288 St. Bucky Avenue
	Anywhere, MA 02104
	USA

you start off with the most specific object (the person) and get more vague from
 there, eventually winding up at the least specific component (the country). So too
 it goes with DNs.
You can see this ordering in our DN examples. The very top of the directory tree
 is known as the directory’s suffix, since it is the end portion
 of every DN in that directory tree. Suffixes are important when constructing a
 hierarchical infrastructure using multiple delegated LDAP servers. Using an LDAPv3
 concept known as a referral, it is possible to place an entry
 in the directory tree that essentially says, “for all entries with this suffix, go
 ask that server instead.” Referrals are specified using an LDAP URL, which looks
 similar to your run-of-the-mill web URL except that it references a particular DN or
 other LDAP-specific information. Here’s an example from RFC 2255, the RFC that specifies the LDAP URL format:
ldap://ldap.itd.umich.edu/o=University%20of%20Michigan,c=US?postalAddress
The other place directory suffixes come into play is in the client/server
 authentication process, since a client usually is connecting to access a single
 directory tree on the server: it “binds” to the server using this suffix. We’ll see
 this process and details on querying an LDAP server in Chapter 9.
By now you have some idea of how data is organized and specified in LDAP terms.
 With that grounding, the discussion of the manipulation of this data in Chapter 9 should be much clearer.

[138] Just to stress this point: LDAP is a protocol. It is not a relational
 database; it is the protocol through which you can communicate with a
 database-like directory service. More on the difference between databases and
 directory services can be found in Chapter 9.

[139] I say “tree-like” rather than just “tree” because the alias object class I mentioned earlier allows
 you to create a directory structure that is not strictly a tree (at least
 from a computer-science, directed-acyclic-graph perspective).

Appendix D. The 15-Minute SQL Tutorial

Relational databases can be excellent tools for system administration. A relational
 database is accessed and administered using Structured Query Language (SQL) statements. As a result, it is a good idea
 for system administrators to learn at least the basics of SQL. The goal of this appendix
 is not to make you a full-time database programmer or even a real database
 administrator; that takes years of work and considerable expertise. However, we can look
 at enough SQL that you can begin to fake it. You may not be able to speak the language,
 but you’ll at least get the gist if someone speaks it at you, and you’ll know enough to
 go deeper into the subject if necessary. These basic building blocks are used
 extensively in Chapter 7, where we integrate SQL and
 Perl.
SQL is a command language for performing operations on relational databases and their
 component parts. Tables are the component parts you’ll deal with most often. Their
 column and row structure makes them look a great deal like spreadsheets, but the
 resemblance is only surface-level. Table elements are not used to represent
 relationships to other elements—that is, table elements don’t hold formulas, just data.
 Most SQL statements are devoted to working with the data in these rows and columns,
 allowing the user to add, delete, select, sort, and relate it between tables.
Let’s go over some of the operators offered by SQL. If you want to experiment with
 the operators we’ll be discussing, you’ll need
 access to a SQL database. You may already have access to a server purchased from Oracle,
 Sybase, IBM, Microsoft, or elsewhere. If not, you
 can download an excellent open source database called MySQL from http://www.mysql.org. Another, simpler (no server required) open source database engine can be found at
 http://www.sqlite.org.
For this appendix, we’ll be using a mostly generic SQL dialect, though each database
 server has its own SQL quirks. SQL statements particular to a specific database
 implementation will be noted.
The SQL code that follows will be shown using the capitalization standard found in
 most SQL books. This standard capitalizes all reserved words in a statement.
Most of the example SQL code in this appendix will use a table that mirrors the
 flat-file machine database we saw in Chapter 5. As a quick refresher, Table D-1 shows how that data looks in table form.
Table D-1. Our machine table
	
 name

 	
 ipaddr

 	
 aliases

 	
 owner

 	
 dept

 	
 bldg

 	
 room

 	
 manuf

 	
 model

	
 shimmer

 	
 192.168.1.11

 	
 shim shimmy shimmydoodles

 	
 David Davis

 	
 Soft-ware

 	
 Main

 	
 909

 	
 Sun

 	
 M4000

	
 bendir

 	
 192.168.1.3

 	
 ben bendoodles

 	
 Cindy Coltrane

 	
 IT

 	
 West

 	
 143

 	
 Apple

 	
 Mac Pro

	
 sander

 	
 192.168.1.55

 	
 sandy micky mickydoo

 	
 Alex Rollins

 	
 IT

 	
 Main

 	
 1101

 	
 Dell

 	
 Optiplex 740

	
 sulawesi

 	
 192.168.1.12

 	
 sula su-lee

 	
 Ellen Monk

 	
 Design

 	
 Main

 	
 1116

 	
 Apple

 	
 Mac Pro

Creating/Deleting Databases and Tables

In the beginning, the server will be empty and void of objects useful to us.
 Let’s create our database:
CREATE DATABASE sysadm ON userdev=10 LOG ON userlog=5
GO
This SQL statement creates a 10 MB database on the device userdev with a 5 MB log file on the userlog device. This statement is Sybase/Microsoft SQL
 Server-specific: database creation (when performed at all) takes place in different
 ways on different servers.[140] In this case, it is placing the database in a predefined storage device
 (an area defined as part of the storage allocation for the database server) and
 keeping the logging information (all of the info about the operations on the
 database and other housekeeping info) in a separate device.
Note
The GO command is used with some
 interactive database clients to indicate that the preceding SQL statement should
 be executed. (These clients also often provide additional commands beyond just
 plain SQL for working with the databases; e.g., MySQL has a DESCRIBE command for displaying information about
 tables.) It is not a SQL statement itself. Other databases require you to type a
 semicolon at the end of each statement. In the following examples, we’ll assume
 that GO or a semicolon will follow each
 individual SQL statement if you are using one of these clients. We’ll also be
 using the SQL commenting convention of -- for
 comments in the SQL code.

To remove this database, we can use the DROP command:
DROP DATABASE sysadm
Now let’s actually create an empty table to hold the information shown in Table
 D-1:
USE sysadm
-- Last reminder: you need to type GO or ; here (if you are using
-- an interactive client that requires this) before entering the
-- next statement
CREATE TABLE hosts (
 name varchar(30) NOT NULL,
 ipaddr varchar(15) NOT NULL,
 aliases varchar(50) NULL,
 owner varchar(40) NULL,
 dept varchar(15) NULL,
 bldg varchar(10) NULL,
 room varchar(4) NULL,
 manuf varchar(10) NULL,
 model varchar(10) NULL
)
First we indicate which database we wish to use (sysadm). The
 USE statement takes effect only if it is run
 separately before any other commands are executed; hence, it gets its own
 statement.
Next, we create a table by specifying the name, data type/length, and NULL/NOT NULL settings for each column. Let’s talk a
 little bit about data types.
It is possible to hold several different types of data in a database table,
 including numbers, dates, text, and even images and other binary data. When each
 column is created, the kind of data it will hold is specified. Our needs are modest,
 so this table is composed of a set of columns that hold simple strings of varchars (non-space-padded characters). Some SQL
 servers allow you to create user-defined aliases for data types, like ip_address or
 employee_id. User-defined data types are used
 in table creation to keep table structures readable and data formats consistent
 between columns across multiple tables.
The last parameter in our previous command declares a column to be either
 mandatory or optional. If this parameter is set to NOT
 NULL, a row cannot be added to the table if it lacks data in this
 column. In our example, we need a machine name and IP address for a machine record
 to be useful to us, so we declare those fields NOT
 NULL. All the rest (though highly desirable) are optional, so we
 declare them NULL. There are other constraints
 besides NULL/NOT
 NULL that can be applied to a column for the purposes of data
 consistency. For instance, in some SQL dialects, we could ensure that two machines
 cannot have the same name by changing this:
name varchar(30) NOT NULL,
to:
name varchar(30) NOT NULL CONSTRAINT unique_name UNIQUE,
where unique_name is the name of this
 particular constraint. Naming your constraints makes the error messages generated by
 constraint violations more useful. See your server documentation for other
 constraints that can be applied to a table.
Deleting entire tables from a database is considerably simpler than creating them:
USE sysadm
DROP TABLE hosts

[140] In fact, different servers even have different ideas about what the
 meaning of “database” is. The term is broader for an Oracle DBA than it is
 for a MySQL DBA.

Inserting Data into a Table

Now that we have an empty table, let’s look at two ways to add new data. Here’s
 the first form:
USE sysadm
INSERT hosts
 VALUES (
 'shimmer',
 '192.168.1.11',
 'shim shimmy shimmydoodles',
 'David Davis',
 'Software',
 'Main',
 '309',
 'Sun',
 'Ultra60'
)
The first line tells the server we are going to work with objects in the sysadm database. The second line selects the hosts table and adds a row, one column at a time. This
 version of the
 INSERT command is used to add a complete row to
 the table (i.e., one with all columns filled in).[141]
To create a new row with a partial record we can specify the columns to fill, like
 so:
USE sysadm
INSERT hosts (name,ipaddr,owner)
 VALUES (
 'bendir',
 '192.168.1.3',
 'Cindy Coltrane'
)
The INSERT command will fail if we try to
 insert a row that does not have all of the required (NOT
 NULL) columns.
INSERT can also be used to add data from one
 table to another; we’ll see this usage later. For the rest of our examples, assume
 that we’ve fully populated the hosts table using
 the first form of INSERT.

[141] Experienced SQL users would probably suggest you always specify the column
 destinations for each piece of data (even when inserting a complete row), as
 per the next example. This makes the INSERT statement more robust, because it isn’t prone to
 errors in order (e.g., if you should add another field to the
 database).

Querying Information

As an administrator, the SQL command you’ll probably use the most often is
 SELECT. SELECT is used to query information from a server. Before we talk
 about this command, a quick disclaimer: SELECT is
 a gateway into a whole wing of the SQL language. We’re only going to explore some of
 its simpler forms. There is an art to constructing good queries (and designing
 databases so they can be queried well), but more in-depth coverage of this topic is best found in books
 entirely devoted to SQL and databases.
The simplest SELECT form is used mostly for
 retrieving server- and connection-specific information. With this form, you do not
 specify a data source. Here are three examples:
-- Sybase/MS-SQL - retrieve server name
SELECT @@SERVERNAME

-- MySQL - retrieve current version
SELECT VERSION();

-- Oracle - retrieve STARTUP_TIME
SELECT STARTUP_TIME from v$instance;
These examples show significant differences in the retrieval of database-specific
 information.
Retrieving All of the Rows in a Table

To get at all of the data in our hosts table, we can
 use this SQL code:
USE sysadm
SELECT * FROM hosts
This returns all of the rows and columns, in the column order in which our
 table was created:
name ipaddr aliases owner dept
bldg room manuf model
--------- ------------- -------------------------- --------------- ---------
----- ----- ------ -------------
shimmer 192.168.1.11 shim shimmy shimmydoodles David Davis Software
Main 309 Sun M4000
bendir 192.168.1.3 ben bendoodles Cindy Coltrane IT
West 143 Apple Mac Pro
sander 192.168.1.55 sandy micky mickydoo Alex Rollins IT
Main 1101 Dell Optiplex 740
sulawesi 192.168.1.12 sula su-lee Ellen Monk Design
Main 1116 Apple Mac Pro
If we want to see specific columns, we just need to specify them by
 name:
USE sysadm
SELECT name,ipaddr FROM hosts
When we specify the columns by name they are returned in the order we specify
 them, independent of the order used when the table was created. For instance, to
 see IP addresses per building, we could
 use this query:
USE sysadm
SELECT bldg,ipaddr FROM hosts
This returns:
bldg ipaddr
---------- ---------------
Main 192.168.1.11
West 192.168.1.3
Main 192.168.1.55
Main 192.168.1.12

Retrieving a Subset of the Rows in a Table

Databases wouldn’t be very interesting if you couldn’t retrieve a subset of your data. In SQL,
 we use the SELECT command and add a WHERE clause containing a conditional:
USE sysadm
SELECT * FROM hosts WHERE bldg='Main'
This shows:
name ipaddr aliases owner dept bldg
room manuf model
--------- ------------- -------------------------- ------------- --------- -----
----- ------ -------------
shimmer 192.168.1.11 shim shimmy shimmydoodles David Davis Software Main
309 Sun M4000
sander 192.168.1.55 sandy micky mickydoo Alex Rollins IT Main
1101 Dell Optiplex 740
sulawesi 192.168.1.12 sula su-lee Ellen Monk Design Main
1116 Apple Mac Pro
The set of available conditional operators for WHERE clauses contains the standard programming fare:
= > >= < <= <>
Unlike Perl, SQL does not have separate string and numeric comparison
 operators.
Conditional operators can be combined with AND/OR and negated with
 NOT. We can test for an empty column
 using IS NULL, or for a non-empty column with
 IS NOT NULL. For instance, this SQL code
 will show all of the machines without owners listed in our table:
USE sysadm
SELECT name FROM hosts WHERE owner IS NULL
If you want to find all of the rows that have a column whose content is one of
 several specified values, you can use the
 IN operator to specify a list of
 values:
USE sysadm
SELECT name FROM hosts WHERE dept IN ('IT', 'Software')
This shows all of the machines in use in either the IT or software
 departments. SQL will also allow you to return rows that match a certain range
 of values (most useful with numeric or date values) with the
 BETWEEN operator. Here’s an example that
 shows all of the machines in the main building between the 10th and 19th floors
 (presuming you use a simple convention for room numbers):
USE sysadm
SELECT name FROM hosts
 WHERE (bldg = 'Main') AND
 (room BETWEEN '1000' AND '1999')
Finally, the WHERE clause can be used with
 LIKE to choose rows using weak pattern
 matching (weak, that is, in comparison to Perl’s regular expressions). For
 instance, this will select all of the machines that have the string “doodles”
 somewhere in their aliases:
USE sysadm
SELECT name FROM hosts WHERE aliases LIKE '%doodles%'
Table D-2 lists the supported
 LIKE wildcards.
Table D-2. LIKE wildcards
	
 Wildcard

 	
 Meaning

 	
 Closest Perl regexp equivalent

	

 %

 	
 Zero or more characters

 	

 .*

	

 _

 	
 A single character

 	

 .

	

 []

 	
 A single character that is one of a specified set or
 range

 	

 []

Some database servers have added extensions to SQL to allow for regular expression use in SELECTs. For instance, MySQL offers the REGEXP operator for
 use with SELECT. REGEXP doesn’t have all the power of Perl’s regular expression
 engine, but it offers a substantial increase in flexibility over the standard
 SQL wildcards.

Simple Manipulation of Data Returned by Queries

Three useful clauses for a SELECT statement
 are COUNT, DISTINCT, and ORDER BY. The first returns the number of rows
 retrieved:
USE sysadm
SELECT COUNT(*) FROM hosts
The second allows us to eliminate duplicate records returned by a query. If we
 want a list of all of the distinct manufacturers represented in our hosts table, we can use DISTINCT:
USE sysadm
SELECT DISTINCT manuf FROM hosts
The third clause allows us to specify the order of the returned results. If we
 want to see our data returned in a sorted order, we can use ORDER BY:
USE sysadm
SELECT name,ipaddr,dept,owner FROM hosts ORDER BY dept
Experienced database users often habitually add ORDER
 BY clauses to queries that return multiple rows because it makes
 dealing with the returned information easier.
SQL has several operators that can be used to modify the output returned by a
 query. They allow you to change column names, do summary and intra/intercolumn
 calculations, reformat how fields are displayed, perform subqueries, and a whole
 host of other things. Please see a dedicated SQL book for more detail on
 SELECT’s many clause operators.

Adding the Query Results to Another Table

A new table containing the results of a query can be created on the fly by using
 an INTO clause on some SQL servers:
USE sysadm
SELECT name,ipaddr INTO itmachines FROM hosts WHERE dept = 'IT'
This statement works just like those we’ve seen previously, except that the
 results of the query are added to another table called itmachines. With some servers, this table is created on the fly
 if it does not exist. You can think of this operator clause as the equivalent of
 the > operator in most Unix- and
 Windows-based operating system command-line shells.
Note
Some database servers (like MySQL[142]) do not support SELECT INTO;
 they require the use of different syntax. For example, Oracle uses something
 like this:
CREATE TABLE COPY AS SELECT name,ipaddr FROM hosts WHERE dept = 'IT'
Some other servers instead use an
 INSERT command to perform this action.
 Still others, such as Microsoft SQL Server and Sybase, require that a
 special flag be set on a database before SELECT
 INTO can be used within that database, or the command
 will fail.

[142] Just to be clear: MySQL 5.x does have a SELECT .. INTO, but it dumps data to a regular file,
 not to a database, as we’ve been discussing. For MySQL, you’ll want
 to use INSERT .. INTO
 instead.

Changing Table Information

Our working knowledge of the SELECT command comes
 into play with other commands as well. For instance, the INSERT command we saw earlier can also take a
 SELECT clause. This allows us to insert query
 information into an existing table. If our software department were to merge with
 IT, we could add their machines to the itmachines
 table:
USE sysadm
INSERT itmachines
 SELECT name,ipaddr FROM hosts
 WHERE dept = 'Software'
If we want to change any of the rows in our table, we can use the
 UPDATE command. For example, if all of the
 departments in the company moved into a single facility called Central, we could change the name of the building in
 all rows like so:
USE sysadm
UPDATE hosts
 SET bldg = 'Central'
It’s more likely that we’ll need to change only certain rows in a table. For that
 task, we use the handy
 WHERE clause we saw when discussing the SELECT operator:
USE sysadm
UPDATE hosts
 SET dept = 'Development'
 WHERE dept = 'Software'
That changed the name of the Software department to Development. This moves the
 machine called bendir to our Main building:
USE sysadm
UPDATE hosts
 SET bldg = 'Main'
 WHERE name = 'bendir'
If we want to remove a row or set of rows from a table instead of updating them,
 we can use the
 DELETE command:
USE sysadm
DELETE FROM hosts
 WHERE bldg = 'East'
While there’s no standardized way to undo a straight DELETE operation,[143] you can gain some safety using transactions (outside the scope of this
 appendix). In many cases you can run the DELETE
 command as a SELECT first to gain an
 understanding of just what effect the DELETE will
 have. Still, be careful with these operations.

[143] Oracle 10g and beyond offer a flashback facility that can undo DELETE and DROP operations, depending on the amount of data in play and
 how much the database has changed since the destructive operations were
 performed.

Relating Tables to Each Other

Relational databases offer many ways to forge connections between the data in two or more
 tables. This process is known as “joining” the tables. Joins can get complex
 quickly, given the number of query possibilities involved and the fine control the
 programmer has over the data that is returned. There are different flavors of joints
 (inner, outer, etc.) but we’re not going to get into those here. If you are
 interested in this level of detail, your best bet is to seek out a book devoted to
 SQL.
Here is one example of a join in action. For this example we’ll use another table
 called contracts, which contains information on
 the maintenance contracts for each of our machines. That table is shown in Table D-3.
Table D-3. Our contracts table
	
 name

 	
 servicevendor

 	
 startdate

 	
 enddate

	
 bendir

 	
 IBM

 	
 09-09-2005

 	
 06-01-2008

	
 sander

 	
 Dell

 	
 03-14-2008

 	
 03-14-2009

	
 shimmer

 	
 Sun

 	
 12-12-2008

 	
 12-12-2009

	
 sulawesi

 	
 Apple

 	
 11-01-2005

 	
 11-01-2008

Here’s one way to relate our hosts table to the
 contracts table using a join:
USE sysadm
SELECT contracts.name,servicevendor,enddate,bldg,room
 FROM contracts, hosts
 WHERE contracts.name = hosts.name
The easiest way to understand this code is to read it from the middle out.
 FROM contracts, hosts
 tells the server that we wish to relate the contracts and hosts tables.
 WHERE contracts.name = hosts.name says we
 will match a row in contracts to a row in
 hosts based on the contents of the name field in each table. Note that we say contracts.name because we need to
 distinguish which name field we are using (the
 one on the contracts table). Finally, the
 SELECT line specifies the columns we wish to
 appear in our output.

SQL Stragglers

Before we close this tutorial section, there are a few more advanced SQL topics
 you may encounter in your travels.
Views

Most SQL servers allow you to create different views of
 a table. Views are like magic permanent SELECT queries. Once you create a view using a special SELECT
 query, the specification of your query sticks around. Each time you access
 anything from the view, the original query is run to provide that information.
 Views can be queried like any other table. Modifications to a view, with a few
 restrictions, are propagated back to the original table or tables.
Note I said tables. Here’s where the magic of views comes
 in: a view on a table can be created that consists of a join between that table
 and another. This view behaves as one large virtual table. Changes to this view
 are propagated back to the original tables that are part of the join that
 created the view.
A view can also be created with a new column consisting of calculations
 performed between other columns in that table, almost like in a spreadsheet.
 Views are also useful for more mundane purposes, such as query simplification
 (e.g., you may be able to SELECT fewer
 columns) and data restructuring (e.g., table users see a view of the data that
 doesn’t change, even if other columns in the underlying table structure are
 modified).
Here’s a view-creation example that demonstrates query simplification:
USE sysadm
CREATE VIEW ipaddr_view AS SELECT name, ipaddr FROM hosts
Now we can use a very simple query to get back just the information we
 need:
USE sysadm
SELECT * FROM ipaddr_view
The result of this query is:
name ipaddr
------------------------------ ---------------
shimmer 192.168.1.11
bendir 192.168.1.3
sander 192.168.1.55
sulawesi 192.168.1.12
Like tables, views are dropped using a form of the DROP command:
USE sysadm
DROP VIEW ipaddr_view
Dropping the view has no effect on the underlying data tables.

Cursors

In all the queries we’ve seen thus far, we’ve asked the server to hand us back
 all of the results once the query has completed. But sometimes it is preferable
 to receive the answer to a query one line at a time. This is most often the case
 when embedding SQL queries in other programs. If your query returns tens of
 thousands of lines, chances are pretty good that you’ll want to process the
 results one line at a time, rather than storing them all in memory for later
 use. SQL programming in Perl often uses this line-at-a-time method. Here’s a
 small native-SQL program that demonstrates cursor use on a Sybase or Microsoft
 SQL Server:
USE sysadm
-- declare our variables
DECLARE @hostname varchar(30)
DECLARE @ip varchar(15)

-- declare our cursor
DECLARE hosts_curs CURSOR FOR SELECT name,ipaddr FROM hosts

-- open this cursor
OPEN hosts_curs

-- iterate over the table, fetching rows one at a time,
-- until we receive an error
FETCH hosts_curs INTO @hostname,@ip
WHILE (@@fetch_status = 0)
 BEGIN
 PRINT "----"
 PRINT @hostname
 PRINT @ip
 FETCH hosts_curs INTO @hostname,@ip
 END

-- close the cursor (not strictly necessary when followed
-- by a DEALLOCATE)
CLOSE hosts_curs

-- undefine cursor def
DEALLOCATE hosts_curs
This produces the following output:

shimmer
192.168.1.11

bendir
192.168.1.3

sander
192.168.1.55

sulawesi
192.168.1.12

Stored Procedures

Most database systems allow you to upload SQL code to the server, where
 it is stored in an optimized, post-parsed form for faster execution. Such
 uploads are known as stored procedures. Stored procedures
 are often a critical component of SQL for administrators, because large parts of
 server administration for some servers rely on them. For example, to change the
 owner of the sysadm database in Sybase, you
 might do this:
USE sysadm
sp_changedbowner "jay"
Some databases also support something called “triggers.” Triggers are stored procedures
 that automatically fire when some event takes place in the database (e.g., when
 a row gets INSERTed). Each database vendor
 implements triggers slightly differently, so check the documentation of the
 database you are using for the details on how to use
 CREATE TRIGGER and DROP TRIGGER.
Now that you’ve seen the basics of SQL, you’re ready to tackle Chapter 7.

Appendix E. The Five-Minute RCS Tutorial

This quick tutorial will teach you everything you need to know to use the Revision
 Control System (RCS) for system administration. RCS is useful for applying version control to all of your system files. It
 has considerably more functionality than we’ll discuss here, so be sure to take a look
 at the manual pages and the references at the end of this appendix if you plan to use it
 heavily. You may also be wondering why we’re bothering with RCS when more modern
 systems, such as Git and Subversion, exist. That’s a good question, and I’ll address it
 at the end of the tutorial. In the meantime, though, let’s get the RCS basics down;
 they’ll help with the explanation later.
RCS functions like a car rental agency. Only one person at a time can actually rent a
 particular car and drive it off the lot. The agency can only rent out a new car after
 adding it to its pool. Customers can browse the list of cars (and their features) at any
 time, but if two people want to rent the same car, the second person must wait for the
 car to be returned to the lot. Finally, car rental agencies inspect cars very carefully
 after they have been returned and record any changes that took place during the rental.
 All of these properties hold true for RCS as well.
In RCS, a file is like a car. If you wish to keep track of a file using RCS (i.e., add
 it to the rental lot), you must “check it in” for the first time:
$ ci -u inetd.conf
ci stands for “check in,” and the -u tells RCS to
 leave inetd.conf in place during the check-in. When a file is
 checked in (i.e., made available for rental), RCS does one of two things to remind the
 user that the file is under RCS’s control:
	Deletes the original file, leaving only the RCS archive file behind. It
 sometimes distresses new users of RCS when the file seems to disappear after
 being checked in, but in fact the data has just been squirreled away in its
 archive file. This archive file is usually called
 filename,v and is kept either in the same directory as
 the original file or in a subdirectory called RCS (if the
 user creates it). You must protect the RCS directory and
 archive file (using filesystem permissions) at least as strongly as the original
 file.

	If -u is used (as in our earlier command),
 it checks the file out again, leaving the permissions on the file set to
 “read-only.”

To modify a file under RCS’s control (i.e., rent a car), you first need to “check out”
 (co) that file:
$ co -l services
The -l
 switch tells RCS to “strictly lock” services (i.e., do
 not allow any other user to check out services at the same time).
 This lock is respected only by RCS; the file is not actually locked using filesystem
 capabilities (ACLs, attributes, etc.). Other switches that are commonly used with
 co include:
	-r
 <revision number> to check out an older
 revision of a file

	-p to print a past revision to the screen
 without actually checking it out

Once you are done modifying a file, you need to check it back in using the same
 command you used to put the file under RCS’s control (ci
 -u
 filename). The check-in process stores any changes made to
 this file in a space-efficient manner.
Each time a file that has been modified is checked in, it is given a new revision
 number. At check-in time, RCS will prompt you for a comment to be placed in the change
 log it automatically keeps for each file. This log and the listing of the current person
 who has checked out a file can be viewed using
 rlog
 filename.
If someone neglects to check her changes to a particular file back into RCS (perhaps
 having gone home for the day) and you have a real need to change the file yourself, you
 can break that person’s lock using
 rcs -u
 filename. This command will prompt for a break-lock message
 that is mailed to the person who owns the lock.
After breaking the lock, you should check to see how the current copy differs from the
 RCS archive revision.
 rcsdiff
 filename will show you this information. If you wish to
 preserve these changes, check the file in (with an appropriate change-log comment), and
 then check it back out again before working on it. rcsdiff, like co example, can also
 take a -r
 <revision number> flag to allow you to compare
 two past revisions.
Table E-1 lists some common RCS operations and their
 command lines.
Table E-1. Common RCS operations
	
 RCS operation

 	
 Command line

	
 Initial check-in of file (leaving file active in
 filesystem)

 	

 ci -u
 filename

	
 Check out with lock

 	

 co -l
 filename

	
 Check in and unlock (leaving file active in filesystem)

 	

 ci -u
 filename

	
 Display version x.y of a file

 	
 co
 -px.y
 filename

	
 Undo to version x.y (overwrites file active
 in filesystem with the specified revision)

 	
 co
 -rx.y
 filename

	
 Diff file active in filesystem and last revision

 	

 rcsdiff
 filename

	
 Diff versions x.y and
 x.z

 	
 rcsdiff
 -rx.y
 -rx.z
 filename

	
 View log of check-ins

 	

 rlog
 filename

	
 Break an RCS lock held by another person on a file

 	

 rcs -u
 filename

Believe it or not, this is really all you need to get started using RCS. Once you
 start using it for system administration, you’ll find it pays off handsomely.
Choosing RCS over CVS, Git, SVN, etc.
Given that there are modern version control systems available that are much cooler than
 RCS, why do I still suggest people learn and use RCS? The fact is that the newer
 systems (which I use for my own version control in other contexts) have a model that
 is not nearly as conducive for this specific sysadmin need as RCS.
With systems like CVS and SVN, the user checks out the file or files in question
 into a “working directory” from the central repository. Changes are made and then
 re-synced to the repository. Multiple people can check out the same files, and (if
 possible) all of their changes are automatically merged/reconciled when the file is
 returned to the repository. The Subversion documentation refers to this process as
 “copy-modify-merge.”
There are a few reasons why this model doesn’t mesh well with our usual sysadmin
 workflow around things like configuration files:
	The presence of config files in a specific place in the filesystem is
 dreadfully important.
 /etc/passwd doesn’t do you any good if it isn’t in
 /etc or is stored in a special repository format.
 It is possible to force people to use /etc as the
 working directory, but that can be fraught with peril. RCS lets you simply
 keep your files in the live filesystem after they’ve been checked back
 in.

	The copy-modify-merge approach often doesn’t jive with how sysadmins work.
 The notion that multiple people might be making concurrent edits to a
 configuration file that later will automatically be reconciled (without
 regard for how parts of that file might interact with other parts) is a very
 scary thought. Both CVS and SVN have at least some support for locking a
 file so others won’t edit it at the same time, but this runs contrary to the
 spirit of those systems. RCS only thinks in terms of locking, likely making
 it a better fit. If you need data to be concurrently edited, I’d suggest
 that using a database from which config files are generated is probably a
 better approach.

	CVS and SVN are “directory-based”: they deal with directory trees that
 contain files. Git is content-based (it manages the data under source
 control). RCS is file-based.

	Though the newer distributed version control systems allow for a certain
 amount of disconnected operation, using a centralized networked file
 repository for crucial files can sometimes get you into trouble. If your
 machine is off the net for some reason and you are trying to fix it, as long
 as you have your RCS repository and the RCS binaries you are in okay shape.
 But if you use a version control system that requires network access to get
 to the file you need to fix the lack of network access, you’ve got a
 problem. Git’s fully distributed model is better in this sense, but it has
 its own issues in this context.
In short, while CVS, SVN, Git and the rest of the pack of version control
 systems are probably much better at version control for most software
 development environments, RCS is better suited to managing system
 files.

References for More Information

ftp://ftp.gnu.org/pub/gnu/rcs has the latest source code for the RCS package (though it is available through
 most standard packaging mechanisms if it doesn’t ship with your OS).
http://cygwin.com is a source for an RCS package (and many, many
 other Unix-born programs). If you’d like to install RCS without requiring the entire
 Cygwin environment, there is a version available at http://www.cs.purdue.edu/homes/trinkle/RCS.

 Applying RCS and SCCS:
 From Source Control to Project Control
 , by Don Bolinger and Tan Bronson (O’Reilly), is an excellent RCS
 reference.
http://www.nongnu.org/cvs and http://subversion.tigris.org are the places to go if you find you need
 features not provided in RCS. The next step up is either the Concurrent Versions
 System (CVS) or Subversion (SVN).
The next step up from CVS and SVN is the crop of relatively new distributed
 version control systems, such as git,
 mercurial, bazaar, and
 darcs. For more info, check out the article at http://en.wikipedia.org/wiki/Distributed_Version_Control_System.

Appendix F. The Two-Minute VBScript-to-Perl Tutorial

Heresy to talk about VBScript in a book largely focused on Perl tools? Perhaps, but if you put
 down the pitchfork for a second, I’ll explain why it is useful to spend two minutes
 learning a little VBScript. The following rationale assumes you have some familiarity
 with machines running Windows-based operating systems. If you’ve never had any contact
 with Windows machines, and never expect to, please skip to the next appendix. The rest
 of you, follow me.
It may border on the tautological to say this, but Microsoft expects administrators to
 automate their tasks using Microsoft technologies. Perl has been shoehorned into this
 realm largely thanks to the efforts of Jan Dubois and the other contributors to the
 Win32::OLE module. This module gives us a way to
 communicate with other parts of the Microsoft software universe on an almost equal
 footing with Microsoft scripting languages like VBScript.
Win32::OLE makes communication possible, but it
 doesn’t always make it easy. Perl doesn’t share the same DWMM (Do What Microsoft Means)
 language idioms as VBScript, so it’s not always clear how an apparently simple piece of
 VBScript code that performs some behind-the-scenes magic for the programmer can be
 translated. This difficulty is compounded by the lack of reference and teaching material
 written in our native language. Barring a few notable exceptions, like David Roth’s books, the vast majority of the material on Windows scripting
 is written using VBScript as its implementation language. For example, Microsoft’s
 excellent Script Center
 website (based on the equally good Windows 2000 Scripting Guide) would be a perfect reference for us, except
 that it’s all in icky VBScript.
I’m not a VBScript programmer, nor do I expect you to be one. You won’t even be able
 to fake it by the end of this appendix. Luckily, you don’t have to know very much about
 VBScript or even Win32 programming to be able to convert simple VBScripts to Perl using
 Win32::OLE. This appendix will give you some
 basic translation hints and demonstrate how they
 are put into practice on a few of the real scripts posted at Microsoft’s Script Center.
Translation Tactics

The first four tactics that I want to show you can be illustrated by a
 step-by-step translation of the following simple VBScript:
' Lists all the members of the Managers group in fabrikam.com

Set objGroup = GetObject _
("LDAP://cn=managers,ou=management,dc=fabrikam,dc=com")
For each objMember in objGroup.Members
Wscript.Echo objMember.Name
Next
We’ll look at a few more sample scripts later, but for now let’s see about
 translating this one into a more palatable language.[144]
Tactic 1: Loading Your Modules

All translated programs begin by loading the
 Win32::OLE module:
use Win32::OLE;
If you think you are going to be using container and contained
 objects,[145] you’ll want to either import the in
 primitive or load Win32::OLE::Enum:
'in' is another way to say Win32::OLE::Enum->All()
use Win32::OLE qw(in);
 # or
use Win32::OLE;
use Win32::OLE::Enum;
It can also be helpful to load Win32::OLE::Const and use it to import constants from an
 application or OS library for use in your programs. We’ll see an example of this
 later in this appendix.
There are other primitives, such as with
 and valof, that you might also want to
 consider importing if you are translating more sophisticated scripts. However,
 using them typically requires more in-depth knowledge of Windows programming
 principles. See the Win32::OLE doc for more
 info on these primitives and their usage.

Tactic 2: Referencing an Object

The translation is straightforward:
my $objGroup =
 Win32::OLE->
 GetObject('LDAP://cn=managers,ou=management,dc=fabrikam,dc=com');
To make the mapping between the VBScript and the Perl as easy as possible,
 we’ll retain the VBScript variable names, mixed case and all.

Tactic 3: Accessing Object Properties Using the Hash Dereference
 Syntax

VBScript uses the dot (.) character to access an
 object’s properties (or attributes, in LDAP or OOP parlance). The Perl
 equivalent[146] is the hash dereference syntax (i.e., $object->{property}).
So, this VBScript code:
objGroup.Members
becomes this Perl code:
$objGroup->{Members}

Tactic 4: Dealing with Container Objects

Both the original VBScript and the Perl code in the preceding section return a container object. That object contains a
 set of user objects (the users who are members of the
 managers group). VBScript accesses the individual
 objects in the container object using in, and
 strangely enough, thanks to our import in “Tactic 1: Loading Your Modules,” so
 will we:
for my $objMember (in $objGroup->{Members}){
 # using the access syntax we saw in tactic #3
 print $objMember->{Name},"\n";
}
And there you have it—your first VBScript-to-Perl program:
Lists all the members of the managers group in fabrikam.com

use Win32::OLE qw(in);

my $objGroup =
 Win32::OLE->
 GetObject('LDAP://cn=managers,ou=management,dc=fabrikam,dc=com');

for my $objMember (in $objGroup->{Members}){
 print $objMember->{Name},"\n";
}
If that looked simple, that’s a good sign. The goal here is to let you take
 simple sysadmin VBScript code and convert it to Perl without having to think too
 hard. If it seemed complicated, don’t worry, you’ll find that this sort of
 translation will become easier the more you grapple with specific examples.
 Let’s take a look at another VBScript example from the Microsoft Script Center
 so we can bring in another translation tactic.

Tactic 5: Converting Method Invocations

' Creates a new global security group -- atl-users02 -- within Active
' Directory.

Set objOU = GetObject("LDAP://OU=management,dc=fabrikam,dc=com")
Set objGroup = objOU.Create("Group", "cn=atl-users02")
objGroup.Put "sAMAccountName", "atl-users02"
objGroup.SetInfo
The first line of code should be an easy rewrite, so let’s look at the
 remaining lines. In these lines, the dot character (.) is used for a different purpose than we saw in tactic #3: this
 time the dot is used invoke an object’s methods (i.e., the verbs for the object)
 rather than to access the object’s properties (i.e., what pieces of data it
 holds). In a serendipitous twist of fate, like VBScript, Perl uses a similar
 syntax for method invocations and for hash dereferences. Perl uses the
 arrow operator (->) for
 both, so the remaining lines of code in our example get translated to:
my $objGroup = $objOU->Create('Group', 'cn=atl-users02');
$objGroup->Put('sAMAccountName', 'atl-users02')
$objGroup->SetInfo;
Here’s the finished translation:[147]
Creates a new global security group -- atl-users02 -- within Active
Directory.

use Win32::OLE;

my $objOU = Win32::OLE->
 GetObject('LDAP://OU=management,dc=fabrikam,dc=com');

my $objGroup = $objOU->Create('Group', 'cn=atl-users02');

$objGroup->Put('sAMAccountName', 'atl-users02')

$objGroup->SetInfo;
Pretty easy, no? The one marginally tricky conversion is the last SetInfo line. How did we know this was supposed to
 be a method invocation rather than a property access? In this case we got a
 strong hint because no assignment operator is present. When we access a property
 we usually expect something to be returned—a value, another object, etc. The
 VBScript doesn’t indicate that it is going to use any data returned, so we can
 safely assume this is a method invocation. The other tip here (probably more
 helpful to native English speakers who would pick up on this naturally) is that
 “SetInfo” sounds like an action and not a piece of data. If it sounds like it
 should be doing something rather than holding something, that’s probably what it
 does. While these tips aren’t foolproof, they can help you hazard a good guess.
 If worst comes to worst, try the translation as a property access and then, if
 that doesn’t work, attempt it as a method invocation.

Tactic 6: Dealing with Constants

Let’s look at one last VBScript example to illustrate our final translation
 tactic:
' Removes user MyerKen from the group Sea-Users.

Const ADS_PROPERTY_DELETE = 4

Set objGroup = GetObject _
 ("LDAP://cn=Sea-Users,cn=Users,dc=NA,dc=fabrikam,dc=com")

objGroup.PutEx ADS_PROPERTY_DELETE, _
 "member", _
 Array("cn=MyerKen,ou=Management,dc=NA,dc=fabrikam,dc=com")

objGroup.SetInfo
The very first line of this code probably jumps out at you. In VBScript,
 Const is used to define a constant. The
 constants you need for scripting are defined by OS and application developers
 and stored in a component’s or application’s type library. One of VBScript’s
 limitations (as of this writing) is that it can’t read these constants from the
 library. Instead, VBScript authors have to hardcode operational constants like
 ADS_PROPERTY_DELETE
 into their scripts. Perl, thanks to the Win32::OLE::Const module, doesn’t have this limitation. Instead
 of hardcoding in the constant in our translation (a move always fraught with
 peril), we can do the following:
use Win32::OLE::Const 'Active DS Type Library';
and the ADSI constants become available to us. The next obvious question is,
 where did the magic string “Active DS Type Library” come from? How did we know
 to use it instead of something like “ADSI TypeLib” or even “ADS Constants Found
 Here”? The string comes from the registration in the Windows registry for the
 activeds.tlb file found in either
 HKCR\TypeLib or
 HKLM\Software\classes\TypeLib. If that doesn’t mean
 much to you, a more useful answer might be: poke around in your registry, look
 at the SDK and other documentation Microsoft publishes, and/or search on the Web
 for someone else’s example code until you find a string that works for
 you.
The second and fourth lines of the code are things we’ve seen before, so let’s
 look at the third line. We’ve already seen how to translate a method invocation,
 and we know how to import constants, so the only remaining concern is how to
 deal with the Array("cn=MyerKen...") part.
 The good news is that VBScript’s Array()
 creation keyword maps nicely to Perl’s anonymous array reference creation
 syntax:
$objGroup->PutEx(ADS_PROPERTY_DELETE,
 'member',
 ['cn=MyerKen,ou=Management,dc=NA,dc=fabrikam,dc=com'];
Here’s the final result of our work:
Removes user MyerKen from the group Sea-Users.

use Win32::OLE::Const 'Active DS Type Library';

my $objGroup = Win32::OLE->
 GetObject('LDAP://cn=Sea-Users,cn=Users,dc=NA,dc=fabrikam,dc=com');

$objGroup->PutEx(ADS_PROPERTY_DELETE,
 'member',
 ['cn=MyerKen,ou=Management,dc=NA,dc=fabrikam,dc=com']);

$objGroup->SetInfo;
These six tactics should get you surprisingly far on the road to your own
 conversions.

[144] One reason I call VBScript less palatable is that it requires a line
 continuation character when a single statement spans two lines in a file
 (and uses the underscore, _, for this
 purpose). It also uses a single quote (')
 as its comment character. But hey, who are we to pick on another language’s
 syntax?

[145] For more on container objects, see the section Dealing with Container/Collection Objects.

[146] Just to be clear, this is the Perl 5 equivalent.
 Perl 6, still in its implementation stages as of this writing, is due to
 use the dot character as well.

[147] I’ve left it out because this is meant to be a strict translation, but
 it would be good to add error checking at various places in the script
 (e.g., checking the value returned from Win32::OLE::LastError()).

References for More Information

If you haven’t yet, you must download the Microsoft Scriptomatic tool (version 2 as of this writing) from http://www.microsoft.com/technet/scriptcenter/tools/scripto2.mspx. This
 Windows tool from “the Microsoft Scripting Guys” lets you poke around the WMI
 namespaces on your machine. When you find something you might be interested in
 using, it can write a script to use it for you. Really. But even better than that,
 it can write the script for you in VBScript, JScript, Perl, or Python. I can’t think
 of a better tool for comparing how one language is translated into another. I’m
 raving about this tool both here and in the other chapters that mention WMI because
 I like it so much. If you want to use it under Vista, though, be sure to read the
 section on Vista in Chapter 1.
Finally, I should mention that if you don’t want to do your own translation from
 VBScript to Perl, there is a commercial product available that can do a much more
 sophisticated job than you’re likely to be able to manage after only a simple
 introduction like this. The VBScript Converter is part of ActiveState’s Perl Dev Kit (PDK). More
 information on the product can be found at http://activestate.com/perl_dev_kit/.

Appendix G. The 20-Minute SNMP Tutorial

The Simple Network Management Protocol (SNMP) is the ubiquitous protocol used to
 manage devices on a network. Unfortunately, as mentioned at the beginning of Chapter 12, SNMP is not a particularly simple protocol (despite its name).
 This longish tutorial will give you the information you need to get started with version
 1 of SNMP.
SNMP is predicated on the notion of a management station polling SNMP agents running
 on remote devices for information. An agent can also signal the management station if an
 important condition arises, such as a counter exceeding a threshold. When we programmed
 SNMP in Perl in Chapter 12, we essentially acted as a management station,
 polling the SNMP agents on other network devices.
We’re going to concentrate on version 1 of SNMP in this tutorial. Seven versions of
 the protocol (SNMPv1, SNMPsec, SNMPv2p, SNMPv2c, SNMPv2u, SNMPv2*, and SNMPv3) have been
 proposed; v1 is the one that has been most widely implemented and deployed, though v3 is
 expected to eventually ascend thanks to its superior security architecture.
Perl and SNMP both have simple data types. Perl uses a scalar as its base type. Lists
 and hashes are just collections of scalars in Perl. In SNMP, you also work with scalar variables. SNMP
 variables can hold any of four primitive types: integers, strings, object identifiers
 (more on this in a moment), or null values. And just like in Perl, in SNMP a set of
 related variables can be grouped together to form larger structures (most often
 tables). This is where their similarity ends.
Perl and SNMP diverge radically on the subject of variable names. In Perl, you can,
 given a few restrictions, name your variables anything you’d like. SNMP variable names are considerably more restrictive. All SNMP variables exist
 within a virtual hierarchical storage structure known as the management information base
 (MIB). All valid variable names are defined within this framework. The MIB, now
 at version MIB-II, defines a tree structure for all of the objects (and their names)
 that can be managed via SNMP.
In some ways the MIB is similar to a filesystem: instead of organizing files, the MIB logically organizes
 management information in a hierarchical tree-like structure. Each node in this tree has
 a short text string, called a label, and an accompanying number
 that represents its position at that level in the tree. To give you a sense of how this
 works, let’s go find the SNMP variable in the MIB that holds a system’s description of
 itself. Bear with me; we have a bit of a tree walking (eight levels’ worth) to do to get
 there.
Figure G-1 shows a picture of the top
 of the MIB tree.
[image: Finding sysDescr(1) in the MIB]

Figure G-1. Finding sysDescr(1) in the MIB

The top of the tree consists of standards organizations: iso(1), ccitt(2), joint-iso-ccitt(3). Under the iso(1) node, there is a node called org(3) for other organizations. Under this node is dod(6), for the Department of Defense. Under that node is
 internet(1), a subtree for
 the Internet community.
Here’s where things start to get interesting. The Internet Architecture Board has assigned the subtrees listed in Table G-1 under internet(1).
Table G-1. Subtrees of the internet(1) node
	
 Subtree

 	
 Description

	

 directory(1)

 	
 OSI directory

	

 mgmt(2)

 	
 RFC standard objects

	

 experimental(3)

 	
 Internet experiments

	

 private(4)

 	
 Vendor-specific

	

 security(5)

 	
 Security

	

 snmpV2(6)

 	
 SNMP internals

Because we’re interested in using SNMP for device management, we will want to take the
 mgmt(2) branch. The first node under mgmt(2) is the MIB itself (this is almost recursive). Since there is only one MIB, the only node
 under mgmt(2) is mib-2(1).
The real meat (or tofu) of the MIB begins at this level in the tree. We find the first
 set of branches, called object groups, which hold the variables we’ll want to
 query:
system(1)
interfaces(2)
at(3)
ip(4)
icmp(5)
tcp(6)
udp(7)
egp(8)
cmot(9)
transmission(10)
snmp(11)
Remember, we’re hunting for the “system description” SNMP variable, so the system(1) group is the logical place
 to look. The first node in that tree is sysDescr(1).
 Bingo—we’ve located the object we need.
Why bother with all this tree-walking stuff? This trip provides us with sysDescr(1)’s object identifier (OID), which is the dotted set of the numbers from each
 label of the tree we encountered on our way to this object. Figure G-2 shows this graphically.
So, the OID for the Internet tree is 1.3.6.1, the
 OID for the system object group is 1.3.6.1.2.1.1, and
 the OID for the sysDescr object is 1.3.6.1.2.1.1.1.
When we want to actually use this OID in practice, we’ll need to tack on another
 number to get the value of this variable. That is, we will need to append a .0, representing the first (and only, since a device
 cannot have more than one description) instance of this
 object.
Let’s do that now, to get a sneak preview of SNMP in action. In this appendix we’ll be
 using the command-line tools from the Net-SNMP package for demonstration purposes. This
 package is an excellent free SNMPv1 and
 v3 implementation. We’re using this particular implementation because one of the Perl
 modules links to its library, but any other client that can send an SNMP request will do
 just as nicely. Once you’re familiar with command-line SNMP utilities, making the jump
 to the Perl equivalents is easy.
[image: Finding the OID for our desired object]

Figure G-2. Finding the OID for our desired object

The Net-SNMP command-line tools allow us to prepend a dot (.) if we wish to specify an OID/variable name starting at the root of the
 tree. Here are two ways we might query the machine solarisbox for
 its systems description (note that the second command should appear on one line; it’s
 broken here with a line continuation marker for readability):
$ snmpget -v 1 -c public solarisbox .1.3.6.1.2.1.1.1.0
$ snmpget -v 1 -c public solarisbox \
.iso.org.dod.internet.mgmt.mib-2.system.sysDescr.0
These lines both yield:
system.sysDescr.0 = Sun SNMP Agent, Ultra-1
Back to the theory. It is important to remember that the P in SNMP stands for
 Protocol. SNMP itself is just the protocol for the
 communication between entities in a management infrastructure. The operations,
 or “protocol data units” (PDUs), are meant to be
 simple. Here are the PDUs you’ll see most often, especially when
 programming in Perl:[148]
	
 get-request

	get-request
 is the workhorse of the PDU family: it is used to poll an SNMP
 entity for the value of some SNMP variable. Many people live their whole
 SNMP lives using nothing but this operation.

	
 get-next-request

	get-next-request
 is just like get-request,
 except it returns the item in the MIB just after the
 specified item (the “first lexicographic successor” in RFC terms). This
 operation comes into play most often when you are attempting to find all of
 the items in a logical table object. For instance, you might send a set of
 repeated get-next-requests to query for each line of a workstation’s
 ARP table. We’ll see an example of this in practice in a moment.

	
 get-bulk-request

	get-bulk-request
 is an SNMPv2/v3 addition that allows for the bulk transfer of
 information. With other PDUs, you typically ask for and receive one piece of
 information. get-bulk lets you make one
 query and receive a whole set of values. This can be a much more efficient
 way to transfer chunks of information (like whole tables).

	
 set-request

	set-request
 does just what you would anticipate: it attempts to change the
 value of an SNMP variable. This is the operation used to change the
 configuration of an SNMP-capable device.

	trap/snmpV2-trap
	trap is the SNMPv1 name, and snmpV2-trap is the SNMPv2/3 name. Traps allow you to ask an
 SNMP-capable box to signal its management entity about an event (e.g., a
 reboot, or a counter threshold being reached) without being explicitly
 polled. Traps report events right when they happen, rather than when the
 agent is polled.

	
 inform-request

	inform-request is an SNMPv2/3 addition to the PDU list. It provides trap-like
 functionality with the addition of confirmation. (With normal trap requests,
 the agent sends a notification but has no way of knowing if that
 notification was received. Informs provide this mechanism.)

	
 response

	response is the PDU used to carry back the response from any of the other PDUs.
 It can be used to reply to a get-request,
 signal if a set-request succeeded, and so
 on. You rarely reference this PDU explicitly when programming, since most
 SNMP libraries, programs, and Perl modules handle SNMP response receipt
 automatically. Still, it is important to understand not just how requests
 are made, but also how they are answered.

If you’ve never dealt with SNMP before, a natural reaction to this list might be,
 “That’s it? Get, set, tell me when something happens, that’s all it can do?” But
 simple, as SNMP’s creators realized early on, is not the
 opposite of powerful. If the manufacturer of an SNMP device chooses
 his variables well, there’s little that cannot be done with the protocol. The classic
 example from the RFCs is the rebooting of an SNMP-capable device. There may be no
 “reboot-request” PDU, but a manufacturer could easily implement this operation by using
 an SNMP trigger variable to hold the number of seconds before a reboot. When this
 variable is changed via set-request, a reboot of the
 device can be initiated in the specified amount of time.
Given this power, what sort of security is in place to keep anyone with an SNMP client
 from rebooting your machine? In earlier versions of the protocol, the protection
 mechanism was pretty puny. In fact, some people have taken to expanding the acronym as
 “Security Not My Problem” because of SNMPv1’s poor authentication mechanism. To explain
 the who, what, and how of
 this protection mechanism, we have to drag out some nomenclature, so bear with
 me.
SNMPv1 and SNMPv2c allow you to define administrative relationships between SNMP
 entities called communities. Communities are a way of grouping SNMP
 agents that have similar access restrictions with the management entities that meet
 those restrictions. All entities that are in a community share the same
 community name. To prove you are part of a community, you just
 have to know the name of that community. That is the who can
 access? part of the scheme.
Now for the what can they access? part. RFC 1157 calls the parts
 of a MIB applicable to a particular network entity an SNMP MIB
 view. For instance, an SNMP-capable toaster[149] would not provide all of the same SNMP configuration variables as an
 SNMP-capable router.
Each object in an MIB is defined by its accessibility: read-only, read-write, or none. This is known as that object’s SNMP access
 mode. If we put an SNMP MIB view and an SNMP access mode together, we get
 an SNMP community profile that describes the type of access
 available to the applicable variables in the MIB by a particular community.
When we bring together the who and what
 parts, we have an SNMP access policy that describes what kind of
 access members of a particular community offer each other.
How does this all work in real life? You configure your router or your workstation to
 be in at least two communities, one controlling read and the other controlling
 read/write access. People often refer to these communities as the public and private
 communities, named after popular default names for these communities. For instance, on a
 Cisco router you might include this as part of the configuration:
! set the read-only community name to MyPublicCommunityName
snmp-server community MyPublicCommunityName RO

! set the read-write community name to MyPrivateCommunityName
snmp-server community MyPrivateCommunityName RW
On a Solaris machine, you might include this in the
 /etc/snmp/conf/snmpd.conf file:
read-community MyPublicCommunityName
write-community MyPrivateCommunityName
SNMP queries to either of these devices would have to use the MyPublicCommunityName community name to gain access to read-only
 variables or the MyPrivateCommunityName community
 name to change read/write variables on those devices. In other words, the community name
 functions as a pseudo-password used to gain SNMP access to a device. This is a poor
 security scheme. Not only is the community name passed in clear text in every SNMPv1
 packet, but the overall strategy is “security by obscurity.”
Later versions of SNMP—in particular, v3—added significantly better security to the
 protocol. RFCs 3414 and 3415 define a User Security Model (USM) and a View-Based Access
 Control Model (VACM): USM provides crypto-based protection for authentication and
 encryption of messages, while VACM offers a comprehensive access-control mechanism for
 MIB objects. We won’t be discussing these mechanisms here, but it is probably worth your
 while to peruse the RFCs since v3 is increasing in popularity. I’d also recommend
 reading the SNMPv3 tutorials provided with the Net-SNMP distribution. If you are
 interested in USM and VACM and how they can be configured, the SNMP vendor NuDesign
 Technologies has also published a good tutorial on the subject (http://www.ndt-inc.com/SNMP/HelpFiles/v3ConfigTutorial/v3ConfigTutorial.html).
SNMP in Practice

Now that you’ve received a healthy dose of SNMP theory, let’s do something
 practical with this knowledge. You’ve already seen how to query a machine’s system
 description (remember the sneak preview earlier), so now let’s look at two more
 examples: querying the system uptime and the IP routing table.
Until now, you just had to take my word for the location and name of an SNMP
 variable in the MIB. Querying information via SNMP is a two-step process:
	Find the right MIB document. If you are looking for a device-independent setting
 that could be found on any generic SNMP device, you will probably find it in
 RFC 1213.[150] If you need a vendor-specific variable name (e.g., the variable
 that holds the color of the blinky-light on the front panel of a specific
 VoIP switch) you will need to contact the switch’s vendor and request a copy
 of the vendor’s MIB module. I’m being pedantic about
 the terms here because it is not uncommon to hear people incorrectly say, “I
 need the MIB for that device.” There is only one MIB in the world;
 everything else fits somewhere in that structure (usually off of the
 private(4)
 branch).

	Search through MIB descriptions until you find the SNMP variable(s) you
 need.

To make this second step easier for you,[151] let me help decode the format.
MIB descriptions aren’t all that scary once you get used to them. They look like
 one long set of variable declarations similar to those you would find in source
 code. This is no coincidence, because they are variable
 declarations. If a vendor has been responsible in the construction of its module,
 that module will be heavily commented like any good source code file.
MIB information is written in a subset of Abstract Syntax Notation One (ASN.1), an
 Open Systems Interconnection (OSI) standard notation. A description of this subset
 and other details of the data descriptions for SNMP are found in the Structure for
 Management Information (SMI) RFCs that accompany the RFCs that define the SNMP
 protocol and the current MIB. For instance, the latest (as of this writing) SNMP
 protocol definition can be found in RFC 3416, the latest base MIB manipulated by this protocol is
 in RFC 3418, and the SMI for this MIB is in RFC 2578. I bring this to your attention because it is not uncommon to
 have to flip between several documents when looking for specifics on an SNMP
 subject.
Let’s use this knowledge to address the first task at hand: finding the system
 uptime of a machine via SNMP. This information is fairly generic, so there’s a good
 chance we can find the SNMP variable we need in RFC 1213. A quick search for
 “uptime” in RFC 1213 yields this snippet of ASN.1:
sysUpTime OBJECT-TYPE
 SYNTAX TimeTicks
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The time (in hundredths of a second) since the
 network management portion of the system was last
 re-initialized."
 ::= { system 3 }
Let’s take this definition apart line by line:
	
 sysUpTime OBJECT-TYPE

	This defines the object called sysUpTime.

	
 SYNTAX TimeTicks

	This object is of the type TimeTicks. Object types are specified in the SMI I
 mentioned a moment ago.

	
 ACCESS read-only

	This object can only be read via SNMP (i.e., with get-request); it cannot be changed (i.e.,
 with set-request).

	
 STATUS mandatory

	This object must be implemented in any SNMP agent.

	
 DESCRIPTION...

	This is a textual description of the object. Always read this field
 carefully. In this definition, there’s a surprise in store for us:
 sysUpTime only shows the amount
 of time that has elapsed since “the network management portion of the
 system was last re-initialized.” This means we’re only going to be able
 to tell a system’s uptime since its SNMP agent was last started. This is
 almost always the same as when the system itself last started, but if
 you spot an anomaly, this could be the reason.

	
 ::= { system 3 }

	Here’s where this object fits in the MIB tree. The sysUpTime object is the third branch off
 of the system object group tree. This information also gives you part of
 the OID, should you need it later.

If we wanted to query this variable on the machine solarisbox
 in the read-only community, we could use the following Net-SNMP tool command
 line:
$ snmpget -v 1 -c MyPublicCommunityName solarisbox system.sysUpTime.0
This returns:
system.sysUpTime.0 = Timeticks: (5126167) 14:14:21.67
indicating that the agent was last initialized 14 hours ago.
Note
The examples in this appendix assume our SNMP agents have been configured to
 allow requests from the querying host. In general, if you can restrict SNMP
 access to a certain subset of “trusted” hosts, you should.
“Need to know” is an excellent security principle to follow. It is good
 practice to restrict the network services provided by each machine and device.
 If you do not need to provide a network service, turn it off. If you do need to
 provide it, restrict the access to only the devices that “need to know.”

Time for our second and more advanced SNMP example: dumping the contents of a
 device’s IP routing table. The complexity in this example comes from the need to
 treat a collection of scalar data as a single logical table. We will have to invoke
 the
 get-next-request PDU to pull
 this off. Our first step toward this goal is to look for an MIB definition of the IP
 routing table. Searching for “route” in RFC 1213, we eventually find this definition:
-- The IP routing table contains an entry for each route
-- presently known to this entity.
ipRouteTable OBJECT-TYPE
 SYNTAX SEQUENCE OF IpRouteEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "This entity's IP Routing table."
 ::= { ip 21 }
This doesn’t look much different from the definition we took apart just a moment
 ago. The differences are in the ACCESS and
 SYNTAX lines. The ACCESS line is a tip-off that this object is just a structural
 placeholder representing the whole table, not a real variable that can be queried.
 The SYNTAX line tells us this is a table
 consisting of a set of IpRouteEntry objects. Let’s look at the beginning of the IpRouteEntry definition:
ipRouteEntry OBJECT-TYPE
 SYNTAX IpRouteEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "A route to a particular destination."
 INDEX { ipRouteDest }
 ::= { ipRouteTable 1 }
The ACCESS line says we’ve found another
 placeholder—the placeholder for each of the rows in our table. But this placeholder
 also has something to tell us. It indicates that we’ll be able to access each row by
 using an index object, the ipRouteDest object of
 each row.
If these multiple definition levels throw you, it may help to relate this to Perl.
 Pretend we’re dealing with a Perl hash of lists structure. The hash key for the row
 would be the ipRouteDest variable. The value for
 this hash would then be a reference to a list containing the other elements in that
 row (i.e., the rest of the route entry).
The ipRouteEntry definition continues as
 follows:
ipRouteEntry ::=
 SEQUENCE {
 ipRouteDest
 IpAddress,
 ipRouteIfIndex
 INTEGER,
 ipRouteMetric1
 INTEGER,
 ipRouteMetric2
 INTEGER,
 ipRouteMetric3
 INTEGER,
 ipRouteMetric4
 INTEGER,
 ipRouteNextHop
 IpAddress,
 ipRouteType
 INTEGER,
 ipRouteProto
 INTEGER,
 ipRouteAge
 INTEGER,
 ipRouteMask
 IpAddress,
 ipRouteMetric5
 INTEGER,
 ipRouteInfo
 OBJECT IDENTIFIER
 }
Now you can see the elements that make up each row of the table. The MIB continues
 by describing those elements. Here are the first two definitions for these
 elements:
ipRouteDest OBJECT-TYPE
 SYNTAX IpAddress
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "The destination IP address of this route. An
 entry with a value of 0.0.0.0 is considered a
 default route. Multiple routes to a single
 destination can appear in the table, but access to
 such multiple entries is dependent on the table-
 access mechanisms defined by the network
 management protocol in use."
 ::= { ipRouteEntry 1 }

 ipRouteIfIndex OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "The index value which uniquely identifies the
 local interface through which the next hop of this
 route should be reached. The interface identified
 by a particular value of this index is the same
 interface as identified by the same value of
 ifIndex."
 ::= { ipRouteEntry 2 }
Figure G-3 shows a picture of the
 ipRouteTable part of the MIB to help
 summarize all of this information.
[image: The ipRouteTable structure and its index]

Figure G-3. The ipRouteTable structure and its index

Once you understand this part of the MIB, the next step is querying the
 information. This is a process known as “table traversal.” Most SNMP packages have a
 command-line utility called something like snmptable or
 snmp-tbl that will perform this process for you, but they
 might not offer the granularity of control you need. For instance, you may not want
 a dump of the whole routing table; you may just want a list of all of the ipRouteNextHops. On top of this, some of the Perl SNMP
 packages do not have tree-walking routines. For all of these reasons, it is worth
 knowing how to perform this process by hand.
To make this process easier to understand, I’ll show you up front the information
 we’re eventually going to be receiving from the device. This will let you see how
 each step of the process adds another row to the table data we’ll collect. If I log
 into a sample machine (as opposed to using SNMP to query it remotely) and
 type
 netstat -nr to dump the IP routing table, the
 output might look like this:
default 192.168.1.1 UGS 0 215345 tu0
127.0.0.1 127.0.0.1 UH 8 5404381 lo0
192.168.1/24 192.168.1.189 U 15 9222638 tu0
This shows the default internal loopback and local network routes,
 respectively.
Now let’s see how we go about obtaining a subset of this information via
 the Net-SNMP command-line utilities. For this example, we’re only going to
 concern ourselves with the first two columns of the output (route destination and
 next hop address). We make an initial request for the first instance of those two
 variables in the table. Everything in bold type is one long command line and is only
 printed here on separate lines for legibility:
$ snmpgetnext -v 1 -c public computer \
ip.ipRouteTable.ipRouteEntry.ipRouteDest \
ip.ipRouteTable.ipRouteEntry.ipRouteNextHop
ip.ipRouteTable.ipRouteEntry.ipRouteDest.0.0.0.0 = IpAddress: 0.0.0.0
ip.ipRouteTable.ipRouteEntry.ipRouteNextHop.0.0.0.0 = IpAddress: 192.168.1.1
We need to pay attention to two parts of this response. The first is the actual
 data: the information returned after the equals sign. 0.0.0.0 means “default route,” so the information returned
 corresponded to the first line of the routing table output. The second important
 part of the response is the .0.0.0.0 tacked onto
 the variable names. This is the index for the ipRouteEntry entry representing the table row.
Now that we have the first row, we can make another
 get-next-request call, this time using the index.
 A get-next-request always returns the
 next item in an MIB, so we feed it the index of the row we
 just received to get back the next row after it:
$ snmpgetnext -v 1 -c public computer \
ip.ipRouteTable.ipRouteEntry.ipRouteDest.0.0.0.0\
ip.ipRouteTable.ipRouteEntry.ipRouteNextHop.0.0.0.0
ip.ipRouteTable.ipRouteEntry.ipRouteDest.127.0.0.1 = IpAddress: 127.0.0.1
ip.ipRouteTable.ipRouteEntry.ipRouteNextHop.127.0.0.1 = IpAddress: 127.0.0.1
You can probably guess the next step. We issue another get-next-request using the 127.0.0.1 part (the index) of the
 ip.ipRouteTable.ipRouteEntry.ipRouteDest.127.0.0.1 response:
$ snmpgetnext -v 1 -c public computer \
ip.ipRouteTable.ipRouteEntry.ipRouteDest.127.0.0.1 \
ip.ipRouteTable.ipRouteEntry.ipRouteNextHop.127.0.0.1
ip.ipRouteTable.ipRouteEntry.ipRouteDest.192.168.1 = IpAddress: 192.168.1.0
ip.ipRouteTable.ipRouteEntry.ipRouteNextHop.192.168.11.0 = IpAddress: 192.168.1.189
Looking at the sample netstat output shown
 earlier, you can see we’ve achieved our goal and dumped all of the rows of the IP
 routing table. How would we know this if we had dispensed with the dramatic irony
 and hadn’t seen the netstat output ahead of time?
 Under normal circumstances, we would have to proceed as usual and continue
 querying:
$ snmpgetnext -v 1 -c public computer \
ip.ipRouteTable.ipRouteEntry.ipRouteDest.192.168.1.0 \
ip.ipRouteTable.ipRouteEntry.ipRouteNextHop.192.168.1.0
ip.ipRouteTable.ipRouteEntry.ipRouteIfIndex.0.0.0.0 = 1
ip.ipRouteTable.ipRouteEntry.ipRouteType.0.0.0.0 = indirect(4)
Whoops, the response did not match the request! We asked for ipRouteDest and ipRouteNextHop but got back
 ipRouteIfIndex and ipRouteType. We’ve fallen off
 the edge of the ipRouteTable table. The SNMP
 get-next-request PDU has done its sworn duty
 and returned the “first lexicographic successor” in the MIB for each of the objects
 in our request. Looking back at the definition of ipRouteEntry in the previous excerpt from RFC 1213, we can see that
 ipRouteIfIndex(2) follows ipRouteDest(1), and ipRouteType(8) does indeed follow ipRouteNextHop(7).
The answer to the question of how you know when you’re done querying for the
 contents of a table is “When you notice
 you’ve fallen off the edge of that table.” Programmatically, this translates into checking that the same string
 or OID prefix you requested is returned in the answer to your query. For instance,
 you might make sure that all responses to a
 query about ipRouteDest contained
 either ip.ipRouteTable.ipRouteEntry.ipRouteDest or 1.3.6.1.2.1.4.21.1.1.
Now that you have the basics of SNMP under your belt, you may want to turn to
 Chapter 12 to see how you can use it from Perl. You should also
 check out the references at the end of Chapter 12 for more information
 on SNMP.

[148] The canonical list of PDUs for SNMPv2 and v3 is found in RFC 3416; it builds
 upon the list of PDUs in SNMPv1’s RFC 1157. The list in the RFC doesn’t contain
 many more PDUs than are cited here, so you’re not missing much.

[149] There used to be several SNMP-capable soda machines on the Web, so it isn’t
 all that far-fetched. Scoff if you will, but the Internet Toaster (controlled
 via SNMP over a SLIP connection) first made its debut in 1990!

[150] RFC 1213 is marginally updated by RFCs 4293, 4022, and 4113. RFC
 3418 adds additional SNMPv2 items to the MIB.

[151] This task can become even easier if you use a good GUI MIB browser like
 mbrowse
 or
 jmibbrowser
 . You can often get a hunch about the MIB contents by performing
 an snmpwalk on the device.

Index

A note on the digital index
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

A
	A resource record, Survey of best-practice tools to parse and manipulate XML from
 Perl
	Abell, Vic, Tracking File and Network Operations in Unix
	Abuse Reporting Format (ARF), Feedback loops
	access control lists, Unix (see ACLs)
	account system, Building an Account System to Manage Users, Building an Account System to Manage Users, The Backend Database, Adding to the account queue, Adding to the account queue, The Low-Level Component Library, Windows account creation and deletion routines, The Process Scripts, The Process Scripts, Account System Wrap-Up, Account System Wrap-Up
		adding account queue, Adding to the account queue
	backend database, The Backend Database, Adding to the account queue
	deficiencies, Account System Wrap-Up, Account System Wrap-Up
	low-level component library, The Low-Level Component Library, Windows account creation and deletion routines
	managing users, Building an Account System to Manage Users, Building an Account System to Manage Users
	process scripts, The Process Scripts, The Process Scripts

	ACLs (access control lists), Unix, Windows-Based Operating Systems, Walking the Filesystem Using the File::Find Module, Windows User ID Numbers, Windows User Rights
		DACLs, Walking the Filesystem Using the File::Find Module
	filesystem support, Unix
	NTFS support, Windows-Based Operating Systems
	Unix support, Windows User Rights
	Win32::Security module, Windows User ID Numbers

	Active Directory, NIS, NIS+, and WINS, LDAP: A Sophisticated Directory Service
		LDAP support, LDAP: A Sophisticated Directory Service
	NIS support, NIS, NIS+, and WINS

	Active Directory Service Interfaces, Windows User Identity Storage and Access (see ADSI)
	ActiveX Data Objects, Searching (see ADO)
	Adamson, Mark, The Initial LDAP Connection
	Address Resolution Protocol (ARP), Using SNMP from Perl, Discovering Hosts, Discovering Hosts
	ADO (ActiveX Data Objects), Searching, Searching, Searching
		Connection object, Searching
	defined, Searching
	RecordSet object, Searching

	ADSI (Active Directory Service Interfaces), Windows User Identity Storage and Access, Windows Groups, Windows Groups, Active Directory Service Interfaces, ADSI Basics, ADSI Basics, ADSI Basics, Using ADSI from Perl, Using ADSI from Perl, Dealing with Container/Collection Objects, Identifying a Container Object, So How Do You Know Anything About an Object?, So How Do You Know Anything About an Object?, So How Do You Know Anything About an Object?, So How Do You Know Anything About an Object?, Searching, Searching, Performing Common Tasks Using the WinNT and LDAP Namespaces, Working with Groups via ADSI, Working with Users via ADSI, Working with Groups via ADSI, Working with File Shares via ADSI, Working with Print Queues and Print Jobs via ADSI, Working with Print Queues and Print Jobs via ADSI, Working with Windows-Based Operating System Services via ADSI, ADSI
		background, Active Directory Service Interfaces
	basic functionality, ADSI Basics, ADSI Basics
	container objects, Dealing with Container/Collection Objects, Identifying a Container Object
	creating universal groups, Windows Groups
	dealing with objects, So How Do You Know Anything About an Object?, So How Do You Know Anything About an Object?
	documentation, So How Do You Know Anything About an Object?, So How Do You Know Anything About an Object?
	downloading SDK, ADSI Basics
	performing searches, Searching, Searching
	performing tasks using namespaces, Performing Common Tasks Using the WinNT and LDAP Namespaces, Working with Groups via ADSI
	Perl support, Using ADSI from Perl, Using ADSI from Perl
	reference information, ADSI
	Win32::OLE module, Windows User Identity Storage and Access, Windows Groups
	working with file shares, Working with File Shares via ADSI
	working with groups, Working with Groups via ADSI
	working with print jobs, Working with Print Queues and Print Jobs via ADSI
	working with print queues, Working with Print Queues and Print Jobs via ADSI
	working with users, Working with Users via ADSI
	working with Windows-based OS services, Working with Windows-Based Operating System Services via ADSI

	ADSI object browser, ADSI Basics, So How Do You Know Anything About an Object?
	adsi25.chm help file, ADSI Basics
	ADSIDump program, So How Do You Know Anything About an Object?
	ADsPath, ADSI Basics, ADSI Basics, So How Do You Know Anything About an Object?, Performing Common Tasks Using the WinNT and LDAP Namespaces
		defined, ADSI Basics, So How Do You Know Anything About an Object?
	examples, ADSI Basics
	formats supported, Performing Common Tasks Using the WinNT and LDAP Namespaces

	ADsVW object browser, ADSI Basics
	AIDE tool, References for More Information
	Albitz, Paul, Generating DNS (BIND) Configuration Files
	Algorithm::Acounting module, Black boxes
	aliases, user-defined, Creating/Deleting Databases and Tables
	Allen, Robbie, Editing NTFS Quotas Under Windows, References for More Information, ADSI
	Alves de Castro, José, Textual Presentation Tools
	analyzing log files, Stream read-count, Stream read-count, A simple stream read-count variation, Read-remember-process, Read-remember-process, Black boxes, Black boxes, Using databases, Using Perl-cliented SQL databases
		black box approach, Black boxes, Black boxes
	database approach, Using databases, Using Perl-cliented SQL databases
	multiple read-count passes, A simple stream read-count variation
	read-remember process, Read-remember-process, Read-remember-process
	stream read-count, Stream read-count, Stream read-count

	ancestor-or-self:: axis, Abbreviations and Axes
	ancestor:: axis, Abbreviations and Axes
	anonymous binding, The Initial LDAP Connection
	Apache Directory Studio, LDAP
	Apache SpamAssassin, SpamAssassin (see SpamAssassin)
	Apache web server, Structure of Log File Data
	Apache::LogRegex module, Black boxes
	Apache::ParseLog module, Black boxes
	Aperghis-Tramoni, Sébastien, Danger on the Wire, or “Perl Saves the Day”
	APNIC registry, The WHOIS Directory Service
	App::REPL module, Using Windows Management Instrumentation (WMI)
	Apple System Log facility, Reading Binary Log Files
	AppleScript, Using the OS-Specific IPC Framework to Drive a Mail Client
	Application object, Using the OS-Specific IPC Framework to Drive a Mail Client, Using the OS-Specific IPC Framework to Drive a Mail Client
	ARF (Abuse Reporting Format), Feedback loops
	ARP (Address Resolution Protocol), Using SNMP from Perl, Discovering Hosts, Discovering Hosts
	arp-sk tool, Discovering Hosts
	Array::Compare module, Local Filesystem Changes
	Array::PrintCols module, Textual Presentation Tools
	Atkins, Martin, Part Three: Geocoding and Mapping the Data
	Atkins, Steve, Feedback loops
	attribute:: axis, Abbreviations and Axes
	attributes, Windows-Based Operating Systems, Working with XML using XML::LibXML, Using the DBI Framework, Performing LDAP Searches, Modifying Entry Attributes, Modifying Entry Attributes, So How Do You Know Anything About an Object?, Leftovers, The 10-Minute LDAP Tutorial, LDAP Data Organization
		DBI metadata, Using the DBI Framework
	defined (LDAP), The 10-Minute LDAP Tutorial
	defined (XML), Leftovers
	FAT filesystems, Windows-Based Operating Systems
	modifying for LDAP, Modifying Entry Attributes, Modifying Entry Attributes
	quoting values for LDAP, Performing LDAP Searches
	RDN support (LDAP), LDAP Data Organization
	viewing possible names (ADSI), So How Do You Know Anything About an Object?
	XML elements and, Working with XML using XML::LibXML

	Authen::SASL module, The Initial LDAP Connection
	Authen::SASL::Cyrus module, The Initial LDAP Connection
	authentication, The Classic Unix Password File, The Initial LDAP Connection, The Initial LDAP Connection, The Initial LDAP Connection, The Initial LDAP Connection, The Initial LDAP Connection, The Initial LDAP Connection, The Initial LDAP Connection, The Initial LDAP Connection
		anonymous binding, The Initial LDAP Connection
	Kerberos, The Classic Unix Password File, The Initial LDAP Connection, The Initial LDAP Connection
	LDAP support, The Initial LDAP Connection, The Initial LDAP Connection
	SASL support, The Initial LDAP Connection, The Initial LDAP Connection
	simple binding, The Initial LDAP Connection

	axes, XPath, Abbreviations and Axes

B
	backward slash (\), Windows-Based Operating Systems, Performing LDAP Searches
	Baecker, Renee, Tracking File Operations on Windows
	Baker, Max, Alternative SNMP Programming Interfaces, Discovering Hosts
	Barclay, Alan R., Querying Filesystem Usage
	Barr, Graham, Active Probing for Rogue DHCP Servers, Speaking the Mail Protocols Directly, LDAP Programming with Perl, The Initial LDAP Connection
	base DN, Performing LDAP Searches, Referrals and references
	Baucom, Kirk, Textual Presentation Tools
	Berkeley Fast File System (FFS), Unix
	Berkeley Software Distribution (BSD), Changes to the Password File in BSD 4.4 Systems
	BerkeleyDB module, Using RRDtool
	BETWEEN operator, Retrieving a Subset of the Rows in a Table
	Big Brother monitoring package, Extending Existing Monitoring Packages
	Big Sister monitoring package, Extending Existing Monitoring Packages
	bigbuffy program, Circular buffering, Security in log-processing programs, Using RRDtool
	binary format, configuration files, Binary
	binary log files, Reading Binary Log Files, Using unpack(), Using unpack(), Calling an OS (or Someone Else’s) Binary, Calling an OS (or Someone Else’s) Binary, Using the OS’s Logging API
		calling, Calling an OS (or Someone Else’s) Binary, Calling an OS (or Someone Else’s) Binary
	logging API, Using the OS’s Logging API
	overview, Reading Binary Log Files
	unpack function, Using unpack(), Using unpack()

	BIND DNS server, Generating DNS (BIND) Configuration Files, Generating multiple configuration files, Key/Value Pairs
	binding, The Initial LDAP Connection, The Initial LDAP Connection, Referrals and references, Referrals and references, Using ADSI from Perl, Working with Print Queues and Print Jobs via ADSI, Using SNMP from Perl, Sending and Receiving SNMP Traps, Notifications, and Informs
		ADSI support, Using ADSI from Perl
	anonymous (LDAP), The Initial LDAP Connection
	LDAP support, Referrals and references, Referrals and references
	print queues to queries (ADSI), Working with Print Queues and Print Jobs via ADSI
	simple (LDAP), The Initial LDAP Connection
	variable (VarBind in SNMP), Using SNMP from Perl, Sending and Receiving SNMP Traps, Notifications, and Informs

	binding to the server (LDAP), The Initial LDAP Connection
	binmode command, Using the GD::Graph module family
	black box approach, Black boxes, Black boxes
	Blazer, Mike, Querying Filesystem Usage
	Boardman, Spider, Discovering Network Services
	Boing Boing blog, Part One: Retrieving the Wiki Page with WWW::Mechanize
	bots, IRC, Using the Proc::ProcessTable module, Using the Proc::ProcessTable module
		defined, Using the Proc::ProcessTable module
	eggdrop, Using the Proc::ProcessTable module

	Boumans, Jos, All-in-One Modules
	Boutell, Thomas, Using the GD::Graph module family
	Bray, Tim, Leftovers
	British Telecom, NIS, NIS+, and WINS
	Brocard, Leon, Using GraphViz
	Brown, Hugh, Working with Configuration Files
	Brown, Rob, Discovering Hosts
	Bruhat, Philippe, Black boxes, Black boxes
	BSD (Berkeley Software Distribution), Changes to the Password File in BSD 4.4 Systems
	bulk emailers, Feedback loops, Feedback loops
	Bunce, Tim, Interacting with a SQL Server from Perl, MySQL Server via DBI
	byte-order independence, Using Perl-only databases

C
	cache, property (ADSI), Using ADSI from Perl
	Calishain, Tara, Part Two: Extracting the Data
	caller function, Insufficient Information in the Message Body
	Cantrell, David, Walking the Filesystem Using the File::Find::Rule Module
	Carp module, Insufficient Information in the Message Body
	Carter, Gerald, Controls and extensions
	CDATA sections, Leftovers
	CDP (Cisco Discovery Protocol), Discovering Hosts
	cdpCacheTable, Discovering Hosts
	CDPs (consolidated data points) in
 RRDtool, Using RRDtool
	CenterGate Research Group LLC, The WHOIS Directory Service
	Chamberlain, Darren, Textual Presentation Tools
	Champoux, Yanick, Danger on the Wire, or “Perl Saves the Day”
	Chapman, Michael, Discovering Hosts
	chown binary, Windows User ID Numbers
	Christiansen, Tom, The Classic Unix Password File, Calling an external program, Controlling the amount of mail, Local Filesystem Changes
	ci command (RCS), The Five-Minute RCS Tutorial
	CIM (Common Information Model), Using Windows Management Instrumentation (WMI)
	CIM Schema, Using Windows Management Instrumentation (WMI)
	CIM Specification, Using Windows Management Instrumentation (WMI)
	CIM_DataFile object, Windows User ID Numbers
	Ciornii, Alexandr, Danger on the Wire, or “Perl Saves the Day”
	Cisco Discovery Protocol (CDP), Discovering Hosts
	Clamp, Richard, Walking the Filesystem Using the File::Find::Rule Module, Walking the Filesystem Using the File::Find::Rule Module, Walking the Filesystem Using the File::Find::Rule Module
	Clark, James, Working with XML using SAX2 via XML::SAX, Working with XML using SAX2 via XML::SAX
	clog program, Danger on the Wire, or “Perl Saves the Day”
	CMIP (Common Management Information Protocol), Using Windows Management Instrumentation (WMI)
	CNAME resource record, Survey of best-practice tools to parse and manipulate XML from
 Perl, The WHOIS Directory Service
	co command (RCS), The Five-Minute RCS Tutorial
	Cogswell, Bryce, Using external binaries
	Cole, Bill, Dissecting a Single Message
	COM (Component Object Model), ADSI Basics, So How Do You Know Anything About an Object?
	Common Information Model (CIM), Using Windows Management Instrumentation (WMI)
	Common Management Information Protocol (CMIP), Using Windows Management Instrumentation (WMI)
	comparison operators (LDAP), Performing LDAP Searches
	Component Object Model (COM), ADSI Basics, So How Do You Know Anything About an Object?
	Comprehensive Perl Archive Network (CPAN), What About Strawberry Perl?, Locating and Installing Modules, Black boxes
	Compress::Zlib module, Log rotation
	Computer object (ADSI), So How Do You Know Anything About an Object?
	conditional operators (SQL), Retrieving a Subset of the Rows in a Table
	Config::Auto module, All-in-One Modules
	Config::Context module, All-in-One Modules
	Config::General module, Key/Value Pairs, All-in-One Modules
	Config::Grammar module, Key/Value Pairs
	Config::Scoped module, Key/Value Pairs, All-in-One Modules
	Config::Std module, Key/Value Pairs
	Config::YAML module, YAML
	configuration files, Using external binaries, Tracking Network Operations on Windows, Generating Host Files, Generating DNS (BIND) Configuration Files, Generating multiple configuration files, Creating the administrative header, Creating the administrative header, Generating multiple configuration files, Generating multiple configuration files, Working with Configuration Files, Working with Configuration Files, Binary, Naked Delimited Data, Naked Delimited Data, Key/Value Pairs, Key/Value Pairs, Markup Languages, YAML, All-in-One Modules, Advanced Configuration Storage Mechanisms, References for More Information, Geocoding from IP Addresses
		administrative header, Creating the administrative header, Creating the administrative header
	advanced storage mechanisms, Advanced Configuration Storage Mechanisms
	all-in-one modules, All-in-One Modules
	binary format, Binary
	CSV files, Using external binaries, Tracking Network Operations on Windows, Naked Delimited Data, Geocoding from IP Addresses
	DNS, Generating DNS (BIND) Configuration Files, Generating multiple configuration files
	generating multiple, Generating multiple configuration files, Generating multiple configuration files
	key/value pairs, Generating Host Files, Key/Value Pairs, Key/Value Pairs
	markup languages, Markup Languages, YAML
	naked delimited data, Naked Delimited Data
	overview, Working with Configuration Files, Working with Configuration Files
	reference information, References for More Information

	consolidated data points (CDPs), Using RRDtool
	constants, Tactic 6: Dealing with Constants
	container objects (ADSI), ADSI Basics, Dealing with Container/Collection Objects, Dealing with Container/Collection Objects, Identifying a Container Object, Tactic 4: Dealing with Container Objects
		functionality, ADSI Basics, Dealing with Container/Collection Objects, Tactic 4: Dealing with Container Objects
	identifying, Identifying a Container Object
	special handling, Dealing with Container/Collection Objects

	continuation references, Referrals and references, Referrals and references, Referrals and references
	controls (LDAP), Deleting Entries, Controls and extensions
	converting method invocations, Tactic 5: Converting Method Invocations
	Conway, Damian, Key/Value Pairs, Textual Presentation Tools
	Cooper, Clark, Working with XML using SAX2 via XML::SAX
	Cozen, Simon, Monitoring Frameworks
	CPAN (Comprehensive Perl Archive Network), What About Strawberry Perl?, Locating and Installing Modules, Black boxes
	CPAN module, Installing Modules on Win32
	Crack program, Reject Bad Passwords
	Cracklib package, Reject Bad Passwords, Reject Bad Passwords
	Crane, Aaron, Dissecting a Single Message
	CREATE DATABASE statement (SQL), Creating/Deleting Databases and Tables
	CREATE TRIGGER statement (SQL), Stored Procedures
	cron command (Unix), Controlling the frequency of mail, Monitoring Frameworks
	crontab files, parsing, Task One: Parsing crontab Files
	Crypt::Cracklib module, Reject Bad Passwords
	Crypt::GeneratePassword module, Suggest Better Passwords
	Crypt::SSLeay module, Part One: Retrieving the Wiki Page with WWW::Mechanize
	CSV files, Using external binaries, Tracking Network Operations on Windows, Naked Delimited Data, Geocoding from IP Addresses
	cursor use in queries, Cursors
	Cygwin, Windows User ID Numbers, Getting sendmail (or a Similar Mail Transport Agent), The WHOIS Directory Service
		chown binary, Windows User ID Numbers
	exim port, Getting sendmail (or a Similar Mail Transport Agent)
	WHOIS support, The WHOIS Directory Service

D
	DACL (discretionary ACL), Walking the Filesystem Using the File::Find Module
	data source name (DSN), Using ODBC from Within DBI
	data source types (DSTs), Using RRDtool
	Data::Dumper module, Module Information for This Chapter, DNS Checking: An Iterative Approach, Module Information for This Chapter, Working with XML using XML::Simple, Using Perl-only databases, Changes in Data Served Over the Network
	Data::Dumper::Streamer module, Working with XML using XML::Simple
	Data::ShowTable module, Textual Presentation Tools
	Data::SimplePassword module, Suggest Better Passwords
	Data::Timeline module, Task Two: Displaying the Timeline
	database administration, SQL Database Administration, Interacting with a SQL Server from Perl, Interacting with a SQL Server from Perl, Using the DBI Framework, Using the DBI Framework, Using ODBC from Within DBI, Using ODBC from Within DBI, Server Documentation, Microsoft SQL Server via ODBC, Database Logins, Database Logins, Monitoring Space Usage on a Database Server, Monitoring Space Usage on a Database Server, References for More Information
		database logins, Database Logins, Database Logins
	DBI framework, Using the DBI Framework, Using the DBI Framework
	interacting with Microsoft SQL Server, Interacting with a SQL Server from Perl, Interacting with a SQL Server from Perl
	Microsoft SQL Server documentation, Server Documentation, Microsoft SQL Server via ODBC
	monitoring server space, Monitoring Space Usage on a Database Server, Monitoring Space Usage on a Database Server
	ODBC from within DBI, Using ODBC from Within DBI, Using ODBC from Within DBI
	rationale for, SQL Database Administration
	reference information, References for More Information

	DataBase Dependent (DBD) drivers, Interacting with a SQL Server from Perl
	DataBase Interface, Interacting with a SQL Server from Perl (see DBI)
	databases, The Backend Database, Adding to the account queue, MySQL Server via DBI, Database Logins, Database Logins, Monitoring Space Usage on a Database Server, Monitoring Space Usage on a Database Server, What’s a Directory?, Putting It All Together, Using databases, Using Perl-cliented SQL databases, Using Perl-only databases, Using Perl-only databases, Creating/Deleting Databases and Tables, Creating/Deleting Databases and Tables, Creating/Deleting Databases and Tables, Relating Tables to Each Other, Stored Procedures, Stored Procedures
		analyzing log files, Using databases, Using Perl-cliented SQL databases
	building account system, The Backend Database, Adding to the account queue
	byte-order independence, Using Perl-only databases
	creating and deleting, Creating/Deleting Databases and Tables, Creating/Deleting Databases and Tables
	directory comparison, What’s a Directory?
	GO command, Creating/Deleting Databases and Tables
	joining tables, Relating Tables to Each Other
	login considerations, Database Logins, Database Logins
	metadata, MySQL Server via DBI
	monitoring server space, Monitoring Space Usage on a Database Server, Monitoring Space Usage on a Database Server
	stored procedures, Stored Procedures
	supported native-Perl formats, Using Perl-only databases
	triggers, Stored Procedures
	using LDAP instead of, Putting It All Together

	DBD (DataBase Dependent) drivers, Interacting with a SQL Server from Perl
	DBD::Gofer module, Interacting with a SQL Server from Perl
	DBD::ODBC module, Interacting with a SQL Server from Perl, Using ODBC from Within DBI, Microsoft SQL Server via ODBC
	DBD::Oracle module, Interacting with a SQL Server from Perl
	DBD::Proxy module, Interacting with a SQL Server from Perl
	DBD::SQLite module, The Backend Database, Module Information for This Chapter
	DBD::Sybase module, Interacting with a SQL Server from Perl
	DBI (DataBase Interface), Interacting with a SQL Server from Perl, Interacting with a SQL Server from Perl, Using the DBI Framework, Using ODBC from Within DBI, Using ODBC from Within DBI, MySQL Server via DBI, Oracle Server via DBI, Oracle Server via DBI, Microsoft SQL Server via ODBC, Microsoft SQL Server via ODBC, DBI
		basic steps for using, Using the DBI Framework, Using the DBI Framework
	bind_col method, Using the DBI Framework
	bind_columns method, Using the DBI Framework
	column_info method, Microsoft SQL Server via ODBC
	connect method, Using the DBI Framework
	execute method, Using the DBI Framework
	fetch method, Using the DBI Framework
	fetchall_arrayref method, Using the DBI Framework
	fetchall_hashref method, Using the DBI Framework
	fetchrow_array method, Using the DBI Framework
	fetchrow_arrayref method, Using the DBI Framework, Using the DBI Framework, Using the DBI Framework
	fetchrow_hashref method, Using the DBI Framework, Using the DBI Framework
	functionality, Interacting with a SQL Server from Perl, Interacting with a SQL Server from Perl
	MySQL support, MySQL Server via DBI
	ODBC support, Using ODBC from Within DBI, Using ODBC from Within DBI
	Oracle support, Oracle Server via DBI, Oracle Server via DBI
	prepare method, Using the DBI Framework
	reference information, DBI
	selectall_arrayref method, Using the DBI Framework
	selectall_hashref method, Using the DBI Framework
	selectcol_arrayref method, Using the DBI Framework
	selectrow_array method, Using the DBI Framework
	selectrow_arrayref method, Using the DBI Framework
	selectrow_hashref method, Using the DBI Framework
	table_info method, Microsoft SQL Server via ODBC

	DBIx::Class module, The Backend Database
	DBM::Deep module, The Backend Database, Adding to the account queue, Binary, Using RRDtool
	DB_File module, Module Information for This Chapter
	DDNS (Dynamic Domain Name Service), Windows Internet Name Server (WINS)
	DELETE statement (SQL), Changing Table Information
	denial of service attacks, Danger on the Wire, or “Perl Saves the Day”, Danger on the Wire, or “Perl Saves the Day”
	descendant:: axis, Abbreviations and Axes
	DESCRIBE command (MySQL), Creating/Deleting Databases and Tables
	description element, Working with XML using XML::LibXML, Working with XML using XML::LibXML
	Devel::REPL module, Using Windows Management Instrumentation (WMI)
	df command (Unix), Querying Filesystem Usage
	DHCP (Dynamic Host Configuration Protocol), Host Files, DHCP, DHCP, Active Probing for Rogue DHCP Servers, Active Probing for Rogue DHCP Servers, Monitoring Legitimate DHCP Servers, Monitoring Legitimate DHCP Servers, Discovering Hosts
		functionality, DHCP, DHCP
	host discovery, Discovering Hosts
	host files and, Host Files
	monitoring servers, Monitoring Legitimate DHCP Servers, Monitoring Legitimate DHCP Servers
	probing for rogue servers, Active Probing for Rogue DHCP Servers, Active Probing for Rogue DHCP Servers

	DHCP packets, Active Probing for Rogue DHCP Servers, Active Probing for Rogue DHCP Servers, Active Probing for Rogue DHCP Servers, Active Probing for Rogue DHCP Servers, Active Probing for Rogue DHCP Servers, Active Probing for Rogue DHCP Servers, Monitoring Legitimate DHCP Servers, Monitoring Legitimate DHCP Servers
		Chaddr flag, Active Probing for Rogue DHCP Servers
	DHO_DHCP_MESSAGE_TYPE flag, Active Probing for Rogue DHCP Servers
	DHO_DHCP_REQUESTED_ADDRESS flag, Monitoring Legitimate DHCP Servers
	DHO_DHCP_SERVER_IDENTIFIER flag, Monitoring Legitimate DHCP Servers
	DHO_HOST_NAME flag, Active Probing for Rogue DHCP Servers
	DHO_VENDOR_CLASS_IDENTIFIER flag, Active Probing for Rogue DHCP Servers
	Flags flag, Active Probing for Rogue DHCP Servers
	Xid flag, Active Probing for Rogue DHCP Servers

	Digest::MD5 module, Local Filesystem Changes
	Digest::SHA module, Local Filesystem Changes
	directory, What’s a Directory?, Deleting Entries
		characteristics, What’s a Directory?
	deleting entire subtree, Deleting Entries

	Directory Access utility (Mac), NIS, NIS+, and WINS
	directory services, Finger: A Simple Directory Service, Finger: A Simple Directory Service, The WHOIS Directory Service, The WHOIS Directory Service, LDAP: A Sophisticated Directory Service, Putting It All Together, Active Directory Service Interfaces, Working with Windows-Based Operating System Services via ADSI, Searching, References for More Information, References for More Information
		ADSI, Active Directory Service Interfaces, Working with Windows-Based Operating System Services via ADSI
	Finger, Finger: A Simple Directory Service, Finger: A Simple Directory Service, References for More Information
	LDAP, LDAP: A Sophisticated Directory Service, Putting It All Together
	OLE support, Searching
	WHOIS, The WHOIS Directory Service, The WHOIS Directory Service, References for More Information

	Directory Services Markup Language (DSML), DSML
	directory system agent (DSA), The root DSE
	discretionary ACL (DACL), Walking the Filesystem Using the File::Find Module
	disk quotas, Manipulating Disk Quotas, Editing Quotas Using the Quota Module, Editing Quotas with edquota Trickery, Editing Quotas with edquota Trickery, Editing Quotas Using the Quota Module, Editing NTFS Quotas Under Windows, Editing NTFS Quotas Under Windows
		editing NTFS quotas, Editing NTFS Quotas Under Windows
	editing using Quota module, Editing Quotas Using the Quota Module
	editing with edquota command, Editing Quotas with edquota Trickery, Editing Quotas with edquota Trickery
	manipulating, Manipulating Disk Quotas, Editing Quotas Using the Quota Module
	setting NTFS to no limit, Editing NTFS Quotas Under Windows

	distinguished name, LDAP Data Organization (see DN)
	DMTF (Distributed Management Task Force), Using Windows Management Instrumentation (WMI), References for More Information
	DN (distinguished name), The Initial LDAP Connection, The Initial LDAP Connection, The Initial LDAP Connection, Performing LDAP Searches, Performing LDAP Searches, Entry Representation in Perl, Adding Entries with LDIF, Adding Entries with LDIF, Modifying Entry Names, Modifying Entry Names, Referrals and references, LDAP Data Organization, LDAP Data Organization
		base, Performing LDAP Searches, Referrals and references
	binding to the server, The Initial LDAP Connection
	defined, LDAP Data Organization
	directory manager, The Initial LDAP Connection, Adding Entries with LDIF
	hash references, Entry Representation in Perl
	relative (RDN), Performing LDAP Searches, Modifying Entry Names, Modifying Entry Names, LDAP Data Organization
	root distinguished name, The Initial LDAP Connection, Adding Entries with LDIF

	DNS (Domain Name Service), Host Files, Domain Name Service (DNS), Domain Name Service (DNS), Generating DNS (BIND) Configuration Files, Generating multiple configuration files, DNS Checking: An Iterative Approach, Using Net::DNS, Working with raw network sockets, Working with raw network sockets
		checking, DNS Checking: An Iterative Approach, Using Net::DNS
	functionality, Domain Name Service (DNS)
	generating configuration files, Generating DNS (BIND) Configuration Files, Generating multiple configuration files
	host files and, Host Files, Domain Name Service (DNS)
	packets, Working with raw network sockets, Working with raw network sockets

	Document Object Model (DOM), Working with XML using XML::LibXML
	DOM (Document Object Model), Working with XML using XML::LibXML
	domain local groups, Windows Groups
	Domain Name Service, Host Files (see DNS)
	domain users, Windows Groups
	Donley, Clayton, LDAP Programming with Perl
	dot (.) character, Tactic 3: Accessing Object Properties Using the Hash Dereference
 Syntax
	dotldBasePortTable, Using SNMP from Perl
	dotldTpFdbTable, Using SNMP from Perl
	Dougherty, Jesse, Using the OS’s Logging API
	DROP statement (SQL), Creating/Deleting Databases and Tables
	DROP TRIGGER statement (SQL), Stored Procedures
	DSA (directory system agent), The root DSE
	DSE, root, The root DSE
	DSML (Directory Services Markup Language), DSML
	DSN (data source name), Using ODBC from Within DBI
	dsniff package, Discovering Hosts
	DSTs (data source types), Using RRDtool
	Dubois, Jan, Some Notes About Using Vista with the Code in This Book, Windows User Identity Storage and Access, Windows User ID Numbers, Using ADSI from Perl, The Two-Minute VBScript-to-Perl Tutorial
	DumpEl program, Stream read-count
	Dynamic Domain Name Service (DDNS), Windows Internet Name Server (WINS)
	Dynamic Host Configuration Protocol, Host Files (see DHCP)
	Dzubin, Thomas, Danger on the Wire, or “Perl Saves the Day”

E
	Eaglesham, John, Using the OS’s Logging API
	EDITOR environment variable, Manipulating Disk Quotas, Editing Quotas with edquota Trickery
	edquota command, Manipulating Disk Quotas, Editing Quotas with edquota Trickery, Editing Quotas with edquota Trickery
	eggdrop bot, Using the Proc::ProcessTable module
	Ekenberg, Johan, Manipulating Disk Quotas
	ElDump program, Stream read-count
	elevated privileges, It’s Not Easy Being Omnipotent
	Elevation Power Toys, Some Notes About Using Vista with the Code in This Book
	email, Email, Sending Mail, Sending HTML mail messages using Email::Send, Sending mail messages with attachments using Email::Send, Sending mail messages with attachments using Email::Send, Sending HTML mail messages using Email::Send, Overzealous Message Sending, Controlling the amount of mail, Subject Line Waste, Insufficient Information in the Message Body, Insufficient Information in the Message Body, Fetching Mail, Talking IMAP4rev1 to Fetch Mail, Dissecting a Single Message, Dissecting a Single Message, Dissecting a Single Message, Dissecting a Whole Mailbox, Dissecting a Whole Mailbox, Dealing with Spam, Feedback loops, SpamAssassin, Support Mail Augmentation, Support Mail Augmentation, References for More Information, Finger: A Simple Directory Service
		benefits of, Email
	dealing with spam, Dealing with Spam, Feedback loops
	dissecting single message, Dissecting a Single Message, Dissecting a Single Message
	dissecting whole mailbox, Dissecting a Whole Mailbox, Dissecting a Whole Mailbox
	fetching, Fetching Mail, Talking IMAP4rev1 to Fetch Mail
	insufficient information in message body, Insufficient Information in the Message Body, Insufficient Information in the Message Body
	locating addresses, Finger: A Simple Directory Service
	overzealous message sending, Overzealous Message Sending, Controlling the amount of mail
	parsing, Dissecting a Single Message, SpamAssassin
	reference information, References for More Information
	sending, Sending Mail, Sending HTML mail messages using Email::Send
	sending HTML messages, Sending HTML mail messages using Email::Send
	sending with MIME attachments, Sending mail messages with attachments using Email::Send, Sending mail messages with attachments using Email::Send
	subject line waste, Subject Line Waste
	support communications, Support Mail Augmentation, Support Mail Augmentation

	Email::ARF::Report module, Feedback loops
	Email::Folder module, Dissecting a Whole Mailbox
	Email::MIME module, Sending mail messages with attachments using Email::Send, Sending mail messages with attachments using Email::Send, Dissecting a Single Message
		dissecting simple messages, Dissecting a Single Message
	sending messages with attachments, Sending mail messages with attachments using Email::Send, Sending mail messages with attachments using Email::Send

	Email::MIME Module, Sending HTML mail messages using Email::Send
		create_html method, Sending HTML mail messages using Email::Send

	Email::MIME::CreateHTML module, Sending HTML mail messages using Email::Send, Sending HTML mail messages using Email::Send
	Email::MIME::Creator module, Sending mail messages with attachments using Email::Send, Sending HTML mail messages using Email::Send
	Email::Send module, Speaking the Mail Protocols Directly, Sending vanilla mail messages with Email::Send, Sending vanilla mail messages with Email::Send, Sending mail messages with attachments using Email::Send, Sending mail messages with attachments using Email::Send, Sending HTML mail messages using Email::Send
		background, Speaking the Mail Protocols Directly
	sending attachments, Sending mail messages with attachments using Email::Send, Sending mail messages with attachments using Email::Send
	sending HTML messages, Sending HTML mail messages using Email::Send
	sending plain messages, Sending vanilla mail messages with Email::Send, Sending vanilla mail messages with Email::Send

	Email::Send::Sendmail module, Sending vanilla mail messages with Email::Send
	Email::Send::Test module, Sending vanilla mail messages with Email::Send
	Email::Sender module, Speaking the Mail Protocols Directly
	Email::Sender::Simple module, Speaking the Mail Protocols Directly
	Email::Simple module, Sending vanilla mail messages with Email::Send, Dissecting a Single Message, Dissecting a Whole Mailbox, SpamAssassin
		functionality, Sending vanilla mail messages with Email::Send, Dissecting a Single Message, Dissecting a Whole Mailbox
	header method, SpamAssassin

	Email::Simple::Creator module, Sending vanilla mail messages with Email::Send, Sending vanilla mail messages with Email::Send
	Email::Valid module, Dissecting a Single Message
	equality, comparing lists for, Local Filesystem Changes
	error-checking host files, Error-Checking the Host File Generation Process
	Estabrook, Eric, Unix account creation and deletion routines—a variation
	Estabrooks, Eric, Shadow Passwords
	Eudora MTA, Dissecting a Whole Mailbox
	EV::ADNS module, Geocoding from IP Addresses
	Evard, Rémy, How Perl Can Help You
	event logs, Reading Binary Log Files, Using the OS’s Logging API, Stream read-count
	Event Viewer program, Using the OS’s Logging API
	EventID, Stream read-count
	Everett, Toby, ADSI Basics, So How Do You Know Anything About an Object?
	exclamation mark, Performing LDAP Searches
	expat library, Working with XML using SAX2 via XML::SAX, Working with XML using a hybrid approach (XML::Twig)
	Expect module, Unix account creation and deletion routines—a variation, Unix account creation and deletion routines—a variation, Finger: A Simple Directory Service
	experiential learning, Playing with Timelines, Putting It All Together, Playing with Geocoding, Summary: What Can We Learn from This?, Playing with an MP3 Collection, Summary: What Can We Learn from This?, Part One: Retrieving the Wiki Page with WWW::Mechanize, Part One: Retrieving the Wiki Page with WWW::Mechanize, Part Two: Extracting the Data, Part Three: Geocoding and Mapping the Data, Part Three: Geocoding and Mapping the Data, Source Material for This Chapter
		data extraction, Part Two: Extracting the Data
	playing with geocoding, Playing with Geocoding, Summary: What Can We Learn from This?, Part Three: Geocoding and Mapping the Data, Part Three: Geocoding and Mapping the Data
	playing with MP3 collection, Playing with an MP3 Collection, Summary: What Can We Learn from This?
	playing with timelines, Playing with Timelines, Putting It All Together
	reference information, Source Material for This Chapter
	WWW::Mechanize module, Part One: Retrieving the Wiki Page with WWW::Mechanize, Part One: Retrieving the Wiki Page with WWW::Mechanize

	exploits, Be Careful When Reading Data, Avoid Race Conditions
		poison NULL byte, Be Careful When Reading Data
	race condition, Avoid Race Conditions

	Extended Common Log Format, Black boxes
	eXtensible Markup Language, The Eight-Minute XML Tutorial (see XML)
	extensions (LDAP), Controls and extensions

F
	Fastmail.fm, Talking IMAP4rev1 to Fetch Mail
	FAT (File Allocation Table) filesystem, Windows-Based Operating Systems, Windows-Based Operating Systems
		Unix filesystem comparison, Windows-Based Operating Systems
	Windows support, Windows-Based Operating Systems

	FAT32 filesystem, Windows-Based Operating Systems, Windows-Based Operating Systems
		VFAT similarities, Windows-Based Operating Systems
	Windows support, Windows-Based Operating Systems

	Fcntl module, Module Information for This Chapter
	feedback loops for bulk email senders, Feedback loops, Feedback loops
	Feedburner service, Part One: Retrieving the Wiki Page with WWW::Mechanize
	File Allocation Table, Windows-Based Operating Systems (see FAT filesystem)
	file command (Unix), Walking the Filesystem Using the File::Find Module
	file operations, Windows User ID Numbers, User Activity, Tracking File Operations on Windows, Tracking File Operations on Windows, Tracking File and Network Operations in Unix, Tracking File and Network Operations in Unix
		overview, User Activity
	transferring ownership, Windows User ID Numbers
	Unix-based, Tracking File and Network Operations in Unix, Tracking File and Network Operations in Unix
	Windows-based, Tracking File Operations on Windows, Tracking File Operations on Windows

	file shares, Working with File Shares via ADSI
	File:: module, The Classic Unix Password File
	File::Basename module, Walking the Filesystem Using the File::Find Module
	File::Copy module, Log rotation
	File::Find module, Walking the Filesystem Using the File::Find Module, Walking the Filesystem Using the File::Find Module, Local Signs of Peril
	File::Find::Rule module, Walking the Filesystem Using the File::Find::Rule Module, Walking the Filesystem Using the File::Find::Rule Module, Local Signs of Peril, Summary: What Can We Learn from This?
	File::Find::Rule::ImageSize module, Walking the Filesystem Using the File::Find::Rule Module
	File::Find::Rule::MP3Info module, Walking the Filesystem Using the File::Find::Rule Module, Playing with an MP3 Collection
	File::Find::Rule::Permissions module, Walking the Filesystem Using the File::Find::Rule Module, Summary: What Can We Learn from This?
	File::Find::Rule::PPI module, Walking the Filesystem Using the File::Find::Rule Module
	File::Find::Rule::VCS module, Walking the Filesystem Using the File::Find::Rule Module
	File::Path module, Windows account creation and deletion routines
	File::Slurp module, Sending mail messages with attachments using Email::Send
	File::Spec module, Dealing with Filesystem Differences from Perl, Dealing with Filesystem Differences from Perl, Module Information for This Chapter
	File::Spec::Functions module, Dealing with Filesystem Differences from Perl
	File::Stat module, Local Filesystem Changes
	File::Tail module, Black boxes
	File::Temp module, Module Information for This Chapter, Security in log-processing programs
	filenames, whitespaces in, Read-remember-process
	Filesys::Df module, Querying Filesystem Usage
	Filesys::DfPortable module, Querying Filesystem Usage
	Filesys::DiskFree module, Querying Filesystem Usage
	Filesys::DiskSpace module, Querying Filesystem Usage
	filesystems, Be Careful When Writing Data, Unix, Windows-Based Operating Systems, Windows-Based Operating Systems, Windows-Based Operating Systems, Mac OS X, Filesystem Differences Summary, Dealing with Filesystem Differences from Perl, Dealing with Filesystem Differences from Perl, Walking or Traversing the Filesystem by Hand, Walking or Traversing the Filesystem by Hand, Walking or Traversing the Filesystem by Hand, Walking the Filesystem Using the File::Find Module, Walking the Filesystem Using the File::Find Module, Walking the Filesystem Using the File::Find::Rule Module, Walking the Filesystem Using the File::Find::Rule Module, Manipulating Disk Quotas, Editing Quotas Using the Quota Module, Querying Filesystem Usage, References for More Information, Local Filesystem Changes, Local Filesystem Changes, LDAP Data Organization, The 20-Minute SNMP Tutorial
		cautions writing data, Be Careful When Writing Data
	dealing with differences, Dealing with Filesystem Differences from Perl, Dealing with Filesystem Differences from Perl
	DN comparison, LDAP Data Organization
	Mac OS X support, Mac OS X
	manipulating disk quotas, Manipulating Disk Quotas, Editing Quotas Using the Quota Module
	MIB comparison, The 20-Minute SNMP Tutorial
	noticing changes, Local Filesystem Changes, Local Filesystem Changes
	Perl cautions, Walking or Traversing the Filesystem by Hand
	querying usage, Querying Filesystem Usage
	reference information, References for More Information
	summary of differences, Filesystem Differences Summary
	Unix variants, Unix, Windows-Based Operating Systems
	walking by hand, Walking or Traversing the Filesystem by Hand, Walking or Traversing the Filesystem by Hand
	walking using File::Find module, Walking the Filesystem Using the File::Find Module, Walking the Filesystem Using the File::Find Module
	walking using File::Find::Rule module, Walking the Filesystem Using the File::Find::Rule Module, Walking the Filesystem Using the File::Find::Rule Module
	Windows-based, Windows-Based Operating Systems, Windows-Based Operating Systems

	filters, Walking the Filesystem Using the File::Find::Rule Module, Performing LDAP Searches, Performing LDAP Searches, Referrals and references, Black boxes
		File::Find::Rule module, Walking the Filesystem Using the File::Find::Rule Module
	procmail, Black boxes
	search (LDAP), Performing LDAP Searches, Performing LDAP Searches, Referrals and references

	find command (Unix), Walking or Traversing the Filesystem by Hand
	finger command, Finger: A Simple Directory Service
	Finger directory service, Finger: A Simple Directory Service, Finger: A Simple Directory Service, References for More Information
	FIPS-181 standard, Suggest Better Passwords
	following-sibling:: axis, Abbreviations and Axes
	following:: axis, Abbreviations and Axes
	forward mapping, Generating multiple configuration files, Generating multiple configuration files
	forward slash (/), Unix
	Foundry Discover Protocol, Discovering Hosts
	fping program, Danger on the Wire, or “Perl Saves the Day”
	FQDN (fully qualified domain name), Finding Problematic Patterns
	FreeTDS libraries, Interacting with a SQL Server from Perl
	FreezeThaw module, Using Perl-only databases, Changes in Data Served Over the Network
	Freter, Craig, Incorporating a Source Code Control System
	Friedl, Jeffrey, Read-remember-process
	Fuhr, Michael, Working with raw network sockets, Using Net::DNS
	fully qualified domain name (FQDN), Finding Problematic Patterns
	Fyodor, Discovering Network Services

G
	Gaissmaier, Karl, Key/Value Pairs
	Gampe, Paul, Log rotation
	Garcia, Salvador Fandiño, Improving the Host File Output
	Garfinkel, Simson, Read-remember-process
	gcc tool, Reject Bad Passwords
	GCOS/GECOS field, The Classic Unix Password File
	GD::Graph module, Using the GD::Graph module family, Using the GD::Graph module family
	GD::Graph3D module, Using the GD::Graph module family
	Geo::Coder::Google module, Part Three: Geocoding and Mapping the Data
	Geo::Coder::US module, Geocoding from Postal Addresses
	Geo::Coder::Yahoo module, Geocoding from Postal Addresses
	Geo::Google::StaticMaps module, Part Three: Geocoding and Mapping the Data
	geocoding, playing with, Playing with Geocoding, Summary: What Can We Learn from This?, Part Three: Geocoding and Mapping the Data, Part Three: Geocoding and Mapping the Data
	get-bulk-request PDU, The 20-Minute SNMP Tutorial
	get-next-request PDU, The 20-Minute SNMP Tutorial, SNMP in Practice, SNMP in Practice
	get-request PDU, The 20-Minute SNMP Tutorial
	GetDCName function, Windows Groups
	getgrent function, The Classic Unix Password File
	getgrgid function, The Classic Unix Password File
	getgrnam function, The Classic Unix Password File
	Getopt:: module family, Walking or Traversing the Filesystem by Hand
	Getopt::Long module, Module Information for This Chapter
	getpwent function, The Classic Unix Password File, Extra fields in passwd files
	getpwnam function, The Classic Unix Password File
	getpwuid function, The Classic Unix Password File
	GID (group ID), The Classic Unix Password File
	Giddings, Bret, Using the OS’s Logging API
	Giersig, Roland, Unix account creation and deletion routines—a variation, Finger: A Simple Directory Service
	global groups, Windows Groups, Windows Groups, Windows Groups, Windows Groups
		adding users, Windows Groups
	defined, Windows Groups
	nesting, Windows Groups
	Win32API::Net functions, Windows Groups

	Glover, Mike, Manipulating Disk Quotas
	gnutar utility, Perl to the Rescue
	GO command, Creating/Deleting Databases and Tables
	Goess, Kevin, Advanced Logging Framework
	Good, Gordon, Adding Entries with LDIF
	Google Earth, Geocoding from Postal Addresses
	Google Maps web service, Geocoding from Postal Addresses
	GPOs (group policy objects), Editing NTFS Quotas Under Windows
	Graham, Michael, All-in-One Modules
	Graph::Easy module, Using GraphViz
	Graph::Timeline module, Task Two: Displaying the Timeline
	graphical presentation tools, Using the GD::Graph module family, Using the GD::Graph module family, Using GraphViz, Using GraphViz, Using RRDtool, Using RRDtool
		GD::Graph module, Using the GD::Graph module family, Using the GD::Graph module family
	GraphViz module, Using GraphViz, Using GraphViz
	RRDtool, Using RRDtool, Using RRDtool

	GraphViz module, Using GraphViz, Using GraphViz
	Grimes, Mark, Discovering Hosts
	group ID (GID), The Classic Unix Password File
	Group Policy Management Console, Windows User Rights
	group policy objects (GPOs), Editing NTFS Quotas Under Windows
	Group Policy/Group Policy Object Editor, Windows User Rights
	groups (Windows), Windows Groups, Windows Groups, Working with Groups via ADSI, Working with Groups via ADSI, Working with Groups via ADSI, Working with Groups via ADSI
		adding users, Working with Groups via ADSI
	ADSI support, Working with Groups via ADSI
	creating, Working with Groups via ADSI
	deleting, Working with Groups via ADSI
	overview, Windows Groups, Windows Groups

	Grundman, Andy, Local Filesystem Changes
	Guisado, Ernesto, Using the GUI control modules (Win32::Setupsup and
 Win32::GuiTest)
	Guthrie, Ian, Querying Filesystem Usage, Querying Filesystem Usage
	Guttman, Uri, Improving the Host File Output
	gzip command, Log rotation

H
	h2xs program, Reject Bad Passwords
	Hadinger, Stephan, Active Probing for Rogue DHCP Servers
	handle program, Tracking File Operations on Windows, Tracking File Operations on Windows, References for More Information
	Hansen, Ask Bjørn, Geocoding from Postal Addresses
	Harris, Rik, NIS, NIS+, and WINS
	hash dereference syntax, Tactic 3: Accessing Object Properties Using the Hash Dereference
 Syntax
	Hay, Steve, Local Filesystem Changes
	Hedstrom, Leif, LDAP Programming with Perl
	Helberg, Jens, Windows User Identity Storage and Access, Windows User Rights, Using the GUI control modules (Win32::Setupsup and
 Win32::GuiTest)
	Hemenway, Kevin, Part Two: Extracting the Data
	HFS (Hierarchical File System), Mac OS X
	HIDDEN attribute, Walking the Filesystem Using the File::Find Module
	Hierarchical File System (HFS), Mac OS X
	Hobbit monitoring package, Xymon (see Xymon monitoring package)
	Holzman, Benjamin, Writing XML from Perl
	home directory, The Classic Unix Password File
	host discovery, Discovering Hosts, Discovering Hosts
	host files, Host Files, Host Files, Host Files, Generating Host Files, Generating Host Files, Error-Checking the Host File Generation Process, Improving the Host File Output, Improving the Host File Output, Incorporating a Source Code Control System, Incorporating a Source Code Control System
		error-checking, Error-Checking the Host File Generation Process
	generating, Generating Host Files, Generating Host Files
	improving output, Improving the Host File Output, Improving the Host File Output
	keeping in source control systems, Incorporating a Source Code Control System, Incorporating a Source Code Control System
	overview, Host Files, Host Files
	parsing, Host Files

	hostname, NIS, NIS+, and WINS, DHCP, SpamAssassin
		DNS lookup, SpamAssassin
	mapping to IP address, NIS, NIS+, and WINS, DHCP

	hping tool, Discovering Hosts
	HTML, Sending HTML mail messages using Email::Send
		sending messages using Email::Send, Sending HTML mail messages using Email::Send

	HTML::GoogleMaps module, Geocoding from Postal Addresses
	HTML::TableExtract module, Part Two: Extracting the Data
	HTML::Template module, Textual Presentation Tools
	HTML::TreeBuilder module, Working with XML using a hybrid approach (XML::Twig)
	Hudes, Dana, The WHOIS Directory Service
	Hunter, Laura, Editing NTFS Quotas Under Windows, References for More Information
	Huß, Roland, Monitoring Frameworks

I
	IADsComputer interface, ADSI Basics
	IADsPrintQueue interface, ADSI Basics
	IADsUser interface, ADSI Basics
	ICMP (Internet Control Message Protocol), Danger on the Wire, or “Perl Saves the Day”
	ICMP ECHO_REQUEST, Discovering Hosts
	ICMP ECHO_RESPONSE, Discovering Hosts
	ident protocol, Read-remember-process
	Identity Management for Unix (IdMU), NIS, NIS+, and WINS
	IDispatch interface, ADSI Basics
	IdMU (Identity Management for Unix), NIS, NIS+, and WINS
	ifxTable, Using SNMP from Perl
	IMAP4 protocol, Talking IMAP4rev1 to Fetch Mail, Talking IMAP4rev1 to Fetch Mail, References for More Information
	imapsync program, Talking IMAP4rev1 to Fetch Mail, Talking IMAP4rev1 to Fetch Mail
	importing primitives, Tactic 1: Loading Your Modules
	IN operator, Retrieving a Subset of the Rows in a Table
	inform-request PDU, The 20-Minute SNMP Tutorial
	INFORMATION_SCHEMA database, MySQL Server via DBI
	informs, sending, Sending and Receiving SNMP Traps, Notifications, and Informs, Sending and Receiving SNMP Traps, Notifications, and Informs
	INSERT statement (SQL), Inserting Data into a Table, Adding the Query Results to Another Table, Changing Table Information, Changing Table Information
		adding query results to tables, Adding the Query Results to Another Table
	changing table information, Changing Table Information
	inserting data into tables, Inserting Data into a Table
	SELECT statement and, Changing Table Information

	interface properties, ADSI Basics, Using ADSI from Perl, So How Do You Know Anything About an Object?, So How Do You Know Anything About an Object?
		accessing values, Using ADSI from Perl, So How Do You Know Anything About an Object?
	defined, ADSI Basics
	name considerations, So How Do You Know Anything About an Object?

	interfaces, ADSI Basics, Alternative SNMP Programming Interfaces, Alternative SNMP Programming Interfaces
		defined for COM objects (ADSI), ADSI Basics
	SNMP support, Alternative SNMP Programming Interfaces, Alternative SNMP Programming Interfaces

	Internet Architecture Board, The 20-Minute SNMP Tutorial
	Internet Control Message Protocol (ICMP), Danger on the Wire, or “Perl Saves the Day”
	Internet Relay Chat (IRC), Using the Proc::ProcessTable module
	InterNIC, The WHOIS Directory Service
	interprocess communication (IPC) framework, Using the OS-Specific IPC Framework to Drive a Mail Client, Using the OS-Specific IPC Framework to Drive a Mail Client
	INTO clause, SELECT statement (SQL), Adding the Query Results to Another Table
	IO::Interface module, Active Probing for Rogue DHCP Servers
	IO::Interface::Simple module, Active Probing for Rogue DHCP Servers
	IO::Socket module, Working with raw network sockets, Speaking the Mail Protocols Directly, Controlling the amount of mail, Discovering Network Services
	IO::Socket::INET module, Active Probing for Rogue DHCP Servers, Active Probing for Rogue DHCP Servers
	IO::Socket::SSL module, Part One: Retrieving the Wiki Page with WWW::Mechanize
	IP address, NIS, NIS+, and WINS, DHCP, Dissecting a Single Message, The WHOIS Directory Service, Geocoding from IP Addresses, Geocoding from IP Addresses
		geocoding and, Geocoding from IP Addresses, Geocoding from IP Addresses
	mapping to hostname, NIS, NIS+, and WINS, DHCP
	parsing, Dissecting a Single Message
	WHOIS support, The WHOIS Directory Service

	IPC (interprocess communication) framework, Using the OS-Specific IPC Framework to Drive a Mail Client, Using the OS-Specific IPC Framework to Drive a Mail Client
	iPlanet, LDAP Programming with Perl
	ipsend tool, Discovering Hosts
	IRC (Internet Relay Chat), Using the Proc::ProcessTable module
	IsAdminUser function (Win32), Some Notes About Using Vista with the Code in This Book
	Ivkovic, Milivoj, Speaking the Mail Protocols Directly

J
	Jacobson, Van, Discovering Hosts
	Jargon Dictionary, The Classic Unix Password File
	Jenness, Tim, Security in log-processing programs
	JES Directory Server, LDAP Programming with Perl, Controls and extensions, Putting It All Together
		background, LDAP Programming with Perl
	control support, Controls and extensions
	ldif2ldbm tool, Putting It All Together

	Jifty::DBI module, The Backend Database
	joining tables, Relating Tables to Each Other
	Jurasz, Jarek, Using the GUI control modules (Win32::Setupsup and
 Win32::GuiTest)
	JXplorer browser, LDAP

K
	Kaminsky, Dan, Local Filesystem Changes
	Karasik, Dmitry, Black boxes
	Kennedy, Adam, Walking the Filesystem Using the File::Find::Rule Module
	Kent, Piers, Task One: Parsing crontab Files
	Kerberos authentication, The Initial LDAP Connection, The Initial LDAP Connection
		SASL support, The Initial LDAP Connection, The Initial LDAP Connection

	Kernen, David J., Talking IMAP4rev1 to Fetch Mail
	key/value pairs, Generating Host Files, Key/Value Pairs, Key/Value Pairs
	keyword scanning, Dissecting a Single Message
	kill function, Using external binaries, Unix Process Control, Log rotation
	kill.exe program, Using external binaries
	Kinyon, Rob, The Backend Database
	Kobes, Randy, Installing Win32::Setupsup
	Kogai, Dan, Mac OS X
	Kolkman, Olaf, Working with raw network sockets, Using Net::DNS
	Krynicky, Jenda, Windows account creation and deletion routines, Working with XML using a hybrid approach (XML::Twig), Speaking the Mail Protocols Directly
	Kukuk, Thorsten, NIS+

L
	Landgren, David, Dissecting a Single Message
	Langworth, Ian, Monitoring Frameworks
	Large Installation System Administration (LISA) conference, How Perl Can Help You, Playing with an MP3 Collection
	last command (Unix), Calling an OS (or Someone Else’s) Binary, Calling an OS (or Someone Else’s) Binary
	LaTeX command, Walking the Filesystem Using the File::Find Module
	Lauritsen, Jesper, Stream read-count
	Lawrence Berkeley National Laboratory, Danger on the Wire, or “Perl Saves the Day”, Discovering Hosts
	LDAP (Lightweight Directory Access Protocol), The Classic Unix Password File, LDAP: A Sophisticated Directory Service, LDAP Programming with Perl, The Initial LDAP Connection, The Initial LDAP Connection, The Initial LDAP Connection, The Initial LDAP Connection, The Initial LDAP Connection, The Initial LDAP Connection, Performing LDAP Searches, Performing LDAP Searches, Performing LDAP Searches, Entry Representation in Perl, Entry Representation in Perl, Adding Entries with LDIF, Adding Entries with LDIF, Adding Entries with Standard LDAP Operations, Deleting Entries, Deleting Entries, Modifying Entry Names, Modifying Entry Names, Modifying Entry Attributes, Modifying Entry Attributes, Referrals and references, Referrals and references, Controls and extensions, Controls and extensions, Controls and extensions, The root DSE, DSML, Putting It All Together, Putting It All Together, ADSI Basics, ADSI Basics, So How Do You Know Anything About an Object?, LDAP, The 10-Minute LDAP Tutorial, LDAP Data Organization, LDAP Data Organization, LDAP Data Organization
		adding entries with LDIF, Adding Entries with LDIF, Adding Entries with LDIF
	adding entries with standard operations, Adding Entries with Standard LDAP Operations
	ADSI support, ADSI Basics, ADSI Basics
	binding to the server, The Initial LDAP Connection
	comparison operators, Performing LDAP Searches
	controls and extensions, Deleting Entries, Controls and extensions
	data organization, LDAP Data Organization, LDAP Data Organization
	deleting entries, Deleting Entries
	DSML support, DSML
	entry representation, Entry Representation in Perl, Entry Representation in Perl
	initial connection, The Initial LDAP Connection, The Initial LDAP Connection
	LDAP Password Modify extension, Controls and extensions
	modifying entry attributes, Modifying Entry Attributes, Modifying Entry Attributes
	modifying entry names, Modifying Entry Names, Modifying Entry Names
	overview, LDAP: A Sophisticated Directory Service
	performing searches, Performing LDAP Searches, Performing LDAP Searches
	programming with Perl, LDAP Programming with Perl
	reference information, LDAP
	referrals and references, Referrals and references, Referrals and references
	root DSE, The root DSE
	SASL support, The Initial LDAP Connection, The Initial LDAP Connection
	schema support, So How Do You Know Anything About an Object?
	script examples, Putting It All Together, Putting It All Together
	simple binding, The Initial LDAP Connection
	Start TLS extension, Controls and extensions
	tutorial, The 10-Minute LDAP Tutorial, LDAP Data Organization
	Unix password files, The Classic Unix Password File

	LDAP Data Interchange Format, Performing LDAP Searches (see LDIF)
	LDAP namespace (ADSI), ADSI Basics, Performing Common Tasks Using the WinNT and LDAP Namespaces, Performing Common Tasks Using the WinNT and LDAP Namespaces, Working with Users via ADSI, Working with Groups via ADSI
		background, ADSI Basics
	overview, Performing Common Tasks Using the WinNT and LDAP Namespaces, Performing Common Tasks Using the WinNT and LDAP Namespaces
	working with groups, Working with Groups via ADSI
	working with users, Working with Users via ADSI

	ldapdelete tool, Deleting Entries
	ldapdiff utility, LDAP
	LDAPS “protocol”, The Initial LDAP Connection
	LDIF (LDAP Data Interchange Format), Performing LDAP Searches, Adding Entries with LDIF, Adding Entries with LDIF, Adding Entries with LDIF
		adding entries, Adding Entries with LDIF, Adding Entries with LDIF
	changetype: directive, Adding Entries with LDIF
	overview, Performing LDAP Searches

	ldif2ldbm tool, Putting It All Together
	leaf objects, ADSI Basics, Dealing with Container/Collection Objects
	led utility, LDAP
	Leinen, Simon, Using SNMP from Perl, Sending and Receiving SNMP Traps, Notifications, and Informs
	Leres, Craig, Discovering Hosts
	Lester, Andy, Part One: Retrieving the Wiki Page with WWW::Mechanize
	Libes, Don, Unix account creation and deletion routines—a variation
	libnet, Discovering Hosts, Discovering Hosts
	libpcap library, Danger on the Wire, or “Perl Saves the Day”, Danger on the Wire, or “Perl Saves the Day”, Discovering Hosts
	Lightweight Directory Access Protocol, The 10-Minute LDAP Tutorial (see LDAP)
	LIKE clause, SELECT statement (SQL), Retrieving a Subset of the Rows in a Table
	Limoncelli, Thomas, Experiential Learning
	Linden, Thomas, Key/Value Pairs
	Linux operating system, Perl to the Rescue, Manipulating Disk Quotas, The Classic Unix Password File, Using unpack(), Using unpack()
		classic Unix password file, The Classic Unix Password File
	log files, Using unpack(), Using unpack()
	NTFS driver, Perl to the Rescue
	setquota command, Manipulating Disk Quotas

	LISA (Large Installation System Administration) conference, How Perl Can Help You, Playing with an MP3 Collection
	List::MoreUtils module, Module Information for This Chapter
	Lister, Peter, Danger on the Wire, or “Perl Saves the Day”
	Liu, Cricket, Generating DNS (BIND) Configuration Files
	lmhosts file, Windows Internet Name Server (WINS)
	local groups (Windows), Windows Groups, Windows Groups, Windows Groups
		defined, Windows Groups
	domain, Windows Groups
	Win32API::Net function, Windows Groups

	Local Security Policy Editor, Windows User Rights
	local users, Windows Groups, Working with Users via ADSI, Working with Groups via ADSI
		adding to groups, Working with Groups via ADSI
	defined, Windows Groups
	deleting, Working with Users via ADSI

	local::lib module, Talking IMAP4rev1 to Fetch Mail
	location paths, Basic Location Paths, Basic Location Paths, Abbreviations and Axes
		abbreviated, Abbreviations and Axes
	XPath support, Basic Location Paths, Basic Location Paths

	log files, Reading Text Logs, Reading Binary Log Files, Using the OS’s Logging API, Structure of Log File Data, Structure of Log File Data, Structure of Log File Data, Dealing with Log File Information, Using Perl-cliented SQL databases, Space Management of Logging Information, Security in log-processing programs, Log rotation, Log rotation, Circular buffering, Circular buffering, Input blocking in log-processing programs, Log Parsing and Analysis, Using Perl-cliented SQL databases, Writing Your Own Log Files, Advanced Logging Framework, References for More Information
		Apache web server, Structure of Log File Data
	binary, Reading Binary Log Files, Using the OS’s Logging API
	blocking input when processing, Input blocking in log-processing programs
	circular buffering, Circular buffering, Circular buffering
	dealing with information, Dealing with Log File Information, Using Perl-cliented SQL databases
	parsing and analysis, Log Parsing and Analysis, Using Perl-cliented SQL databases
	reference information, References for More Information
	rotating, Log rotation, Log rotation
	space management, Space Management of Logging Information, Security in log-processing programs
	structure of data, Structure of Log File Data, Structure of Log File Data
	text, Reading Text Logs
	writing, Writing Your Own Log Files, Advanced Logging Framework

	Log Parser tool, References for More Information
	log4j framework, Advanced Logging Framework
	log4perl framework, Advanced Logging Framework
	Log::Agent module, Basic/Intermediate Logging Frameworks
	Log::Dispatch module, Basic/Intermediate Logging Frameworks, Basic/Intermediate Logging Frameworks, Advanced Logging Framework
	Log::Procmail module, Black boxes
	Log::Statistics module, Black boxes, Black boxes
	Logfile::Rotate module, Log rotation
	logins, database, Database Logins, Database Logins
	Lsof program, Tracking File and Network Operations in Unix, Tracking File and Network Operations in Unix
	lstat function, Using the /proc filesystem, Security in log-processing programs, Local Filesystem Changes, Local Filesystem Changes
	LWP::Simple module, Module Information for This Chapter, Part One: Retrieving the Wiki Page with WWW::Mechanize

M
	Mac OS X operating system, Mac OS X, NIS, NIS+, and WINS, NIS, NIS+, and WINS, Using the OS-Specific IPC Framework to Drive a Mail Client, The WHOIS Directory Service, Reading Binary Log Files, Using Perl-only databases
		Directory Access utility, NIS, NIS+, and WINS
	driving mail clients with IPC framework, Using the OS-Specific IPC Framework to Drive a Mail Client
	filesystem support, Mac OS X
	logging framework, Reading Binary Log Files
	NIS support, NIS, NIS+, and WINS
	supported database formats, Using Perl-only databases
	WHOIS support, The WHOIS Directory Service

	Mac::Carbon module, Using the OS-Specific IPC Framework to Drive a Mail Client
	Mac::FSEvents module, Tracking File and Network Operations in Unix, Local Filesystem Changes
	Macfarlane, James, Alternative SNMP Programming Interfaces
	MacOSX::File module, Mac OS X
	Madsen, Christopher J., Tracking File Operations on Windows
	mail beaconing, Controlling the frequency of mail
	mail transport agents (MTAs), Getting sendmail (or a Similar Mail Transport Agent)
	Mail::Box module, Processing Mail, Dissecting a Single Message, Dissecting a Whole Mailbox
	Mail::Folder module, Processing Mail
	Mail::Header module, Processing Mail
	Mail::IMAPClient module, Talking IMAP4rev1 to Fetch Mail, Talking IMAP4rev1 to Fetch Mail, Talking IMAP4rev1 to Fetch Mail
	Mail::IMAPTalk module, Talking IMAP4rev1 to Fetch Mail, Talking IMAP4rev1 to Fetch Mail
	Mail::Internet module, Processing Mail
	Mail::Mailer module, Speaking the Mail Protocols Directly
	Mail::Message::Field module, Dissecting a Single Message
	Mail::Outlook module, Using the OS-Specific IPC Framework to Drive a Mail Client
	Mail::POP3Client module, Talking POP3 to Fetch Mail, Talking IMAP4rev1 to Fetch Mail
	Mail::Sender module, Speaking the Mail Protocols Directly
	Mail::Sendmail module, Speaking the Mail Protocols Directly
	Mail::SpamAssassin module, Talking POP3 to Fetch Mail, SpamAssassin, SpamAssassin, Support Mail Augmentation
	Mail::SpamAssassin::Message::Node module, SpamAssassin
	Mail::SpamAssassin::PerMsgStatus module, SpamAssassin, SpamAssassin, SpamAssassin, SpamAssassin, SpamAssassin, SpamAssassin, SpamAssassin, SpamAssassin, SpamAssassin
		get method, SpamAssassin, SpamAssassin
	get_content_preview method, SpamAssassin
	get_decoded_body_text_array method, SpamAssassin
	get_decoded_stripped_body_text_array
 method, SpamAssassin
	get_uri_detail_list method, SpamAssassin, SpamAssassin
	get_uri_list method, SpamAssassin
	is_spam method, SpamAssassin

	Mail::SpamAssassin:Message module, SpamAssassin
	maildir format (Unix), Dissecting a Whole Mailbox
	Maischein, Max, Danger on the Wire, or “Perl Saves the Day”
	Managed Object Format (MOF), Using Windows Management Instrumentation (WMI)
	management information base, The 20-Minute SNMP Tutorial (see MIB)
	manager DN, The Initial LDAP Connection, Adding Entries with LDIF
	Manfredi, Raphael, Using Perl-only databases, Basic/Intermediate Logging Frameworks
	mapping (network), NIS, NIS+, and WINS, Generating multiple configuration files, Generating multiple configuration files, Generating multiple configuration files, Generating multiple configuration files, DHCP, Discovering Hosts, Discovering Hosts, Discovering Network Services, Discovering Network Services, Physical Location, Observation 2: Conventions can help, References for More Information, Part Three: Geocoding and Mapping the Data, Part Three: Geocoding and Mapping the Data
		data, Part Three: Geocoding and Mapping the Data, Part Three: Geocoding and Mapping the Data
	discovering hosts, Discovering Hosts, Discovering Hosts
	discovering network services, Discovering Network Services, Discovering Network Services
	forward (in DNS), Generating multiple configuration files, Generating multiple configuration files
	hostname to IP address, NIS, NIS+, and WINS, DHCP
	physical location, Physical Location, Observation 2: Conventions can help
	reference information, References for More Information
	reverse (in DNS), Generating multiple configuration files, Generating multiple configuration files

	markup languages, Markup Languages (see XML; YAML)
	Marquette, Wayne, Using SNMP from Perl
	Marzot, G. S., Using SNMP from Perl
	master NIS servers, NIS, NIS+, and WINS
	Mather, T. J., Geocoding from IP Addresses
	MaxMind, Geocoding from IP Addresses
	mbox format (Unix), Dissecting a Whole Mailbox
	McCanne, Steven, Discovering Hosts
	McLean, Grant, Working with XML using XML::Simple, Working with XML using XML::Simple
	McMillen, Colin, Danger on the Wire, or “Perl Saves the Day”
	MD5 algorithm, Local Filesystem Changes, Local Filesystem Changes
	Megginson, David, Writing XML from Perl
	Menon-Sen, Abhijit, Task One: Parsing crontab Files
	MERANT software vendor, Interacting with a SQL Server from Perl
	message-digest algorithms, Local Filesystem Changes, Local Filesystem Changes
	metadata, Using the DBI Framework, MySQL Server via DBI, So How Do You Know Anything About an Object?
		ADSI considerations, So How Do You Know Anything About an Object?
	attributes of statement handles (DBI), Using the DBI Framework
	INFORMATION_SCHEMA database (MySQL), MySQL Server via DBI

	methods, ADSI Basics, Using ADSI from Perl, So How Do You Know Anything About an Object?, Tactic 5: Converting Method Invocations
		calling from object instances, Using ADSI from Perl
	converting invocations, Tactic 5: Converting Method Invocations
	defined, ADSI Basics
	finding names, So How Do You Know Anything About an Object?

	mh format (Unix), Dissecting a Whole Mailbox
	MIB (management information base), Using SNMP from Perl, Using SNMP from Perl, The 20-Minute SNMP Tutorial, SNMP in Practice, SNMP in Practice
		defined, The 20-Minute SNMP Tutorial
	SNMP query process referencing, SNMP in Practice, SNMP in Practice
	tracking down Ethernet ports, Using SNMP from Perl, Using SNMP from Perl

	MIBFILES environment variable, Using SNMP from Perl
	MIBS environment variable, Using SNMP from Perl
	Microsoft Download Center, Windows User ID Numbers
	Microsoft Outlook, Using the OS-Specific IPC Framework to Drive a Mail Client
	Microsoft Script Center website, The Two-Minute VBScript-to-Perl Tutorial
	Microsoft Scriptomatic tool, Some Notes About Using Vista with the Code in This Book, References for More Information, References for More Information
	Microsoft SQL Server, Interacting with a SQL Server from Perl, Interacting with a SQL Server from Perl, Interacting with a SQL Server from Perl, Interacting with a SQL Server from Perl, Server Documentation, Microsoft SQL Server via ODBC, Microsoft SQL Server via ODBC, Microsoft SQL Server via ODBC, Microsoft SQL Server
		accessing from Unix, Interacting with a SQL Server from Perl
	documentation, Server Documentation, Microsoft SQL Server via ODBC
	interacting with, Interacting with a SQL Server from Perl, Interacting with a SQL Server from Perl
	ODBC support, Microsoft SQL Server via ODBC, Microsoft SQL Server via ODBC
	reference information, Microsoft SQL Server

	Microsoft Vista, Some Notes About Using Vista with the Code in This Book
	Mielke, Mark, Performing LDAP Searches
	Miller, Paul, Danger on the Wire, or “Perl Saves the Day”, Danger on the Wire, or “Perl Saves the Day”
	MIME (Multipurpose Internet Mail Extensions)
 standards, Sending mail messages with attachments using Email::Send, Feedback loops
		ARF support, Feedback loops
	background, Sending mail messages with attachments using Email::Send

	MIME::ARF module, Feedback loops
	MisterHouse project, Remember to Play
	Mitchell, Brian, Danger on the Wire, or “Perl Saves the Day”
	Mitchell, Mike, Using SNMP from Perl
	Miyagawa, Tatsuhiko, Part Three: Geocoding and Mapping the Data
	MKS Toolkit, Windows User ID Numbers
	MOF (Managed Object Format), Using Windows Management Instrumentation (WMI)
	Mon monitoring package, Mon
	moniker (OLE), Using ADSI from Perl
	monitoring, Monitoring Legitimate DHCP Servers, Monitoring Legitimate DHCP Servers, Monitoring Space Usage on a Database Server, Monitoring Space Usage on a Database Server, Presenting the Information, Using RRDtool, Monitoring Frameworks, Nagios, Extending Existing Monitoring Packages, Nagios, References for More Information
		database server space usage, Monitoring Space Usage on a Database Server, Monitoring Space Usage on a Database Server
	DHCP servers, Monitoring Legitimate DHCP Servers, Monitoring Legitimate DHCP Servers
	extending existing packages, Extending Existing Monitoring Packages, Nagios
	frameworks supporting, Monitoring Frameworks, Nagios
	presenting information, Presenting the Information, Using RRDtool
	reference information, References for More Information

	MON_LAST_OUTPUT environment variable, Mon
	MON_LAST_SUCCESS environment variable, Mon
	Mosemann, Russell, Danger on the Wire, or “Perl Saves the Day”, Discovering Hosts
	Mozilla::LDAP module, LDAP Programming with Perl
	MP3 collection, playing with, Playing with an MP3 Collection, Summary: What Can We Learn from This?
	MP3::Info module, Playing with an MP3 Collection
	MP3::Tag module, Playing with an MP3 Collection
	MRTG (Multi Router Traffic Grapher), Sending and Receiving SNMP Traps, Notifications, and Informs
	MTAs (mail transport agents), Getting sendmail (or a Similar Mail Transport Agent)
	Mueller, Nate, Geocoding from Postal Addresses
	Mueller, Rob, Talking IMAP4rev1 to Fetch Mail
	Muffett, Alec, Reject Bad Passwords
	Multi Router Traffic Grapher (MRTG), Sending and Receiving SNMP Traps, Notifications, and Informs
	Multipurpose Internet Mail Extensions, Sending mail messages with attachments using Email::Send (see MIME standards)
	MX (Mail eXchange) resource record, Generating multiple configuration files, Getting sendmail (or a Similar Mail Transport Agent)
	MySQL, MySQL Server via DBI, MySQL Server via DBI, MySQL Server via DBI, The 15-Minute SQL Tutorial, Creating/Deleting Databases and Tables, Retrieving a Subset of the Rows in a Table
		DBI support, MySQL Server via DBI
	DESCRIBE command, Creating/Deleting Databases and Tables
	downloading, The 15-Minute SQL Tutorial
	metadata database, MySQL Server via DBI
	REGEXP function, Retrieving a Subset of the Rows in a Table
	SHOW command, MySQL Server via DBI

N
	NAC Geographic Products, Inc., Geocoding from Postal Addresses
	Nagios monitoring package, Nagios
	namespace:: axis, Abbreviations and Axes
	namespaces, Using Windows Management Instrumentation (WMI), Domain Name Service (DNS), Working with XML using SAX2 via XML::SAX, ADSI Basics, ADSI Basics, Performing Common Tasks Using the WinNT and LDAP Namespaces, Working with Groups via ADSI
		ADSI support, ADSI Basics, Performing Common Tasks Using the WinNT and LDAP Namespaces, Working with Groups via ADSI
	ADsPaths and, ADSI Basics
	DNS support, Domain Name Service (DNS)
	WMI, defined, Using Windows Management Instrumentation (WMI)
	XML, Working with XML using SAX2 via XML::SAX

	Nandor, Chris, Using the OS-Specific IPC Framework to Drive a Mail Client, Playing with an MP3 Collection
	Nathan, Jeff, Discovering Hosts
	National Weather Service, Geocoding from IP Addresses
	needspace script, Walking the Filesystem Using the File::Find Module
	Nehren, Christopher, Talking IMAP4rev1 to Fetch Mail
	nemesis tool, Discovering Hosts
	Nessjøenand, Håkon, Textual Presentation Tools
	nesting global groups, Windows Groups
	net command, Windows User Identity Storage and Access, Windows account creation and deletion routines
	Net-SNMP utilities, Using SNMP from Perl, SNMP in Practice
	Net::Address::Ethernet module, Active Probing for Rogue DHCP Servers
	Net::ADNS module, Geocoding from IP Addresses
	Net::Arping module, Discovering Hosts
	Net::CDP module, Discovering Hosts
	Net::Daemon module, Controlling the amount of mail
	Net::DHCP::Packet module, Active Probing for Rogue DHCP Servers, Active Probing for Rogue DHCP Servers
	Net::DNS module, DNS Checking: An Iterative Approach, Using Net::DNS, Using Net::DNS, SpamAssassin, The WHOIS Directory Service, Geocoding from IP Addresses
		checking blacklisted domains, SpamAssassin
	geocoding from IP addresses, Geocoding from IP Addresses
	iterative checking, DNS Checking: An Iterative Approach, Using Net::DNS, Using Net::DNS
	WHOIS information, The WHOIS Directory Service

	Net::Finger module, Finger: A Simple Directory Service, Finger: A Simple Directory Service
	Net::Ifconfig::Wrapper module, Active Probing for Rogue DHCP Servers
	Net::Interface module, Active Probing for Rogue DHCP Servers
	Net::LDAP module, LDAP Programming with Perl, The Initial LDAP Connection, The Initial LDAP Connection, Performing LDAP Searches, Entry Representation in Perl, Entry Representation in Perl, Entry Representation in Perl, Entry Representation in Perl, Entry Representation in Perl, Adding Entries with LDIF, Adding Entries with Standard LDAP Operations, Adding Entries with Standard LDAP Operations, Adding Entries with Standard LDAP Operations, Deleting Entries, Modifying Entry Names, Modifying Entry Names, Modifying Entry Attributes, Modifying Entry Attributes, Modifying Entry Attributes, Modifying Entry Attributes, Modifying Entry Attributes, Referrals and references, Referrals and references
		add method, Adding Entries with Standard LDAP Operations, Modifying Entry Attributes
	adding entries with LDIF, Adding Entries with LDIF
	attributes method, Entry Representation in Perl
	background, LDAP Programming with Perl
	bind method, The Initial LDAP Connection
	delete method, Deleting Entries, Modifying Entry Attributes
	Entry object, Entry Representation in Perl, Entry Representation in Perl, Adding Entries with Standard LDAP Operations
	get_value method, Entry Representation in Perl
	moddn method, Modifying Entry Names
	modify method, Modifying Entry Attributes, Modifying Entry Attributes
	modifying entry names, Modifying Entry Names
	references method, Referrals and references
	referrals method, Referrals and references
	replace method, Modifying Entry Attributes
	Search (Net::LDAP::Search) object, Entry Representation in Perl
	search method, Performing LDAP Searches
	start_tls method, The Initial LDAP Connection
	update method, Adding Entries with Standard LDAP Operations

	Net::LDAP::Control module, Controls and extensions
	Net::LDAP::Control::Sort module, Controls and extensions
	Net::LDAP::DSML module, DSML
	Net::LDAP::Extension::SetPassword module, Controls and extensions
	Net::LDAP::LDIF module, Performing LDAP Searches, Adding Entries with LDIF, Adding Entries with LDIF
		background, Performing LDAP Searches
	parsing data, Adding Entries with LDIF
	read_entry method, Adding Entries with LDIF

	Net::LDAP::RootDSE module, The root DSE, The root DSE
	Net::LDAP::Util module, Performing LDAP Searches
	Net::LDAPapi module, LDAP Programming with Perl
	Net::LDAPS module, The Initial LDAP Connection
	Net::Netmask module, Discovering Hosts
	Net::NIS module, NIS, NIS+, and WINS, NIS, NIS+, and WINS, NIS, NIS+, and WINS
		functionality, NIS, NIS+, and WINS
	yp_all method, NIS, NIS+, and WINS
	yp_match method, NIS, NIS+, and WINS

	Net::Pcap module, Danger on the Wire, or “Perl Saves the Day”, Danger on the Wire, or “Perl Saves the Day”, Discovering Hosts
	Net::Pcap::Easy module, Danger on the Wire, or “Perl Saves the Day”
	Net::Pcap::FindDevice module, Danger on the Wire, or “Perl Saves the Day”
	Net::PcapUtilis module, Danger on the Wire, or “Perl Saves the Day”
	Net::Ping module, Danger on the Wire, or “Perl Saves the Day”, Danger on the Wire, or “Perl Saves the Day”, Discovering Hosts, Discovering Hosts
		host discovery, Discovering Hosts, Discovering Hosts
	security example, Danger on the Wire, or “Perl Saves the Day”, Danger on the Wire, or “Perl Saves the Day”

	Net::Ping::External module, Danger on the Wire, or “Perl Saves the Day”, Discovering Hosts
	Net::SNMP module, Using SNMP from Perl, Using SNMP from Perl
	Net::SNMP::HostInfo module, Alternative SNMP Programming Interfaces
	Net::SNMP::Interfaces module, Active Probing for Rogue DHCP Servers, Alternative SNMP Programming Interfaces
	Net::Telnet module, Unix account creation and deletion routines—a variation, Speaking the Mail Protocols Directly, Finger: A Simple Directory Service
	Net::UDP module, Discovering Network Services
	Net::Whois module, The WHOIS Directory Service
	Net::Whois::Raw module, The WHOIS Directory Service, The WHOIS Directory Service
	Net::XWhois module, The WHOIS Directory Service
	NetAddr::IP module, Active Probing for Rogue DHCP Servers
	NetBIOS over TCP/IP (NetBT), Windows Internet Name Server (WINS)
	netdisco project, Alternative SNMP Programming Interfaces
	NetPacket module, Danger on the Wire, or “Perl Saves the Day”
	NetPacket::Ethernet module, Danger on the Wire, or “Perl Saves the Day”
	NetPacket::ICMP module, Danger on the Wire, or “Perl Saves the Day”
	NetPacket::IP module, Danger on the Wire, or “Perl Saves the Day”
	Netpacket::TCP module, Danger on the Wire, or “Perl Saves the Day”
	Netscape, LDAP Programming with Perl
	NetSNMP module, Using SNMP from Perl
	netstat command, Tracking Network Operations on Windows, Danger on the Wire, or “Perl Saves the Day”, Danger on the Wire, or “Perl Saves the Day”, SNMP in Practice
	Network Information Center (NIC), Host Files
	Network Information Service, The Classic Unix Password File (see NIS)
	network mapping, Network Mapping (see mapping)
	network operations, User Activity, Tracking Network Operations on Windows, Tracking Network Operations on Windows, Tracking File and Network Operations in Unix, Tracking File and Network Operations in Unix, Changes in Data Served Over the Network
		detecting changes in network service data, Changes in Data Served Over the Network
	overview, User Activity
	Unix-based, Tracking File and Network Operations in Unix, Tracking File and Network Operations in Unix
	Windows-based, Tracking Network Operations on Windows, Tracking Network Operations on Windows

	network services, Discovering Network Services, Discovering Network Services
	NIC (Network Information Center), Host Files
	NIS (Network Information Service), NIS, NIS+, and WINS, NIS, NIS+, and WINS, NIS, NIS+, and WINS
		functionality, NIS, NIS+, and WINS, NIS, NIS+, and WINS
	ypcat command, NIS, NIS+, and WINS

	NIS domain, NIS, NIS+, and WINS
	NIS maps, NIS, NIS+, and WINS
	NIS+, NIS+
	NIST standard, Suggest Better Passwords
	nmap tool, Discovering Network Services, Discovering Network Services
	Nmap::Parser module, Discovering Network Services
	Nmap::Scanner module, Discovering Network Services, Discovering Network Services
	notifications, Email, Sending and Receiving SNMP Traps, Notifications, and Informs, Sending and Receiving SNMP Traps, Notifications, and Informs
		email and, Email
	sending, Sending and Receiving SNMP Traps, Notifications, and Informs, Sending and Receiving SNMP Traps, Notifications, and Informs

	nslookup utility, Using nslookup, Using nslookup, Working with raw network sockets
	NTFS (NT FileSystem), Windows-Based Operating Systems, Windows-Based Operating Systems, Windows-Based Operating Systems, Editing NTFS Quotas Under Windows
		ACL support, Windows-Based Operating Systems
	editing quotas under Windows, Editing NTFS Quotas Under Windows
	VFAT similarities, Windows-Based Operating Systems
	Windows support, Windows-Based Operating Systems

	ntrights command, Windows User Rights

O
	object identifier (OID), Using SNMP from Perl, The 20-Minute SNMP Tutorial
	Object Linking and Embedding (OLE), ADSI Basics, Searching
	objectClass attribute, Adding Entries with LDIF, The 10-Minute LDAP Tutorial
	objects, ADSI Basics, ADSI Basics, ADSI Basics, Using ADSI from Perl, Dealing with Container/Collection Objects, Dealing with Container/Collection Objects, Dealing with Container/Collection Objects, Identifying a Container Object, So How Do You Know Anything About an Object?, Tactic 2: Referencing an Object, Tactic 3: Accessing Object Properties Using the Hash Dereference
 Syntax, Tactic 4: Dealing with Container Objects
		accessing properties, Using ADSI from Perl, Tactic 3: Accessing Object Properties Using the Hash Dereference
 Syntax
	COM support, ADSI Basics
	container, ADSI Basics, Dealing with Container/Collection Objects, Dealing with Container/Collection Objects, Identifying a Container Object, Tactic 4: Dealing with Container Objects
	leaf, ADSI Basics, Dealing with Container/Collection Objects
	referencing, Tactic 2: Referencing an Object
	viewing attribute names, So How Do You Know Anything About an Object?

	ODBC (Open DataBase Connectivity), Interacting with a SQL Server from Perl, Interacting with a SQL Server from Perl, Using ODBC from Within DBI, Using ODBC from Within DBI, Microsoft SQL Server via ODBC, Microsoft SQL Server via ODBC, ODBC, Searching
		ADO example, Searching
	DBI support, Using ODBC from Within DBI, Using ODBC from Within DBI
	functionality, Interacting with a SQL Server from Perl, Interacting with a SQL Server from Perl
	Microsoft SQL Server support, Microsoft SQL Server via ODBC, Microsoft SQL Server via ODBC
	reference information, ODBC

	OID (object identifier), Using SNMP from Perl, The 20-Minute SNMP Tutorial
	OLE (Object Linking and Embedding), ADSI Basics, Searching
	OLE.pm module, ADSI Basics
	Open DataBase Connectivity, Interacting with a SQL Server from Perl (see ODBC)
	OpenLDAP, LDAP Programming with Perl, Deleting Entries, Putting It All Together, Putting It All Together, LDAP
		background, LDAP Programming with Perl
	ldapdelete tool, Deleting Entries
	ldif2ldbm tool, Putting It All Together
	reference information, LDAP
	script example, Putting It All Together

	OpenLink Software, Interacting with a SQL Server from Perl
	OpenSSL, Discovering Network Services
	Openwall project, Reject Bad Passwords
	Oracle, Oracle Server via DBI, Oracle Server via DBI, Oracle
		DBI support, Oracle Server via DBI, Oracle Server via DBI
	reference information, Oracle

	Outlook (Microsoft), Using the OS-Specific IPC Framework to Drive a Mail Client
	Overmeer, Mark, Working with XML using a hybrid approach (XML::Twig), Talking IMAP4rev1 to Fetch Mail, Processing Mail
	Ovod-Everett, Toby, Windows User ID Numbers, Danger on the Wire, or “Perl Saves the Day”, Discovering Hosts

P
	pack function, Windows User Identity Storage and Access, Examining the kernel process structures
	Pajas, Petr, Working with XML using XML::LibXML
	parent:: axis, Abbreviations and Axes
	Parse::AccessLogEntry module, Black boxes
	Parse::EventLog module, Using the OS’s Logging API
	Parse::RecDescent module, Talking IMAP4rev1 to Fetch Mail
	Parse::Syslog module, Black boxes
	parsing, Host Files, Key/Value Pairs, Survey of best-practice tools to parse and manipulate XML from
 Perl, Survey of best-practice tools to parse and manipulate XML from
 Perl, Dissecting a Single Message, Dissecting a Single Message, SpamAssassin, Adding Entries with LDIF, Using unpack(), Log Parsing and Analysis, Using Perl-cliented SQL databases, Task One: Parsing crontab Files
		binary data, Using unpack()
	Config::Scoped module support, Key/Value Pairs
	crontab files, Task One: Parsing crontab Files
	email, Dissecting a Single Message, SpamAssassin
	host files, Host Files
	IP addresses, Dissecting a Single Message
	LDIF support, Adding Entries with LDIF
	log files, Log Parsing and Analysis, Using Perl-cliented SQL databases
	XML from Perl, Survey of best-practice tools to parse and manipulate XML from
 Perl, Survey of best-practice tools to parse and manipulate XML from
 Perl

	passwd command, Unix account creation and deletion routines—a variation
	Passwd::Linux module, Shadow Passwords
	Passwd::Solaris module, Shadow Passwords, Unix account creation and deletion routines—a variation
	password files, The Classic Unix Password File, The Classic Unix Password File, The Classic Unix Password File, The Classic Unix Password File, The Classic Unix Password File, The Classic Unix Password File, The Classic Unix Password File, The Classic Unix Password File, Changes to the Password File in BSD 4.4 Systems, Extra fields in passwd files, The binary database format, Shadow Passwords, Unix Password Files
		binary database format, The binary database format
	BSD changes, Changes to the Password File in BSD 4.4 Systems
	class field, Extra fields in passwd files
	encryption, The Classic Unix Password File, Shadow Passwords
	GCOS field, The Classic Unix Password File
	home directory, The Classic Unix Password File
	login name field, The Classic Unix Password File
	overview, The Classic Unix Password File
	primary group ID, The Classic Unix Password File
	reference information, Unix Password Files
	user ID, The Classic Unix Password File
	user shell, The Classic Unix Password File

	passwords, Windows Passwords Don’t Play Nice with Unix Passwords, Windows Passwords Don’t Play Nice with Unix Passwords, The Initial LDAP Connection, Working with Users via ADSI, Suggest Better Passwords, Reject Bad Passwords, Reject Bad Passwords
		changing, Working with Users via ADSI
	constraints transferring, Windows Passwords Don’t Play Nice with Unix Passwords
	rejecting bad, Reject Bad Passwords, Reject Bad Passwords
	SASL support, The Initial LDAP Connection
	sharing Unix passwords with Windows, Windows Passwords Don’t Play Nice with Unix Passwords
	suggesting better, Suggest Better Passwords

	Path::Class wrapper, Dealing with Filesystem Differences from Perl
	patterns, finding problematic, Finding Problematic Patterns, Finding Problematic Patterns
	Pauley, Martin, Using the OS’s Logging API
	Paulsen, Dennis K., Using the GUI control modules (Win32::Setupsup and
 Win32::GuiTest)
	PCDATA (Parsed Character Data), Leftovers
	PDPs (primary data points) in RRDtool, Using RRDtool
	PDUs (protocol data units), The 20-Minute SNMP Tutorial
	Perl Email Project, Speaking the Mail Protocols Directly, Sending vanilla mail messages with Email::Send, Sending mail messages with attachments using Email::Send, Dissecting a Single Message, Dissecting a Whole Mailbox, Feedback loops
		Email::ARF::Report module, Feedback loops
	Email::Folder module, Dissecting a Whole Mailbox
	Email::MIME module, Sending mail messages with attachments using Email::Send
	Email::Send module, Speaking the Mail Protocols Directly
	Email::Simple module, Sending vanilla mail messages with Email::Send, Dissecting a Single Message

	Perl language, How Perl Can Help You, This Book Will Show You How, What You Need, What About Perl 5.10?, Don’t Do It, Be Careful When Reading Data, Be Careful When Reading Data, Avoid Race Conditions, Enjoy, Walking or Traversing the Filesystem by Hand, Editing Quotas with edquota Trickery, The Two-Minute VBScript-to-Perl Tutorial, References for More Information, Tactic 5: Converting Method Invocations, References for More Information, The 20-Minute SNMP Tutorial
		additional references, Enjoy
	arrow operator, Tactic 5: Converting Method Invocations
	benefits, How Perl Can Help You
	conversion from VBScript, The Two-Minute VBScript-to-Perl Tutorial, References for More Information
	destructive actions, Walking or Traversing the Filesystem by Hand
	download information, What You Need
	elevated privileges cautions, Don’t Do It
	motto, This Book Will Show You How
	poison NULL byte exploit, Be Careful When Reading Data
	processes exchanging information, Editing Quotas with edquota Trickery
	race condition exploits, Avoid Race Conditions
	reference references, References for More Information
	user input cautions, Be Careful When Reading Data
	variable names, The 20-Minute SNMP Tutorial
	version considerations, What About Perl 5.10?

	Perl modules, Locating and Installing Modules, Installing Modules on Unix, Installing Modules on Win32
	Perl Object Environment (POE), Monitoring Frameworks
	Perl Package Manager, Locating and Installing Modules (see PPM)
	perl.exe binary, Some Notes About Using Vista with the Code in This Book
	Perl/SNMP module, Using SNMP from Perl
	Perl6::Form module, Module Information for This Chapter
	PerLDAP module, LDAP Programming with Perl
	Persaud, Anthony G., Discovering Network Services
	Peters, Steve, Danger on the Wire, or “Perl Saves the Day”
	Pilgrim, Mark, Binary
	ping command, Danger on the Wire, or “Perl Saves the Day”
	pl2bat utility, Some Notes About Using Vista with the Code in This Book
	Pod::Usage module, Finding Problematic Patterns
	POE (Perl Object Environment), Monitoring Frameworks
	poison NULL byte exploit, Be Careful When Reading Data
	POP3 protocol, Talking POP3 to Fetch Mail, Talking POP3 to Fetch Mail, References for More Information, Structure of Log File Data
		fetching mail, Talking POP3 to Fetch Mail, Talking POP3 to Fetch Mail
	log files, Structure of Log File Data
	reference information, References for More Information

	port element, Working with XML using a hybrid approach (XML::Twig)
	postal addresses, Geocoding from Postal Addresses
	Postfix MTA, Using the OS-Specific IPC Framework to Drive a Mail Client
	Potter, Tim, Danger on the Wire, or “Perl Saves the Day”, Danger on the Wire, or “Perl Saves the Day”
	PPM (Perl Package Manager), Locating and Installing Modules, Installing Modules on Win32, Installing Modules on Win32
		CPAN module comparison, Installing Modules on Win32
	functionality, Locating and Installing Modules, Installing Modules on Win32

	Prakash, Vipul Ved, The WHOIS Directory Service
	preceding-sibling:: axis, Abbreviations and Axes
	preceding:: axis, Abbreviations and Axes
	predicates, XPath, Predicates, Predicates
	presentation tools, Textual Presentation Tools, Textual Presentation Tools, Graphical Presentation Tools, Using RRDtool
		graphical, Graphical Presentation Tools, Using RRDtool
	textual, Textual Presentation Tools, Textual Presentation Tools

	primary data points (PDPs) in RRDtool, Using RRDtool
	print jobs, Working with Print Queues and Print Jobs via ADSI
	print queues, Working with Print Queues and Print Jobs via ADSI
	PrintQueue object, Working with Print Queues and Print Jobs via ADSI
	proc filesystem, Using the /proc filesystem
	Proc::ProcessTable module, Using the Proc::ProcessTable module, Using the Proc::ProcessTable module, Using the Proc::ProcessTable module, Using the Proc::ProcessTable module, Using the Proc::ProcessTable module, Using the Proc::ProcessTable module, Using the Proc::ProcessTable module
		functionality, Using the Proc::ProcessTable module, Using the Proc::ProcessTable module
	kill method, Using the Proc::ProcessTable module
	pctmem method, Using the Proc::ProcessTable module
	pgrp method, Using the Proc::ProcessTable module
	priority method, Using the Proc::ProcessTable module
	table method, Using the Proc::ProcessTable module

	process management, User Activity, Windows-Based Operating System Process Control, Using Windows Management Instrumentation (WMI), Using Windows Management Instrumentation (WMI), Using Windows Management Instrumentation (WMI), Unix Process Control, Using the Proc::ProcessTable module, Calling an external program, Examining the kernel process structures, Using the /proc filesystem, Using the Proc::ProcessTable module, Using the Proc::ProcessTable module
		calling external programs, Calling an external program
	kernel process structures, Examining the kernel process structures
	overview, User Activity
	proc filesystem, Using the /proc filesystem
	Proc::ProcessTable module, Using the Proc::ProcessTable module, Using the Proc::ProcessTable module
	Unix-based, Unix Process Control, Using the Proc::ProcessTable module
	Windows-based, Windows-Based Operating System Process Control, Using Windows Management Instrumentation (WMI)
	WMI support, Using Windows Management Instrumentation (WMI), Using Windows Management Instrumentation (WMI)

	procmail mail filter, Black boxes
	progIDs (programmatic identifiers), ADSI Basics
	Prokopyev, Oleg, Discovering Hosts
	properties, ADSI Basics, ADSI Basics, ADSI Basics, Using ADSI from Perl, So How Do You Know Anything About an Object?, So How Do You Know Anything About an Object?, So How Do You Know Anything About an Object?, So How Do You Know Anything About an Object?, So How Do You Know Anything About an Object?, Performing Common Tasks Using the WinNT and LDAP Namespaces
		defined, ADSI Basics
	in different ADSI namespaces, Performing Common Tasks Using the WinNT and LDAP Namespaces
	interface-defined, ADSI Basics, Using ADSI from Perl, So How Do You Know Anything About an Object?, So How Do You Know Anything About an Object?
	schema-defined, ADSI Basics, So How Do You Know Anything About an Object?, So How Do You Know Anything About an Object?, So How Do You Know Anything About an Object?

	property cache (ADSI), Using ADSI from Perl
	protocol data units (PDUs), The 20-Minute SNMP Tutorial
	PROTOTYPES directive, Reject Bad Passwords
	ps command, Unix account creation and deletion routines, Calling an external program
	PsTools utilities suite, Using external binaries
	Pugh, Kake, Walking the Filesystem Using the File::Find::Rule Module
	pulist.exe program, Using external binaries
	PureFtpd daemon, Black boxes

Q
	queries, Querying Filesystem Usage, MySQL Server via DBI, Oracle Server via DBI, Oracle Server via DBI, Microsoft SQL Server via ODBC, Microsoft SQL Server via ODBC, The WHOIS Directory Service, Performing LDAP Searches, Performing LDAP Searches, Referrals and references, Using ADSI from Perl, Searching, Searching, Working with Print Queues and Print Jobs via ADSI, Querying Information, Adding the Query Results to Another Table, Retrieving All of the Rows in a Table, Retrieving a Subset of the Rows in a Table, Simple Manipulation of Data Returned by Queries, Adding the Query Results to Another Table, Views, Cursors, SNMP in Practice, SNMP in Practice
		adding results to tables, Adding the Query Results to Another Table
	ADSI searches, Searching, Searching
	binding print queues, Working with Print Queues and Print Jobs via ADSI
	creating views, Views
	cursor use, Cursors
	data manipulation, Simple Manipulation of Data Returned by Queries
	filesystem usage, Querying Filesystem Usage
	LDAP searches, Performing LDAP Searches, Performing LDAP Searches, Referrals and references
	Microsoft SQL Server via ODBC, Microsoft SQL Server via ODBC, Microsoft SQL Server via ODBC
	MySQL server via DBI, MySQL Server via DBI
	Oracle server via DBI, Oracle Server via DBI, Oracle Server via DBI
	property cache and, Using ADSI from Perl
	retrieving all table rows, Retrieving All of the Rows in a Table
	retrieving subset of rows, Retrieving a Subset of the Rows in a Table
	SELECT statement support, Querying Information, Adding the Query Results to Another Table
	SNMP process, SNMP in Practice, SNMP in Practice
	WHOIS information, The WHOIS Directory Service

	quota command, Manipulating Disk Quotas
	Quota module, Editing Quotas Using the Quota Module
	quotation marks, Performing LDAP Searches
	quotatool package, Manipulating Disk Quotas

R
	race conditions, avoiding, Avoid Race Conditions
	rain tool, Discovering Hosts
	Ramdane, Amine Moulay, Tracking File Operations on Windows
	RCS (Revision Control System), Incorporating a Source Code Control System, Incorporating a Source Code Control System, The Five-Minute RCS Tutorial, References for More Information, The Five-Minute RCS Tutorial, The Five-Minute RCS Tutorial, The Five-Minute RCS Tutorial, The Five-Minute RCS Tutorial, The Five-Minute RCS Tutorial, The Five-Minute RCS Tutorial, References for More Information
		ci command, The Five-Minute RCS Tutorial
	co command, The Five-Minute RCS Tutorial
	comparisons to other systems, The Five-Minute RCS Tutorial
	features, Incorporating a Source Code Control System
	rcs command, The Five-Minute RCS Tutorial
	rcsdiff command, Incorporating a Source Code Control System, The Five-Minute RCS Tutorial
	reference information, References for More Information
	rlog command, The Five-Minute RCS Tutorial
	tutorial, The Five-Minute RCS Tutorial, References for More Information

	rcs command (RCS), The Five-Minute RCS Tutorial
	Rcs module, Incorporating a Source Code Control System
	rcsdiff command (RCS), Incorporating a Source Code Control System, The Five-Minute RCS Tutorial
	RDN (relative distinguished name), Performing LDAP Searches, Modifying Entry Names, Modifying Entry Names, LDAP Data Organization
		defined, LDAP Data Organization
	modifying, Modifying Entry Names, Modifying Entry Names
	quoting attribute values, Performing LDAP Searches

	read function, Examining the kernel process structures
	Read-Eval-Print Loop (REPL), Using Windows Management Instrumentation (WMI)
	Readonly module, Working with Configuration Files
	recursive code, Walking or Traversing the Filesystem by Hand, Walking or Traversing the Filesystem by Hand, Referrals and references
		defined, Walking or Traversing the Filesystem by Hand
	examples, Walking or Traversing the Filesystem by Hand, Referrals and references

	references, Referrals and references, Referrals and references, Referrals and references, Referrals and references, Referrals and references, Tactic 2: Referencing an Object
		continuation, Referrals and references, Referrals and references, Referrals and references
	LDAP, Referrals and references, Referrals and references
	object, Tactic 2: Referencing an Object

	referrals (LDAP), Referrals and references, Referrals and references
	REGEXP operator (MySQL), Retrieving a Subset of the Rows in a Table
	Regexp::Assemble module, Dissecting a Single Message
	Regexp::Common module, Dissecting a Single Message, Dissecting a Single Message, Finding Problematic Patterns
	Regexp::Log module, Black boxes
	Regexp::Log::Common module, Black boxes
	Regexp::Log::DataRange module, Black boxes
	regular expressions, Read-remember-process, Retrieving a Subset of the Rows in a Table
		reference information, Read-remember-process
	SQL support, Retrieving a Subset of the Rows in a Table

	Reinhardt, Chris, Logging Shortcuts and Formatting Help
	relative distinguished name, LDAP Data Organization (see RDN)
	relative ID (RID), Windows User ID Numbers
	rename function, Log rotation
	REPL (Read-Eval-Print Loop), Using Windows Management Instrumentation (WMI)
	repositories for prebuilt packages, Locating and Installing Modules
	resource kits (Microsoft), Windows User Rights
	response PDU, The 20-Minute SNMP Tutorial
	REST web service, example, Geocoding from Postal Addresses
	reverse mapping, Generating multiple configuration files, Generating multiple configuration files
	Revision Control System, The Five-Minute RCS Tutorial (see RCS)
	RFC 1035, Working with raw network sockets, Working with raw network sockets, References for More Information
	RFC 1101, Working with raw network sockets, References for More Information
	RFC 1157, Using SNMP from Perl, References for More Information
	RFC 1213, References for More Information, SNMP in Practice, SNMP in Practice
	RFC 1288, Finger: A Simple Directory Service, Finger: A Simple Directory Service, References for More Information
	RFC 1321, Local Filesystem Changes, References for More Information
	RFC 1493, References for More Information
	RFC 1573, Using SNMP from Perl, References for More Information
	RFC 1833, LDAP
	RFC 1905, References for More Information
	RFC 1907, References for More Information
	RFC 1939, Talking POP3 to Fetch Mail, Talking POP3 to Fetch Mail, References for More Information
	RFC 2011, References for More Information
	RFC 2012, References for More Information
	RFC 2013, References for More Information
	RFC 2045, Sending mail messages with attachments using Email::Send, Talking IMAP4rev1 to Fetch Mail, References for More Information
	RFC 2046, Sending mail messages with attachments using Email::Send, References for More Information
	RFC 2047, Sending mail messages with attachments using Email::Send, References for More Information
	RFC 2077, Sending mail messages with attachments using Email::Send, References for More Information
	RFC 2131, DHCP, References for More Information
	RFC 2222, The Initial LDAP Connection, LDAP
	RFC 2251, Performing LDAP Searches, Referrals and references, Referrals and references, The root DSE, LDAP
	RFC 2252, LDAP
	RFC 2254, Performing LDAP Searches, LDAP
	RFC 2255, Referrals and references, ADSI Basics, LDAP, LDAP Data Organization
	RFC 2274, References for More Information
	RFC 2275, References for More Information
	RFC 2578, References for More Information, SNMP in Practice
	RFC 2821, Email, Speaking the Mail Protocols Directly, References for More Information
	RFC 2822, Email, Talking IMAP4rev1 to Fetch Mail, Dissecting a Single Message, Dissecting a Single Message, SpamAssassin, References for More Information
	RFC 2830, The Initial LDAP Connection, Controls and extensions
	RFC 2849, Adding Entries with LDIF, LDAP
	RFC 2891, Controls and extensions
	RFC 3062, Controls and extensions
	RFC 3416, The 20-Minute SNMP Tutorial, SNMP in Practice
	RFC 3418, SNMP in Practice
	RFC 3501, Talking IMAP4rev1 to Fetch Mail, Talking IMAP4rev1 to Fetch Mail, References for More Information
	RFC 3834, References for More Information
	RFC 4288, Sending mail messages with attachments using Email::Send, References for More Information
	RFC 4289, Sending mail messages with attachments using Email::Send, References for More Information
	RFC 793, Danger on the Wire, or “Perl Saves the Day”, References for More Information
	RFC 849, References for More Information
	RFC 881, References for More Information
	RFC 882, References for More Information
	RFC 931, Read-remember-process
	RFC 954, References for More Information
	RID (relative ID), Windows User ID Numbers
	RIPE registry, The WHOIS Directory Service
	Rivest, Ron, Local Filesystem Changes, Local Filesystem Changes
	rlog command (RCS), The Five-Minute RCS Tutorial
	Rogaski, Mark, Basic/Intermediate Logging Frameworks
	Rogers, Jay, Unix account creation and deletion routines—a variation, Finger: A Simple Directory Service
	Rolsky, Dave, Sending mail messages with attachments using Email::Send, Basic/Intermediate Logging Frameworks
	root distinguished name (LDAP), The Initial LDAP Connection, Adding Entries with LDIF
	root DSE (LDAP), The root DSE
	Rose::DB::Object module, The Backend Database
	Rosler, Larry, Improving the Host File Output
	Roth, David, Windows User Identity Storage and Access, Windows User ID Numbers, The Two-Minute VBScript-to-Perl Tutorial
	RRDtool, Using RRDtool, Using RRDtool
	RSS feeds, Geocoding from IP Addresses
	runas.exe utility, Some Notes About Using Vista with the Code in This Book
	Russinovich, Mark, Using external binaries, Tracking File Operations on Windows, Tracking Network Operations on Windows

S
	SAGE mailing list, Playing with Timelines
	SAM (Security Accounts Manager), Windows User Identity Storage and Access, Windows User Identity Storage and Access, Windows Groups, ADSI Basics, ADSI Basics
		ADSI support, ADSI Basics
	background, Windows User Identity Storage and Access
	binary data support, Windows User Identity Storage and Access
	storing user identities, Windows Groups
	WinNT namespace support, ADSI Basics

	Samba software suite, NIS, NIS+, and WINS
	Santiago, Ed, NIS, NIS+, and WINS
	Sarathy, Gurusamy, Using Perl-only databases
	SASL (Simple Authentication and Security Layer), The Initial LDAP Connection, The Initial LDAP Connection
	SAX2, Working with XML using SAX2 via XML::SAX, Working with XML using SAX2 via XML::SAX
	Schedule::Cron module, Monitoring Frameworks
	Schedule::Cron::Events module, Task One: Parsing crontab Files, Putting It All Together
	schema (LDAP), DSML, Putting It All Together, So How Do You Know Anything About an Object?, Performing Common Tasks Using the WinNT and LDAP Namespaces, The 10-Minute LDAP Tutorial
		defined, The 10-Minute LDAP Tutorial
	DSML support, DSML
	LDAP support, So How Do You Know Anything About an Object?
	namespace comparisons, Performing Common Tasks Using the WinNT and LDAP Namespaces
	updating, Putting It All Together

	schema properties, ADSI Basics, So How Do You Know Anything About an Object?, So How Do You Know Anything About an Object?, So How Do You Know Anything About an Object?
		accessing, So How Do You Know Anything About an Object?, So How Do You Know Anything About an Object?
	defined, ADSI Basics
	name considerations, So How Do You Know Anything About an Object?

	Schemers, Roland J., III, Danger on the Wire, or “Perl Saves the Day”
	Schiffman, Mike, Discovering Hosts
	Schilli, Mike, Advanced Logging Framework
	Schubert, Max, Discovering Network Services
	Schutz, Austin, Unix account creation and deletion routines—a variation, Finger: A Simple Directory Service
	Schwartz, Alan, Read-remember-process
	Schwartz, Randal, Monitoring Frameworks, References for More Information
	Schweikert, David, Key/Value Pairs, Textual Presentation Tools
	Search tool (Windows), Walking or Traversing the Filesystem by Hand
	searches, Performing LDAP Searches, Performing LDAP Searches, Referrals and references, Referrals and references, Searching, Searching
		ADSI support, Searching, Searching
	LDAP support, Performing LDAP Searches, Performing LDAP Searches, Referrals and references, Referrals and references

	secondary NIS/DNS servers, Domain Name Service (DNS) (see slave servers)
	Secure Sockets Layer, The Initial LDAP Connection (see SSL)
	security, Adding Entries with LDIF, Log rotation, Security in log-processing programs, Noticing Unexpected or Unauthorized Changes, Changes in Data Served Over the Network, Noticing Suspicious Activities, Finding Problematic Patterns, Danger on the Wire, or “Perl Saves the Day”, Danger on the Wire, or “Perl Saves the Day”, Preventing Suspicious Activities, Reject Bad Passwords, References for More Information
		LDAP server setup, Adding Entries with LDIF
	log processing programs, Security in log-processing programs
	Logfile::Rotate module, Log rotation
	noticing changes, Noticing Unexpected or Unauthorized Changes, Changes in Data Served Over the Network
	noticing suspicious activities, Noticing Suspicious Activities, Finding Problematic Patterns
	preventing suspicious activities, Preventing Suspicious Activities, Reject Bad Passwords
	real-life example, Danger on the Wire, or “Perl Saves the Day”, Danger on the Wire, or “Perl Saves the Day”
	reference information, References for More Information

	Security Accounts Manager, Windows User Identity Storage and Access (see SAM)
	security identifier (SID), Windows User ID Numbers
	SELECT statement (SQL), Using the DBI Framework, Querying Information, Adding the Query Results to Another Table, Retrieving All of the Rows in a Table, Retrieving a Subset of the Rows in a Table, Retrieving a Subset of the Rows in a Table, Retrieving a Subset of the Rows in a Table, Retrieving a Subset of the Rows in a Table, Retrieving a Subset of the Rows in a Table, Retrieving a Subset of the Rows in a Table, Simple Manipulation of Data Returned by Queries, Adding the Query Results to Another Table, Changing Table Information, Views
		BETWEEN operator, Retrieving a Subset of the Rows in a Table
	creating views, Views
	data manipulation, Simple Manipulation of Data Returned by Queries
	IN operator, Retrieving a Subset of the Rows in a Table
	INSERT statement and, Changing Table Information
	INTO clause, Adding the Query Results to Another Table
	LIKE clause, Retrieving a Subset of the Rows in a Table
	querying information, Querying Information, Adding the Query Results to Another Table
	regular expression support, Retrieving a Subset of the Rows in a Table
	retrieving all table rows, Retrieving All of the Rows in a Table
	retrieving subset of rows, Retrieving a Subset of the Rows in a Table
	WHERE clause, Using the DBI Framework, Retrieving a Subset of the Rows in a Table

	self:: axis, Abbreviations and Axes
	Sergeant, Matt, Working with XML using SAX2 via XML::SAX
	service element, Working with XML using XML::Simple, Working with XML using SAX2 via XML::SAX, Working with XML using SAX2 via XML::SAX, Working with XML using a hybrid approach (XML::Twig)
	set-request PDU, The 20-Minute SNMP Tutorial
	Set::Crontab module, Task One: Parsing crontab Files
	SetACL binary, Windows User ID Numbers
	setpgrp function, Unix Process Control
	setpriority function, Unix Process Control
	setquota command (Linux), Manipulating Disk Quotas
	SetSystemtimePrivilege, Windows User Rights
	SHA message digest algorithm family, Local Filesystem Changes, Changes in Data Served Over the Network
	shadow password files, Shadow Passwords
	Sharnoff, David Muir, Tracking File and Network Operations in Unix, Textual Presentation Tools
	Shearer, John D., Alternative SNMP Programming Interfaces
	shell globbing, Performing LDAP Searches
	Shell::Perl module, Using Windows Management Instrumentation (WMI)
	Shelor, Mark, Local Filesystem Changes
	SHOW COLUMNS statement (MySQL), MySQL Server via DBI
	SHOW command (MySQL), MySQL Server via DBI
	SHOW TABLES statement (MySQL), MySQL Server via DBI
	SID (security identifier), Windows User ID Numbers
	Signes, Ricardo, Speaking the Mail Protocols Directly, Sending mail messages with attachments using Email::Send, Dissecting a Single Message, Dissecting a Whole Mailbox
	SIMILE project, Task Two: Displaying the Timeline
	Simple Authentication and Security Layer (SASL), The Initial LDAP Connection, The Initial LDAP Connection
	simple binding (LDAP), The Initial LDAP Connection
	Simple Mail Transfer Protocol (SMTP), Speaking the Mail Protocols Directly, Sending mail messages with attachments using Email::Send
	Simple Network Management Protocol, The 20-Minute SNMP Tutorial (see SNMP)
	Sisk, Matt, Part Two: Extracting the Data
	slave servers, NIS, NIS+, and WINS, Domain Name Service (DNS)
	SMTP (Simple Mail Transfer Protocol), Speaking the Mail Protocols Directly, Sending mail messages with attachments using Email::Send
	SNMP (Simple Network Management Protocol), Using Windows Management Instrumentation (WMI), Using SNMP from Perl, Using SNMP from Perl, Sending and Receiving SNMP Traps, Notifications, and Informs, Sending and Receiving SNMP Traps, Notifications, and Informs, Alternative SNMP Programming Interfaces, Alternative SNMP Programming Interfaces, Alternative SNMP Programming Interfaces, References for More Information, Observation 1: Proximity can help, The 20-Minute SNMP Tutorial, SNMP in Practice, The 20-Minute SNMP Tutorial, The 20-Minute SNMP Tutorial, SNMP in Practice, SNMP in Practice
		alternative interface modules, Alternative SNMP Programming Interfaces, Alternative SNMP Programming Interfaces
	data type support, The 20-Minute SNMP Tutorial
	functionality, Using SNMP from Perl, Using SNMP from Perl
	mapping physical locations, Observation 1: Proximity can help
	query process, SNMP in Practice, SNMP in Practice
	reference information, References for More Information
	sending/receiving data, Sending and Receiving SNMP Traps, Notifications, and Informs, Sending and Receiving SNMP Traps, Notifications, and Informs
	tutorial, The 20-Minute SNMP Tutorial, SNMP in Practice
	variable names, The 20-Minute SNMP Tutorial
	walking tables, Alternative SNMP Programming Interfaces
	WBEM support, Using Windows Management Instrumentation (WMI)

	SNMP module, Using SNMP from Perl, Using SNMP from Perl, Sending and Receiving SNMP Traps, Notifications, and Informs
		functionality, Using SNMP from Perl, Using SNMP from Perl
	TrapSession method, Sending and Receiving SNMP Traps, Notifications, and Informs

	snmp.conf file for Net-SNMP, Using SNMP from Perl
	SNMP::BridgeQuery module, Alternative SNMP Programming Interfaces
	SNMP::Info module, Alternative SNMP Programming Interfaces, Discovering Hosts
	SNMP::Info::CDP module, Discovering Hosts
	SNMP::MIB::Compiler module, Using SNMP from Perl
	SNMP::Util module, Using SNMP from Perl
	snmptrapd daemon, Sending and Receiving SNMP Traps, Notifications, and Informs, Sending and Receiving SNMP Traps, Notifications, and Informs
	snmpV2-trap PDU, The 20-Minute SNMP Tutorial
	SNMP_Session.pm module, Using SNMP from Perl, Using SNMP from Perl, Sending and Receiving SNMP Traps, Notifications, and Informs
	SNMP_util.pm module, Using SNMP from Perl
	SOA (Start of Authority) resource record, Creating the administrative header
	SOAP::Lite module, Geocoding from Postal Addresses
	Solaris operating system, The Classic Unix Password File, Unix account creation and deletion routines—a variation, NIS+, Domain Name Service (DNS), Reading Binary Log Files, Using unpack(), Using unpack(), Stream read-count
		classic Unix password file, The Classic Unix Password File
	DNS support, Domain Name Service (DNS)
	log files, Reading Binary Log Files, Using unpack(), Using unpack(), Stream read-count
	NIS+ support, NIS+
	useradd command, Unix account creation and deletion routines—a variation

	Song, Dug, Discovering Hosts
	sort function, Read-remember-process
	Sort::Key module, Improving the Host File Output
	Sort::Maker module, Improving the Host File Output
	soundex algorithm, Performing LDAP Searches
	source control systems, Incorporating a Source Code Control System, Incorporating a Source Code Control System
	Spafford, Gene, Read-remember-process
	spak tool, Discovering Hosts
	spam, Dissecting a Whole Mailbox, SpamAssassin, Feedback loops, Feedback loops
		escalation in, Dissecting a Whole Mailbox
	feedback loops, Feedback loops, Feedback loops
	SpamAssassin, SpamAssassin

	SpamAssassin, Apache, Talking IMAP4rev1 to Fetch Mail, SpamAssassin
	split function, Calling an external program, Generating Host Files, Naked Delimited Data, Read-remember-process
		key/value pairs, Generating Host Files
	parsing data, Calling an external program
	reading delimited data, Naked Delimited Data
	whitespaces in filenames, Read-remember-process

	Spong monitoring package, Extending Existing Monitoring Packages
	Spotlight tool (Mac OS), Walking or Traversing the Filesystem by Hand
	SQL (Structured Query Language), MySQL Server via DBI, MySQL Server via DBI, The 15-Minute SQL Tutorial, Stored Procedures, Creating/Deleting Databases and Tables, Creating/Deleting Databases and Tables, Creating/Deleting Databases and Tables, Creating/Deleting Databases and Tables, Creating/Deleting Databases and Tables, Creating/Deleting Databases and Tables, Creating/Deleting Databases and Tables, Inserting Data into a Table, Inserting Data into a Table, Querying Information, Adding the Query Results to Another Table, Querying Information, Adding the Query Results to Another Table, Retrieving a Subset of the Rows in a Table, Retrieving a Subset of the Rows in a Table, Simple Manipulation of Data Returned by Queries, Adding the Query Results to Another Table, Adding the Query Results to Another Table, Changing Table Information, Changing Table Information, Changing Table Information, Changing Table Information, Relating Tables to Each Other, Views, Cursors, Stored Procedures, Stored Procedures, Stored Procedures, Stored Procedures
		adding queries results to tables, Adding the Query Results to Another Table
	changing table information, Changing Table Information
	conditional operators, Retrieving a Subset of the Rows in a Table
	CREATE DATABASE statement, Creating/Deleting Databases and Tables
	CREATE TRIGGER statement, Stored Procedures
	cursor use in queries, Cursors
	data manipulation, Simple Manipulation of Data Returned by Queries
	DELETE statement, Changing Table Information
	DROP statement, Creating/Deleting Databases and Tables
	DROP TRIGGER statement, Stored Procedures
	GO command, Creating/Deleting Databases and Tables
	INSERT statement, Inserting Data into a Table, Adding the Query Results to Another Table, Changing Table Information
	inserting data into tables, Inserting Data into a Table
	joining tables, Relating Tables to Each Other
	manipulating databases and tables, Creating/Deleting Databases and Tables, Creating/Deleting Databases and Tables
	querying information, Querying Information, Adding the Query Results to Another Table
	regular expression support, Retrieving a Subset of the Rows in a Table
	SELECT statement, Querying Information, Adding the Query Results to Another Table
	SHOW COLUMNS statement, MySQL Server via DBI
	SHOW TABLES statement, MySQL Server via DBI
	stored procedures, Stored Procedures
	triggers, Stored Procedures
	tutorial, The 15-Minute SQL Tutorial, Stored Procedures
	UPDATE statement, Changing Table Information
	USE statement, Creating/Deleting Databases and Tables
	user-defined aliases, Creating/Deleting Databases and Tables
	views, Views

	SQLite, Using Perl-cliented SQL databases, The 15-Minute SQL Tutorial
		downloading, The 15-Minute SQL Tutorial
	example, Using Perl-cliented SQL databases

	SRI (Stanford Research Institute), Host Files
	SSL (Secure Sockets Layer), The Initial LDAP Connection, Discovering Network Services
		LDAP support, The Initial LDAP Connection
	nmap tool support, Discovering Network Services

	Stanford Research Institute (SRI), Host Files
	stat function, Log rotation, Log rotation, Local Filesystem Changes
	stateful data in log files, Structure of Log File Data, Structure of Log File Data
	stateless data in log files, Structure of Log File Data
	Stebbens, Alan K., Textual Presentation Tools, Textual Presentation Tools
	Stein, Lincoln, Active Probing for Rogue DHCP Servers, Controlling the amount of mail
	Storable module, Binary, Binary, Using Perl-only databases
		functionality, Binary, Using Perl-only databases
	nstore method, Binary

	stored procedures, Stored Procedures
		defined, Stored Procedures

	Stowe, Jonathan, Alternative SNMP Programming Interfaces
	Strawberry Perl, What About Strawberry Perl?
	Structured Query Language, The 15-Minute SQL Tutorial (see SQL)
	Studennikov, Walery, The WHOIS Directory Service
	SubInACL binary, Windows User ID Numbers
	substr function, Calling an external program
	Sully, Dan, Reject Bad Passwords, Playing with an MP3 Collection
	Sun Microsystems, NIS, NIS+, and WINS
	Sun One, LDAP Programming with Perl
	suss program, Support Mail Augmentation
	Sybase Adaptive Server Enterprise, Interacting with a SQL Server from Perl
	SYN flood, Danger on the Wire, or “Perl Saves the Day”, Danger on the Wire, or “Perl Saves the Day”
	SYN packets, Danger on the Wire, or “Perl Saves the Day”
	SYN-ACK attack, Danger on the Wire, or “Perl Saves the Day”, Danger on the Wire, or “Perl Saves the Day”
	SynOptics Network Management Protocol, Discovering Hosts
	Sys::Hostname module, Module Information for This Chapter, Module Information for This Chapter
	Sysinternals utility collection, Using external binaries
	syslog tool, Controlling the amount of mail, Reading Text Logs, Read-remember-process
	SyslogScan module, Black boxes
	System event log, Using the OS’s Logging API, Stream read-count
	system function, Log rotation, Log rotation

T
	tables (SQL), Creating/Deleting Databases and Tables, Creating/Deleting Databases and Tables, Inserting Data into a Table, Retrieving All of the Rows in a Table, Retrieving a Subset of the Rows in a Table, Adding the Query Results to Another Table, Changing Table Information, Relating Tables to Each Other
		adding query results, Adding the Query Results to Another Table
	changing information, Changing Table Information
	creating and deleting, Creating/Deleting Databases and Tables, Creating/Deleting Databases and Tables
	inserting data, Inserting Data into a Table
	joining, Relating Tables to Each Other
	retrieving all rows, Retrieving All of the Rows in a Table
	retrieving subset of rows, Retrieving a Subset of the Rows in a Table

	taskkill.exe program, Using external binaries, Using external binaries
	tasklist.exe program, Using external binaries, Using external binaries
	Tassin, Fabien, Querying Filesystem Usage
	Taylor, Dennis, Finger: A Simple Directory Service, Finger: A Simple Directory Service
	TCP (Transmission Control Protocol), Danger on the Wire, or “Perl Saves the Day”, Discovering Hosts
	tcpdump program, Danger on the Wire, or “Perl Saves the Day”, Danger on the Wire, or “Perl Saves the Day”
	tcpvcon utility, Tracking Network Operations on Windows
	tcpwrappers tool, Read-remember-process
	telnet protocol, Finger: A Simple Directory Service, Finger: A Simple Directory Service
		earthquake information, Finger: A Simple Directory Service
	Expect.pm, Finger: A Simple Directory Service

	Template Toolkit, Textual Presentation Tools
	Term::Prompt module, Module Information for This Chapter
	Term::Readkey module, MySQL Server via DBI
	TerraServer web service, Geocoding from Postal Addresses
	Test::Harness module, Monitoring Frameworks
	Test::More module, Reject Bad Passwords, Monitoring Frameworks, References for More Information
	TeX command, Walking the Filesystem Using the File::Find Module
	text logs, reading, Reading Text Logs
	Text::ASCIITable module, Textual Presentation Tools
	Text::Autoformat module, Textual Presentation Tools
	Text::BarGraph module, Textual Presentation Tools
	Text::Beautify module, Textual Presentation Tools
	Text::CSV::Simple module, Tracking Network Operations on Windows, Naked Delimited Data
	Text::CSV_XS module, Tracking Network Operations on Windows, Naked Delimited Data
	Text::FormatTable module, Textual Presentation Tools
	Text::Match::FastAlternatives module, Dissecting a Single Message, Dissecting a Single Message
	Text::Soundex module, Performing LDAP Searches
	Text::TabularDisplay module, Textual Presentation Tools
	Text::Template module, Textual Presentation Tools
	Text::Wrap module, Tracking File and Network Operations in Unix, Module Information for This Chapter, Textual Presentation Tools
	textual presentation tools, Textual Presentation Tools, Textual Presentation Tools
	Tie::LogFile module, Logging Shortcuts and Formatting Help
	tied variables, Using ADSI from Perl
	Time to Live (TTL) setting, Creating the administrative header
	Time::Local module, Read-remember-process
	Timeline tool, Task Two: Displaying the Timeline
	timelines, playing with, Playing with Timelines, Putting It All Together
	TLD (top-level domain), The WHOIS Directory Service
	TLS (Transport Layer Security), The Initial LDAP Connection, Discovering Network Services
		LDAP support, The Initial LDAP Connection
	nmap tool support, Discovering Network Services

	TMTOWTDI acronym, Manipulating Disk Quotas, DNS Checking: An Iterative Approach
	top-level domain (TLD), The WHOIS Directory Service
	Torkington, Nathan, Calling an external program, Controlling the amount of mail
	Town, David M., Using SNMP from Perl
	traceroute command, Danger on the Wire, or “Perl Saves the Day”
	Transmission Control Protocol (TCP), Danger on the Wire, or “Perl Saves the Day”, Discovering Hosts
	Transport Layer Security, The Initial LDAP Connection (see TLS)
	trap PDU, The 20-Minute SNMP Tutorial
	traps, sending, Sending and Receiving SNMP Traps, Notifications, and Informs, Sending and Receiving SNMP Traps, Notifications, and Informs
	triggers, SQL, Stored Procedures
	tripwire tool, References for More Information
	Trout, Matt S., Talking IMAP4rev1 to Fetch Mail
	truncate function, Log rotation
	TTL (Time to Live) setting, Creating the administrative header
	Tufte, Edward, Using the GD::Graph module family, References for More Information

U
	UAC (User Account Control), Some Notes About Using Vista with the Code in This Book
	UDP (User Datagram Protocol), Danger on the Wire, or “Perl Saves the Day”, Sending and Receiving SNMP Traps, Notifications, and Informs, Discovering Hosts
	UFS filesystem, Mac OS X
	UIDL (POP3) command, Talking POP3 to Fetch Mail
	UNC (universal naming convention), Windows-Based Operating Systems
	Unicode character encoding scheme, Windows-Based Operating Systems
	universal groups, Windows Groups, Windows Groups
		creating, Windows Groups
	defined, Windows Groups

	universal naming convention (UNC), Windows-Based Operating Systems
	Unix operating system, Installing Modules on Unix, Unix, Windows-Based Operating Systems, Walking or Traversing the Filesystem by Hand, Walking the Filesystem Using the File::Find Module, Querying Filesystem Usage, Querying Filesystem Usage, Windows Passwords Don’t Play Nice with Unix Passwords, Unix account creation and deletion routines, Unix account creation and deletion routines—a variation, Unix Process Control, Using the Proc::ProcessTable module, Tracking File and Network Operations in Unix, Tracking File and Network Operations in Unix, Tracking File and Network Operations in Unix, Tracking File and Network Operations in Unix, Interacting with a SQL Server from Perl, Controlling the frequency of mail, Controlling the amount of mail, The WHOIS Directory Service, Reading Text Logs, Reading Binary Log Files, Using unpack(), Calling an OS (or Someone Else’s) Binary, Calling an OS (or Someone Else’s) Binary, Read-remember-process, Read-remember-process, Using Perl-only databases, Local Filesystem Changes, Monitoring Frameworks
		accessing Microsoft SQL Server, Interacting with a SQL Server from Perl
	account creation/deletion routines, Unix account creation and deletion routines, Unix account creation and deletion routines—a variation
	constraints transferring passwords, Windows Passwords Don’t Play Nice with Unix Passwords
	cron command, Controlling the frequency of mail, Monitoring Frameworks
	df command, Querying Filesystem Usage
	file command, Walking the Filesystem Using the File::Find Module
	file operations, Tracking File and Network Operations in Unix, Tracking File and Network Operations in Unix
	filesystem support, Unix, Windows-Based Operating Systems
	find command, Walking or Traversing the Filesystem by Hand
	installing Perl modules, Installing Modules on Unix
	last command, Calling an OS (or Someone Else’s) Binary, Calling an OS (or Someone Else’s) Binary
	log files, Reading Binary Log Files, Using unpack(), Read-remember-process
	network operations, Tracking File and Network Operations in Unix, Tracking File and Network Operations in Unix
	process management, Unix Process Control, Using the Proc::ProcessTable module
	querying filesystem usage, Querying Filesystem Usage
	stat function return values, Local Filesystem Changes
	supported database formats, Using Perl-only databases
	syslog, Controlling the amount of mail, Reading Text Logs, Read-remember-process
	WHOIS support, The WHOIS Directory Service

	unlink function, Log rotation
	unpack function, Calling an external program, Examining the kernel process structures, Using unpack(), Using unpack()
		binary log files, Using unpack(), Using unpack()
	documentation, Examining the kernel process structures
	parsing data, Calling an external program

	UPDATE statement (SQL), Changing Table Information, Changing Table Information
		changing table information, Changing Table Information
	WHERE clause, Changing Table Information

	URI::LDAP module, Referrals and references
	Urist, Daniel J., Using the Proc::ProcessTable module
	URLs, Referrals and references, Referrals and references, ADSI Basics
		ADsPath comparison, ADSI Basics
	LDAP support, Referrals and references, Referrals and references

	use constants pragma, Working with Configuration Files
	USE statement (SQL), Creating/Deleting Databases and Tables
	use strict pragma, Working with XML using XML::Simple
	use vars pragma, Walking the Filesystem Using the File::Find Module
	USENIX Association, References for More Information, Source Material for This Chapter
	User Account Control (UAC), Some Notes About Using Vista with the Code in This Book
	user accounts, Unix User Identities, Shadow Passwords, Windows-Based Operating System User Identities, Windows User Rights, Windows User Rights, Building an Account System to Manage Users, Account System Wrap-Up, Unix account creation and deletion routines, Unix account creation and deletion routines—a variation, Windows account creation and deletion routines, Windows account creation and deletion routines, References for More Information, Working with Users via ADSI
		account system to manage, Building an Account System to Manage Users, Account System Wrap-Up
	creating, Working with Users via ADSI
	reference information, References for More Information
	retrieving user rights, Windows User Rights
	Unix creation/deletion routines, Unix account creation and deletion routines, Unix account creation and deletion routines—a variation
	Unix user identities, Unix User Identities, Shadow Passwords
	Windows creation/deletion routines, Windows account creation and deletion routines, Windows account creation and deletion routines
	Windows-based user identities, Windows-Based Operating System User Identities, Windows User Rights

	user activity, User Activity, User Activity, User Activity, User Activity, Windows-Based Operating System Process Control, Using the Proc::ProcessTable module, File and Network Operations, Tracking File and Network Operations in Unix, File and Network Operations, Tracking File and Network Operations in Unix, References for More Information
		file operations, User Activity, File and Network Operations, Tracking File and Network Operations in Unix
	network operations, User Activity, File and Network Operations, Tracking File and Network Operations in Unix
	OS-specific, User Activity
	process management, User Activity, Windows-Based Operating System Process Control, Using the Proc::ProcessTable module
	reference information, References for More Information

	User Datagram Protocol (UDP), Danger on the Wire, or “Perl Saves the Day”, Sending and Receiving SNMP Traps, Notifications, and Informs, Discovering Hosts
	user ID, The Classic Unix Password File (see UID)
	user rights, Windows, Windows User Rights, Windows User Rights, Windows User Rights
		retrieving, Windows User Rights
	Windows-based, Windows User Rights, Windows User Rights

	user shell, The Classic Unix Password File
	User:: module, The Classic Unix Password File
	User::Utmp module, A simple stream read-count variation
	useradd command (Solaris), Unix account creation and deletion routines—a variation
	users, Windows, Unix User Identities, Shadow Passwords, Windows User Identity Storage and Access, Windows User Identity Storage and Access, Windows User ID Numbers, Windows User ID Numbers, Windows Passwords Don’t Play Nice with Unix Passwords, Windows Groups, Windows User Rights, Windows User Rights
		Unix support, Unix User Identities, Shadow Passwords
	user rights, Windows, Windows User Rights, Windows User Rights
	Windows numbers, Windows User ID Numbers, Windows User ID Numbers
	Windows storage and access, Windows User Identity Storage and Access, Windows User Identity Storage and Access, Windows Groups

	utime function, Local Filesystem Changes

V
	valid XML data, Two Key XML Terms
	variable binding, Using SNMP from Perl, Sending and Receiving SNMP Traps, Notifications, and Informs
	variables, Using ADSI from Perl, The 20-Minute SNMP Tutorial, The 20-Minute SNMP Tutorial
		Perl support, The 20-Minute SNMP Tutorial
	SNMP support, The 20-Minute SNMP Tutorial
	tied, Using ADSI from Perl

	VBScript, ADSI Basics, The Two-Minute VBScript-to-Perl Tutorial, References for More Information, References for More Information
		ADSI support, ADSI Basics
	conversion to Perl, The Two-Minute VBScript-to-Perl Tutorial, References for More Information
	reference information, References for More Information

	VBScript Converter, References for More Information
	VBScript-to-Perl, The Two-Minute VBScript-to-Perl Tutorial, References for More Information
		tutorial, The Two-Minute VBScript-to-Perl Tutorial, References for More Information

	Venema, Wietse, Read-remember-process
	Verbruggen, Martien, Using the GD::Graph module family
	VFAT filesystem, Windows-Based Operating Systems
	VIEW ANY DEFINITION permission, Microsoft SQL Server via ODBC
	views, SQL, Views
	Vincent, Jesse, What About Perl 6?
	virtual local area networks (VLANs), Using SNMP from Perl
	Vista (Microsoft), Some Notes About Using Vista with the Code in This Book
	Vixie, Paul, DHCP
	vlandTrunkPortTable, Using SNMP from Perl
	VLANs (virtual local area networks), Using SNMP from Perl
	vmMembershipTable, Using SNMP from Perl
	von Löwis, Martin, Perl to the Rescue

W
	Wadsack, Jeremy, Using the GD::Graph module family
	walking the filesystem, Walking or Traversing the Filesystem by Hand, Walking or Traversing the Filesystem by Hand, Walking the Filesystem Using the File::Find Module, Walking the Filesystem Using the File::Find Module, Walking the Filesystem Using the File::Find::Rule Module, Walking the Filesystem Using the File::Find::Rule Module
		by hand, Walking or Traversing the Filesystem by Hand, Walking or Traversing the Filesystem by Hand
	using File::Find module, Walking the Filesystem Using the File::Find Module, Walking the Filesystem Using the File::Find Module
	using File::Find::Rule module, Walking the Filesystem Using the File::Find::Rule Module, Walking the Filesystem Using the File::Find::Rule Module

	Wall, Larry, Working with XML using SAX2 via XML::SAX
	Walter, Jörg, Suggest Better Passwords
	Walton, Jose, Task Three: Writing Out the Correct XML File
	Wayback Machine, Tracking File Operations on Windows
	WBEM (Web-Based Enterprise Management), Using Windows Management Instrumentation (WMI)
	Web-Based Enterprise Management (WBEM), Using Windows Management Instrumentation (WMI)
	well-formed XML data, Two Key XML Terms
	WHERE clause (SQL), Using the DBI Framework, Retrieving a Subset of the Rows in a Table, Changing Table Information
		SELECT statement, Using the DBI Framework, Retrieving a Subset of the Rows in a Table
	UPDATE statement, Changing Table Information

	White, Alex, Black boxes
	whitespaces in filenames, Read-remember-process
	WHOIS directory service, The WHOIS Directory Service, The WHOIS Directory Service, References for More Information
	whois-servers.net domain, The WHOIS Directory Service, The WHOIS Directory Service
	Wiedmann, Jochen, Controlling the amount of mail
	wildcard characters, Performing LDAP Searches
	Williams, Ken, Dealing with Filesystem Differences from Perl
	Win32:: module, Some Notes About Using Vista with the Code in This Book, Windows User Administration
		IsAdminUser function, Some Notes About Using Vista with the Code in This Book
	reference information, Windows User Administration

	Win32::AdminMisc module, Windows User Identity Storage and Access
	Win32::AdvNotify module, Tracking File Operations on Windows
	Win32::API module, Windows User Rights, Danger on the Wire, or “Perl Saves the Day”
	Win32::ChangeNotify module, Tracking File Operations on Windows, Tracking File Operations on Windows
	Win32::DriveInfo module, Querying Filesystem Usage
	Win32::EventLog module, Stream read-count, Stream read-count, Stream read-count
		EVENTLOG_FORWARDS_READ flag, Stream read-count
	EVENTLOG_SEQUENTIAL_READ flag, Stream read-count
	functionality, Stream read-count

	Win32::FileNotify module, Tracking File Operations on Windows, Tracking File Operations on Windows
	Win32::FileOp module, Windows account creation and deletion routines
	Win32::FileSecurity module, Walking the Filesystem Using the File::Find Module, Local Filesystem Changes
	Win32::GuiTest module, Using the GUI control modules (Win32::Setupsup and
 Win32::GuiTest), Using the GUI control modules (Win32::Setupsup and
 Win32::GuiTest), Using the GUI control modules (Win32::Setupsup and
 Win32::GuiTest), Using the GUI control modules (Win32::Setupsup and
 Win32::GuiTest)
		functionality, Using the GUI control modules (Win32::Setupsup and
 Win32::GuiTest), Using the GUI control modules (Win32::Setupsup and
 Win32::GuiTest)
	SelectTabItem function, Using the GUI control modules (Win32::Setupsup and
 Win32::GuiTest)
	WMGetText function, Using the GUI control modules (Win32::Setupsup and
 Win32::GuiTest)

	Win32::Lanman module, Windows User Identity Storage and Access, Windows User Rights, Windows User Rights, Windows User Rights, Windows account creation and deletion routines, Windows account creation and deletion routines
		finding and downloading, Windows User Identity Storage and Access, Windows User Rights
	LsaEnumerateAccountsWithUserRight function, Windows User Rights
	LsaRemoveAccountRights function, Windows User Rights
	Windows account routines, Windows account creation and deletion routines, Windows account creation and deletion routines

	Win32::NetAdmin module, Windows account creation and deletion routines, Windows account creation and deletion routines
	Win32::ODBC module, Interacting with a SQL Server from Perl, Server Documentation, Microsoft SQL Server via ODBC, ODBC
		interacting with Microsoft SQL Server, Interacting with a SQL Server from Perl, Microsoft SQL Server via ODBC
	reference information, ODBC
	server documentation, Server Documentation

	Win32::OLE module, Windows User Identity Storage and Access, Windows User ID Numbers, Windows Groups, Using Windows Management Instrumentation (WMI), Using the OS-Specific IPC Framework to Drive a Mail Client, Using ADSI from Perl, Using ADSI from Perl, Using ADSI from Perl, Using ADSI from Perl, Using ADSI from Perl, Using ADSI from Perl, Using ADSI from Perl, Using ADSI from Perl, Dealing with Container/Collection Objects, Dealing with Container/Collection Objects, The Two-Minute VBScript-to-Perl Tutorial, Tactic 1: Loading Your Modules
		accessing interfaces, Windows User Identity Storage and Access
	accessing sample code, Using Windows Management Instrumentation (WMI)
	ADSI support, Windows Groups
	driving mail clients, Using the OS-Specific IPC Framework to Drive a Mail Client
	Enum object, Dealing with Container/Collection Objects
	functionality, Using ADSI from Perl, Using ADSI from Perl, The Two-Minute VBScript-to-Perl Tutorial
	GetInfo method, Using ADSI from Perl
	GetInfoEx method, Using ADSI from Perl
	GetObject method, Using ADSI from Perl
	in method, Dealing with Container/Collection Objects
	LastError method, Using ADSI from Perl
	loading, Tactic 1: Loading Your Modules
	SetInfo method, Using ADSI from Perl
	tied variables, Using ADSI from Perl
	WMI support, Windows User ID Numbers

	Win32::OLE::Const module, Using the OS-Specific IPC Framework to Drive a Mail Client
	Win32::Perms module, Windows User Identity Storage and Access, Windows User ID Numbers
	Win32::PingICMP module, Danger on the Wire, or “Perl Saves the Day”, Discovering Hosts
	Win32::Process::Info module, Using the Win32::Process::Info module, Using the Win32::Process::Info module
	Win32::Security module, Windows User ID Numbers
	Win32::Setupsup module, Using the GUI control modules (Win32::Setupsup and
 Win32::GuiTest), Using the GUI control modules (Win32::Setupsup and
 Win32::GuiTest), Using the GUI control modules (Win32::Setupsup and
 Win32::GuiTest), Using the GUI control modules (Win32::Setupsup and
 Win32::GuiTest), Using the GUI control modules (Win32::Setupsup and
 Win32::GuiTest), Installing Win32::Setupsup
		EnumChildWindows function, Using the GUI control modules (Win32::Setupsup and
 Win32::GuiTest)
	functionality, Using the GUI control modules (Win32::Setupsup and
 Win32::GuiTest), Using the GUI control modules (Win32::Setupsup and
 Win32::GuiTest)
	GetWindowsProperties function, Using the GUI control modules (Win32::Setupsup and
 Win32::GuiTest)
	installing, Installing Win32::Setupsup
	SendKeys function, Using the GUI control modules (Win32::Setupsup and
 Win32::GuiTest)

	Win32::UserAdmin module, Windows User Identity Storage and Access, Windows account creation and deletion routines, Windows account creation and deletion routines
	Win32::UTCFileTime module, Local Filesystem Changes
	Win32API::Net module, Windows User Identity Storage and Access, Windows Groups, Windows account creation and deletion routines, Windows account creation and deletion routines
	Win32_Process object, Using Windows Management Instrumentation (WMI), Using Windows Management Instrumentation (WMI)
	Windows Event Log Service, Using the OS’s Logging API, Stream read-count
	Windows Internet Name Server (WINS), Windows Internet Name Server (WINS)
	Windows Management Instrumentation, Editing NTFS Quotas Under Windows (see WMI)
	Windows registry, Windows User Identity Storage and Access
	Windows Task Scheduler, Controlling the frequency of mail
	Windows-based operating systems, Installing Modules on Win32, Windows-Based Operating Systems, Windows-Based Operating Systems, Walking or Traversing the Filesystem by Hand, Editing NTFS Quotas Under Windows, Windows Passwords Don’t Play Nice with Unix Passwords, Windows User Rights, Windows account creation and deletion routines, Windows account creation and deletion routines, Windows-Based Operating System Process Control, Using Windows Management Instrumentation (WMI), Tracking File Operations on Windows, Tracking File Operations on Windows, Tracking Network Operations on Windows, Tracking Network Operations on Windows, NIS, NIS+, and WINS, Interacting with a SQL Server from Perl, Interacting with a SQL Server from Perl, Using the OS-Specific IPC Framework to Drive a Mail Client, Using the OS-Specific IPC Framework to Drive a Mail Client, The WHOIS Directory Service, Working with Windows-Based Operating System Services via ADSI, Reading Binary Log Files, Using the OS’s Logging API, Stream read-count, Using Perl-only databases, Local Filesystem Changes
		account creation/deletion routines, Windows account creation and deletion routines, Windows account creation and deletion routines
	ADSI support, Working with Windows-Based Operating System Services via ADSI
	constraints transferring passwords, Windows Passwords Don’t Play Nice with Unix Passwords
	driving mail clients with IPC framework, Using the OS-Specific IPC Framework to Drive a Mail Client, Using the OS-Specific IPC Framework to Drive a Mail Client
	editing NTFS quotas, Editing NTFS Quotas Under Windows
	event logs, Reading Binary Log Files, Using the OS’s Logging API, Stream read-count
	file operations, Tracking File Operations on Windows, Tracking File Operations on Windows
	filesystem support, Windows-Based Operating Systems, Windows-Based Operating Systems
	installing Perl modules, Installing Modules on Win32
	network operations, Tracking Network Operations on Windows, Tracking Network Operations on Windows
	NIS support, NIS, NIS+, and WINS
	ODBC support, Interacting with a SQL Server from Perl, Interacting with a SQL Server from Perl
	process management, Windows-Based Operating System Process Control, Using Windows Management Instrumentation (WMI)
	resource kits, Windows User Rights
	Search tool, Walking or Traversing the Filesystem by Hand
	stat function return values, Local Filesystem Changes
	supported database formats, Using Perl-only databases
	WHOIS directory service, The WHOIS Directory Service

	WinNT namespace, ADSI Basics, Searching, Performing Common Tasks Using the WinNT and LDAP Namespaces, Performing Common Tasks Using the WinNT and LDAP Namespaces, Working with Users via ADSI, Working with Groups via ADSI
		ADO restrictions, Searching
	overview, Performing Common Tasks Using the WinNT and LDAP Namespaces, Performing Common Tasks Using the WinNT and LDAP Namespaces
	SAM support, ADSI Basics
	working with groups, Working with Groups via ADSI
	working with users, Working with Users via ADSI

	WinPcap, Danger on the Wire, or “Perl Saves the Day”, Discovering Hosts
	WINS (Windows Internet Name Server), Windows Internet Name Server (WINS)
	WMI (Windows Management Instrumentation), Editing NTFS Quotas Under Windows, Windows User ID Numbers, Using Windows Management Instrumentation (WMI), Using Windows Management Instrumentation (WMI), References for More Information, Using the OS’s Logging API
		disk quota support, Editing NTFS Quotas Under Windows
	event logs, Using the OS’s Logging API
	process management, Using Windows Management Instrumentation (WMI), Using Windows Management Instrumentation (WMI)
	reference information, References for More Information
	Win32::OLE module, Windows User ID Numbers

	wtmp/wtmpx file (Unix), Reading Binary Log Files, Reading Binary Log Files, Using unpack(), Using unpack(), Using unpack(), Calling an OS (or Someone Else’s) Binary, Calling an OS (or Someone Else’s) Binary, Calling an OS (or Someone Else’s) Binary, Structure of Log File Data, Read-remember-process, Read-remember-process, Using Perl-only databases
		background, Reading Binary Log Files
	database support, Using Perl-only databases
	functionality, Reading Binary Log Files
	last command, Calling an OS (or Someone Else’s) Binary, Calling an OS (or Someone Else’s) Binary
	read-remember process, Read-remember-process
	state transactions, Structure of Log File Data
	tcpwrappers tool, Read-remember-process
	unpack function, Using unpack(), Using unpack(), Using unpack()
	variant differences, Calling an OS (or Someone Else’s) Binary

	wu-ftpd daemon, Read-remember-process, Read-remember-process
	WWW::Mechanize module, Part One: Retrieving the Wiki Page with WWW::Mechanize, Part One: Retrieving the Wiki Page with WWW::Mechanize
	Wyant, Thomas R., Using the Win32::Process::Info module

X
	X.500 Directory Service, LDAP: A Sophisticated Directory Service
	XML (eXtensible Markup Language), XML, Writing XML from Perl, Writing XML from Perl, Survey of best-practice tools to parse and manipulate XML from
 Perl, Working with XML using a hybrid approach (XML::Twig), Working with XML using XML::Simple, Working with XML using XML::Simple, Working with XML using XML::LibXML, Working with XML using XML::LibXML, Working with XML using SAX2 via XML::SAX, Working with XML using SAX2 via XML::SAX, Working with XML using a hybrid approach (XML::Twig), Working with XML using a hybrid approach (XML::Twig), YAML, YAML, XML and YAML, The Eight-Minute XML Tutorial, References for More Information
		functionality, XML
	parsing from Perl, Survey of best-practice tools to parse and manipulate XML from
 Perl, Working with XML using a hybrid approach (XML::Twig)
	reference information, XML and YAML
	tutorial, The Eight-Minute XML Tutorial, References for More Information
	using XML::LibXML module, Working with XML using XML::LibXML, Working with XML using XML::LibXML
	using XML::SAX module, Working with XML using SAX2 via XML::SAX, Working with XML using SAX2 via XML::SAX
	using XML::Simple module, Working with XML using XML::Simple, Working with XML using XML::Simple
	using XML::Twig module, Working with XML using a hybrid approach (XML::Twig), Working with XML using a hybrid approach (XML::Twig)
	writing from Perl, Writing XML from Perl, Writing XML from Perl
	YAML, YAML, YAML

	XML namespaces, Working with XML using SAX2 via XML::SAX
	XML Path Language, The 10-Minute XPath Tutorial (see XPath)
	XML Working Group, Working with XML using SAX2 via XML::SAX
	XML::Compile module, Working with XML using a hybrid approach (XML::Twig)
	XML::Generator module, Writing XML from Perl
	XML::LibXML module, Working with XML using XML::Simple, Working with XML using XML::Simple, Working with XML using XML::LibXML
		appendData method, Working with XML using XML::LibXML
	childNodes method, Working with XML using XML::LibXML
	findnodes method, Working with XML using XML::LibXML
	functionality, Working with XML using XML::LibXML, Working with XML using XML::LibXML
	getAttribute method, Working with XML using XML::LibXML
	getChildrenByTagName method, Working with XML using XML::LibXML, Working with XML using XML::LibXML
	getElementsByTagName method, Working with XML using XML::LibXML, Working with XML using XML::LibXML
	hasChildNodes method, Working with XML using XML::LibXML
	insertData method, Working with XML using XML::LibXML
	nextSibling method, Working with XML using XML::LibXML
	nodeName method, Working with XML using XML::LibXML
	parse_balanced_chunk method, Working with XML using XML::LibXML
	removeChild method, Working with XML using XML::LibXML
	replaceData method, Working with XML using XML::LibXML
	setAttribute method, Working with XML using XML::LibXML
	setData method, Working with XML using XML::LibXML
	usage recommendations, Working with XML using XML::Simple
	XML::LibXML::DocumentFragment module, Working with XML using XML::LibXML
	XML::Simple module support, Working with XML using XML::Simple

	XML::Parser module, Working with XML using SAX2 via XML::SAX, Working with XML using SAX2 via XML::SAX
	XML::RSS module, Geocoding from IP Addresses
	XML::Rules module, Working with XML using a hybrid approach (XML::Twig)
	XML::SAX module, Working with XML using SAX2 via XML::SAX, Working with XML using SAX2 via XML::SAX, Working with XML using SAX2 via XML::SAX, Working with XML using SAX2 via XML::SAX, Working with XML using SAX2 via XML::SAX, Working with XML using SAX2 via XML::SAX
		usage recommendations, Working with XML using SAX2 via XML::SAX
	XML::SAX::Base module, Working with XML using SAX2 via XML::SAX
	XML::SAX::ParserFactory module, Working with XML using SAX2 via XML::SAX
	XML::SAX::PurePerl module, Working with XML using SAX2 via XML::SAX

	XML::Simple module, Working with XML using XML::Simple, Working with XML using XML::Simple, Working with XML using XML::Simple, Working with XML using XML::Simple, Working with XML using XML::Simple, Working with XML using XML::Simple, Working with XML using XML::Simple, Working with XML using XML::Simple, Working with XML using XML::Simple, All-in-One Modules, DSML, Geocoding from Postal Addresses, Geocoding from IP Addresses
		Config::Context module and, All-in-One Modules
	DSML support, DSML
	ForceArray argument, Working with XML using XML::Simple, Working with XML using XML::Simple
	functionality, Working with XML using XML::Simple, Working with XML using XML::Simple
	geocoding and, Geocoding from Postal Addresses
	KeyAttr option, Working with XML using XML::Simple, Working with XML using XML::Simple
	RSS support, Geocoding from IP Addresses
	usage recommendations, Working with XML using XML::Simple

	XML::Twig module, Working with XML using a hybrid approach (XML::Twig), Working with XML using a hybrid approach (XML::Twig), Working with XML using a hybrid approach (XML::Twig)
		usage recommendations, Working with XML using a hybrid approach (XML::Twig)

	XML::Writer module, Writing XML from Perl, Writing XML from Perl, Writing XML from Perl, Writing XML from Perl, Writing XML from Perl, Writing XML from Perl, Task Three: Writing Out the Correct XML File
		characters method, Writing XML from Perl
	endTag method, Writing XML from Perl
	functionality, Writing XML from Perl, Writing XML from Perl, Task Three: Writing Out the Correct XML File
	startTag method, Writing XML from Perl
	xmlDecl method, Writing XML from Perl

	XMLRPC::Lite module, Geocoding from Postal Addresses
	xml_grep utility, Working with XML using a hybrid approach (XML::Twig)
	XPath (XML Path Language), Working with XML using XML::LibXML, Working with XML using XML::LibXML, Working with XML using XML::LibXML, Working with XML using XML::LibXML, The 10-Minute XPath Tutorial, References for More Information, Basic Location Paths, Basic Location Paths, Predicates, Predicates, Abbreviations and Axes, Abbreviations and Axes, References for More Information
		axes support, Abbreviations and Axes
	basic location paths, Basic Location Paths, Basic Location Paths
	count function, Working with XML using XML::LibXML
	location path abbreviations, Abbreviations and Axes
	predicates, Predicates, Predicates
	tutorial, The 10-Minute XPath Tutorial, References for More Information
	XHTML and, Working with XML using XML::LibXML
	XML::LibXML module support, Working with XML using XML::LibXML, Working with XML using XML::LibXML
	XSH2 package, References for More Information

	Xymon monitoring package (formerly known as Hobbit), Xymon

Y
	yafic tool, References for More Information
	Yahoo! Maps web service, Geocoding from Postal Addresses
	YAML, XML, Working with XML using XML::Simple, YAML, YAML, XML and YAML
		debugging support, Working with XML using XML::Simple
	functionality, YAML, YAML
	reference information, XML and YAML
	truncated files and, XML

	YAML module, YAML
	YAML::XS module, YAML
	Yee, Bennet, Finger: A Simple Directory Service
	Yellow Pages (YP), NIS, NIS+, and WINS
	YP (Yellow Pages), NIS, NIS+, and WINS
	ypcat command (NIS), NIS, NIS+, and WINS

Z
	Zakharevich, Ilya, Using Perl-only databases, Playing with an MP3 Collection
	Zaleweski, Michal, Discovering Hosts
	Zoerner, Tom, Editing Quotas Using the Quota Module

About the Author
David N. Blank-Edelman is the Director of Technology at the Northeastern University College of Computer and Information Science. He has spent the last 25 years as a system/network administrator in large multi- platform environments, including Brandeis University, Cambridge Technology Group, and the MIT Media Laboratory. He was also the program chair of the LISA 2005 conference and one of the LISA 2006 Invited Talks co-chairs.

Colophon
The animal on the cover of Automating System Administration with
 Perl, Second Edition, is a sea otter. North American sea otters make
 their homes along the Pacific coast, near the kelp beds containing the shellfish that
 make up the majority of their diet. Sea otters can be found in great numbers in Alaska
 and on beaches as far south as California.
Sea otters are agile, intelligent mammals and are known to make ingenious use of
 tools. Floating on their backs, they hold a shellfish such as a mussel or abalone on
 their bellies and use a rock to break the shell.
Intensely social, sea otters gather to float in groups called rafts. They are
 excellent swimmers, propelling themselves swiftly through the water with their
 flipper-like, webbed back paws. Their thick fur provides them with efficient insulation
 in the water. At times, their existence has been threatened as they have been
 mercilessly hunted to near extinction for their fur.
The cover image is an original illustration created by Lorrie LeJeune. The cover font
 is Adobe ITC Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
 Condensed; and the code font is LucasFont’s TheSansMonoCondensed.

OEBPS/httpatomoreillycomsourceoreillyimages296207.png
ADSI Browse findow: ADs:// 50

BaRcLAY 1=l
B sasuin

consrmmon H

B e

B ovestosncrsis

Fg aminisrers]
‘ ‘ tg i

Pty

Ready.

ADSI Inspector: WinNT://STANDALONE /OMPHALOSKEPSIS /Adninisrat M

ADS! Inspector. WinNT #/STANDALONE/OMPHALOSKEPSIS/Administrators
Object Class: Win32_OLE

ADSI Class:_Group

Builtin Properties

Propery Value B
Neme |Administrators
Class |Group

GUD [{DIC1AADO-ET1-11CF-BIF3-02608CET553)

ADsPath | WinNT #STANDALONE/OMPHALOSKEPSIS/Administrators
Parent | Wil T /STANDALONE/OMPHALOSKEPSIS

Schema | WinNT/STANDALONE/SchemalGroup

Description| Members can fully administer the computer/domain

Members | Win32:OLE=HASH(0x114dab0)

ADS| Schema._WinNT//STANDALONE/Schema/Group

[Schema Properties |

Collection Object._No
Ready.

OEBPS/httpatomoreillycomsourceoreillyimages296247.png.jpg
ourly /priviadm/cronhourly o fpriviadm/cron/hourly © /priviadm/cron/hourly
 fpriv/adm/cron/hourly @ /priv/adm/cron/hourly @ /priv/adm/cron/hourly @ /priv/adm/cron/weekly

2 foine o pgfmioatondy, o SiPfyfaieiemnnony e/l o, e/pyjsisienahony.

H
) |tan 23

|7an 25 |7an 26 |7an 27 |7an 28 |san 29 |7an 30 |7an 31 Feb 1

OEBPS/httpatomoreillycomsourceoreillyimages296249.png.jpg
ORLIS/scrub-tech profile-reportpl. o quota-group pl ©quota-jobspl o quota-ree pl
© names.pl o rsh alex quota report ©quota-group.pl ©quotacjobs.pl
o teamspace/ieamspace.pl ©quota-jobs pl. © quota-tree pl
© quota-treepl ©rsh alex quota report
© quota-trackerpl. ©quota-group.pl
o qree-racker pl o snaplistpl
@ rsh alex quota report
@ snaplist pl
|4br |Shr. |6hr 7hr 8hr |ohr | 1onr 11he 12hr 13hr
E’w) 25 |an 26 |san27 Jan 28 fan29 an 30 an 31 |Feb2 Feb3 [Feb4

OEBPS/httpatomoreillycomsourceoreillyimages296267.png
 ipRouteTable

ipRouteDest

ipRoutelfindex

ipRouteMetrict

ipRouteMetrict

ipRouteDest

ipRouteMetrict

ipRouteDest

ipRouteMetric1

ipRouteMetric1

ipRouteMetric1

— ipRouteEntry

OEBPS/httpatomoreillycomsourceoreillyimages296209.png.jpg
File Action View Help
==
[D

 Custom Views ey ol
it indows Logs (tocal)

& Applcation a|| & opensavediog.
|- fod reate Custom View.
5 seun @ Create Custom i
] system To view events that have occuired on your Import Custom View.
 Forwarded Events ‘computer, select the appropriate source, log or
o W bt el Sarisi Lo custom view node n the consoletree, The. Connect to Another Com.
] DS Repication e p— view =
] Diectory Service =
] ONS Server &) Refresh
B e oaonseics Event Type EventlD | Source g = d e 5
& Hardware Events Critical s % - ®
] Internet Explorer Error . . 5

] Key Management Service Waming - = - |
.
2 Windows Powershell
Subscrptions

Name Description | Modified

OEBPS/httpatomoreillycomsourceoreillyimages296227.png
fachine Hame

Machine Lomputatlon Lomparlson

Bosomips

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages296203.png.jpg
User DSN | Sytem DSN | il DSN Divers | Tracig | Connection ooing | About |
(ODBC Drivers that are installed on your system:

Name] Version Company. Fle Date
8 6006001 18000 Microsot Corporation SQLSRV3ZDLL 1/19/200

|

i ODEC diver alows ODEC-enabled programs to get nfomation from
‘ODEC data sources. To installnew divers, use the diver' selup.
program.

Cancel Aoy Hep

OEBPS/httpatomoreillycomsourceoreillyimages296263.png
ﬁ ointiso-cd(1)
I I

[I]
drecony) | experinentals) | prvatet) | searitys) | snmpi29) |

| T T I I T | |]
mrlu;m' n(z)' |p(4)| m(5)| up(s)| uq;m' -gp(a)| mm(9)| lllnslllsdnn(w)l sllmp(")l

OEBPS/httpatomoreillycomsourceoreillyimages296219.png
o 1 2 3
0 |1|Zw3w4w5w6w7 8|9|0w1w2w3w4w5 6w7|8|9 ‘0‘1‘2 3w4w5|6|7w8w9w0w1

o 1 2 3
4 5 6 7
8 9 10 1
s|F
12 13 Y[Window
N|N
Checksum Urgent pointer
Options Padding

Data

OEBPS/httpatomoreillycomsourceoreillyimages296193.png
Domain local group: Printer Access
(members of group can access printer)

Global group:
Faclitie Planning

1ey0

Global group:
Customer Service

OEBPS/httpatomoreillycomsourceoreillyimages296186.jpg
Automating

System ="
Administration
with Perl

O’REILLY* David N. Blank-Edelman

OEBPS/httpatomoreillycomsourceoreillyimages296237.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages296201.png
| I [columnt, column2, column3, column.]

[colunn1, columnz, column3, colunn. .]

[column1, column2, colums3, colunn. .]

[column1, column2, column3, column. .]

OEBPS/httpatomoreillycomsourceoreillyimages296213.png
rol

logfile logfe.0

Ywa|)wah)

logile ~logfied logfie.1

Yy)

logie logfie0 logfie logfie2

Yy sy) e) ron

logfile logfile.0 logfile.1 logfile.2 logfile3

(| Yoy | o) i)y

logfile logfile.0 logfile.1 logfile.2 logfile.3 logfile.n

OEBPS/httpatomoreillycomsourceoreillyimages296211.png.jpg
—>Dec 13 05:28:27 mailhub sendmail[26690]: FAA26690:
from=<user@has.a.godcomplex.com>, size=643, class=0,
pri=30643, nrcpts=1,

99812131032.CAA22824@has. a.godcomplex. com>,

MTP, relay=user@has.a.godcomplex.com [216.32.32.176]

»Dec 13 05:29:13 mailhub sendmail[26695]: FAA26695:

from=<root@host.example.edu>, size=9600, class=0,pri=39600
nrepts=1,msgid=<199812131092. FAA15005@host . example. edu>,
proto=ESMTP, relay=root@host.example.edu [192.168.16]

L—»Dec 13 05:29:15 mailhub sendmail[26691]: FAA26690:
to=<user@example.edu>, delay=00:00:02, xdelay=00:00:01,
mailer=local, stat=Sent

L Dec 13 05:29:29 mailhub sendmail[26696]: FAA26695: to:

‘88exec /usr/bin/procmail -f-||exit 75 #user", ctladd

pri=30643, nrcpts=1,

(6603/104), delay=00:00:06, xdelay=00:00:06, mailer=prog,

stat=Sent

OEBPS/httpatomoreillycomsourceoreillyimages296197.png

OEBPS/httpatomoreillycomsourceoreillyimages296221.png
v

ymPortStatus
vmPortStatus
vmPortStatus

vmVian

vmVlan
vmVlan

mMembershipTable
dot1dTpFdbPort
dot1dTpFdbPort
dot1dTpFdbPort

ifName. <ifnum>

ifName. <ifnum>
ifName. <ifnum>

A
£
=)
g
=
=
2
-]
&
3
|

dot1dBasePortindex.<port>
dot1dBasePortindex.<port>

ystring MiB instance

dot1dBasePortTable

dot1dTpFdbAddress
dot1dTpFdbAddress

dot1dTpFdbAddress

dot1dTpFdbTable

commuf

OEBPS/httpatomoreillycomsourceoreillyimages296259.png
Entry

RDN + RDN...

name type value 1, value?2,...
R

name type value 1, value 2,...
name = value =
objectClass type schema, schema...

DN

attribute

attribute

attribute

OEBPS/httpatomoreillycomsourceoreillyimages296241.png

OEBPS/httpatomoreillycomsourceoreillyimages296251.png.jpg
R

os Reis g,

Sateliite

T

o b

OEBPS/httpatomoreillycomsourceoreillyimages296233.png
19216603

OEBPS/httpatomoreillycomsourceoreillyimages296243.png

OEBPS/httpatomoreillycomsourceoreillyimages296253.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages296255.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages296239.png

OEBPS/httpatomoreillycomsourceoreillyimages296191.png
edquota D autoedquota

ftmpffile

2
D autoedquota

Jtmp/fie

T
edquota

filesystem quota Jmp/file

autoedquota saipt runs edquota
progam with EDITOR
environment variable set.

‘edquota writes a temporary
fileand then spawns asecond
copy of autoedquota scrpt.

Second copy of autoedquota
modifiesthe temporary file.

edquota eads temporaryfle:
backin and makes changes
toquota,

OEBPS/httpatomoreillycomsourceoreillyimages296217.png
0 1 2 3
01234567890123456789012345678901

Source port

Destination port

Sequence number

Acknowledgnent number

ale|rs|F
pata | Reserved [Rc|s|s|v| Window
G[K[H[T[N[N
Checksun Urgent pointer
options Padding

Data

OEBPS/httpatomoreillycomsourceoreillyimages296257.png
zectha

e
Ethernet

[clementnode
[cextnoce

attribute value
name

—-chld elationship

OEBPS/httpatomoreillycomsourceoreillyimages296215.png

OEBPS/httpatomoreillycomsourceoreillyimages296245.png
W Inflow Temp B Danger Line

OEBPS/httpatomoreillycomsourceoreillyimages296265.png.jpg
jointiiso-ccit(1)

I f I |
experimental(3) | privatel@) | seaity(s) | snmpv2(e)
S

T I I T 1 I T 1
interfaces2)| at(3) | ip(4) | icmp(5) | tep(s) udp(7) egp(®) cmott) transmission(10) snmp(11)

OEBPS/httpatomoreillycomsourceoreillyimages296205.png
Sentry luid:rsmith,ou:system,ou:people,c:ccs,dc:hogwarts,dc:edu] =
b fuid} = b [rsnitn)

e 1}

ref { phones }

ref [Boston]

ref [617-555-1212,617-555-2121]

OEBPS/httpatomoreillycomsourceoreillyimages296223.png
ARP header
00 01 0203 04050607 08 09 10 1112 13 14 15 16 17 18 19 20 21 22 2324 25 26 27 28 29 30 31

Hardware type Protocol type
Hardware access Protocol access
length [, Tength PN - S

Source hardware address
P T T T T S S A S S

Source protocol address

Destination hardware address
P T T ST T S S S T S S

Destination protocol address

Data

OEBPS/httpatomoreillycomsourceoreillyimages296261.png

OEBPS/httpatomoreillycomsourceoreillyimages296199.png.jpg
The DBI Architecture The ODBC Architecture

Perl
script
using DBI API
methods

Driver manager

OEBPS/httpatomoreillycomsourceoreillyimages296195.png
e Acon Vew tep

& Local securypoey ___AEE

s FmXDE]
(A e seiras
=] Accountptces
7 Locl olcs
ey
er g Acsigment
scariy Optons
| Windows Firewall with Advanced Security
] Network it Manager Polices
| Public Key Policies
] Software Restriction Policies.
& 1P Seaity Polces on Local Computer

0]

cces i computer o the network
Actas pat ofthe operating system
dd worstatons t doman
acst memary quotas for 3 process
Adow log on caly
Lo logantroush Ternlservies
sack p fes an drectres
oypess roverse checing
Change the syetem e
L] hange the tme sone
- create a pagefie
Crente » taken biect
[lceste gobalobects
Create permanentshred objecs
[creste smbolcinis
oebog ogeams
Deny acess t s computer from thenetork
Deny logon s a bt
Deny log on o asevice
Deny log on ocaly
[Lloenlogan throush Termnlservies
- Enable computer and user accounts to be trusted for delegation
Force stdonn fom aremote sstem
Generate securty audts
LLjmpersonate » cent after authentaton
e —
‘

Everyone, Authentcated Users,Domain Controlers, Admin

Authenticated Users
LOCAL SERVICE, NETWORK SERVICE, Adrminisirators
Adminstrators, Account Operators, Server Operators,Print.
Administrators

‘Adminstrators,Server Operators,Backup Operators
Everyone, Authentcated Users,LOCAL SERVICE NETWOR.
LOCAL SERVICE, Adminstrators, Server Operators

LOCAL SERVICE, Adminstrators, Server Operators
Administrators

LOCAL SERVICE, NETWIORK SERVICE, Adrministrators, SERV.

Administrators
Administrators

Adminstrators
~Adminstrators,Server Operators

LOCAL SERVICE, NETWIORK SERVICE

LOCAL SERVICE, NETWIORK SERVICE, Adrministrators, SERV.
Users

I»

OEBPS/httpatomoreillycomsourceoreillyimages296235.png.jpg
19216803

OEBPS/httpatomoreillycomsourceoreillyimages296225.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages296231.png
Server

OEBPS/httpatomoreillycomsourceoreillyimages296229.png
Machine Lomputatlon Lomparlson

Machine Name

